
ABSTRACT

HUMBER, CARY ROSS. Sparse Regularization for Inverse Problems Governed by
Evolution Equations. (Under the direction of Kazufumi Ito.)

The purpose of this thesis is twofold. Firstly, we introduce a novel method for es-

timating the state of a system governed by a linear evolution equation. The method

utilizes the adjoint of the partial differential equation (PDE) and a basis for the Hilbert

space to accurately reconstruct the initial condition. The method also provides a filter

bank which can be utilized for the purpose of reconstructing initial conditions based on

given data. We then extend the method to include source identification and simultaneous

state/parameter estimation for a certain class of problems.

Secondly, we develop and analyze the multi-parameter regularization necessary for

the accurate approximation of inverse problem solutions. The regularization is essential

for both the state estimation method developed in this thesis, as well as for the general

inverse problem theory. The multi-parameter regularization allows for solutions which

may have a multi-scale profile. Specifically, we address problems involving sparsely dis-

tributed measurements. In addition, solutions which are, themselves, locally supported

are treated, such as collections of point sources. The method developed is widely appli-

cable and accurate, as demonstrated in this thesis.
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Chapter 1

Introduction

1.1 Motivation

The motivation for this thesis originates from the practical needs of many classically

difficult inverse problems in the mathematical sciences, as well as some of the more re-

cent needs throughout the sciences. The primary mathematical focus of this thesis is

the solution of inverse problems for the purpose of reconstructing states and identifying

parameters of evolution equations. Roughly speaking, inverse problems involve deter-

mining a solution to a problem for which the governing dynamics are known, and the

measurements, or output, of the system are given. For instance, one may be given a time

series, or sampling, of the current heat profile of a metal plate and be asked what the

initial heat profile was one hour prior. Of course, if a full history of data is available its

just a matter of searching in the right place. Many of the most interesting and relevant

scientific problems involve an incomplete time history of data. This is the case either be-

cause of storage constraints or due to unavailability/inaccessibility of data. In addition,

the data may be sparsely distributed across the “area” being measured.

Inverse problems have both theoretical and numerical difficulties, making them inter-

esting to consider, mathematically. Furthermore, inverse problems are very important

scientifically, as there is certainly some sort of inverse problem in every corner of the

scientific world. Many scientific efforts are devoted to dealing with constantly growing

size and availability of data. On the contrary, the necessity for stably reconstructing

solutions of dynamical systems from sparse measurements is paramount. By sparse mea-

surements, we mean either the measurements are either sparsely distributed over the
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domain in time, or the measurements are only available for select time values, such as

the final time. Not only is it necessary to reconstruct solutions from sparse measurements

for obvious reasons, but the ability to reconstruct solutions from a sparse set of data can

help mitigate the constant flood of data. This thesis seeks to generalize some of the work

already produced in the field of dynamical inverse problems and to improve upon the

solution methods for stable reconstruction.

Not only is there increased interest in data reduction/sparsity, but there is increased

motivation for robust algorithms that can adapt to varying noise levels in the data.

Problems such as numerical weather prediction involve solving large scientific problems

repeatedly throughout the day (and night). It is desired for the algorithms to adapt to

changes in the data and to fluctuations in noise levels. We utilize the Tikhonov type

regularization to stably construct solutions, where the parameters are chosen based on

a priori information. Given the needs of the scientific community, the two concepts of

sparsity/compression and adaptability/tunability are at the forefront throughout this

thesis.

As a consequence of the methods developed in this thesis, we are able to effectively

deal with some of the problems involved with large datasets, effectively mining the data.

Though the availability of data can certainly be a blessing, there are difficulties that must

be overcome when dealing with large datasets. The ever-growing size and availability

of data plagues many already difficult problems. Not only that, but it has become

increasingly apparent over the last several years that some problems can be solved given

very little data in comparison to the size of the problem (i.e., compressed sensing [7]).

This is good news for mathematicians tasked with solving difficult problems, but it

also provides opportunity for developing hardware and software capable of efficiently

utilizing compressed data. Of course, this thesis is void of hardware/software issues,

however many questions remain pertaining to compressed sensing, sparsity optimization

and general inverse problem theory for systems governed by evolution equations.

In the general framework, we consider the inverse (deconvolution) problem of the

form

Kv = yδ (1.1.1)

where K is a compact operator. The data, yδ, is assumed to be noisy and possibly

incomplete. The operator, K, may correspond to a number of operations, including

convolution, integration, scattering, et cetera. Numerous applications have been studied
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and continue to be studied, while new applications continue to emerge which fall into

this framework. An incomplete list includes computerized tomography, inverse scattering,

data assimilation for weather forecasting, and so on. A more complete set of examples

can be found in the monographs [9, 11, 22].

As already mentioned, we are particularly motivated by state and parameter esti-

mation problems involving systems governed by partial differential equations (PDE). For

instance, in the meteorological sciences, one may wish to determine the atmospheric pres-

sure or velocity from sensor data. The essential features can be modeled by the (linear)

convection-diffusion equation

∂v

∂t
= c(x) · ∇v +∇ · (d(x)∇v) + f(x). (1.1.2)

For this particular problem, the unknown is the state, v(x, t1), at some time in the recent

past, t1. In general, the coefficients c, d may be unknown as well. Actual observations

are taken at various sample locations. Using the data and the PDE formulation, an

approximate past state is solved for, which is then used as the initial condition for a

simplified numerical weather prediction. The full formulation of this problem, based on

the Navier-Stokes equations, can be found in the paper [14].

Other related, but simpler, PDE that have similar inverse problem formulations are

the diffusion equation
∂v

∂t
= ∇ · (d(x)∇v) + f(x), (1.1.3)

and the reaction-diffusion equation

∂v

∂t
= D∆v + f(v). (1.1.4)

For the corresponding inverse problems, we are given either a time series of sampled

solution values, v(x, t), or a sample of the final time solution v(x, tf ). That is, certain

regions are observed in time, such as the boundary or averages over subdomains; or the

final state is observed at distributed locations. In either case, for practical applications,

the data is noisy and biased. The problem is then to determine the initial condition of

the PDE given the noisy partial measurements. The identification of the initial condition

of PDE may be ill-posed, especially if the equation is of parabolic type, such as (1.1.2)

or (1.1.3). A problem is ill-posed if one or more of the following is not satisfied:
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1. For all admissible data, a solution exists,

2. For all admissible data, the solution is unique,

3. The solution depends continuously on the data.

The concept of ill-posedness and methods for dealing with it will be made more clear

in Chapter 4. An example of a highly ill-posed problem is the homogeneous backwards

heat equation

∂v

∂t
= ∇ · (c(x)∇v), x ∈ Ω (1.1.5)

v(x, tf ) = φ(x) (1.1.6)

vΓ = 0, Γ = ∂Ω (1.1.7)

due to the amplification of errors by the generalized Fourier expansion of the solution

(see [11] for further details). Here, we are solving the heat equation backwards in time,

given the final time heat profile. The problem’s difficulty is compounded when the final

temperature profile is only available on a subdomain. That is, we are given measurements

y = v(x, tf ) x ∈ Ωs

for some set Ωs ⊂ Ω. For our purposes, we assume the points x ∈ Ωs are sparsely

distributed in Ω. Solving the heat equation backwards introduces large errors due to

integrating small errors from the noisy data. Due to the nature of the fundamental

solution of the heat equation, the small errors in the data become exponentially amplified.

Identifying the initial heat profile from the full final time heat profile is a more classical

inverse problem. Modern day problems of this type have evolved to include more practical

concerns. For example, as already mentioned, the data may be a partial time series of

the solution. In this case, at each time step, the solution may be available for output at

select points in the domain, or the data may be available as averages over one or more

subdomain. In the latter case, we are given measurements

y(t) = Cv(t)
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where

Cv(t) =
1

µ(Ωs)

∫
Ωs

v(s)dµ

for some set Ωs ⊂ Ω having volume µ(Ωs). If the output available is relatively small, this

is essentially the idea of sparsity/compression, which has become increasingly important

over the last several years in the sciences. For instance, the available data may be sparse

in comparison to the size of the problem (i.e., 10% of a region may be available for

measurement). Given very little information, it is then necessary to reconstruct the

solution as accurately as possible. Fortunately, the general theory allows us to do so (see

[7]). The need to reconstruct solutions from sparsely available data is not only true for

PDE inverse problems, but for the general inverse problem (1.1.1).

In the same way, one may also be interested in reconstructing solutions that are

sparsely distributed themselves, rather than the data being sparsely distributed. For

example, the initial condition of the heat equation may be a collection of point sources,

δ(x − xj), located at xj. Here, one needs to use the a priori information about the

solution (i.e., sparsity) to assist in the recovery. Other formulations include identifying

the unknown coefficients c, d in addition to the initial condition, v(0), being unknown.

To develop and analyze methods for solving problems of the general form (1.1.3),

(1.1.2) we cast the PDE as an abstract Cauchy problem of the form

dv

dt
(t) = Av(t) (1.1.8)

y(t) = Cv(t) (1.1.9)

where A is the generator of a C0-semigroup, and C is an observation operator. This

formulation, and methods for solving inverse problems derived from this formulation,

will be discussed in Chapter 2.

1.2 Examples

Solving inverse problems based on the formulation (1.1.8)-(1.1.9) and (4.1.1) is very im-

portant for many scientific applications, such as weather forecasting, data classification,

image processing, inverse scattering, financial analysis, et cetera. To forecast some of the

potential applications of the methods developed in this thesis, we give several examples of
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PDE that will fall into the general framework. Note that not all of the examples are ac-

tually considered in numerical results of this thesis, however, the methods are applicable

to each PDE.

Convection-Diffusion Equation

The homogeneous convection-diffusion equation with homogeneous Dirichlet boundary

condition is given by

∂v

∂t
(x, t) = c(x) · ∇v(x, t) +∇ · (d(x)∇v(x, t)) (1.2.1)

v(x, 0) = v0(x) (1.2.2)

v(x, t) = 0 x ∈ ∂Ω (1.2.3)

where the first term on the right-hand side corresponds to convection, while the second

term corresponds to diffusion. The coefficients c, d are the convection and diffusion co-

efficients, respectively. The convection-diffusion equation can be thought of as modeling

a simplified weather system or of a mass-transport system. In the case of a simplified

weather system, our method allows the reconstruction of a past weather state. This is

a linear PDE, unlike the Navier-Stokes, so it falls into the framework presented in this

thesis without modification.

Wave Equation

The second order linear hyperbolic PDE

∂2v

∂t2
(x, t) = c2∆v(x, t) (1.2.4)

∂

∂t
v(x, 0) = ψ(x) (1.2.5)

v(x, 0) = 0 (1.2.6)

describes the propagation of waves with a speed c. Given its generality, numerous scien-

tific problems can be modeled by the wave equation or a modified wave equation. For

instance, the one way wave equation has been utilized for PDE migration techniques

which is outlined in Section 7.2.4 and the report [23].
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Black-Scholes

The Black-Scholes model for pricing European options is described by a parabolic equa-

tion of the form

− d

dt
v(t, S)−

(
σ2

2
S2vSS + (r − δ)SvS − rv

)
= 0 (1.2.7)

v(tf , S) = ψ(S). (1.2.8)

Here, S > 0 denotes the price of the stock, v the value of the share, r > 0 is the interest

rate, δ the influence of dividends, and σ > 0 is the volatility. Further, T is the maturity

date and ψ is the reward function. Typically, the reward function is ψ(S) = max(0, K−S)

for the put option and ψ(S) = max(0, S −K) for the call option, where K is the strike

price. Interesting inverse problems to consider would be to determine the reward function

given the stock index, or to recover the unknown strike price K. The formulation of such

problems is discussed in the paper [21].

Navier-Stokes

It is beyond the scope of this thesis, due to nonlinearity, however the long-term goal

includes the extension to the nonlinear case. In this case, inverse problems involving the

incompressible Navier-Stokes equations may be considered:

∂

∂t
vi +

n∑
j=1

vj
∂vi
∂xj

= ν∆vi −
∂p

∂xi
+ fi(x, t) (x ∈ Rn, t ≥ 0), (1.2.9)

div v =
n∑
i=1

∂vi
∂xi

= 0 (x ∈ Rn, t ≥ 0), (1.2.10)

with initial conditions

v(x, 0) = v0(x) (x ∈ Rn).

In this case, the unknowns may be the initial condition v(x, 0), the viscosity ν, or the

force fi.

The field of inverse problems has been widely studied, but there are still unanswered or

partially answered questions. Advances in theoretical mathematics, computer technology

and data storage have all contributed to more interesting and important problems being
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solved. It is the goal of this thesis to give new insight into the solution of inverse problems

from sparsely distributed data or when the solution itself is assumed to be sparsely

distributed. Several applications will be considered in the Numerical Tests section of this

thesis which demonstrate the applicability of the methods developed.

1.3 Contributions of this thesis

The principal contribution of this thesis is twofold. First we introduce a new approach for

estimating the initial condition of the abstract Cauchy problem in Chapter 2. Further,

we show how the method produces stable approximations and accurately reconstructs

the initial state. In short, the method is based on the dual control problem of (1.1.8)

− dp

dt
(t) = A∗p(t) + C∗u(t) (1.3.1)

where the control, u, is selected so that we can estimate the generalized Fourier coefficients

of the initial condition, x0, for a chosen basis. Here, we need to solve the corresponding

control problem with a certain regularity of the control. Thus, we develop the necessary

regularization tools in Chapter 4. The overall method for state estimation involves

1. Integrating the dual equation (1.3.1) against the state equation (1.1.8)

2. An appropriate basis selection for the Hilbert space X

3. Tikhonov type regularization for determining the control

Secondly, we develop a generalized regularization framework for solving a wider class

of inverse problems in Chapter 4. The development of the regularization framework

is motivated by the state estimation problem, but is necessary for numerous ill-posed

inverse problems, as will be demonstrated throughout this thesis.

Lastly, we provide demonstrations of the applicability of the method.

1.4 Outline

In Chapter 2, we develop the necessary background and tools for the introduction of a

novel technique for state estimation in systems governed by PDE. The method utilizes
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the adjoint equation (1.3.1) to yield a filter bank of controls which can be utilized for

repeated initial condition estimations, based on time-series measurements. We are also

able to forecast future states based on the formulation derived. Further, the method has

several formulations which are analyzed and compared with the standard linear least-

squares approach for state estimation. Briefly, the least-squares approach does not allow

for control of the errors, however, the dual control method has a concrete error estimate.

In addition, the methods can be combined with the standard Kalman-Bucy filter and

with time-reversal methods, as developed in Chapter 2.

In Chapter 3, we provide two extensions of the methods developed in Chapter 2 to

problems of source identification and simultaneous state/parameter estimation for locally

constant parameters. The extensions allow for more difficult problems to be considered

showing the strength of the methods.

In Chapters 4 and 5, we develop the theory and algorithms for ill-posed inverse

problems, with an emphasis on multi-parameter regularization and sparsity optimization.

These tools are necessary for the methods developed in Chapters 2 and 3, as well as for

more general inverse problems. In particular, the sparsity optimization has become an

increasingly important computational tool for obtaining compressed solutions and feature

selection.

Finally, in Chapter 6, we give extensive numerical tests. The numerical tests are based

on initial condition estimation and source identification for the diffusion and convection-

diffusion equations. Several formulations are considered, including point source identi-

fication from sparse measurements. As a consequence of what may be considered, two

real world applications are briefly presented in Chapter 7 which are indirectly related to

the methods developed in this thesis. However, the applications show the strength of the

multi-parameter and sparsity regularization. We conclude with future research directions

based on this thesis, including the extension to nonlinear problems.
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Chapter 2

State Estimation for the Abstract

Cauchy Problem

2.1 Problem Description

Consider the abstract Cauchy problem

dx

dt
(t) = Ax(t) + f(t) (2.1.1)

where we have measurements

y(t) = Cx(t) (2.1.2)

for x in a Hilbert space X (e.g., X = L2(Ω)). We assume the operator A is linear

and generates a strongly continuous semigroup St : R → L(X), while C : X → Y

is an observation operator. Depending on the specific problem, it may be desired to

determine the initial condition x(0) or the final state x(tf ), given the incomplete (and

possibly noisy) measurements y. The primary focus in this thesis is the reconstruction

of the initial condition, x0, from measurements y(t), 0 ≤ t ≤ tf . The forward problem of

forecasting a future state is almost surely better posed than the corresponding backwards

problem, however, certain applications require going backward and then forward (or vice

versa), such as weather prediction. We are especially interested in the case of partial

measurements (i.e., the measurements are sparsely distributed over the domain Ω). In the

following section, we develop methods for determining the initial state x(0), though the

same methods are applicable to forecasting the state x(tf ) with only minor adaptations

10



as will be shown. We begin by describing three approaches for accomplishing this task in

Sections 2.2-2.4. In each case, we assume the Hilbert space X is separable, so that there

exists a complete orthonormal sequence {ϕk}∞k=0.

The three approaches are similar in nature, since the approximation of x(0) = x0 is

taken to be

xm0 =
m∑
k=0

αkϕk,

where xm0 ∈ Xm ⊂ X and the coefficients αk are to be determined. The connection be-

tween this Chapter and Chapter 4 is that suitable regularization techniques are necessary,

whether the initial condition reconstruction is computed directly, or from the methods

developed in the following sections. This connection will be discussed in Chapter 4.

We also give details of the Kalman-Bucy filter and a Kalman-Bucy based time-reversal

method for the case when the operator A is skew-adjoint. This method is iterative in

nature in contrast to the method developed in this thesis. Finally, we outline some of

the issues necessary for the implementation of the methods developed in this chapter.

2.2 Standard Least-Squares Approach

In this section, we describe the standard least-squares approach for solving inverse prob-

lems involving the abstract Cauchy problem. The method described is well-known and

has a straight forward implementation. The least-squares method is highly applicable to

a wide-range of scientific problems, however, there are limitations that will be discussed

in this section. These limitations are the motivation for developing the algorithms in the

sections to follow, as these limitations will be overcome.

For the system governed by

dx

dt
(t) = Ax(t) + f(t), (2.2.1)

we assume f is known, and we are given the measurements in time

y(t) = Cx(t).

The measurements, y, are output from the system described by the Cauchy problem. For

instance, we could be given temperature profiles, atmospheric pressure, wind velocity, et

11



cetera. Given the time sampling of the solution profile, it is necessary to estimate the

initial solution profile. The theory for the abstract Cauchy problem is well-developed,

allowing a systematic formulation of the problem at hand. We know that the solution of

(2.2.1) in terms of the initial condition, x0, is given by the formula

x(t) = Stx0 +

∫ t

0

St−sf(s) ds,

where St is the C0-semigroup generated by A. Given the formula for x(t) in terms of x0,

we have the input to output relationship

y(t) = CStx0 + Cξ(t), 0 ≤ t ≤ tf ,

where have defined

ξ(t) =

∫ t

0

St−sf(s) ds.

Now, for notational convenience throughout this chapter, we define the operator

M = CSt 0 ≤ t ≤ tf , (2.2.2)

where tf is the final sampling time. If M is invertible, we can simply obtain x0 as

x0 =M−1y −M−1Cξ,

however, M is, in general, a compact operator, which implies an unbounded inverse.

Whenever M is not invertible, a common approach is the linear least-squares(LLS)

method given by

min
x∈X

1

2
‖y −Mx‖2

L2(0,tf ;Y ), (2.2.3)

for the case when f ≡ 0. Since M is compact, we consider the regularized linear least-

squares(RLLS) method, which is given by

min
x∈X

1

2
‖y −Mx‖2

L2(0,tf ;Y ) +
β

2
‖x‖2

X (2.2.4)

where β > 0 is a chosen parameter. Due to the compactness ofM, the problem of solving

Mx0 = y

12



is ill-posed, so the regularization parameter, β, is necessary, and must be chosen carefully.

The general theory of solving ill-posed linear problems, and the issue of how to select the

parameter β is discussed in Chapter 4. By the necessary optimality of (2.2.4) we have

the closed form solution

x† = (M∗M+ βI)−1M∗y

where M∗ is the adjoint of M and I is the identity operator in L(X).

A more functional analytic approach, for the case when f ≡ 0, is described as follows.

We assume {ϕk}mk=0 is an orthonormal basis for Xm ⊂ X and seek an

xm0 ∈ Xm = span{ϕk; 0 ≤ k ≤ m}

such that
1

2
‖y −Mxm0 ‖2

L2(0,tf ;Y ) +
β

2
‖xm0 ‖2

X

is minimal. In this case, the task is to determine the minimizer α = (α0, . . . , αm) of

1

2
‖y −M

m∑
k=0

αkϕk‖2
L2(0,tf ;Y ) +

β

2
‖

m∑
k=0

αkϕk‖2
X .

Since {ϕk}mk=0 is orthonormal, the coefficients αk are simply the generalized Fourier co-

efficients

〈x0, ϕk〉X , 0 ≤ k ≤ m.

Now, the minimization

min
xm0 ∈Xm

1

2
‖y −Mxm0 ‖2

L2(0,tf ;Y ) +
β

2
‖xm0 ‖2

X

is equivalent to

min
α∈Rm+1

1

2
αtWα−

m∑
k=0

αk〈y,Mϕk〉+
1

2
‖y‖2 +

β

2
αtPα (2.2.5)

where Wk,l = 〈Mϕk,Mϕl〉. In general, the minimizer of (2.2.5) is determined by

(W + βP )α = F
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for Fk = 〈y,Mϕk〉, where P is a positive symmetric matrix which depends on the regu-

larization norm we select. If the regularization norm is ‖x‖X , as in (2.2.4), then P is the

identity matrix

Pi,j = 〈ϕi, ϕj〉X

by the orthonormality of {ϕk}mk=0. With α determined in this manner, we form the

approximate initial state by

xm0 =
m∑
k=0

αkϕk.

This approach can be summarized by the following:

Regularized Linear Least-Squares Algorithm:

1. Pick a basis {ϕk}mk=0 for Xm ⊂ X, pick β > 0, and a regularization

weight P .

2. Compute the Gram matrix Wk,l = 〈Mϕk,Mϕl〉Y and the vector Fk =

〈M∗y, ϕk〉X , or, with force f, Fk = 〈M∗(y − Cf), ϕk〉X .

3. Solve (W + βP )α = F for α.

4. Compute the approximation

xm0 =
m∑
k=0

αkϕk.

As has been shown, the LLS and RLLS methods can be seen as methods for approximat-

ing the generalized Fourier coefficients of the unknown function x0 ∈ X. An advantage of

the LLS and RLLS methods are the closed-form solutions, allowing for simple implemen-

tation and easy error checking. However, in practice, the methods are not substantially

accurate. Another limitation of the methods is the assumption of L2 smoothness of the

initial condition x0. Given these limitations, we are motivated to develop methods for

approximating the Fourier coefficients of x0 accurately and in a stable manner. Not only

that, but it is desired that the method be applicable to a class of solutions that are not

necessarily smooth in the L2 sense.
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2.3 A Dual Method for approximating the Fourier

expansion of the initial condition

In this section, we develop and analyze a new approach for estimating the initial condition

of the abstract Cauchy problem (2.1.1) from time-series data. This method is similar to

the LLS/RLLS methods presented in the previous section in that the approach is based on

the approximation of the generalized Fourier coefficients. However, the method developed

here involves an indirect computation of the generalized Fourier coefficients, based on the

dual equation of the Cauchy problem. The dual equation may also be referred to as the

adjoint equation. Given noisy data, the accuracy and stability of the method will be

demonstrated in this section. The general framework of our method allows numerous

PDE inverse problems to fit into this framework. Not only that, but it will be shown

that the method can also be applied to the less ill-posed problem of forecasting future

states of the system. Thus, our method may be especially beneficial for applications

such as weather forecasting or financial futures, where it may be necessary to go both

backward and forward.

Our approach for reconstructing x0 is based on the dual (adjoint) equation

− dp

dt
(t) = A∗p(t) + C∗u(t) (2.3.1)

where C∗ ∈ L(Y,X) corresponds to the adjoint of the observation operator C, and,

likewise, A∗ is the adjoint of the generator A. Here, u ∈ L2(0, tf ;Y ) denotes a control

or input to the system. The scope of this method is not to control the dynamics in the

typical sense. It will be demonstrated that a suitable control can be determined for which

the generalized Fourier coefficients can be approximated by the control, u, and the data,

y. This method is closely related to the Kalman-Bucy filter and Luenberger observer,

which will be discussed further in Section 2.5.

Now, we proceed to derive the method. Recall the state equation is given by

dx

dt
(t) = Ax(t) + f(t) (2.3.2)

and the measurements

y(t) = Cx(t), 0 ≤ t ≤ tf (2.3.3)
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are given, for a known source f . Multiplying (2.3.2) by p, (2.3.1) by x, and integrating

over (0, tf ) yields

tf∫
0

d

dt
〈x(t), p(t)〉 dt =

tf∫
0

(〈Ax, p〉X − 〈A∗p, x〉X − 〈C∗u, x〉X + 〈f(t), p(t)〉X) dt (2.3.4)

which implies that

〈x(tf ), p(tf )〉X − 〈x(0), p(0)〉X =

tf∫
0

〈f(t), p(t)〉X − (u(t), Cx(t))Y dt (2.3.5)

yielding the relation

〈x(tf ), p(tf )〉X − 〈x(0), p(0)〉X =

tf∫
0

(u(t), ξ(t)− y(t))Y dt, (2.3.6)

where

ξ(t) =

∫ t

0

CSt−sf(s) ds. (2.3.7)

The relationship (2.3.6) forms the foundation for our method.

The unique mild solutions of the abstract Cauchy problem and its dual, with condi-

tions x(0) = x0, p(tf ) = ptf , are respectively given by

x(t) = Stx0 +

∫ t

0

St−sf(s) ds (2.3.8)

p(t) = S∗tf−tptf +

tf∫
t

S∗s−tC
∗u(s) ds. (2.3.9)

The method developed here may be applied to forecasting a future state, x(tf ), as well as

reconstructing the initial condition, x(0). We first describe the method for reconstructing

the initial state x0. We assume the controllability of the adjoint system (2.3.1), which is

equivalent to the observability of (2.1.1). The pair (A,C) is observable if for all x ∈ X∫ tf

0

‖CStx‖2 dt ≥ γ‖x‖2 (2.3.10)
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for some γ > 0. Note that by the observability assumption (2.3.10), the equation

y =Mx

admits a unique solution, x∗ = x0, for y ∈ R(M), where M is the operator defined by

(2.2.2). Furthermore, this unique solution depends continuously on y (see [10]). Having

assumed the controllability of (2.3.1), we define the operator L : L2(0, tf ;Y )→ X by

L u :=

tf∫
0

S∗sC
∗u(s) ds

and seek a u satisfying

L u = p(0), (2.3.11)

which means that p(0) ∈ R(L ). Again, by the controllability/observability assumption,

we know a unique solution to (2.3.11), u, exists for p(0) ∈ R(L ). However, the exact

controllability of (2.3.1) is, in general, not true, so we assume the condition (2.3.11) holds

approximately, i.e., there exists uε such that

‖L uε − p(0)‖X ≤ ε (2.3.12)

for any ε > 0.

Now, we proceed by defining a collection of adjoint systems pk(0) = ϕk, such that

{ϕk}∞k=0 forms an orthonormal basis for X. Then 〈x(0), ϕk〉 are the generalized Fourier

coefficients for x(0). By the controllability assumption (2.3.10) and by utilizing relation

(2.3.6), we can determine the Fourier coefficients of x(0) by solving the operator equations

L uk = ϕk, 0 ≤ k ≤ m (2.3.13)

for some m < ∞. If (2.3.12) holds, we will construct stable approximations uk using a

suitable regularization method. An example of such a regularization method (for one-

dimensional u) for determining uk is

min
u∈L2(0,tf ;Y )

‖L u− ϕ‖2
X + η1

∫ tf

0

|u(t)| dt+
η2

2

∫ tf

0

|u′(t)|2 dt,
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where the first term corresponds to the sparsity of the approximate solution uk(t), t ∈
[0, tf ], while the second term corresponds to the smoothness of uk. We note that the

smoothness of uk may affect noise dampening (see Remark 2.3.2). Such regularization

methods are described in detail in Chapter 4, along with criteria for selecting the regu-

larization parameters η1, η2.

Our approach is based on the fact that for each basis function ϕk there exists a control

uk ∈ L2(0, tf ;Y ) such that L uk = ϕk (or ‖L uε − p(0)‖X ≤ ε). The controls uk(t) are

determined in such a way that each adjoint pk is driven from zero at time tf to pk(0) = ϕk.

With the uk(t) determined, we construct the approximation for x0 by

xm0 =
m∑
k=0

αkϕk

where the generalized Fourier coefficients are approximated by

〈x0, ϕk〉X ≈
∫ tf

0

(uk(t), y(t)− ξ(t))Y dt = αk (2.3.14)

using the relation (2.3.6) and condition (2.3.13).

Further analysis of the method is detailed below, including the error analysis in The-

orem 2.3.1. The following summarizes the method for estimating x0.

Dual Method for reconstruction of x0:

1. Pick an orthonormal basis, {ϕk}mk=0 for Xm ⊂ X

2. For each k solve L uk = ϕk for uk ∈ L2(0, tf ;Y )

3. Form the estimate for x0,

xm0 =
m∑
k=0

αkϕk

where

αk =

∫ tf

0

(uk(t), y(t)− ξ(t))Y dt

with ξ defined by (2.3.7)
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We note that the algorithm is well-posed under the exact controllability of the dual

control system, i.e. there exists γ > 0 such that∫ tf

0

‖CStx‖2 dt ≥ γ‖x‖2
X (2.3.15)

for all x ∈ X.

Using the method for forecasting a future state

Now, we briefly introduce how the method is utilized for the purpose of forecasting a

future state x(tf ). For this purpose, we assume the adjoint (2.3.1) is null-controllable so

that there exists u ∈ L2(0, tf ;Y ) such that p(0) = 0 and

L u = −Stfp(tf ). (2.3.16)

In general, the exact null-controllability may not hold, however we assume the condition

(2.3.16) holds approximately, i.e., there exists uε such that

‖L uε + Stfp(tf )‖X ≤ ε,

for any ε > 0. With uk determined, the generalized Fourier coefficients are approximated

by

〈x(tf ), ϕk〉X = −
∫ tf

0

(uk(t), y(t)− ξ(t))Y dt

where uk is the approximate solution to

L uk = −Stfϕk.

For the final state case, the method is well-posed under the assumption of null-controllability

of the adjoint control system, i.e.

S∗tfX ⊆ R(L ).

The method is summarized as follows:
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Dual Method for reconstruction of xtf :

1. Pick an orthonormal basis, {ϕk}mk=0 for Xm ⊂ X

2. For each k solve L uk = −Stfϕk for uk ∈ L2(0, tf ;Y )

3. Form the estimate for xtf ,

xmtf =
m∑
k=0

αkϕk

where

αk =

∫ tf

0

(uk(t), y(t))Y dt

or in general with force f

αk =

∫ tf

0

(uk(t), ξ(t)− y(t))Y dt

with

ξ(t) =

∫ t

0

CSt−sf(s) ds.

The novelty of this method is, in part, due to the fact that it is not necessary to

compute the time history of the adjoint, p. However, the method utilizes the informa-

tion available from the adjoint in order to accurately reconstruct x0. It will also be

demonstrated that we can construct sparse controls, u, yielding storage reduction with-

out sacrificing the accuracy of the reconstruction. This aspect is explored in Chapters 4,

6, where we develop methods for efficiently solving (2.3.13) and discuss numerical results,

respectively.

Remark 2.3.1. We also note that there is a stochastic/probabilistic interpretation of

this method. Assume x, p are random variables satisfying the linear stochastic differential

equations

dx = (Ax(t) + f(t))dt+ σdBt (2.3.17)

−dp = (A∗p(t) + C∗u(t))dt (2.3.18)
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where Bt is the Brownian motion, and σ is the standard deviation (diffusion coefficient).

Then, by the relation (2.3.6) we have

〈x0, ϕk〉X =

∫ tf

0

(uk(t), y(t))Y dt−
∫ tf

0

〈f(t), pk(t)〉Xdt+ σ

∫ tf

0

pk(t)dBt

which implies that

E[|〈x0, ϕk〉X −
∫ tf

0

(uk(t), y(t)− ξ(t))Y dt|2] = E[σ2|
∫ tf

0

pk(t) dt|2].

Thus, the mean square error in approximating the Fourier coefficients is related to the

standard deviation, σ, of the Brownian motion, regardless of that fact that p(tf ) = 0 (in

the case of estimating x0). Determining the control, uk, can be cast as

min
u∈L2(0,tf ;Y )

‖L u− ϕk‖2
X + βσ2

∫ tf

0

|p(t)|2 dt 0 ≤ k ≤ m

where

p(t) =

∫ tf

t

S∗s−tC
∗u(s) ds.

Thus, we select the parameter β so that ε2 + βσ2 is balanced, where ε is the accuracy of

the fidelity term

L uk − ϕk = ε.

The following theorem provides the error estimate of our reconstruction method in the

real Hilbert space setting, as well as justification for the method based on regularization.

In short, there are two sources of error in approximating the Fourier coefficients. The

first source of error is due to solving the equation L uk = ϕk, while the second source of

error is due to the noise, δ, in the observed data. The errors must be balanced to obtain

the best possible solution.

Theorem 2.3.1 (Error Estimate). Suppose (A∗, C∗) is approximately controllable, there

exists uk ∈ L2(0, tf ;Y ) such that

‖L uk − ϕk‖X ≤ εk
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for each 0 ≤ k ≤ m. If we define,

v(t) = yδ(t)− y(t)

and

‖v(t)‖ ≤ δ,

then there is a constant c(δ, tf ) such that

‖x0 − xmδ ‖X ≤ ‖x0 − xm‖X +
m∑
k=0

(εk‖x0‖X + c(δ, tf )‖uk(t)‖Z)

where Z = L2(0, tf ;Y ) and

‖x0 − xm‖X

is the truncation error of the generalized Fourier series. Furthermore, if x0 ∈ Ck(Ω),

then

‖x0 − xmδ ‖X ≤
m∑
k=0

(εk‖x0‖X + c(δ, tf )‖uk(t)‖Z) (2.3.19)

for m sufficiently large.

Proof. By the orhonormality of {ϕk}mk=0 and the Cauchy-Schwarz inequality

‖x0 − xmδ ‖X ≤ ‖x0 − xm‖X + ‖xm − xmδ ‖X

≤ ‖x0 − xm‖X + ‖
m∑
k=0

(
〈x0, ϕk〉X − 〈uk(t), yδ(t)〉Z

)
ϕk‖X

≤ ‖x0 − xm‖X + ‖
m∑
k=0

(〈L uk − ϕk, x0〉X + 〈uk(t), v(t)〉Z)ϕk‖X

from which the estimate follows. The estimate (2.3.19) follows from the standard Fourier

series analysis.

The error estimate is desired to be independent of the initial condition, x0, however

this is not realistic since x0 is the unknown. It should be noted, that the error estimate is

the worst possible error obtained in the estimation. Better error estimates may be real-

ized, however, the results of the Theorem also provide justification for the regularization
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methods. By the estimate,

‖x0 − xmδ ‖X ≤ ‖x0 − xm‖X + ‖
m∑
k=0

(〈L uk − ϕk, x0〉X + 〈uk(t), v(t)〉Z)ϕk‖X

we immediately see the need for appropriately solving uk. If the noise level, δ, is large

we must obtain controls which are sufficiently regular, so that the term

〈uk(t), v(t)〉Z

is small, while simultaneously ensuring ‖L uk − ϕk‖X is small. The following remark

further justifies imposing regularity on uk.

Remark 2.3.2. Suppose the noise in the data is highly oscillatory, such as cos(lπt).

Then the error in the Fourier coefficients has the term

1∫
0

uk(t) cos(lπt) dt =
1

lπ

1∫
0

u′k(t) sin(lπt) dt (2.3.20)

so that highly oscillatory parts may be damped by lπ, if uk is sufficiently smooth. This

provides further justification for the use of a penalty term in the cost functional which

enforces smoothness on the control uk.

It is also apparent that the accuracy, εk, in solving

L uk = ϕk

is necessary for an accurate reconstruction of x0. In practice, we must balance the

accuracy of solving L uk = ϕk and the regularity imposed on uk via the regularization

methods. This concern is addressed in Chapter 4 where we discuss how to balance the

method to obtain stable but accurate solutions.

2.4 Variation of the Dual Control Method

In this section, we outline an alternate procedure for obtaining reconstructions of the

initial condition, x0. This approach is based on the dual control approach developed
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in the previous section. Rather than selecting a collection {pk(0)}∞k=0 to be a basis for

X, we select {uk(t)}∞k=0 to be a basis(not necessarily orthonormal) for Z = L2(0, tf ;Y ).

Assuming the relation (2.3.11) holds, we construct the adjoint set {p̃k} by the relations

L uk = p̃k.

Note that the collection {p̃k}∞k=0 is linearly independent under the assumption that (A,C)

is controllable, i.e.,

R(L ) = X =⇒ N(L ) = ∅.

Thus, if (A,C) is exactly controllable, we form an orthogonal(orthonormal) basis by the

Gram-Schmidt method. The coefficients of x0 are computed by defining the Gram matrix

Gk,l = 〈p̃k, p̃l〉X

and setting β = (β0, . . . , βm)t such that

β = G−1


tf∫
0

(u0, y
δ) dt

...
tf∫
0

(um, y
δ) dt.


The coefficients β can be computed efficiently by the Cholesky decomposition G = LL∗,

since G is symmetric positive definite. Again, the algorithm is well-posed under the

exact controllability (2.3.15) of the adjoint system which, in general, may not be true. If

the adjoint system is not exactly controllable, care must be exercised to ensure the set

{L uk}mk=0 is linearly independent.

Variation of Dual Control Algorithm:

1. Pick a basis {uk(t)}mk=0 for Um ⊂ L2(0, tf ;Y )

2. Compute p̃k by L uk = p̃k

3. Compute the Gram matrix Gk,l = 〈p̃k, p̃l〉X
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4. Set yk =
tf∫
0

(uk(t), ξ(t)−y(t))Y dt and compute the approximate Fourier

coefficients β = G−1y

5. Compute the approximation

xm0 =
m∑
k=0

βkL uk

There are several potential advantages to this approach. Namely, one can directly reg-

ulate the properties of the controls uk, such as smoothness or sparsity. Secondly, the

operator L does not need to be inverted. However, since the pair (A∗, C∗) is not neces-

sarily controllable, we are not guaranteed linear independence of the set {p̃k}mk=0. Thus,

solving

Gβ =


∫ tf

0
(u0, y

δ) dt
...∫ tf

0
(um, y

δ) dt

 (2.4.1)

for β requires regularization. This method only requires the solution of one ill-posed

problem, but requires the formation of the m + 1 adjoints pk. Therefore, this method

may be less expensive than the dual control method.

2.5 Kalman-Bucy and Time-Reversal methods

In this section, we describe an iterative approximation method based on the Kalman-

Bucy filter and Luenberger type observers. The method is based on tracking the state

of a system in order to obtain a reasonable estimate at some time. Using a time-reversal

process, the method uses the observed estimate as the initial condition for integrating

the system backwards in time. In its original context, this method assumes the operator

A is skew-adjoint.

In light of the linear system (2.3.2), we consider the problem of estimating the state

which is described by the process

dx = Ax(t)dt+ σdBt (2.5.1)
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given measurements

dy = Cy(t)dt+ dvt. (2.5.2)

We assume Bt, vt are independent Brownian motions, with covariances Q,R, respectively,

that is

E[v(t)] = 0, E[v(t)vt(τ)] = Rδ(t− τ)

E[Bt] = 0, E[BtBτ ] = Qδ(t− τ).

The Kalman-Bucy filter is defined by

dx̂(t) = Ax̂(t)dt+ L(t)(y − ŷ)dt (2.5.3)

ŷ(t) = Cx̂(t) (2.5.4)

where L(t) is the Kalman filter gain and x̂ is an estimate of x. This filter is based on the

provided mean µx̂(0) and the covariance of x̂(0). That is, we have the provided initial

conditions

E[x̂(0)] = µx̂(0), (2.5.5)

E[(x̂(0)− µx̂(0))(x̂(0)− µx̂(0))t] = Σ(0). (2.5.6)

The Kalman filter gain is determined by

L(t) = Σ(t)C∗R−1

where Σ is the solution of the differential Riccati equation

d

dt
Σ(t) = A∗Σ(t) + Σ(t)A− Σ(t)C∗R−1CΣ(t) + σQσt (2.5.7)

Σ(0) = E[(x0 − E[x0])2] = cov(x0). (2.5.8)

The state estimate x̂(t) provides the maximum likelihood of the state x(t), given obser-

vations y(s), 0 ≤ s ≤ tf . The covariance, Σ, represents the uncertainty in the estimation

due to the noise.

It follows from (2.5.1) and (2.5.3) that the error dynamics for e(t) = x(t) − x̂(t) are
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given by

de(t) = (A− L(t)C)e(t)dt− L(t)v(t)dt+ σdBt (2.5.9)

and the mean error is governed by

dE[e(t)] = (A− L(t)C)E[e(t)]dt. (2.5.10)

In practice, we often take a stationary gain L so that A−LC generates an exponentially

stable semigroup on X. This corresponds to driving the mean error (2.5.10) to zero. The

covariance, Σ(t), represents the error variance E[(x(t)− x̂(t))(x(t)− x̂(t))] of the estimate

x̂. Whenever the pair (A,C) is observable, we can always determine a filter gain, L, such

that A− LC generates an exponentially stable semigroup [10].

Now, we describe the time-reversal technique for the case when A is skew-adjoint, i.e.

A∗ = −A. We assume the pair (A,C) is exactly observable. Since A is skew-adjoint, we

have stable dynamics both forward and backward in time for

dx

dt
(t) = Ax(t). (2.5.11)

The time-reversal technique works by utilizing the Kalman-Bucy filter to form an esti-

mate, x̂(tf ) at the terminal time tf . Then, a backwards filter forms the estimate of the

initial state, x̂b(0) by integrating (2.5.11) backwards in time. That is, the backward filter

is given by

dx̂b

dt
= Ax̂b + L(y(t)− Cx̂b)

x̂b(tf ) = x̂(tf ).

where x̂(tf ) is the terminal estimate of the state from the forward Kalman-Bucy filter.

Equivalently, the backwards filter is formulated as

− dx̂

dt
(tf − t) = Ax̂(tf − t) + L(y(tf − t)− Cx̂(tf − t)) (2.5.12)

given x̂(tf ), yielding the estimate, x̂(0), of the initial condition. Then, we forward inte-
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grate
dx̂

dt
(t) = Ax̂(t)

again to obtain a second estimate of x̂(tf ), and repeat the backwards filter (2.5.12).

Recursively, this can be cast as
dx̂k
dt

= Ax̂k + L(y − Cx̂k),

x̂k(0) = x̂bk−1(0),


dx̂bk
dt

= Ax̂bk + L(y − Cx̂bk),

x̂bk(tf ) = x̂k(tf ),

setting x̂b−1 = x̂0. When A is skew-adjoint, this method is of particular interest due to the

fact that minimization/optimization is not required. When A is not skew-adjoint, the

forward step of this method (Kalman-Bucy filter) can be utilized to obtain a reasonable

estimate of the final state, which can be used as the data in the dual control method to

estimate the initial condition. A similar iterative forward and backward algorithm can

be setup which uses the dual control method for the backward steps, and filtering for the

forward steps.

For this particular method, we use the stationary filter gain L = γC∗ for a chosen

gain coefficient, γ, so that A− γC∗C generates an exponentially stable semigroup. That

is, the state and state estimate dynamics are given by

dx(t) = Ax(t)dt+ σdBt (2.5.13)

dx̂(t) = Ax̂(t)dt+ γC∗(y − Cx̂)dt (2.5.14)

and the filters are given by
dx̂k
dt

= Ax̂k + γC∗(y − Cx̂k),

x̂k(0) = x̂bk−1(0),


dx̂bk
dt

= Ax̂bk + γC∗(y − Cx̂bk),

x̂bk(tf ) = x̂k(tf ).

The error dynamics are then given by

de(t) = (A− γC∗C)e(t)dt− γC∗v(t)dt+ σdBt (2.5.15)

for the stochastic system (2.5.1)-(2.5.2). An iterative time-reversal method of this form

is formalized and analyzed in [30]. The advantage of this type of method is that op-

timization is not necessary. However, without modification this algorithm is limited to
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skew-adjoint operators A (e.g., the wave equation).

2.6 Implementation Issues

In this section, we discuss the necessary numerical issues for the implementation of the

methods developed in this chapter. For the numerical implementation for solving the

dual control problem we use the Crank-Nicholson scheme

− pk+1 − pk

∆t
= A∗

pk+1 + pk

2
+ C∗uk+ 1

2
(2.6.1)

for (2.3.1) where uk+1/2 is evaluated at the mid-point of the interval [tk, tk+1] and tk =

ktf∆t. At the time step k + 1 the solution is computed by

pk+1 = −r1,1(A∗∆t)pk −∆t

(
I − ∆t

2
A∗
)−1

C∗uk+ 1
2

(2.6.2)

where

r1,1(A∗∆t) = (2− A∗∆t)−1(2 + A∗∆t) =

(
I − ∆t

2
A∗
)−1(

I +
∆t

2
A∗
)
. (2.6.3)

is the (1, 1) Padé approximation for exp(A∗∆t). The discretized RLLS inverse problem

is then formulated as

min
x∈Xm

‖y −Mnx‖Y + β‖x‖X (2.6.4)

where we have defined the controllability(observability) matrix

Mn = [C,Cr1,1(A∆t), . . . , Cr1,1(A∆t)n−1]. (2.6.5)

and Xm is a finite-dimensional subspace of X. In the dual control formulation, the

discretized problem for each control u is formulated as

min
u∈Um

‖Lnu− ϕ‖Y + βψ(u)

where Ln = (Mn)∗, Um is a finite-dimensional subspace of L2(0, tf ;Y ) and ψ is a chosen

penalty term.
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If necessary, higher order Padé approximations may be considered, which are of the

form

rm,n(z) =
Pm
Qn

(z) =
a0 + a1z + . . .+ amz

m

b0 + b1z + . . .+ bnzn
(2.6.6)

where the degree of P,Q is not more than m,n respectively. Higher order Padé approxi-

mations of semigroups are discussed in detail in the paper [36].

Operator Splitting for the Convection-Diffusion Equation

The Crank-Nicholson scheme works well for the diffusion dominant case, however, for the

convection dominant case it is necessary to solve the problem more accurately. In this

section, we describe the numerics for the initial condition estimation of the convection-

diffusion equation

∂v

∂t
(x, t) = c(x) · ∇v(x, t) +∇ · (d(x)∇v)(x, t) (2.6.7)

v(x, 0) = v0(x) (2.6.8)

where c(x), d(x) are the convection and diffusion coefficients, respectively.

The reconstruction methods have a natural extension to such problems, using a dif-

ferential operator splitting

∂v

∂t
= Lv(t) = (A+B)v(t)

where A,B ∈ L(X)

For the numerical solution of the convection-diffusion equation, we consider the two

stage Strang operator splitting

v(x, t+ ∆t) = Sh∆t
2
Sp∆tS

h
∆t
2
v(x, t)

where Spt , S
h
t are the semigroups corresponding to the parabolic and hyperbolic subprob-

lems, respectively. That is, Spt , S
h
t are the C0-semigroup semigroups generated by A,B

respectively.

Assuming a constant convection coefficient c, we solve the hyperbolic subproblem

via the method of characteristics v(tn+1, x) = v(tn, x− c∆t) where the right hand side is

evaluated via cubic interpolation. As in the previous section, we use the Crank-Nicholson
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method for solving the parabolic subproblem, using the approximating polynomial

r1,1(z) =
2 + z

2− z

for the approximation of exp(A∆t).

Discrete Kalman Filter

We now briefly describe the discrete Kalman filter in its predictor corrector form, which

is useful for the approximation of continuous dynamics in time. In our framework, we

define S = r1,1(A∆t). The discrete dynamics are described by

xk = Sxk−1 + wk−1 (2.6.9)

given measurements

yk = Ckxk + vk. (2.6.10)

We assume the noises wk, vk are zero-mean with covariances Qk−1, Rk, respectively, i.e.

wk ≈ N (0, Qk−1) (2.6.11)

vk ≈ N (0, Rk). (2.6.12)

We assume the probability density function (pdf) of the initial state, fx0 , is known. Our

goal is to construct the posterior pdf, fxk|yk , given the known prior pdf fxk−1|yk−1
. Since

the dynamics are known, we can update the state by

x∗k,− = Sx∗k−1 (2.6.13)

and update the error covariance by

Vk,− = SVk−1S
t +Qk−1. (2.6.14)

The linear Kalman filter can be summarized by the two steps:
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Prediction:

x∗k,− = Sx∗k−1 (2.6.15)

Vk,− = SVk−1S
t +Qk−1 (2.6.16)

Correction:

Kk = Vk,−C
t
k(CkVk,−C

t
k +Rk)

−1 (2.6.17)

x∗k = x∗k,− +Kk(yk − Ckx∗k,−) (2.6.18)

Vk = (I −KkCk)Vk,− (2.6.19)

This formulation is useful for the implementation of the time-reversal technique.
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Chapter 3

Extensions of the reconstruction

algorithms

In this section, we propose two extensions of the methods presented in Chapter 2. First,

we formulate the simultaneous parameter identification/initial state estimation problem.

As an example, a parameter such as the diffusion coefficient or convection coefficient may

be unknown. Secondly, the methods are extended to identifying the unknown source, f ,

rather than the initial condition x0.

3.1 Simultaneous State and Parameter Estimation

In this brief section, we provide an extension of the algorithms provided in Chapter 2 to

simultaneously estimating the initial condition and parameter. The parameter-dependent

abstract Cauchy problem is given by

dx

dt
(t) = A(p)x(t) + f(t) (3.1.1)

x(0) = x0 (3.1.2)

based on the given measurements

y(t) = Cx(t) (3.1.3)
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where A(p) : Rm → L(X,X) is a closed linear operator on the Hilbert space X, for each

p ∈ Q ⊂ Rm. The set Q is the set of admissible parameters. As an example, a parameter

dependent linear operator may be of the form

A(p)x = div(p(ξ)∇x)

where p(ξ) =
n∑
i=1

piφi(ξ) and {φi(ξ)}ni=1 is a basis for X, such as a spline basis. For

instance, in groundwater filtration [13], p represents hydraulic permittivity, while in

impedance tomography, p represents the conductivity. In the respective problems, the

state x represents the pressure of water and the voltage. The parameter identification

problem consists of reconstructing the parameter p from knowledge of the systems output.

Thus, for the simultaneous state and parameter estimation, we must reconstruct the

initial condition x0 and determine the parameter(s) of the system.

Taking the regularized linear least-squares (RLLS) approach given in Section 2.2, for

p ∈ Q ⊂ Rm, we define

Jη(p) =
1

2
‖y −M(p)xp‖2

L2(0,T ;Y ) +
η

2
‖xp‖2

X (3.1.4)

and seek

min
p∈Q
Jη(p)

where

xp = arg min
x∈X

{1

2
‖y −M(p)x‖2

L2(0,tf ;Y ) +
η

2
‖x‖2

X}. (3.1.5)

Here, the parameter-dependent input-output map is defined by

M(p) = CSt(p)

where St(p) is the C0-semigroup generated by A(p) on X. We assume dom(A(p)) =

dom(A) is independent of p ∈ Q ⊂ Rm. Define

Ȧ(p)ψ := lim
s→0

A(p+ sh)− A(p)

s
ψ
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in the direction h ∈ Rm, for all ψ ∈ dom(A). Then,

Ṁ(p)ψ = lim
s→0

M(p+ sh)ψ −M(p)ψ

s
= CSt(p)(Ȧ(p))hψ (3.1.6)

for all ψ ∈ dom(A). The parametric solution of (3.1.5) is given by

xp = (M∗(p)M(p) + ηI)−1M∗(p)y. (3.1.7)

We use the gradient like method to minimize the cost functional (3.1.4) over p ∈ Q. The

Gateaux derivative of the cost functional (3.1.4) is given by

d

dp
Jη(p)h = lim

s→0

Jη(p+ sh)− Jη(p)
s

for the direction h ∈ Rm. From (3.1.4), the Gateaux derivative can be computed by

d

dp
Jη(p) = 〈Ṁ(p)xp,M(p)xp − y〉Y + 〈ẋp, (M∗(p)M(p) + ηI)xp −M∗(p)y〉X (3.1.8)

= 〈Ṁ(p)xp,M(p)xp − y〉Y (3.1.9)

since xp satisfies

(M∗(p)M(p) + ηI)xp =M∗(p)y.

From (3.1.6) we have

d

dp
Jη(p) = 〈CSt(p)Ȧ(p)xp,M(p)xp − y〉Y . (3.1.10)

Given this approach, we can compute the minimizer p† by the Gradient method iteration

pn+1 = pn − γ
d

dp
Jη

for a chosen initial guess p0 and step size γ. If the second variation M̈(p) exists then

d2

dp2
Jη = 〈M̈(p)xp +Ṁ(p)ẋp,M(p)xp− y〉Y + 〈Ṁ(p)xp,Ṁ(p)xp +M(p)ẋp〉Y . (3.1.11)
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To compute ẋp we take the derivative of

M∗(p)M(p)xp + ηxp −M∗(p)y = 0

to obtain (
Ṁ∗(p)M(p) +M∗(p)Ṁp

)
xp + ηẋp +M∗(p)M(p)ẋp = Ṁ∗(p)y.

Solving for ẋp yields

ẋp = (M∗(p)M(p) + ηI)−1
(
Ṁ∗(p)y − Ṁ(p)M(p)xp −M∗(p)Ṁ(p)xp

)
where the derivative of the adjoint of M(p) is defined by

Ṁ∗(p)y = Ȧ∗M∗(p)y.

Given this Jacobian, we may use the Newton method

pn+1 = pn − γ
(
d2

dp2
Jη
)−1

d

dp
Jη

to find the minimizer p†.

In summary, the algorithm for simultaneously estimating the initial condition and the

unknown parameter p using the regularized linear least-squares is given by

Simultaneous state/parameter estimation using RLLS:

1. Select initial parameter p0 and set pn = p0

2. Determine xpn via method described by 2.2.4, i.e.,

xpn = (M∗(pn)M(pn) + ηI)−1M∗(pn)y

3. Compute the gradient by (3.1.10) and Jacobian by (3.1.11)
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4. Update the parameter pn+1 by

pn+1 = pn − γ
d

dp
Jη

or

pn+1 = pn −
(
d2

dp2
Jη
)−1

d

dp
Jη.

5. Set pn = pn+1 and return to 2

In practice, upon convergence to p†, we use the dual method 2.3 to refine the estimate

of the initial condition, x0. This approach utilizes the ease of computing the minimum

for the RLLS approach, and subsequently reconstructing the initial condition using the

dual approach in order to obtain a more accurate initial condition estimate.

We now formulate a direct approach for the simultaneous state/parameter estimation

based on the dual control method. We assume the controls uk(p) are computed by the

RLLS, i.e,

uk(p) = arg min
u
{‖L (p)u− ϕk‖2

X + η〈Pu, u〉2L2(0,tf ;Y )} (3.1.12)

and we utilize the cost functional (3.1.4). In general, other penalty terms may be con-

sidered. The parameter dependent approximation for x0 is given by

x(p) =
m∑
k=0

tf∫
0

(uk(p), y
δ)Y dt ϕk.

If we use the exact derivative, it follows from (3.1.4),(3.1.12) that

d

dp
Jη(p) = 〈Ṁ(p)xp,M(p)xp − y〉Y + 〈ẋp, (M∗(p)M(p) + ηI)xp −M∗(p)y〉X (3.1.13)

where

ẋp =
m∑
k=0

tf∫
0

(u̇k(p), y
δ)Y dt ϕk.

The derivative u̇k(p) satisfies

(L̇ ∗(p)L (p) + L ∗(p)L̇ (p))uk(p) + (L ∗(p)L (p) + ηP )u̇k(p) = L̇ ∗(p)ϕk.
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The algorithm is summarized below.

Simultaneous state/parameter estimation using the dual control

formulation

1. Select step-size, γ, initial parameter p0 and set pn = p0

2. Compute

x0(pn) =
m∑
k=0

tf∫
0

(uk(pn), yδ)Y dt ϕk

with uk(pn) determined from (3.1.12)

3. Compute
d

dp
Jη by (3.1.13) where

ẋ0(pn) =
m∑
k=0

tf∫
0

(u̇k(pn), yδ)Y dt ϕk.

4. Update the parameter pn+1 by

pn+1 = pn − γ
d

dp
Jη.

5. Set pn = pn+1 and return to 2

3.2 Source Identification

In this section, we consider the source identification for the abstract Cauchy problem

dx

dt
(t) = Ax(t) + f (3.2.1)

x(0) = 0 (3.2.2)

y(t) = Cx(t) (3.2.3)

where the source f is assumed to be time-homogeneous.
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Identifying sources is an important problem for nondestructive evaluation, contam-

inant localization, remote sensing applications, et cetera. Related formulations can be

found in the papers [35, 51]. Since the force is time-homogeneous, the source identification

problem fits into our framework by differentiating the state and observation equations in

time. The system obtained by differentiating (3.2.1)-(3.2.3) is given by

dẋ

dt
= Aẋ (3.2.4)

ẋ(0) = f (3.2.5)

ẏ = Cẋ (3.2.6)

which transforms the source identification problem into the initial condition reconstruc-

tion problem. If it is reasonable to differentiate the data, yδ, then the generalized Fourier

coefficients of f can be approximated by

〈f, p0〉X =

∫ tf

0

(uk(t), ẏ
δ(t))Y dt. (3.2.7)

as in the case of the initial condition estimation. In most cases, it is desirable to avoid

differentiation of the data yδ, especially if the noise level is high, or the measurements

are inaccurate. To avoid this problem, we simply integrate (3.2.7) by parts to obtain∫ tf

0

(uk(t), ẏ
δ(t)) dt =−

∫ tf

0

(u̇k(t), y
δ(t))Y dt

+ (uk(tf ), y
δ(tf ))Y − (uk(0), yδ(0))Y , (3.2.8)

alleviating this concern, since by assumption uk ∈ L2(0, tf ;Y ). The following summarizes

the approach for estimating the source, f .

Dual Method for reconstruction of time-homogeneous source:

1. Pick an orthonormal basis, {ϕk}mk=0 for X

2. For each k solve L uk = ϕk for uk ∈ L2(0, tf ;Y )
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3. Form the estimate for f,

fm =
m∑
k=0

αkϕk

where

αk = −
tf∫

0

(u̇k, y
δ)Y dt+ (uk(tf ), y

δ(tf ))Y − (uk(0), yδ(0))Y .

Though not detailed here, this approach can be extended to the case when f is time-

inhomogeneous, such that
dx

dt
(t) = Ax(t) + h(t)f

where h is a known function.

3.2.1 Source Identification in the Reproducing Kernel Hilbert

Space Framework

In this section, we discuss a specific formulation of the reconstruction methods developed

in Chapter 2, for estimating the source in (2.1.1). Specifically, we provide the details for

the case when the state space X = H is a reproducing kernel Hilbert space, the definition

of which follows. Let H be a real Hilbert space with inner product 〈·, ·〉H, where each

f ∈ H is defined in E ⊂ Rn, for E arbitrary and non-empty. A symmetric function

Φ : E × E → R is termed a kernel. Such a kernel, Φ, is called positive definite if for

all pairwise distinct points X̃ = {ξ1, . . . , ξn} ⊂ E the Gram matrix Wk,j = Φ(ξk, ξj) is

positive definite. Now, we define the following concept.

Definition 3.2.1. A function Φ : E ×E → R is called a reproducing kernel for H if

1. Φ(·, ξ) ∈ H for all ξ ∈ E

2. f(ξ) = 〈f,Φ(·, ξ)〉H for all f ∈ H and all ξ ∈ E.
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A space of functions H admitting a reproducing kernel is termed a reproducing kernel

Hilbert space(RKHS). For a function f ∈ H the norm is defined by

‖f‖H = 〈f, f〉
1
2
H,

and by the second property 3.2.1-2

‖f‖2
H =

n∑
k=0

n∑
j=0

αkαjΦ(ξk, ξj)

whenever f is of the form

f =
n∑
k=0

αkΦ(·, ξk), ξk ∈ E.

By the previous section, if the source f is time-homogeneous, we can transform the source

identification problem into an initial condition identification problem. Thus, we formulate

the method in terms of the initial condition identification. Under this framework, we can

form approximations by seeking coefficients αk such that

x0 =
m∑
k=0

αkΦ(·, ξk)

for some ξk. The coefficients {αk}mk=1 are uniquely determined by

m∑
k=0

αkΦ(ξj, ξk) = x0(ξj), 0 ≤ j ≤ m,

since the matrix W is positive definite.

Common choices for the kernel Φ include

Φ(t, s) = e−µ‖t−s‖
2

Gaussian

Φ(t, s) =
√
‖t− s‖2 + µ2 Multiquadric

Φ(t, s) = (1− ‖t− s‖)3
+(3‖t− s‖+ 1) Wendlund.
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The Gaussian kernel Φ(t, s) = 1
2

= e−‖t−s‖ produces the Sobolev space H = H1(R), while

the kernel Φ(t, s) = (1− ‖t− s‖)3
+(3‖t− s‖+ 1) is compactly supported [50].

In the context of the regularized linear least-squares approach, we can reconstruct

the initial condition by determining the coefficients αk by

min
α∈Rm+1

‖yδ −
m∑
k=0

αkCStfΦ(·, ξk)‖Y + β

m∑
k=0

m∑
j=0

αkαjΦ(ξk, ξj),

where C : H → Y, Stf : H → H. By the necessary optimality, α = (α0, . . . , αm)t can be

determined by solving

(A+ βB)α = F

where

Ai,j = 〈CStfΦ(·, ξi), CStfΦ(·, ξj)〉Y , Bi,j = Φ(ξi, ξj)

and

Fi = 〈CStfΦ(·, ξi), yδ〉Y .

With the αk’s determined, we have the approximation

xm0 =
m∑
k=0

αkΦ(·, ξk).

This formulation is similar to the one developed in [48].

The extension to the dual control formulation (2.3) is straightforward for X = H.

We note that the relation

〈x(0), p(0)〉X =

tf∫
0

(u(t), y(t))Y dt

holds regardless if p is chosen to be an orthogonal basis. By the assumption that

x0 =
m∑
k=0

αkΦ(·, ξk)
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we have

〈
m∑
k=0

αkΦ(·, ξk), p〉H =

tf∫
0

(u(t), y(t))Y dt. (3.2.9)

Thus, by choosing a set of functions {pk}mk=0 we can determine αk such that (3.2.9) holds

where

L uk = pk

for each k. Note that the collection {pk}mk=0 is not required to be of any specific form as

long as pk ∈ H for which Φ is the reproducing kernel. However, if pk = Φ(·, ξk) ∈ H, we

have

〈
m∑
k=0

αkΦ(·, ξk),Φ(·, ξj)〉H =

tf∫
0

(uj(t), y(t))Y dt 0 ≤ j ≤ m

and the {αk}mk=0 are uniquely determined since Φ is a positive definite kernel. That is,

by the properties of the reproducing kernel, we solve

m∑
k=0

αkΦ(ξk, ξj) =

tf∫
0

(uj(t), y
δ(t))Y dt, 0 ≤ j ≤ m. (3.2.10)

The solutions of

L uk = pk

can be approximated by solving

min
u∈Y
‖L u− Φ(·, ξk)‖H + β‖u‖L2(0,tf ;Y )

for each k. Other suitable methods are developed in Chapter 4.
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Chapter 4

Regularization for Inverse Problems

4.1 Motivation and Preliminaries

In Chapters 2 and 3, each of the proposed methods leads to an inverse problem of the

form

Kx = y (4.1.1)

where x ∈ X, y ∈ Y with X, Y Banach spaces and K : X → Y a compact operator.

The objective is to recover the function x given noise corrupted data, yδ. That is,,

‖yδ−y‖ ≤ δ where the noise level, δ, may not be known a priori. Due to the compactness

of K, the problem (4.1.1) is ill-posed, meaning at least one of the following criteria for

well-posedness is not met:

Definition 4.1.1 (Well-posed).

1. For all admissible data, a solution exists,

2. For all admissible data, the solution is unique,

3. The solution depends continuously on the data.

The compactness of K signifies ill-posedness due to the following proposition from

[11].

Proposition 4.1.1. Let K : X → Y be compact, dimR(K) =∞. Then K† is a densely

defined, unbounded linear operator with closed graph.
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That is, the minimum norm solution to (4.1.1) will be unbounded. Considerable

challenges are faced when solving such inverse problems, due to their ill-posedness. Even

if the operator K is invertible, it may be numerically ill-conditioned, which can yield

meaningless solutions for highly ill-conditioned problems. The condition number of K

(or its discretization) is given by

cond(K) =
σ1

σn
(4.1.2)

where the {σi}ni=1 are the ordered singular values of K, in decreasing order. Due to the

ill-posedness, approximate solutions of (4.1.1) are obtained by regularizing the problem,

meaning that the problem is perturbed in some manner, so that the new problem is

better posed. When an approximate solution x to (4.1.1) is attainable, one would like

to know how closely this solution approximates the proper solution, x†. That is, given

what information is known, can we obtain an a priori estimate of the error, and if not,

what kind of a posteriori estimate can be obtained. The most well known regularization

method is the Tikhonov regularization [49], which will be discussed in the section that

follows. We also develop a more general regularization framework that is employed for

the solution of the inverse problems considered in this thesis.

Inverse problems specific to this thesis include the solution of

L uk = ϕk, 0 ≤ k ≤ m,

where L is defined by (2.3.11), in order to determine the controls, uk, for approximating

the generalized Fourier coefficients (2.3.14). In this case, the basis functions, ϕk, which

represent the data, are noiseless. However, in the more direct reconstruction method of

linear-least squares, the inverse problem is to determine x0 such that

Mx0 = yδ

given the noisy data yδ.

In this chapter, we develop methods for problems of the form (4.1.1) that can be

applied to a wide range of problems, in addition to the abstract Cauchy problem (2.1.1).

Thus, we develop the theory in the general context of (4.1.1), with the abstract Cauchy

problem in mind. Problems of this form arise in all areas of science. An incomplete list
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of applications includes computerized tomography, inverse scattering theory, and signal

processing to name a few.

4.2 Regularization Methods

4.2.1 Standard Tikhonov Regularization

A classical technique for regularizing ill-posed problems is that of Tikhonov, which we

describe in this section. Let K : X → Y where X and Y are Banach spaces, with K

being a compact operator. Typically, K is an integral operator of the form

(Kx)(s) =

∫
Ω

k(s, ξ)x(ξ)dξ

where k is the kernel of the operator. The task is to solve the equation

Kx = yδ (4.2.1)

for x ∈ X given y ∈ Y , and yδ is the noise contaminated data. In general, the problem

may be very ill-posed, by which we mean the solution(if it exists) does not depend

continuously on the data, as described in definition 4.1.1. Due to the fact that K (or its

discretization) may not be invertible, we seek a minimum norm solution to (4.2.1), that

is, we seek x∗ such that

‖Kx∗ − yδ‖2
X = min

x∈C
{‖Kx− yδ‖2

X}. (4.2.2)

However, this does not mitigate the unboundedness of the solutions due to the compact-

ness of K. In order to obtain a better posed problem, one seeks a solution to

min
x∈C
‖Kx− yδ‖2

X + β‖x‖2
X (4.2.3)

for some β > 0. The set C is a closed, convex subset of X, representing constraints for

the solution (e.g., lower/upper bounds for solution). This technique, known as Tikhonov

regularization, has shown remarkable applicability since its introduction in [49]. The term

‖x‖2
2 in the Tikhonov regularization is a penalty term aimed at ensuring the approximate
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solution remains bounded. This technique has close ties with a regularized Singular Value

Decomposition and with Bayesian maximum likelihood estimators, as will be discussed

below. The general idea of Tikhonov regularization is to regularize the operator K by

the introduction of the positive parameter β, effectively shifting the singular values of K

away from zero. To see this, consider the minimization of the functional

min
x∈C

1

2
‖Kx− yδ‖2

X +
β

2
‖x‖2

X (4.2.4)

where the operator K has the singular value decomposition K = UΣV ∗ where U, V are

unitary operators and Σ has a diagonal matrix representation. Then, assuming a real

Banach space and letting v = V ∗x, the minimization problem is equivalent to minimizing

1

2
〈UΣV ∗x− yδ, UΣV ∗x− yδ〉+

β

2
〈x, x〉

=
1

2
〈Σv − U∗yδ,Σv − U∗yδ〉+

β

2
〈v, v〉

=
1

2
〈v,Σ∗Σv〉 − 〈Σ∗U∗yδ, v〉+

1

2
〈yδ, yδ〉+

β

2
〈v, v〉

=
1

2
〈v, (Σ∗Σ + βI)v〉 − 〈Σ∗U∗yδ, v〉+

1

2
〈yδ, yδ〉

By the necessary optimality, the minimum occurs when

vδβ = (Σ∗Σ + βI)−1 Σ∗U∗yδ, (4.2.5)

denoting the dependence of the solution on β, δ by vδβ. By this analysis, one can notice

that the singular values are shifted by the value β > 0. In fact, if the operator K has

singular system {σn; vn;un}, then the solution (4.2.5) has the form

vδβ =
∞∑
n=1

σn
σ2
n + β

〈yδ, un〉vn.

Henceforth, we define the cost functional

Jβ(x) :=
1

2
‖Kx− yδ‖2

X +
β

2
〈x, Px〉X (4.2.6)

47



and denote the solution of (4.2.6) by

xδβ = (K∗K + βP )−1K∗yδ. (4.2.7)

where P is a positive, self-adjoint operator on X, and 〈Px, x〉 1
2 defines a norm on X.

The following Theorem gives the uniqueness of the minimizer of (4.2.6).

Theorem 4.2.1. Let xδβ be the solution denoted by (4.2.7). Then xδβ is the unique

minimizer of
1

2
‖Kx− yδ‖2

X +
β

2
〈x, Px〉X

Proof. Since P is positive, for β > 0 we have that the cost functional (4.2.6) is strictly

convex and has a unique minimizer. The minimizer is characterized by

〈Kx− yδ, Kz〉X + β〈Px, z〉X = 〈(K∗K + βP )x−K∗yδ, z〉X = 0 ∀z ∈ X,

which is equivalent to (4.2.7).

Furthermore, the following convergence result can be established.

Theorem 4.2.2. Let xδβ be defined by (4.2.7), y ∈ R(K), ‖y − yδ‖ ≤ δ. If β = β(δ)

satisfies

lim
δ→0

δ2

β(δ)
= 0,

then

lim
δ→0

xδβ(δ) = x† = K†y.

is the minimum norm solution, i.e. K†y = x† minimizes 〈x, Px〉
1
2
X over all solutions to

Kx = y.

Proof. We first show that the sequence {xn} is bounded, where xn is the unique minimizer

of Jn(x) := Jβn(x). Since xn minimizes (4.2.6) and P is self-adjoint we have

βn〈xn, Pxn〉X ≤ βn〈xn, xn〉X ≤ Jn(xn) ≤ Jn(x†)

≤ δ2
n + βn‖P‖〈x†, x†〉X
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which implies

‖xn‖2
X ≤

δ2
n

βn
+ ‖P‖ · ‖x†‖2

X . (4.2.8)

Thus, there exists a subsequence {xnk} such that

xnk ⇀ x ∈ X

and

Kxnk ⇀ Kx

since K is a bounded linear operator on X. Then,

‖Kxnk − yδn‖2 ≤ Jnk(xnk) ≤ δ2
nk

+ βnk〈x†, Px†〉X → 0 as k →∞.

Combining the above yields

Kx = y.

It remains to show that x = x† and xn → x† strongly. By the minimizing property of xn

we have

〈Kxn − yδn, Kz〉X + β〈Pxn, z〉X = 0, ∀z ∈ X,

which implies

β〈Pxn, z〉X = 0

by taking z ∈ N(K). We note that if z ∈ N(K) then Pz ∈ N(K) so that xn ∈ N(K)⊥

using the self-adjointness of P . Hence, we also have that z ∈ N(K)⊥. By uniqueness of

x† = K†y, we have x† = z and xnk ⇀ x†. As a consequence, we have

xn ⇀ x†,

which yields the weak convergence of xn to x†. To show the strong convergence, let us

assume there exists ε > 0 and a subsequence {xnk} such that for all k, ‖xnk‖ ≤ ‖x†‖− ε.
By the boundedness of this subsequence, there would be a further subsequence of {xn}
such that

xnkl ⇀ z ∈ X
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and

‖z‖ ≤ ‖x†‖ − ε

However, this contradicts the minimizing property of the original sequence, from which

it follows that

lim inf
n→∞

‖xn‖ ≥ ‖x†‖.

By the inequality (4.2.8), we have

lim sup
n→∞

‖xn‖ ≤ ‖x†‖

which implies

xn → x†.

Letting δn → 0, we obtain

xδβ(δ) → K†y.

The selection of the parameter β reflects a balance between ensuring the fidelity

‖Kx − yδ‖2
X is small and ensuring the solution does not become unbounded. Thus, β

must be chosen carefully in order to obtain an acceptable approximation. Selecting the

regularization term forms the basis for many modified regularization methods. These two

aspects of the regularization method are discussed and analyzed in the following sections.

4.2.2 Generalized Multi-parameter Approach

In a more general context, the Tikhonov regularization (4.1.1) can be recast as the

minimization of

Jβ(x) = φ(x, yδ) + βψ(x), (4.2.9)

over x ∈ C, where the fidelity term, φ, is chosen based on the noise statistic, while ψ is

chosen based on which class the solution x should belong to. When φ(x, yδ) = ‖Kx−y‖2
X

and ψ(x) = ‖x‖2
X this formulation is the classical Tikhonov regularization (4.2.3). The

main drawback to this method is the single regularization term ψ. Modern day scientific

problems typically involve applications where the standard Tikhonov regularization fails

to capture the full set of distinct features in the physical solution. Many research efforts
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have been devoted to improving the standard regularization techniques for a wide range

of applications(see [8, 28, 41, 46] for example). Especially in the field of image processing,

the solution often exhibits a multi-scale structure typically described by multi-resolution

analysis. In such applications, single parameter regularization can oversmooth the solu-

tion in the case of ψ = ‖ · ‖2
L2 or exhibit stair-case effects in the case of ψ = ‖ · ‖TV . Here,

the total variation (TV) of a function f over [a, b], is defined by

sup
k∑
i=1

|f(xi+1)− f(xi)|

where the supremum is taken over all possible subdivisions of the interval [a, b]. In order

to capture the multi-scale structure of solutions without introducing oversmoothing or

staircasing, many research efforts have focused on mixed regularization approaches, such

as combining the L2 penalty term with the TV penalty:

min
x∈C

1

2

∫
Ω

|Kx− yδ|2 dξ +
η1

2

∫
Ω

|x|2 dξ + η2

∫
Ω

|∇x| dξ. (4.2.10)

In general, we cast this as the multi-parameter Tikhonov regularization technique,

i.e., we minimize

Jη(x) = φ(x, yδ) + η ·ψ(x) (4.2.11)

The terms φ,ψ are known as the fidelity and regularization terms, respectively. Here,

{ψk}nk=1 is the set of regularization terms, {ηk}nk=1 are the regularization parameters, and

we take the dot product

η ·ψ(x) =
n∑
k=1

ηkψk(x)

for η = (η1, η2, . . . , ηn) and ψ(x) = (ψ1(x), ψ2(x), . . . , ψn(x)). The functionals φ,ψ can

be chosen based on any a priori information about the problem and its exact solution.

Then,

xη = arg min
x∈C

Jη(x)

is taken as the regularized solution. For instance, in the case of a multi-scale image

with a smooth region and a stepped region, one may consider the L2-TV regularization

(4.2.10).
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A common theme in the literature and throughout this thesis, is the introduction

of sparsity. Due to the ever increasing size of today’s most challenging and interesting

problems, it is often necessary to reduce the size of a problem and/or obtain a solution

with as few nonzeros as possible. This idea corresponds to minimizing the size of a

dataset or solution by keeping only what information is necessary in order to describe

the solution accurately. In the case of obtaining solutions with few nonzeros, we consider

regularization terms such as

ψk(x) = ‖x‖p`p :=
∞∑
k=1

|xk|p for p ≤ 1.

This particular choice of ψ is examined in Chapter 5, along with treatment of the asso-

ciated numerical difficulties.

Naturally, when considering problems of the form (4.2.9) two questions arise as to

the solution. Firstly, does this method always “work”? That is, does this method always

yield a close approximation to the proper solution x†? Secondly, how does one go about

selecting the optimal parameter β?

Before proceeding, we briefly describe the probabilistic interpretation of the mini-

mization of (4.2.9). A Bayesian model is formulated as deducing the distribution of the

unknown x conditioned on the data yδ. That is, we must deduce the posterior probability

density function (PPDF). According to Bayes’ rules, the PPDF is given by

p(x|yδ) =
p(yδ|x)p(x)∫
p(yδ|x)p(x)dx,

(4.2.12)

where p(yδ|x) is the conditional density of yδ given x ∈ X and p(x) is the prior probability

density function of x ∈ X. The denominator in (4.2.12) is the normalizing constant.

Thus, the unnormalized PPDF is described by

p(x|yδ) ∝ p(yδ|x)p(x). (4.2.13)

In terms of the single term regularization (4.2.9) we have

p(x|yδ) ∝ exp
(
−φ(x, yδ)

)
exp (−βψ(x)) .

Here, we see that the fidelity gives the conditional density, while the regularization gives
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the prior density. As a particular example,

p(x|yδ) ∝ exp

(
−‖Kx− y

δ‖2
2

2σ2

)
exp

(
−λ

2
〈x, Px〉

)
,

when φ(x, yδ) = ‖Kx − yδ‖2
2 and ψ(x) = 〈x, Px〉X for the self-adjoint operator P (i.e.,

the H1 semi-norm). In the probabilistic interpretation, the parameter is chosen based

on how much we trust the prior information. We examine this interpretation further

through the development of parameter choice rules in the section to follow.

4.3 Choice rules for the regularization parameter

To obtain a stable solution, xδβ, which closely approximates the true solution, x†, the

regularization parameter(s) must be chosen properly. If the regularization parameter(s)

is too small, then the approximate solution will be unstable due to the ill-posedness of the

operator K. However, if the parameter(s) is too large, the approximate solution may be

oversmoothed. In this section, we briefly describe the Morozov’s Discrepancy Principle,

as well as a new choice rule developed in [25, 26].

The analysis of the parameter choice rules is carried out using the value functional

defined by

F (β) = inf
x
φ(x, yδ) + βψ(x). (4.3.1)

We briefly analyze the properties of the value functional for the single parameter case,

which is to be used in the remainder of this section. Further analysis, including the

multi-parameter case, can be found in [25, 26]. With F defined by (4.3.1), we have the

following basic results.

Lemma 4.3.1. The functional F defined by (4.3.1) is monotonically increasing, assum-

ing ψ is a nonnegative function.

Proof. To show this, let β1 < β2 so that we have

φ(x, yδ) + β1ψ(x) < φ(x, yδ) + β2ψ(x) (4.3.2)

which yields the monotonicity of F by taking the infimum over all x.

It should also be clear that F is concave, nonetheless the result is provided.
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Lemma 4.3.2. The functional F is concave.

Proof. Let α ∈ R, then

F ((1− α)β1 + αβ2) = inf
{
φ(x, yδ) + (1− α)β1ψ(x) + αβ2ψ(x)

}
= inf

{
(1− α)(φ(x, yδ) + β1ψ(x)) + α(φ(x, yδ) + β2ψ(x))

}
≥ inf

{
(1− α)(φ(x, yδ) + β1ψ(x))

}
+ inf

{
α(φ(x, yδ) + β2ψ(x))

}
= (1− α)F (β1) + αF (β2),

which shows that F is concave.

Note that if F is differentiable at β > 0, then

F ′(xβ) = ψ(xβ) (4.3.3)

since, assuming xβ is differentiable in the classical sense,

d

dβ

(
φ(uβ, y

δ) + βψ(uβ)
)

= φ′(xβ, y
δ)
d

dβ
xβ + ψ(xβ) + βψ′(xβ)

d

dβ
xβ

=
d

dβ
xβ
(
φ′(xβ, y

δ) + βψ′(xβ)
)

+ ψ(xβ)

= ψ(xβ)

due to the necessary optimality φ′(xβ, y
δ) + βψ′(xβ) = 0. When F is differentiable, we

also have the relation

φ(β) = F (β)− βF ′(β). (4.3.4)

The following argument shows that (4.3.3) holds under much weaker conditions. Given

β ≥ 0 we let

Mβ = {xβ ∈ X : Jβ(x) is minimized}

be the set of all minimizers for the given β. Then, for 0 ≤ β ≤ β̂

φ(xβ) ≤ φ(xβ̂) and ψ(xβ) ≥ ψ(xβ̂)

for all minimizers xβ ∈ Mβ and xβ̂ ∈ Mβ̂. Moreover, for all h > 0 sufficiently small and
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all minimizers xβ ∈Mβ,

F (β + h)− F (β)

h
≤ ψ(xβ) ≤ F (β)− F (β − h)

h.
(4.3.5)

The left-hand side of the previous inequality (4.3.5) is monotonically increasing and

the right-hand side is monotonically decreasing as h → 0+. Thus, the left and right

one-sided derivatives exist and the following inequality holds:

D+F (β) ≤ ψ(xβ) ≤ D−F (β).

4.3.1 Morozov’s Discrepancy Principle

In this section, we formulate the variational justification for the Morozov’s discrepancy

principle [38]. The Morozov’s discrepancy principle seeks β > 0 such that

β → F (β)− σ
β

(4.3.6)

is maximized, where F is the value functional (4.3.1) and σ := cδ for some c ≥ 1. The

left and right derivatives of (4.3.6) are respectively given by

D−
(
F (β)− σ

β

)
= (βD−F (β)− (F (β)− σ))

1

β2
≥ 0

D+

(
F (β)− σ

β

)
= (βD+F (β)− (F (β)− σ))

1

β2
≤ 0.

Thus, if F is differentiable, from (4.3.3),(4.3.4) we have

βψ(xβ)− (F (β)− σ) = φ(xβ)− σ = 0

by the equality (4.3.3). In short, the Morozov’s discrepancy principle seeks β > 0 such

that

φ(xβ, y) = σ

where δ is the noise level (or performance level), xβ is the optimal solution, and c ≥ 1.

Obviously, one needs a priori information about the noise level in order to effectively

compute the regularization parameter β.
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4.3.2 Complexity Level

A similar approach can be taken based on the complexity level (or sparsity level) γ > 0

where it is desired that

ψ(x) ≤ γ.

Similarly, this principle has the variational formulation, where one seeks β > 0 such that

β → F (β)− γβ

is maximized. That is, if F is differentiable at the optimal β then from (4.3.3),(4.3.4)

ψ(xβ) = γ.

4.3.3 Balance principle

We present here the balance principle for the single-term regularization, as well as some

theoretical results, however similar results can be obtained for multi-term regularization

as can be found in [25]. The previous selection rules were based on either the performance

level (noise) or the complexity level. The selection rule developed in this section is

based on balancing the performance level and the complexity level. Consider maximizing

the conditional density p((x, τ, λ)|y) ∼ p(y|(x, τ, λ))p(x, τ, λ) where (τ, λ) are density

functions for φ, ψ, respectively, both having Gamma distribution. The balancing principle

is derived from the Bayesian inference [33]

min
(x,τ,λ)

τφ(x, y) + λψ(x) + β̃0λ− α̃0 lnλ+ β̃1τ − α̃1 ln τ.

Letting β = λ
τ
, the necessary optimality is given by

xβ = arg min
x
{φ(x, y) + βψ(x)}

λ =
α̃0

ψ(xβ) + β̃0

τ =
α̃1

φ(xβ) + β̃1
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or

xβ = arg min
x
{φ(x, y) + βψ(x)} (4.3.7)

β =
1

µ

φ(xβ) + β̃0

ψ(xβ) + β̃1

, µ =
α̃1

α̃0.
(4.3.8)

The Bayesian inference selection corresponds to minimization of the functional

F (xβ)1+c

β.
(4.3.9)

The minimum occurs when
d

dβ
F (xβ) = 0 so that

F (xβ)c ((1 + c)F ′(xβ)β − F (xβ))

β2
= 0 (4.3.10)

which implies

φ(xβ, y
δ) = cβψ(xβ) (4.3.11)

since F ′(xβ) = ψ(xβ). The relation (4.3.11) is what we refer to as the balance principle

for choosing the parameter β.

The natural choice for updating the parameter β is the fixed point iterate

β+ =
1

γ

φ(xβ, y
δ)

ψ(xβ)
(4.3.12)

where xβ is the solution with the previous value for β. Here, γ is selected by the two-step

procedure proposed in [25, 26] :

• Choose γ0, β0

• Compute xβ with chosen parameters

• Set γ by

γ = γ0

(
φ(xβ, y

δ)

.05φ(0, yδ)

)d
(4.3.13)

with d, γ0 heuristically chosen as d = 1
4
, γ0 = 10.
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The multi-parameter balance principle is obtained by minimizing

Φγ(η) =
γγ

(γ + 2)γ+2

F 2+γ(η)

Π
i
ηi

where

F (η) = Jη(xη)

with xη the minimizer of (4.2.11).

In [25, 26] a posterior estimate of the error using the balance principle in the dual-

parameter regularization is analyzed. Here, we are working in a Hilbert space setting

and φ(x, yδ) = 1
2
‖Kx − yδ‖2, ψ1(x) = 1

2
‖L1x‖2, ψ2(x) = 1

2
‖L2x‖2. For this purpose, we

define the weighted norm

‖x‖2
η =

η1

η1 + η2

‖L1x‖2 +
η1

η1 + η2

‖L2x‖2.

For notational convenience, we also define Qη =
η1

η1 + η2

L∗1L1 +
η2

η1 + η2

L∗2L2 and Lη =

Q
1
2
η , K̃η = KL−1

η . We also take β = η1 + η2 to simplify notation. We will utilize the

interpolation inequality

‖(K∗K)rx‖ ≤ ‖(K∗K)qx‖
r
q ‖x‖1− r

q . (4.3.14)

Theorem 4.3.1. Assume that the exact solution x† satisfies

Lηx
† =

(
K̃∗ηK̃η

)µ
w

for some w ∈ Y. Suppose further that the regularization parameter η is chosen by the

balance principle. Let δ∗ = ‖Kxη∗ − yδ‖. Then

‖xδη∗ − x†‖η∗ ≤ C

(
1 +

F 1+ γ
2 (δ

1
2µ+1e)

F 1+ γ
2 (η∗)

)
max{δ∗, δ}

2µ
2µ+1 .

Proof. As is often done, we decompose the error into propagation error and approxima-

tion error

xδη∗ − x† = (xδη∗ − xη∗) + (xη∗ − x†).
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We first estimate the error, xδη−xη, due to noise propagation. By the necessary optimality,

we have

(K∗K + η1L
∗
1L1 + η2L

∗
2L2)(xη − xδη) = K∗(y − yδ).

From this relation, we multiply each side by xδη − xη to obtain

‖K(xδη − xη)‖2 + η1‖L1(xδη − xη)‖2 + η2‖L2(xδη − xη)‖2 = 〈K(xδη − xη), y − yδ〉

≤ ‖K(xδη − xη)‖2 +
1

4
‖y − yδ‖2

=⇒ η1‖L1(xδη − xη)‖2 + η2‖L2(xδη − xη)‖2 ≤ 1

4
‖y − yδ‖2.

by use of the Cauchy-Schwarz inequality and the Young’s inequality. Hence,

‖xη‖η ≤
‖y − yδ‖

2
√
η1 + η2

≤ δ

2
√

max{η1, η2}
.

Since η∗ minimizes the value functional, we have

F 2+γ(η∗)

max{η∗1, η∗2}2
≤ F 2+γ(η∗)

η∗1η
∗
2

≤ F 2+γ(η)

η1η2

for any η. Selecting η = (δ
1

2µ+1 , 1) we have

1

max{η∗1, η∗2}
≤ F 2+γ(η)

F 2+γ(η∗)
δ−

1
2µ+1

=⇒ ‖xδη∗ − xη‖ ≤
F 1+ γ

2 (δ
1

2µ+1 , 1))

F 1+ γ
2 (η∗)

δ
2µ

2µ+1 .

Now, we estimate the approximation error xη − x†. We have

xη − x† = (K∗K + η1L
∗
1L1 + η1L

∗
2L1)−1(η1L

∗
1L1 + η2L

∗
2L2)x†

= β(K∗K + βQη)−1Qηx
†

= βL−1
η (L−1

η K∗KL−1
η + βI)−1Lηx

†
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which yields

Lη(xη − x†) = β(K̃∗ηK̃η + βI)Lηx
†.

Using the interpolation inequality (4.3.14), we have

‖xη − x†‖η = ‖Lη(xη − x†)‖ = ‖β(K̃∗ηK̃η + βI)Lηx
†‖

= ‖β(K̃∗ηK̃η + βI)−1(K̃∗ηK̃η)µw‖

≤ ‖β(K̃∗ηK̃η + βI)−1(K̃∗ηK̃η)
1
2

+µw‖
2µ

2µ+1‖β(K̃∗ηK̃η + βI)−1w‖
1

2µ+1

= ‖β(K̃∗ηK̃η + βI)−1K̃ηLηx
†‖

2µ
2µ+1‖β(K̃∗ηK̃η + βI)−1w‖

≤ c(‖β(K̃ηK̃
∗
η + βI)−1yδ‖+ ‖β(K̃ηK̃

∗
η + βI)−1(yδ − y)‖)

2µ
2µ+1‖w‖

1
2µ+1 ,

where c depends on the maximum of rβ(t) = β
βt

over [0, ‖K̃η‖2]. Further, by noting that

β(K̃∗ηK̃η + βI)−1yδ = yδ − (K̃ηK̃
∗
η + βI)K̃ηK̃

∗
ηy

δ

= yδ − K̃(K̃∗ηK̃η + βI)K̃∗ηy
δ

= yδ −K(K∗K + βQη)−1K∗yδ

= yδ −Kxδη

we have

‖xη∗ − x†‖ ≤ c(δ∗ + δ)
1µ

2µ+1‖w‖
1

2µ+1 ≤ c1 max{δ∗, δ}
2µ

2µ+1 .

Thus,

‖xδη∗ − x†‖η∗ ≤ C

(
1 +

F 1+ γ
2 (δ

1
2µ+1e)

F 1+ γ
2 (η∗)

)
max{δ∗, δ}

2µ
2µ+1 .

A more general a posteriori error estimate is proven in [24] based on the Bregman

distance. The following corollary follows from the above theorem and the error estimate

obtained in Theorem 2.3.1 for the solution of L uk = ϕk.

Corollary 4.3.1. Take φ(uk, ϕk) = 1
2
‖L uk−ϕk‖2, ψ1(uk) = 1

2
‖L1uk‖2, ψ2(uk) = 1

2
‖L2uk‖2.

Let δ∗ = ‖L u∗k−ϕk‖ where u∗k is the approximate solution to (2.3.13) corresponding to η∗

chosen by the balance principle. Then the estimated initial condition of (2.3.2) satisfies
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the error estimate

‖x0 − xmδ ‖ ≤ ‖x0 − xn‖X +
m∑
k=0

(
δ‖u†k‖+ c1δ

2µ
2µ+1
∗ ‖x0‖

)
,

where u†k is the exact solution satisfying the source condition

Lηu
†
k =

(
L̃ ∗

η L̃η

)µ
w

for some w ∈ X, µ > 0, and δ is the noise level of y.

This error estimate shows that the overall error using the dual control method coupled

with the multi-parameter regularization is affected by the accuracy δ∗ and the noise level

δ in y, since the “data” for u is noiseless (i.e., we know the basis exactly).
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Chapter 5

Nonsmooth regularization and

Sparsity Optimization

In this chapter, we formulate methods for solving the inverse problem for cases involving

nonsmooth functionals ψ in the formulation of the regularization methods 4.2.9 and

4.2.11. We do not describe the methods in full detail, however, the computation of the

minimizer of a nonsmooth functional is necessary for the application of the proposed

methods. Further details can be found in [29]. An example of a nonsmooth functional

for the multi-parameter case corresponds to the choices of the L1 norm and H1 semi-norm

for ψ1, ψ2, that is, when we seek a minimum of

Jβ(x) =
1

2

∫
Ω

|Ku− yδ|2 dξ + η1

∫
Ω

|u| dξ +
η2

2

∫
Ω

|∇u|2 dξ (5.0.1)

for which a minimum occurs when the (formal) necessary optimality

K∗(Ku− yδ) + η1
u

|u|
− η2∆u = 0 (5.0.2)

is satisfied.

We begin by describing the sparsity optimization, that is, formulations involving

the `p norm for 0 ≤ p ≤ 1. As already pointed out, one advantage of the standard

Tikhonov regularization is the closed form solution. However, sparsity optimization is

becoming increasingly important for practical applications. Due to the nonsmoothness of

the norms ‖·‖p, 0 ≤ p ≤ 1, methods capable of handling the nonsmoothness are necessary
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for computing minimizers involving these norms. We use the word sparsity due to the

fact

‖u‖p → # of nonzero elements of u as p→ 0+.

Thus, the use of ‖ · ‖p enhances sparsity in the solution u as p→ 0+. In other words, the

choice of the p-norm with p ≤ 1 removes information in the approximate solution that is

unnecessary.

One can develop the necessary optimality condition for

min ‖Ku− yδ‖2 + β‖u‖p, 0 ≤ p ≤ 1 (5.0.3)

despite the fact that ‖u‖p is not differentiable at u = 0. Specifically, let us consider the

case when p = 1 for a scalar u. For p = 1, we have

∂‖u‖ =
u

‖u‖

at u 6= 0, however for u = 0 we have the subdifferential

∂‖u‖ = [−1, 1]

where the subdifferential of a functional f : X → (−∞,∞] at u ∈ X is defined as the set

{u∗ ∈ X∗|f(z) ≥ f(u) + 〈u∗, z − u〉,∀z ∈ X}, (5.0.4)

which is more precisely defined in [29, 44] for example. However, for p < 1 we have

∂‖u‖pp = ∅ when u = 0. To remedy this, for ε� 1, we take the approximation

∂ε‖u‖pp =
p u

max(ε2−p, ‖u‖2−p)
≈ ∂‖u‖pp (5.0.5)

which approximates the formal derivative

∂‖u‖pp =
u

‖u‖2−p (5.0.6)

for any value of u. One can see a depiction of the approximate derivative ∂ε‖u‖ in Figure

5.0.1 with ε = 10e−3 and ε = 10e−2.

It can be shown that this sequence converges to the minimizer of the appropriate cost
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Figure 5.0.1: Comparison of approximate subdifferentials for ε = 10e−3 and ε = 10e−2.

functional. We consider the regularized problem of the form

Jε(u) =
1

2
‖Ku− yδ‖2 + Ψε(‖u‖2), (5.0.7)

where for t ≥ 0

Ψε(t) =

{
p
2

t
ε2−p

+ (1− p
2
)εp t ≤ ε2

t
p
2 t ≥ ε2.

For ε > 0, consider the iterative algorithm of the form

K∗Kuk+1 +
βp

max(ε2−p, ‖uk‖2−p)
uk+1 = K∗yδ (5.0.8)

to find the minimizer of (5.0.7). Multiplying (5.0.8) by uk+1 − uk, we obtain

1

2
(Kuk+1, uk+1)− (Kuk, uk) + (K(uk+1 − uk), uk+1 − uk))

+
βp

max(ε2−p, ‖uk‖2−p)

1

2
(‖uk+1‖2 − ‖uk‖2 + ‖uk+1 − uk‖2) + (yδ, uk+1 − uk).

Then,

1

max(ε2−p, ‖uk‖2−p)

p

2
(‖uk+1‖2 − ‖uk‖2) = Ψ′ε(‖uk‖2)(‖uk+1‖2 − ‖uk‖2)
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Since t→ Ψε(t) is concave, we have

Ψε(‖uk+1‖2)−Ψε(‖uk‖2)− 1

max(ε2−p, ‖uk‖2−p)

p

2
(‖uk+1‖2 − ‖uk‖2) ≤ 0

and thus

Jε(u
k+1) +

1

2
(K(uk+1 − uk), uk+1 − uk)) +

βp

max(ε2−p, ‖uk‖2−p)

1

2
‖uk+1 − uk‖2 ≤ Jε(u

k)

(5.0.9)

shows that Jε is non-increasing. Now, we give the following result.

Theorem 5.0.2. For ε > 0 let {uk} be generated by (5.0.8). Then, Jε(u
k) is monotoni-

cally non increasing and uk converges to the minimizer of Jε defined by (5.0.7).

Proof. The monotonicity of Jε has already been shown. Thus, we show that {uk} con-

verges to the minimizer of Jε. It follows from (5.0.7) that |uk|∞ <∞ and

∞∑
k=0

‖uk+1 − uk‖2
2 <∞

and thus there exists a subsequence of {uk} and u∗ ∈ `p such that

lim
k→∞

uk = lim
k→∞

uk+1 = u∗.

It follows from (5.0.8) that

K∗Ku∗ +
βp

max(ε2−p, ‖u∗‖2−p)
u∗ = K∗yδ,

i.e., u∗ minimizes Jε.

By the assumption of sparsity, the solution u = 0 everywhere except on a set

S = {u : u 6= 0}, (5.0.10)

where µ(S) < δ for some measure µ and a small number δ. That is, S = supp(u),

and u has compact support. Since K∗K may be ill-conditioned over S ∪ Sc, we develop

methods for solving (4.2.10) so that when the problem is restricted to the set S we obtain

a better-posed problem.
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We are motivated to consider functions u with compact support for two reasons. Con-

sidering the applications of interest, we assume that the set S is of very small dimension

compared with the dimension of the original problem. Hence, we will be solving a sys-

tem of linear equations of reduced order. Therefore, we seek algorithms that will take

advantage of the reduced order with respect to the set S. Secondly, the restriction of

the operator KK∗ to S will be less ill-conditioned, which will improve the computational

accuracy of the approximate solution.

5.1 Primal-Dual Active Set Method for unilateral

constraint

In this section, we discuss the basic concepts of the Primal-Dual Active set method, and

show how the sparsity optimization can be cast in this framework. This method is not a

contribution of this thesis, however, it is a useful tool for computing the minimizer of a

nonsmooth functional. In general, the Primal-Dual Active Set method allows for approx-

imations to numerous nonsmooth optimization problems to be efficiently computed. The

method is especially useful for large scale problems due to the reduced computational

expense associated with the inactive set.

Prior to applying the method, we briefly discuss the Primal-Dual Active set method

for a general class of problems given by
min
u∈X

1

2
〈Au, u〉 − 〈a, u〉

subject to u ≤ ψ.

(5.1.1)

This method is formulated in detail, with more general constraints, in the monograph

[29],the paper [20] and the references therein. For the inequality constraint in (5.1.1), we

define the complementarity condition as

µ = max{0, µ+ c(u− ψ)} (5.1.2)
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for the Lagrange multiplier µ, so that we have the system

Au+ µ = a (5.1.3)

µ = max{0, µ+ c(u− ψ)} (5.1.4)

For this general class of problems, the active set is given by

A = {µ+ c(u− ψ) > 0} (5.1.5)

which, if known, yields the system of equations

Au+ µ = a (5.1.6)

u = ψ inA and µ = 0 inAc (5.1.7)

The following Newton-like method(which can be shown to be a semi-smooth Newton

method) is given in [29]

1. Initialize u0, µ0. Set k = 0.

2. Set Ik = {µk + c(uk − ψ) ≤ 0}, Ak = {µk + c(uk − ψ) > 0}

3. Solve for (uk+1, λk+1, µk+1):

Auk+1 + µk+1 = a, (5.1.8)

uk+1 = ψ inAk and µk+1 = 0 in Ik, (5.1.9)

4. Stop, or set k = k + 1, and return to 2.

Primal-Dual Active set method for L1-H1 minimization

Consider minimizing the cost functional

‖Ku− yδ‖2
L2 + η1‖u‖L1 + η2‖∇u‖2

L2

where ‖ ·‖2
L2 corresponds to the H1 semi-norm. As an example, we formulate the Primal-

Dual method in terms of one-dimensional u. Extending the method to higher dimensions
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is straight-forward. We must formally solve the Euler-Lagrange necessary optimality

KK∗u−K∗yδ + η1
u

|u|
− η2uxx = 0. (5.1.10)

More precisely, this can be formulated as

KK∗u−K∗yδ + η1λ− η2uxx = 0 (5.1.11)

λ|u| = u |λ| ≤ 1 (5.1.12)

where the selection of λ is equivalent to the complementarity condition

λ =
λ+ cu

max{1, |λ+ cu|}
. (5.1.13)

To see this, first suppose that |λ + cu| ≤ 1 so that max{|λ + cu|, 1} = 1. Then we have

that

λ = λ+ cu =⇒ u = 0.

That is, we obtain the set Sc given by (5.0.10) whenever |λ+cu| ≤ 1. Now, let |λ+cu| > 1,

so that

λ =
λ+ cu

|λ+ cu|
=⇒ λ(|λ+ cu|1 − 1) = cu,

which implies that

αλ = cu

where α > 0 is given by α = |λ+ cu|−1. Thus, we have that λ is proportional to u. This

yields

λ =
λ+ cu

|λ+ cu|
=

λ(1 + α)

|λ|(1 + α)
=

λ

|λ|.
Finally, since c is arbitrary this yields

λ =
u

|u|.
(5.1.14)

We can make use of the Primal-Dual Active set method, in which we solve for the primal

and dual functions, u and λ, respectively, when we are in the active set. Now, consider
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solving the complementarity condition

λ =
λ+ cu

max{1, |λ+ cu|}
(5.1.15)

by Newton’s method. That is, for the solution of the equation F (y) = 0 we compute the

roots of

F ′(y)δy + F (y) = 0. (5.1.16)

In our case, we look for roots of the equation

δλmax{1, |λ+ cu|}+ λ · 0− δλ− cδu+ λmax{1, |λ+ cu|} − (λ+ cu). (5.1.17)

We will consider the Newton’s method for two cases. Firstly, let |λ + cu| < 1 so that

max{1, |λ+ cu|} = 1 which implies that

δu+ u = 0

from (5.1.17). When discretized, the condition becomes

uk+1 − uk + uk = 0

so that uk+1 = 0. That is, we can set u = 0 whenever we are solving in the inactive set.

Now, for the case when we are in the set Ak = {|λk + cuk| > 1} we discuss methods for

computing λ based on the Primal-Dual Active set formulation. Define

dk = |λk + cuk|, F k = ak(bk)t, ak =
λk

max{1, |λk|}
, b =

λk + cuk

|λk + cuk|.
(5.1.18)

For more details concerning the Primal-Dual Active Set method one may refer to the

monograph [29] or the paper [20]. The method is developed in a much more general

context in the references, which also include the theoretical analysis of the method.

With these terms (5.1.18) defined, the Primal-Dual Active Set method for the L1-H1

regularization is summarized by the following:
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Primal-Dual Active Set method for L1-H1 regularization:

1. Initialize u0, λ0. Set k = 0.

2. Set Ik = {|λk + cuk| < 1}, Ak = {|λk + cuk| > 1}.

3. Solve for uk+1, λk+1:

λk+1 =
1

dk − 1
(I − F k)uk+1 +

λk

max{1, |λk|}

KK∗uk+1 + η1

(
1

dk − 1
(I − F k)cuk+1

)
+

λk

max{1, |λk|}
− η2u

k+1
xx = K∗yδ

4. Stop or set k = k + 1 and return to 2
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Chapter 6

Numerical Tests

6.1 1-D Diffusion Equation

In this section, we consider inverse problems involving the 1-D diffusion equation

∂v

∂t
=

∂

∂x
(d(x)

∂v

∂x
) + f(x) x ∈ Ω ⊂ R (6.1.1)

(6.1.2)

v(0, t) = 0 = v(1, t) (6.1.3)

(6.1.4)

y(t) = Cv(t) (6.1.5)

with Dirichlet boundary conditions, where the measurements are restricted to a subin-

terval Ωs ⊂ Ω, for the time 0 ≤ t ≤ 1. For all the 1-D simulations presented here, the

domain is Ω = [0, 1]. The thermal conductivity, d, is potentially variable in space, but

known. The 1-D diffusion equation is formulated as an abstract Cauchy problem (2.2.1)

where

Av =
d

dx
(d(x)

dv

dx
)

and

dom(A) = {v ∈ L2(0, 1)|v, dv
dx

are absolutely continuous,

d2v

dx2
∈ L2(0, 1) and v(0) = 0 = v(1)}.
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It can be seen in the Appendix A that this generates a strongly continuous semigroup.

Example 1 : Simple 1-D example

For this simple 1-D case, we assume a Gaussian initial condition of the form

v0(x) = e−102(x−.7)2

and we take the basis {ϕk}mk=0 = {sin(kπx)}mk=0. The observation operator is defined by

Cv(t) =
1

µ(Ωs)

∫
Ωs

v(s)dµ,

where Ωs = Ω1 ∪ Ω2. Here, µ(Ωs) is the volume of the set Ωs, so that the measurements

represent averages over the two regions Ω1,Ω2. Specifically, we take Ω1 = [ 3
10
, 4

10
],Ω2 =

[ 6
10
, 7

10
] so that

Cv(t) = 10

∫ .4

.3

v(x, t)dx+ 10

∫ .7

.6

v(x, t)dx.

An example of the measurement locations and the corresponding measurements can be

seen in Figure 6.1.1. We then solve for the controls uk using the L1-H1 regularization
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(b):

Figure 6.1.1: (a) Location of measurements; (b) Corresponding measurements, y.
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method. For the case when the data is exact (δ = 0) we obtain a nearly exact reconstruc-

tion with the parameters η1 = 1×10−8, η2 = 1×10−16, by computing m = 10 coefficients.

Contaminating the data with 10% noise, we obtain a reasonable reconstruction with the

parameters η1 = 1× 10−7, η2 = 1× 10−7, by computing m = 6 coefficients. As one might

expect, computation of Fourier coefficients at high frequencies is more sensitive when the

noise in the data is significant. Fortunately, the dual control method works well with

few coefficients. Plots of the approximate solutions with the exact solution can be seen

in Figures 6.1.2a, 6.1.2b. Note that the results are based on unfiltered data. The tuning

of the parameters η1, η2 provides the filtering based on the smoothness constraint of the

control u. As discussed in Chapter 2, the control set {uk}mk=0 provides a filter bank that

can be stored for estimating solutions based on given data yδ. An example of a control

is depicted in Figure 6.1.3, corresponding to the basis function sin(2πx).
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Figure 6.1.2: (a) Reconstruction with exact measurements; (b) Reconstruction with 10%
noise in measurements.

Example 2 : Spatially varying diffusion coefficient

For this example, we consider the case when the thermal conductivity is spatially variable.

In particular, we take

d(x) = 1.0625− (x− 1

2
)4
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Figure 6.1.3: Control corresponding to sin(2πx).

and the initial condition is given by

v0(x) = e−200(x− 1
2

)4

.

As in the first example, we take the basis ϕk = {sin(kπx)}mk=0 and solve for the controls

uk using the L1-H1 regularization method. Assuming a noise level of 10%, we obtain a

reasonable reconstruction with the parameters η1 = 5×10−8, η2 = 1×10−10, by computing

m = 8 coefficients. The corresponding results are depicted in Figures 6.1.4. It should

be pointed out that the abstract Cauchy based dual control method does not make any

assumptions on the coefficients of the PDE.

Comparison of basis choices

Here, we compare the reconstructions obtained by two different basis choices. For this

example, we take

d(x) =


1 5

16
− 5(x− 1

2
)4, 0 ≤ x < 1

2

1 3
16

+
1

8 + e−50(x−.65)
, 1

2
≤ x ≤ 1,

as depicted in Figure 6.1.5, and the initial condition is given by

v0(x) = e−200(x− 1
2

)4

.
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Figure 6.1.4: (a) Thermal conductivity; (b) Reconstruction with 10% noise in measure-
ments versus Exact initial condition.

We solve for the controls uk using the L1-H1 regularization method. Assuming a rel-

ative noise level of 5%, we obtain a reasonable reconstruction with the parameters

η1 = 5×10−7, η2 = 1×10−10, by computing m = 8 coefficients, using Daubechies wavelets.

In Figure 6.1.6, one can see a comparison of two reconstructions using a standard sine
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Figure 6.1.5: Thermal conductivity.

basis and Daubechies-18 wavelets. The reconstruction obtained using the Daubechies
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wavelets is much better than the sine basis reconstruction, using the same regularization

parameters. This example illustrates how the basis choice affects the resulting recon-

struction.
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Figure 6.1.6: (a) Reconstructed initial condition using Daubechies-18 wavelets with η1 =
5 × 10−7, η2 = 1 × 10−10; (b) Reconstructed initial condition using sine basis with η1 =
5× 10−7, η2 = 1× 10−10.

Example 3 : Simultaneous reconstruction and parameter identi-

fication

We now provide results for simultaneously reconstructing the initial condition and the

unknown constant d(x) ≡ d for the diffusion equation. The exact initial condition is

given by

e−100(x−.7)2

+ .4e−20(x−.3)2

.

The exact value of d is taken to be .025, and we assume an initial parameter of d0 = .01 to

compute the minimizer of 3.1.4 via the gradient method, with the approximations 3.1.7.

The gradient method converges with a tolerance of 9.94×−8 in 272 iterations, using a step

size of γ = 1
2
. The results are depicted in Figures 6.1.7, 6.1.8 where one can see that the

gradient method converges rapidly in this example. The results are promising, however
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it is necessary to have a good initial guess for the parameter d due to local minima.
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Figure 6.1.7: (a) Convergence of ∇J to 0; (b) Convergence of d to .025.
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Figure 6.1.8: (a) Reconstructed solution at convergence of d; (b) Cost functional Jβ
depicted with optimal value d = .025.
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Example 4 : Point source identification from randomly distributed

measurements

In this example, we consider the identification of point sources from randomly distributed

point measurements of the solution at the final time. The approach is based on the

regularized least squares method utilizing the sparsity optimization, where we represent

the source in a Haar basis. We consider the problem of determining the unknown source

location and intensity for the function, f , in the diffusion equation (6.1.1), where we

assume f is of the form

f(x) =
N∑
k=1

βkδ(x− ak)

and the diffusivity, d, is known. Here, a1, . . . , aN ∈ R are mutually distinct and the

intensities β1, . . . , βN ∈ R are unknown. For our purposes, δ is defined by

δ(x− ak) =

{
1, x = ak

0, elsewhere.

The problem is to determine the N unknown source locations {ak}Nk=1 and the unknown

source intensities {βk}Nk=1 from the observation data y(t) = Cv(t). We transform the

source identification problem into an initial condition estimation problem, as described

in Section 3.2.

For point source reconstruction, we consider the method developed in Section 2.3 with

a sparse basis, such as the Haar or Daubechies D2, generated by the mother wavelet

ψ(x) =


1 0 ≤ x < 1

2

−1 1
2
≤ x < 1

0 otherwise.

That is, we formulate the problem as

min
v∈Vm

1

2
‖Mv − yδ‖2

2 + η‖v‖1.

where Vm = span{ψj,k(x)}. It is well known that {ψj,k(x)} is an orthonormal basis for

L2(R) [19].

In this simulation, the exact point source locations are taken at a1 = .4 and a2 = .7
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with the respective intensities β1 = 10, β2 = 30. We only consider two point sources for

clarity in the results, however similar results have been obtained with more point sources.

Here, we take the observation operator

Cv(t) =

 0 0 ≤ t < tf

v|
Ωs

t = tf

where Ωs = {x1, . . . , xM} for M = 16 randomly selected observation points. Note that

we are assuming measurements are only available at the final time tf = 1, so that this

inverse problem coincides with the backward heat equation with partially available final

time data. The parameter, η, for the L1 minimization is taken as 1× 10−4. This example

is representative of the potential for sparsity optimization to improve results for state

estimation. The sparse optimization allows for the resolution of the point sources without

smearing, as well as accurately estimating the intensities.
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Figure 6.1.9: (a) Point source identification with exact measurements; (b) Point source
identification with 10% noise in measurements.
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6.2 2-D Diffusion Equation

In this section, we consider inverse problems involving the 2-D diffusion equation

∂v

∂t
(x, t) = d∆v(x, t) + f(x) (6.2.1)

v(x, t) = 0 x ∈ ∂Ω (6.2.2)

v(x, 0) = v0(x) (6.2.3)

where x = (x, y) ∈ Ω ⊂ R2. As in the 1-D case, we work on the time interval 0 ≤ t ≤ 1.

The 2-D diffusion equation can be cast in the abstract Cauchy framework where A

coincides with the closure of the Laplace operator, defined by

∆f(x) :=
∂2f

∂x2
+
∂2f

∂y2.

Details for casting the diffusion equation in the abstract Cauchy framework are detailed

in Appendix A.

Example 1 : Simple 2-D example

Here, we assume a Gaussian initial condition of the form

v0(x, y) = e−102((x−.3)2+(y−.3)2)

and we take the basis ϕk,l = {sin(kπx) sin(lπy)}mk,l=0. We then solve for the controls

uk using the L1-H1 regularization method. Assuming a noise level of 10%, we obtain

a reasonable reconstruction with the parameters η1 = 3 × 10−10, η2 = 1 × 10−7, by

computing m = 12 coefficients such that (k + l)2 ≤ 60. In practice, the two-dimensional

problems may be more sensitive to the noise in the data. In some cases, it may be desired

to filter the data prior to computing the controls. To filter the data, we formulate the

minimization problem

min
y∈Ym

1

2
‖y − yδ‖2

Y + η〈y, Py〉Y (6.2.4)
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where P is often taken as a differential operator to enforce smoothing, such as the H1

semi-norm, and Ym is a finite-dimensional subspace of Y . The results are depicted in

Figure 6.2.1. Here, one can see that the location and intensity of the estimate is quite

accurate, where the small oscillations are due to the basis choice.
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Figure 6.2.1: (a) Exact initial condition; (b) Reconstruction with 10% noise in measure-
ments.

Example 2 : Simultaneous state/parameter estimation

We now provide results for simultaneously reconstructing the initial condition and the

unknown constant d(x) ≡ d for the 2-D diffusion equation. The exact value of d is taken

to be .01 and

v0(x, y) = e−102((x−.5)2+(y−.5)2).

We assume an initial parameter of d0 = .02 to compute the minimizer of 3.1.4 via

the MATLAB routine fminunc, with the approximations 3.1.7. The cost functional is

depicted in Figure 6.2.2a, for which a minimum occurs at the value .01. The results are

depicted in Figure 6.2.2b where the estimation is seen to be reasonably accurate.
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Figure 6.2.2: (a) Cost functional for simultaneous RLLS method ; (b) Reconstructed
initial condition at minimum d = .01.

Example 3 : Point source identification

For this simulation, we consider the 2-D diffusion equation (6.2.1) where we assume f is

of the form

f(x) =
N∑
k=1

βkδ(x− ak) ∈ S (R2).

The task is to determine the source locations, ak, and the source intensities βk. We

proceed by selecting the radial basis functions

ϕ(rk) = e−µ‖xk−ck‖
2

for large µ, in order to obtain a basis of approximate point sources. Using these basis

functions, we obtain a positive definite kernel Φ and utilize the RKHS method presented

in Section 3.2.1. Since the point sources are known to be discrete “delta” distributions

(point sources), it is reasonable to use the `p norm, 0 ≤ p ≤ 1 in the formulation (4.2.9).

In our tests, we obtained similar results using the `1 norm versus other `p norms for

0 ≤ p < 1. Since there are many well established algorithms for `1 minimization, we

proceed by selecting ψ = ‖ · ‖1 in (4.2.9). For clarity in the presentation, we assume

only two point source locations, however, by superposition, we expect similar results

for more point sources. In practice, this has been noticed as well. The measurements
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are taken at 65 randomly selected observation locations at the final time, tf = 1. The

measurement locations and noisy measurements are depicted in Figures 6.2.3a, 6.2.3b.

Two representations of the approximate solution are shown in Figures 6.2.4a, 6.2.4b,

where one can see that the two point sources are observed quite well, with only small

values away from the actual locations. As in the one-dimensional case, this example

really shows the strength of the method when the solution and the data are sparsely

distributed.
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Figure 6.2.3: (a) Randomly selected observation locations displayed in red; (b) Mea-
surements with 10% noise.

6.3 2-D Convection-Diffusion Equation

In this section, we present severeal numerical results for inverse problems involving the

convection-diffusion equation

∂v

∂t
= c(x) · ∇v +∇ · (d(x)∇v) + f(x) (6.3.1)

v(x, 0) = v0(x). (6.3.2)
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Figure 6.2.4: (a) Reconstruction with η1 = 1e − 3, η2 = 1e − 14; (b) Reconstruction
depicted with exact solution.

For the results presented here, we assume c(x) ≡ c, d(x) ≡ d are constant (or at least

locally constant), and we take f(x) ≡ 0. For both simulations, the domain is taken

as the unit square Ω = [0, 1] × [0, 1]. We consider this problem for several reasons.

Determining the initial condition for the convection-diffusion equation is important in

its own right, however, one can also consider this as determining the initial condition of

the heat equation with moving sensors or measurement locations. Hence, we are able to

analyze the performance of reconstructing the initial condition of the heat equation with

moving sensors, as well as for the convection-diffusion equation itself.

Example 1 : Initial condition reconstruction

We first consider the initial condition reconstruction problem with d = .1, c = (1
2
, 1

2
)

known, where we have the observation operator defined by

Cv(t) =
1

µ(Ωs)

∫
Ωs

v(s)dµ,

where µ(Ωs) is the volume of the set Ωs. That is, we take average measurements over a

sample set Ωs ⊂ Ω. For both simulations, we take nine measurement locations equally

spaced over the domain, each location of size 1
10
× 1

10
. The corresponding contaminated
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measurements are depicted in Figure 6.3.1b, which are filtered via (6.2.4) prior to imple-

menting the method. Using the operator splitting technique outline in Section 2.6, the

convection-diffusion equation fits into the abstract framework (2.1.1). We take the exact

initial condition

v0(x, y) = e−100((x−.55)2+(y−.5)2)

and we solve the corresponding inverse problem using the L1-H1 regularization, with

basis functions

ϕk,l(x, y) = sin(kπx) sin(lπy).

As can be seen by comparing Figure 6.3.2a, 6.3.2b, the method for reconstructing the

initial condition performs well with the parameters η1 = .03, η1 = 1 × 10−8. Depending

on the basis choice, small errors are expected due to the truncation of the generalized

Fourier series. In this case, we have small oscillations due to the sinusoidal basis. We also

consider the convection-diffusion equation to investigate how adding convection affects

the estimation results. We compare the reconstruction of the same initial condition from

the convection-diffusion equation and the diffusion equation using the same measurement

locations. As can be seen in Figure 6.3.3, the addition of convection has the potential to

sharpen results depending on measurement location. In this case, there is the appearance

of a hump over one measurement location when no convection is present. This is likely

due to difficulty in capturing the direction in which information(heat flow) is propagating.
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Figure 6.3.1: (a) Nine measurement locations depicted in red; (b) Noisy measurements
used for reconstruction compared with exact measurements.
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Figure 6.3.2: (a) Exact initial condition; (b) Reconstruction with 10% noise in measure-
ments.
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Figure 6.3.3: (a) Reconstruction with cx = 0 = cy; (b) Reconstruction with cx = 1
2

= cy.
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Example 2 : Simultaneous state/parameter estimation

We now provide results for simultaneously reconstructing the initial condition and the

unknown constants c(x) ≡ c, d(x) ≡ d for the 2-D convection-diffusion equation. The ex-

act values of the parameters are d = .01, cx = 1
2
, cy = 1

2
, so that the problem is convection

dominant. We assume initial parameters of d0 = .007, cx,0 = .4, cy,0 = .3 to compute the

minimizer of 3.1.4 via the MATLAB routine fminunc, with the approximations (3.1.7).

The results are depicted in Figure 6.3.4 where one can see that the method reasonably

reconstructs the initial condition and identifies the convection/diffusion coefficients.
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Figure 6.3.4: (a) Exact solution; (b) Reconstruction with d = .0074901, cx = .43712, cy =
.48074.
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Chapter 7

Two real world applications

In this chapter, we present results for the application of the nonsmooth regularization

to two real world applications. This section justifies how the methods can be applied to

numerous studies.

7.1 Application to data classification

In this section, we briefly describe the application of the nonsmooth regularization to

a data classification problem. Our general classifier can be written as the optimization

problem

min
(w,γ)

φ(y) + βψ(w, γ),

y = e−Hu

(7.1.1)

where we assume φ, ψ are lower semi-continuous, as in Chapter 4. An example of such

a classifier is the proximal support vector machine (PSVM)[17], where one takes φ(y) =

‖y‖2
2 and ψ(w, γ) =

1

2
(‖w‖2

2 + |γ|2), for X = Rn, with β = 1
ν
. The choice of the 2-norm is

often chosen for ease of computation and to guarantee the closed form solution, however,

statistically we should consider other norms. To obtain a sparse classifier, we take

ψ(w, γ) = ‖w‖pp +
1

2
|γ|2 where ‖w‖pp =

m∑
i=1

|wi|p (7.1.2)

for 0 < p ≤ 1. Further details can be found in Appendix C.
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We now provide numerical results from the application of our approach to a neural

classification problem. We first provide an outline of how the experiment is conducted,

as it will be important for deciphering the results provided. The experiment proceeds

by asking a person who is incapable of certain movements to think about performing a

specific movement such as wrist flexion, elbow extension, or closing the hand. The data

obtained is neural firing rate data, meaning that this is a time dynamical data classifica-

tion problem. It is desired to determine the correlation between imagining a movement

and the neural response to imagining the movement. The experiment consists of periods

of rest and periods where the person is cued to think about a certain movement. For this

particular experiment, there are five wrist movements consisting of wrist extension, wrist

flexion, wrist radial deviation, wrist ulnar deviation, and closing hand. The patient is

cued to imagine one of the movements consecutively, with periods of rest between each

cue. The person is then cued for another of the five movements consecutively, again with

periods of rest in between each cue. The period of time after the cues for wrist up consists

of both rest and cues for other movements. This is the nature of how the experiment

is conducted. Data is collected for a specified interval of time, which consists of periods

of rest and periods of cues for each movement. The goal of the data classification is to

sharply separate the data for each movement. For example, we must separate the data

corresponding to wrist “up” (extension) from the data corresponding to both the rest

periods and the periods for other movements. Thus, the results given here are only for

one particular movement, however the method produces similar results for the other five

movements.

The results provided are for a patient who was left paralyzed after a stroke. The cues

for the action of ’wrist up’ can be seen in Figure 7.1.1 for this particular patient.

By taking the `p minimization with p = .2 versus the `2 minimization we are able to

increase the number of coefficients such that |wi| ≤ 1e − 4 from 1 to 18. The increase

in sparsity is depicted in Figure 7.1.2 where one can see how taking successively smaller

values of p reduces the number of nonzero weights, w. We now illustrate how changing β

can improve the force. A comparison of the nonsmooth formulation can be seen in Figure

7.1.3. It should be noted that the performance is improved, in addition to increased

sparsity

As a test of the classifier, we train on the first three cues for a specified movement

and test the classifier on the fourth cue. The test results can be seen in Figure 7.1.4 for
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Figure 7.1.1: Cues for the wrist up action.
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Figure 7.1.2: Comparison of weights for different `p norms.

two movements. As one can see, the classification is nearly equal for both the PSVM

and our nonsmooth formulation.
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Figure 7.1.4: (a) Test of nonsmooth formulation for wrist down for α = .1, p = 2; (b)
Test of nonsmooth formulation for wrist right for α = .1, p = 2.

92



7.2 Application of Reconstruction to Synthetic Aper-

ture Sonar Imaging

7.2.1 Problem formulation

Synthetic aperture sonar(SAS) operates by sending acoustic signals at predefined stops

along a track or path. The returned signals from the objects(scatterers) are then com-

bined to simulate the signal from a real aperture sonar. Due to this process, techniques

are required in order to obtain image estimates from the synthesized signal. The setup

of the process for obtaining the data can be seen in Figure 7.2.1.
SAS Operation . . .

saito@math.ucdavis.edu (UC Davis) Underwater Object Classification SIAM Imag. Sci. Conf. 8 / 36

Figure 7.2.1: Synthetic Aperture Sonar setup.

The most widely used technique for obtaining image estimates in SAS is the ω-k
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algorithm, which will briefly describe here. The fully details of the method are developed

in the theses [6],[18]. The ω-k algorithm is a fast Fourier domain technique and works well

under certain assumptions. The predecessor to the ω-k algorithm is the Range-Doppler

algorithm, which is still commonly used. In their most basic forms, the ω-k algorithm

outperforms the Range-Doppler algorithm. A PDE migration technique is developed

in [23], which utilizes a regularization technique for refining the image estimate. This

technique works well and produces a more physically meaningful estimate, however, the

speed is much slower when compared with frequency domain techniques.

7.2.2 Background

Given a signal(source) function p and the raw echo signal e, we form the pulse-compressed

echo signal by

s(t, u) =

∫
e(s, u)p∗(s− t) ds. (7.2.1)

where ku is the wavenumber in the along-track direction.

Range-Doppler algorithm

For the Range-Doppler algorithm, we take the Fourier transform in the range, u, that is,

the along-track direction(see Figure 7.2.1). Here, we have the 1-D Fourier transform of

the pulse-compressed signal

s(t, ku) =

∫ ∫
e(s, ku)p

∗(s− t)e−iku ds dku. (7.2.2)

The Range-Doppler representation of the pulse-compressed signal is given by

s(t, ku) ≈
f(x0, ku)√

4k2
0 − k2

u

δ(t− 2

c
x0Cs(ku)) exp(i|x0|

√
4k2

0 − k2
u) (7.2.3)

where

Cs(ku) =
1√

1−
(
ku
2k0

)2
− 1, (7.2.4)
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for a target located at x0, where k0 is the carrier wavenumber. Note that we use the

exact curvature factor (7.2.4) rather than the approximation

Cs(ku) ≈
1

2

(
ku
2k0

)2

(7.2.5)

which is often utilized. Since, we are only working in the along-track direction, we

decouple the range and cross-range via the transformation T defined by

x→ c

2
(x0 − x0Cs(ku)) (7.2.6)

ky → ku. (7.2.7)

Next, we apply a narrowband propagation filter

q(x, ky) =
√

4k2
0 − k2

y exp(i|x|
√

4k2
0 − k2

y) (7.2.8)

after applying the transformation T . Thus, we have

f̂(x, ky) = s̃(x, ky)q(x, ky) (7.2.9)

where s̃ = Ts. The final image estimate is given by the inverse Fourier transform

of f̂(x, ky), in the along-track direction, so that the Range-Doppler algorithm can be

summarized by

f̂(x, y) = F−1
ky
{q(x, ky)T (s(t, ku))}. (7.2.10)

Wavenumber algorithm

The ω-k (wavenumber) algorithm is very similar to the Range-Doppler algorithm, how-

ever, in order to reverse the effects of the SAS imaging system, a coordinate transform

is utilized in the wavenumber domain. This requires that we take the Fourier transform

in the range, as well as the cross-range(along-track). This is the main difference between

the two algorithms. The wavenumber algorithm can be summarized by

f̂(kx, ky) = S−1{
√

4k2 − k2
uŝ(ω, ku) exp(i|x0|

√
4k2 − k2

u)} (7.2.11)
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where the inverse Stolt map, S−1, is defined by

kx =
√

4k2 − k2
u (7.2.12)

ky = ku (7.2.13)

and ŝ(ω, ku) is the 2-D Fourier transform of (7.2.1). The 2-D inverse Fourier transform

of (7.2.11) gives the image estimate.

For the approximation of the integral∫
exp(−i2k

√
x2 + (y − u)2 − ikuu) du =

∫
exp(iψ(u)) du, (7.2.14)

which arises in taking the Fourier transform of (7.2.1),we utilize the principle of stationary

phase or other approximations of highly oscillatory integrals [40].

7.2.3 Parameterized Range-Doppler algorithm

We briefly describe the parameterization of the Range-Doppler and/or ω-k algorithms

for intrinsically sharpening the image estimates. We effectively window the cross-range,

u, by taking a modified wavespeed

c̃ = αc

where c is the original wavespeed. This acts as a window for the computation of the

Fourier transform, thus reducing the computational expense. The parameter α must

be chosen appropriately so that the sharpness of the image is maintained(or improved),

while reducing the computational cost of the algorithm. Given this parameterization

of the Range-Doppler algorithm, it turns out that the parameter corresponding to the

sharpest image coincides with the minimization of the total variation, and likewise, the

maximization of the entropy. Thus, we cast the problem as

min
I(α)∈X

‖I‖TV = min
I∈X

∫
X

|∇I| dx

subject to

K(α)I = yδ
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where α is the parameter to be determined. Here, K(α) is the migration operator corre-

sponding the Range-Doppler algorithm or the ω-k algorithm and I is the image estimate.

In Figure 7.2.2, on can see a comparison of images produced using the ω-k algorithm

and the improved Range-Doppler algorithm. Note that the improved Range-Doppler

algorithm maintains the sharp results of the ω-k algorithm while reducing the appearance

of striations.

One advantage of the filtered Range-Doppler method is the ability to localize the

method. One may window in on a specific region of interest prior to applying the method.

Also, if the wave speed is variable in the along-track direction then the parameter β

may be adjusted, so that the method can be adapted for the case of non-homogeneous

materials.

7.2.4 PDE migration

We now briefly describe a PDE migration technique for forming image estimates from

SAS data via the one-way wave equation. Let s(x, t) be the raw data, then we denote

the Fourier transform of s(x, t) by

A(ψ, ω) =

∫∫
ω ξ

s(x, t)e−i(ωt+ξx)dξdω. (7.2.15)

We assume the plane wave extrapolation

D(ξ, η, ω) = A(ξ, ω)ei(ωt+ξx+ηy) (7.2.16)

where

ω2 =
c2

4
(k2
x + k2

y).

The inverse Fourier transform of D is given by

d̂(x, y, t) =
1

(2π)3

∫
D(kx, ky, ω)dkx dky dω
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and it satisfies

4

c2

∂2d̂

∂t2
=

1

2

∂2d̂

∂y2
+

2

c

∂2d̂

∂x∂t
(7.2.17)

d̂(x, 0, t) = s(x, t) (7.2.18)

where s is the SAS data. Solving (7.2.18) yields an image estimate, which can be sharp-

ened via regularization techniques such as those developed in Chapter 4. Further details

can be found in [23].
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Figure 7.2.2: (a) ω-k image estimate; (b) Improved Range-Doppler image estimate.
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7.3 Concluding remarks

The abstract Cauchy problem provides a unified framework for the analysis of systems

governed by PDE. The methods developed in this thesis allow for the systematic recon-

struction of initial conditions of the abstract Cauchy problem. In particular, the dual

control method coupled with the multi-parameter regularization yields a method that

is very tunable and robust. By an appropriate basis selection for the problem at hand,

and by selecting the parameters in the regularization framework based on the balance

principle, a reconstruction filter is determined based on the governing PDE. Depending

on the problem size, there may be significant overhead in computing the controls (2.3.11).

However, once computed, the controls can be banked (or stored) for future use. Thus,

if one carefully selects the basis and the parameters are tuned to the noise and a priori

information about the solution, the method can potentially be implemented in real time,

simply by integrating the controls against the data.

Diffusion processes and parabolic equations fit particularly well into this framework,

due to the necessity for stabilizing the dynamics backward in time. The method accu-

rately reconstructs both initial conditions and point sources of diffusion processes, and

allows the forecasting of future states. Thus, the tool provided is valuable for problems

where numerous calculations are required based on sensor data, and for problems where

integrating forward and backward in time is important.

Based on the multi-parameter regularization, the methods developed are particularly

suited for problems involving a locally supported source, such as point sources, as well

as those with sparsely distributed data. The sparsity optimization works well for both

identifying initial conditions/sources that are locally supported, as well as for selecting

the necessary control profile.

Certain questions still remain and extensions to more difficult problems can be real-

ized. Specifically, nonlinear problems can be treated in a similar manner, through the

development of nonlinear dual control filters. Preliminary results are promising for the

one-dimensional viscous Burger’s equation

ut +

(
u2

2

)
x

= εuxx.

As mentioned in the introductory comments, the long term goal is to extend the method
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to nonlinear problems, including the incompressible Navier-Stokes equations

∂

∂t
vi +

n∑
j=1

vj
∂vi
∂xj

= ν∆vi −
∂p

∂xi
+ fi(x, t) (x ∈ Rn, t ≥ 0),

div v =
n∑
i=1

∂vi
∂xi

= 0 (x ∈ Rn, t ≥ 0),

with initial conditions

v(x, 0) = v0(x) (x ∈ Rn).

The consideration of the Navier-Stokes equations also involves the necessity for consid-

ering higher-dimensional problems. In this case, the solution for the controls must be

performed efficiently, though, once computed, this framework may be ideal for large prob-

lems since the filter can simply be banked. Thus, future research for this method involves

addressing computational efficiency.
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2006.

[3] A.V. Balakrishnan. Kalman Filtering Theory. Optimization Software, New York,
1987.

[4] N. Boussetila and F. Rebbani. A modified quasi-reversibility method for a class of
ill-posed cauchy problems. Georgian Mathematical Journal, 14(4):627–642, 2007.

[5] K. Brammer and G. Siffling. Kalman-Bucy Filters. Artech House, Norwood, MA,
1989.

[6] Hayden J. Callow. Signal Processing for Synthetic Aperture Sonar Image Enhance-
ment. PhD thesis, University of Canterbury, NZ, 2003.

[7] E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions
on Information Theory, 52:489–509, 2006.
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Appendix A

Semigroup Theory

In this section, the fundamental results of semigroup theory needed for the analysis of

(2.1.1) are described. This very useful theory not only gives necessary and sufficient

conditions for the existence of a unique solution to (2.1.1), but also gives practical results

for the approximation of the solutions.

Definition A.0.1. Let {Tt; t ≥ 0} be a one-parameter family of linear operators on a

Banach space X(i.e., Tt ∈ L(X,X) for t ≥ 0). If the operators Tt satisfy the conditions

TtTs = Tt+s for t, s ≥ 0 (A.0.1)

T0 = I (A.0.2)

lim
t→t0

Ttx = Tt0x for each t0 ≥ 0 and each x ∈ X, (A.0.3)

then {Tt} is called a C0-semigroup.

Definition A.0.2. Let {Tt} be a C0-semigroup on X. The linear operator A defined by

Ax = lim
h↓0

1

h
(Thx− x), x ∈ dom(A)

is called the infinitesimal generator of {Tt}, where the domain is the set dom(A) = {x ∈
X : lim

h↓0

1

h
(Thx− x) exists in X}.
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A.1 Mild Solutions to the Abstract Cauchy Problem

Definition A.1.1. If A is a closed operator on the space X and f ∈ L1
loc([0,∞);X),

then we define a mild solution of the non-homogeneous Cauchy problem

dx

dt
= Ax(t) + f(t) (A.1.1)

as a function x ∈ C([0,∞);X) such that

t∫
0

x(s) ds ∈ domA, t ≥ 0

and

x(t) = x0 + A

t∫
0

x(s) ds+

t∫
0

f(s) ds, t ≥ 0.

The proof of the following theorem can be found in [27].

Theorem A.1.1. If A is the infinitesimal generator of a C0-semigroup Tt and f ∈
L1
loc([0,∞);X) then

x(t) = Ttx0 +

t∫
0

Tt−sf(s) ds, t ≥ 0 (A.1.2)

is the unique mild solution of (A.1.1).

Definition A.1.2. An operator A is said to be dissipative if 〈Ax, x〉 ≤ 0 for all x ∈
dom(A).

Example A.1.1 (1-D Heat equation). Consider the one-dimensional heat equation

∂u

∂t
=
∂2u

∂x2

so that the operator A is defined by Au =
d2

dx2
u and we take the domain

dom(A) = {du
dx
,
d2u

dx2
∈ L2(0, 1) : u(0) = u(1) = 0}
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or

dom(A) = {du
dx
,
d2u

dx2
∈ L2(0, 1) : u(0) =

d

dx
u(1) = 0}.

For either choice of the domain we have

〈Au, u〉 =

∫ 1

0

d2u

dx2
u dx =

[
du

dx
u

]1

0

−
∫ 1

0

(
du

dx

)2

dx = −
∫ 1

0

(
du

dx

)2

dx ≤ 0,

so that A is dissipative. Now, consider the case when the domain of A is

dom(A) = {du
dx
,
d2u

dx2
∈ L2(0, 1) : u(0) = 0,

d

dx
u(1) = −cu(1)}.

In this case, we have

〈Au, u〉 =

∫ 1

0

d2u

dx2
u dx = −c|u(1)|2 −

∫ 1

0

|du
dx
|2 dx

which we want to be less than or equal to zero. Since u(0) = 0, we have

u(1) =

∫ 1

0

du

dx
dx

so that

|u(1)|2 ≤
(∫ 1

0

12 dx

)(∫ 1

0

|du
dx
|2 dx

)
≤
∫ 1

0

|du
dx
|2 dx.

Thus, in order for A to be dissipative, we require that −c− 1 ≤ 0 or c ≥ −1.

Example A.1.2 (Diffusion equation in Rn). The diffusion equation on Ω ⊂ Rn with

Dirichlet boundary conditions is given by

∂v

∂t
(x, t) = ∆v(x, t) (A.1.3)

v(x, t) = 0 x ∈ ∂Ω (A.1.4)

so that A coincides with the closure of the Laplace operator, defined by

∆f(s) :=
n∑
i=1

∂2

∂s2
i

f(s1, . . . , sn)

for every f in the Schwartz space
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S (Rn) :=

{
f ∈ C∞(Rn) : lim

|x|→∞
|x|kDαf(x) = 0 for all k ∈ N and α ∈ Nn

}
.

In this case, the associated semigroup is defined by

Stf(x) := (4πt)−n/2
∫
Rn
e
−|x−ξ|2

4t f(ξ) dξ.

with the space X = Lp(Rn), 1 ≤ p <∞. The domain of A is taken as

dom(A) = H2(Ω) ∩H1
0 (Ω).

Example A.1.3 (Laplace operator is dissipative). Consider the Laplace operator on the

space X = H2
0 (Ω). Then, by use of Green’s identity we see that

〈∆u, u〉X =

∫
Ω

u∆u =

∫
∂Ω

u
∂u

∂n
−
∫
Ω

|∇u|2 = −‖∇u‖ ≤ 0

so that the Laplacian is dissipative for all u ∈ X.
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Appendix B

Definitions and some Background

Material

Definition B.0.3 (Minkowski’s Inequality). Let f, g ∈ Lp with 1 ≤ p ≤ ∞, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Definition B.0.4 (Hölder’s Inequality). Let f, g ∈ Lp with 1 ≤ p ≤ ∞, then{∫
|fg|

}
≤
{∫
|f |p
}1/p{∫

|g|q
}1/q

where 1
p

+ 1
q

= 1.

Lemma B.0.1. Let M be a closed convex set in a Hilbert space H. For every point

x ∈ H there exists a unique y∗ ∈M such that

‖x− y∗‖ = inf
y∈M
‖x− y‖.

Theorem B.0.2 (Projection Theorem). Let M be a closed linear subspace of a Hilbert

space H. For any x ∈ H there exist unique elements y ∈ M and z ∈ M⊥ such that

x = y + z.

Theorem B.0.3 (Riesz Representation Theorem). Let H be a Hilbert space and let

x∗ ∈ H∗. Then there exists a unique z ∈ H such that x∗(x) = 〈x, z〉H for all x ∈ H, and

‖x∗‖ = ‖z‖.
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Definition B.0.5. A bilinear functional σ is called coercive if there exists a constant

M such that

σ(x, x) ≥M‖x‖2 for allx ∈ A.

Theorem B.0.4 (Lax-Milgram Theorem). Let σ be a bounded, coercive, bilinear func-

tional on a Hilbert space H. Then for every f ∈ H∗ there exists a unique z ∈ H such

that

f(x) = σ(x, z) for allx ∈ H.

Further, the following estimate holds:

‖z‖H ≤
1

M
‖f‖H∗ .

Definition B.0.6. A sequence {xn} ∈ X is said to be weakly convergent if there exists

x ∈ X such that x∗(xn) → x∗(x) for any x∗ ∈ X∗. Suppose X is a Hilbert space. By

the Riesz Representation Theorem, weak convergence is equivalent to (xn, z)→ (x, z) for

any z ∈ X. We us the notation xn ⇀ x to denote weak convergence.

Theorem B.0.5 (Bessel’s Inequality). Let {un} be an orthonormal sequence in an inner

product space X. For every x ∈ X we have

‖x−
n∑
i=1

〈x, xi〉xi‖2 = ‖x‖2 −
n∑
i=1

|〈x, xi〉|2

and
n∑
i=1

|〈x, xi〉|2 ≤ ‖x‖2

Definition B.0.7. An orthonormal sequence is said to be complete if for every x ∈ X

x =
∞∑
n=1

〈x, xn〉xn.

Theorem B.0.6 (Parseval’s Formula). An orthonormal sequence {un} in a Hilbert space

H is complete if and only if

‖x‖2 =
∞∑
n=1

|〈x, xn〉|2.
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Definition B.0.8. The conjugate(dual) f ∗ : X∗ → [−∞,∞] of a functional f is defined

by

f ∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)}.
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Appendix C

Sparsity Regularization for a Neural

Classification Problem

C.1 The Support Vector Machine

In this section, we give a basic outline of the Support Vector Machine (SVM) algorithms.

We are given training data D, a set of n points of the form

D = {(xi, di) | xi ∈ Rm, di ∈ {−1, 1}}ni=1

where the di is either 1 or -1. We want to find the maximum-margin hyperplane that

divides the points having di = 1 from those having di = −1. Any hyperplane can be

written as the set of points x satisfying

xi · w − γ = 0.

To this end the linear SVM determines the hyperplane (w, γ)t by the constrained mini-

mization;

min
(w,γ)

ν
m∑
i=1

yi +
1

2
(|w|2 + γ2)

subject to di(xi · w − γ) ≥ 1− yi, yi ≥ 0

(C.1.1)

where yi measures the degree of misclassification and ν > 0 is a chosen parameter. That

is, the SVM algorithm classifies data into two categories, Ω− and Ω+, geometrically
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separated by the plane {x : x · w = γ}, and clustered around the two planes

Ω− = {x ∈ Rm : x · w − γ ≤ −1}

Ω+ = {x ∈ Rm : x · w − γ ≥ +1}.
(C.1.2)

The authors of [17] formulate the inequality y ≥ 0 in terms of a penalty,

min
w,γ,y

ν

2
|y|2 +

1

2
(|w|2 + γ2) subject to D(Aw − γe) + y ≥ e, (C.1.3)

where D = diag(di) and A ∈ Rn×m with rows Ai = xi, 1 ≤ i ≤ n. Furthermore, the

PSVM algorithm in [17] replaces the inequality as the equality constraint and formulate

the unconstrained minimization

min
ν

2
|y|2 +

1

2
(|w|2 + γ2) subject to D(Aw − γe) + y = e. (C.1.4)

Our formulation is also an unconstrained minimization of the form

min
ν

2
|y+|2 +

1

2
(|w|2 + γ2) subject to D(Aw − γe) + y = e, (C.1.5)

where y+
i = max(0, yi). Our motivation for choosing y+ in this manner can be understood

by the following simple argument. Note that if yi ≥ 0 in (C.1.4) then

di(xi · w − γ) = 1− yi

and thus yi is the degree of misclassification. However, if yi ≤ 0

di(xi · w − γ) = 1− yi ≥ 1

and thus the case is allowed. We are motivated by this fact to only penalize y+
i =

max(0, yi) in the formulation (C.1.5). In this sense the formulation (C.1.5) is penalizing

the inequality constraint of (C.1.1). It should improve the separability of the classes

based on the least squares formulation (C.1.4).

But, the advantage of (C.1.4) is that it has the closed form solution (w γ)t. That is,
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(C.1.4) is equivalent to
ν

2
|H(w γ)t − e|2 +

1

2
(|w|2 + γ2)

where H = D[A − e] (i.e. y = e−H(w γ)t) and thus

u = (w γ)t = (I + ν H tH)−1H te.

However, it will be shown in Section C.2 that the formulation (C.1.5) has an efficient

implementation as well.

An important consideration for classification problems of this form is the possibility

of ill-posedness. If H is very ill-conditioned, i.e. the singular values of H decrease very

rapidly to zero, then the solution is very sensitive to the selection of ν > 0. The second

term 1
2
(|w|2 + γ2) in (C.1.4) represents the 2-norm of u = (w γ)t. It is more reasonable

to use some other norms to obtain a desirable classifier. One of our requirements is that

fewer nonzero components of w are in the final solution. To satisfy this requirement, we

use the `p norm with 0 < p ≤ 1 for our formulation in Section C.2 to obtain the sparse

solution. The nonzero components of w represent the essential and critical neurons

for classifying the specified movement. In this way we can obtain the neural network

information of the Braingate technology.

C.2 New Approach

C.2.1 Improving separability via inequality constraint

We now present an algorithm which indirectly utilizes the inequality D(Aw − eγ) +

y ≥ e for the optimization of (w, γ)t. For this approach, we consider the constrained

minimization

min
(w,γ)

φ(y) + βψ(w, γ) (C.2.1)

subject to D(Aw − eγ) + y = e (C.2.2)
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where we design φ to incorporate the weighting for regions where (Aw− eγ) + y < e and

(Aw − eγ) + y > e. In this case, the functional φ is taken to be

φ(y) =
1

2
min(0, Hu− e)2. (C.2.3)

Here, we are attempting to create more of a division between the two classes of data, so

that the data is classified more distinctly. The choice (C.2.3) works well since if y ≥ 0

we will have

(x · w − γ) = 1− yi

which means that yi is the degree of misclassification, however, if yi ≤ 0 we have

(xi · w − γ) = 1− yi ≥ 1

which is desirable since the data is pushed farther away from 1.

C.2.2 Weights for reducing bias

Due to the large amount of data for periods of rest, the standard classification algorithm

could have a bias towards identifying the “rest” state, hence reducing the identification

of an imagined movement. The rest state corresponds to data for which di = −1. Hence,

it is reasonable to consider incorporating different weights for the two cases di = −1 and

di = 1. To reduce the bias towards identifying coefficients for which di = −1, we choose

a parameter α ≤ 1 for the weight corresponding to this data. In that way, for di = −1,

we weight the data by selecting a parameter α and we define the norm

φ(y) =
1

2
‖S1/2(Hu− e)‖2

where the matrix S is defined by{
Sii = 1 if di = 1

Sii = α if di = −1

in order to account for the bias.
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C.2.3 Algorithm

We now provide the details of the numerical implementation of the methods discussed

in Section C.2 which contains all the desired properties discussed. For all algorithms

presented in this section, the Tikhonov regularization parameter is β and we define the

matrix

H = D[A − e]. (C.2.4)

We develop an iterative algorithm which incorporates all aspects given in this section,

based on the iterative method (5.0.8). In summary, the iterative method for computing

the classifier (w, γ)t is given by(
H tSΓkH + β

(
T k 0

0 1

))(
wk+1

γk+1

)
= H tSΓke

Γkii = max(0, 1− dk(xk − γ)), T kjj =
p

max(ε2−p, |wkj |2−p)

(C.2.5)

for some small ε > 0. Each step involves forming the diagonal matrices Γ, T and solv-

ing the linear equation for (wk+1, γk+1)t. For the application considered in this paper,

convergence is achieved with a relatively low number of iterations(3 or 4 is reasonable),

so that the complexity of the proposed algorithm nearly equals the complexity of the

PSVM. Thus, the advantages of this approach are realized with only a small increase

in computational cost for our application. Note that (C.2.5) is equivalent to the PSVM

formulation if we set S, T,Γ = I ∈ Rn×m.
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