
ABSTRACT

ABERNATHY, ZACHARY JOHN. Nonlinear Dynamic Equations subject to Global and
Periodic Boundary Conditions. (Under the direction of Jesús Rodŕıguez.)

In this manuscript, we study nonlinear dynamic equations subject to global and pe-

riodic boundary conditions. We first analyze nonlinear difference equations of the form

∆(p(t− 1)∆x(t− 1)) + q(t)x(t) + ψ(x(t)) = G(x(t))

subject to the global boundary conditions


αx(a) + β∆x(a) + η1(x) = ϕ1(x)

γx(b+ 1) + δ∆x(b+ 1) + η2(x) = ϕ2(x).

By using properties of the nonlinearities which occur in both the dynamic equation and

in the boundary conditions, we are able to provide sufficient conditions for the existence

of solutions.

We then study nonlinear differential equations of the form

(p(t)x′(t))′ + q(t)x(t) + ψ(x(t)) = G(x(t))

subject to 
αx(0) + βx′(0) + η1(x) = ϕ1(x)

γx(1) + δx′(1) + η2(x) = ϕ2(x).



Again, we establish sufficient conditions for the solvability of these equations by analyzing

the relationship between the nonlinearities and a related linear Sturm-Liouville problem.

We conclude by finding periodic solutions to a system of nonlinear difference equations

of the form

∆x(t) = f(ϵ, t, x(t)).

The solution space of the corresponding linear homogeneous equation is n-dimensional,

and accordingly we use a projection scheme and fixed point argument to establish the

existence of solutions.
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Chapter 1

Introduction

This paper is devoted to the study of various general classes of discrete and continuous

nonlinear boundary value problems. In Chapters 2 and 3, we consider nonlinear Sturm-

Liouville problems subject to global nonlinear boundary conditions. We use the Global

Inverse Function Theorem together with either Brouwer’s or Schauder’s fixed point the-

orem to provide sufficient conditions for the existence of solutions. In Chapter 4, we

establish the existence of periodic solutions to a system of nonlinear difference equations

using the Lyapunov-Schmidt procedure along with Brouwer’s fixed point theorem.

We begin in Chapter 2 by studying nonlinear difference equations of the form

∆(p(t− 1)∆x(t− 1)) + q(t)x(t) + ψ(x(t)) = G(x(t))

subject to the global boundary conditions


αx(a) + β∆x(a) + η1(x) = ϕ1(x)

γx(b+ 1) + δ∆x(b+ 1) + η2(x) = ϕ2(x).
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We provide sufficient conditions for the existence of solutions based on properties of the

nonlinearities and the eigenvalues of an associated linear Sturm-Liouville problem.

In Chapter 3, we consider a continuous analog of the problem in Chapter 2. Namely,

we study the nonlinear differential equation

(p(t)x′(t))′ + q(t)x(t) + ψ(x(t)) = G(x(t))

subject to general non-local boundary conditions of the form


αx(0) + βx′(0) + η1(x) = ϕ1(x)

γx(1) + δx′(1) + η2(x) = ϕ2(x).

We are again able to establish sufficient conditions for the existence of solutions using

properties of the nonlinearities and their relationship with the eigenvalues of an associated

linear Sturm-Liouville problem. However, due to the continuous nature of the problem,

our function spaces become infinite-dimensional and the resulting analysis is much more

delicate.

The purpose of Chapter 4 is to search for periodic solutions to a system of nonlinear

difference equations of the form

∆x(t) = f(ϵ, t, x(t)).

The corresponding linear homogeneous system has an n-dimensional kernel, i.e. the

system is at full resonance. We provide sufficient conditions for the existence of periodic

solutions based on asymptotic properties of the nonlinearity f when ϵ = 0. By allowing
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for higher-dimensional solution spaces of the associated linear problem as well as for more

general asymptotic behavior of the nonlinear function f , our results complement previous

work in the study of periodic discrete dynamical systems.

As evidenced above, the reader should note that a similar approach is used in Chapters

2 and 3, with Chapter 4 using a distinct methodology. However, each chapter is self-

contained and may be fully understood without any prerequisite knowledge of the other

chapters.
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Chapter 2

Nonlinear Discrete Sturm-Liouville

Problems with Global Boundary

Conditions

2.1 Introduction

We study the existence of solutions of the discrete boundary value problem

∆(p(t− 1)∆x(t− 1)) + q(t)x(t) + ψ(x(t)) = G(x(t)) (2.1)

subject to the global boundary conditions


αx(a) + β∆x(a) + η1(x) = ϕ1(x)

γx(b+ 1) + δ∆x(b+ 1) + η2(x) = ϕ2(x).

(2.2)
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Throughout our discussion, X will denote the set of real-valued functions defined on

the integers [a, b + 2] and Y will denote the set of real-valued functions defined on the

integers [a+ 1, b+ 1]. We shall assume G, ϕ1, and ϕ2 are continuous, where G : X → Y ,

ϕ1 : X → R, and ϕ2 : X → R. The functions η1 and η2 are continuously Fréchet

differentiable from X into R. We also assume ψ : R → R is continuously differentiable,

p(t) is defined and positive on [a, b+1], q(t) is defined on [a+1, b+1], and the boundary

conditions (2.2) are such that α2+β2 ̸= 0, γ2+δ2 ̸= 0, α ̸= β, γ ̸= δ. In order to study the

boundary value problem (2.1)-(2.2), we will first need to consider the related boundary

value problem

∆(p(t− 1)∆x(t− 1)) + q(t)x(t) + ψ(x(t)) = h(t) (2.3)

subject to


αx(a) + β∆x(a) + η1(x) = v1

γx(b+ 1) + δ∆x(b+ 1) + η2(x) = v2

(2.4)

where h(t) is defined on [a+1, b+1] and v1, v2 ∈ R. With a non-resonance type assumption

on ψ, together with bounds on the Fréchet derivatives of η1, η2, we will use the Global

Inverse Function Theorem to show the existence of a unique solution to (2.3)-(2.4). If,

in addition, G, ϕ1, and ϕ2 satisfy appropriate growth hypotheses, we will use the above-

mentioned result in conjunction with the Brouwer Fixed Point Theorem to obtain the

existence of at least one solution to (2.1)-(2.2).

The results presented in this chapter complement previous work in the field of non-

linear boundary value problems. Readers interested in differential equations subject to
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global constraints may consult [3, 7, 22, 25, 28, 31]. Discrete systems subject to a variety

of boundary conditions appear in [1, 10, 23, 24, 26, 29, 30]. Related references in the study

of periodic behavior for discrete dynamical systems are [9, 11].

We shall rewrite the boundary value problem (2.1)-(2.2) as an operator equation of

the form

Lx−Ψx = Gx.

The study of equations of this form has been frequent in the literature, where L is a linear

differential expression, Ψ is a continuously Fréchet differentiable operator, and G is an

operator with bounded range. Indeed, Dolph [8] studied analagous Hammerstein integral

equations, while the case when L is an ordinary differential operator has been studied

extensively in papers such as Leach [19], Lazer and Leach [17], Lazer and Sanchez [18],

and Brown [4]. Brown and Lin [5] were able to allow for the case when G was unbounded

but was subject to a sub-linear growth requirement. Landesman and Lazer [16] considered

the case when L is a self adjoint partial differential operator.

Our formulation of the operator equation Lx − Ψx = Gx incorporates both the

dynamics and the boundary conditions. The non-local boundary conditions (2.2) and

(2.4) are significantly more general than those that have previously appeared in the

above-mentioned analogous results for differential equations.

2.2 Preliminaries

Let N = b− a + 1, let X be the set of real-valued functions x defined on [a, b + 2], and

let Y be the set of real-valued functions y defined on [a+ 1, b+ 1].
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X and Y are finite-dimensional Hilbert spaces with respect to the discrete inner product

< x1, x2 >=
∑
t

x1(t)x2(t),

where the sum is taken over all integer t values in the above intervals of definition. We

shall use the inner product norm

∥x∥ =
√
< x, x >

on each set. When we compute the norm of a bounded operator, we will use the operator

norm and denote it ∥| · ∥|. We will also use | · | to denote the Euclidean norm on Rn for

any positive integer n. Finally, we shall use the norm ∥

 h

v

 ∥ = max{∥h∥, |v|} on the

set Y × R2.

We define A : X → Y and B : X → R2 by

Ax(t) = ∆(p(t− 1)∆x(t− 1)) + q(t)x(t) for t ∈ [a+ 1, b+ 1],

B(x) =

 αx(a) + β∆x(a)

γx(b+ 1) + δ∆x(b+ 1)

 ,
and we let L : X → Y × R2 be given by

L(x) =

 A(x)

B(x)

 .
We define Ψ : X → Y × R2 by
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Ψ(x) =

 −ω(x)

−η(x)

 ,
where ω : X → Y is given by ω(x)(t) = ψ(x(t)) for t ∈ [a+ 1, b+ 1], and ψ ∈ C1(R,R).

The map η : X → R2 is given by η(x) =

 η1(x)

η2(x)

, where η1 and η2 are continuously

Fréchet differentiable from X → R.

Let G : X → Y × R2 be given by

G(x) =

 G(x)

ϕ(x)

 ,

where G is a continuous function from X → Y and ϕ(x) =

 ϕ1(x)

ϕ2(x)

, where ϕ1 and ϕ2

are continuous functions from X → R.

Note that the problem (2.1)-(2.2) is equivalent to solving

Lx−Ψ(x) = Gx

and the problem (2.3)-(2.4) is equivalent to solving

Lx−Ψ(x) =

 h

v

 ,
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where h ∈ Y, v =

 v1

v2

 ∈ R2.

We shall first consider the related linear Sturm-Liouville problem

∆(p(t− 1)∆x(t− 1)) + q(t)x(t) + λx(t) = 0 (2.5)

together with the homogeneous boundary conditions


αx(a) + β∆x(a) = 0

γx(b+ 1) + δ∆x(b+ 1) = 0

(2.6)

which may be equivalently expressed as

Ax+ λx = 0, Bx = 0.

The following proposition is taken from Kelley, Peterson [14].

Proposition 2.2.1. Suppose that α2 + β2 ̸= 0, γ2 + δ2 ̸= 0, α ̸= β, γ ̸= δ. The Sturm-

Liouville problem (5)-(6) has N real, simple eigenvalues λ1 < λ2 < · · · < λN and N

corresponding linearly independent eigenfunctions xi(t), 1 ≤ i ≤ N . If λn, λm are distinct

eigenvalues, then xn, xm are orthogonal, i.e. < xn, xm >= 0.

Remark 2.2.2. The eigenfunctions may be chosen to be real and normalized, i.e.

< xk, xk > = 1, 1 ≤ k ≤ N . We shall make this convention throughout the remainder

of the chapter.

Remark 2.2.3. If h is an arbitrary real-valued function defined on [a+1, b+1], we may

9



express the Fourier series of h with respect to the eigenfunctions of the Sturm-Liouville

problem (5)-(6) as

h(t) =
N∑
k=1

< h, xk > xk(t).

2.3 The Lx− Ψ(x) = [h, v]T Case

Recall that solving the problem (2.3)-(2.4) is equivalent to solving

Lx−Ψ(x) =

 h

v

 .
SinceX is finite-dimensional with dimensionN+2, L is in fact a bounded, linear operator,

and hence is continuously Fréchet differentiable, with:

L′(x)(u)(t) = Lu(t) for all u, x ∈ X, t ∈ [a+ 1, b+ 1].

Ψ is also continuously Fréchet differentiable, with:

Ψ′(x)(u)(t) =

 −ψ′(x(t))u(t)

−η′(x)u

 for all u, x ∈ X, t ∈ [a+ 1, b+ 1].

To establish the existence of a solution to (2.3)-(2.4), we shall use the following version

of the Global Inverse Function Theorem, proved in Chow, Hale [7]:

Theorem 2.3.1. Suppose X,Y are Banach spaces, Φ ∈ C1(X, Y ), and for each x ∈ X,
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Φ′(x) is a bijection from X onto Y . If there is a constant K such that ∥|[Φ′(x)]−1∥| ≤ K

for all x ∈ X, then Φ is a homeomorphism of X onto Y .

Throughout the remainder of the chapter, we will assume that the following two condi-

tions hold:

(H.1) There exists an interval [c, d] which does not contain any of the eigenvalues λi of

the Sturm-Liouville problem (5)-(6) and such that c ≤ ψ′(s) ≤ d, s ∈ R.

(H.2) There exists a constant ζ0 such that the non-linear boundary operator η satisfies

sup{∥|η′(x)∥| : x ∈ X} = ζ0 <∞.

There are three cases in which condition (H.1) may arise. First, we may have

λm−1 < c ≤ ψ′(s) ≤ d < λm, s ∈ R,

where λm−1, λm are consecutive eigenvalues of (2.5)-(2.6). This is the usual form of con-

dition (H.1) considered in the continuous analogs of equations (2.1) and (2.3). However,

we also have two other possibilities for satisfying (H.1):

c ≤ ψ′(s) ≤ d < λ1

and, due to the finite number of eigenvalues in the discrete case,

λN < c ≤ ψ′(s) ≤ d.

11



We let

µ =
d+ c

2
, Γ =

d− c

2
,

and define Lµ =

 A+ µI

B

.
Let {w1, w2} form a basis for the two-dimensional solution space of the second-order

difference equation

∆(p(t− 1)∆x(t− 1)) + q(t)x(t) + µx(t) = 0,

or equivalently, (A + µI)x = 0. We assume without loss of generality that w1, w2 are

taken such that ∥w1∥2 + ∥w2∥2 ≤ 1. We shall denote w(t) =

 w1(t)

w2(t)

.
We define the 2× 2 matrix B = [ B(w1) | B(w2) ].

Recall that the eigenvalues and corresponding eigenfunctions of the linear Sturm-Liouville

problem (2.5)-(2.6) are denoted by {λk, xk} for 1 ≤ k ≤ N. In our discussion of the

solvability of the boundary value problem (2.3)-(2.4), we will use the following properties

of the operator Lµ.

Lemma 2.3.2. Lµ is a bijection from X onto Y × R2. For any

 h

v

 ∈ Y × R2,

L−1
µ

 h

v

 =
N∑
k=1

< h, xk >

µ− λk
xk + w(t)TB−1v.
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Moreover,

∥|L−1
µ ∥| ≤ ρ+ ∥|B−1∥|,

where ρ = sup{|µ− λk|−1, k ∈ [1, N ]}.

Proof. First note that µ ̸= λi implies that Lµ is one-to-one. Given any

 h

v

 ∈ Y ×R2,

we search for a solution to Lµ(x) =

 h

v

 of the form

x(t) =
N∑
k=1

αkxk(t) + c1w1(t) + c2w2(t), (2.7)

where {xk} are the eigenfunctions of the Sturm-Liouville problem (2.5)-(2.6), i.e. Axk +

λkxk = 0, Bxk = 0.

Since (A+ µI)(c1w1 + c2w2) = 0 and B
(∑N

k=1 αkxk

)
= 0, we see that Lµ(x) =

 h

v

 if

and only if

(A+ µI)
N∑
k=1

αkxk = h (2.8)

and

B(c1w1 + c2w2) = v. (2.9)

Given h ∈ Y , we can use the Fourier series expansion in terms of the eigenfunctions {xk}
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to solve for αk in (2.8) as follows:

(A+ µI)
N∑
k=1

αkxk = h

(A+ µI)
N∑
k=1

αkxk =
N∑
k=1

< h, xk > xk

N∑
k=1

(−λk + µ)αkxk =
N∑
k=1

< h, xk > xk.

Hence, αk =
<h,xk>
µ−λk

.

Next, note that (2.9) may be rewritten

c1B(w1) + c2B(w2) = v

or

B

 c1

c2

 = v,

where the 2×2 matrix B = [ B(w1) | B(w2) ]. The matrix B is invertible, due to the fact

that the boundary value problem (A + µI)x = 0,Bx = 0 has only the trivial solution.

Hence, we have found

c1w1(t) + c2w2(t) = w(t)TB−1v.
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Therefore, for any

 h

v

 ∈ Y × R2,

L−1
µ

 h

v

 =
N∑
k=1

< h, xk >

µ− λk
xk + w(t)TB−1v.

To estimate the norm of L−1
µ , we observe that since the eigenfunctions {xk} form an

orthonormal set,

∥
N∑
k=1

< h, xk >

µ− λk
xk∥ ≤

(
sup

k∈[1,N ]

1

|µ− λk|

)
∥h∥,

and therefore, recalling that ∥w1∥2 + ∥w2∥2 ≤ 1, we obtain

∥|L−1
µ ∥| ≤ ρ+ ∥|B−1∥|.

The value of ρ will depend on which of the three cases of condition (H.1) occurs. If we

have

λm−1 < c ≤ ψ′(s) ≤ d < λm, s ∈ R,

then
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ρ = sup
k∈[1,N ]

1

|µ− λk|
= max{ 1

µ− λm−1

,
1

λm − µ
}.

Similarly, if c ≤ ψ′(s) ≤ d < λ1, then

ρ = sup
k∈[1,N ]

1

|µ− λk|
=

1

λ1 − µ
,

and if λN < c ≤ ψ′(s) ≤ d, then

ρ = sup
k∈[1,N ]

1

|µ− λk|
=

1

µ− λN
.

It is an immediate consequence of the definitions of ρ,Γ that ρΓ < 1. This fact is of

fundamental importance in the results that follow.

We now present sufficient conditions for the solvability of the boundary value problem

(2.3)-(2.4).

Theorem 2.3.3. Suppose conditions (H.1) and (H.2) hold. If

ρΓ + ∥|B−1∥|ζ0 < 1,

then for each h defined on [a+1, b+1] and each

 v1

v2

 ∈ R2, the boundary value problem

(2.3)-(2.4) has a unique solution.

Proof. The boundary value problem (2.3)-(2.4) is equivalent to the operator equation

16



Lx−Ψ(x) =

 h

v

 .
Since L and Ψ are both Fréchet differentiable, so is L −Ψ.

We shall first establish the fact that for each x ∈ X, L−Ψ′(x) is a bijection from X onto

Y × R2.

We define the operator Ψµ : X → Y × R2 by

Ψµ(x) =

 −ω(x) + µI

−η(x)

 ,
where ω : X → Y is given by ω(x)(t) = ψ(x(t)) for t ∈ [a+ 1, b+ 1].

Consider the equation

[L −Ψ′(x)]u =

 h

v

 , u ∈ X,

 h

v

 ∈ Y × R2.

Note that the equation [L −Ψ′(x)]u =

 h

v

 is equivalent to

Lµu−Ψ′
µ(x)u =

 h

v



u− L−1
µ Ψ′

µ(x)u = L−1
µ

 h

v


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[I − L−1
µ Ψ′

µ(x)]u = L−1
µ

 h

v

 .

Our next goal is to estimate the norm of L−1
µ Ψ′

µ(x).

It is clear that

Ψ′
µ(x)(u) =

 −ω′(x)u+ µu

−η′(x)u

 ,
where ω′(x)(u)(t) = −ψ′(x(t))u(t).

Using conditions (H.1) and (H.2), we obtain

| − ψ′(x(t)) + µ| ≤ Γ for all x ∈ X and t ∈ [a+ 1, b+ 1],

and

sup{∥|η′(x)∥| : x ∈ X} = ζ0.

We now appeal to the formula for L−1
µ in Lemma 2.3.2 to obtain

∥|L−1
µ Ψ′

µ(x)∥| ≤ ρΓ + ∥|B−1∥|ζ0.

Recall, for any bounded operator A with ∥|A∥| < 1, we have that I − A has a bounded

inverse and ∥|(I − A)−1∥| ≤ (1− ∥|A∥|)−1.

Thus, by choosing ζ0 small enough so that ρΓ+∥|B−1∥|ζ0 < 1, the operator I−L−1
µ Ψ′

µ(x)
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has a bounded inverse which implies (L −Ψ′(x))−1 exists for each x ∈ X, and

(L −Ψ′(x))−1 = [I − L−1
µ Ψ′

µ(x)]
−1L−1

µ

∥|(L −Ψ′(x))−1∥| ≤
(

1

1− (ρΓ + ∥|B−1∥|ζ0)

)(
ρ+ ∥|B−1∥|

)

=
ρ+ ∥|B−1∥|

1− ρΓ− ∥|B−1∥|ζ0
= K,

a bound independent of x. Hence, L−Ψ satisfies the hypotheses of Theorem 2.3.1, which

implies there is a unique solution to the boundary value problem (2.3)-(2.4) for each h(t)

defined on [a+ 1, b+ 1] and each

 v1

v2

 ∈ R2. This completes the proof.

We mention as a corollary to Theorem 2.3.3 the case when the non-linear boundary

operators η1 and η2 are identically zero.

Corollary 2.3.4. Suppose condition (H.1) holds. Then the boundary value problem

∆(p(t− 1)∆x(t− 1)) + q(t)x(t) + ψ(x(t)) = h(t)
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subject to 
αx(a) + β∆x(a) = v1

γx(b+ 1) + δ∆x(b+ 1) = v2

has a unique solution for each h defined on [a+ 1, b+ 1] and each

 v1

v2

 ∈ R2.

Proof. Using the above notation in the proof of Theorem 2.3.3, we have that ζ0 = 0,

which together with the fact that ρΓ < 1, implies that (L − Ψ′(x))−1 exists for each

x ∈ X, and

(L −Ψ′(x))−1 = [I − L−1
µ Ψ′

µ(x)]
−1L−1

µ

∥|(L −Ψ′(x))−1∥| ≤
(

1

1− ρΓ

)(
ρ+ ∥|B−1∥|

)

=
ρ+ ∥|B−1∥|

1− ρΓ
= K ′,

a bound independent of x. Hence, L−Ψ again satisfies the hypotheses of Theorem 2.3.1,

which implies the result.

Remark 2.3.5. We note that the above estimate of the norm of (L−Ψ′(x))−1 in Theorem

2.3.3 provides some insight into the relationship between the distribution of the eigenvalues

to the linear Sturm-Liouville problem (2.5)-(2.6), the permissible range of the derivative of

the nonlinearity ψ, and the size of ∥|η′(x)∥|. As we allow ψ′(s) to lie closer to consecutive
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eigenvalues of the linear problem (by letting ρΓ approach 1), we must be more restrictive

with η′(x) and choose ζ0 small enough to ensure ρΓ + ∥|B−1∥|ζ0 < 1. On the other

hand, if we are more restrictive with ψ′ by keeping the interval [c, d] far away from any

eigenvalues of (2.5)-(2.6), we can loosen the condition on η′(x) and allow ζ0 to be larger.

We also observe that when d < λ1 or c > λN , all we further require of ψ′ is for it to be

bounded, which in the latter case would not typically be possible in a continuous analog

with an infinite number of eigenvalues.

2.4 The Lx− Ψ(x) = Gx Case

We now study the existence of solutions to the boundary value problem (2.1)-(2.2), or

equivalently,

Lx−Ψ(x) = Gx,

where G : X → Y × R2 is continuous.

Continuing with our supposition of conditions (H.1), (H.2), we first mention the follow-

ing important property of the operator (L − Ψ)−1. This property was observed in the

continuous analog of equations (2.1) and (2.3) by Brown [4]. We are able to supply a

different proof using the Fréchet differentiability of L.

Proposition 2.4.1. (L−Ψ)−1 : Y ×R2 → X is continuously Fréchet differentiable and

Lipschitz continuous with Lipschitz constant K = ρ+∥|B−1∥|
1−ρΓ−∥|B−1∥|ζ0 .

Proof. For each x ∈ X,

 y

v

 ∈ Y × R2 such that (L − Ψ)(x) =

 y

v

, we have that
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(L−Ψ′(x))−1 exists by Lemma 2.3.2 and is the derivative of (L−Ψ)−1

 y

v

. Moreover,

since (L − Ψ′(x))−1 has a uniform bound of K, it follows that (L − Ψ)−1 is Lipschitz

continuous with constant K by the Mean Value Theorem for Fréchet derivatives.

In the following result, we provide sufficient conditions for the solvability of the boundary

value problem (2.1)-(2.2), which is equivalent to

Lx−Ψ(x) = Gx,

where G(x) =

 G(x)

ϕ(x)

.
In [5], Brown and Lin establish the existence of solutions to a continuous analog of

equation (2.1) subject to linear homogeneous boundary conditions. It should be observed

that the operator G represents a nonlinearity in the dynamic equation, and the nonlinear

boundary operator ϕ allows for the possibility of more general global boundary conditions.

Let C = ∥(L −Ψ)−1(0)∥.

Theorem 2.4.2. Suppose ψ, η satisfy conditions (H.1), (H.2), ρΓ + ∥|B−1∥|ζ0 < 1, and

G : X → Y ×R2 is continuous. If there exists a constant M > 0 such that for ∥x∥ ≤M ,

∥G(x)∥ ≤ M−C
K

, then there exists at least one solution of the boundary value problem

(2.1)-(2.2).
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Proof. As noted earlier, solving (2.1)-(2.2) is equivalent to solving

Lx−Ψ(x) = G(x)

x = (L −Ψ)−1G(x).

Let H = (L −Ψ)−1 ◦ G, and define

BM = {x ∈ X : ∥x∥ ≤M}.

Then H(BM) ⊆ BM , since for ∥x∥ ≤M ,

∥H(x)∥ = ∥(L −Ψ)−1G(x)∥

≤ K∥G(x)∥+ ∥(L −Ψ)−1(0)∥

= K∥G(x)∥+ C

≤ K

(
M − C

K

)
+ C =M.

Since H is a continuous function, the Brouwer Fixed Point Theorem guarantees exis-

tence of at least one fixed point of H in BM .

Remark 2.4.3. With the appearance of the Lipschitz constant K for (L − Ψ)−1 in the

bound for ∥G(x)∥ on the ball BM above, we again note the connection between the dis-

tribution of eigenvalues of the linear problem (2.5)-(2.6) and the permissible size of the

nonlinearity G. The further apart the eigenvalues of (2.5)-(2.6), the smaller the value of

K can be made, and hence the size of ∥G(x)∥ is allowed to be larger.
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As with the corollary to Theorem 2.3.3, we state the previous result in the case when the

non-linear boundary operators η1 and η2 are identically zero.

Corollary 2.4.4. Suppose condition (H.1) holds. If there exists a constant M > 0 such

that for ∥x∥ ≤M , ∥G(x)∥ ≤ M−C
K

, then the boundary value problem

∆(p(t− 1)∆x(t− 1)) + q(t)x(t) + ψ(x(t)) = G(x(t))

subject to 
αx(a) + β∆x(a) = ϕ1(x)

γx(b+ 1) + δ∆x(b+ 1) = ϕ2(x)

has at least one solution.

We mention as another corollary to Theorem 2.4.2 the special case when G obeys a

sub-linear growth condition. The proof of this corollary is immediate.

Corollary 2.4.5. Suppose (H.1) and (H.2) hold, ρΓ + ∥|B−1∥|ζ0 < 1, and there is an

0 ≤ ϵ < 1 such that ∥G(x)∥ ≤ b1 + b2∥x∥ϵ. Then there exists at least one solution of the

boundary value problem (2.1)-(2.2).

We next note that when G is a Nemytskii-type operator, i.e. if there exists a g : [a +

1, b+ 1]×R → R such that G(x)(t) = g(t, x(t)), we are able to state a condition on g, ϕ

to satisfy the growth hypothesis on G in Theorem 2.4.2, and thus establish the existence

of a solution to (2.1)-(2.2) in this case.
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Corollary 2.4.6. Suppose (H.1) and (H.2) hold, ρΓ + ∥|B−1∥|ζ0 < 1. Assume g(t, ·) is

continuous for each t ∈ [a+ 1, b+ 1] and there exists an M > 0 such that |ϕ(x)| ≤ M−C
K

for all ∥x∥ ≤M and

|g(t, s)| ≤ M − C

K
√
N

for all |s| ≤ M and t ∈ [a + 1, b + 1]. Then G : X → Y × R2 defined by G(x) = g(·, x(·))

ϕ(x)

 satisfies the hypotheses of Theorem 2.4.2.

Proof. Choose x ∈ X such that ∥x∥ ≤M , whereM is defined as above. Then |x(t)| ≤M

for each t ∈ [a + 1, b + 1], which implies |g(t, x(t))| ≤ M−C
K
√
N

for each t ∈ [a + 1, b + 1]. It

follows that

∥G(x)∥ = max{

(
b+1∑

t=a+1

[g(t, x(t))]2

)1/2

, |ϕ(x)|}

≤ max{

(
b+1∑

t=a+1

(
M − C

K
√
N

)2
)1/2

,
M − C

K
} =

M − C

K
,

hence G satisfies the hypotheses of Theorem 2.4.2.

Remark 2.4.7. In a similar fashion, we mention that when G is the equivalent of an

integral operator in the discrete time scale, i.e. there exists a

g : [a + 1, b + 1] × R → R such that G(x)(t) =
∑t

k=a+1 g(k, x(k)), we can again give

conditions on g, ϕ to ensure that G satisfies the hypotheses of Theorem 2.4.2. Indeed,

suppose g(t, ·) is continuous for each t ∈ [a + 1, b + 1] and there exists an M > 0 such

that |ϕ(x)| ≤ M−C
K

for all ∥x∥ ≤M and
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|g(t, s)| ≤ M − C

KN3/2

for all |s| ≤ M and for each t ∈ [a + 1, b + 1]. Then G : X → Y × R2 defined by

G(x) =

 ∑·
k=a+1 g(k, x(k))

ϕ(x)

 satisfies the hypotheses of Theorem 2.4.2 by a straight-

forward calculation of ∥G(x)∥ as in the previous corollary.
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Chapter 3

On the Solvability of

Sturm-Liouville Problems with

Non-Local Boundary Conditions

3.1 Introduction

We consider the solvability of the boundary value problem

(p(t)x′(t))′ + q(t)x(t) + ψ(x(t)) = G(x(t)) (3.1)

subject to the global boundary conditions


αx(0) + βx′(0) + η1(x) = ϕ1(x)

γx(1) + δx′(1) + η2(x) = ϕ2(x).

(3.2)
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We assume ψ : R → R is continuously differentiable, p(t) > 0 and q(t) is real on

[0, 1], p, p′, q are continuous on (0, 1), and the boundary conditions (3.2) are such that

α2 + β2 ̸= 0, γ2 + δ2 ̸= 0. G, η1, η2, ϕ1, and ϕ2 shall be nonlinear operators defined on a

function space. To study the solvability of the boundary value problem (3.1)-(3.2), we

will begin by considering the related boundary value problem

(p(t)x′(t))′ + q(t)x(t) + ψ(x(t)) = h(t) (3.3)

subject to


αx(0) + βx′(0) + η1(x) = v1

γx(1) + δx′(1) + η2(x) = v2

(3.4)

where h is square-integrable on [0, 1] and v1, v2 ∈ R. The solvability of (3.3)-(3.4) will be

established using the Global Inverse Function Theorem. In order to do so, we will first

ensure that a related linearized boundary value problem is non-resonant. Having done

so, we will use the Schauder Fixed Point Theorem to prove the existence of solutions to

(3.1)-(3.2).

The results obtained in this chapter depend in a crucial way on the relationship

between the eigenvalues of a linear Sturm-Liouville problem and the rate of growth of

nonlinearities present in both the differential equation and the boundary conditions.

In this respect, our work complements that of Dolph [8], Landesman and Lazer [16],

Lazer and Leach [17], Lazer and Sanchez [18], Leach [19], Brown [4], Brown and Lin

[5], and Rodŕıguez and Abernathy [27]. Relevant references for those interested in non-

local boundary value problems in differential equations are [3, 7, 22, 25, 28, 31]. For results
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concerning discrete systems under a variety of boundary conditions, the interested reader

may consult [1, 9, 10, 11, 23, 24, 26, 29, 30].

3.2 Preliminaries

Our goal shall be to restate the above problems (3.1)-(3.2) and (3.3)-(3.4) as operator

equations defined on a function space. To this end, let L2 = L2[0, 1] be the set of real-

valued square-integrable functions defined on the interval [0, 1]. L2 is a Hilbert space

with respect to the inner product

< x1, x2 >=

∫ 1

0

x1(t)x2(t)dt.

This inner product induces the usual inner product norm

∥x∥ =
√
< x, x >

on this space. The operator norm will be used to compute the norm of any bounded

operator, and we denote it ∥| · ∥|. The Euclidean norm on Rn for any positive integer n

will be denoted by | · |. Finally, the norm used on the set L2 × R2 will be ∥

 h

v

 ∥ =

max{∥h∥, |v|}.

We define L : D(L) → L2 × R2 by

L(x) =

 A(x)

B(x)

 ,
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where D(L) ⊂ L2 is defined to be

D(L) = {x ∈ L2 : x, x′ are absolutely continuous and x′′ ∈ L2}, and A : D(L) → L2 and

B : D(L) → R2 are given by

Ax(t) = (p(t)x′(t))′ + q(t)x(t) for t ∈ [0, 1],

B(x) =

 αx(0) + βx′(0)

γx(1) + δx′(1)

 .
We define Ψ : D(L) → L2 × R2 by

Ψ(x) =

 −ψ ◦ x

−η(x)

 ,
where ψ ∈ C1(R,R). We assume η1, η2 are continuously Fréchet differentiable functions

from D(L) into R, and the map η : D(L) → R2 is given by η(x) =

 η1(x)

η2(x)

.
Similarly, we define G : D(L) → L2 × R2 to be

G(x) =

 G(x)

ϕ(x)

 ,

where we assume G is a continuous function from D(L) → L2 and ϕ(x) =

 ϕ1(x)

ϕ2(x)

,
where ϕ1, ϕ2: D(L) → R are continuous.
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We may now conclude that the problem (3.1)-(3.2) is equivalent to solving

Lx−Ψ(x) = Gx

and the problem (3.3)-(3.4) is equivalent to solving

Lx−Ψ(x) =

 h

v

 ,

where h ∈ L2, v =

 v1

v2

 ∈ R2.

In order to study either of these nonlinear problems, we will first analyze the linear

Sturm-Liouville problem

(p(t)x′(t))′ + q(t)x(t) + λx(t) = 0 (3.5)

subject to


αx(0) + βx′(0) = 0

γx(1) + δx′(1) = 0

(3.6)

which, using our above notation, may be rewritten as

Ax+ λx = 0, Bx = 0.

Suppose that α2 + β2 ̸= 0, γ2 + δ2 ̸= 0. It is well-known (see, for instance, Kelley
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and Peterson [15]) that the Sturm-Liouville problem (3.5)-(3.6) has infinitely many real,

simple eigenvalues λ1 < λ2 < · · · and corresponding linearly independent eigenfunctions

x1, x2, · · · . If λn, λm are distinct eigenvalues, then xn, xm are orthogonal, i.e. < xn, xm >=

0. Without loss of generality, we make the convention that the eigenfunctions are chosen

to be real and normalized, i.e.

< xk, xk > = 1, k ∈ N.

Furthermore, if h is an arbitrary real-valued square-integrable function defined on [0, 1],

then h has a generalized Fourier series with respect to the eigenfunctions of the Sturm-

Liouville problem (3.5)-(3.6) of the form

∞∑
k=1

< h, xk > xk(t).

3.3 The Lx− Ψ(x) = [h, v]T Case

With the linear Sturm-Liouville problem understood, we may now begin studying the

solvability of the problem (3.3)-(3.4), which may be expressed

Lx−Ψ(x) =

 h

v

 .
It is straightforward to show that L is a closed operator with domain D(L) dense in L2.
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It follows that D(L) is a Banach space with respect to the graph norm

∥|x∥|gr = ∥x∥L2 + ∥Lx∥L2×R2 = ∥x∥L2 +max{∥Ax∥L2 , |Bx|}.

With this norm, L is continuous by the closed graph theorem, from which it follows that

L is continuously Fréchet differentiable, and:

L′(x)(u)(t) = Lu(t) for all u, x ∈ D(L), t ∈ [0, 1].

We will assume that η is continuously Fréchet differentiable from D(L) into R2. Using

the fact that ψ ∈ C1(R,R), it is straightforward to verify that Ψ is also continuously

Fréchet differentiable, and:

Ψ′(x)(u)(t) =

 −ψ′(x(t))u(t)

−η′(x)u

 for all u, x ∈ D(L), t ∈ [0, 1].

Noting the differentiability of the operators L and Ψ, our principal tool in proving the

solvability of (3.3)-(3.4) will be the following Global Inverse Function Theorem (Chow,

Hale [7]):

Theorem 3.3.1. Suppose X,Y are Banach spaces, Φ ∈ C1(X, Y ), and for each x ∈ X,

Φ′(x) is a bijection from X onto Y . If there is a constant K such that ∥|[Φ′(x)]−1∥| ≤ K

for all x ∈ X, then Φ is a homeomorphism of X onto Y .

We will assume the following two critically important conditions for the remainder of the

chapter:

(H.1) For all s ∈ R, c ≤ ψ′(s) ≤ d, where the interval [c, d] does not contain any of the
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eigenvalues λi of the Sturm-Liouville problem (3.5)-(3.6).

(H.2) The Fréchet derivative of the non-linear boundary operator η is bounded; that is,

there exists a constant ζ0 for which η satisfies

sup{∥|η′(x)∥| : x ∈ D(L)} = ζ0 <∞.

Condition (H.1) may occur in two different cases. The first is when the derivative of ψ

lies in a compact interval in between consecutive eigenvalues λm−1, λm of (3.5)-(3.6):

λm−1 < c ≤ ψ′(s) ≤ d < λm, s ∈ R.

However, it is also possible for the interval [c, d] to lie to the left of the first eigenvalue:

c ≤ ψ′(s) ≤ d < λ1.

Next, let

µ =
d+ c

2
, Γ0 =

d− c

2
,

and define Lµ =

 A+ µI

B

.
Now consider the equation (A+ µI)x = 0, which corresponds to the second-order differ-

ential equation

(p(t)x′(t))′ + q(t)x(t) + µx(t) = 0.
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We choose a basis {w1, w2} for the two-dimensional solution space of this differential

equation, and we assume without loss of generality that the basis is chosen so that

∥w1∥2 + ∥w2∥2 ≤ 1.

We let w(t) =

 w1(t)

w2(t)

, and define the 2× 2 matrix B = [ B(w1) | B(w2) ].

Recall that {λk, xk} for k ∈ N are the eigenvalues and corresponding eigenfunctions of

the linear Sturm-Liouville problem (3.5)-(3.6). The next lemma provides some useful

properties of the operator Lµ that will facilitate the use of Theorem 3.3.1 in solving the

nonlinear boundary value problem (3.3)-(3.4).

Lemma 3.3.2. Lµ is a bijection from D(L) onto L2×R2, and for any

 h

v

 ∈ L2×R2,

L−1
µ

 h

v

 =
∞∑
k=1

< h, xk >

µ− λk
xk + w(·)TB−1v.

Furthermore,

∥|L−1
µ ∥| ≤ A0 +B0,

where A0 = sup
k∈N

1
|µ−λk|

+ sup
k∈N

∣∣∣ λk

µ−λk

∣∣∣ and B0 = ∥|B−1∥|+max{|µ|∥|B−1∥|, 1}.

Proof. It is clear that Lµ is one-to-one since µ ̸= λi. To show Lµ is onto, given any h

v

 ∈ L2 × R2, we consider the equation Lµ(x) =

 h

v

 and attempt a solution of

the form

x(t) =
∞∑
k=1

αkxk(t) + c1w1(t) + c2w2(t), (3.7)
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where the eigenfunctions {xk} satisfy Axk + λkxk = 0, Bxk = 0.

Upon applying Lµ to the form above, we note that (A + µI)(c1w1 + c2w2) = 0. The

following norm will prove convenient in some estimates to follow:

∥|u∥|m = ∥u∥∞ + ∥u′∥∞ + ∥u′′∥L2 .

Now consider the following graph norm estimate:

∥|u∥|gr = ∥u∥L2 +max{∥Au∥L2 , |Bu|}

≤ ∥u∥L2 + c1∥Au∥L2 + c2|Bu|

≤ c3∥u∥L2 + c4∥u′∥L2 + c5∥u′′∥L2 + c6∥u∥∞ + c7∥u′∥∞

≤ C1 (∥u∥∞ + ∥u′∥∞ + ∥u′′∥L2)

= C1∥|u∥|m,

where ∥·∥∞ represents the sup norm. But the Open Mapping Theorem then implies that

there exists a constant C2 such that

∥|u∥|m ≤ C2∥|u∥|gr.

Hence ∥u∥∞ ≤ ∥|u∥|m ≤ C2∥|u∥|gr and we conclude that convergence with respect to

the graph norm implies uniform convergence. It is now clear that B (
∑∞

k=1 αkxk) =

∑∞
k=1 αkBxk = 0, and thus solving Lµ(x) =

 h

v

 is equivalent to solving

(A+ µI)
∞∑
k=1

αkxk = h (3.8)
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and

B(c1w1 + c2w2) = v. (3.9)

Given h ∈ L2, we can solve for the coefficients αk in (3.8) by expanding h as a Fourier

series in terms of the eigenfunctions {xk}:

(A+ µI)
∞∑
k=1

αkxk = h

(A+ µI)
∞∑
k=1

αkxk =
∞∑
k=1

< h, xk > xk

∞∑
k=1

(−λk + µ)αkxk =
∞∑
k=1

< h, xk > xk.

Thus, αk =
<h,xk>
µ−λk

.

Next, we restate (3.9) as

c1B(w1) + c2B(w2) = v

or

B

 c1

c2

 = v,

where we recall the 2×2 matrix B = [ B(w1) | B(w2) ]. Since the boundary value problem

(A+µI)x = 0,Bx = 0 has only the trivial solution, B must be invertible. It follows that
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c1w1(t) + c2w2(t) = w(t)TB−1v.

Hence, for any

 h

v

 ∈ L2 × R2,

L−1
µ

 h

v

 =
∞∑
k=1

< h, xk >

µ− λk
xk + w(·)TB−1v.

Our second goal is to estimate the operator norm of L−1
µ . Using the orthonormality of

the eigenfunctions {xk}, we have

∥
∞∑
k=1

< h, xk >

µ− λk
xk∥ ≤

(
sup
k

1

|µ− λk|

)
∥h∥.

Recalling that D(L) is equipped with the graph norm, we calculate

∥|L−1
µ

 h

v

 ∥|gr ≤ ∥|
∞∑
k=1

< h, xk >

µ− λk
xk∥|gr + ∥|w(·)TB−1v∥|gr

≤ ∥
∞∑
k=1

< h, xk >

µ− λk
xk∥+∥L

(
∞∑
k=1

< h, xk >

µ− λk
xk

)
∥L2×R2+∥w(·)TB−1v∥+∥L

(
w(·)TB−1v

)
∥L2×R2

≤
(
sup
k

1

|µ− λk|

)
∥h∥+max{∥A

(
∞∑
k=1

< h, xk >

µ− λk
xk

)
∥, |B

(
∞∑
k=1

< h, xk >

µ− λk
xk

)
|}+∥w(·)TB−1v∥
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+max{∥A
(
w(·)TB−1v

)
∥, |B

(
w(·)TB−1v

)
|}

≤
(
sup
k

1

|µ− λk|

)
∥h∥+∥

∞∑
k=1

λk < h, xk >

µ− λk
xk∥+∥w(·)TB−1v∥+max{|µ|∥w(·)TB−1v∥, |v|}

≤
(
sup
k

1

|µ− λk|

)
∥h∥+

(
sup
k

∣∣∣∣ λk
µ− λk

∣∣∣∣) ∥h∥+∥w(·)TB−1v∥+max{|µ|∥w(·)TB−1v∥, |v|},

where we have again used (A+ µI)(c1w1 + c2w2) = 0 and B (
∑∞

k=1 αkxk) = 0.

Recalling that ∥w1∥2 + ∥w2∥2 ≤ 1, we then have

∥|L−1
µ

 h

v

 ∥|gr ≤
(
sup
k

1

|µ− λk|
+ sup

k

∣∣∣∣ λk
µ− λk

∣∣∣∣) ∥h∥+
(
∥|B−1∥|+max{|µ|∥|B−1∥|, 1}

)
|v|,

hence

∥|L−1
µ ∥| ≤ A0 +B0.

We may simplify the expression for A0 based on which case of condition (H.1) occurs. In
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the first case, where

λm−1 < c ≤ ψ′(s) ≤ d < λm, s ∈ R,

then

A0 = sup
k

1

|µ− λk|
+ sup

k

∣∣∣∣ λk
µ− λk

∣∣∣∣ = max{ 1 + λm−1

µ− λm−1

,
1 + λm
λm − µ

}.

Otherwise, if c ≤ ψ′(s) ≤ d < λ1, we have

A0 = sup
k

1

|µ− λk|
+ sup

k

∣∣∣∣ λk
µ− λk

∣∣∣∣ = 1 + λ1
λ1 − µ

.

In our first main result, the next theorem shall provide sufficient conditions for the

existence of solutions to the nonlinear boundary value problem (3.3)-(3.4).

Theorem 3.3.3. If ψ, η satisfy conditions (H.1) and (H.2), and if

A0Γ0 +B0ζ0 < 1,

then the boundary value problem (3.3)-(3.4) has a unique solution for each square-integrable

function h defined on [0, 1] and each

 v1

v2

 ∈ R2.

Proof. Since the boundary value problem (3.3)-(3.4) is equivalent to

Lx−Ψ(x) =

 h

v

 ,
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our goal is to show that the operator L − Ψ satisfies the hypotheses of Theorem 3.3.1.

First, note that L −Ψ ∈ C1 since L and Ψ are each Fréchet differentiable on D(L).

Define the operator Ψµ : D(L) → L2 × R2 by

Ψµ(x) =

 −ψ ◦ x+ µI

−η(x)

 .
The Fréchet derivative of Ψµ is then given by

Ψ′
µ(x)(u) =

 −(ψ′ ◦ x)u+ µu

−η′(x)u

 .
In order to show that for each x ∈ D(L), L−Ψ′(x) is a bijection from D(L) onto L2×R2,

we consider the equation

[L −Ψ′(x)]u =

 h

v

 , u ∈ D(L),

 h

v

 ∈ L2 × R2.

Using the above definitions of Lµ and Ψµ, this equation becomes

Lµu−Ψ′
µ(x)u =

 h

v



u− L−1
µ Ψ′

µ(x)u = L−1
µ

 h

v


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[I − L−1
µ Ψ′

µ(x)]u = L−1
µ

 h

v

 .

To proceed, we use conditions (H.1) and (H.2) and obtain

| − ψ′(x(t)) + µ| ≤ Γ0 for all x ∈ D(L) and t ∈ [0, 1],

and

sup{∥|η′(x)∥| : x ∈ D(L)} = ζ0.

Using these estimates together with the formula for L−1
µ derived in Lemma 3.3.2, we

observe that

∥|L−1
µ Ψ′

µ(x)∥| ≤ A0Γ0 +B0ζ0.

For any bounded operator A with ∥|A∥| < 1, it is well known that I −A has a bounded

inverse and ∥|(I − A)−1∥| ≤ (1− ∥|A∥|)−1.

Hence, to ensure the operator I − L−1
µ Ψ′

µ(x) has a bounded inverse, we choose Γ0 and

ζ0 small enough so that A0Γ0 + B0ζ0 < 1. It follows that (L − Ψ′(x))−1 exists for each

x ∈ D(L), and
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(L −Ψ′(x))−1 = [I − L−1
µ Ψ′

µ(x)]
−1L−1

µ

∥|(L −Ψ′(x))−1∥| ≤
(

1

1− (A0Γ0 +B0ζ0)

)
(A0 +B0)

=
A0 +B0

1− A0Γ0 −B0ζ0
= K,

a bound independent of x. Thus L−Ψ satisfies the hypotheses of Theorem 3.3.1, and we

conclude the boundary value problem (3.3)-(3.4) has a unique solution for each square-

integrable h defined on [0, 1] and each

 v1

v2

 ∈ R2.

Remark 3.3.4. We call attention to the generality of the nonlinear boundary operators

η1 and η2 that appear in the boundary value problem (3.3)-(3.4). As an important special

case, these operators may allow for nonlinear multipoint boundary value problems, if we

take for example

η1(x) =
n∑

i=1

fi(x(ti)),

η2(x) =
m∑
j=1

gj(x(tj)),

where each fi, gj is a C1 function and ti, tj ∈ [0, 1].

Remark 3.3.5. We also note that the above estimate of the norm of (L − Ψ′(x))−1 in

Theorem 3.3.3 illustrates the interplay between the distribution of the eigenvalues to the
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linear Sturm-Liouville problem (3.5)-(3.6), the range of the derivative of the nonlinearity

ψ, and the allowable size of ∥|η′(x)∥|. If ψ′(s) lies close to consecutive eigenvalues of the

linear problem or in between eigenvalues of large magnitude (causing A0Γ0 to approach

1), we must choose ζ0 smaller to ensure A0Γ0 + B0ζ0 < 1, forcing a tighter bound for

η′(x). On the other hand, if the length of the interval [c, d] is decreased (thus being more

restrictive with ψ′) and [c, d] is placed between eigenvalues of smaller magnitude, we have

more freedom to choose a larger value for ζ0. Of course, if supψ′(s) < λ1, the only

further requirement is for ψ′ to be bounded.

We conclude by stating a corollary to Theorem 3.3.3 which analyzes the case in which

the nonlinear boundary operators η1 and η2 are identically zero.

Corollary 3.3.6. Suppose condition (H.1) holds. If A0Γ0 < 1, then the nonhomogeneous

boundary value problem

(p(t)x′(t))′ + q(t)x(t) + ψ(x(t)) = h(t)

subject to 
αx(0) + βx′(0) = v1

γx(1) + δx′(1) = v2

has a unique solution for each square-integrable h on [0, 1] and each

 v1

v2

 ∈ R2.

Proof. Since ζ0 = 0, the assumption that A0Γ0 < 1 immediately implies that L − Ψ′(x)

is invertible for each x ∈ D(L) and
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(L −Ψ′(x))−1 = [I − L−1
µ Ψ′

µ(x)]
−1L−1

µ

∥|(L −Ψ′(x))−1∥| ≤
(

1

1− A0Γ0

)
(A0 +B0)

=
A0 +B0

1− A0Γ0

= K ′,

a bound independent of x. Hence, Theorem 3.3.1 implies that L − Ψ is again a homeo-

morphism of D(L) onto L2 × R2, and the result follows.

3.4 The Lx− Ψ(x) = Gx Case

Our next goal is to establish the solvability of the boundary value problem (3.1)-(3.2),

which we recall may be rewritten as

Lx−Ψ(x) = Gx,

where G : D(L) → L2 × R2 is continuous.

Continuing with the assumptions made in Theorem 3.3.3, we now observe the operator

(L −Ψ)−1 is Lipschitz.

Remark 3.4.1. The map (L − Ψ)−1 : L2 × R2 → D(L) is Lipschitz continuous with

Lipschitz constant K = A0+B0

1−A0Γ0−B0ζ0
. In the proof of Theorem 3.3.3, we saw that for
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each x ∈ D(L), (L − Ψ′(x))−1 exists and ∥|(L − Ψ′(x))−1∥| ≤ K. If

 y

v

 ∈ L2 × R2

is such that (L − Ψ)(x) =

 y

v

, then (L − Ψ′(x))−1 = [(L −Ψ)−1]
′

 y

v

. It is now

a consequence of the Mean Value Theorem for Fréchet derivatives that (L − Ψ)−1 is

Lipschitz continuous with constant K.

We would like to mention that the essential elements of the above observation are due to

Brown [4].

Using this Lipschitz property, we are now able to establish sufficient conditions for the

existence of at least one solution to the boundary value problem (3.1)-(3.2), or equiva-

lently

Lx−Ψ(x) = Gx,

where G(x) =

 G(x)

ϕ(x)

.
We note that Brown and Lin [5] obtain an existence result for a boundary value problem

similar to equation (3.1) but subject to linear homogeneous boundary conditions. The

following result holds for more general nonlocal boundary conditions due to the presence

of the nonlinear boundary operator ϕ.

Theorem 3.4.2. Suppose the hypotheses of Theorem 3.3.3 are satisfied, and G : D(L) →

L2 × R2 is continuous. If there exists a constant M > 0 such that G satisfies ∥G(x)∥ ≤
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K−1 (M − ∥|(L −Ψ)−1(0)∥|gr) for all ∥|x∥|gr ≤M , then there exists at least one solution

of the boundary value problem (3.1)-(3.2).

Proof. Since L −Ψ is invertible, (3.1)-(3.2) may be rewritten

x = (L −Ψ)−1G(x).

Denote H = (L −Ψ)−1 ◦ G, and let

BM = {x ∈ D(L) : ∥|x∥|gr ≤M}.

It follows that

∥|H(x)∥|gr = ∥|(L −Ψ)−1G(x)∥|gr

≤ K∥G(x)∥+ ∥|(L −Ψ)−1(0)∥|gr

≤ K
(
K−1

(
M − ∥|(L −Ψ)−1(0)∥|gr

))
+ ∥|(L −Ψ)−1(0)∥|gr =M

for all ∥|x∥|gr ≤M , hence H(BM) ⊆ BM . Recall our earlier estimates for the graph norm

in the proof of Lemma 3.3.2, namely ∥|u∥|gr ≤ C1∥|u∥|m and ∥|u∥|m ≤ C2∥|u∥|gr. We

may make a similar estimate for the Sobolev norm ∥|u∥|S = ∥u∥L2 + ∥u′∥L2 + ∥u′′∥L2 :

∥|u∥|S = ∥u∥L2 + ∥u′∥L2 + ∥u′′∥L2

≤ ∥u∥∞ + ∥u′∥∞ + ∥u′′∥L2

= ∥|u∥|m.
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But another application of the Open Mapping Theorem then implies that there exists

a constant C3 such that

∥|u∥|m ≤ C3∥|u∥|S.

We conclude that the graph norm ∥|u∥|gr is equivalent to the Sobolev norm ∥|u∥|S,

and a Sobolev embedding theorem then implies that D(L) has a compact embedding

into C1[0, 1] (see Brown and Lin [5]). Hence G is compact and continuous. H is then a

completely continuous function, and thus there exists at least one fixed point of H in BM

by the Schauder Fixed Point Theorem. This fixed point corresponds to a solution of the

boundary value problem (3.1)-(3.2).

Remark 3.4.3. The Lipschitz constant K for (L−Ψ)−1 appears in the bound for ∥G(x)∥

on the ball BM above, again illustrating how the distribution of eigenvalues of the linear

problem (3.5)-(3.6) affects the allowable size of the nonlinearity G. For example, if the

eigenvalues of (3.5)-(3.6) are far apart relative to the size of the interval [c, d], the value

of K can be made smaller, permitting the size of ∥G(x)∥ to be larger.

We again provide a corollary concerning the case when the nonlinear boundary operators

η1 and η2 vanish.

Corollary 3.4.4. Suppose ψ satisfies condition (H.1) and A0Γ0 < 1. If there exists a

constant M > 0 such that ∥G(x)∥ ≤ K−1 (M − ∥|(L −Ψ)−1(0)∥|gr) for all ∥|x∥|gr ≤ M ,

then the boundary value problem

(p(t)x′(t))′ + q(t)x(t) + ψ(x(t)) = G(x(t))
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subject to 
αx(0) + βx′(0) = ϕ1(x)

γx(1) + δx′(1) = ϕ2(x)

has at least one solution.

If we consider the special case where G obeys a sub-linear growth condition, we immedi-

ately obtain the following corollary.

Corollary 3.4.5. Suppose the hypotheses of Theorem 3.3.3 are satisfied, and there exists

an 0 ≤ ϵ < 1 such that ∥G(x)∥ ≤ b1 + b2∥|x∥|ϵgr. Then the boundary value problem

(3.1)-(3.2) has at least one solution.

As another corollary, let us consider the case where G is a Nemytskii-type operator,

i.e. there exists a g : [0, 1] × R → R such that G(x)(t) = g(t, x(t)). Let M =

K−1 (M − ∥|(L −Ψ)−1(0)∥|gr).

Corollary 3.4.6. Suppose the hypotheses of Theorem 3.3.3 are satisfied. If g(t, ·) is

continuous for each t ∈ [0, 1] and there exists an M > 0 such that |ϕ(x)| ≤ M for all

∥|x∥|gr ≤ M and |g(t, s)| ≤ M for all |s| ≤ MC2 and t ∈ [0, 1], then the mapping

G : D(L) → L2 × R2 given by G(x) =

 g(·, x(·))

ϕ(x)

 satisfies the hypotheses of Theorem

3.4.2.

Proof. Consider any x ∈ D(L) such that ∥|x∥|gr ≤ M , with M defined as above. Then
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|x(t)| ≤ ∥x∥∞ ≤ C2∥|x∥|gr ≤ MC2 for each t ∈ [0, 1], and |g(t, x(t))| ≤ M for each

t ∈ [0, 1]. Hence

∥G(x)∥ = max{
(∫ 1

0

|g(t, x(t))|2 dt
)1/2

, |ϕ(x)|}

≤ max{
(∫ 1

0

(
M
)2
dt

)1/2

,M} =M.

Remark 3.4.7. We conclude by stating another important special case of Theorem 3.4.2

when G is an integral operator, i.e. there exists a g : [0, 1]×R → R such that G(x)(t) =∫ t

0
g(k, x(k)) dk. Suppose g(t, ·) is continuous for each t ∈ [0, 1] and there exists anM > 0

such that |ϕ(x)| ≤M for all ∥|x∥|gr ≤M and |g(t, s)| ≤M for all |s| ≤MC2 and for each

t ∈ [0, 1]. Let G(x) =

 ∫ ·
0
g(k, x(k)) dk

ϕ(x)

 be a mapping from D(L) → L2 × R2. Then

an immediate calculation of ∥G(x)∥ as in Corollary 3.4.6 implies that G again satisfies

the hypotheses of Theorem 3.4.2.
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Chapter 4

Existence of Periodic Solutions to

Nonlinear Difference Equations at

Full Resonance

4.1 Introduction

In this chapter, we study the solvability of nonlinear discrete systems of the form

∆x(t) = f(ϵ, t, x(t)). (4.1)

In particular, we are interested in finding N -periodic solutions of the above system, where

we assume f(ϵ, t, x) = f(ϵ, t+N, x). Here, f = (f1, f2, . . . , fn)
T where fi : R×R×Rn → R

for i = 1, 2, . . . , n. Note that the solution space of the corresponding linear homogeneous

system is n-dimensional, i.e. the system is at full resonance. Our approach in providing

sufficient conditions for the existence of periodic solutions to (4.1) depends significantly
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on this resonance along with asymptotic properties of the nonlinear function f(0, t, x).

Since the solution space of the associated linear homogeneous equation is non-trivial,

we will use a projection scheme (Lyapunov-Schmidt procedure) together with the Brouwer

fixed point theorem to analyze the nonlinear problem (4.1). A similar approach has

often been used in the study of both continuous and discrete dynamical systems (see, for

instance, [1,2,6,7,9-11,13,14,20-22,25,26,28-32]). Our results complement previous work

in the study of periodic discrete dynamical systems. We allow for higher-dimensional

solution spaces of the associated linear problem as well as for more general asymptotic

behavior of the nonlinear function f .

4.2 Preliminaries

For each natural number N ≥ 2, let XN be the set of all sequences x from {0, 1, 2, 3, ...}

into Rn that are N -periodic; that is, x(l + N) = x(l) for every l ∈ {0, 1, 2, 3, ...}. For

x ∈ XN , let ∥x∥∞ = sup{|x(l)| : l = 0, 1, 2, 3, ...}.

We define L : XN → XN by

Lx(t) = ∆x(t) = x(t+ 1)− x(t) for t = 0, 1, 2, 3, ...,

and define Fϵ : R×XN → XN by

Fϵ(x)(t) =



f1(ϵ, t, x(t))

f2(ϵ, t, x(t))

...

fn(ϵ, t, x(t))


for t = 0, 1, 2, 3, ....
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We assume each fi is a continuous map from R × R × Rn into R for i = 1, 2, . . . , n.

It follows that Fϵ is continuous. It is assumed that for some m ∈ R, |fi(0, t, x)| ≤ m for

i = 1, 2, . . . , n. Hence, for all x ∈ XN , ∥F0(x)∥∞ ≤ m.

Our problem, finding periodic solutions to the system

∆x(t) = f(ϵ, t, x(t))

is equivalent to solving

Lx = Fϵ(x).

Since L is not invertible, we cannot apply the Brouwer Fixed Point Theorem directly.

We shall decomposeXN using the methods described in [9]. We find projections, P , ofXN

onto ker(L), and E, of XN onto Im(L), so that we may write XN = ker(L)⊕ Im(I−P )

and XN = Im(L)⊕ Im(I − E). The projections we use are those devised by Rodŕıguez

[23].

Let

(I − E)x(t) =
1

N

N−1∑
l=0

x(l) for t = 0, 1, 2, 3, ....

Let

Px(t) =
1

N

N−1∑
l=0

x(l) for t = 0, 1, 2, 3, ....

Remark 4.2.1. If L̃ is the restriction of L to Im(I − P ) then Im(L̃) = Im(L). L̃,

viewed as a map from Im(I −P ) into Im(L) is invertible. We denote (L̃)−1 by M . One

may then verify

i. M is bounded and linear

ii. MLx = (I − P )x for all x ∈ D(L)
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iii. LMh = h for all h ∈ Im(L)

iv. EL = L and (I − E)L = 0

v. PM = 0

Proposition 4.2.2. Lx = Fϵx is equivalent to

 x = Px+MEFϵ(x)

(I − E)Fϵ(Px+MEFϵ(x)) = 0
(4.2)

Proof: We have Lx = Fϵx if and only if

 E(Lx− Fϵx) = 0

(I − E)(Lx− Fϵx) = 0

if and only if  Lx = EFϵ(x)

(I − E)Fϵ(x) = 0

if and only if  (I − P )x =MEFϵ(x)

(I − E)Fϵ(x) = 0

if and only if  x = Px+MEFϵ(x)

(I − E)Fϵ(Px+MEFϵ(x)) = 0.
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4.3 Main Results

Since ker(L)=span{e1, e2, . . . , en}, where ei is the ith standard unit basis vector, we may

rewrite (4.2) of Proposition 4.2.2 as the equivalent system of n+ 1 equations


x = α1e1 + α2e2 + . . .+ αnen +MEFϵ(x)

0 =
N−1∑
l=0

fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . , αn + [MEFϵ(x)]n(l)), i = 1, . . . , n.

The proof of Theorem 4.3.1 relies on techniques that appear in [2,6,7,12,21,22,25,28].

Theorem 4.3.1. Suppose that

(i) fi : R × R × Rn → R for i = 1, 2, . . . , n is continuous, and for some m ∈ R,

|fi(0, t, x)| ≤ m for i = 1, 2, . . . , n.

(ii) For each i = 1, 2, . . . , n, there exist constants Li, Pi, Ni > 0 such that for all xi >

Li, fi(0, t, x1, . . . , xi, . . . , xn) ≥ Pi and fi(0, t, x1, . . . ,−xi, . . . , xn) ≤ −Ni for all t =

0, 1, 2, . . . and all x1, . . . , xi−1, xi+1, . . . , xn ∈ R.

Then, there exists an ϵ0 > 0 such that for ϵ ∈ [0, ϵ0], there exists at least one periodic

solution of

∆x(t) = f(ϵ, t, x(t)).

Proof: We define mappings

H1 : R×XN × Rn → XN ,

Hi+1 : R×XN × Rn → R,
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and

H : R×XN × Rn → XN × Rn

by

H1(ϵ, x, α1, . . . , αn) = α1e1 + . . .+ αnen +MEFϵ(x),

and for i = 1, . . . , n,

Hi+1(ϵ, x, α1, . . . , αn) = αi −
N−1∑
l=0

fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . , αn + [MEFϵ(x)]n(l)).

H is then given by

H(ϵ, x, α1, . . . , αn) = (H1(ϵ, x, α1, . . . , αn), . . . , Hn+1(ϵ, x, α1, . . . , αn)) .

We shall first analyze the case when ϵ = 0. Note that for i = 1, 2, . . . , n, |[MEF0(x)]i(l)| ≤

∥ME∥m for every l ∈ {0, 1, 2, ...} and every x ∈ XN .

Consider Hi+1(0, x, α1, . . . , αn) for each i = 1, 2, . . . , n. If αi is sufficiently large, we

may ensure

fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l)) ≥ Pi > 0

and

fi(0, l, α1+[MEF0(x)]1(l), . . . ,−αi+[MEF0(x)]i(l), . . . , αn+[MEF0(x)]n(l)) ≤ −Ni < 0
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for every l ∈ {0, 1, 2, ...} and every x ∈ XN . Therefore there is some γi > Nm + 1 > 0

such that for all x ∈ XN and for all α1, . . . , αi−1, αi+1, . . . , αn ∈ R,

Hi+1(0, x, α1, . . . , αi, . . . , αn) < αi and Hi+1(0, x, α1, . . . ,−αi, . . . , αn) > −αi for αi > γi.

We let δi = γi +Nm+ 1.

Now if αi ∈ [γi, δi], then for all x ∈ XN and α1, . . . , αi−1, αi+1, . . . , αn ∈ R we have

Hi+1(0, x, α1, . . . , αi, . . . , αn)

= αi −
N−1∑
l=0

fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))

≥ αi −
N−1∑
l=0

|fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))|

≥ αi −Nm

> αi − γi

≥ 0

and
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Hi+1(0, x, α1, . . . ,−αi, . . . , αn)

= −αi −
N−1∑
l=0

fi(0, l, α1 + [MEF0(x)]1(l), . . . ,−αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))

≤ −αi +
N−1∑
l=0

|fi(0, l, α1 + [MEF0(x)]1(l), . . . ,−αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))|

≤ −αi +Nm

< −αi + γi

≤ 0.

Thus for all x ∈ XN , α1, . . . , αi−1, αi+1, . . . , αn ∈ R, and αi ∈ [γi, δi],

Hi+1(0, x, α1, . . . , αi, . . . , αn), Hi+1(0, x, α1, . . . ,−αi, . . . , αn) ∈ [−αi, αi] ⊆ [−δi, δi].

Furthermore, if 0 ≤ αi < γi, for all x ∈ XN and

α1, . . . , αi−1, αi+1, . . . , αn ∈ R,

|Hi+1(0, x, α1, . . . ,±αi, . . . , αn)|

≤ | ± αi|

+
N−1∑
l=0

|fi(0, l, α1 + [MEF0(x)]1(l), . . . ,±αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))|

≤ γi +Nm

< δi.

We have shown that for ϵ = 0, Hi+1 maps XN × [−δi, δi]×Rn−1 into [−δi, δi] for each
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i = 1, 2, . . . , n.

Define B = {(x, α1, . . . , αn) ∈ XN×Rn : ∥x∥∞ ≤ δ1+. . .+δn+∥ME∥m+1 and |αi| ≤

δi for each i = 1, 2, . . . , n}, and note that B is a non-empty, closed, bounded, convex set.

From the above results, it follows that for (x, α1, . . . , αn) ∈ B, H(0, x, α1, . . . , αn) ∈ B.

For if (x, α1, . . . , αn) ∈ B, then Hi+1(0, x, α1, . . . , αn) ∈ [−δi, δi], while

∥H1(0, x, α1, . . . , αn)∥∞ ≤ |α1| ∥e1∥∞ + . . .+ |αn| ∥en∥∞ + ∥MEF0(x)∥∞

≤ δ1 + . . .+ δn + ∥ME∥m

< δ1 + . . .+ δn + ∥ME∥m+ 1.

Since H is a continuous function, the Brouwer Fixed Point Theorem guarantees existence

of at least one fixed point of H in B.

Now consider the case when ϵ > 0. We will show that there exists ϵ0 ∈ R such that

for each ϵ ≤ ϵ0, H(ϵ, x, α1, . . . , αn) ∈ B whenever (x, α1, . . . , αn) ∈ B.

Choose ϵ small enough so that

∣∣∣fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . ,±αi + [MEFϵ(x)]i(l), . . . , αn + [MEFϵ(x)]n(l))−

fi(0, l, α1 + [MEF0(x)]1(l), . . . ,±αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))
∣∣∣
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< min

{
Pi

2
,
Ni

2
,
1

N

}
for all (x, α1, . . . , αn) ∈ B.

Note that we may now assume ϵ lies in some compact interval of R, from which it

follows that for all x ∈ Bx = {∥x∥∞ ≤ δ1 + . . . + δn + ∥ME∥m + 1}, ∥Fϵ(x) − F0(x)∥∞

can be made arbitrarily small for sufficiently small ϵ. For our purposes, choose ϵ small

enough so that for all x ∈ Bx,

∥MEFϵ(x)∥∞ ≤ ∥ME∥(∥Fϵ(x)− F0(x)∥∞ + ∥F0(x)∥∞)

≤ ∥ME∥
(

1

∥ME∥
+m

)
= 1 + ∥ME∥m.

For each ϵ satisfying the above properties, it now follows that H(ϵ, x, α1, . . . , αn) ∈ B

whenever (x, α1, . . . , αn) ∈ B. First observe that for all (x, α1, . . . , αn) ∈ B,

∥H1(ϵ, x, α1, . . . , αn)∥∞ ≤ |α1| ∥e1∥∞ + . . .+ |αn| ∥en∥∞ + ∥MEFϵ(x)∥∞

≤ δ1 + . . .+ δn + ∥ME∥m+ 1.

Next, for all αi ∈ [γi, δi],
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Hi+1(ϵ, x, α1, . . . , αi, . . . , αn)

= αi −
N−1∑
l=0

(
fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . , αi + [MEFϵ(x)]i(l), . . . , αn + [MEFϵ(x)]n(l))

− fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))

)
−

N−1∑
l=0

fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))

≤ αi −
N−1∑
l=0

(
fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . , αi + [MEFϵ(x)]i(l), . . . , αn + [MEFϵ(x)]n(l))

− fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))

)
−NPi

< αi − NPi

2

< αi,

while a similar calculation shows that Hi+1(ϵ, x, α1, . . . ,−αi, . . . , αn) > −αi for all αi ∈

[γi, δi].

Also, for all αi ∈ [γi, δi],
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Hi+1(ϵ, x, α1, . . . , αi, . . . , αn)

= αi −
N−1∑
l=0

(
fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . , αi + [MEFϵ(x)]i(l), . . . , αn + [MEFϵ(x)]n(l))

− fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))

)
−

N−1∑
l=0

fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))

≥ αi −
N−1∑
l=0

∣∣∣fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . , αi + [MEFϵ(x)]i(l), . . . , αn + [MEFϵ(x)]n(l))

− fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))
∣∣∣

−
N−1∑
l=0

∣∣∣fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l)
∣∣∣

≥ αi −
N−1∑
l=0

∣∣∣fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . , αi + [MEFϵ(x)]i(l), . . . , αn + [MEFϵ(x)]n(l))

− fi(0, l, α1 + [MEF0(x)]1(l), . . . , αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))
∣∣∣

−Nm

> αi −Nm− 1

> αi − γi

≥ 0,

while a similar calculation shows that Hi+1(ϵ, x, α1, . . . ,−αi, . . . , αn) ≤ 0 for all αi ∈

[γi, δi].
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Finally, for all αi ∈ [0, γi],

|Hi+1(ϵ, x, α1, . . . ,±αi, . . . , αn)|

≤ | ± αi|+
N−1∑
l=0

∣∣∣fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . ,±αi + [MEFϵ(x)]i(l), . . . , αn + [MEFϵ(x)]n(l))

− fi(0, l, α1 + [MEF0(x)]1(l), . . . ,±αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))
∣∣∣

+
N−1∑
l=0

∣∣∣fi(0, l, α1 + [MEF0(x)]1(l), . . . ,±αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))
∣∣∣

≤ γi +
N−1∑
l=0

∣∣∣fi(ϵ, l, α1 + [MEFϵ(x)]1(l), . . . ,±αi + [MEFϵ(x)]i(l), . . . , αn + [MEFϵ(x)]n(l))

− fi(0, l, α1 + [MEF0(x)]1(l), . . . ,±αi + [MEF0(x)]i(l), . . . , αn + [MEF0(x)]n(l))
∣∣∣

+Nm

< γi +Nm+ 1

= δi.

Hence for each ϵ sufficiently small, H(ϵ, x, α1, . . . , αn) ∈ B whenever (x, α1, . . . , αn) ∈

B. Since H is a continuous function, the Brouwer Fixed Point Theorem guarantees

existence of at least one fixed point of H in B. This fixed point is a periodic solution of

∆x(t) = f(ϵ, t, x(t)).
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[10] D.L. Etheridge and J. Rodŕıguez, Scalar discrete nonlinear two-point boundary value
problems, Journal of Difference Equations and Applications 4 (1998), pp. 127-144.

[11] A. Halanay, Solutions periodiques et presque-periodiques des systemes d’equations
aux differences finies, Arch Rational Mech. Anal. 12 (1963), pp. 134-149.

[12] J.K. Hale, Applications of alternative problems, Lecture Notes vol. 71-1, Brown
University, Providence, RI (1971).

[13] J.K. Hale, Ordinary Differential Equations, Robert E. Kreiger Publishing Company,
Malabar, Florida (1980).

[14] W. Kelley and A. Peterson, Difference Equations, Academic Press, 1991.

[15] W. Kelley and A. Peterson, The Theory of Differential Equations: Classical and
Quantitative, Prentice Education, 2004.

64



[16] E.M. Landesman and A.C. Lazer, Linear eigenvalues and a nonlinear boundary value
problem, Pacific Jour. Math 33 (1970), 311-328.

[17] A.C. Lazer and D.E. Leach, On a nonlinear two-point boundary value problem, Jour.
Math. Anal. and Appl. 26 (1969), 20-27.

[18] A.C. Lazer and D.A. Sanchez, On periodically perturbed conservative systems, Michi-
gan Mathematical Journal 16 (1969), 193-200.

[19] D.E. Leach, On Poincare’s perturbation theorem and a theorem of W.S. Loud, Jour.
Diff. Equns. 7 (1970), 34-53.

[20] D.C. Lewis, On the role of first integrals in the pertubation of periodic solutions,
The Annals of Mathematics, Second Series 63 (1956), pp. 535-548.
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