
ABSTRACT

YANG, SONG. Financial Risk Management: Portfolio Optimization. (Under the direction of
Dr. Tao Pang.)

Risk management is a core activity by financial institutions. There are different types of

financial risks, e.g. market, credit, operational, model, liquidity, business, etc. Managing these

risks to minimize potential losses is essential to ensure viability and good reputations for finan-

cial institutions. Therefore, it is necessary to have an accurate model and a proper measurement

that describes the risk.

In this thesis, we model the risks with proper measurement, like Value-at-risk (VaR) and

Conditional Value-at-Risk (CVaR). The dependence between risks is described by the so-called

copula, which can connect marginal distributions with joint distribution. Among many popular

copulas, we find a proper copula to describe the correlations between risks and between financial

data. Portfolio optimization problems with VaR and CVaR as risk measurement are solved and

numerical results indicate that the model can describe the real world risk very well. In addition,

we propose another method, called Independent Component Analysis. By linear transformation,

we obtain models for independent components with the same optimal solution. The time of

solving the new models is highly reduced with the same accuracy.
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Chapter 1

Introduction

Risk management is a core activity by financial institutions. There are different types of finan-

cial risks, e.g. market risk, credit risk, operational risk, modeling risk, liquidity risk, business

risk, etc. Managing these risks to minimize potential losses is essential to ensure viability and

good reputations for financial institutions. Therefore, it is necessary to have an accurate model

and a proper measurement that describes the risks.

1.1 Background and Literature Review

People believe that the past behaviors of financial data are rich in information about their

future behaviors. Therefore, we can use the past history of financial data to get meaningful

predictions of the future. There are two methods to model the financial returns/losses to predict

future. One is called historical method and the other is called parametric method. The former

is based on the observed data and use these data to obtain the information we need. Parametric

method is used under the assumption that the observed data follow some rules or models with

unknown parameters. We can use the data to get the estimations of parameters and use the

rule or the model we set up to obtain what we need. Usually, the historical method depends

on observed data and if the size of the data is not large enough, there is a greater chance to

estimate the subject we need inaccurately. Therefore, parametric method is widely used and it

can estimate what we need more precisely. For parametric method in risk management, there

are mainly two kinds of approaches: unconditional approach and conditional approach.

Unconditional approach is based on the assumption that the financial returns/losses for each

time period are independent and identically distributed (i.i.d.) random variables. Gaussian

distribution is first introduced since it is easy and has explicit expression. However, empirical
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distribution exhibits that the financial data have some properties that cannot be explained by

Gaussian distribution. In both Fama (1965,[14]) and Hull and White (1998,[22]), the authors

pointed out that empirical financial data are leptokurtic, that is there are too many values near

the mean and too many out in the extreme tails. Therefore, Gaussian assumption is questioned

and some alternative families of distributions are suggested. The family of generalized skewed

t (GST) distribution, which is a generalization of student’s t distribution allowing skewness, is

introduced in Theodossiou (1998, [40]). In that paper, the author used GST distribution to fit

the empirical distributions of 6 financial data. By statistical test, he concluded that GST distri-

bution fits these data very well. However, for some financial data, the tail of GST distribution

may not be heavy enough to describe their properties. Another candidate of distribution family

is stable distribution. Stable distribution is a generalization of Gaussian distribution, which

allows skewness and heavy tails and has many intriguing mathematical properties. Khindanova

(2001,[24]) pointed out that stable distribution seems to be the most appropriate distribution

to fit financial data. It is because that stable distribution can describe both heavy tails and

asymmetry, which are common characteristics of financial data. Although stable distribution

seems to be the best one for financial data, it has its own drawbacks. It does not have explicit

expression for the probability density function and cumulative distribution function, we have

to calculate them numerically, which is time consuming.

On the other hand, the assumption of i.i.d. for the unconditional approach is questioned. In

real world, financial series are not independent with each other, therefore, conditional approach

is introduced. Conditional approach admits the financial return/loss series depending on the

past information. Traditionally, serial dependence is modeled by autoregressive moving average

(ARMA) structure, which gives a stationary series. However, the ARMA models assume that

the variance is constant and they are not able to capture the volatility clustering, i.e. large

(small) changes tend to be followed by large (small) changes. Since time-varying volatility clus-

tering is a common characteristic of financial returns/losses, researchers try to find solutions to

this property. The most popular one is Autoregressive Conditional Heteroscedasticity (ARCH)

model proposed by Engle (1982,[13]) and followed by Generalized Autoregressive Conditional

Heteroscedasticity (GARCH) model introduced by Bollerslev (1986,[7]). Both of the models can

also combine with an ARMA specification for the mean equation, referred as ARMA-ARCH

and ARMA-GARCH model. Nowadays, GARCH model is widely used. In standard GARCH

model, it is assumed that the innovation distribution is Gaussian. However, for many financial

return/loss series, Gaussian is not adequate for leptokurtosis. Therefore, several non-Gaussian

distributions are used, for example GST distribution (Bali and Theodossiou 2007 [4] and Hansen

1994 [19]), stable paretian distribution (Liu and Brorsen 1995 [27] and Panorska, Mittnik and

Rachev 1995 [36] etc). We will introduce these time series models in details in the next chapter.
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Another issue in risk management is how to measure the risk of financial returns/losses.

In Gaussian models, variance is used to measure the risk. As time goes on, people realized

that variance is not good enough to describe the risk and some alternative measurements are

then introduced. One of the most famous risk measurements is Value-at-Risk (VaR), which is

the absolute value of the lower/upper percentile of the financial return/loss distributions. VaR

measures the highest possible loss at a given confidence level. It is widely used to measure the

risk and even becomes part of the industrial regulatory mechanisms (Basel II Accord). However,

it is pointed out by Artzner, Delbaen, Eber and Heath (1998, [2]) that VaR is not a coherent

measurement, and it is not convex. A risk measure is coherent if it satisfies certain axioms

of monotonicity, sub-additivity, positive homogeneity and translation invariance, which will be

introduced in details in chapter 2. An alternative coherent measurement of risk is introduced

in Artzner, Delbaen, Eber and Heath (1998, [2]), which is called Conditional Value-at-Risk

(CVaR), defined by the expected loss exceeding VaR. As a coherent measurement, CVaR has

perfect properties and can make a lot of research work easier. Nowadays, both VaR and CVaR

are widely used to measure the risk in both research and real world.

After we know how to measure risk, portfolio optimization problem is naturally proposed.

Portfolio optimization method can be traced back to Markowitz (1952,[28]), where the author

introduced mean-variance framework. In his works, Markowitz tried to find the optimal al-

location for each asset of the investment, by minimizing the variance (regarded as the risk

measurement) under a minimum return requirement condition. This is based on the assump-

tion that individual assets follow Gaussian distributions and the correlation between assets is

given by a correlation matrix. We can take the place of variance with some other risk mea-

surements like VaR and CVaR. As for VaR is not a coherent measurement, there are lots of

local minimizers. It is not easy to find the optimal allocation of the portfolio to minimize VaR.

Gaivoronski and Pflug (2005,[16]) provided an approach to approximate VaR by a smoothed

measurement called SVaR, which filters out local irregularities. However, it is quit complex to

obtain the smoothed approximation. On the other hand, CVaR is coherent and convex, we can

find unique global minimizer. Therefore, CVaR is widely used in portfolio optimization. Rock-

efeller and Uryasev (2000,[37]) discussed an easy way to calculate the portfolio optimization

problem to minimize CVaR, which can transform the problem into a classic linear program-

ming problem. Thereafter, a lot of work extended their work, for example Andersson, Mausser,

Rosen and Uryasev (2001 [1]), Charpentier and Oulidi (2009, [9]), Glasserman, Heidelberger

and Shahabuddin (2002, [18]) and Krokhmal and Uryasev (2002, [25]). This approach does

provide us a convenient way, but their work all use the so-called historical approach, in which

they only use historical data to estimate the portfolio allocation. If we do not have enough
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historical data, we may under-estimate the risk seriously. Another issue they did not address

is the serial dependence of the historical data. It will be better if we use time series models,

like ARMA and GARCH to model their serial dependence.

In portfolio optimization problem, what we really need is the joint distribution of the finan-

cial data, rather than the individual marginal distributions. In both academic and practical

world, financial data are not usually perfectly independent, they usually have connections be-

tween each other. It is fact that there are correlations between different stock returns and

between different types of risks. Therefore, describing their correlations is also an important

topic in financial risk management. It is essential to obtain the joint distributions of the issues

we are looking into. In the past, some simple but improper assumptions of joint distribution

were assumed, for example, multivariate normal distribution (Markowitz 1952 [28] etc). Under

multivariate normal distribution, dependence is described by the correlation matrix and it is

easy to obtain the risk measurement we need. However, these simple joint distribution assump-

tions do not work well for financial data. Therefore, another approach is used to describe the

dependence between financial data: copula function approach. Copula provides a way to con-

nect the marginal distributions with the joint distribution. In addition, it has been proved that

there exists at least one copula for the joint distributions with known marginal distributions.

As a result, if we can obtain the marginal distributions such as GST distribution and stable

distribution as we discussed above for financial data, we can get the joint distribution with

proper copula functions. This approach is discussed in many papers, for example Dobrić and

Schmid (2005, [12]) and He and Gong (2009, [21]). In [12], the author suggested a chi-square

test of fit for parametric families of bivariate copulas. The test was applied to investigate the

dependence structure of daily German asset returns. It turns out that the Gaussian copula is

inappropriate to describe the dependencies in the data. A student’s t copula with low degrees

of freedom performs better. In [21], the authors discussed different type of risks individually

and described the correlation between risk types by student’s t copula. However, in theory, if

we do not know the real joint and marginal distributions and we do not really know which kind

of copula is proper.

1.2 Contribution of This Research

The first part of my research contributes to the copula selection. It can provide an approach

to find which copula works well to obtain the dependence of stock returns and the benchmark

returns. In this part, we focus on relative returns, which is defined as the difference of stock re-

turns and benchmark returns. We use time series ARMA-GARCH model with the innovation of

stable paretian distribution to describe both the returns, respectively. We use different copulas
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to describe the correlations between the returns. The copulas we use are Gaussian, Student’s

t, Clayton, Gumbel and Frank. Monte Carlo simulation is used to estimate the VaR for the

relative returns for each copula. An approach called backtesting is proposed. By this approach,

we can tell which copula function can describe the correlation better. From numerical results,

we can conclude that if our objective is risk measurement VaR, both normal and student’s t

copula work better than the other copulas. In addition, among the two, student’s t copula is

relatively a little bit better.

As discussed above, the paper of Rockafellar and Uryasev (2000, [37]) provides an easy way

to solve the portfolio optimization problem taking CVaR as the risk measurement. However, it

only used historical method and did not consider the serial dependence. The second part of this

thesis solves this issue. In this part, we also consider the portfolio optimization problem with

CVaR. Instead of historical method, we use parametric method. We extend the Rockafellar and

Uryasev’s idea and find the efficient frontier for the portfolio, when the marginal distribution

of each asset to be GST or stable paretian distribution and their correlation is described by

student’s t copula. Furthermore, we extend their idea to the time series ARMA-GARCH model

with innovation distribution of GST or stable. We find that the series of CVaR of the optimal

portfolio allocation we obtain describe the real world’s market risk efficiently. This indicates

that the model we set up is quite good.

Compared to CVaR, VaR is used more widely. Therefore, we are considering how to min-

imize the VaR of the portfolio. Since VaR is not a convex risk measurement, it does not have

unique global minimizer. On the contrary, VaR has many local minimizers. This makes it

difficult to find the global minimizer of the risk of portfolio. In the paper of Benati and Rizzi

(2007, [5]), the authors proposed a mixed integer linear programming method to solve this

problem, but they only considered the so-called historical method. In this thesis, we use the

parametric method with student’s t copula to describe the correlations between the assets, time

series model, as well as mixed integer linear programming method to find the minimum risk

for the portfolios at each time period. We can obtain the similar results as to minimum CVaR,

which also indicate that the model we set up for minimizing VaR is quite good.

In all the above discussions, we use copula to describe the correlations between the assets.

The advantage of this method is that when we do simulation, we do not need to know the joint

distribution of the assets. We only need the marginal distribution and the copula. However,

there are disadvantages too. One of them is that it may cost more time to generate the simulated

data. Therefore, in the last part of this thesis, we are trying to find a method that can save time

of simulation to solve the portfolio optimization problems using the model we set up above.
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The easiest way to simulate multivariate data is when the data we are trying to simulate are

independent of each other. If so, we can simulate the data independently. Therefore, we propose

to transform our original data into independent variables, and then transform our models into

models with independent variables. Inspired by this idea, we consider to use a statistical

method called Independent Component Analysis (ICA), which can transform the mixed data

into statistically independent sources, by linear transformation. Using this ICA method, we

can transform the original models with dependent variables into the models with independent

variable. As a result, this procedure may save us a lot of time.

1.3 Outline of the Thesis

The rest of this thesis is arranged as follows. In Chapter 2, we introduce the preliminary

knowledge we need in the research, including the definition of VaR and CVaR, GST and stable

distribtuions, copula functions, the basic time series models and the data we use in the research.

In Chapter 3, we consider the risk of relative return. We present, in details, how to set up

models for stock and benchmark returns, how to use Monte Carlo method to estimate the VaR

and how to find the proper copula functions by backtesting approach.

Portfolio optimization problem with CVaR as the risk measurement is discussed in Chapter

4. We will explain how to use the idea of Rockafellar and Uryasev ([37]), and how to apply the

ARMA-GARCH time series model in this approach.

In Chapter 5, we will solve portfolio optimization problem with VaR as the risk measure-

ment, using both GST and stable distributions as the marginal distributions.

Independent Component analysis method is introduced in Chapter 6. Using this method, we

try to solve portfolio optimization problem with both CVaR and VaR as the risk measurement.

The results are compared with those using copula method.
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Chapter 2

Preliminary

Some preliminary theory and results are introduced in this chapter. In Section 2.1, we introduce

two of the most popular risk measurements VaR and CVaR. GST and stable distribution

are discussed in Section 2.2. In Section 2.3, copula function is defined, which can describe

the dependent structure between marginal distributions. In Section 2.4, we introduce some

heteroscedastic models, which allow volatility clustering. Finally in Section 2.5, the data we

use in the research is given and their properties are discussed.

2.1 Risk Measurement

The problem of how to measure risk is an old one in statistics, economics and finance. Variance

is one of the first risk measurements proposed to define risk (see Markowitz 1952 [28]). However,

as time goes on, people realize that variance is not good enough to describe risk, especially when

the return/loss distributions are non-Gaussian. Therefore, some other risk measurements such

as VaR and CVaR come into our view.

Definition 2.1.1. Let R be a continuous random variable, which can represent the rate of

return of an portfolio, with the cumulative distribution function FR(x). L = −R is also a

random variable regarded as the rate of loss of this asset, with the cumulative distribution

function FL(x). Then, the Value-at-Risk (VaR) at level ε for the asset is defined as the absolute

value of the lower/upper 1− ε percentile of the return/loss, i.e.

V aRε(R) , −max {x ∈ R : P (R ≤ x) ≤ 1− ε} (2.1)

= −max {x ∈ R : FR(x) ≤ 1− ε}
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and

V aRε(L) , min {x ∈ R : P (L ≥ x) ≤ 1− ε} (2.2)

= min {x ∈ R : FL(x) ≥ ε} ,

where 0 < ε < 1 and is usually taken to be close to 1, e.g., 0.95, 0.975 or 0.99.

VaR is widely accepted by financial institutes because it is easy to understand. It measures

the highest possible loss at a given confidence level. However, in general, VaR is not a coherent

and convex measurement (see Artzner, Delbaen, Eber and Heath 1999 [2]), except for the

assumption of elliptically distributed return/loss. Here a coherent measurement is defined as

follows:

Definition 2.1.2. A risk measurement ξ of a linear space S is said to be a coherent measurement

if it satisfies the following properties:

(i) Monotonicity: If Z1, Z2 ∈ S and Z1 ≤ Z2, then ξ(Z1) ≥ ξ(Z2). That is, if portfolio Z2

has better values than portfolio Z1 under all scenarios, the risk of Z2 should be less than the

risk of Z1.

(ii) Sub-additivity: If Z1, Z2 ∈ S, then ξ(Z1 +Z2) ≤ ξ(Z1) + ξ(Z2). That is the risk of two

portfolios together cannot get any worse than adding the two individual risks together.

(iii) Positive homogeneity: If α > 0 and Z ∈ S, then ξ(αZ) = αξ(Z). That is, if you

double your portfolio, you double your risk.

(iv) Translation invariance: If a ∈ R and Z ∈ S, then ξ(Z + a) = ξ(Z) − a. The value a

is just adding cash to your portfolio Z, which acts like an insurance: the risk of Z + a is less

than the risk of Z, and the difference is exactly the added cash a.

Generally, VaR violates the sub-additivity property, so it is not coherent. Therefore, Con-

ditional Value-at-Risk (CVaR) is introduced in Artzner, Delbaen, Eber and Heath 1999 ([2]),

which is a coherent measurement.

Definition 2.1.3. Conditional Value-at-Risk (CVaR) at level ε for an asset is defined as the

expected loss given that the loss exceeds VaR, i.e.

CV aRε(R) , −E[R|R ≤ −V aRε(R)] (2.3)
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and

CV aRε(L) , E[L|L ≥ V aRε(L)]. (2.4)

There are several approaches to estimate V aR and CV aR numerically.

Historical Approach: Given the observed historical data of return R1, R2, . . . , Rn or data of

loss L1, L2, . . . , Ln, the empirical distribution of the return FR(x) or loss FL(x) can be obtained

by

FR(x) =
1

n

n∑
i=1

I{Ri≤x}

and

FL(x) =
1

n

n∑
i=1

I{Li≤x},

where I{·} is the indictor function. Then, the historical V aR and CV aR with confident level of

ε can be estimated as:

V̂ aRε(R) = −F−1R (1− ε) = −R[ni], p ∈
(
i− 1

n
,
i

n

]
,

V̂ aRε(L) = F−1L (ε) = L[ni], ε ∈
(
i− 1

n
,
i

n

]
,

ĈV aRε(R) = − 1

dNpe

dNpe∑
i=1

R[i],

ĈV aRε(L) =
1

dNpe

N∑
i=dNεe

L[i],

where p = 1− ε, R[1], . . . , R[n] and L[1], . . . , L[n] is the ascending order statistics and d·e is the

ceiling of a number.

Gaussian Approach: This approach is based on the assumption that the observed data fol-

low a normal distributionN(µ, σ2), with unknown parameters µ and σ > 0, that isR1, R2, . . . , Rn ∼
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N(µR, σ
2
R) and L1, L2, . . . , Ln ∼ N(µL, σ

2
L). The parameters are estimated by

µ̂R =
1

n

n∑
i=1

Ri,

µ̂L =
1

n

n∑
i=1

Li,

σ̂2R =
1

n− 1

n∑
i=1

(Ri − µ̂R)2,

σ̂2L =
1

n− 1

n∑
i=1

(Li − µ̂L)2.

Then, the estimated V aR and CV aR is

V̂ aRε(R) = −µR − Φ−1(p)σR,

V̂ aRε(L) = µL + Φ−1(ε)σL,

ĈV aRε(R) = −σRE[Z|Z ≤ Φ−1(p)]− µR,

ĈV aRε(L) = σRE[Z|Z ≥ Φ−1(ε)] + µL,

where p = 1 − ε, Z ∼ N(0, 1) is a standard Normal random variable and Φ is its cumulative

distribution function.

Extreme Value Theory Approach: For V aR and CV aR, we only concentrate on the ex-

treme events. We do not have to know the overall distribution and what we need is only the

tail’s behavior. Extreme value theories provide good ways to describe the extreme event’s distri-

bution. One of the theories is called Peak Over Threshold (POT), considering the distribution

of exceedances over a certain threshold (for details see Gilli and Kellezi 2006 [17] and McNeil

and Frey 2000 [29]). Let X be a random variable with cumulative distribution function F , we

are interested in the conditional distribution that X is above a threshold u given that X > u.

Let Fu be its cumulative distribution function, which is called conditional excess distribution

function. We will have that

Fu(y) = P (X − u ≤ y|X > u), 0 ≤ y ≤ xF − u,

where y = x− u are the excesses and xF is the right endpoint of F . Therefore, we can rewrite

Fu(y) as

Fu(y) =
F (u+ y)− F (u)

1− F (u)
=
F (x)− F (u)

1− F (u)
. (2.5)
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From Extreme Value Theory, the following theorem gives a powerful result about the conditional

excess distribution function.

Theorem 2.1.4. (Pickands (1975), Balkema and de Haan (1974)) For a large class of under-

lying distribution function F , the conditional excess distribution function Fu(y), for large u, is

well approximated by:

Fu(y) ≈ Gξ,σ(y), u→∞,

where

Gξ,σ(y) =

 1−
(

1 + ξ
σy
)− 1

ξ
if ξ 6= 0

1− e−
y
σ if ξ = 0,

for y ∈ [0, xF − u], if ξ ≥ 0 and y ∈ [0,−σ
ξ ], if ξ < 0. Gξ,σ is the so called Generalized Pareto

Distribution (GPD).

The estimation of the parameters ξ̂ and σ̂ in Gξ,σ can be obtained by maximum likelihood

method. In addition, from (2.5), we can obtain

F (x) = (1− F (u))Fu(y) + F (u).

Replacing Fu by the GPD and F (u) by the estimation (n−Nu)
n , where n is the total number

of observations and Nu is the number of observations above the threshold u, we obtain the

estimated F (x) as

F̂ (x) = 1− Nu

n

(
1 +

ξ̂

σ̂
(x− u)

)− 1

ξ̂

, ξ̂ 6= 0. (2.6)

Therefore we have

F̂ (V̂ aR) = 1− Nu

n

(
1 +

ξ̂

σ̂
(V̂ aR− u)

)− 1

ξ̂

= ε (2.7)

Solve for V̂ aRε from (2.7), we get

V̂ aRε = u+
σ̂

ξ̂

(
(
n

Nu
p)−ξ̂ − 1

)
,

where p = 1− ε.

It is known that the mean excess function for the GPD with parameter ξ < 1 is

e(z) = E [Y − z|Y > z] =
σ + ξz

1− ξ
, σ + ξz > 0. (2.8)
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Therefore, let Y = X − u and z = V̂ aRε − u, we have

ĈV aRε = E
[
X|X > V̂ aRε

]
= V̂ aRε + E

[
X − V̂ aRε|X > V̂ aRε

]
= V̂ aRε + E

[
Y − (V̂ aRε − u)|Y > V̂ aRε − u

]
= V̂ aRε +

σ̂ + ξ̂(V̂ aRε − u)

1− ξ̂

=
V̂ aRε

1− ξ̂
+
σ̂ − ξ̂u
1− ξ̂

.

Parametric Approach: Parametric approach is based on the assumption that the returns/losses

follow a family of distributions with unknown parameters. The parameters can be estimated

by maximum likelihood method from the observed data. In order to estimate V aR and CV aR

numerically, we can use Monte Carlo method. If we know the distribution of R/L, we can

obtain N realizations from the family of distribution with the estimated parameters. Suppose

the N realizations of the rate of return R are r1, r2, . . . , rN and the N realizations of the rate

of loss L are l1, l2, . . . , lN , then, the estimations of VaR and CVaR is obtained as:

V̂ aRε(R) = −r[Np],

V̂ aRε(L) = l[Nε],

ĈV aRε(R) = − 1

Np

Np∑
i=1

r[i],

ĈV aRε(L) =
1

Np

N∑
i=Nε

l[i],

where r[1], . . . , r[N ] and l[1], . . . , l[N ] is the ascending order statistics for the realization of R and

L, respectively and p = 1− ε.

All the above four methods have their own advantages and disadvantages. For historical

method, we only estimate the risk by the observed data. It is easy to calculate, but should

not be accurate if we do not have enough extreme observations. Gaussian method is also

relatively easy, but the assumption of normal distribution is questioned. For extreme value

theory approach, we do not need to know the overall distribution, which is good. However, how

to choose the threshold u is a big issue. Parametric approach can give accurate estimation of the

risk if we fit the data by proper distributions, but Monte Carlo simulation is time consuming. In

our research, in order to estimate the risk measurements accurately, we use the last approach.
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2.2 GST and Stable Distribution

Finding a proper distribution to describe the financial data is an essential topic in risk man-

agement. Gaussian distribution is firstly taken into account because of its wide use and easy

expression. However, empirical results show that financial data are usually asymmetric and

fail-tailed, which Gaussian is lack of. This motivates people to look for some other families of

distributions that can describe both asymmetry and fat-tail. Here, we introduce two families of

distributions: generalized skewed t (GST) distribution and stable distribution, both of which

can describe the skewness and kurtosis characteristics of financial data.

2.2.1 Generalized Skewed t Distribution

Definition 2.2.1. Generalized skewed t (GST) distribution is the generalization of student’s

t distribution, which allows skewness. The probability density function for the standard GST

distribution is defined as follows:

f(x; ν, λ) =

{
bc(1 + 1

ν−2( bx+a1−λ )2)−
ν+1
2 x < −a

b

bc(1 + 1
ν−2( bx+a1+λ )2)−

ν+1
2 x ≥ −a

b ,

where 2 < ν <∞, −1 < λ < 1 and

a = 4λc
ν − 2

ν − 1
,

b =
√

1 + 3ν2 − a2,

c =
Γ(ν+1

2 )√
π(ν − 2)Γ(ν2 )

.

It can be proved that this is a proper density function with mean 0 and variance 1 (see [19]).

The parameter ν controls the tail thickness and λ controls the skewness. When ν → ∞, it is

reduced to skewed normal distribution. When λ = 0, it is reduced to student’s t distribution.

The density function has a single mode at −a
b , which is of opposite sign of λ. Therefore, if

λ > 0, the mode of the density is to the left of zero and the variable is skewed to the right, and

vice-versa when λ < 0. Figure 2.1 gives the probability density function of GST with different

parameters. We can see that the smaller ν is, the fatter the tail is.

If a random variable Z follows a standard GST distribution with parameter ν and λ, we

write it as Z ∼ GST (ν, λ). A non-standardized GST random variable X with mean µ and

variance σ2 is written as X ∼ GST (µ, σ, ν, λ) and X−µ
σ ∼ GST (ν, λ). Its probability density

function can be derived from the standard GST probability density function.
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(a) GST distribution

(b) GST right tail distribution

Figure 2.1: Standard GST distribution with λ = 0.5 and ν = 4, 10, 20
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2.2.2 Stable Distribution

Definition 2.2.2. A random variable X is said to follow stable distribution if for any a > 0

and b > 0, there exist constants c > 0 and d ∈ R such that

aX1 + bX2 =d cX + d,

where X1 and X2 are independent copies of X and =d denotes the equality in distribution.

In general, stable distributions do not have closed form expressions for probability density

function (PDF) and cumulative distribution function (CDF). A stable random variable X is

commonly described by its characteristic function (CF), which is defined by

ΦX(t;α, β, σ, µ) = E [exp(iXt)]

= exp(−σα|t|α(1− iβsgn(t) tan(
πα

2
)) + iµt), if α 6= 1,

ΦX(t;α, β, σ, µ) = E [exp(iXt)]

= exp(−σ|t|(1 + iβ
2

π
sgn(t) ln(t)) + iµt), if α = 1,

where

sgn(t) =


1 if t > 0

0 if t = 0

−1 if t < 0,

0 < α ≤ 2 is the index of stability, −1 ≤ β ≤ 1 is the skewness parameter, σ ≥ 0 is the scale

parameter, and µ ∈ R is the location parameter. To indicate the dependence of a stable random

variable X on its parameters, we write X ∼ S(α, β, σ, µ). Define that

Z =
X − µ
σ

, (2.9)

then, Z ∼ S(α, β, 1, 0) is called a standard stable random variable with PDF f(x;α, β, 1, 0).

Therefore, the PDF for X, f(x;α, β, σ, µ), can be expressed by the standardized stable PDF

such that

f(x;α, β, σ, µ) =
1

σ
f(
x− µ
σ

;α, β, 1, 0). (2.10)

In addition, for σ = 1, µ = 0 and α 6= 1, the CF becomes

ΦX(t) = exp(−|t|α + iβt|t|α−1 tan(
πα

2
)) (2.11)
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In empirical studies, the modeling of financial data is done typically by stable distributions

with 1 < α < 2, which is called stable paretian distribution. Stable distributions are unimodal

and the smaller α is, the stronger the leptokurtic feature the distribution has (the peak of the

density becomes higher and the tails are heavier). Therefore, the index of stability α can be

interpreted as a measure of kurtosis. When α > 1, the location parameter µ measures the mean

of the distribution. If the skewness parameter β = 0, the distribution of X is symmetric, if

β > 0, the distribution is skewed to the right and if β < 0, the distribution is skewed to the

left. Larger magnitude of β indicates stronger skewness. Furthermore, the pth absolute moment

E[|X|p] is finite only when α > p or α = 2.

Since we can not get closed form of PDF and CDF for stable distributions (except that

α = 2), we calculate them numerically. The approach to approximate the PDF is applying

Fast Fourier Transform (FFT) to the CF, see [31], [33]. To briefly summarize the FFT-based

approximation, recall that the PDF can be written in terms of CF as

f(x;α, β, σ, µ) =
1

2π

∫ ∞
−∞

e−ixtΦX(t;α, β, σ, µ)dt. (2.12)

The integral in (2.12) can be calculated for N equally-spaced points with distance h, such that

xk = (k − 1−N/2)h, k = 1, . . . , N . Setting t = 2πω, (2.12) implies

f((k − 1− N

2
)h) =

∫ ∞
−∞

e−i2πω(k−1−
N
2
)hΦX(2πω)dω.

The integration can be approximated by

f((k − 1− N

2
)h) ≈ s

N∑
n=1

ΦX(2πs(n− 1− N

2
))e−i2π(n−1−

N
2
)(k−1−N

2
)hs

= s(−1)k−1−
N
2 (2.13)

×
N∑
n=1

(−1)n−1ΦX(2πs(n− 1− N

2
))e−i2π(n−1)(k−1)/N ,

where s = (hN)−1. The summation in (2.13) can be efficiently computed by applying FFT to

the sequence

(−1)n−1ΦX(2πs(n− 1− N

2
)), n = 1, . . . , N.

Normalizing the kth element of this sequence by s(−1)k−1−
N
2 , we obtain the approximate PDF

value for each grid point. For any x, we can use linear interpolation to obtain its PDF. By

substituting (2.11) into (2.13), standardized PDF values can be calculated and, via (2.9) and
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(2.10), PDF can be obtained with any desired parameter combinations.

When α = 2 and β = 0, S(2, 0, 1, 0) is reduced to Gaussian distribution. When α < 2,

S(α, 0, 1, 0) have fatter tail than Gaussian distribution. We can see this from Figure 2.2, the

smaller α is, the fatter the tail is. We can tell how β influences the skewness from Figure 2.3.

(a) stable pdf

(b) stable right tail pdf

Figure 2.2: Standard stable distribution with β = 0, α = 2, 1.7, 1.2
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Figure 2.3: Standard stable distribution with α = 1.8 and β = −0.9, 0, 0.9
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2.3 Copula Function

2.3.1 Copula

To describe the financial data properly, the marginal distribution for each individual asset is not

enough. We also need the joint distribution of the assets. In early time, people just assumed that

marginal distributions of assets are normal and the joint distribution is multi-variate normal,

which is easy. However, as discussed in the previous section, the marginal distribution may

not be Gaussian, but some other fat-tailed distributions. In order to get the joint distribution,

we need a tool to connect the joint distribution of the assets with the marginal distributions

of each asset. Copula provides us such a convenient tool. The definition of copula is given as

follows.

Definition 2.3.1. A d-dimensional copula is the joint distribution of random variables U1, U2, . . . , Ud,

each of which is marginally uniformly distributed as U(0, 1), i.e.

C(u1, u2, . . . , ud) = P (U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud).

Sklar’s theorem states the importance of copula as follows:

Theorem 2.3.2. (Sklar’s Theorem) For any random variable X1, X2, . . . , Xd with joint cu-

mulative distribution function (CDF)

F (x1, x2, . . . , xd) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd)

and marginal CDFs

Fj(x) = P (Xj ≤ x), j = 1, 2, . . . , d,

there exists a copula C such that

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)). (2.14)

In addition,

C(u1, u2, . . . , ud) = F (F−11 (u1), F
−1
2 (u2), . . . , F

−1
d (ud)),

where F−1j is the generalized inverse of Fj, j = 1, 2, . . . , d. If each Xj is a continuous random

variable, C is unique.

Sklar’s theorem allows us to formulate the joint distribution by separating the marginal

distributions Fj(x) and the dependence structure, which is expressed by copula C.
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There are a lot of copulas. In this thesis, we introduce two parametric families of copulas:

the elliptical copulas and the archimedean copulas. Elliptical copula includes Gaussian and

student’s t copula and archimedean copula contains clayton, gumbel and frank copula.

Multivariate Gaussian Copula The multivariate Gaussian copula is the copula of the

multivariate normal distribution. It can be written as

CGaR (u1, . . . , ud) = φdR(φ−1(u1), . . . , φ
−1(ud)),

where φ−1 is the inverse of the standard univariate normal distribution function φ. φdR is the d-

dimensional multi-normal distribution function, with R to be the correlation matrix. Gaussian

copula is a very popular elliptical copula, but it cannot fit to possess tail dependence. Gaussian

copula has neither upper nor lower tail dependence.

Multivariate Student’s t Copula The multivariate student’s t copula is the copula of the

multivariate student’s t distribution, which is given by

Ctρ,R(u1, . . . , ud) = tdρ,R(t−1ρ (u1), . . . , t
−1
ρ (ud)),

where tdρ,R is the standardized d-dimensional multivariate student’s t distribution with corre-

lation matrix R and degree of freedom ρ and t−1ρ is the inverse of the univariate cumulative

distribution function of student’s t with ρ as degree of freedom.

The student’s t copula is generally superior to the Gaussian one on the tail dependence, which

allows joint fat tails and an increased probability of joint extreme events compared with the

Gaussian copula. Student’s t copula has an additional parameter, namely the degree of freedom

ρ. Increasing the value of ρ decreases the tendency to exhibit extreme co-movements.

Multivariate Clayton Copula The clayton copula, which is an asymmetric copula, exhibits

greater dependence in the negative tail than in the positive. The multivariate clayton copula

can be written as

CClγ (u1, . . . , ud) =

[
d∑
i=1

u−γi − d+ 1

]− 1
γ

,

where γ > 0 is a parameter controlling the dependence. Perfect dependence is obtained if

γ →∞, while γ = 0 implies independence.

Multivariate Gumbel Copula The gumbel copula is also an asymmetric copula, but it

exhibits greater dependence in the positive tail than in the negative. The multivariate gumbel

20



copula is given by

CCuγ (u1, . . . , ud) = exp

−[ d∑
i=1

(− ln(ui))
γ

] 1
γ

 ,
where γ > 0 is a parameter controlling the dependence. Perfect dependence is obtained if

γ →∞, while γ = 1 implies independence.

Multivariate Frank Copula The Frank copula is a symmetric copula. The multivariate

Frank copula is given by

CFrγ (u1, . . . , ud) = −1

γ
ln

1 +

d∏
i=1

(e−γui − 1)

(e−γ − 1)d−1


where α > 0 is a parameter controlling the dependence.

2.3.2 Parameter Estimation for Copula

There are two approaches to estimate the parameters for copulas. The most direct estima-

tion method is to simultaneously estimate all the parameters in both marginal distributions

and copula using full maximum likelihood method. However, this approach will give big com-

putational burden. Therefore, we introduce the second approach , named 2-step maximum

likelihood method, where the parameters for marginal distributions are estimated in the first

step and the dependence parameters in copula is estimated in the second step after the esti-

mated marginal distributions have been substituted into it. The estimation in the first step can

be obtained by maximum likelihood method. The estimation in the second step is as follows.

Suppose the parameter of the copula is θ, from (2.14), the probability density function for the

joint distribution of X1, X2, . . . , Xd can be derived as:

f(x1, x2, . . . , xd; θ) =
∂dF (x1, x2, . . . , xd; θ)

∂x1∂x2 · · · ∂xd
(2.15)

=
∂dC(F1(x1), F2(x2), . . . , Fd(xd); θ)

∂x1∂x2 · · · ∂xd

=
∂dC(F1, F2, . . . , Fd; θ)

∂F1∂F2 · · · ∂Fd
∂F1(x1)

x1
· · · ∂F1(x1)

x1
= c(F1(x1), F2(x2), . . . , Fd(xd); θ)f1(x1)f2(x2) · · · fd(xd),
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where c(u1, u2, . . . , ud; θ) = ∂dC(u1,u2,...,ud;θ)
∂u1∂u2···∂ud , and fj is the marginal probability density function

for the jth variable, which is known in the first step, j = 1, 2, . . . , d. If we have n observations

of the multivariate random vector X = (X1, X2, . . . , Xd), which is xi = (xi1, xi2, . . . , xid),

i = 1, 2, . . . , n. Then the log-likelihood function can be obtained from (2.15)

L(θ) = ln(
n∏
i=1

f(xi1, xi2, . . . , xid; θ)) (2.16)

= ln(
n∏
i=1

c(F1(xi1), F2(xi2), . . . , Fd(xid); θ)f1(xi1)f2(xi2) · · · fd(xid))

=
n∑
i=1

d∑
j=1

ln(fj(xij)) +
n∑
i=1

ln(c(F1(xi1), F2(xi2), . . . , Fd(xid); θ)).

Then, the estimator of parameters θ for a copula is the maximizer of the log-likelihood function

L(θ) via θ.

2.4 Time Series Models

Let {rt} be a stochastic process via t ∈ {1, 2, . . .}. Usually, if rt represents financial data,

empirical study shows that they are not i.i.d. and the current values of rt may be influenced

by the past values. If the present values can be plausibly modeled in terms of only the past

values, we have the enticing prospect that forecasting will be possible.

2.4.1 Measure of Dependence

The dependence of the series rt can be measured by a function called autocorrelation function

(ACF), that is defined as follows.

Definition 2.4.1. The autocovariance function of the series rt is defined as the second

moment product

γr(s, t) = E[(rs − µs)(rt − µt)],

for all s, t = 1, 2, . . ., where µt = E[rt]. The autocorrelation function (ACF) is defined as

ρr(s, t) =
γr(s, t)√

γr(s, s)γr(t, t)
.

The series we are interested in are something called stationary times series. Usually, for

stationary here, we mean weakly stationary defined below.
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Definition 2.4.2. A weakly stationary time series, rt, is a finite variance process such that

(i) the mean value function µt is constant and does not depend on time t, and

(ii) the autocovariance function, γr(s, t), depends on s and t only through their difference

|s− t|.

Therefore, the autocovariance function and ACF for a stationary time series rt with the

time difference h will be written as

γr(h) = E[(rt+h − µ)(rt − µ)]

and

ρr(h) =
γr(t+ h, t)√

γr(t+ h, t+ h)γr(t, t)
=
γr(h)

γr(0)
,

where µt = µ is a constant. To obtain the sample autocovariance function and ACF for a

stationary time series rt, suppose we have n sample of rt, r1, r2, . . . , rn. Let

r̄ =
1

n

n∑
i=1

ri.

Then, the sample autocovariance function is defined as

γ̂r(h) =
1

n

n−h∑
i=1

(ri+h − r̄)(ri − r̄),

and the sample ACF is defined as

ρ̂r(h) =
γ̂r(h)

γ̂r(0)
.

There are several models for stationary time series with self dependence structure, the most

famous one is autoregressive moving average (ARMA) model.

2.4.2 ARMA Model

The autoregressive and moving average (ARMA) models are used in time series analysis to de-

scribe stationary time series. These models represent time series that are generated by passing

white noise through a recursive and through a nonrecursive linear filter, consecutively.

The ARMA model with the order p and q is defined as:

rt −
p∑
i=1

φirt−i = φ0 + εt +

q∑
i=1

ψiεt−i,
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where rt is the time series of data and εt is the white noise. The model consists of two parts,

a p-order autoregressive (AR) part and a q-order moving average (MA) part. φi, i = 1, . . . , p

are the coefficients of the AR part, ψi, i = 1, . . . , q are the coefficients of the MA part and φ0

is constant. Therefore, we call it ARMA(p,q) model. ARMA model introduces an important

parametric family of stationary series, under the condition that the roots of 1−
∑p

i=1 φiz
i = 0

all lie outside the unit circle. To fit the ARMA model to the sample data, we need to decide

the order p and q. To obtain the order p and q from the sample of rt, we need another function

called partial autocorrelation function (PACF).

Definition 2.4.3. Let rh−1h denote the regression of rh on {rh−1, rh−2, . . . , r1}, which we write

rh−1h = β1rh−1 + β2rh−2 + · · ·+ βh−1r1.

In addition, let rh−10 denote the regression of r0 on {r1, r2, . . . , rh−1}, which we write

rh−10 = β1r1 + β2r2 + · · ·+ βh−1rh−1.

Then the partial autocorrelation fucntion (PACF) of a stationary process rt denoted φhh,

for h = 1, 2, . . ., is

φ11 = corr(r1, r0) = ρ(1)

and

φhh = corr(rh − rh−1h , r0 − rh−10 ), h ≥ 2.

The order of ARMA can be obtained from both ACF and PACF we defined above. In

theory, for MA(q) model, the ACF cuts off after q lags and for AR(p) model, the PACF cuts

off after p lags. With this property, we can check the sample ACF and PACF, they can help

us to decide the order of ARMA.

ARMA models describe time series with self dependence structure with constant variance.

However, they do not allow volatility clustering, or heteroscedasticity. But volatility clustering

is a common characteristic of financial data. Therefore, ARMA model alone can not describe

the financial series properly, we need some heteroscedastic models, which is GARCH model. It

will be introduced in the next section.

2.4.3 Heteroscedastic Model

Autoregressive Conditional Heteroscedasticity (ARCH) model is first introduced by Engle (1982,[13])

to describe heteroscedasticity. It considers the variance of the current error term or innovation

to be a function of the actual sizes of the previous time periods’ error terms. Often, the variance
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is related to the squares of the previous innovations, but we also admit some other functions

like absolute value, logarithm etc. The ARCH model is formulated as

rt = σtzt,

σ2t = a0 +

m∑
i=1

air
2
t−i,

where σt is the standard deviation of rt, a0 is a constant, ai > 0, i = 1, . . . ,m are the coef-

ficients and must satisfy
m∑
i=1

ai < 1. zt are i.i.d. and they follow a distribution with mean 0

and variance 1. We call this model as ARCH(m) model. Traditionally, zt is standard normal

distribution, but we can use some other distributions.

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model is an extended

model for ARCH introduced by Bollerslev (1986,[7]). GARCH allows the variance of the current

error term depends also on the previous error variance term. GARCH(m,s) model is written as

rt = σtzt,

σ2t = a0 +

m∑
i=1

air
2
t−i +

s∑
i=1

biσ
2
t−i,

where zt, a0 and ai, i = 1, . . . ,m are the same as ARCH model, and bi > 0, i = 1, . . . , s are also

the coefficients. Moreover, ai, i = 1, . . . ,m and bi, i = 1, . . . , s must satisfy

max(m,s)∑
i=1

(ai+bi) < 1

(for i > m, ai = 0, for i > s, bi = 0).

Usually, GARCH(m,s) model can be modeled together with ARMA(p,q) model, we call it

ARMA(p,q)-GARCH(m,s) model, which is widely used for financial data. In order to reduce

the computational burden, we use m = 1, s = 1 for GARCH model. Empirical studies support

that GARCH(1,1) model works well for financial data (see Bali and Theodossiou [4], Hansen

1994 [19], Liu and Brorsen 1995 [27] and Panorska, Mittnik and Rachev 1995 [36] etc). Given

the financial data, we can estimate the parameters for the model using maximum likelihood

method.

2.5 Data Selection

Throughout this thesis, we pick up five members of S&P500 index, which are from five totally

different industrials, together with S&P500 index. These five members are Progress Energy Inc.
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(PGN), International Business Machines Corp. (IBM), Bank of America Corp. (BAC), Ford

Motor Co. (F) and Home Depot Inc. (HD). These five stocks represent the five major industrials

constitute into S&P500 index. We observe the price of these five stocks and the S&P500 index

from the time period Jan 1, 2000 to Aug 10, 2009, which gives us 2415 observations. for the

index and each stock, let Rt be the daily financial rate of return of the stock or index at day t

and Pt be the stock or index at day t. Assume that the rate of return is continuous, then, we

have

Pt = Pt−1e
Rt .

Therefore, daily rate of return data are obtained by taking the first differences of the logarithm

of series of stock prices

Rt = ln(Pt)− ln(Pt−1).

Since the daily rate of return is too small, we consider the percentage, i.e.

Rt = 100 [ln(Pt)− ln(Pt−1)] . (2.17)

The daily rate of loss is then Lt = −Rt. Table 2.1 shows the statistics of these six financial rate

of loss data.

Table 2.1: Statistics for 6 different observed loss data

stock industrial mean variance skewness kurtosis

PGN Utilities -0.0049 0.4185 0.0127 9.9113

IBM Information Technology -0.000414 0.7121 -0.0140 9.3080

BAC Financials 0.0192 2.7190 2.7023 65.2862

F Auto-Cars/Light Trucks 0.0344 2.1649 1.0004 27.3520

HD Retail-Building Products 0.0158 1.1333 0.9304 20.7729

S&P500 Index 0.0066 0.3772 0.0926 10.6326

From the Table 2.1, for each stock and the index, we can see that the skewness of the

data is not zero, meaning that the data are asymmetric. In addition, the kurtosis of the data

is big, which suggests that the data are fat-tailed. Therefore, Gaussian distribution is not a

good choice to model the data. We use some other distributions, such as GST and stable

distribution, which can describe both the skewness and kurtosis characteristics of the data.

The series plot of the 5 stocks and S&P500 index losses are shown in Figure 2.4. From Figure
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Figure 2.4: Rate of loss time series for 5 stocks and S&P500 index
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2.4, we can see that for each of the series, large (small) changes tend to be followed by large

(small) changes. Therefore, ARMA model alone can not describe the financial series properly,

we need the heteroscedastic model. Here we use GARCH model introduced in previous section.

For the order of ARMA, we check the ACF and PACF for the series. We show the ACFs and

PACFs of the 5 stocks’ and S&P500 index’s loss of returns in Figure 2.5. From Figure 2.5, we

can see that for most of the series, the ACF and PACF are cut off at order zero. Therefore, to

make the model simple and easier, we take p = q = 0. For GARCH we take the simplest one

m = s = 1.
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Figure 2.5: ACF and PACF of 5 stocks and S&P500 index rate of loss

29



Chapter 3

Risk of Stock Against Benchmark

Performance of a stock can be tracked by the behavior of the stock price. However, stock prices

can not fully represent its performance. Frequently, people tend to compare it with overall

market performance, which can serve as benchmark. Benchmark is a base against which the

performance of an individual security or group of securities is measured. A benchmark is usu-

ally an index of securities of the same or similar class. Stocks are usually compared against

stocks; bonds against bonds, etc. For example, S&P500 and DJIA are the most widely used

benchmarks for stocks. In this chapter, we use S&P500 as the benchmark. We describe model

both individual stock return and benchmark return with time series model and describe their

correlations by copula. By Monte Carlo simulation method, we are able to estimate the VaR

and CVaR for the relative return, which is defined by the difference of the two returns. By an

approach called backtesting, we figure out the proper copula for dependence structure of stock

and benchmark returns is student’s t copula.

The rest of this chapter is arranged as follows. In Section 3.1, we set up the basic time series

models for stock and benchmark returns, respectively. In Section 3.2, copula is introduced to

describe the tail dependence between the two returns. Backtesting method is discussed in

Section 3.3. Numerical results and discussion are given in Section 3.4.

3.1 Relative Return Based on The Benchmark

Performance of the stock is represent by the relative return of individual stock return against

the return of the Benchmark. We use S&P500 as the benchmark for stocks. The returns are

defines as in (2.17):

Rt = 100 [ln(Pt)− ln(Pt−1)] ,
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where Pt is the individual stock price or S&P500 index at time t. As we discussed in section

2.5, financial data show not only asymmetry and fat-tail (see Table 2.1), but also time-varying

volatility clustering (see Figure 2.4). Thus, we can use ARMA-GARCH to the market risk. To

avoid computational burden, we use the simplest ARMA(0,0)-GARCH(1,1) model. To describe

the asymmetry and fat-tail property, we use stable distribution as the innovation in GARCH

model. In addition, since stable distributions do not have the second absolute expectation (ex-

cept that α = 2), we use absolute function instead of the square function in GARCH model.

The model is set up as follows.

Individual stock return is modeled as

Rt = a0 + εt = µt + σtzt, (3.1)

|σt| = b0 + b1|εt−1|+ b2|σt−1|, (3.2)

where Rt is the series of individual stock return at time t, µt and σt are, respectively, the condi-

tional mean and conditional standard deviation of Rt. εt = σtzt, where zt are i.i.d. standardized

stable paretian random variables, zt ∼ S(α1, β1, 1, 0), 1 < α1 < 2.

The benchmark S&P500 return is modeled as

Rmt = c0 + εmt = µmt + σmtzmt, (3.3)

|σmt| = d0 + d1|εmt−1|+ d2|σmt−1|, (3.4)

where Rmt is the series of S&P500 index return at time t, µmt and σmt are, respectively, the

conditional mean and conditional standard deviation of Rmt. εmt = σmtzmt, where zmt are

also i.i.d. standardized stable paretian distributions random variables, zmt ∼ S(α2, β2, 1, 0),

1 < α2 < 2.

To estimate the parameters in (3.1), (3.2) (3.3) and (3.4), we use Maximum Likelihood

Estimation (MLE) method, where the PDFs of zt and zmt are approximated by FFT method

discussed in 2.2.2.

After we set up models for the stock and benchmark returns, we can obtain the relative

return as the difference of the above two returns, i.e.

Ht = Rt −Rmt. (3.5)
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Ht can describe the performance of the stock at time t, compared with the overall market

performance, which is described by the benchmark S&P500. If Ht > 0, the stock outperforms

the overall market and vice versa.

3.2 Copula Based Risk Measurements

Because S&P500 is a weighted index of the prices of 500 large-cap common stocks actively

traded in the United States, we can see that the individual stock return and the benchmark

return are not independent with each other, i.e., zt and zmt in (3.1) and (3.3) are dependent.

The dependent structure can be described by copula introduced in Section 2.3. Our goal is to

measure the risk of the relative return, which is the difference of the stock return and benchmark

return. Let the relative return of the stock (H) be defined as in (3.5), where Rt and Rmt are

dependent with each other. To measure the risk, we use VaR and CVaR introduced in 2.1.

Then, we can use Monte Carlo simulation to simulate the stock and benchmark returns with

different copulas, obtaining the simulated sample total returns h1, . . . , hN , by the difference

of the two simulated returns, which are obtained from (3.1)-(3.4). Finally, we will get the

estimated VaR and CVaR for the relative return by point estimation:

V̂ aRε(H) = −h[Np] (3.6)

and

ĈV aRε(H) = − 1

Np

Np∑
i=1

h[i], (3.7)

respectively. where h[1], . . . , h[N ] is the ascending order statistics for the realization of H and

p = 1− ε.

The detailed algorithm is shown below:

Step 1 Get the observed data Ri and Rmi, i = 1, . . . , t of the individual stock return and

the index return.

Step 2 Use MLE to estimate the parameters for the GARCH model and the stable distri-

bution in (3.1)-(3.4). Forecast µt+1, σt+1 and µmt+1, σmt+1 by (3.1)-(3.4).

Step 3 Calculate the observed zi and zmi from (3.1)-(3.4), using the parameter we get in

step 2.

Step 4 Fit the copula we used with the observed zt and zmt to get the parameters for the

copula.

32



Step 5 Simulate N realizations of the coupled zt+1 and zmt+1 with the copula we used, get

ẑt+1,i and ẑmt+1,i. Obtain the estimated N of stock return r̂t+1,i and benchmark

return r̂mt+1,i from (3.1)-(3.4), i = 1, . . . , N .

Step 6 Calculate the simulated relative return ht+1,i = r̂t+1,i − r̂mt+1,i, i = 1, . . . , N .

Step 7 Calculate estimation of VaR and CVaR for H using the simulated data ht+1,i, i =

1, . . . , N , by (3.6) and (3.7).

3.3 Backtesting

Hypothesis testing will be discussed in this section. Let ε be the confidence level for V aR

calculation. Suppose we use the most recent k historical data to forecast the current VaR. For

example, if k = 502, we use the most recent two years’ historical data to predict the current

VaR. If we have totally n data of historical returns, define the indicator for VaR violations as

follows:

Is =

{
1, if Hk+s < −V aRk+s;
0, otherwise;

where s = 1, . . . , n − k. Note that according to [15] and [20], Is1 and Is2 are independent for

s1 6= s2. As a result,

Xε =
n−k∑
s=1

Is ∼ B(n− k, 1− ε),

i.e. the total number of violations is binomially distributed with parameter n − k and 1 − ε.
Let the null hypothesis be that VaR is accurate, and the null distribution is binomial with

parameter n− k and 1− ε. From the binomial law, the expected (mean) number of violations

is (1− ε)(n− k). The p-value in the hypothesis testing is the probability of falsely rejecting the

null hypothesis. A small p-value can be interpreted as weak support for the null hypothesis,

while a large p-value signals a strong support for the null hypothesis. Here we take 0.05 as the

level, i.e. when the p-value is less than 0.05 we reject the hypothesis that VaR is accurate. This

test is called backtesting.

3.4 Numerical Results and Discussion

We choose the data of the stock market from Jan 1, 2000 to Aug 10, 2009, five individual stocks

(PGN, IBM, BAC, F and HD) for stock return and stock index S&P500 for benchmark return.

The total number of the observed return data is n = 2414. We use the most recent 2 year

historical data to estimate the parameters of (3.1)-(3.4) and copulas, then we use these param-

eters to predict the VaR for the next time, that is we take k = 502. Therefore, the expected
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number of violations E[Xε] is (1− ε)(n− k) = 1912(1− ε). We take ε = 0.95, 0.975 and 0.99.

Following the algorithm in Section 3.2, we conduct the backtesting procedure in 3.3. We give

the backtesting results in Table 3.1 to 3.5 for the five different copulas and five stocks.
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Table 3.1: Backtesing result for PGN and S&P500

ε = 0.95,E[Xε] = 95.56 ε = 0.975,E[Xε] = 47.78 ε = 0.99,E[Xε] = 19.12

Copula X.95 p-value X.975 p-value X.99 p-value

Gaussian 66 0.0001 38 0.083 17 0.3672

Student’s t 69 0.0024 33 0.0144 16 0.2817

Clayton 57 0.0000 32 0.0093 9 0.0080

Gumbel 60 0.0000 30 0.0036 11 0.0321

Frank 64 0.0002 32 0.0093 7 0.0013

Table 3.2: Backtesing result for IBM and S&P500

ε = 0.95,E[Xε] = 95.56 ε = 0.975,E[Xε] = 47.78 ε = 0.99,E[Xε] = 19.12

Copula X.95 p-value X.975 p-value X.99 p-value

Gaussian 82 0.0822 47 0.4917 24 0.1110

Student’s t 83 0.1002 47 0.4917 21 0.2832

Clayton 60 0.0000 29 0.0021 17 0.3672

Gumbel 70 0.0031 37 0.0614 17 0.3672

Frank 76 0.0198 35 0.0212 15 0.2058

Table 3.3: Backtesing result for BAC and S&P500

ε = 0.95,E[Xε] = 95.56 ε = 0.975,E[Xε] = 47.78 ε = 0.99,E[Xε] = 19.12

Copula X.95 p-value X.975 p-value X.99 p-value

Gaussian 90 0.3002 49 0.3933 22 0.2141

Student’s t 93 0.4187 47 0.4917 16 0.2817

Clayton 70 0.0031 37 0.0614 17 0.3672

Gumbel 81 0.0668 40 0.1415 15 0.2058

Frank 83 0.1002 40 0.1415 13 0.0928
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Table 3.4: Backtesing result for F and S&P500

ε = 0.95,E[Xε] = 95.56 ε = 0.975,E[Xε] = 47.78 ε = 0.99,E[Xε] = 19.12

Copula X.95 p-value X.975 p-value X.99 p-value

Gaussian 88 0.2302 46 0.4333 26 0.0507

Student’s t 91 0.3382 44 0.3208 21 0.2832

Clayton 82 0.0823 44 0.3208 26 0.0507

Gumbel 76 0.0198 39 0.1096 20 0.3629

Frank 86 0.1701 41 0.1788 20 0.3629

Table 3.5: Backtesing result for HD and S&P500

ε = 0.95,E[Xε] = 95.56 ε = 0.975,E[Xε] = 47.78 ε = 0.99,E[Xε] = 19.12

Copula X.95 p-value X.975 p-value X.99 p-value

Gaussian 98 0.3750 53 0.1998 26 0.0507

Student’s t 94 0.4602 53 0.1998 22 0.2141

Clayton 70 0.0031 42 0.2215 17 0.3672

Gumbel 75 0.0150 39 0.1096 18 0.4581

Frank 85 0.1441 41 0.1788 17 0.3672
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In Table 3.1-3.5, the p-value greater than 0.05 is highlighted in yellow, which means we can

not reject the hypothesis that VaR is accurate. The more the p-value closes to 0.5, the better

the VaR is.

Observation 1. Different stock may have different tail dependence structures with benchmark and

may have different copulas to fit it. There are totally 15 tests for each copula. For

Gaussian copula, 14
15 of the backtesting procedures can not reject the null hypothesis

that VaR is accurate. For student’s t copula, it is 13
15 . It is 10

15 , 9
15

8
15 for frank,

gumbel and clayton, respectively. Therefore, Gaussian and student’s t copula works

best among the 5 copulas.

Observation 2. To compare Gaussian and student’s t copula, we also highlight the value 1912(1− ε)
of Xε in green, which is closest to the theoretical value it should be. We can see that

student’s t copula performs a little big better than normal copula.

Next we use the last 502 observed data to predict the VaR and CVaR for the next day (Aug

11, 2009) using student’s t copula. Table 3.6 gives the result we forecast for all five stocks, as

well as the index of stability α for each zt of the stock. From the table we can tell that

Table 3.6: VaR and CVaR of the relative risk for each stock with student’s t copula

α V aR.95 CV aR0.95 V aR.975 CV aR0.975 V aR.99 CV aR0.99

PGN 1.9392 0.7518 1.0724 0.9465 1.3073 1.2209 1.6826

IBM 1.9576 0.6331 0.8860 0.7986 1.0642 1.0231 1.3314

BAC 1.6337 1.7702 3.6057 2.2845 5.2156 3.4528 10.9506

F 1.9392 2.3199 3.5603 2.8533 4.5638 3.6754 6.6025

HD 1.8984 0.7866 1.0152 0.9486 1.1171 1.1551 1.2664

Observation 3. For risk comparison, IBM have the smallest risk of relative return. PGN and HD

have the second and third smallest risk. But we cannot tell which one is better, since

their VaR and CVaR are almost at the same level. On the other hand, F and BAC

are more risky than the other three. The stability parameter of BAC is really small.

That means the tail of BAC is very heavy and this makes it more risky. Even though

the VaR of BAC is smaller than that of F, as for BAC has heavy tail, the CVaR for

BAC is remarkably larger than the CVaR for F. Therefore, we can say that BAC is

the most risky stock. We can see that when difference between the index of stability

is not so big, there maybe some other factors such as skewness can affect the risk.
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But when the index of stability is much more smaller than others, like BAC, the risk

is much bigger. Therefore, the index of stability is the main factor for the risk.
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Chapter 4

Portfolio Optimization with CVaR

Portfolio optimization method can be traced up to Markowitz (1952), where he introduced

mean-variance framework. In his work, he tries to manage the portfolio by minimizing the

variance (regarded as a risk) under the constraint that the return is no less than some value.

This idea is still very popular in recent risk management, except that we use various differ-

ent measurements for the risk, such as VaR and CVaR. Moreover, according to Rockafellar and

Uryasev (2002 [38]), minimizing CVaR of the portfolio can be reformulated and solved by linear

programming. In this chapter, we introduce their idea and extend it to portfolio optimization

problem with CVaR as risk measurement, together with time series model. From the numerical

results, we find out that the model we set up describes the practical economic market very well.

The rest of this chapter is organized as follows. In Section 4.1, we introduce the risk-return

portfolio optimization framework, which is an extension of Markowitz (1952, [28]). Rockafellar

and Uryasev’s idea of how to solve the CVaR minimization problem is introduced in Section

4.2. Numerical results and discussions are given in Section 4.3.

4.1 Risk-Return Portfolio Optimization

Let L = (L1, L2, . . . , Ln)T be a set of n assets’ loss. Suppose the allocation of these n assets in

portfolio is x = (x1, x2, . . . , xn)T , such that xi ≥ 0 (no short sales permitted) and

n∑
i=1

xi = 1

(budget constraint). Then, the total loss of the portfolio is

L̃ = xTL =
n∑
i=1

xiLi.
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As L is a multi-variate random variable, L̃ is a univariate random variable. Hence, we can define

VaR and CVaR for the total loss (L̃) by (2.2) and (2.4) as V aRε(L̃, x) and CV aRε(L̃, x), where

x is the parameter of risk allocation vector. Without confusing, we just write V aRε(x) and

CV aRε(x) in short. Then, we can generalize the classical concept of mean-variance portfolio

optimization problem for the case of the risk measure we defined above. We can formulate the

following optimization problem:

min
x∈Rn

<(L̃, x) = <(xTL) (4.1)

s.t. xTω ≥ ω∗
n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

where < represents the risk measurement V aRε(x) or CV aRε(x), w.r.t. fixed x, ω = (ω1, ω2, . . . , ωn)T

is the vector of the expected return for the assets and ω∗ is the minimum return requirement.

As discussed in Section 2.1, V aR is not a coherent and convex function and it is not easy to find

its global minimizer. While CV aR is both coherent and convex and it is possible to find the

optimal allocations. This can be seen in Figure 4.1. In Figure 4.1, we plot the portfolio VaR

and CVaR for two asset: BAC and F with the historical data we selected and the allocation

x = (λ, 1 − λ)T . From Figure 4.1, we can see that VaR has many local minimizers and CVaR

is convex with only one minimizer. Therefore, in this chapter, we use CV aR as our objective

risk measurement. Our optimization problem is

min
x∈Rn

CV aRε(x) (4.2)

s.t. xTω ≥ ω∗
n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

According to Rockafellar and Uryasev (2002), the minimization of CV aR can be simplified to a

linear programming, which is very easy to solve. In the next section, we will sketch their idea.

4.2 Minimization of CVaR

Let f(x, L) be the loss function associated with the risk allocation vector x, where x ∈ X and X
is a certain subset of Rn and the random vector L ∈ Rn. For each x, the loss function f(x, L)

is a random variable with a distribution in R. If the probability density function for L is p(l),
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(a) VaR of the portfolio of two assets

(b) CVaR of the portfolio of two assets

Figure 4.1: VaR and CVaR
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l ∈ Rn, the probability of the loss function f(x, L) not exceeding a threshold ξ is given by

Ψ(x, ξ) , Pr(f(x, L) ≤ ξ) =

∫
f(x,l)≤ξ

p(l)dl.

As a function of ξ, for fix x, Ψ(x, ξ) is the cumulative distribution function for the loss f(x, L)

associate with x. Then, the V aRε and CV aRε for the loss f(x, L) associate with x is

V aRε(x) = min{ξ ∈ R : Ψ(x, ξ) ≥ ε}

and

CV aRε(x) = (1− ε)−1
∫
f(x,l)≥V aRε

f(x, l)p(l)dl.

We define a function Fε on X× R by

Fε(x, ξ) , ξ + (1− ε)−1
∫
l∈Rn

[f(x, l)− ξ]+p(l)dl,

where [t]+ = max{t, 0}. CV aRε(x) and V aRε(x) can be characterized in terms of the function

Fε on X × R defined above. The crucial features of Fε, under the assumption above, are as

follows (Rockafellar and Uryasev 2002).

Theorem 4.2.1. As a function of ξ, Fε(x, ξ) is convex and continuously differentiable. The

CV aRε(x) of the loss f(x, L) associate with any x ∈ X can be determined from the formula

CV aRε(x) = min
ξ∈R

Fε(x, ξ).

Let

Aε(x) = arg min
ξ∈R

Fε(x, ξ)

be the set of values of ξ for which the minimum is attained. So Aε(x) is a nonempty, closed,

bounded interval, and V aRε of the loss f(x, L) is given by

V aRε(x) = left endpoint of Aε(x).

If the set Aε(x) is reduced to a single point, then V aRε(x) = arg min
ξ∈R

Fε(x, ξ). It is also

proved in (Rockafellar and Uryasev 2002) that

Theorem 4.2.2. Minimizing the CV aRε(x) of the loss f(x, L) associated with x over all x ∈ X
is equivalent to minimizing Fε(x, ξ) over all (x, ξ) ∈ X× R, i.e.

min
x∈X

CV aRε(x) = min
(x,ξ)∈X×R

Fε(x, ξ), (4.3)
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where a pair (x∗, ξ∗) achieves the right hand side minimum if and only if x∗ achieves the left

hand side minimum and ξ∗ ∈ Aε(x∗). In particular, when Aε(x
∗) reduces to a single point, we

have ξ∗ = V aRε(x
∗).

Furthermore, when f(x, L) is convex w.r.t. x, Fε(x, ξ) is convex w.r.t. (x, ξ) and CV aRε(x)

is convex w.r.t. x. Therefore, if we take f(x, L) = xTL, which is the portfolio of the assets’

loss, then both Fε(x, ξ) and CV aRε(x) are convex. Moreover, if the multi-variate distribution

of L is continuous, the set Aε(x) reduced to a single point. Hence from (4.3), our portfolio

optimization problem (4.2) can be reformulated as

min
(x,ξ)∈Rn×R

ξ + (1− ε)−1E[xTL− ξ]+ (4.4)

s.t. xTω ≥ ω∗
n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n,

where (4.4) is derived by

Fε(x, ξ) = ξ + (1− ε)−1
∫
l∈Rn

[xT l − ξ]+p(l)dl = ξ + (1− ε)−1E[xTL− ξ]+.

Then, we can discretize L use Monte Carlo method to simulated N realization of it, lj =

(lj1, l
j
2, . . . , l

j
n), j = 1, 2, . . . , N and thus the expectation can be estimated by

E[xTL− ξ]+ =
1

N

N∑
j=1

[xT lj − ξ]+

and the portfolio optimization problem (4.4) becomes:

min
(x,ξ)∈Rn×R

ξ + (1− ε)−1 1
N

N∑
j=1

[xT lj − ξ]+ (4.5)

s.t. xTω ≥ ω∗
n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n.
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Let zj = [xT lj − ξ]+, we can rewrite (4.5) as:

min
(x,ξ)∈Rn×R

ξ + (1− ε)−1 1
N

N∑
j=1

zj (4.6)

s.t. xTω ≥ ω∗

xT lj − ξ ≤ zj , j = 1, . . . , N
n∑
i=1

xi = 1

xi, zj ≥ 0, i = 1, . . . , n, j = 1, . . . , N,

which is a classical linear programming problem, which is relatively easy to solve.

In Rockfellar (2002,[38]), they used the historical method to estimate the optimal CVaR. In

order to estimate the optimal CVaR more precisely, we extend their idea by parametric method,

using GST and stable distribution to fit the historical data. We can estimate CVaR by Monte

Carlo method. To describe the volatility clustering property inside each of the data, we use

the GARCH(1,1) model and the rolling window of 2 years to predict the optimal CVaR at any

time. The numerical results are discussed in the next section.

4.3 Numerical Results and Discussion

4.3.1 Portfolio Optimization Allocation

We choose five members of S&P500 index, which are from five totally different industrials.

These five members are PGN, IBM, BAC, F and HD.

Now we consider an investor who will invest on stocks chosen from these five stocks. We

describe their daily percentage loss using the first differences of the logarithm of series of their

stock prices as in (4.7),

Lt = −100 [ln(Pt)− ln(Pt−1)] , (4.7)

where t = 1, ..., . . . 2414 corresponding to the period from Jan 1,2000 to Aug 10, 2009. The

statistics for the observed loss data for each member is in Table 2.1. We can see that all this

five loss data are fat-tailed and asymmetric. Therefore, GST distribution is a good one to

describe their marginal distributions. In addition, the results in Chapter 3 and in Dobrić and

Schmid (2005,[12]) indicate that student’s t copula with low degree of freedom is a good copula

for financial data. Therefore, we use it to describe the dependence structure for the loss data.

We use these observed loss data to estimate the parameters for the GST distribution, which is

shown in Table 4.1.
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Table 4.1: Parameter estimations of GST distribution for 5 different observed loss data

stock µ σ ν λ

PGN 0.0005 0.6600 3.5379 0.0617

IBM 0.0019 0.9439 2.8967 0.0114

BAC 0.0193 67.5801 2.0001 0.0303

F 0.0217 1.4899 2.9711 -0.0619

HD 0.0124 1.1146 3.2322 -0.0282

We can see from Table 4.1 that the variance of BAC data is very big, which means that

BAC is not very steady. In addition, the parameter ν of BAC is very close to 2, which means

that its distribution is fatter than the others, i.e. it is more risky. We take the mean return

of the history data as the expected return of each asset, i.e negative mean of the loss data.

So from Table 2.1, ω = (0.0049, 0.000414,−0.0192,−0.034,−0.0158)T . We can see that only

PGN and IBM have positive mean return during the time period. Thus, the minimum return

requirement ω∗ should be less than 0.0049. We first take ω∗ = 0.001 to see how diversification

of investment can reduce the risk. We solve the risk-return portfolio optimization problem

min
(x,ξ)∈Rn×R

ξ + (1− ε)−1 1
N

N∑
j=1

zj (4.8)

s.t. xTω ≥ 0.001

xT lj − ξ ≤ zj , j = 1, . . . , N
n∑
i=1

xi = 1

xi, zj ≥ 0, i = 1, . . . , n, j = 1, . . . , N

where ε = 0.95 and lj are the loss simulations we get from the joint distribution, which is

obtained by the student’s t copula and marginally GST distribution with parameters in Table

4.1. Since only PGN and IBM have positive expected returns, we try to solve (4.8) for the

investment combination of 2 assets (PGN and IBM ), 3 assets (PGN, IBM, and BAC), 4 assets

(PGN, IBM, BAC and F ) and 5 assets (PGN, IBM, BAC, F and HD) respectively. The result

of optimal portfolio allocation is showed in Table 4.2.

We also list the parameter estimation ρ̂ for the student’s t copula and omit the parameter

estimation for R. We can see from Table 4.2 that firstly the degree of freedom for student’s

t copula are all round 5, which are consist with Dobrić (2005,[12]) referring the low degrees
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Table 4.2: Portfolio allocation with ε = 0.95 and minimum return requirement ω∗ = 0.001 for
GST distribution

ρ̂ opt-CVaR VaR Portfolio allocation
PGN IBM BAC F HD

2 assets 4.7677 1.4763 0.9488 0.7989 0.2011

3 assets 4.4818 1.3889 0.8848 0.6694 0.2282 0.1024

4 assets 4.8391 1.3736 0.8747 0.6820 0.2475 0.0009 0.0696

5 assets 4.6501 1.3670 0.8734 0.6701 0.2004 0.0014 0.0000 0.1282

of freedom. Secondly, the diversification of the investment does reduce the risk, from 1.4763

of CVaR for 2 assets to 1.3670 for 5 assets, but it is not reduced dramatically. The reason

is that since we have the minimum return requirement ω∗ = 0.001, and only PGN and IBM

gives a positive mean return and all the other 3 assets have negative returns. As a result, the

allocation of the assets for each case are investing almost all the money on PGN and IBM. The

rest of the asset have almost no investment. Thirdly, in each of the portfolio, the allocation for

BAC is relatively very small. That is because that BAC is more risky than the other stocks

(the index of tail for its GST distribution is 2.0001, which means its tail is much more fatter

than the others). In order to compare with the historical method used in Rockfellar’s paper

([37]), we show the results of portfolio optimization with 2,3,4,5 assets in Table 4.3, using the

historical method. Comparing the results in Table 4.2 and 4.3, we can see that the optimal

CVaRs from historical method are smaller than those from parametric method in all scenarios.

We can see that although we have 2414 historical data to estimate CVaR, the historical method

still under-estimates the risk. This shows that parametric method does superior to historical

method, in the sense of accuracy.

Table 4.3: Optimal portfolio CVaR allocation with ε = 0.95 and minimum return requirement
ω∗ = 0.001 for historical data

CVaR VaR Portfolio allocation
PGN IBM BAC F HD

2 assets 1.1726 0.7961 0.6327 0.3673

3 assets 1.1639 0.8099 0.6145 0.3530 0.0325

4 assets 1.1595 0.7785 0.5776 0.3565 0.0310 0.0349

5 assets 1.1357 0.7515 0.5310 0.3447 0.0006 0.0257 0.0980
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Now let’s enforce the minimum return requirement and change the value of ω∗ from 0.001 to

0.0045 for the 5 assets’ portfolio. This gives us an efficient frontier which is shown in Figure 4.2.

We can see that the efficient frontier is quite similar to that in the mean-variance framework.

The portfolio allocation of the assets at each point is the tangent line at this point.

Figure 4.2: Efficient 95% CVaR Frontier for GST distribution

4.3.2 Optimal CVaR with Time Series Model

We know that short time financial data shows some volatility clustering, so it is better to use

time series GARCH model to describe them. As discussed in section 2.5, we use the simplest

GARCH(1,1) model to fit the loss data with GST as innovation distribution for each asset loss

as follows

Lt = µ+ σtzt,

σ2t = a0 +
m∑
i=1

ai(Lt−i − µ)2 +
s∑
i=1

biσ
2
t−i,

where zt ∼ GST (ν, λ) for each asset. The innovation distributions for each asset are not in-

dependent, they are correlated. Therefore, we use student’s t copula to fit their correlations

to get the joint distribution of zts. To estimate the parameters in GARCH model and copula,
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we use the most recent 2 year historical data to estimate them. Then, use those parameters

to simulate the coupled loss data by Monte Carlo method, and use those data to predict the

current optimal portfolio CVaR for the loss, by solving the model we set up in section 4.2. Here

in Figure 4.3, we show the predicted optimal daily portfolio CVaR for time between Jan 1, 2008

and Aug 10, 2009, as well as the S&P500 index for that time period in the same graph.

Figure 4.3: Predicted daily optimal portfolio CVaR0.95 for GST distribution and S&P500 index
from Jan 1,2008 to Aug 10, 2009

We believe that the stock index can represent the economic status in the market. That

is, if the economics goes bad, the index decreases and vice versa. We can see from Figure 4.3

that, when the S&P500 index decreases, that means the economics goes bad, the corresponding

optimal daily portfolio CVaR increases and vice versa. In addition, there is a big increase of

optimal daily portfolio CVaR around time 187 - 200, which is around Sep 26, 2008 - Oct 15,

2008, meaning that the risk at that period is high. While at almost the same time period, the

S&P500 index have a serious drop. It is because that during this period, the US economics is

suffering the crisis, trigged by the bankruptcy of the Lehman Brothers on Sep 15, 2008. While

after that, on October 3, 2008, the US government introduce the bailout of the U.S. financial

system, which authorizes the United States Secretary of the Treasury to spend up to US$700
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billion to purchase distressed assets, especially mortgage-backed securities, and make capital

injections into banks. This action increases the confidence of the investor and makes the daily

CVaR decrease rapidly. This is shown in the figure at the time period around 201-250, where

daily CVaR decreased quickly. After that, the risk regarded as daily CVaR oscillates with the

index fluctuates by the pattern we described above. In average, at the time when the index is

high the daily optimal portfolio daily CVaR is low, i.e. the risk is low, vice versa. We can say

the the optimal daily portfolio CVaR we get is quite consistent with the economic environment.

This indicates that our model works well.

In addition, if we take ε = 0.975 and 0.99, we will obtain the optimal CVaR corresponding

to difference level of ε, which is shown in Figure 4.4. From the Figure 4.4, we can see that the

pattern of series for 97.5% and 99% are the same as that for 95%. The only difference is that

at each time, the optimal CVaR of 99% is greater than that of 97.5%, which is again greater

than that of 95%.

Figure 4.4: Predicted daily optimal portfolio CVaR for GST distribution at different levels
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4.3.3 Further Discussion for Stable Distribution

From the above discussion, GST distribution does do a good job. However, there are some

potential risks that the tail of GST distribution is not fat enough to describe financial data.

This may under-estimate the risk. Therefore, we consider another better candidate distribu-

tion - stable distribution, which has fatter tail than GST and can describe the skewness too.

However, although stable distribution has better description for tail thickness, it does not have

a close form expression of the probability density function. We have to calculate it numerically,

which will cost more time.

Next, we use stable distribution as our fitting distribution and use student’s t copula for

dependence structure, we follow the above framework and the numerical results are given in

Table 4.4, Table 4.5, Figure 4.5 to 4.8.

Table 4.4: Parameter estimations of stable distribution for 5 different observed loss data

stock α β σ µ

PGN 1.6833 0.1518 0.3510 0.0053

IBM 1.5467 0.0409 0.4246 0.0073

BAC 1.1828 0.0582 0.4043 0.0663

F 1.6147 -0.2489 0.6855 -0.0192

HD 1.5951 -0.0554 0.5525 -0.0102

Table 4.5: Optimal portfolio CVaR allocation with ε = 0.95 and minimum return requirement
ω∗ = 0.001 for stable distribution

ρ̂ opt-CVaR VaR Portfolio allocation
PGN IBM BAC F HD

2 assets 4.1180 1.7744 0.9162 0.8676 0.1324

3 assets 3.3971 1.7531 0.9073 0.8324 0.1627 0.0049

4 assets 3.8897 1.7265 0.9279 0.7775 0.1318 0.0000 0.0907

5 assets 3.7749 1.7168 0.9163 0.7246 0.1056 0.0000 0.0714 0.0984
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Figure 4.5: Efficient 95% CVaR Frontier comparison for GST and stable distributions

Figure 4.6: Predicted daily optimal portfolio CVaR from Jan 1, 2008 to Aug 10, 2009 for GST
and stable distributions at level 0.95
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Figure 4.7: Predicted daily optimal portfolio CVaR from Jan 1, 2008 to Aug 10, 2009 for GST
and stable distributions at level 0.975

Figure 4.8: Predicted daily optimal portfolio CVaR from Jan 1, 2008 to Aug 10, 2009 for GST
and stable distributions at level 0.99
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In Table 4.4, we give the parameter estimation for the marginal stable distributions, using

the historical data. Table 4.5 gives the optimal CVaR under different number of asset for port-

folio. We can see the same phenomena as that of GST, that the diversification can reduce the

risk of the portfolio. However, the optimal risks under stable distribution are bigger than that

of GST. From Figure 4.5, which draw efficient frontiers under both stable and GST distribu-

tions, we can see that the efficient frontier of stable distribution is almost parallel to that of

GST and is bigger than GST. Figure 4.6 to 4.8, compares the daily optimal CVaR obtained

from our time series models under different levels of threshold. These figures show that under

the time series model, the daily optimal CVaR of stable almost have the same pattern as that

of GST at each level, which implies that the time series model with stable distribution is also

consistent with the real market, but it may predict bigger risks compared to GST distribution.
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Chapter 5

Portfolio Optimization with VaR

In chapter 4, we consider portfolio optimization problem with CVaR as the risk measurement.

The reason why we use CVaR rather than VaR is that VaR is not a coherent or convex measure-

ment, but CVaR is. However, as we said in Chapter 1, VaR is widely used in practical world

and it is used in regulatory mechanisms. Therefore, the research of the optimal problem with

VaR as risk measurement is essential. Actually, it can be done in some complex way. Gaivoron-

ski and Pflug(2005, [16]) provided a numerical approach to solve this problem. In that paper,

the authors introduced an approach to approximate VaR by a smoothed measurement called

SVaR, which filters out local irregularities. However, the way to find this smoothed SVaR is

quit complex. In Benati(2007,[5]), a mixed integer linear programming method is discussed for

the portfolio optimization problem with VaR as a risk measurement. In that paper, the author

proposed a mixed integer linear programming model for the problem, which can be efficiently

solved by linear integer optimization software (like Cplex, SAS-OR package). However, their

idea is the historical approach, which may lead to under-estimate the risk. In this chapter, I

extend their idea to the parametric approach, as well as with the time series model.

The rest of this chapter is arranged as follows. Section 5.1 introduces how we model the

portfolio optimization problem by mixed integer linear problem. Numerical results and discus-

sions are shown in Section 5.2.

5.1 Optimization with VaR

Let R = (R1, R2, . . . , Rn)T be the vector of n assets’ return. Suppose the allocation of these n

assets in portfolio is x = (x1, x2, . . . , xn)T . Therefore, the total return of the portfolio is

R̃ = xTR =

n∑
i=1

xiRi.
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Let the Value-at-Risk for R̃ at lever ε is defined as (2.1), we write it as V aRε(R̃). If we

replace V aRε(R̃) as the risk measurement in (4.2) instead of CVaR, we will have the portfolio

optimization problem with VaR

min
x∈R̃n

V aRε(TR) (5.1)

s.t. xTω ≥ ω∗

TR =
n∑
i=1

xiRi

n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n.

We can consider the model (5.1) in another way. The decision maker fixed two parameters,

the probability ε and the return rate requirement ω∗ and one positive variable ηε. He will not

accept any investment whose VaR with level ε is greater than ηε, i.e. no investment in which

Pr[R̃ ≤ −ηε] ≥ 1− ε is taken into consideration. In addition, no investment is accepted if the

expected rate of return is less than ω∗. At the same time, he needs to minimize the risk variable

ηε. Therefore, we can set up the model as (Problem P1)

min
x,ηε

ηε (5.2)

s.t. Pr[R̃ ≤ −ηε] ≤ 1− ε (5.3)

R̃ =
n∑
i=1

xiRi (5.4)

xTω ≥ ω∗ (5.5)
n∑
i=1

xi = 1 (5.6)

xi ≥ 0, i = 1, . . . , n, (5.7)

where constraint (5.6) requires that one unit of wealth must be allocated on different assets and

constraint (5.7) prevents short-selling. The decision maker is willing to accept only portfolios

for which probability of portfolio under −ηε is less than or equal to the threshold 1 − ε, this

constraint is described in (5.3) and is equivalent to say that V aRε(R̃) ≤ ηε.

Since Ri and R̃ are all random variables, if each Ri have N realizations rji , j = 1, . . . , N

and we have that Pr[
⋂n
i=1(Ri = rji )] = pj , j = 1, . . . , N . Then, we have Pr[R̃ = r̃j ] = Pr[R̃ =

n∑
i=1

xir
j
i ] = pj , i = 1, . . . , N . Therefore, we can reformulate Problem P1 in to a mixed integer
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programming problem as follows (Problem P2):

min
x,tr,y,ηε

ηε (5.8)

s.t. r̃j =
n∑
i=1

xir
j
i , j = 1, . . . , N (5.9)

n∑
i=1

xiωi ≥ ω∗ (5.10)

r̃j +M(1− yj) ≥ −ηε, j = 1, . . . , N (5.11)

N∑
j=1

pj(1− yj) ≤ 1− ε (5.12)

n∑
i=1

xi = 1 (5.13)

yj ∈ {0, 1}, j = 1, . . . , N (5.14)

xi ≥ 0, i = 1, . . . , n (5.15)

where M is a very large number and ωi is the expected rate of return for each asset. Constraint

(5.10) prevents the investment whose expected rate of return is less than ω∗. Variables r̃j is the

portfolio observed return of the jth realization. Constraint (5.11) and (5.12) prevent the choice

of portfolios whose VaR is above the fixed threshold ηε. Every time r̃j is below −ηε, yj must be

equal to 0 and 1−yj = 1 in constraint (5.11). Therefore, all probabilities of realization j whose

returns are below −ηε are summed up. If the result is greater than 1 − ε, then the portfolio

is not feasible. We can see that Problem P2 is a standard mixed linear integer programming

problem. If we have the joint distribution of the assets Ri, i = 1, . . . , n, we can use Monte

Carlo method to simulate the realizations rji and pj , and Problem P2 can be solved efficiently.

We try to solve Problem 2 using parametric method. With the return data of each asset,

we can fit them into a family of distributions such as GST and stable distribution. After that,

we can get their joint distribution by copula method. We can also use this model together with

time series models.

5.2 Numerical Results

5.2.1 Results without Time Dependence

For the same reason as in the last chapter, we use both GST distribution and stable distribution

to fit the financial rate of returns. In addition, we will use student’s t copula to describe the

correlations between the assets. If we ignore the time dependence of the series for a moment,

we use the historical data and the parametric to find the optimal VaR of different number of
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assets for the portfolio. Table 5.1 and 5.2 summarize the optimal 95% VaR and the allocations

using GST and stable distribution, respectively.

Table 5.1: Optimal VaR portfolio allocation with ε = 0.95 and minimum return requirement
ω∗ = 0.001 for GST distribution

VaR Portfolio allocation
PGN IBM BAC F HD

2 assets 0.8800 0.6778 0.3222

3 assets 0.8385 0.6278 0.3251 0.0471

4 assets 0.7836 0.6810 0.2507 0.0600 0.0083

5 assets 0.7619 0.6503 0.2440 0.0451 0.0121 0.0485

Table 5.2: Optimal VaR portfolio allocation with ε = 0.95 and minimum return requirement
ω∗ = 0.001 for stable distribution

VaR Portfolio allocation
PGN IBM BAC F HD

2 assets 0.8535 0.6801 0.3199

3 assets 0.8328 0.6442 0.3179 0.0379

4 assets 0.8320 0.6596 0.2746 0.0373 0.0285

5 assets 0.7978 0.7282 0.1676 0.0268 0.0164 0.0061

We ignore the estimation of parameters for the GST and stable distribution, as well as

parameters of the copula, the reason we can do this is that these parameters are the same

as those in Chapter 4. Comparing with the VaRs we get from the optimal CVaR in Table

4.2 and 4.5 in Chapter 4, we can see that the optimal VaRs in Table 5.1 and 5.2 are smaller.

Therefore, we can say that, if we regard VaR as the risk measurement, the VaRs we get from

the optimal CVaR model is not minimized. On the other hand, from Table 5.1 and 5.2, we

can see that diversification of the investment from 2 asset to 5 assets will also reduce the

VaR of the portfolios from 0.88 to 0.7619 for GST distribution and from 0.8535 to 0.7978 for

stable distribution, respectively. In addition, the optimal VaRs we get from stable distribution

is a little bit bigger than optimal VaRs we get from GST distribution. The reason is that
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the tail of stable distribution is fatter than the tail of GST distribution. Furthermore, if we

keep the number of assets in portfolio at 5 and take different values of the minimum return

requirement ω∗ from 0.001 to 0.0045, we will obtain the efficient frontiers of optimal VaR for

both distributions, which are shown in Figure 5.1. From Figure 5.1, firstly, we can see that the

frontier curve is not so smooth, it maybe because of the non-convex property of VaR. Secondly,

even though it is not smooth, we can tell that the curve is still increasing. That means the

bigger the return you require, the more risk you have to face. Thirdly, for the same return

requirement, the optimal risk for GST distribution is smaller than that for stable distribution.

The reason for this is that stable distribution has fatter tail than GST distribution.

Figure 5.1: Efficient 95% VaR Frontier for both GST and stable distribution

5.2.2 Results with Time Dependence

If we consider the time dependence within each of the asset, we will use the time series

ARMA-GARCH model which is introduced in Chapter 2. We use the simplest ARMA(0,0)-

GARCH(1,1) model to fit the data of each assets. The correlations among the assets are also

described by student’s t copula as before. We use the most recent 2 years’ data for any partic-

ular day to predict the return of that day. After we obtain the simulated data for all the assets

using ARMA-GARCH and copula, we can solve the model (Problem 2) to predict the optimal
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allocation and the optimal 95% VaR for that day. The following Figures 5.2 to 5.7 is obtained

from the above procedure based on the data and we obtain the predicted daily optimal VaR

for the time between Jan 1,2000 and Aug 10, 2009.

Figure 5.2: Predicted optimal daily 95% VaR compared with optimal 95% CVaR for GST
distribution

In Figure 5.2 and 5.3, we plot the optimal daily VaR we obtain and compare it with the

optimal CVaR we obtain from the model in Chapter 4 for both GST and stable distribution,

respectively. From these two figures, we can see that the pattern for optimal VaR is almost

the same as the pattern for optimal CVaR. That is, when the optimal CVaR is increasing, the

corresponding optimal VaR is also increasing and vice-versa. In addition, when the optimal

CVaR is big, the corresponding optimal VaR is also big and vice-versa. As the conclusion we

state in Chapter 4 that the pattern of daily optimal CVaR is quite consistent with the real

world market, we can conclude that the pattern of daily optimal VaR we obtain from this mix

integer linear programming problem is also consistent with the real world market. Therefore,

the model we set up is really good.

In Figure 5.4 and 5.5, we compares the optimal daily VaR we obtain and the VaR we obtain
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Figure 5.3: Predicted optimal daily 95% VaR compared with optimal 95% CVaR for stable
distribution

Figure 5.4: Predicted optimal daily 95% VaR compared with 95% VaR from optimal CVaR
for GST distribution
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Figure 5.5: Predicted optimal daily 95% VaR compared with 95% VaR from optimal CVaR
for stable distribution

Figure 5.6: The difference between VaR from optimal CVaR and optimal VaR for GST distri-
bution
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Figure 5.7: The difference between VaR from optimal CVaR and optimal VaR for stable
distribution

from the optimal CVaR model in Chapter 4 for both GST and stable distribution. Theoretically,

the optimal VaR we get should be the smallest among the VaRs of any allocation of the assets

in the portfolio. From Figure 5.4 and 5.5, we can see that the optimal VaR is really smaller

than the VaR we get from the optimal CVaR almost every time. The difference of the VaR

from optimal CVaR and the optimal VaR is plotted in Figure 5.6 and 5.7, the black line is the

0 horizontal line. The number of points that the difference is below 0 is 12 and 11 for GST and

Stable distribution, respectively and the total number of points we have is 404. Therefore, most

of the difference is greater than 0, which is consistent with the theoretical fact. The reason that

there are negative difference is because that we use different simulation realizations when we

calculate the optimal CVaR and VaR.
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Chapter 6

Independent Component Analysis

and Its Application in Portfolio Risk

Management

Throughout this paper, we can see that the most important thing in my research is the joint dis-

tribution of the returns/losses. In order to get the joint distribution, we firstly fit the marginal

distributions of each asset. Then, use copula to connect the marginal distributions with the joint

distribution. This approach does work because that the Sklar’s theory ensures the existence of

the copula for the joint distribution. However, there are also disadvantages. One of them is that

it may take a long time to generate the simulated data. Therefore, in this chapter, we explore a

method that can save time of simulation to solve the portfolio optimization problems using the

model we set up in the previous chapters. The easiest situation to simulate multivariate data is

when the data we are trying to simulate are independent with each other. If so, we can simulate

the data independently. Therefore, we are considering if we can transform our original data

into independent variables, and transform our models into independent variables we obtain.

Inspired by this idea, we consider to use a statistical method called Independent Component

Analysis (ICA), which can transform the mixed data into statistically independent sources,

by linear transformation. Using this ICA method, we can transform the original models with

dependent variables into the models with independent variable. As a result, this procedure may

save us a lot of time of simulation.

The rest of this chapter is organized as follows. In Section 6.1, we will introduce the

Independent Component Analysis (ICA) method in details. In Section 6.2, we will see how

ICA is applied in risk management to solve portfolio optimization problems. Finally, in Section

6.3, we will summarize the numerical results if we use this ICA method in portfolio optimization
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problems.

6.1 Independent Component Analysis Method

6.1.1 Introduction

Independent Component Analysis (ICA) is a statistical method, widely used in signal analysis.

It is used to demix the mixed signals to find the independent sources, by linear combination

of the mixed signals. Let S ∈ Rn be the n independent sources sending signals and X ∈ Rn

be the mixture of these signals we obtain from the receiver. The question is can we isolate the

independent sources Y from the received signals X. Suppose X taht is the linear combination

of S, i.e. there exists a matrix A ∈ Rn×n such that

X = AS.

We try to find a demixing matrix W ∈ Rn×n, such that Y = WX = WAS and Y is statistical

independent. We call Y Independent Components (ICs). If W is nonsingular and W−1 = A,

we will get the original independent source S explicitly. The ICA procedure is shown in Figure

6.1. The original sources S are mixed through matrix A to form the observed signal X. The

demixing matrix W transforms the observed signal X into the independent components Y

Figure 6.1: ICA Procedure

6.1.2 ICA Estimation

The ICA model is a generative model, which means that it describes how the observed data are

generated by a process of mixing the components S. The independent components Y are latent

variables, meaning that they cannot be directly observed. In addition, the mixing matrix A and

the demixing matrix W are assumed to be unknown. All we can observe is the random vector

X and we must estimate W using X. Once we know the demixing matrix W , we can obtain

the independent component Y by Y = WX. In order to make the ICA method work, we must
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assume that the independent component must have non-gaussian distribution. We will briefly

introduce two methods to estimate W , Maximum Likelihood Estimation method and FastICA

method.

Maximum Likelihood Estimation If we know the probability density function of the in-

dependent source Si, i = 1, 2, . . . , n is fi(s), then, since Si, i = 1, 2, . . . , n are independent, we

can obtain the joint distribution of Si, which is

fS(s1, . . . , sn) =
n∏
i=1

fi(si).

Therefore, the joint distribution of X = AS = W−1S should be

fX(x1, . . . , xn) =

(
n∏
i=1

fi(WX)

)
|det(W )|.

The log-likelihood function for the observation xj = (xj1, x
j
2, . . . , x

j
n), j = 1, 2, . . . , T is

L =
T∑
t=1

n∑
i=1

ln(fi(w
T
i x

j)) + T ln(|det(W )|) (6.1)

where W = (w1, . . . , wn)T is unknown. Using the Maximum Likelihood Estimation method, we

can estimate W to be the maximizer of the log-likelihood function (6.1).

FastICA Algorithm In 2000, Hyvärinen and Oja ([23]) proposed a very efficient algorithm

to estimate the demixing matrix W , which is called FastICA algorithm. The algorithm is

based on a fixed-point iteration scheme maximizing non-Gaussianity as a measure of statistical

independence. It can be also derived as an approximative Newton iteration. The iterative

algorithm finds the direction for the weight vector W by maximizing the non-Gaussianity of

the projection wTx for the data x. The function g(·) is the derivative of a non-quadratic

non-linearity function. For example, g(x) could be the derivative of the function G(x) =
1
a1

ln(cosh(a1x)), which is g(x) = tanh(a1x), where 1 ≤ a1 ≤ 2 is some suitable constant, often

taken as a1 = 1,

cosh(x) =
ex + e−x

2

and

tanh(x) =
ex − e−x

ex + e−x
.
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Or g(x) could be the derivative of the function G(x) = − exp(−x2

2 ), which is g(x) = x exp(−x2

2 ).

The basic form of the FastICA algorithm is as follows:

1. Choose an initial (e.g. random) weight vector w ∈ Rn.

2. Let w+ = E[Xg(wTX)]−E[g′(wTX)]w.

3. Let w = w+/||w+||.
4. If not converge, go back to 2.

In addition to the easy formulation, FastICA has another advantage that we do not need to

know the distribution of the original source S or the data X. In this thesis, I use this FastICA

algorithm to obtain the demixing matrix W .

6.2 Applying ICA in Portfolio Optimization Problem

An early implementation of ICA in financial time series is given in Back (1998, [3]), where the

author made comparisons of ICs and principal components (PCs) applied to 28 Japanese stock

from 1986 to 1989. Hyvärinen and Oja (2000,[23]) stated that we can find hidden factors in

financial data, but they did not describe in details. Few contributions, however, exist for the

application of ICA in risk management. In this thesis, in order to apply ICA into portfolio risk

optimization problem (4.1), we set Y ∈ Rn to be the returns/losses of the n assets. By ICA we

can find a demixing matrix W ∈ Rn×n to demix Y into n statistical independent components

S ∈ Rn, i.e.

S = WY

where W is a non-singular demixing matrix and S are statistically independent. Therefore, we

have

Y = W−1S.

We can reformulate the portfolio risk optimization problem (4.1) as:

min
x∈Rn

<(xTY ) = <(xTW−1S) (6.2)

st xTω ≥ ω∗
n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

where < represents the risk measure, x ∈ Rn is the investment allocation for the assets,

ω = (ω1, ω2, . . . , ωn)T is the vector of the expected return for the assets and ω∗ is the min-

imum return requirement. Instead of the joint distribution of Y , what we need now switches to
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the joint distribution of S, which is easy to calculate because of the independent property for

S. Suppose that we have obtain the demixing matrix W by FastICA.

Portfolio Optimization with CVaR Let Y = (L1, L2, . . . , Ln) be the rate of loss for the

assets, < be the CVaR of the portfolio, W be the demixing matrix and S be the independent

components of Y obtained from FastICA. Then, from problem (6.2), the portfolio optimization

with CVaR is

min
x∈Rn

CV aR(xTY ) = CV aR(xTW−1S) (6.3)

s.t. xTω ≥ ω∗
n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

Following the procedures in Chapter 4, we can transform this problem into a linear programming

problem:

min
(x,ξ)∈Rn×R

ξ + (1− ε)−1 1
N

N∑
j=1

zj (6.4)

s.t. xTω ≥ ω∗

xTW−1sj − ξ ≤ zj , j = 1, . . . , N
n∑
i=1

xi = 1

xi, zj ≥ 0, i = 1, . . . , n, j = 1, . . . , N,

where sj = (sj1, s
j
2, . . . , s

j
n), j = 1, . . . , N is the N realizations of the independent components

S. We use the parametric method to fit the independent components individually. As for W

and sj , j = 1, . . . , n, are known, we can see that (6.4) is also a linear programming problem,

which is easy to solve.

Portfolio Optimization with VaR Let Y = (R1, R2, . . . , Rn) be the rate of return for the

assets, < be the VaR of the portfolio, W be the demixing matrix and S be the independent

components of Y obtained from FastICA. Then, from problem (6.2), the portfolio optimization

with VaR is
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min
x∈Rn

V aR(xTY ) = V aR(xTW−1S) (6.5)

s.t. xTω ≥ ω∗
n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

Following the procedures in Chapter 5, we can transform this problem into a mixed integer

linear programming problem:

min
x,tr,y,ηε

ηε

s.t r̃j =
n∑
i=1

xi
n∑
k=1

wiks
j
k, j = 1, . . . , N

n∑
i=1

xiωi ≥ ω∗,

r̃j +M(1− yj) ≥ −ηε, j = 1, . . . , N

N∑
j=1

pj(1− yj) ≤ 1− ε,

n∑
i=1

xi = 1,

yj ∈ {0, 1}, j = 1, . . . , N

xi ≥ 0, i = 1, . . . , n (6.6)

where sj = (sj1, s
j
2, . . . , s

j
n), j = 1, . . . , N is the N realizations of the independent components

S and W−1 = (wik), i, k = 1, 2, . . . , n. W and sj , j = 1, . . . , n, can be obtained from FastICA

and the parametric method. Therefore, problem (6.6) is a mixed integer linear programming

problem. We can use some optimization software (like Cplex, SAS-OR package) to solve it.

What we use here is SAS-OR package.

We can see that the only difference between (6.4), (6.6) and (4.6) in Chapter 4, (Problem

2) in Chapter 5 is that we replace Y with W−1S. Because that W is invertible and the models

are linear, if the we have the relation of realizations such that Y j = W−1Sj , j = 1, 2, . . . , N ,

the optimal solution with ICA must be the same as the optimal solution with copula.
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6.3 Numerical Results

We use the same observed rate of return data as in the Chapter 2. As discussed in section 6.1,

the original sources must be non-gaussian if we want to use ICA method. Let us first assume

they are non-gaussian and we will see what happened if we use ICA. If we use FastICA to

estimate the demixing matrix W , we will get

W =


0.1722 0.1584 −0.6838 0.1271 0.2207

−0.3295 0.0171 −0.0131 −0.1699 1.0255

0.3305 0.2070 0.0247 −0.7233 0.0114

1.5698 −0.0801 −0.0125 0.0448 −0.0216

0.3185 −1.3265 0.0230 −0.0079 0.3053


and

W−1 =


−0.0123 0.0263 0.0319 0.6443 −0.0353

−0.0363 0.2434 −0.0415 0.2211 −0.7749

−1.4974 0.4076 −0.3332 0.3703 −0.2481

−0.0678 0.1115 −1.3948 0.3747 −0.2471

−0.03376 1.0033 −0.2244 0.2702 −00425


Note that the sign of W does not matter. Furthermore, the statistics for the independent com-

ponent is given in Table 6.1. From Table 6.1, we can see that the kurtosis of the independent

Table 6.1: Statistics for 5 Independent Components

mean variance skewness kurtosis

IC1 -0.0062 1.0004 -0.3834 91.8114

IC2 0.0117 1.0004 1.2468 25.1899

IC3 -0.0260 1.0004 -1.2613 33.6423

IC4 -0.0066 1.0004 0.0442 10.0029

IC5 0.0040 1.0004 -0.1611 11.4081

components are all really big. Therefore, the independent components are all non-gaussian,

which is consistent with the assumption of ICA. We can use both GST and stable distribu-

tion to fit them. In addition, the correlation matrix of the five independent components is

5× 5 identical matrix. Although identical correlation matrix is not sufficient condition for in-

dependent, but actually, the independent components are statistically independent. The series

plots of independent components are given in Figure 6.2. From Figure 6.2, we can see that all
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the independent components have volatility clustering property. Therefore, we may also use

ARMA-GARCH model to fit the independent components and use this time series model to do

simulation.

Figure 6.2: Independent Components series

6.3.1 Optimization with CVaR by ICA

To solve the Optimization with CVaR, we use the model (6.4) to find the optimal CVaR and

allocations. We use the parametric method fitting independent components with both GST

and stable distributions and simulate the realizations using the parameters we obtain.

Static Model If we ignore the time dependence for now, we fit the whole data using the

distributions and simulate, solve (6.4) for two assets’ portfolio up to five assets’ portfolio as in

Chapter 4, the results are shown in Table 6.2 and in Table 6.3 for GST and stable distribution,

respectively, with the minimum return requirement to be ω∗ = 0.001.

Comparing the results in Chapter 4 Table 4.2 and Table 4.5, we can see that the optimal

CVaRs and allocations are not exactly the same, but the difference is small. This is because of
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Table 6.2: Optimal portfolio CVaR allocation with ε = 0.95 and minimum return requirement
ω∗ = 0.001 for GST distribution using ICA

opt-CVaR VaR Portfolio allocation
PGN IBM BAC F HD

2 assets 1.4238 0.9382 0.6627 0.3373

3 assets 1.3909 0.9286 0.6850 0.2283 0.0267

4 assets 1.3877 0.9106 0.6772 0.2636 0.0178 0.0414

5 assets 1.3557 0.9012 0.6257 0.2581 0.0019 0.0062 0.1081

Table 6.3: Optimal portfolio CVaR allocation with ε = 0.95 and minimum return requirement
ω∗ = 0.001 for stable distribution using ICA

opt-CVaR VaR Portfolio allocation
PGN IBM BAC F HD

2 assets 1.8836 0.9221 0.8489 0.1511

3 assets 1.8509 0.9213 0.7742 0.2247 0.0011

4 assets 1.8112 0.9263 0.7894 0.1728 0.0019 0.0259

5 assets 1.7595 0.9503 0.8884 0.0699 0.0000 0.0055 0.0362

the random simulation difference. On the other hand, from Table 6.2 and 6.3, we can still tell

that diversification does reduce the risk of the portfolio. If we take ω∗ from 0.001 to 0.0045 and

make the portfolio to be the five assets we choose, we will have efficient frontier shown in Figure

6.3 and Figure 6.4 for GST and stable distribution, respectively. From these two frontier, we

can see that as the minimum return requirement increase, the corresponding risk as CVaR also

increase.

Dynamic Model As we saw in Figure 6.2, the independent components show volatility

clustering properties, which means we can use time series ARMA-GARCH model. Here, we

use ARMA(0,0)-GARCH(1,1) model for the independent component and use the most recent 2

years’ data to estimate the parameters in the GARCH(1,1) model. With the parameters, we can

simulate the realizations of the independent components at each time and solve the portfolio

optimization problem (6.4) using those realizations. Since the independent components are

statistically independent, we can set up the GARCH(1,1) model separately and do not need

copula. The following Figure 6.5 and 6.6 shows the predicted daily optimal CVaRs with ICA

(red curve) for GST and stable distribution, compared with those with copula (blue curve)

at level .95. We can see that firstly, the daily optimal CVaRs with ICA is oscillating around
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Figure 6.3: Efficient frontier with CVaR0.95 for GST distribution using ICA
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Figure 6.4: Efficient frontier with CVaR0.95 for stable distribution using ICA
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those with copula, but the difference is small most of the time. The difference is the result of

the simulation error. As we said in section 6.2, if the simulated data with and without ICA

have the relationship Y j = W−1Sj , j = 1, 2, . . . , N , the optimal solution with ICA must be

the same as the optimal solution without ICA. However, in simulation, the realization with

two scenarios can not guarantee this relationship. Therefore, there may be some simulation

difference. Secondly, the pattern of the daily optimal CVaRs with ICA is almost the same

as the pattern with copula. That is when the optimal CVaRs with copula is increasing, the

corresponding optimal CVaRs with ICA is also increasing, vice verse. When the optimal CVaRs

with copula is bigger, the optimal CVaRs with ICA is also bigger at almost the same time, vice

verse. As we discussed in Chapter 4 that the pattern of optimal daily CVaRs with copula is

quite consistent with the real world market and the model we set up works well. Therefore, we

can conclude that the pattern of optimal daily CVaRs with ICA is also consistent with the real

world market and the model we set up works well.

Figure 6.5: Predicted daily optimal portfolio CVaR from Jan 1, 2008 to Aug 10, 2009 for GST
distribution with and without ICA at 0.95
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Figure 6.6: Predicted daily optimal portfolio CVaR from Jan 1, 2008 to Aug 10, 2009 for stable
distribution with and without ICA at 0.95

6.3.2 Optimization with VaR by ICA

To solve the Optimization with VaR, we use the model (6.6) to find the optimal VaR and al-

locations. We use the parametric method fitting independent components with both GST and

stable distributions and simulate the realizations using the parameters we obtain.

Static Model We ignore the time dependence first and fit the whole data using the distribu-

tions and simulate, solve (6.6) for two assets’ portfolio up to five assets’ portfolio as in Chapter

5. The results are shown in Table 6.4 and 6.5 for GST and stable distribution, respectively,

with the minimum return requirement to be ω∗ = 0.001.

Comparing the results in Chapter 5 Table 5.1 and Table 5.2, we can see that the optimal

VaRs and allocations are not exactly the same, but the difference is not so big. This is because

of the random simulation difference. On the other hand, from Table 6.2 and 6.3, we can still tell

that diversification does reduce the risk of the portfolio. If we take ω∗ from 0.001 to 0.0045 and

make the portfolio to be the five assets we choose, we will have efficient frontier shown in Figure

6.7 and Figure 6.8 for GST and stable distribution, respectively. From these two frontier, we

can see that as the minimum return requirement increase, the corresponding risk as CVaR also
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Table 6.4: Optimal portfolio VaR allocation with ε = 0.95 and minimum return requirement
ω∗ = 0.001 for GST distribution using ICA

VaR Portfolio allocation
PGN IBM BAC F HD

2 assets 0.8311 0.7838 0.2162

3 assets 0.7874 0.7207 0.2326 0.0267

4 assets 0.7728 0.7231 0.2212 0.0204 0.0253

5 assets 0.7728 0.6923 0.2167 0.0166 0.0100 0.0644

Table 6.5: Optimal portfolio VaR allocation with ε = 0.95 and minimum return requirement
ω∗ = 0.001 for stable distribution using ICA

VaR Portfolio allocation
PGN IBM BAC F HD

2 assets 0.8289 0.7745 0.2255

3 assets 0.8185 0.6899 0.2650 0.0451

4 assets 0.7757 0.7218 0.2460 0.0232 0.0250

5 assets 0.7668 0.7229 0.1844 0.0000 0.0167 0.076

increase, but the curve is not so smooth.

Dynamic Model We consider the time dependence of each independent component itself.

Here, we use ARMA(0,0)-GARCH(1,1) model for the independent component and use the

most recent 2 years’ data to estimate the parameters in the GARCH(1,1) model. With the

parameters, we can simulate the realizations of the independent components at each time and

solve the portfolio optimization problem (6.6) using those realizations. The following Figure

6.9 and 6.10 shows the predicted daily optimal VaRs with ICA (red curve) for GST and stable

distribution, compared with those with copula (blue curve) at level .95. We can see that firstly,

the daily optimal VaRs with ICA is oscillating around those with copula, but the difference is

small most of the time. That is because there may be some simulation difference. Secondly,

the pattern of the daily optimal VaRs with ICA is almost the same as the pattern with copula.

That is when the optimal VaRs with copula is increasing, the corresponding optimal VaRs with

ICA is also increasing, vice verse and when the optimal VaRs with copula is bigger, the optimal

VaRs with ICA is also bigger at almost the same time, vice verse. As we discussed in Chapter

5 that the pattern of optimal daily VaRs with copula is quite consistent with the real world

market and the model we set up works well. Therefore, we can conclude that the pattern of
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Figure 6.7: Efficient frontier with VaR0.95 for GST distribution using ICA
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Figure 6.8: Efficient frontier with VaR0.95 for stable distribution using ICA
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optimal daily VaRs with ICA is also consistent with the real world market and the model we

set up works well.

Figure 6.9: Predicted daily optimal portfolio VaR from Jan 1, 2008 to Aug 10, 2009 for GST
distribution with and without ICA at 0.95

6.3.3 Running Time for Simulations

As we discussed at the beginning of the chapter, the reason we introduce ICA method is

that we want to save the time of simulation by not using copula. The ICA can generate

independent components which are independent with each other. Therefore, we can save time

from simulating independent components, individually. After the realizations are generated, the

procedure to solve the model is the same. Therefore, ICA can only save the time of simulation.

In Table 6.6, we show the average time of simulation with two different method: copula method

and ICA method. We can see that the time of simulation for ICA method is dramatically
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Figure 6.10: Predicted daily optimal portfolio VaR from Jan 1, 2008 to Aug 10, 2009 for stable
distribution with and without ICA at 0.95
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shorter than the time for copula method.

Table 6.6: Average time ellipse for ICA and copula in seconds

time for ICA time for copula

GST 16.6443 31.8276

stable 21.7145 41.5858
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