
ABSTRACT

ABERNATHY, KRISTEN KOBYLUS. Existence of Solutions to Nonlinear Boundary
Value Problems at Resonance. (Under the direction of Jesús Rodŕıguez.)

The focus of this paper is the study of nonlinear dynamical time-systems subject to

general boundary conditions. We first consider nonlinear differential equations of the

form

y(n)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = f(y(t)) + (Gy)(t); 0 ≤ t ≤ 1

subject to the boundary conditions

b11y(0) + · · ·+ b1ny
(n−1)(0) + d11y(1) + · · ·+ d1ny

(n−1)(1) = 0

b21y(0) + · · ·+ b2ny
(n−1)(0) + d21y(1) + · · ·+ d2ny

(n−1)(1) = 0

...

bn1y(0) + · · ·+ bnny
(n−1)(0) + dn1y(1) + · · ·+ dnny

(n−1)(1) = 0.

We provide sufficiency conditions for existence of solutions based on the dimension of

the solution space of the corresponding linear, homogeneous boundary value problem,

the asymptotic behavior of the nonlinear real-valued function f, and the “size” of the

nonlinear function G.

Next we consider parameter dependent vector equations of the form

ẋi(t) = ai(t)xi(t) + fi(ϵ, t, x1(t), · · · , xn(t)), i = 1, 2, · · · , n,



subject to two-point boundary conditions

bixi(0) + dixi(1) = 0, i = 1, 2, · · · , n.

We present an argument for existence of solutions for the case when the corresponding

linear, homogeneous boundary value problem is at full resonance.

We conclude by analyzing discrete, nonlinear systems of the form

y(k + n) + · · ·+ a0(k)y(k) = f(y(k)) +
J∑

l=0

w(k, l)g(l, y(l), · · · , y(l + n− 1))

subject to the multipoint boundary conditions

n∑
j=1

bij(0)y(j − 1) +
n∑

j=1

bij(1)y(j) + · · ·+
n∑

j=1

bij(J)y(j + J − 1) = 0

for i = 1, 2, · · · , n. Again, we formulate sufficiency conditions based on the assumption

that the corresponding linear, homogeneous system has a nontrivial solution space. The

Lyapunov-Schmidt Procedure plays a crucial role in establishing existence of solutions

and we offer a self-contained presentation of the basic ideas of the Lyapunov-Schmidt

Procedure.
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Chapter 1

Introduction

This paper is devoted to the analysis of nonlinear boundary value problems for both

continuous and discrete dynamical systems. In Chapters 2 and 3, we study nonlinear

differential equations subject to two-point boundary conditions, while in Chapter 4 we

consider nonlinear discrete time-systems subject to nonlocal boundary conditions. In each

chapter, we will assume that the solution space to the corresponding linear, homogeneous

problem is nontrivial. We establish the existence of solutions using the Lyapunov-Schmidt

Procedure in conjunction with Brouwer’s and Schauder’s Fixed Point theorems.

In Chapter 2, we consider nonlinear differential equations of the form

y(n)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = f(y(t)) + (Gy)(t); 0 ≤ t ≤ 1

1



subject to the general boundary conditions

b11y(0) + · · ·+ b1ny
(n−1)(0) + d11y(1) + · · ·+ d1ny

(n−1)(1) = 0

b21y(0) + · · ·+ b2ny
(n−1)(0) + d21y(1) + · · ·+ d2ny

(n−1)(1) = 0

...

bn1y(0) + · · ·+ bnny
(n−1)(0) + dn1y(1) + · · ·+ dnny

(n−1)(1) = 0.

In this chapter, we assume that f : R → R is continuous and that the map G :

(C([0, 1],R), ∥ · ∥∞) → (C([0, 1],R), ∥ · ∥∞) is nonlinear and continuous. We formulate

sufficient conditions for the existence of solutions based on the dimension of the solution

space of the corresponding linear, homogeneous equation and the “size” of the nonlinear

terms.

The focus of Chapter 3 is the study of parameter dependent vector equations of the

form

ẋi(t) = ai(t)xi(t) + fi(ϵ, t, x1(t), · · · , xn(t)), i = 1, 2, · · · , n,

subject to two-point boundary conditions

bixi(0) + dixi(1) = 0, i = 1, 2, · · · , n.

We present the case where the solution space of the corresponding linear, homogeneous

vector equation is at full resonance. The asymptotic behavior of fi(0, t, x1(t), · · · , xn(t))

and the solution space of the linear, homogeneous boundary value problem play crucial

roles in establishing sufficient conditions.

Our goal in Chapter 4 is to provide sufficient conditions for the existence of solutions

2



to discrete, nonlinear systems of the form

y(k + n) + · · ·+ a0(k)y(k) = f(y(k)) +
J∑

l=0

w(k, l)g(l, y(l), · · · , y(l + n− 1))

subject to the multipoint boundary conditions

n∑
j=1

bij(0)y(j − 1) +
n∑

j=1

bij(1)y(j) + · · ·+
n∑

j=1

bij(J)y(j + J − 1) = 0

for i = 1, 2, · · · , n. The criteria we present depends on the size of the nonlinearities and

the set of solutions to the corresponding linear, homogeneous boundary value problems.

The results presented in this chapter extend the previous work of D. Etheridge and J.

Rodriguez [6], [7] and J. Rodriguez and P. Taylor [19], [20].

It should be noted that the results in each chapter are independent of other chapters.

It follows that each of the chapters is presented in a self-contained manner and it is not

necessary to read the chapters in any particular order.
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Chapter 2

Nonlinear Boundary Value Problems

in a Continuous Time-Setting

2.1 Introduction

In this chapter, we consider boundary value problems of the form

y(n)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = f(y(t)) + (Gy)(t); 0 ≤ t ≤ 1 (2.1)

subject to

b11y(0) + · · ·+ b1ny
(n−1)(0) + d11y(1) + · · ·+ d1ny

(n−1)(1) = 0

b21y(0) + · · ·+ b2ny
(n−1)(0) + d21y(1) + · · ·+ d2ny

(n−1)(1) = 0

...

bn1y(0) + · · ·+ bnny
(n−1)(0) + dn1y(1) + · · ·+ dnny

(n−1)(1) = 0.

(2.2)

We assume that f : R → R is continuous and that the limits f(∞) and f(−∞) exist.

4



The map G : (C([0, 1],R), ∥ · ∥∞) → (C([0, 1],R), ∥ · ∥∞) is nonlinear and continuous.

We concern ourselves with problems where the corresponding linear, homogeneous

boundary value problem

y(n)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = 0 (2.3)

subject to (2.2) has a one dimensional solution space. For such problems, we provide

sufficient conditions for the existence of solutions to (2.1)-(2.2). These conditions are

based on the limiting behavior of the real valued function f, the properties of the solution

space of the linear homogeneous boundary value problem (2.3)-(2.2), and the ”size” of

the nonlinear map G. It is significant to observe that the results we obtain may be applied

to boundary value problems for integro-differential equations of the form

y(n)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = f(y(t)) +

∫ 1

0

k(t, s)g(t, y(s))ds; 0 ≤ t ≤ 1

subject to (2.2) as well as to classical boundary value problems of the form

y(n)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = f(y(t)) + g(t, y(t)); 0 ≤ t ≤ 1

subject to (2.2).

Our approach is based on the Lyapunov-Schmidt Procedure (Alternative Method).

The results we present here allow us to establish the solvability of boundary value prob-

lems that do not fall within the scope of the results previously obtained by Rodŕıguez

and Taylor [21]. Ideas and techniques similar to the ones we use in this chapter have

been successfully applied to the study of periodic behavior in discrete and continuous

dynamical systems [3], [5], [6], [8], [10], [22] boundary value problems for differential and
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difference equations [1], [7], [12], [13], [15], [16], [18], [19], [20], [21], and more general

systems [2], [23].

2.2 Preliminaries

In order to analyze the boundary value problem (2.1)-(2.2), we formulate it in system

form.

The matrix A(t) is defined by

A(t) =



0 1 0 · · · 0

0 0 1 · · · 0

...
. . .

...

−an(t) −an−1(t) −an−2(t) · · · −a1(t)


.

The vector

x =


x1
...

xn


is given by x1 = y, x2 = y′, · · · , xn = y(n−1) and the boundary matrices B and D are

B =



b11 b12 b13 · · · b1n

b21 b22 b23 · · · b2n
...

. . .
...

bn1 bn2 bn3 · · · bnn


, D =



d11 d12 d13 · · · d1n

d21 d22 d23 · · · d2n
...

. . .
...

dn1 dn2 dn3 · · · dnn


.
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It is clear that the boundary value problem (2.1)-(2.2) is equivalent to

ẋ(t) = A(t)x(t) +



0

0

...

f(x1(t))


+



0

0

...

G(x1(t))


, 0 ≤ t ≤ 1 (2.4)

subject to

Bx(0) +Dx(1) = 0. (2.5)

Throughout the chapter we will assume that f : R → R is continuous and that it has

finite limits at ∞ and −∞. We write

f(∞) = lim
s→∞

f(s)

and

f(−∞) = lim
s→−∞

f(s).

For any integer p ≥ 1 the space (C([0, 1],Rp), ∥ · ∥∞) will denote {ϕ : [0, 1] → Rp :

ϕ is continuous}. The norm used on this space is the sup norm; this is, ∥ϕ∥∞ = sup{|ϕ(t)| :

0 ≤ t ≤ 1} where | · | denotes the Euclidean norm on Rp.

The map G : (C([0, 1],R), ∥ · ∥∞) → (C([0, 1],R), ∥ · ∥∞) is continuous and there exists

an M such that for any ϕ ∈ (C([0, 1],R), ∥ · ∥∞) sup{|G(ϕ(t))| : 0 ≤ t ≤ 1} ≤M <∞.

So as to be able to use functional analytic ideas we introduce the following notation.

The space X = {x ∈ (C([0, 1],Rn), ∥ · ∥∞) : Bx(0) + Dx(1) = 0}. F : X →

7



(C([0, 1],Rn), ∥ · ∥∞) is defined by (Fx)(t) =



0

0

...

f(x1(t))


and G : X → (C([0, 1],Rn), ∥ ·

∥∞) is given by (Gx)(t) =



0

0

...

G(x1(t))


. It is obvious that F and G are continu-

ous maps from X into (C([0, 1],Rn), ∥ · ∥∞) and that sup{∥F(x)∥∞ : x ∈ X} and

sup{∥G(x)∥∞ : x ∈ X} are both finite.

We define the operator L : D(L) → (C([0, 1],Rn), ∥ · ∥∞) by (Lx)(t) = ẋ(t)−A(t)x(t)

where D(L) consists of the continuously differentiable functions in X. It is evident that

the boundary value problem (2.1)-(2.2) is equivalent to

Lx = F(x) + G(x). (2.6)

Since the properties of the solution space of the linear homogeneous boundary value

problem (2.3)-(2.2) play a role in the solvability of (2.1)-(2.2), we must first consider the

linear problem

Lx = 0.

Proposition 2.2.1 Lx = 0 if and only if

x(t) = Γ(t)v

where Γ(t) is the principal matrix solution of ẋ(t) = A(t)x(t) and v ∈ ker(B +DΓ(1)).

8



Proof:

Lx = 0

if and only if

ẋ(t)− A(t)x(t) = 0 and Bx(0) +Dx(1) = 0

if and only if

x(t) = Γ(t)C for some C and BΓ(0)C +DΓ(1)C = 0

if and only if

[B +DΓ(1)]C = 0

if and only if

C ∈ ker(B +DΓ(1)).

Corollary 2.2.2 ker(B +DΓ(1)) and ker(L) have the same dimension.

It is well documented that solutions of

ẋ(t) = A(t)x(t) + h(t)

are given by the variation of constants formula

x(t) = Γ(t)x(0) + Γ(t)

∫ t

0

Γ−1(s)h(s)ds.

Proposition 2.2.3 Lx = h if and only if x is given by the variation of constants formula

9



above, where x(0) must satisfy

[B +DΓ(1)]x(0) = −DΓ(1)

∫ 1

0

Γ−1(s)h(s)ds.

Proof:

Lx = h

if and only if

x(t) = Γ(t)x(0) + Γ(t)

∫ t

0

Γ−1(s)h(s)ds

and

Bx(0) +Dx(1) = 0

if and only if

Bx(0) +D[Γ(1)x(0) + Γ(1)

∫ 1

0

Γ−1(s)h(s)ds] = 0

if and only if

[B +DΓ(1)]x(0) = −DΓ(1)

∫ 1

0

Γ−1(s)h(s)ds.

Corollary 2.2.4 L is a bijection on D(L) if and only if (B +DΓ(1)) is invertible.

2.3 The Case of Invertible L

It should be observed that if L is invertible and the nonlinearities f and G are

bounded, it is straightforward to establish the existence of solutions of (2.1)-(2.2). In

fact, (2.1)-(2.2) is solvable if and only if the operator L−1(F + G) has a fixed point. The

existence of such a fixed point is an immediate consequence of Schauder’s Theorem once

we observe that L−1(F + G) is compact.
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2.4 The Case of Singular L

Since the existence of solutions is relatively straightforward when L is invertible,

the more interesting case is when ker(L) or, equivalently, ker(B + DΓ(1)) is nontrival.

In this chapter, we consider the case when the dimension of ker(L) is one. For the

reader’s convenience, we offer a self-contained presentation of the basic ideas of the

Lyapunov-Schmidt reduction. These ideas have been applied to a large class of problems

in differential and difference equations [3], [6], [7], [8], [12], [13], [14], [15], [16], [18], [19],

[20], [21]. For an abstract formulation and for a vast number of applications, we refer

the reader to [4], [5], [9].

We know that Lx = 0 if and only if x(t) = Γ(t)v, where v ∈ ker(B+DΓ(1)).We now

wish to examine when Lx = h has a solution. According to Proposition 2.2.3, h ∈ Im(L)

if and only if there is some x0 ∈ Rn such that [B+DΓ(1)]x0 = −DΓ(1)
∫ 1

0
Γ−1(s)h(s)ds;

that is, if and only if
∫ 1

0
DΓ(1)Γ−1(s)h(s)ds ∈ Im(B +DΓ(1)). Since Im(B +DΓ(1)) =

[ker(B +DΓ(1))T ]⊥, h ∈ Im(L) if and only if W T
∫ 1

0
DΓ(1)Γ−1(s)h(s)ds = 0, where the

columns of the n by n matrix W form a basis for ker(B +DΓ(1))T .

We define

ΨT (t) = W TDΓ(1)Γ−1(t).

By the argument outlined above, Lx = h if and only if
∫ 1

0
ΨT (t)h(t)dt = 0.

Since L is not invertible, we can’t apply the Schauder Fixed Point Theorem directly.

We will use the splittings of X and (C([0, 1],Rn), ∥ · ∥∞) typically used in the Lyapunov-

Schmidt procedure.

We find projections, P, ofX onto ker(L), and E, of (C([0, 1],Rn), ∥·∥∞) onto Im(L), so

that we may writeX = ker(L)⊕Im(I−P ) and (C([0, 1],Rn), ∥·∥∞) = Im(L)⊕Im(I−E).

11



Let Φ(t) = Γ(t)V where the vector V forms a basis for ker(B +DΓ(1)). Let

C1 =

∫ 1

0

ΦT (t)Φ(t)dt

and

C2 =

∫ 1

0

ΨT (t)Ψ(t)dt.

Proposition 2.4.1 C1 is invertible and C2 is invertible when [B : D] has full rank.

Proof: To show C1 is invertible, assume C1a = 0 and define q(t) = Φ(t)a. Then aTC1a =∫ 1

0
qT (t)q(t)dt = 0 which implies q(t) = 0 for all t ∈ [0, 1]. This implies a = 0 because

Φ(t) is a nonzero vector.

To show C2 is invertible, we need to show the columns of ΨT (t) are linearly indepen-

dent. Let ΨT
j (t) be the jth column of ΨT (t). If [B : D] has full rank, a ∈ ker(BT ) and

a ∈ ker(DT ) implies a = 0. Now,

n∑
i=1

ciΨ
T
i (t) = 0

if and only if

(c1, c2, · · · , cn)W TD = 0

if and only if

W (c1, c2, · · · , cn)T ∈ ker(DT ).

Since W (c1, c2, · · · , cn)T ∈ ker[B + DΓ(1)]T , W (c1, c2, · · · , cn)T ∈ ker(BT ) and hence

W (c1, c2, · · · , cn)T = (0, 0, · · · , 0). It follows that since W forms a basis for ker(B +

DΓ(1))T , (c1, c2, · · · , cn)T = (0, 0, · · · , 0).
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Let

(I − E)x(t) = Ψ(t)C−1
2

∫ 1

0

ΨT (s)x(s)ds.

Let

Px(t) = Φ(t)C−1
1

∫ 1

0

ΦT (s)x(s)ds.

For the reader’s convenience, we have presented a detailed construction of the pro-

jections onto the ker(L) and Im(L). For the case of periodic boundary conditions, we

refer the reader to D.C. Lewis [9]; for discrete boundary value problems, we suggest

Rodŕıguez [14]. Although the projections we have constructed here are a special case of

those that appear in Spealman and Sweet [23] and Rodŕıguez and Taylor [21], we have

chosen present this construction due to the fact that we do not need to appeal to the full

generality of the results mentioned previously.

We now use the standard techniques of the Lyapunov-Schmidt method to analyze

Lx = F(x) + G(x).

Remark 2.4.2 If L̃ is the restriction of L to D(L) ∩ Im(I − P ) then Im(L̃) = Im(L).

L̃, viewed as a map from D(L) ∩ Im(I − P ) into Im(L) is invertible. We denote (L̃)−1

by M. From this, it follows that MLx = (I − P )x. Later, we will use the obvious fact

that M is compact.

Proposition 2.4.3 Lx = F(x) + G(x) is equivalent to


x = Px+MEF(x) +MEG(x)

and

(I − E)F(Px+ME(F(x) + G(x))) + (I − E)G(Px+ME(F(x) + G(x))) = 0.

13



Proof: We have Lx = F(x) + G(x) if and only if


E(Lx− (F(x) + G(x))) = 0

and

(I − E)(Lx− (F(x) + G(x))) = 0

if and only if 
Lx = E(F(x) + G(x))

and

(I − E)(F(x) + G(x)) = 0

if and only if 
(I − P )x =ME(F(x) + G(x))

and

(I − E)(F(x) + G(x)) = 0

if and only if


x = Px+ME(F(x) + G(x))

and

(I − E)(F(Px+ME(F(x) + G(x))) + G(Px+ME(F(x) + G(x)))) = 0.

We have limited our presentation of the Lyapunov-Schmidt Procedure to only those

aspects necessary for the problem at hand. This approach, as well as its generalization,

the Alternative Method, is well documented [2], [3], [4], [5], [9], [12], [13], [15], [18]. For

those interested in the study of periodicity, in either discrete or continuous dynamical

systems, we suggest [3], [5], [6], [8], [10], [22]. For applications in the field of discrete

boundary value problems, the reader may consult [7], [14], [16], [19], [20]. An abstract
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and very general presentation appears in [2], [5], [9].

2.5 Main Results

The conditions of 2.4.3 may be rewritten as



x = αΦ(t) +MEF(x) +MEG(x)

and

0 =
∫ 1

0
Ψn(t)f(αΦ1(t) + [ME(F(x) + G(x))]1(t))dt+

∫ 1

0
Ψn(t)G(αΦ1(t)

+[ME(F(x) + G(x))]1(t))dt

where Φi(t), Ψi(t), and [ME(F(x) + G(x))]i(t) are the ith entries of Φ(t), Ψ(t), and

αΦ(t) +ME(F(x) + G(x))(t), respectively.

We will assume that there are finite numbers, which we designate f(∞) and f(−∞),

such that

lim
r→∞

f(r) = f(∞)

and

lim
r→−∞

f(r) = f(−∞).

We define J1 and J2 as

J1 = f(∞)

∫
{t∈[0,1]:Φ1(t)>0}

Ψn(t)dt+ f(−∞)

∫
{t∈[0,1]:Φ1(t)<0}

Ψn(t)dt

and

J2 = f(−∞)

∫
{t∈[0,1]:Φ1(t)>0}

Ψn(t)dt+ f(∞)

∫
{t∈[0,1]:Φ1(t)<0}

Ψn(t)dt.

Theorem 2.5.1 Suppose that
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1. dim(ker(B + DΓ(1))) = 1 where Γ(t) is the principal matrix solution of ẋ(t) =

A(t)x(t);

2. [B : D] has full rank;

3. f : R → R is continuous;

4. f(∞) and f(−∞) exist;

5. J1J2 < 0;

6. G : (C([0, 1],R), ∥ · ∥∞) → (C([0, 1],R), ∥ · ∥∞) is continuous and

sup{∥G(w)∥∞ : w ∈ (C([0, 1],R), ∥ · ∥∞)} ≤ min{|J1|, |J2|}.

Then there exists at least one solution of

y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)y

′ + an(t)y = f(y(t)) + (Gy)(t)

that satisfies

b11y(0) + · · ·+ b1ny
(n−1)(0) + d11y(1) + · · ·+ d1ny

(n−1)(1) = 0

b21y(0) + · · ·+ b2ny
(n−1)(0) + d21y(1) + · · ·+ d2ny

(n−1)(1) = 0

...

bn1y(0) + · · ·+ bnny
(n−1)(0) + dn1y(1) + · · ·+ dnny

(n−1)(1) = 0.
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Proof: Let J = min{|J1|, |J2|}. We define mappings

H1 : R× (C([0, 1],Rn), ∥ · ∥∞) → (C([0, 1],Rn), ∥ · ∥∞)

H2 : R× (C([0, 1],Rn), ∥ · ∥∞) → R

H : R× (C([0, 1],Rn), ∥ · ∥∞) → R× (C([0, 1],Rn), ∥ · ∥∞)

by

H1(α, x) = αΦ(t) +MEF(x) +MEG(x),

H2(α, x) = α− (
∫ 1

0
Ψn(t)f(αΦ1 + [ME(F(x) + G(x))]1(t))dt+∫ 1

0
Ψn(t)G(αΦ1 + [ME(F(x) + G(x))]1(t))dt),

and

H(α, x) = (H1(α, x), H2(α, x)).

Since {t : Φ1(t) = 0} has Lebesgue measure zero, it follows that

∫ 1

0

Ψn(t)f(αΦ1(t) + [ME(F(x) + G(x))]1(t))dt =

∫
{t∈[0,1]:Φ1(t)>0}

Ψn(t)f(αΦ1 + [ME(F(x) + G(x))]1(t))dt+

∫
{t∈[0,1]:Φ1(t)<0}

Ψn(t)f(αΦ1 + [ME(F(x) + G(x))]1(t))dt.

Since ME(F + G) is bounded, by the Lebesgue Dominated Convergence Theorem,

lim
α→∞

∫ 1

0

Ψn(t)f(αΦ1(t) + [ME(F(x) + G(x))]1(t))dt =
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f(∞)

∫
{t∈[0,1]:Φ1(t)>0}

Ψn(t)dt+ f(−∞)

∫
{t∈[0,1]:Φ1(t)<0}

Ψn(t)dt = J1.

Similarly,

lim
α→−∞

∫ 1

0

Ψn(t)f(αΦ1(t) + [ME(F(x) + G(x))]1(t))dt =

f(−∞)

∫
{t∈[0,1]:Φ1(t)>0}

Ψn(t)dt+ f(∞)

∫
{t∈[0,1]:Φ1(t)<0}

Ψn(t)dt = J2.

Without loss of generality, we assume J2 < 0 < J1.

Assuming that Ψn(t) is not identically zero, we can choose our basis for ker(B +

DΓ(1))T so that ∥Ψ∥∞ ≤ 1. Therefore, there is some α0 ≥ m where m = sup{|f(t)| :

t ∈ R} such that for all α ≥ α0,
∫ 1

0
Ψn(t)f(αΦ1(t) + [ME(F(x) + G(x))]1(t))dt ≥ J

and
∫ 1

0
Ψn(t)f(−αΦ1(t)+ [ME(F(x)+G(x))]1(t))dt ≤ −J. Since |G(αΦ1+[ME(F(x)+

G(x))]1(t))| ≤ J for all t ∈ R, for α ≥ α0 and x ∈ (C([0, 1],Rn), ∥ · ∥∞), H2(α, x) = α −

(
∫ 1

0
Ψn(t)f(αΦ1+[ME(F(x)+G(x))]1(t))dt+

∫ 1

0
Ψn(t)G(αΦ1+[ME(F(x)+G(x))]1(t))dt)

≤ α− (J − J) = α. Similarly, for α ≥ α0 and x ∈ (C([0, 1],Rn), ∥ · ∥∞), H2(−α, x) ≥ −α.

Letting δ = α0 + (m + J), define B = {(α, x) ∈ R × (C([0, 1],Rn), ∥ · ∥∞) : |α| ≤

δ and ∥x∥∞ ≤ δ∥Φ∥∞ + ∥ME∥(m+ J)}. Here, ∥ME∥ denotes the operator norm of the

bounded, linear map ME.

Note that ∥MEF(x)∥∞ ≤ ∥ME∥m and ∥MEG(x)∥∞ ≤ ∥ME∥J for every x ∈

(C([0, 1],Rn), ∥ · ∥∞).
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Now if α ∈ [α0, δ], for all x ∈ (C([0, 1],Rn), ∥ · ∥∞), we have

H2(α, x) = α− (

∫ 1

0

Ψn(t)f(αΦ1(t) + [ME(F(x) + G(x))]1(t))dt+∫ 1

0

Ψn(t)G(αΦ1(t) + [ME(F(x) + G(x))]1(t))dt)

≥ α− (

∫ 1

0

|Ψn(t)||f(αΦ1(t) + [ME(F(x) + G(x))]1(t))|dt+∫ 1

0

|Ψn(t)||G(αΦ1(t) + [ME(F(x) + G(x))]1(t))|dt)

≥ α− (m+ J)

≥ α− α0 − J

≥ −J

≥ −δ

and

H2(−α, x) = −α− (

∫ 1

0

Ψn(t)f(αΦ1(t) + [ME(F(x) + G(x))]1(t))dt+∫ 1

0

Ψn(t)G(αΦ1(t) + [ME(F(x) + G(x))]1(t))dt)

≤ −α+

∫ 1

0

|Ψn(t)||f(αΦ1(t) + [ME(F(x) + G(x))]1(t))|dt+∫ 1

0

|Ψn(t)||G(αΦ1(t) + [ME(F(x) + G(x))]1(t))|dt)

≤ −α+ (m+ J)

≤ −α+ α0 + J

≤ J

≤ δ.
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Thus, for all x ∈ (C([0, 1],Rn), ∥ · ∥∞) and α ∈ [α0, δ], H2(α, x), H2(−α, x) ∈ [−α, α] ⊆

[−δ, δ].

Furthermore, if 0 ≤ α < α0, for all x ∈ (C([0, 1],Rn), ∥ · ∥∞),

|H2(±α, x)| ≤ | ± α|+
∫ 1

0

|Ψn(t)||f(αΦ1(t) + [ME(F(x) + G(x))]1(t))|dt+∫ 1

0

|Ψn(t)||G(αΦ1(t) + [ME(F(x) + G(x))]1(t))|dt

≤ α0 + (m+ J)

≤ δ.

We have shown that H2 maps [−δ, δ] × (C([0, 1],Rn), ∥ · ∥∞) into [−δ, δ] when Ψn(t) is

not identically zero. However, if Ψn(t) is identically zero, H2(α, x) = α and so H2 will

map [−δ, δ]× (C([0, 1],Rn), ∥ · ∥∞) into [−δ, δ]. From this it follows that H(B) ⊆ B. For

if (α, x) ∈ B, then H2(α, x) ∈ [−δ, δ], while

∥H1(α, x)∥∞ ≤ |α|∥Φ∥∞ + ∥ME(F(x) + G(x))∥∞

≤ δ∥Φ∥∞ + ∥ME∥m+ ∥ME∥J.

Since M is compact and E, F , and G are continuous and map bounded sets to bounded

sets, H is completely continuous. So, the completely continuous function H maps the

non-empty, closed, bounded, convex set B into itself. Hence, the Schauder Fixed Point

Theorem guarantees existence of at least one fixed point, x̃, of H in B. For each such x̃,

ỹ = x̃1 is a solution of

y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)y

′ + an(t)y = f(y(t)) + (Gy)(t)
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which satisfies

b11y(0) + · · ·+ b1ny
(n−1)(0) + d11y(1) + · · ·+ d1ny

(n−1)(1) = 0

b21y(0) + · · ·+ b2ny
(n−1)(0) + d21y(1) + · · ·+ d2ny

(n−1)(1) = 0

...

bn1y(0) + · · ·+ bnny
(n−1)(0) + dn1y(1) + · · ·+ dnny

(n−1)(1) = 0.

2.6 Final Remarks

In the case of a classical boundary value problem of the form

y(n)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = f(y(t)) + g(t, y(t))

subject to (2.2), we can ensure solvability whenever sup{|g(u, v)| : (u, v) ∈ R2} ≤

min{|J1|, |J2|}. Similarly, in the case of a integro-differential boundary value problem

of the form

y(n)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = f(y(t)) +

∫ 1

0

g(t, y(s))ds

subject to (2.2), we obtain the existence of solutions if sup{|g(u, v)| : (u, v) ∈ R2} ≤

min{|J1|, |J2|}.
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Chapter 3

Boundary Value Problems at Full

Resonance

3.1 Introduction

In this chapter, we establish criteria for the existence of solutions to the parameter

dependent vector equation

ẋi(t) = ai(t)xi(t) + fi(ϵ, t, x1(t), · · · , xn(t)), i = 1, 2, · · · , n, (3.1)

subject to the boundary conditions

bixi(0) + dixi(1) = 0, i = 1, 2, · · · , n. (3.2)

We focus on the case where the solution space of the corresponding linear, homoge-
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neous vector equation

ẋi(t)− ai(t)xi(t) = 0, i = 1, 2, · · · , n, (3.3)

subject to boundary conditions (3.2) is n-dimensional. We will provide sufficient condi-

tions for existence of solutions to (3.1), (3.2). The asymptotic behavior of

fi(0, t, x1(t), · · · , xn(t)) and the solution space of the linear, homogeneous boundary value

problem (3.3), (3.2) will play crucial roles in establishing sufficient conditions.

Our technique used to establish existence of solutions to (3.1), (3.2) relies on the

Lyapunov-Schmidt Procedure. Ideas and techniques similar to the ones used in this

chapter were successfully applied to the study of discrete and continuous dynamical

systems [2], [3], [5], [6], [7], [8], [10], [12], [13], [15], [16], [17], [18], [19], [20], [21], [22],

[23].

3.2 Preliminaries

Before we establish solvability criteria for (3.1),(3.2), we will first analyze the linear,

homogeneous boundary value problem (3.3), (3.2). It is easily verified that solutions to

(3.3), (3.2) are of the form

ϕ(t) = Φ(t)v
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where v ∈ Rn and Φ(t) is the matrix

Φ(t) =



e
∫ t
0 a1(s)ds 0 0 · · · 0

0 e
∫ t
0 a2(s)ds 0 · · · 0

...
. . .

...

0 0 0 · · · e
∫ t
0 an(s)ds


.

Note that solutions to the nonhomogeneous equation

ẋi(t) = ai(t)xi(t) + hi(t), i = 1, 2, · · · , n (3.4)

have the form

xi(t) =

∫ t

0

e−
∫ s
0 ai(r)drhi(s)ds.

Thus, the boundary value problem (3.4), (3.2) is solvable when

di

∫ 1

0

e−
∫ s
0 ai(r)drhi(s)ds = 0

for each i = 1, 2, · · · , n.

We now wish to analyze the solvability of (3.1), (3.2). In order to do this, we will

introduce notation that allows us to proceed using functional analysis tools.

We define L : D(L) → C([0, 1],Rn, ∥ · ∥∞) by

Lx = ẋ− Ax

where

D(L) = C1([0, 1],Rn, ∥ · ∥∞) ∩X
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and

X = {x ∈ C([0, 1],Rn, ∥ · ∥∞) | Bx(0) +Dx(1) = 0}.

Here, we use the notation

x =



x1

x2
...

xn


, A =



a1 0 0 · · · 0

0 a2 0 · · · 0

...
. . .

...

0 0 0 · · · an


,

B =



b1 0 0 · · · 0

0 b2 0 · · · 0

...
. . .

...

0 0 0 · · · bn


, and D =



d1 0 0 · · · 0

0 d2 0 · · · 0

...
. . .

...

0 0 0 · · · dn


.

The space C([0, 1],Rn, ∥ · ∥∞) will denote {ϕ : [0, 1] → Rn : ϕ is continuous} and

C1([0, 1],Rn, ∥ · ∥∞) will denote {ϕ : [0, 1] → Rn : ϕ is continuously differentiable}. The

norm used on these spaces is the sup norm; that is, ∥ϕ∥∞ = sup{|ϕ(t)| : 0 ≤ t ≤ 1}

where | · | denotes the Euclidean norm on Rn.

We let F : R× R× C([0, 1],Rn, ∥ · ∥∞) → C([0, 1],Rn, ∥ · ∥∞) be given by

F (ϵ, x)(t) =



f1(ϵ, t, x(t))

f2(ϵ, t, x(t))

...

fn(ϵ, t, x(t))


.

For simplicity, we will write F (0, x)(t) = F (x)(t). We assume fi for i = 1, · · · , n is
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continuous and sup{|fi(0, u)| : u ∈ Rn+1} ≤ m for some m ∈ R. Hence, F is continuous

and, for all x ∈ X, ∥F (x)∥∞ ≤ m.

With this notation, the problem (3.1),(3.2) is equivalent to Lx = F (ϵ, x). We first

consider the particular case when ϵ = 0. This is equivalent to the operator equation

Lx = Fx.

The fact that L is not invertible makes it impossible to establish the solvability of Lx =

Fx by a direct use of the Schauder Fixed Point Theorem. Instead, we will analyze this

operator equation with a projection scheme usually referred to as the Lyapunov-Schmidt

Procedure. For the reader’s convenience, we provide all the necessary background. We

will exploit the structure of the linear system, discussed above, in the construction of

the projections. For an abstract formulation of the methods used below and for a vast

number of applications of these methods, we refer the interested reader to [4],[5],[9].

For h =



h1

h2
...

hn

,


if follows that Lx = h if and only if di

∫ 1

0
e−

∫ s
0 ai(r)drhi(s)ds = 0 for

each i = 1, 2, · · · , n.We see that this simplifies to Lx = h if and only if
∫ 1

0
Φ−1(t)h(t)dt =

0.

The projections we define below are familiar to the Lyapunov-Schmidt Procedure.

We will now provide a self-contained presentation of the Lyapunov-Schmidt Procedure

for the reader’s convenience.

By direct computation, we can verify that the maps P : X → X defined by

Pxi(t) =
e
∫ t
0 ai(s)ds∫ 1

0
e2

∫ t
0 ai(s)dsdt

∫ 1

0

e
∫ s
0 ai(l)dlxi(s)ds
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and E : C([0, 1],Rn, ∥ · ∥∞) → C([0, 1],Rn, ∥ · ∥∞) defined by

Exi(t) = xi(t)−
e−

∫ t
0 ai(s)ds∫ 1

0
e−2

∫ t
0 ai(s)dsdt

∫ 1

0

e−
∫ s
0 ai(l)dlxi(s)ds

are projections and Im(P ) = ker(L) and Im(E) = Im(L). This allows us to write

X = ker(L)⊕ Im(I − P ) and C([0, 1],Rn, ∥ · ∥∞) = Im(L)⊕ Im(I − E).

Remark 3.2.1 If L̃ is the restriction of L to D(L) ∩ Im(I − P ) then Im(L̃) = Im(L).

L̃, viewed as a map from D(L) ∩ Im(I − P ) into Im(L) is invertible. We denote (L̃)−1

by M and note that MLx = (I − P )x. Later, we will use the fact that M is compact.

Proposition 3.2.2 Lx = F (x) is equivalent to


x = Px+MEF (x)

and

(I − E)F (Px+MEF (x)) = 0

Proof: Using the fact that E is a projection, we have Lx = Fx if and only if


E(Lx− Fx) = 0

and

(I − E)(Lx− Fx) = 0.

Since (I − E)L = 0 and EL = L, this is equivalent to


Lx = EF (x)

and

(I − E)F (x) = 0.

27



Applying M to the first equation, we obtain


(I − P )x =MEF (x)

and

(I − E)F (x) = 0.

From this, we conclude that Lx = F (x) is equivalent to


x = Px+MEF (x)

and

(I − E)F (Px+MEF (x)) = 0.

3.3 Main Results

According to Proposition 3.2.2, Lx = Fx if and only if



x = β1Φ1(t) + · · ·+ βnΦn(t) +MEF (x)

0 =
∫ 1

0
(Φ1(t))

−1f1(0, t, β1Φ1(t) + · · ·+ βnΦn(t) +MEF (x)(t))dt

...

0 =
∫ 1

0
(Φn(t))

−1fn(0, t, β1Φ1(t) + · · ·+ βnΦn(t) +MEF (x)(t))dt)

(3.5)

where Φi(t) = e
∫ t
0 ai(s)ds.

Lemma 3.3.1 Suppose that

i. bi + die
∫ 1
0 ai(s)ds = 0 for all i = 1, 2, · · · , n;

ii. fi : Rn+2 → R is continuous for all i = 1, · · · , n;
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iii. For each i = 1, · · · , n, there exists γi ∈ R such that

fi(0, t, β1, · · · , βi, · · · , βn)fi(0, t, β1, · · · ,−βi, · · · , βn) < 0 whenever βi ≥ γi.

Then (3.5) has a solution.

Proof: Assume, without loss of generality, that for βi ≥ γi,

(Φi(t))
−1fi(0, t, β1, · · · , βi, · · · , βn) > 0. We define mappings

H1 : C([0, 1],Rn, ∥ · ∥∞)× Rn → C([0, 1],Rn, ∥ · ∥∞)

Hi+1 : C([0, 1],Rn, ∥ · ∥∞)× Rn → R, for i = 1, · · · , n,

by

H1(x, β1, · · · , βn) = β1Φ1(t) + · · ·+ βnΦn(t) +MEF (x),

Hi+1(x, β1, · · · , βn) = βi −
∫ 1

0
(Φ1(t))

−1fi(0, t, β1Φ1(t) + · · ·+ βnΦn(t) +MEF (x)(t))dt,

and

H(x, β1, · · · , βn) = (H1(x, β1, · · · , βn), · · · , Hn+1(x, β1, · · · , βn)).

If βi is sufficiently large, we have

Φi(t)
−1fi(0, t, β1Φ1(t) + · · ·+ βiΦi(t) + · · ·+ βnΦn(t) +MEF (x)(t)) > 0

and

Φi(t)
−1fi(0, t, β1Φ1(t) + · · · − βiΦi(t) + · · ·+ βnΦn(t) +MEF (x)(t)) < 0
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for all t ∈ [0, 1] and every x ∈ C([0, 1],Rn, ∥ · ∥∞). Therefore there is some αi ≥

m∥(Φi)
−1∥∞ such that for all βi ≥ αi, x ∈ C([0, 1],Rn, ∥ · ∥∞),

Hi+1(x, β1, · · · , βi, · · · , βn) < βi

and

Hi+1(x, β1, · · · ,−βi, · · · , βn) > −βi.

Letting δ = max{αi + m∥(Φi)
−1∥∞}, define B = {(x, β1, · · · , βn) ∈ C([0, 1],Rn, ∥ ·

∥∞) × Rn : ∥x∥∞ ≤ δ(∥Φ1∥∞ + · · · + ∥Φn∥∞) + |∥ME∥|m, |βi| ≤ δ for i = 1, · · · , n}.

Here, |∥ME∥| denotes the operator norm of the bounded, linear map ME. Since M is

compact, we will show that the completely continuous function H maps the non-empty,

closed, bounded, convex set B into itself. Then the Schauder Fixed Point Theorem will

guarantee the existence of a fixed point, (x, β1, · · · , βn), of H in B. This fixed point is a

solution of (3.5).

Note that ∥MEF (x)∥∞ ≤ |∥ME∥|m for every x ∈ C([0, 1],Rn, ∥ · ∥∞).

Now if βi ∈ [αi, δ], for all x ∈ C([0, 1],Rn, ∥ · ∥∞), we have

Hi+1(x, β1, · · · , βi, · · · , βn)

= βi −
∫ 1

0
(Φi(t))

−1fi(0, t, β1Φ1(t) + · · ·+ βiΦi(t) + · · ·+ βnΦn(t) +MEF (x)(t))dt

≥ βi −
∫ 1

0
|(Φi(t))

−1||fi(0, t, β1Φ1(t) + · · ·+ βiΦi(t) + · · ·+ βnΦn(t) +MEF (x)(t))|dt

≥ βi − ∥(Φi)
−1∥∞m

≥ βi − αi

≥ 0
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and

Hi+1(x, β1, · · · ,−βi, · · · , βn)

= −βi −
∫ 1

0
(Φi(t))

−1fi(0, t, β1Φ1(t) + · · · − βiΦi(t) + · · ·+ βnΦn(t) +MEF (x)(t))dt

≤ −βi +
∫ 1

0
|(Φi(t))

−1||fi(0, t, β1Φ1(t) + · · · − βiΦi(t) + · · ·+ βnΦn(t) +MEF (x)(t))|dt

≤ −βi + ∥(Φi)
−1∥∞m

≤ −βi + αi

≤ 0.

Thus, for all x ∈ C([0, 1],Rn, ∥ · ∥∞) and βi ∈ [αi, δ], Hi+1(x, β1, · · · , βi, · · · , βn),

Hi+1(x, β1, · · · ,−βi, · · · , βn) ∈ [−βi, βi] ⊆ [−δ, δ] for i = 1, · · · , n.

Furthermore, if 0 ≤ βi < αi, for all x ∈ C([0, 1],Rn, ∥ · ∥∞),

|Hi+1(x, β1, · · · ,±βi, · · · , βn)|

≤ | ± βi|+
∫ 1

0
|(Φi(t))

−1||fi(0, t, β1Φ1(t) + · · · ± βiΦi(t) + · · ·+ βnΦn(t) +MEF (x)(t))dt|

≤ αi + ∥(Φi)
−1∥∞m

≤ δ

for i = 1, · · · , n.

We have shown that Hi+1 maps C([0, 1],Rn, ∥ · ∥∞)× [−δ, δ]× Rn−1 into [−δ, δ].

From this it follows thatH(B) ⊆ B. For if (x, β1, · · · , βn) ∈ B, thenHi+1(x, β1, · · · , βn) ∈

[−δ, δ] for i = 1, · · · , n, while

∥H1(x, β1, · · · , βn)∥∞

≤ |β1|∥Φ1∥∞ + · · ·+ |βn|∥Φn∥∞ + ∥MEF (x)∥∞

≤ δ(∥Φ1∥∞ + · · ·+ ∥Φn∥∞) + |∥ME∥|m.
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We now establish existence of solutions of (3.1), (3.2) for values of ϵ different from

zero. It is significant to observe that the nonlinearities fi(ϵ, t, x1(t), · · · , xn(t)) are allowed

to be unbounded.

Theorem 3.3.2 Suppose that

i. bi + die
∫ 1
0 ai(s)ds = 0 for all i = 1, 2, · · · , n;

ii. fi : Rn+2 → R is continuous for all i = 1, · · · , n;

iii. For each i = 1, · · · , n, there exists γi ∈ R such that

fi(0, t, β1, · · · , βi, · · · , βn)fi(0, t, β1, · · · ,−βi, · · · , βn) < 0 whenever βi ≥ γi.

Then, there exists an ϵ0 such that for ϵ ∈ [0, ϵ0], there is at least one solution of

ẋi(t) = ai(t)xi(t) + fi(ϵ, t, x1(t), · · · , xn(t)), i = 1, 2, · · · , n,

that satisfies

bixi(0) + dixi(1) = 0, i = 1, 2, · · · , n.

Proof: As above, we define mappings

H1 : R× C([0, 1],Rn, ∥ · ∥∞)× Rn → C([0, 1],Rn, ∥ · ∥∞)

Hi+1 : R× C([0, 1],Rn, ∥ · ∥∞)× Rn → R

H : R× C([0, 1],Rn, ∥ · ∥∞)× Rn → C([0, 1],Rn, ∥ · ∥∞)× Rn

by

H1(ϵ, x, β1, · · · , βn) = β1Φ1 + · · ·+ βnΦn +MEF (ϵ, x),

Hi+1(ϵ, x, β1, · · · , βn) = βi −
∫ 1

0
Φi(t)

−1fi(ϵ, t, β1Φ1(t) + · · ·+ βnΦn(t) +MEF (ϵ, x)(t)),
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and

H(ϵ, x, β1, · · · , βn) = (H1(ϵ, x, β1, · · · , βn), · · · , Hn+1(ϵ, x, β1, · · · , βn)).

By the proof of Lemma 3.3.1, redefining αi ≥ ∥(Φi)
−1∥∞(m + K) and δ = max{αi +

∥Φ−1
i ∥∞(m+K) : i = 1, · · · , n} for some fixed real number K, we can create a nonempty,

convex set B = {(x, β1, · · · , βn) ∈ C([0, 1],Rn, ∥ · ∥∞) × Rn : ∥x∥∞ ≤ δ(∥Φ1∥∞ + · · · +

∥Φn∥∞) + |∥ME∥|(m + K) and |βi| ≤ δ for i = 1, · · · , n} such that, when ϵ = 0, the

following hold true:

1. for all βi ≥ αi ≥ ∥(Φi)
−1∥∞(m + K), Hi+1(0, x, β1, · · · , βi, · · · , βn) ≤ βi − K and

Hi+1(0, x, β1, · · · ,−βi, · · · , βn) ≥ −βi +K;

2. for βi ∈ [αi, δ], Hi+1(0, x, β1, · · · , βi, · · · , βn) ≥ −K and

Hi+1(0, x, β1, · · · ,−βi, · · · , βn) ≤ K;

3. for 0 ≤ βi < αi, |Hi+1(0, x, β1, · · · ,±βi, · · · , βn)| ≤ δ +K; and

4. ∥H1(0, x, β1, · · · , βn)∥∞ ≤ δ(∥Φ1∥∞ + · · ·+ ∥Φn∥∞) + |∥ME∥|(m+K).

It is evident that

inf
(x,β1,··· ,βn)∈B

dist(H(0, x, β1, · · · , βn), ∂B) > 0;

that is, when ϵ = 0, there is a positive distance between the boundary of the set B

and the set of H(0, x, β1, · · · , βn) for (x, β1, · · · , βn) ∈ B. Since {β1Φ1 + · · · + βnΦn +

MEF (x)|(β1, · · · , βn, x) ∈ B} is equicontinuous and uniformly bounded, it is compact

by Arzela-Ascoli’s Theorem. This implies that if we choose a positive value, ϵ̃, so that

we restrict ϵ to the interval [0, ϵ̃], the map (ϵ, β1, · · · , βn, x) 7→ H(ϵ, β1, · · · , βn, x) is
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uniformly continuous on B. From this it follows that there exists ϵ0 such that if |ϵ| ≤ ϵ0,

H(ϵ, β1, · · · , βn, x) ∈ B

for all (β1, · · · , βn, x) ∈ B. The solvability of the parameter dependent vector equation

ẋi(t) = ai(t)xi(t) + fi(ϵ, t, x1(t), · · · , xn(t)), i = 1, 2, · · · , n,

that satisfies

bixi(0) + dixi(1) = 0, i = 1, 2, · · · , n,

is now a consequence of Schauder’s Fixed Point Theorem.
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Chapter 4

Discrete Nonlinear Multipoint

Boundary Value Problems

4.1 Introduction

In this chapter we study nonlinear discrete systems of the form

y(k + n) + · · ·+ a0(k)y(k) = f(y(k)) +
J∑

l=0

w(k, l)g(l, y(l), · · · , y(l + n− 1)) (4.1)

subject to the multipoint boundary conditions

n∑
j=1

bij(0)y(j − 1) +
n∑

j=1

bij(1)y(j) + · · ·+
n∑

j=1

bij(J)y(j + J − 1) = 0 (4.2)

for i = 1, 2, · · · , n. It will be assumed that the maps f and g are continuous, f : R →

R and g : Rn+1 → R. The function w is real valued and defined for each (k, l) in
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{0, 1, · · · , J} × {0, 1, · · · , J}. Notice that when

w(k, l) =

 1 if k = l

0 if k ̸= l
,

(4.1) becomes the classical difference equation

y(k + n) + · · ·+ a0(k)y(k) = f(y(k)) + g(k, y(k), · · · , y(k + n− 1)).

Our attention will be focused on the case where the corresponding linear, homoge-

neous difference equation

y(k + n) + an−1(k)y(k + (n− 1)) + · · ·+ a0(k)y(k) = 0 (4.3)

subject to the boundary conditions (4.2) has a one-dimensional solution space. We

establish existence of solutions to (4.1),(4.2) using the Brouwer Fixed Point Theorem in

conjunction with the Lyapunov-Schmidt Procedure. Our results depend on the limiting

behavior of the function f, the solution space of the boundary value problem (4.3),(4.2),

and on the size of the nonlinear function g.

Approaches similar to the one presented in this chapter have been successfully used

in the analysis of nonlinear boundary value problems for both differential and difference

equations. For readers interested in the study of periodicity in discrete or continuous

dynamical systems, we suggest [3], [5], [6], [8], [10], [22]. Those interested in nonlocal

boundary value problems may consult [7], [12], [13], [15], [16], [18], [19], [20], [21]. Ab-

stract general formulations and applications to strongly nonlinear equations appear in

[2], [23].
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4.2 Preliminaries

In order to study the solvability of (4.1),(4.2), we rewrite this boundary value problem

(4.3),(4.2) in system form. The n× n matrix A(k) is defined by

A(k) =



0 1 0 · · · 0

0 0 1 · · · 0

...

−a0(k) −a1(k) −a2(k) · · · −an−1(k)


and we assume a0(k) ̸= 0 for all k. The n × n boundary matrices B0, B1, · · · , BJ are

given by

Bl = [bij(l)]

for l ∈ {0, 1, · · · , J}. The vector valued function x is given by

x(k) =



x1(k)

x2(k)

...

xn(k)


where x1(k) = y(k), x2(k) = y(k + 1), · · · , xn(k) = y(k + n− 1).

We define

Z = {h : {0, 1, 2, ..., J − 1} → Rn}

and

X = {x : {0, 1, 2, ..., J} → Rn : B0x(0) +B1x(1) + · · ·+BJx(J) = 0}.
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In each of these spaces we will use the supremum norm; that is, for x ∈ X, ∥x∥ =

sup{|x(k)| : k = 0, 1, · · · , J} and for h ∈ Z, ∥h∥ = sup{|h(k)| : k = 0, 1, 2, ..., J − 1},

where | · | denotes the Euclidean norm on Rn.

The operators L, F, and G are maps from X into Z and are given by

L(x)(k) = x(k + 1)− A(k)x(k),

F (x)(k) =



0

0

...

f(x1(k))


,

and

G(x)(k) =



0

0

...∑J
l=0w(k, l)g(l, x1(l), · · · , xn−1(l))


.

It is evident that the boundary value problem (4.1), (4.2) is equivalent to

Lx = F (x) +G(x). (4.4)

We first consider the linear problem

x(k + 1) = A(k)x(k) + h(k) (4.5)

subject to

B0x(0) +B1x(1) + · · ·+BJx(J) = 0 (4.6)
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where we assume that for each nonnegative integer k, a0(k) ̸= 0 and that both x(k) and

h(k) belong to Rn.

In order to avoid redundancy in the statement of the boundary conditions, we suppose

throughout the chapter that the n× n(J + 1) augmented matrix

[B0 : B1 : · · · : BJ ]

has rank n. It should be noted that the rank of the augmented matrix [B0 : B1 : · · · : BJ ]

is n if and only if
∩J

l=0 ker(B
T
l ) = {0}.

Using the variation of constants formula, we can write solutions of

x(k + 1) = A(k)x(k) + h(k)

as

x(k) = Γ(k)x(0) + Γ(k)
k−1∑
l=0

Γ−1(l + 1)h(l),

where Γ(k) is the fundamental matrix solution of the homogeneous system x(k + 1) =

A(k)x(k); that is, Γ(k) = A(k − 1)A(k − 2) · · ·A(0) for k = 1, 2, ... and Γ(0) = Inxn.

Consequently, x solves the boundary value problem (4.5),(4.6) if and only if

x(k) = Γ(k)x(0) + Γ(k)
k−1∑
l=0

Γ−1(l + 1)h(l) (4.7)

where

[B0 +B1Γ(1) + · · ·+BJΓ(J)]x(0) = −[B1Γ(1)Γ
−1(1)h(0) + · · ·

+BJΓ(J)
J−1∑
l=0

Γ−1(l + 1)h(l)].
(4.8)
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This establishes the fact that (4.1),(4.2) is solvable when B1Γ(1)Γ
−1(1)h(0) + · · ·

+ BJΓ(J)
∑J−1

l=0 Γ−1(l + 1)h(l) ∈ Im(B0 + B1Γ(1) + · · · + BJΓ(J)). It follows that if

B0 + B1Γ(1) + · · · + BJΓ(J) is invertible, then L is a bijection from X onto Z and the

formula for L−1 is given by

L−1(h)(k) = Γ(k)(B0 +B1Γ(1) + · · ·+BJΓ(J))
−1(−(B1Γ(1)Γ

−1(1)h(0) + · · ·

+BJΓ(J)
J−1∑
l=0

Γ−1(l)h(l))) + Γ(k)
k−1∑
l=0

Γ−1(l)h(l).

We will concern ourselves with the case when L is not invertible. We refer the reader

to Rodriguez and Taylor [20] for results in the case when L is invertible.

4.3 The Case of Singular L

We now wish to consider the case when the kernel of L is one-dimensional. Since

L is not invertible, we can not apply Brouwer’s Fixed Point Theorem directly. The

ideas presented in this section are standard with the Lyanpuov-Schmidt Procedure and

are included for the reader’s convenience. The projections we construct have previously

appeared in the setting of discrete boundary value problems [19], [20]. Similar projections

have also been used in differential and difference equations [2], [5], [6], [7], [11], [13], [14],

[15], [16], [17], [21]. The techniques that appear below have been applied to a large

number of problems in differential and difference equations [3], [12], [18]. For an abstract

formulation of the Lyapunov-Schmidt Procedure and a discussion of applications, we

refer the interested reader to [4], [5], [9].

Proposition 4.3.1 ker(L) and ker(B0 +B1Γ(1)+ · · ·+BJΓ(J)) have the same dimen-

sion.
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Proof: Lx = 0 if and only if x(k) = Γ(k)v for some v ∈ ker[(B0+B1Γ(1)+· · ·+BJΓ(J))].

4.3.1 Projection onto ker(L)

Let ϕ(k) = Γ(k)v where the vector v spans ker(B0 +B1Γ(1) + · · ·+BJΓ(J)). Let

C1 =
J∑

l=0

|ϕ(l)|2.

Clearly, C1 ̸= 0.

The proof of the following proposition appears in Rodriguez and Taylor [20].

Proposition 4.3.2 If we define P : X → X by

Px(k) = ϕ(k)C−1
1

J∑
l=0

ϕT (l)x(l),

then P is a projection onto ker(L).

4.3.2 Projection onto Im(L)

Before we define our projection, we first need to define components that are vital to

the construction of a projection onto the image of L. We define ψ : {0, 1, · · · , J−1} → Rn

by

ψ(k) =
J∑

l=k+1

[Blϕ(l)ϕ
−1(k + 1)]Tw

where w spans ker((B0+B1Γ(1)+ · · ·+BJΓ(J))
T ). In order to simplify future estimates,

we choose w such that sup{|ψ(k)| : k = 0, 1, · · · , J − 1} ≤ 1
J(J+1)

.

The proof of the following proposition appears in Rodriguez and Taylor [20].

Proposition 4.3.3 Lx = h if and only if
∑J−1

l=0 ψ
T (l)h(l) = 0.
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With the above notation, we define

C2 =
J−1∑
l=0

|ψ(l)|2.

Note that, according to a lemma in Rodriguez and Taylor [20], since
∩J

l=0 ker(B
T
l ) = {0},

ψ is not the zero map.

We now have the tools we need to define a projection onto the image of L.

Proposition 4.3.4 If we define E : Z → Z by

Ex(k) = x(k)− ψ(k)C−1
2

J−1∑
l=0

ψT (l)x(l),

then E is a projection onto Im(L).

The proofs showing that P is a projection onto the kernel of L and E is a projection

onto the image of L can be found in Rodriguez and Taylor [20].

With the projections described above, we may now write X = ker(L) ⊕ Im(I − P )

and Z = Im(L)⊕ Im(I −E). Note that L : Im(I −P ) → Im(L) is a bijection and thus

there exists a bounded and linear map M : Im(L) → Im(I − P ) such that

1. LMh = h for all h ∈ Im(L);

2. MLx = (I − P )x for all x ∈ X.

We now analyze Lx = F (x) +G(x) using the Lyapunov-Schmidt Procedure.
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Proposition 4.3.5 Lx = F (x) +G(x) is equivalent to


x = Px+MEF (x) +MEG(x)

and

(I − E)F (Px+ME(F (x) +G(x))) + (I − E)G(Px+ME(F (x) +G(x))) = 0.

Proof: Clearly Lx = F (x) +G(x) if and only if


E(Lx− (F (x) +G(x))) = 0

and

(I − E)(Lx− (F (x) +G(x))) = 0.

Since E is a projection onto the Im(L), the above set of equations is equivalent to


Lx = E(F (x) +G(x))

and

(I − E)(F (x) +G(x)) = 0.

Using the fact that MLx = (I − P )x, we conclude that Lx = F (x) +G(x) if and only if


x = Px+ME(F (x) +G(x))

and

(I − E)(F (Px+ME(F (x) +G(x))) +G(Px+ME(F (x) +G(x)))) = 0.
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4.4 Main Results

Using Proposition 4.3.5 it is evident that Lx = F (x) +G(x) is equivalent to



x = αϕ+MEF (x) +MEG(x)

and

0 =
∑J−1

k=0 ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k))+

∑J−1
k=0 ψn(k)(

∑J
l=0w(k, l)g(l, αϕ1(l) + [ME(F (x) +G(x))](l)))

where ϕi(k), ψi(k), and [ME(F (x) + G(x))]i(k) are the ith entries of ϕ(k), ψ(k), and

ME(F (x) +G(x))(k), respectively.

Throughout our discussion, we will assume that

lim
r→∞

f(r)

and

lim
r→−∞

f(r)

both exist. We will denote them as follows

lim
r→∞

f(r) = f(∞)

and

lim
r→−∞

f(r) = f(−∞).
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We introduce the notation:

O1 = {k ∈ {0, 1, ..., J} : ϕ1(k) > 0},

O2 = {k ∈ {0, 1, ..., J} : ϕ1(k) = 0},

O3 = {k ∈ {0, 1, ..., J} : ϕ1(k) < 0}.

The number of elements in the set O2 will be denoted by γ and we define d = mγ, where

m = sup{|f(t)| : t ∈ R}.

The constants K1 and K2 will be given by

K1 = f(∞)
∑
O1

ψn(k) + f(−∞)
∑
O3

ψn(k),

K2 = f(−∞)
∑
O1

ψn(k) + f(∞)
∑
O3

ψn(k).

In our next two results, it is of fundamental importance that K1K2 < 0 and d ≤

min{|K1|, |K2|}. For the reader’s convenience and the sake of simplicity, we will assume

thatK2+d < 0 < K1−d. The modifications needed for the case whereK1+d < 0 < K2−d

are straightforward.

Lemma 4.4.1 Suppose f and g are continuous maps and f(∞) and f(−∞) exist. If

K2 + d < 0 < K1 − d and |w(k, l)g(s))| < min{|K2 + d|, |K1 − d|} for all (k, l) ∈

{0, 1, · · · , J} × {0, 1, · · · , J} and s ∈ Rn+1, then there exists a real number α0 such that

for all α ≥ α0,

J−1∑
k=0

ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k)) +
J−1∑
k=0

ψn(k)(
J∑

l=0

w(k, l)g(l, αϕ1(l)+
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[ME(F (x) +G(x))](l))) ≥ 0

and

J−1∑
k=0

ψn(k)f(−αϕ1(k) + [ME(F (x) +G(x))]1(k)) +
J−1∑
k=0

ψn(k)(
J∑

l=0

w(k, l)g(l,−αϕ1(l)+

[ME(F (x) +G(x))](l))) ≤ 0.

Proof: Recall that we have chosen our basis for ker(B +DΓ(J)) so that ∥ψ∥ ≤ 1
J(J+1)

.

Note that
J−1∑
k=0

ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k)) =

∑
O1

ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k))+

∑
O2

ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k))+

∑
O3

ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k)).

Since ME(F +G) is bounded,

lim
α→∞

J−1∑
k=0

ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k)) =

f(∞)
∑
O1

ψn(k) +
∑
O2

ψn(k)f([ME(F (x) +G(x))]1(k))

+f(−∞)
∑
O3

ψn(k) ≥ K1 − d.

Similarly,

lim
α→−∞

J−1∑
k=0

ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k)) =
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f(−∞)
∑
O1

ψn(k) +
∑
O2

ψn(k)f([ME(F (x) +G(x))]1(k))

+f(∞)
∑
O3

ψn(k) ≤ K2 + d.

Define K = sup{|w(k, l)g(s)|} for all (k, l) ∈ {0, 1, · · · , J} × {0, 1, · · · , J} and s ∈

Rn+1. Since K2 + d < 0 < K1 − d, there is some α0 such that for all α ≥ α0,∑J−1
k=0 ψn(k)f(αϕ1(k) + [ME(F (x) + G(x))]1(k)) ≥ K and

∑J−1
k=0 ψn(k)f(−αϕ1(k) +

[ME(F (x)+G(x))]1(k)) ≤ −K. Since |w(k, l)g(l, αϕ1(l)+ [ME(F (x)+G(x))]1(l))| ≤ K

for all (k, l) ∈ {0, 1, 2, ...} × {0, 1, 2, ...}, for α ≥ α0 and x ∈ X,
∑J−1

k=0 ψn(k)f(αϕ1(k) +

[ME(F (x)+G(x))]1(k))+
∑J−1

k=0 ψn(k)(
∑J

l=0w(k, l)g(l, αϕ1(l)+[ME(F (x)+G(x))]1(l)))

≥ (K −K) = 0. Similarly, for α ≥ α0 and x ∈ X,
∑J−1

k=0 ψn(k)f(−αϕ1(k) + [ME(F (x) +

G(x))]1(k)) +∑J−1
k=0 ψn(k)(

∑J
l=0 w(k, l)g(l, αϕ1(l) + [ME(F (x) +G(x))]1(l))) ≤ (−K +K) = 0.

We will now use this lemma to prove the following theorem:

Theorem 4.4.2 Suppose that

1. dim(ker(B0 +B1Γ(1) + · · ·+BJΓ(J))) = 1;

2. f : R → R is continuous and f(∞) and f(−∞) exist;

3. K2 + d < 0 < K1 − d;

4. g : Rn+1 → R is continuous, w is real valued and defined for each (k, l) in

{0, 1, · · · , J} × {0, 1, · · · , J}, and |w(k, l)g(s)| < min{|K2 + d|, |K1 − d|} for all

s ∈ Rn+1.
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Then there exists at least one solution of

y(k+n)+ · · ·+a1(k)y(k+1)+a0(k)y(k) = f(y(k))+
J∑

l=0

w(k, l)g(l, y(l), · · · , y(l+n−1))

that satisfies

n∑
j=1

bij(0)y(j − 1) +
n∑

j=1

bij(1)y(j) + · · ·+
n∑

j=1

bij(J)y(j + J − 1) = 0.

Proof: We define mappings

H1 : R×X → X

H2 : R×X → R

H : R×X → R×X

by

H1(α, x) = αϕ+MEF (x) +MEG(x),

H2(α, x) = α− (
∑J−1

k=0 ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k))+∑J−1
k=0 ψn(k)(

∑J
l=0w(k, l)g(l, αϕ1(l) + [ME(F (x) +G(x))]1(l))),

and

H(α, x) = (H1(α, x), H2(α, x)).

As in the proof of Lemma 4.4.1, we define K = sup{|w(k, l)g(s)|} for all (k, l) ∈

{0, 1, · · · , J} × {0, 1, · · · , J} and s ∈ Rn+1. Then, by Lemma 4.4.1, there exists α0 ≥ m

where m = sup{|f(t)| : t ∈ R} such that for all α ≥ α0, H2(α, x) ≤ α and H2(−α, x) ≥

−α.

Letting δ = α0 + (m + K), define B = {(α, x) ∈ R × X : |α| ≤ δ and ∥x∥ ≤

δ∥ϕ∥+∥|ME∥|(m+K)}. Here, we denote by ∥|ME∥| the norm on the space of bounded
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linear functions.

Note that ∥MEF (x)∥ ≤ ∥|ME∥|m and ∥MEG(x)∥ ≤ ∥|ME∥|K for every x ∈ X.

For the next step in the proof, recall that ∥ψ∥ ≤ 1
J(J+1)

. Now if α ∈ [α0, δ], for all

x ∈ X, we have

H2(α, x) = α− (
J−1∑
k=0

ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k))+

J−1∑
k=0

ψn(k)(
J∑

l=0

w(k, l)g(l, αϕ1(l) + [ME(F (x) +G(x))]1(l))))

≥ α− (
J−1∑
k=0

|ψn(k)||f(αϕ1(k) + [ME(F (x) +G(x))]1(k))|+

J−1∑
k=0

|ψn(k)|(
J∑

l=0

|w(k, l)||g(l, αϕ1(l) + [ME(F (x) +G(x))]1(l))|))

≥ α− (m+K)

≥ α− α0 −K

≥ −K

≥ −δ
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and

H2(−α, x) = −α− (
J−1∑
k=0

ψn(k)f(αϕ1(k) + [ME(F (x) +G(x))]1(k))+

J−1∑
k=0

ψn(k)(
J∑

l=0

w(k, l)g(l, αϕ1(l) + [ME(F (x) +G(x))]1(l))))

≤ −α+
J−1∑
k=0

|ψn(k)||f(αϕ1(k) + [ME(F (x) +G(x))]1(k))|+

J−1∑
k=0

|ψn(k)|(
J∑

l=0

|w(k, l)||g(l, αϕ1(l) + [ME(F (x) +G(x))]1(l))|)

≤ −α+ (m+K)

≤ −α+ α0 +K

≤ K

≤ δ.

Thus, for all x ∈ X and α ∈ [α0, δ], H2(α, x), H2(−α, x) ∈ [−α, α] ⊆ [−δ, δ].

Furthermore, if 0 ≤ α < α0, for all x ∈ X,

|H2(±α, x)| ≤ | ± α|+
J−1∑
k=0

|ψn(k)||f(αϕ1(k) + [ME(F (x) +G(x))]1(k))|+

J−1∑
k=0

|ψn(k)|

(
J∑

l=0

|w(k, l)||g(l, αϕ1(l) + [ME(F (x) +G(x))]1(l))|

)

≤ α0 + (m+K)

≤ δ.

We have shown that H2 maps [−δ, δ]×X into [−δ, δ]. From this it follows that H(B) ⊆ B.
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For if (α, x) ∈ B, then H2(α, x) ∈ [−δ, δ], while

∥H1(α, x)∥ ≤ |α|∥ϕ∥+ ∥ME(F (x) +G(x))∥

≤ δ∥ϕ∥+ ∥|ME∥|m+ ∥ME∥K.

Hence, the continuous function H maps the non-empty, closed, bounded, convex set B

into itself. Therefore, the Brouwer Fixed Point Theorem guarantees existence of at least

one fixed point, x̃, of H in B. For each such x̃, ỹ = x̃1 is a solution of

y(k+n)+ · · ·+a1(k)y(k+1)+a0(k)y(k) = f(y(k))+
J∑

l=0

w(k, l)g(l, y(l), · · · , y(l+n−1))

which satisfies

n∑
j=1

bij(0)y(j − 1) +
n∑

j=1

bij(1)y(j) + · · ·+
n∑

j=1

bij(J)y(j + J − 1) = 0.

4.5 Unbounded Perturbation

In this section, we consider the case where the perturbation of f is allowed to be

unbounded, but controlled by a small parameter ϵ. More precisely, we consider dynamic

equations of the form

y(k + n) + · · ·+ a0(k)y(k) = f(y(k)) + ϵ

J∑
l=0

w(k, l)g(l, y(l), · · · , y(l + n− 1))

subject to boundary conditions

n∑
j=1

bij(0)y(j − 1) +
n∑

j=1

bij(1)y(j) + · · ·+
n∑

j=1

bij(J)y(j + J − 1) = 0.
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Theorem 4.5.1 Suppose that

1. dim(ker(B0 +B1Γ(1) + · · ·+BJΓ(J))) = 1;

2. f : R → R is continuous and f(∞) and f(−∞) exist;

3. K2 + d < 0 < K1 − d;

4. g : Rn+1 → R is continuous and w is real valued and defined for each (k, l) ∈

{0, 1, · · · , J} × {0, 1, · · · , J}.

Then, there exists an ϵ0 such that for ϵ ∈ [0, ϵ0], there exists at least one solution of

y(k+n)+· · ·+a1(k)y(k+1)+a0(k)y(k) = f(y(k))+ϵ
J∑

l=0

w(k, l)g(l, y(l), · · · , y(l+n−1))

that satisfies

n∑
j=1

bij(0)y(j − 1) +
n∑

j=1

bij(1)y(j) + · · ·+
n∑

j=1

bij(J)y(j + J − 1) = 0.

Proof: Let G : R×X → Z be defined by

G(ϵ, x)(k) =


0

...

ϵ
∑J

l=0w(k, l)g(l, x1(l), · · · , xn−1(l))

 .

As above, we define mappings

H1 : R× R×X → X

H2 : R× R×X → R

H : R× R×X → R×X
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by

H1(ϵ, α, x) = αϕ+MEF (x) +MEG(ϵ, x),

H2(ϵ, α, x) = α− (
∑J−1

k=0 ψn(k)f(αϕ1(k) + [ME(F (x) +G(ϵ, x))]1(k))+

ϵ
∑J−1

k=0 ψn(k)(
∑J

l=0w(k, l)g(l, αϕ1(l) + [ME(F (x) +G(x))]1(l)))),

and

H(ϵ, α, x) = (H1(ϵ, α, x), H2(ϵ, α, x)).

We choose a value K > 0 so that K < min{|K2 + d|, |K1 − d|}. By the proof of Theorem

4.4.2, again defining α0 and δ = α0 + (m + K) as above, we can create a nonempty,

convex set B = {(α, x) ∈ R×X : |α| ≤ δ and ∥x∥ ≤ δ∥ϕ∥+ ∥|ME∥|(m+K)} such that,

when ϵ = 0, the following hold true:

1. for all α ≥ α0 ≥ m, H2(0, α, x) ≤ α−K and H2(0,−α, x) ≥ −α+K;

2. for α ∈ [α0, δ], H2(0, α, x) ≥ 0 and H2(0,−α, x) ≤ 0;

3. for 0 ≤ α < α0, |H2(0,±α, x)| ≤ δ +K; and

4. ∥H1(0, α, x)∥ ≤ δ∥ϕ∥+ ∥|ME∥|m.

It is evident that

inf
(α,x)∈B

dist(H(0, α, x), ∂B) > 0;

that is, when ϵ = 0, there is a positive distance between the boundary of the set B and

the set of H(0, α, x) for (α, x) ∈ B. Since X,Z are finite dimensional, it is obvious that

B is compact. Therefore, if we choose a positive value, ϵ̃, so that we restrict ϵ to the
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interval [0, ϵ̃], the map (ϵ, α, x) 7→ H(ϵ, α, x) is uniformly continuous on B. From this it

follows that there exists ϵ0 such that if |ϵ| ≤ ϵ0,

H(ϵ, α, x) ∈ B

for all (α, x) ∈ B. The solvability of the difference equation

y(k+n)+· · ·+a1(k)y(k+1)+a0(k)y(k) = f(y(k))+ϵ
J∑

l=0

w(k, l)g(l, y(l), · · · , y(l+n−1))

that satisfies

n∑
j=1

bij(0)y(j − 1) +
n∑

j=1

bij(1)y(j) + · · ·+
n∑

j=1

bij(J)y(j + J − 1) = 0

is now a consequence of Brouwer’s Fixed Point Theorem.

4.6 Example

The example, which we now consider, is a generalization of the example found in

Rodriguez and Taylor [20]. The theory which we have developed in this chapter allows

us to consider more general nonlinearities in the dynamic equation. We consider the

difference equation

y(k + 2) + 3y(k + 1) + 2y(k) = f(y(k)) +
J∑

l=0

w(k, l)g(l, y(l), y(l + 1)) (4.9)
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subject to boundary conditions

y(0) + (2− 2
3−J
2 )y

(
J − 1

2

)
+ (1− 2

3−J
2 )y

(
J + 1

2

)
= 0,

y(J) + y(J + 1) = 0,

(4.10)

where J and J−1
2

are odd integers and J is larger than 1.

In system form, (4.9),(4.10) becomes

x(k + 1) = A(k)x(k) + F (x(k)) +G(x(k))

B0x(0) +BJ−1
2
x

(
J − 1

2

)
+BJx(J) = 0

(4.11)

where x1(k) = y(k), x2(k) = y(k + 1),

A(k) =

 0 1

−2 −3

 for all k,

B0 =

 1 0

0 0

 , BJ−1
2

=

 2− 2
3−J
2 1− 2

3−J
2

0 0

 , BJ =

 0 0

−1 −1

 ,

F (x(k)) =

 0

f(x1(k))

 , and G(x(k)) =
 0∑J

l=0w(k, l)g(l, x(l))

 .
Since A(k) is constant, Γ(k) = Ak for k = 0, 1, 2, · · · , J. The linear structure of this

problem is the same as that in Rodriguez and Taylor [20]. Here, we utilize the calculations
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that appear in this previous paper. Since J is odd,

Γ(J) = AJ =

 2J − 2 2J − 1

2− 2J+1 1− 2J+1


and

B0 +BJ−1
2
A

J−1
2 +BJA

J =

 1 1

2J 2J

 ,
which gives

ker(B0 +BJ−1
2
A

J−1
2 +BJA

J) = span


 1

−1


 .

From this, we conclude that

ϕ(k) = Ak

 1

−1

 =

 (−1)k

(−1)k+1


for k = 0, 1, 2, · · · , J. It follows thatO1 = {k ∈ {0, 1, ..., J} : ϕ1(k) > 0} = {0, 2, 4, · · · , J−

1}, O2 = {k ∈ {0, 1, ..., J} : ϕ1(k) = 0} = ∅, and O3 = {k ∈ {0, 1, ..., J} : ϕ1(k) < 0} =

{1, 3, 5, · · · , J}.

It is easy to verify that
∩J

i=0 ker(B
T
i ) = {0}. In [20], we see that

ker((B0 +BJ−1
2
A

J−1
2 +BJA

J)T ) = span


 2J

−1


 .
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This gives

ψ(k) =



 (−1)k+12J(2− 2−(k+1))

(−1)k+12J(1− 2−(k+1))

 for k = 0, 1, · · · , J−3
2
,

 (−1)k+12J−(k+1)

(−1)k+12J−(k+1)

 for k = J−1
2
, · · · , J − 1.

,

K1 = −f(∞)

(
2J−2(J + 1) +

(
−2J+1 + 2

J+3
2 − 1

3

))
+

f(−∞)

(
2J−2(J − 3) +

(
2

J+3
2 − 2J − 2

3

))
,

and

K2 = −f(−∞)

(
2J−2(J + 1) +

(
−2J+1 + 2

J+3
2 − 1

3

))
+

f(∞)

(
2J−2(J − 3) +

(
2

J+3
2 − 2J − 2

3

))
.

It can easily be shown that if J ≥ 5 and f(∞) < 19
6
f(−∞), we are guaranteed that

K2 < 0 < K1. Then, according to Theorem 4.4.2, if |w(k, l)g(s)| < min{|K2|, |K1|} for

all s ∈ R3, (4.9),(4.10) will have a solution. A simple example would be the case where:

f(k) =


30
π
tan−1(k) for k ≥ 0,

−100
π

tan−1(k) for k < 0.

It can be verified that for J ≥ 5, K2 ≤ −4300
3

and K1 ≥ 25. From this, it follows that the

boundary value problem (4.9),(4.10) will have a solution whenever |w(k, l)g(s)| < 25 for

all (k, l) ∈ {0, 1, 2, ..., J} × {0, 1, 2, ..., J} and s ∈ R3.
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