
ABSTRACT

STAGG, KRISTEN LYNN. Generalizations and Analogs of the Frattini Subalgebra.
(Under the direction of Dr. Ernest Stitzinger.)

Giovanni Frattini introduced his subgroup, now called the Frattini subgroup, in the

nineteenth century. It has inspired investigations since it appeared. Besides being studied

in its own right, it has been generalized in group theory, transformed into what is the

Jacobson radical in ring theory and copied in Lie and other algebras. In the present work,

we make further contributions to the theory of the Frattini subalgebra and introduce Lie

algebra generalizations, which have group theory counterparts.
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Chapter 1

Introduction

A major subject of study in algebra is the intersection of all maximal “things”. In groups,

Giovanni Frattini investigated the intersection of all maximal subgroups, now called the

Frattini subgroup. The Frattini subgroup, denoted Frat(G), for a group G has been

continually investigated since Frattini published his results in a paper in 1885. In the

first half of the 20th century various authors investigated this concept in group theory.

Two of the main contributors to this work were Wolfgang Gaschütz and Bertram Huppert.

In the 1960’s Frattini subgroup properties were considered in Lie algebras. E.I. Mar-

shall began investigating the intersection of all maximal subalgebras in Lie algebras in

[20]. In Lie algebras, the intersection of all maximal subalgebras is called the Frattini

subalgebra, denoted F (L) for a Lie algebra L. Unlike the Frattini subgroup, which is

always normal, the Frattini subalgebra is not always an ideal. Thus, we denote the Frat-

tini ideal, φ(L), to be the largest ideal of L contained in F (L). Several of the main

contributors to this work are Donald Barnes, Ernest Stitzinger, and David Towers.
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At the same time that the Frattini subgroup was considered in Lie algebras, gener-

alizations of the Frattini subgroup were introduced in group theory. A central theme in

this paper is finding correlations in Lie algebras to known facts in group theory. More

specifically, we have combinined these two ideas and investigatined generalizations and

analogs of the Frattini subalgebra in Lie algebras.
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Chapter 2

Preliminaries

To begin, all Lie algebras that are investigated in this paper will be finite dimensional.

We will first introduce definitions and notation that will be used throughout this paper.

Using the same notation as David Towers in [33], the Frattini subalgebra, F (L), is the

intersection of all maximal subalgebras in a Lie algebra L. As this is not always an ideal,

we refer to the Frattini ideal, φ(L), as the largest ideal of L contained in F (L). The

only known example where the Frattini subalgebra is not an ideal is as follows: For the

3-dimensional Lie algebra L = 〈x, y, z〉 over the field of 2 elements with multiplication

[x, y] = z, [y, z] = x, [z, x] = y, F (L) = 〈x+y+z〉, which is not an ideal. In this example,

φ(L) = 0.

Throughout this paper we will have the occasion to use three very important series

for L, namely

(i) the derived series for L is the chain of subalgebras

L = L(1) ⊇ L(2) ⊇ L(3) ⊇ · · · ⊇ L(c) ⊇ L(c+1) ⊇ · · ·
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where L(m) = [L(m−1), L(m−1)]. L is solvable if the series terminates.

(ii) the lower central series for L is the chain of ideals

L = L1 ⊃ L2 ⊃ L3 ⊃ · · · ⊃ Lc ⊃ Lc+1 ⊃ · · ·

where Li = [Li−1, L]. L is nilpotent if the series terminates. L is nilpotent of length

s if Ls+1 = 0.

(iii) the upper central series for L is the chain of ideals

Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ Zc ⊆ Zc+1 ⊆ · · ·

where Z0 = {0}, Z1 = Z(L), and Zi/Zi−1 is the center of L/Zi−1. The hypercenter

of L, denoted Z∗(L), is the terminal member of this series.

In [7], Beidleman and Seo generalized some of the fundamental properties of the Frat-

tini subgroup of a finite group. They defined a generalized Frattini subgroup to be any

proper normal subgroup H of a group G such that G = HNG(P ) implies G = NG(P ) for

any Sylow p-subgroup P of a normal subgroup K of G. They showed that the generalized

Frattini subgroup satisfies the property: If G is a finite group with A and B normal sub-

groups in G such that B ⊂ Frat(G) and A/B nilpotent, then A is nilpotent. In Chapter

3, using the correspondence between the Frattini subalgebra and the Frattini subgroup,

we show the Lie algebra analogs to these group theory properties. As we do not have

Sylow p-subgroups in Lie algebras, we must introduce the use of Cartan subalgebras to

play this role. A subalgebra C of a Lie algebra L is called a Cartan subalgebra of L

if C is nilpotent and NL(C) = C. Following this definition, a proper ideal H in L is
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generalized Frattini in L if for each ideal K in L and each Cartan subalgebra C of K,

whenever L = H + NL(C), then L = NL(C). We are able to show that a generalized

Frattini subalgebra also satisfies the equivalent property in Lie algebras, often referred

to as Barnes’ Theorem. We also show relationships of the nilpotent radical, the unique

nilpotent ideal which contains all nilpotent ideals of L, denoted Nil(L), and the radi-

cal, the maximal solvable ideal containing all solvable ideals of a Lie algebra L, denoted

Rad(L), to generalized Frattini subalgebras.

The second section of Chapter 3 deals with two ideals that are closely related to the

Frattini ideal. R(L) is the intersection of all maximal subalgebras of L which are also

ideals of L, putting R(L) = L if no such maximal subalgebras exits. The subalgebra

T (L) is the intersection of all maximal subalgebras of L which are not ideals of L, again

putting T (L) = L if no such maximal subalgebras exist, and τ(L) will be the largest

ideal of L contained in T (L). The first four lemmas are results of Towers in [34]. Towers

shows relationships between these new ideals and the Frattini ideal of L. We use these

results to show that τ(L) is generalized Frattini in L.

In Chapter 4, we continue to look at the theory of generalized Frattini subalgebras

based off the work done by Beidleman in [8]. Similar to Beidleman, we break this section

up into three sections. The first section involves the property M (L). We define a proper

ideal of a K Lie algebra L to satisfy property M (L) if and only if it satisfies the three

properties φ(L/K) = 0, L/K contains a unique minimal ideal, and dim(L/K) > 1. The

second section we look at the core of a maximal subalgebra that is not an ideal in a

solvable Lie algebra. For a maximal subalgebra M that is not an ideal, we call the core

of M , denoted core(M), the largest ideal of L that is contained in M . The last section
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we look at generalized Frattini in A-Lie algebras. An A-Lie algebra is a Lie algebra in

which all nilpotent subalgebras are abelien.

Chapter 5 contains Lie algebra analogs to the group results of Kappe and Kirtland

in [16]. We go back to the ideal R(L) that we briefly investigated in Chapter 3 and add

to this a new ideal that is also closely related to the Frattini ideal. The ideal, nFrat(L),

is the intersection of all maximal ideals of L. We find characterizations of nFrat(L) and

R(L) by non-generators, find to what extent our analogs are nilpotent, and find contain-

ments relations and a characterization of nilpotency.

Moori and Rodrigues investigated the Frattini extension in groups in their paper [22].

They find several conditions for when an extension is a Frattini extension as well as look

at results when an extension is a Frattini extension. For two Lie algebras N and H, an

extension of N by H is a Lie algebra L that has an ideal K ∼= N and L/K ∼= H. We

denote this extension by (L, ε). We call an extension (L, ε) a Frattini extension if the

kernel of ε is contained in the Frattini ideal of L. In Chapter 6, we find similar results

to that of Moori and Rodrigues for Frattini extensions in Lie algebras.

There is still work being done on the Frattini subgoup itself. A group G is called

elementary if the Frattini subgroup of each subgroup of G is the identity. Following

this definition, a Lie algebra L is elementary if the Frattini ideal of each subalgebra of

L is 0. Elementary Lie algebras have been investigated by several authors. A group

(Lie Algebra) is minimal non-elementary if it is not elementary but each of the proper

subgroups (subalgebras) is elementary. Kirtland has shown in [17] that a finite group

is minimal non-elementary if and only if G is either cyclic of order p2, p any prime, or
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a non-abelian p-group of order p3, p an odd prime. Hence all minimal non-elementary

finite groups are p-groups. The analogous concept in Lie algebras admits non-nilpotent

examples. We find all such finite dimensional Lie algebras with nilpotent derived algebra

over an algebraically closed field in Chapter 7.
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Chapter 3

Generalized Frattini

3.1 General Properties

The purpose of this chapter is to generalize some of the fundamental properties of the

Frattini subalgebra of a finite dimensional Lie algebra. Barnes shows that the Frattini

ideal satisfies the following property. We shall call it

Barnes’ Theorem. Let A and B be ideals of L such that B ⊆ A∩F (L) then if A/B is

nilpotent then A is nilpotent.

We want to investigate other ideals that have this property. A generalized Frattini ideal

is such an ideal that satisfies Barnes’ Theorem. Similar to in the group theory case,

we are able to show that every proper ideal of a nilpotent Lie algebra L is generalized

Frattini in L.

Theorem 1. Let H be generalized Frattini in a Lie algebra L. Then

1. H is nilpotent,

2. An ideal of L contained in H is generalized Frattini,
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3. H + φ(L) is generalized Frattini,

4. H + Z(L) is generalized Frattini, whenever it is a proper subalgebra.

Proof:

1. Let C be a Cartan subalgebra of H and H be generalized Frattini. Then H +

NL(C) = L by Barnes [5]. Since H is generalized Frattini NL(C) = L. Hence

NH(C) = H. Since C a Cartan subalgebra of H, NH(C) = C. Thus H = C. Since

C is nilpotent, H is nilpotent.

2. Let N be an ideal of L such that N is contained in H. Let K be an ideal of L

with C, Cartan subalgebra of K, such that N +NL(C) = L. But L = H +NL(C),

hence L = NL(C). So N is generalized Frattini.

3. Let φ(L) be the Frattini ideal. Suppose that K an ideal of L with Cartan subal-

gebra, C such that H + φ(L) + NL(C) = L. Suppose M is a maximal ideal with

H +NL(C) ⊆M . But φ(L) ⊆M which contradicts H +φ(L) +NL(C) = L. So no

such M exists and H + NL(C) = L. Since H is generalized Frattini, this implies

NL(C) = L. Thus H + φ(L) is generalized Frattini.

4. Consider H + Z(L) + NL(C) = L. Since Z(L) is contained in every nomalizer,

Z(L) ⊆ NL(C). So H + Z(L) +NL(C) = H +NL(C) = L. Since H is generalized

Frattini, NL(C) = L. Thus H + Z(L) is generalized Frattini. �

As a consequence of Theorem 1 we obtain the following.

Corollary 1. The Frattini ideal, φ(L) and the center, Z(L) are generalized Frattini in

L.
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Proof: The proof is the same as in Theorem 1 parts (3) and (4) and take H = 0. �

Theorem 2. Let H be generalized Frattini in L. If K is an ideal of L and K/H nilpotent,

then K is nilpotent.

Proof: Let C be Cartan in K with H ⊆ K. Then C +H/H is Cartan in K/H. By

definitionNK/H(C+H/H) = C+H/H. SinceK/H is nilpotent, K/H ⊆ NK/H(C+H/H)

and NK/H(C + H/H) 6= C + H/H unless K/H = C + H/H. So K/H = C + H/H.

Hence K = C +H. By Barnes, L = NL(C) +K = NL(C) +C +H = NL(C) +H. Since

H is generalized Frattini, L = NL(C) and K = NK(C) = C is nilpotent. �

Corollary 2. Let H be generalized Frattini in L. Then L is nilpotent if and only if L/H

is nilpotent.

Corollary 3. A Lie algebra L is nilpotent if and only if L′ is generalized Frattini.

Proof: Suppose L′ is generalized Frattini. Then L/L′ is nilpotent. By Theorem 2,

L is nilpotent.

Conversely, suppose that L is nilpotent. Then for any ideal H of L and L′ ⊆ H, H/L′

nilpotent implies that H is nilpotent. Thus L′ is generalized Frattini. �

Theorem 3. Let H be generalized Frattini in L. If K is an ideal in L such that Kω ⊆ H

then Kω = 0 and K is nilpotent.

Proof: Since Kω ⊆ H then K/H is nilpotent. Thus K is nilpotent by Theorem 2,

and hence Kω = 0. �
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Corollary 4. A proper ideal K of L is nilpotent if and only if its commutator subalgebra

K ′ is generalized Frattini in L.

Proof: If K ′ is generalized Frattini then K/K ′ is nilpotent. Thus K is nilpotent.

Conversely, suppose K is nilpotent. Then K ′ = φ(K) ⊆ φ(L). If J is an ideal of L

such that J/K ′ is nilpotent, then (J + φ(L))/φ(L) is nilpotent. Thus J is nilpotent, and

hence K ′ is generalized Frattini. �

The next theorem is an equivalent definition for generalized Frattini in place of using

Cartan subalgebras.

Theorem 4. Let H be an ideal in L. H is generalized Frattini in L if and only if for all

ideals J in L such that H is contained in J and J/H nilpotent then J is nilpotent.

Proof: Let H be generalized Frattini in L. By Theorem 2 if H ⊆ J and J/H

nilpotent, then J is nilpotent and the condition holds.

Conversely, suppose the condition holds. Let K be an ideal of L and C a Cartan subal-

gebra of K such that L = NL(C)+H. Then H+C/H is Cartan in K+H/H and C+H/H

is an ideal in L/H since L = NL(C) +H and [NL(C) +H,C +H] ⊆ C +H. Therefore,

H + C/H is an ideal in K + H/H. But NK/H(C + H/H) = C + H/H = K + H/H.

Therefore, K + H/H is nilpotent ,and so K + H is nilpotent. Thus K is nilpotent and

C = K. Hence NL(C) = NL(K) = L. Therefore, H is generalized Frattini. �

Consequently, we get the following.

Corollary 5. All proper ideals in nilpotent Lie algebras are generalized Frattini.

We now give an example to illustrate the use of our new definition for generalized

Frattini.
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Example 1. Let L = 〈x, y, z〉 and bracket structure [z, x] = x, [z, y] = y, and [x, y] = 0.

Then the ideals H = 〈x〉 and K = 〈y〉 are generalized Frattini in L.

Consider the ideal J = 〈x, y〉. Then J1 = [J, J ] = 0 so J is nilpotent and J/H = 〈y〉 is

nilpotent. Thus by Proposition 4, or our new definition, H = 〈x〉 is generalized Frattini.

Similarly, for K = 〈y〉.

Remark 1. The sum of generarized Frattini subalgebras of L may not be generalized

Frattini.

Example 2. Let L = 〈x, y, z〉 and bracket structure [z, x] = x, [z, y] = y, and [x, y] = 0.

Then H = 〈x〉 and K = 〈y〉 are generalized Frattini but H +K = 〈x, y〉 is not.

Theorem 5. Let H be generalized Frattini in L and let K be an ideal of L containing H.

Then K/H is generalized Frattini in L/H if and only if K is generalized Frattini in L.

Proof: Suppose that K is generalized Frattini in L. Let J/H be an ideal in L/H

such that J/H
K/H

is nilpotent. J/H
K/H

∼= J/K so J/K is nilpotent. Since K is generalized

Frattini this implies J is nilpotent. But then J/H is nilpotent. Thus by Proposition 4,

K/H is generalized Frattini in L/H.

Conversely, suppose that K/H is generalized Frattini in L/H. Let J be an ideal in

L such that J/K is nilpotent. Since J/H
K/H

∼= J/K, J/H
K/H

is nilpotent. So by Proposition

4, J/H is nilpotent. So then J is nilpotent since H is generalized Frattini. Again by

Proposition 4, K is generalized Frattini in L. �

Recall that the nilpotent radical, Nil(L), is the unique nilpotent ideal which contains

all nilpotent ideals of L and that the radical, Rad(L), is the maximal solvable ideal
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containing all solvable ideals of a Lie algebra L. The next theorems involve the nilpotent

radical and the radical as well as provide a necessary and sufficient condition for the

nilpotent radical to be generalized Frattini in L.

Theorem 6. If Nil(L) is generalized Frattini, then every solvable ideal of L is nilpotent.

Proof: Let H be a solvable ideal of L and let k be the smallest positive integer

such that H(k+1) = 0. So H(k) is abelian. Thus H(k) is nilpotent and so contained in

Nil(L). Since H(k) is contained in Nil(L), H(k) is generalized Frattini by Theorem 1.

Since H(k−1)/H(k) is abelian, by Theorem 2, H(k−1) is nilpotent. Hence Nil(L) contains

H(k−1). Continuing in this way we get H(1) is contained in Nil(L). By Theorem 1, H(1)

is generalized Frattini. So then H/H(1) is nilpotent and H(1) is generalized Frattini and

by Theorem 2, this implies H is nilpotent. �

Corollary 6. If Nil(L) is generalized Frattini in L then L can not be solvable.

Proof: If L is solvable, then by Theorem 6, L is nilpotent and L = Nil(L). Then

Nil(L) is not a proper ideal so it can not be generalized Frattini. �

Example 3. Let L = 〈x, y, z〉 and bracket structure [z, x] = x, [z, y] = y, and [x, y] = 0.

L is solvable and Nil(L) = 〈x, y〉 as we have already seen is not generalized Frattini.

Theorem 7. If H is generalized Frattini in L, then Nil(L/H) = Nil(L)/H.

Proof: Since H is generalized Frattini in L, H is nilpotent so H ⊆ Nil(L). Then

Nil(L)/H is nilpotent, so Nil(L)/H ⊆ Nil(L/H). On the other hand, if B/H =
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Nil(L/H), then B is nilpotent by Theorem 2. Then B ⊆ Nil(L) and B/H ⊆ Nil(L)/H.

Hence the result holds. �

Example 4. Let L = 〈x, y, z〉 and bracket structure [z, x] = x, [z, y] = y, and [x, y] = 0.

Let H = 〈x, y〉. Then the left-hand side gives Nil(L/H) = z+H = L and the right-hand

side gives Nil(L)/H = 0.

Theorem 8. Let L be non-nilpotent. If Rad(L) = Nil(L), then Nil(L) is generalized

Frattini in L.

Proof: Let N be an ideal of L containing Nil(L) such that N/Nil(L) is nilpotent.

Then N/Nil(L) is solvable and N is solvable. Hence N = Nil(L) = Rad(L). Then N is

nilpotent. Therefore, Nil(L) is generalized Frattini in L by Propostion 4. �

Theorem 9. Let L be non-nilpotent. Nil(L) is generalized Frattini in L if and only if

Nil(L) = Rad(L).

Proof: If Nil(L) = Rad(L) then by Theorem 8, Nil(L) is generalized Frattini. If

Nil(L) is generalized Frattini in L, then Rad(L) is nilpotent by Theorem 6. Hence

Rad(L) = Nil(L). �

Example 5. Let L = gl(2, F ). Then Z(L) = {αI|α ∈ F} = Nil(L) = Rad(L). Thus

Nil(L) is generalized Frattini.

14



If x ∈ L, then let

L0 = {y ∈ L|y(adnx) = 0 for some n}

L1 = {y ∈ L|for each n, ∃ zn ∈ L � zn(adnx) = y}

L0 is the Fitting null component of L and x acts nilpotently on L0. L0 is also a subalgebra

of L. L1 is the Fitting one component of L and x acts on L non-singulary. The following

give rise to our next theorem which is also an equivalent definition for generalized Frattini.

Theorem 10. Let H be an ideal of L. H is generalized Frattini in L if and only if for

each ideal K in L and each Cartan subalgebra C of K such that L = H + L0(C) then

L0(C) = L.

Proof: Assume H satisfies the conditions and let K be an ideal in L such that K/H

is nilpotent. Let C be a Cartan subalgebra of K. Then L1(C) ⊆ H so L = K +L0(C) =

H + C + L0(C) = H + L0(C). Hence L = L0(C) and K = K0(C) = C. Therefore, K is

nilpotent and H is generalized Frattini in L by Proposition 4.

Conversely, let H be generalized Frattini in L. Let K be an ideal in L and C be a

Cartan subalgebra in K such that L = L0(C)+H. Then C+H/H is a Cartan subalgebra

in K+H/H. Now C acts nilpotently on L/H, so also on K+H/H. Thus C+H/H acts

nilpotently on K +H/H. Therefore, C +H/H = K +H/H and K +H/H is nilpotent.

Hence K + H is nilpotent by Proposition 4, and K is nilpotent and C = K. Hence

L0(C) = L and the condition holds. �

From this equivalent definition it is easy to see the following result.
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Corollary 7. The hypercenter Z∗(L) is generalized Frattini in L.

Proof: By definition, Z∗(L) is contained in L0(C) for any nilpotent subalgebra C of

L. Hence the result follows from Theorem 10. �

3.2 R(L) and τ (L)

In this section we look at generalized Frattini in regards to two ideals that are closely

related to the Frattini ideal. The first four lemmas are from Towers in [34]. Towers uses

the notation σ(L) for R(L). We will discuss R(L) in further detail in Chapter 5.

Recall that R(L) is the intersection of all maximal subalgebras of L which are also

ideals of L, putting R(L) = L if no such maximal subalgebras exits. The subalgebra

T (L) is the intersection of all maximal subalgebras of L which are not ideals of L, again

putting T (L) = L if no such maximal subalgebras exist, and τ(L) will be the largest

ideal of L contained in T (L). We look for properties that lend these subalgebras to be

generalized Frattini in L.

Lemma 1. (i) F (L) = R(L) ∩ T (L); (ii) φ(L) = R(L) ∩ τ(L).

Lemma 2. L2 ⊆ R(L).

Lemma 3. If φ(L) = 0, then τ(L) = Z(L) = Z∗(L)

Lemma 4. Z∗(L) ∩ L2 ⊆ φ(L)

Theorem 11. τ(L) is generalized Frattini in L.

Proof: Theorem 3 gives τ(L)/φ(L) = Z(L/φ(L)). Since φ(L) is generalized Frattini

in L and Z(L/φ(L)) is generalized Frattini in L/φ(L), τ(L) is generalized Frattini in L
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by Theorem 5. �

Theorem 12. A maximal generalized Frattini ideal H of a non-nilpotent Lie algebra L

contains τ(L).

Proof: Let H be maximal generalized Frattini in L. Then H+φ(L) = H by Theorem

1. Also H + τ(L)/φ(L) = H/φ(L) + τ(L)/φ(L) = H/φ(L) + Z(L/φ(L)) is generalized

Frattini in L/φ(L) by Theorem 1. Hence H + τ(L) is generalized Frattini in L. Since H

is maximal, τ(L) ⊆ H. �

Theorem 13. A maximal generalized Frattini ideal H of a non-nilpotent Lie algebra L

contains Z∗(L).

Proof: (Z∗(L)+φ(L))/φ(L) ⊆ Z∗(L/φ(L)) = τ(L)/φ(L). Hence Z∗(L) ⊆ τ(L) ⊆ H.

�
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Chapter 4

More Generalized Frattini

4.1 Special Type of Generalized Frattini

In this section we will continue to look at the theory of generalized Frattini in a Lie

algebra. We will specifically find results of ideals that satisfy the property M (L). If a

proper ideal K of L satisfies property M (L), then we denote this fact by K ∈ M (L).

Similar to Beidleman in the group theory case in [8], if L is a solvable Lie algebra and

K ∈M (L), then K is generalized Frattini in L if and only if K is properly contained in

Nil(L).

We recall that a non-trivial ideal H of L is called a minimal ideal of L if it contains

no proper non-trivial ideals of L. A proper ideal of a K Lie algebra L is said to satisfy

property M (L) if and only if φ(L/K) = 0, L/K contains a unique minimal ideal, and

dim(L/K) > 1.

Lemma 5. Let K be a proper ideal of L such that K is in M (L). Then K contains
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φ(L) and L/K is non-nilpotent. In particular, L is non-nilpotent

Proof: Since φ(L/K) = 0, it follows that K contains φ(L). Suppose that L/K is

nilpotent and let A/K be the unique minimal ideal of L/K. Since L/K is nilpotent,

A/K is abelian. By [29] (Theorem 3), it follows that L/K = Nil(L/K) = A/K, and

therefore L/K is abelian. Hence, dim(L/K) = 1, which is impossible. Therefore, L/K

is non-nilpotent. �

Theorem 14. Let L be a solvable Lie algebra and let K be in M(L). Then K is gener-

alized Frattini if and only if K is a proper subalgebra of Nil(L).

Proof: Let A/K denote the unique minimal ideal of L/K. Since L is solvable,

Nil(L/K) = A/K. Suppose that K is generalized Frattini in L. By Theorem 7,

Nil(L)/K = A/K. Hence,Nil(L) = A, and so K is a proper subalgebra of Nil(L).

Conversely, let K be a proper subalgebra of Nil(L). Then Nil(L)/K = A/K =

Nil(L/K). Let H be an ideal of L such that H contains K and H/K is nilpotent. Then

H/K ⊆ Nil(L/K) = Nil(L)/K, so H ⊆ Nil(L). By Theorem 4, K is generalized Frat-

tini in L. �

Theorem 15. Let L be a solvable Lie algebra and let K be in M (L). Let A/K be the

unique minimal ideal of L/K. Then K is generalized Frattini if and only if A = Nil(L).

Proof: Suppose K is generalized Frattini. Then Nil(L/K) = Nil(L)/K by Theorem

7. Since L solvable, Nil(L/K) = A/K . Then A/K = Nil(L/K) = Nil(L)/K implies

A = Nil(L).

Conversely, suppose A = Nil(L). Since L is solvable, Nil(L/K) = A/K. Thus

Nil(L/K) = A/K = Nil(L)/K. But then K is a proper subalgebra of Nil(L). Thus K
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is generalized Frattini by Theorem 14. �

Corollary 8. Let L be a solvable Lie algebra and let K be in M (L). If K is generalized

Frattini, then K is a maximal generalized Frattini subalgebra of L.

Proof: Let H be generalized Frattini such that K ⊆ H. By Theorem 1, H is nilpo-

tent, so H ⊆ Nil(L). Now let A/K be the unique minimal ideal in L/K. By Theorem

15, A = Nil(L). Therefore, H = K or H = Nil(L). Suppose that H = Nil(L). Then

by Theorem 6, every solvable ideal of L is nilpotent. However, L is solvable, so nilpo-

tent. This contradicts that L must be non-nilpotent by Lemma 5. Thus K is maximal. �

4.2 Core of a Solvable Lie Algebra

In this section we will look at the core of a maximal subalgebra that is not an ideal. The

core of a maximal subalgebra M is the largest ideal of L that is contained in M . We will

denote the core of M to be core(M). The results in this section resemble the results in

the group theory case with little differences.

Theorem 16. Let L be a solvable Lie algebra and let M be a maximal subalgebra that is

not an ideal. Let K = core(M). Then K is in M (L).

Proof: Consider L/K and M/K and assume K = 0. Let A be a minimal ideal in L,

A *M . So dim(M + A) > dimM this implies M + A = L.

Claim: B = A ∩M = 0

Proof of claim: Suppose B 6= 0. Since B ⊆ M , [B,A] ⊆ [A ∩ M,A] = 0 and
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[B,M ] ⊆ [A ∩ M,M ] ⊆ A ∩ M . This implies [B,A + M ] ⊆ 0 + A ∩ M = B so B

is an ideal in L. Thus B = 0. Therefore, L = M ⊕ A.

Suppose that C is another minimal ideal. Then dim(A⊕C) > dimA implies (A⊕C)∩M 6=

0. For the same reason as above, (A⊕C)∩M is an ideal in L contained in M . But then

(A ⊕ C) ∩M = 0, which is a contradiction. So there is no C, and A must be unique.

Thus condition 2 of the definition holds. Now dimL = dimA + dimM > 1, so condition

3 of the definition holds. Lastly, φ(L) is an ideal of L. Since L is solvable and φ(L) ⊆M ,

this implies φ(L) = 0. Thus condition 1 of the definition holds and K is in M (L). �

Theorem 17. Let M be a maximal subalgebra of a solvable Lie algebra, L, that is not

an ideal. Let K = core(M). Then K is generalized Frattini if and only if K is a proper

subalgebra of Nil(L).

Proof: By Theorem 16, K = core(M) ∈M (L). Thus by Theorem 14, K is general-

ized Frattini if and only if K ( Nil(L). �

Corollary 9. Let L be a solvable Lie algebra and let K be the core of a maximal subalgebra

of L that is not an ideal. If K and L′ are nilpotent, then K is generalized Frattini.

Proof: Since L/K is non-abelian L′ * K. Hence K ( L′ + K ⊆ Nil(L). Thus by

Theorem 17, K is generalized Frattini. �

Corollary 10. Let L be a solvable Lie algebra and let M be a nilpotent maximal subal-

gebra in L that is not an ideal and whose core in L is K. If L′ is nilpotent, then K is

generalized Frattini.

21



Proof: Since M is nilpotent then K is nilpotent. Thus L′ * K. Hence K ( L′+K ⊆

Nil(L). Thus by Theorem 17 K is generalized Frattini. �

Theorem 18. Let L be a supersolvable Lie algebra and let K ∈M (L). If K is nilpotent,

then K is generalized Frattini.

Proof: Let L be supersolvable. Then L′ is nilpotent. Since K ∈ M (L) and K is

nilpotent, L′ * K. Thus K ( Nil(L), so by Theorem 14, K is generalized Frattini. �

The assumption in Theorem 18 that L must be supersolvable cannot be omitted.

Example 6. Assume L is over a field F with Char(F ) = p. Let E and F be elements

of L whose effect on a basis {x1, . . . , xp} for V is given by

Exi = xi+1(mod p), Fxi = ixi

[E,F ]xi = EFxi − FExi

= iExi − Fxi+1

= ixi+1 − (i+ 1)xi+1

= −xi+1

[F,E]xi = FExi − EFxi

= (i+ 1)xi+1 − ixi+1

= xi+1

[F,E]xp = x1 = Exp

Note: [A+ w,B + u] = [A,B] + Au−Bw.

Let L = [F,E] + V . Let H =< F > +V , which is self normalizing and maximal. Let
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K = core(H) = V . Then (E+K)/K is nilpotent. But < E > +K is not nilpotent since

E(x1 + · · ·+ xp) = x1 + · · ·+ xp.

Corollary 11. Let L be supersolvable and K = core(M), where M is a nilpotent maximal

subalgebra of L that is not an ideal. Then K is generalized Frattini.

Proof: Let L be supersolvable. Then L′ is nilpotent. Thus by Corollary 10, K is

generalized Frattini. �

Different from the group theory case, the next several theorems we must require that

L be solvable. In the group theory case, since all subgroups of G are nilpotent when G

is non-nilpotent, G is solvable.

Theorem 19. Let L be a solvable, non-nilpotent Lie algebra all of whose proper subal-

gebras are nilpotent. Then φ(L) is the unique maximal generalized Frattini subalgebra of

L.

Proof: Let L be solvable and let K be a maximal generalized Frattini subalgebra

of L. From Theorem 1, φ(L) is contained in K. Suppose that φ(L) is properly con-

tained in K. Then there exists a maximal subalgebra M such that L = K + M . Then

L/K = (K +M)/K is nilpotent and thus L is nilpotent. This contradicts L being non-

nilpotent. Therefore, φ(L) = K. �

Corollary 12. Let L be a solvable, non-nilpotent Lie algebra all of whose proper subal-

gebras are nilpotent. If K is the core of a maximal subalgebra in L that is not an ideal,

then K = F (L) = φ(L).

23



Proof: Since L is solvable and L′ is nilpotent, by Corollary 10, K is generalized

Frattini. Since K contains F (L), by Theorem 19, K = F (L) = φ(L). �

Theorem 20. Let L be a solvable, non-nilpotent Lie algebra such that every proper

subalgebra of L/φ(L) is nilpotent. Then

1. L/φ(L) is non-nilpotent;

2. φ(L) is the unique maximal generalized Frattini ideal of L;

3. Every proper ideal of L is nilpotent.

Proof:

1. This was proved by D. W. Barnes using cohomology. I will offer a different proof.

Let x ∈ L and L0 be the Fitting null component of adx acting on L. If L/φ(L)

is nilpotent, then L0 + φ(L) = L. This implies there exists a subalgebra that

supplements φ(L), which is a contradiction. Thus adx is a nilpotent transformation

for x ∈ L. This implies L is nilpotent by Engel’s Theorem. Which contradicts L

being non-nilpotent. Thus L/φ(L) is non-nilpotent.

2. LetK be a maximal generalized Frattini subalgebra of L. By Theorem 1, φ(L) ⊆ K.

Hence K/φ(L) is generalized Frattini of L/φ(L) by Theorem 5. By Theorem 19,

K = φ(L). Therefore, φ(L) is unique maximal generalized Frattini.

3. Let H be an ideal of L. Then (H + φ(L))/φ(L) is nilpotent. Since φ(L) is gener-

alized Frattini, by Theorem 2, H + φ(L) is nilpotent. Hence, H is nilpotent. �
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4.3 Generalized Frattini in an A-Lie Algebra

This section will look at generalized Frattini subalgebras of A-Lie algebras. We use

the fact that in an A-Lie algebra all nilpotent subalgebras are abelian. The results are

analogous to those of Beidleman in the group theory case.

Lemma 6. Let L be a finite dimensional solvable Lie algebra. Then CL(Nil(L)) ⊂

Nil(L).

Proof: Since L is solvable, L ⊇ L(1) · · ·L(k) = 0. Let D = CL(Nil(L)) and D(i)

be the last term of the derived series of D not in Nil(L). (i.e. D(i) * Nil(L), but

D(i+1) ⊆ Nil(L).) Then [D(i) +Nil(L), D(i)] ∈ Nil(L). So D(i) +Nil(L) is nilpotent and

larger than Nil(L), which is a contradiction.

Theorem 21. Let L be a solvable Lie algebra and let K ∈M (L). Let H be a subalgebra

of L which contains K and Nil(H) is abelian. If K is generalized Frattini in H, then K

is generalized Frattini in L.

Proof: Let K be generalized Frattini in H. Then K is a nilpotent ideal of both H

and L, hence K ⊆ Nil(H) and K ⊆ Nil(L). If L is nilpotent, then the result is clear,

so assume that L is not nilpotent. If H is nilpotent, then K 6= H = Nil(H) by the

definition of generalized Frattini. If H is not nilpotent, then K 6= Nil(H) using Theorem

9, since Nil(H) 6= Rad(H). In either case, K ( Nil(H). Suppose that K = Nil(L).

Then Nil(L) = K ( Nil(H). Since Nil(H) is abelian, [Nil(L), Nil(H)] = 0 and

Nil(H) ⊆ CL(Nil(L)) ⊆ Nil(L) = K ⊆ Nil(H). Hence K = Nil(H), which is a contra-

diction. Therefore, K ( Nil(L). By Theorem 14, K is generalized Frattini in L. �
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Corollary 13. Let L be solvable. Let H be an abelian maximal subalgebra that is not an

ideal. Then K = core(H) is generalized Frattini of L.

Proof: K is generalized Frattini in H by Corollary 5. So K ∈M(L) by Theorem 17.

Therefore, the result follows from Theorem 21. �

Corollary 14. Let L be solvable and let H be an abelian maximal subalgebra that is not

an ideal. Then H does not contain Nil(L).

Proof: Suppose Nil(L) ⊆ H. Since K = core(H) is the largest ideal of L contained

in H, Nil(L) ⊆ K. Because of Theorem 21 and Theorem 1, Nil(L) is generalized Frattini

in L. This contradicts Theorem 6. Thus H does not contain Nil(L). �

Corollary 15. Let L be a solvable Lie algebra and let K ∈ M (L). Let H be an A-Lie

algebra of L containing K. If K is generalized Frattini in H, then K is generalized

Frattini in L.

Proof: Note: H an A-Lie algebra implies all nilpotent subalgebras of H are abelian.

Suppose K is generalized Frattini in H and H an A-Lie algebra. Then Nil(H) is abelian.

Hence by Theorem 21, K is generalized Frattini in L. �

Theorem 22. Let L be an A-Lie algebra of nilpotent length two and let K ∈ M (L).

Then K is generalized Frattini in L if and only K is abelian.

Proof: Suppose K is generalized Frattini in L. By Theorem 1, K is nilpotent and

hence abelian as L is an A-Lie algebra.
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Now suppose K is abelian. Let T =
⋂
Lk, the interestion of the lower central series

of L. Since L has nilpotent length 2, then T is nilpotent. Thus T ⊆ Nil(L). Suppose

K = Nil(L). Then T ⊆ K, so L/K is nilpotent. This contradicts Lemma 5, and so

K ( Nil(L). Therefore, K is generalized Frattini in L by Theorem 14. �
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Chapter 5

Analogs of the Frattini Subalgebra

5.1 Characterization by Non-generators

The present chapter contains Lie algebra analogs to the results in [16]. We investigate

properties of nFrat(L) and R(L). We find characterizations of the concepts by non-

generators, find to what extent our concepts are nilpotent, find containments relations

and a characterization of nilpotency. All Lie algebras consider here are finite dimensional

over a field, F . Recall that nFrat(L) is the intersection of all maximal ideals of L and

R(L) is the intersection of all maximal subalgebras which are also ideals of L, putting

R(L) = L if no such maximal subalgebras exist.

The following is an example where nFrat(L) is different from R(L).

Example 7. Let L = gl(n, F ). If char(F ) = 0, then there are two maximal ideals L2

and Z(L) and L2 ∩ Z(L) = 0. Then nFrat(L) = {0} and R(L) = L2.

For a Lie algebra L we define the following: (1)M = {M |M maximal subalgebra of L},
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(2) N = {N |N 6= L,N maximal ideal of L}, and (3) R = {R|R in M∩N} = all maxi-

mal subalgebras that are ideals.

Lemma 7. Let N be an ideal of L.

1. N ∈ N if and only if L/N is simple.

2. N ∈ R if and only if dim(L/N) = 1.

It is true in group theory that Frat(G) is the set of non-generators. It is also known

that this concept carries over for nFrat(G) and R(G), [16]. We are going to study the

idea of non-generators for these concepts in Lie algebras. It is widely recognized that the

Frattini subalgebra is equal to the set of non-generators. We will provide this proof as it

fits with the rest.

We define a subset S of a Lie algebra L to be normal in L if adx(S) ⊆ S for all x ∈ L.

An element x ∈ L is called a normal non-generator if L = 〈x, T 〉 for a normal subset T

in L implies L = 〈T 〉.

Proposition 1. F (L) equals the set of non-generators.

Proof: Let x ∈ F (L). Let L = 〈H, x〉. If H 6= L, then H ⊆ M , where M is a

maximal subalgebra. Also, x ∈ F (L) ⊆ M . Hence 〈H, x〉 = M , which a contradiction.

So H = L and x is a non-generator.

Now suppose x /∈ F (L). Let M be a maximal subalgebra such that x /∈ M . Then

M ⊂ 〈x,M〉 ⊆ L, so 〈x,M〉 = L. But M 6= L, so x is a generator for L. �

Theorem 23. R(L) equals the set of all normal non-gernerators of L.

29



Proof: Suppose x /∈ R(L). Then x /∈ M , a maximal subalgebra that is an ideal. M

is a normal subset of L and L = 〈x,M〉 but L 6= M . Hence x is a normal generator.

Now suppose x ∈ R(L) and L = 〈x, S〉 for a normal subset S of L. If 〈S〉 6= L,

then dim(L) = dim(S) + 1, so 〈S〉 ∈ R. But x ∈ R(L) ⊆ 〈S〉 so 〈S〉 = L, which is a

contradiction. �

If we let X be a subset of L. Then XL = 〈[x, l1, . . . , lk]〉 where x ∈ X and li ∈ L and

k = 0, 1, . . .. We call an element x ∈ L an n-nongenerator of L if for every subset X of

L, L = XL whenever L = 〈x,X〉L.

Lemma 8. For any element g ∈ L any subset X of L, 〈g,X〉L = 〈gL, XL〉 = gL +XL.

Proof: Both gL and XL are contained in 〈g,X〉L, so 〈gL, XL〉 ⊆ 〈g,X〉L and

gL + XL ⊆ 〈g,X〉L. Since, 〈g,X〉 ⊆ 〈gL, XL〉 this implies 〈g,X〉L ⊆ 〈gL, XL〉. Also,

gL ⊆ gL +XL and XL ⊆ gL +XL, thus 〈gL, XL〉 ⊆ gL +XL.

Alternate Proof: Let g and h be in L and X a subset of L with x ∈ X.

xL =
∑

ai[x, hi1 , hi2 , . . . , hik ]

gL =
∑

bi[g, hi1 , hi2 , . . . , hik ]

〈g, x〉L = [αg + βx, h1, . . . , hn]

= [αg, h1, . . . , hn] + [βx, h1, . . . , hn]

∈ gL +XL and ∈ 〈gL, XL〉
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So 〈g,X〉L ⊆ gL + XL and 〈g,X〉L ⊆ 〈gL, XL〉. Since g ∈ 〈h,X〉L then gL ∈ 〈g,X〉L

and similarly for X and XL. So gL + XL ⊆ 〈g,X〉L. Since gL + XL is a vector space,

〈gL, XL〉 ⊆ gL +XL. Thus we get

〈g,X〉L ⊆ 〈gL, XL〉 ⊆ gL +XL ⊆ 〈g,X〉L

and the theorem holds. �

Theorem 24. For a Lie algebra L, nFrat(L) is the set of n-nongenerators of L.

Proof: Let T = {x|x is a n-nongenerator of L}. Since L is finite dimensional, there

exists maximal ideals so nFrat(L) 6= L. Suppose x ∈ T and x /∈ nFrat(L). There exists

N ∈ N such that x /∈ N . Now either xL + N = N or xL + N = L. If xL + N = N ,

then x ∈ N . But x /∈ N so xL + N 6= N . Thus xL + N = L. This implies 〈x,N〉L = L,

so N = NL = L since x is an n-nongenerator. But N 6= L, and so this contradiction

establishes x ∈ N for all N ∈ N and x ∈ nFrat(L). Thus T ⊆ nFrat(L).

Conversely, let x ∈ nFrat(L) and suppose x is not an n-nongenerator. Thus there

exists S ⊆ L such that L = 〈x, S〉L, but L 6= SL. Hence SL is a proper ideal of L and

x /∈ SL. By lemma 8, L = 〈x, S〉L = xL + SL. Let M be maximal with respect to the

properties for SL: x /∈M,M C L, SL ⊆M,L = xL +M .

We claim M ∈ N . If not, there exists N such that M ( N ( L, N E L. Then

L = xL + M = xL + N . If x /∈ N , then N can replace M in the condition above the

claim, which is a contradiction. Thus x ∈ N and xL ⊆ N . Hence L = N , which is a con-

tradiction. Hence M ∈ N , but x /∈M , so x /∈ nFrat(L), which is a contradiction. Hence

whenever L = 〈x, S〉L implies L = SL and x is an n-nongenerator. Thus nFrat(L) ⊆ T .

�
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5.2 Nilpotency and Containments

In this section, we collect information about the Frattini subalgebra and its generaliza-

tions which are inspired by the results in group theory. We begin by reviewing known

properties of the Frattini subalgebra or Frattini ideal.

The following theorem is proven in [29].

Theorem 25. Let L be a Lie algebra and N an ideal of L.

1. F (L) +N/N ⊆ F (L/N).

2. If N ⊆ F (L), then F (L)/N = F (L/N).

We have similar results for nFrat(L).

Theorem 26. Let L be a Lie algebra and N an ideal of L. Then

1. (nFrat(L) +N)/N ⊆ nFrat(L/N);

2. If N ⊆ nFrat(L), then nFrat(L)/N = nFrat(L/N).

Proof:

1. For each M with M/N ∈ N (L/N), we have M ∈ N (L). Thus nFrat(L) ⊆⋂
M/N∈N (L/N)M and (nFrat(L) +N)/N ⊆ nFrat(L/N).
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2. Since N ⊆ nFrat(L), N ⊆M for all M ∈ N (L). Also, M/N ∈ N (L/N) if and only

if M ∈ N (L). Therefore, nFrat(L)/N = (
⋂
M∈N (L)M)/N =

⋂
M∈N (L)M/N =

nFrat(L/N). �

In group theory, if G is finite then Frat(G) nilpotent. In Lie algebras, it is known

that the Frattini ideal is nilpotent.

Theorem 27. Let L be a Lie algebra, then φ(L) is nilpotent.

Proof: Let x ∈ φ(L). Then L1(x) ⊆ φ(L) since φ(L) E L. Thus L0(x) + φ(L) = L

and L0(x) + F (L) = L. Thus L0(x) = L and x is nilpotent. Hence φ(L) is nilpotent. �

As in group theory, it is not always true that nFrat(L) or R(L) are nilpotent.

Example 8. Let L = gl(n, F ). If char(F ) = 0, then there are two maximal ide-

als L′ and Z(L). Then L′ ∩ Z(L) = 0. However, if char(F ) = p, where p 6= 2

and p | n, then Z(L) ⊆ L′ = sl(n, F ). Thus the only maximal ideal is sl(n, F ),

and so nFrat(L) = sl(n, F ). Therefore, nFrat(L) is not nilpotent. In this example,

R(L) = nFrat(L) = sl(n, F ). Thus R(L) is also not nilpotent.

It is known in group theory that if N is a normal subgroup in G then Frat(N) ⊆

Frat(G). This result does not hold in complete generality for Lie algebras. However, it

does hold in the following case.

Theorem 28. Let N be an ideal of L over a field F , then if char(F ) = 0 or if L is

solvable, then F (N) ⊆ F (L).
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Proof: If char(F ) = 0, then F (N) is an ideal in L by [33]. If L is solvable, then

F (N) is an ideal in L by [5]. Thus F (N) ⊆ F (L). See Theorem 29. �

If L is over a field of characteristic p it is possible for F (N) * F (L) when N is an

ideal in L. The following is an example based off an similar example given by Jacobson

in [14].

Example 9. LetA be a vector space over a field of characteristic p and let {x0, x1, . . . , xp−1}

be a basis for A. Define linear transformations R and S of A by

R(xi) = xi+1, i < p− 1

R(xp−1) = x0

S(xi) = ixi−1, i(mod p) > 0

S(x0) = 0

Then [R, S] = I where I is the identity linear transformation. Let B be the three di-

mensional Lie algebra with basis {R, S, I}. B is a Heisenberg Lie algebra. Let L be the

semi direct sum of A and B with multiplication given by [b, a] = b(a) for b ∈ B, a ∈ A.

Let K = A + 〈S〉. K is nilpotent since S is a nilpotent linear transformation. Hence

F (K) = K2 and K is not an ideal in L. Also F (K) = K2 = 〈x0, x1, . . . , xp−2〉 is not

an ideal in L. Now let H = A + 〈S, I〉. H is not nilpotent since [I, x0] = x0. H is

solvable and K is an ideal in H. F (K) = K2 is also an ideal in H. Hence F (K) ⊆ F (H).

Also F (H) ( H2 and dimH2 = dimK2 + 1. Thus F (K) = K2 ⊆ F (H) ( H2 yields

that F (K) = F (H). Therefore, F (H) is not an ideal in L even though H is ideal in

L. Furthermore, F (L) = 0 as we now will show. B acts irreducibly on A, hence B is

maximal in L. Thus F (L) ⊆ B. Since L is solvable, F (L) is an ideal of L and therefore,
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[F (L), A] ⊆ F (L) ∩ A ⊆ B ∩ A = 0. Since F (L) consists of linear transformations of

A, F (L) = 0. Hence F (H) ( F (L) and F (L) = 0 does not imply that F (H) = 0 even

though H is an ideal in L.

Under certain conditions in Lie algebras, we get that F (N) ⊆ F (L). This property

also carries over to the Frattini ideal, nFrat(L), and R(L).

Theorem 29. If N ⊆ L and F (N) is an ideal of L, then F (N) ⊆ F (L).

Proof: Suppose not. Then there exists a maximal subalgebra M in L such that

F (N) *M . Then F (N) +M = L. So (F (N) +M)∩N = F (N) + (N ∩M) = N . Thus

N ∩M = N which implies that F (N) ⊂ N ⊆ M which is a contradiction. Therefore,

F (N) ⊆ F (L). �

Theorem 30. If N ⊆ L and φ(N) is an ideal of L, then φ(N) ⊆ φ(L).

Proof: Suppose not. φ(N) + φ(L) is an ideal in L. So if φ(N) + φ(L) ⊆ F (L), then

φ(N) ⊆ φ(L), which is a contradiction. So there exists a maximal subalgebra M of L

such that φ(N) *M . Then φ(N) +M = L. This implies that φ(N) + (N ∩M) = N as

above. This implies that N ∩M = N . Thus N ⊆ M , and hence φ(N) ⊆ M , which is a

contradiction. Therefore, φ(N) ⊆ φ(L). �

Theorem 31. If N ⊆ L and nFrat(N) is an ideal of L, then nFrat(N) ⊆ nFrat(L).

Proof: Suppose not. Then there exists a maximal idealM of L such that nFrat(N) *

M . Then nFrat(N)+M = L and nFrat(N)+(M ∩N) = N , which implies M ∩N = N .
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Thus nFrat(N) ⊆ N ⊆M , a contradiction. Therefore, nFrat(N) ⊆ nFrat(L). �

Theorem 32. If N ⊆ L and R(N) is an ideal of L, then R(N) ⊆ R(L).

Proof: Suppose not. Then there exists a maximal ideal M of L such that R(N) *M .

Then R(N) + M = L. Then R(N) + (M ∩ N) = N , which implies M ∩ N = N . Thus

R(N) ⊆ N ⊆M , which is a contradiction. Therefore, R(N) ⊆ R(L). �

Here we consider what happens when L is the direct sum of ideals. Like in group

theory, we get equality for the Frattini subalgebra. This equality carries over for the

Frattini ideal, nFrat(L), and R(L) as well. The proofs of the first two are shown by

Towers in [33].

Lemma 9. If L = L1 ⊕ . . .⊕ Ln, then F (L) = F (L1)⊕ . . .⊕ F (Ln).

Theorem 33. If L = L1 ⊕ . . .⊕ Ln, then φ(L) = φ(L1)⊕ . . .⊕ φ(Ln).

Theorem 34. If L = L1 ⊕ . . .⊕ Ln, then nFrat(L) = nFrat(L1)⊕ . . .⊕ nFrat(Ln).

Proof: Since L = L1 ⊕ . . .⊕ Ln, nFrat(Li) ( Li for each i. Let Mj ∈ N (Lj). Then

we have L1 ⊕ . . .⊕ Lj−1 ⊕ Lj+1 ⊕ . . .⊕ Ln ⊕Mj ∈ N (L). Thus, nFrat(L) ⊆ L1 ⊕ . . .⊕

Lj−1⊕Lj+1⊕. . .⊕Ln⊕nFrat(Mj). Therefore, nFrat(L) ⊆ nFrat(L1)⊕. . .⊕nFrat(Ln).

Now consider Lj. Since Lj is an ideal of L, nFrat(Lj) ⊆ nFrat(L) by Theorem 31.

Thus, nFrat(L1)⊕ . . .⊕ nFrat(Ln) ⊆ nFrat(L). �

Theorem 35. If L = L1 ⊕ . . .⊕ Ln, then R(L) = R(L1)⊕ . . .⊕R(Ln).
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Proof: The proof is similar to that of nFrat(L). �

5.3 Characterizations of Nilpotency

In this section, relations between φ(L), nFrat(L), and R(L) are investigated. We also

find a characterization of nilpotency in terms of the equality of these ideals.

Lemma 10. In any Lie algebra L, φ(L) ⊆ R(L) and nFrat(L) ⊆ R(L).

Theorem 36. φ(L) ⊆ nFrat(L).

Proof: For each N ∈ N , φ(L) + N E L. Thus φ(L) + N = N or φ(L) + N = L. If

φ(L) + N = L then N = L as φ(L) cannot be supplemented, which is a contradiction.

Thus φ(L) +N = N , so φ(L) ⊆ N for all N ∈ N . Therefore, φ(L) ⊆ nFrat(L). �

Corollary 16. For a Lie algebra L, φ(L) ⊆ nFrat(L) ⊆ R(L).

The following is an example of Corollary 16.

Example 10. Let L be the nonabelian two dimensional Lie algebra, L = span{x, y} with

[x, y] = y. Then y is the only maximal ideal of L. So φ(L) = 0 and nFrat(L) = R(L) = y.

Thus φ(L) ⊂ nFrat(L) ⊆ R(L).

Lemma 11. If L is a solvable Lie algebra, then R(L) = nFrat(L).

Proof: Let L be a solvable Lie algebra. Let N be a maximal ideal of L. Then

dim(L/N) = 1 for any N ∈ N . This is true if and only if N ∈ R by Lemma 7. But
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then the set of all maximal ideals is equal to the set of all maximal subalgebras that are

ideals, N = R. So nFrat(L) = R(L). �

The converse of Lemma 11 is not true.

Example 11. Let L = gl(n, F ). If char(F ) = p, where p 6= 2 and p | n, then we have

seen nFrat(L) = R(L) = sl(n, F ). However, L is not solvable.

Lemma 11 is not true if L is not solvable. The following is an example of a non-solvable

Lie algebra with R(L) 6= nFrat(L).

Example 12. Let L = sl(2, F ). L is not solvable. Since the only maximal ideal is {0},

then nFrat(L) = {0}. However, L contains no maximal subalgebras that are ideals, so

R = ∅ which implies R(L) = sl(2, F ). Thus R(L) 6= nFrat(L).

Theorem 37. Let L be a Lie algebra. Then L is nilpotent if and only if φ(L) =

nFrat(L) = R(L).

Proof: If L is nilpotent then L is solvable. Hence φ(L) = nFrat(L) = R(L).

So suppose φ(L) = nFrat(L) = R(L). Let M be a maximal ideal of L such that

M = ⊕Mi. Consider the Lie algebra homomorphism Π : L −→
⊕

(L/Mi), where

Π(x) = (x+M1, x+M2, . . . , x+Mn) for x ∈ L. So each L/Mi is a 1-dimensional subalge-

bra of L and hence an abelian subalgebra. The KerΠ = ∩Mi = R(L). But then L/KerΠ

is abelian since it is the direct sum of abelian subalgebras. Thus L/KerΠ = L/R(L),

which equals L/φ(L), is nilpotent, and so L is nilpotent. �
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Chapter 6

Frattini Extensions

In this chapter we will establish some properties of the Frattini extension. Recall if N

and H are two Lie algebras, then an extension of the algebra N by the algebra H is

a Lie algebra L having an ideal K ∼= N and L/K ∼= H. Equivalently an extension

can be defined in terms of short exact sequences of Lie algebras and homomorphisms as

follows: Let φ and ψ be the isomorphisms described above. Consider N
φ−→ K

i−→ L

and L
π−→ L/K

ψ−→ H, where i is the inclusion map and π is the natural homomorphish.

Let α = i ◦ φ and ε = ψ ◦ π. Then we have the following short exact sequence {0} −→

N
α−→ L

ε−→ H −→ {0}, which we say it represents the extension (L, ε). We say an

extension (L, ε) is a Frattini extension if the Kernel of ε is contained in the Frattini ideal,

φ(L), of L.

We will use L-modules throughout this chapter. A vector space V over a field F is

an L-module if there is an operation L× V → V , (x, v) 7→ x · v, such that the following

axioms hold for for all x, y ∈ L, u, v ∈ V and a, b ∈ F : (i) x · (au+ bv) = a(x ·u)+ b(x ·v),

(ii) (ax+ by) · v = a(x · v) + b(y · v), and (iii) [x, y] · v = x · (y · v)− y · (x · v). If V is an

L-module, a subspace U of V is a submodule if x · u ∈ U for all x ∈ L and u ∈ U .
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Example 13. Any Lie algebra L is an L-module under the adjoint action (i.e. x · y =

adx(y) = [x, y] for all x, y ∈ L).

Remark 2. It is clear from the definition of submodule that any submodule of L under

the adjoint action is an ideal of L.

Suppose that we have the given extension {0} −→ N
α−→ L

ε−→ H −→ {0} with N

abelian. H acts on N by h · n = [l, n] where ε(l) = h. The action is independent of the l

used since N is abelian. This product amounts to the adjoint action of L on N and hence

the H-submodules of N are the L-submodules of N , which are the ideals of L contained

in N .

Throughout this section we will be using the relationship between being an H-

submodule of N and an ideal of L contained in N .

Lemma 12. Let (L, ε) be an extension by H in which Ker(ε) is an abelian, finite dimen-

sional H-module. If J is a maximal subalgebra of L which does not contain Ker(ε), then

(J, α) is an extension with α = ε|J and Ker(α) is a maximal H-submodule of Ker(ε).

Proof: Let {0} −→ N −→ L
ε−→ H −→ {0} be the given extension where N =

Ker(ε). We need to show that:

1. (J, α) is an extension of J ∩ N by H, 2. Ker(α) = J ∩ N is an ideal of L, and 3.

Ker(α) is a maximal H-submodule of Ker(ε).

1. Since N * J and J a maximal subalgebra of L, J ⊂ J+N ⊆ L. Since J is maxima,l

this implies that J + N = L. Since (L, ε) is an extension we have (L/N) ∼= H, so

J +N/N = L/N ∼= H. But J +N/N ∼= J/J ∩N ∼= H. Thus J is an extension of

J ∩N by H.
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2. Recall that N is abliean and L = J +N . Then

[J ∩N,L] = [J ∩N,N ] + [J ∩N, J ]

= 0 + J ∩N.

So J ∩N is an ideal of L.

3. We may assume that N ∩ J = 0.

Claim: N is minimal ideal of L.

Proof of Claim: Let K be an ideal of L such that 0 ⊂ K ( N . Then

dimJ < dimJ + dimK = dim(J +K) + dim(J ∩K) = dim(J +K).

So J ( J +K.

dimL = dim(J +N) = dimJ + dimN − dim(J ∩N)

= dimJ + dimN > dimJ + dimK = dim(J +K)

This contradicts that J is maximal. So there is no such K. Thus N is minimal.

Therefore, N ∩ J is maximal in N . �

An L-module V is said to be irreducible if V 6= {0} and V has no proper submod-

ules (i.e. {0} and V are the only submodules of V .) As in the group theory case in [22],

if Ker(ε) is an irreducible H-module, we can use Lemma 12, to prove the following result.
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Theorem 38. Let (L, ε) be an extension by H where the Ker(ε) is abelian. Suppose that

Ker(ε) is a non-trivial irreducible H-module. Then (L, ε) is a Frattini extension if and

only if it is non-split.

Proof: Suppose that

{0} −→ N −→ L
ε−→ H −→ {0} (6.1)

is a non-split extension. We need to show that N = Ker(ε) is a subalgebra of φ(L).

If N * φ(L), then there exists J a maximal subalgebra of L such that N * J, and so

by Lemma 12 we have the (J, α) is an extension, with α = ε|J . Moreover, Ker(α) is

a maximal H-submodule of Ker(ε) and since Ker(ε) is irreducible as an H-module we

have that Ker(α) = N ∩ J = {0} and therefore α is a monomorphism. But α is an

epimorphism, since (J, α) is an extension. Hence α is an isomorphism. Thus (6.1) splits,

which is a contradiction.

Conversely, suppose that (L, ε) is a Frattini extension. We need to show that (6.1) is

non-split. Suppose that (6.1) splits. Then there exists a homomorphism say ψ from H

into L such that εψ = IH , and so ψ is a monomorphism and therefore H ∼= Im(ψ). Hence

ψ : H → Im(ψ) is an isomorphism. Also, we have that Im(ψ) ⊆ L and Ker(ε) ⊆ L.

Since the extension splits, L = Ker(ε) + Im(ψ) and Ker(ε) ∩ Im(ψ) = {0}. Since

Ker(ε) * Im(ψ) then Im(ψ) is not a maximal subalgebra of L. Thus there exists

J a maximal subalgebra of L such that Im(ψ) ⊂ J ⊂ L. But maximality of J im-

plies that Ker(epsilon) ⊆ φ(L) ⊆ J. Now, Ker(ε) ⊆ J and Im(ψ) ⊂ J implies that

L = Ker(ε) + Im(ψ) ⊆ J, which is a contradiction. �

Theorem 39. If (L, ε) is a Frattini extension by H, then (φ(L), ε) is an extension of
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Ker(ε) by φ(H).

Proof: Since (L, ε) is an extension, we have L/Ker(ε) ∼= H, and so φ(L/Ker(ε)) ∼=

φ(H). Since Ker(ε)E φ(L), we have that φ(L/Ker(ε)) = φ(L)/Ker(ε). �

A Lie algebra L is perfect if L = L′. This brings us to our next theorem.

Theorem 40. Let L be a finite dimensional Lie algebra and let (L, ε) be a Frattini

extension of N by H with H a perfect Lie algebra. Then L is perfect.

Proof: Suppose that L is not perfect. Let N = Ker(ε). Since (L, ε) is a Frattini

extension by H we have that L/Ker(ε) = L/N ∼= H. Since H is perfect we get that

(L/N)′ ∼= H ′ = H which implies L′+N/N ∼= (L/N)′ ∼= L/N. Since L is finite dimensional

L′ +N = L. Since N ⊆ φ(L), N has no proper supplement, so L′ = L. �

Theorem 41. If ε : J −→ M is an epimorphism of a finite dimensional Lie algebra

and L is minimal among the subalgebras of J , with ε(L) = M , then (L, ε|L) is a Frattini

extension.

Proof: Let K be a maximal subalgebra of L. Suppose that Ker(ε|L) * K then

K ⊆ K +Ker(ε|L) ⊆ L. Maximality of K implies that K +Ker(ε|L) = L. Also we have

Ker(ε) C J , Ker(ε|L) ⊆ Ker(ε), and K ⊂ J , thus

K ⊆ L = K +Ker(ε|L) ⊆ K +Ker(ε) ⊆ J. (6.2)

Let W = K +Ker(ε). Then
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ε(W ) = {ε(k + x)|k ∈ K and x ∈ Ker(ε)}

= {ε(k) + ε(x)|k ∈ K and x ∈ Ker(ε)}

= {ε(k)|k ∈ K}

= ε(K)

By (6.2), we have ε(L) ⊆ ε(W ) ⊆ ε(J), which is M ⊆ ε(W ) ⊆ M . Thus ε(W ) = M

and hence ε(K) = M . Since K is a subalgebra of L and ε(K) = M , minimality of L

yields a contradiction. Thus Ker(ε|L) is contained in every maximal ideal of L and hence

in φ(L). Therefore, (L, ε|L) is a Frattini extension. �

Proposition 2. If (L, ε) is a Frattini extension by H, and β : H −→ L is a homomor-

phism such that αβ is surjective, then β is surjective.

Proof: Let K = Im(β) = β(H). Since αβ is surjective, we have that α(L) =

H = (αβ)(H) = α(β(H)) = α(K). So for any l ∈ L, there exists k ∈ K such that

α(l) = α(k). So α(l) = α(k) implies that α(l) − α(k) = α(l − k) = {0}. This implies

that l − k ∈ Ker(α). So l ∈ Ker(α) + K for all l ∈ L. Thus L ⊆ Ker(α) + K. Now,

K ⊆ L and Ker(α) E L implies that Ker(α) + K ⊆ L. Hence L = Ker(α) + K. Since

Ker(α) E φ(L) and as in the proof of Theorem 40, there exists no ideal, M , of L such

that M +Ker(α) = L. Therefore, K = L and β is surjective. �

Theorem 42. Composites of Frattini extensions are Frattini extensions.

Proof: Consider {0} −→ Ker(α) −→ L
α−→ H −→ {0} with α an epimorphism and
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Ker(α) E φ(L). Let {0} −→ Ker(β) −→ H
β−→M −→ {0} with β an epimorphism and

Ker(β) E φ(H). We need to show that βα is an epimorphism and that Ker(βα) E φ(L).

1. βα is an epimorphism:

Since h ∈ H and α is an epimorphism, then there exists l ∈ L such that α(l) = h.

If m ∈M , then there exists h ∈ H such that β(h) = m since β is an epimorphism.

Thus (βα)(l) = β(α(l)) = β(h) = m. Therefore, βα is an epimorphism.

2. Ker(βα) ⊆ φ(L):

Since α(L) = H we have α(φ(L)) = φ(α(L)) = φ(H). Thus φ(L) = α−1(φ(H)),

the inverse image of φ(H). But

Ker(βα) = {l|(βα)(l) = 0, l ∈ L}

= {l|β(α(l)) = 0, l ∈ L}

= {l|α(l) ∈ Ker(β), l ∈ L}

{l|l ∈ α−1(Ker(β))}

Since Ker(β) ⊆ φ(H) we get α−1Ker(β) ⊆ α−1(φ(H)) = φ(L). Hence Ker(βα) ⊆

φ(L). �

Lemma 13. Let N be a minimal ideal of L. If N has a complement in L, then N∩φ(L) =

{0}.

Proof: If N is complemented in L then L = N+H and N∩H = {0} for some H ( L.

Since N C L and φ(L) C L we have N ∩ φ(L) C L. Now minimality of N implies that
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N∩φ(L) = {0} or N . If N∩φ(L) = N , then N ⊆ φ(L), and hence N+H ⊆ φ(L)+H. So

L = φ(L)+H. But this implies H = L, which is a contradiction. Thus N∩φ(L) = {0}. �

Theorem 43. Let L be an extension of N by H, where N is abelian. Then L is a

minimal Frattini extension of N if and only if N is a minimal non-complemented ideal

of L.

Proof: Let N be a minimal non-complemented ideal of L. If N * φ(L), then there

exists a maximal subalgebra M of L such that N *M . Now N E L and M ⊆ L implies

that M ⊂ N + M ⊆ L. Maximality of M implies that N + M = L. Since N ∩M C M

and N ∩M C N , we have that N ∩M C N + M = L. Minimality of N in L implies

that N ∩M = {0}, and hence M is a complement of N . This is a contradiction. So

N ⊆ φ(L), and therefore, L is a minimal Frattini extension.

Conversely, if N is a complemented minimal ideal of L then by Lemma 13, N∩φ(L) =

{0}, and hence N is not a subalgebra of φ(L). Therefore, L is not a minimal Frattini

extension. �
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Chapter 7

Minimal Non-Elementary Lie

Algebras

In this chapter we will classify minimal non-elementary Lie algebras. Minimal non-

elementary finite groups must be nilpotent. The Lie algebra analog admists non-nilpotent

examples. The Lie algebras considered here are solvable. Hence the Frattini subalgebra

coincides with the Frattini ideal. Let F (L) denote the Frattini subalgebra of L. For solv-

able Lie algebras over a field of characteristic 0, the derived algebra is nilpotent, hence

the theorem finds all minimal non-elementary Lie algebras in this case when the field is

algebraically closed. For characteristic p, if L is nilpotent of length 2, then the final term,

Lw, in the lower central series is nilpotent, hence abelian. Then L is the semi-direct sum

of Lw and a Cartan subalgebra C of L [[3],Theorem 8]. Then C is abelian and L2 = Lw.

Hence the theorem applies to any Lie algebra of nilpotent length 2 over an algebraically

closed field.

Lemma 14. Let L be a minimal non-elementary finite dimensional solvable Lie algebra

47



with L2 nilpotent.

1. If L is nilpotent, then L is Heisenberg.

2. If L is not nilpotent and C is a Cartan subalgebra, then L is the semi-direct sum

L = C + L2.

Proof:

1. Suppose that L is nilpotent. Then F (H) = H2 = 0 for every proper subalgebra H

of L and F (L) = L2. If dim(L/L2) > 2, then every pair of elements of L are in

a proper subalgebra of L and hence commute. Thus L is abelian, a contradiction.

Hence two elements, x and y, generate L. Since 〈x, L2〉 and 〈y, L2〉 are proper

subalgebras of L, they are abelian and L2 ⊆ Z(L). Hence L = 〈x, y, z = [x, y]〉 and

L is Heisenberg.

2. Suppose that L is not nilpotent. Let C be a Cartan subalgebra of L. As on page 57

of [14], L decomposes as a vector space direct sum of C and C1 where [C,C1] = C1,

the Fitting decomposition of L with respect to C. Both C and L2 are nilpotent

proper subalgebras of L, hence they are abelian. Since C1 ⊆ L2, it follows that C1

is an ideal of L. If C1 6= L2, then C2 ∼= (L/C1)
2 ∼= L2/C1 6= 0, a contradiction.

Hence C1 = L2 and L = C + L2 is a semi-direct sum. �

Theorem 44. Let L be a finite dimensional Lie algebra over an algebraically closed field

K and suppose that L2 is nilpotent. Then L is minimal non-elementary if and only if L

has a basis x, y, z with multiplication [x, y] = αy + z, [x, z] = αz and [y, z] = 0, where

α ∈ K.
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Proof: Assume L minimal non-elementary. If L is nilpotent, then it has the desired

presentation by part (i) of Lemma. If L is not nilpotent, then by part (ii) of the Lemma,

L is the semi-direct sum L = C + L2, where C is a Cartan subalgebra of L. Suppose

that dimL/L2 > 1 and let x ∈ C. Then H = 〈x〉 + L2 is a proper subalgebra of L and

F (H) = 0. In particular, H is not nilpotent. If it were nilpotent then H would be abelian.

Hence x is in the center of L and 〈x〉 is a direct summand of L, which is a contradiction.

If D is a Cartan subalgebra of H, then H = D+H2 is a semi-direct sum using the same

argument as in part (ii) of Lemma. Since L2 is abelian, the Fitting null component of

ad(x) acting on H is nilpotent, hence it is a Cartan subalgebra of H. Hence we can let

D be the Fitting null component. Since F (H) = 0, Proposition 1 of [28] yields that D,

hence ad(x), acts completely reducibly on H since x ∈ D, H = D+H2 and D is abelian.

Since K is algebraically closed, ad(x) acts diagonally on H and on the ideals L2 and F (L)

that are contained in H. These results hold for all x ∈ C and, since C is abelian, the

ad(x) are simultaneously diagonalizable on L2 and on F (L). Let {x1, . . . , xn, y1, . . . , yt}

be a basis of these common eigenvectors where the xi ∈ φ(L) and yi ∈ L2, but yi /∈ φ(L).

If M = 〈x2, . . . , xn, y1, . . . , yt〉 + C, then M is a maximal subalgebra of L. This is a

contradiction since x1 /∈ M , but x1 ∈ F (L). Hence dim L/L2 = 1. Thus we can let

L = 〈x〉+ L2.

We claim that L2 is not the direct sum of two non-zero ideals of L. Suppose that M

and N show this statement to be false. Let A = 〈x〉+N and B = 〈x〉+M . Both F (A)

and F (B) are 0. Consider the set consisting of each maximal subalgebra of A added

to M . The intersection of the elements of this set is M , since F (A) = 0 and L is the

semi-direct sum of A and M . The Fitting null component E of ad(x) acting on A is

nilpotent, since N is abelian. Hence E is a Cartan subalgebra of A. Then A = E + A2

is a semi-direct sum, E is abelian and the action of E on A2 is the action of ad(x) on
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A2. By Proposition 1 of [28], ad(x) is diagonalizable on A2 and also on A since E is

abelian. Similarly, ad(x) acts diagonally on B and hence on L2. By Proposition 1 of [28],

F (L) = 0 since 〈x〉 is a Cartan subalgebra of L. This contradiction establishes that ad(x)

has only one Jordan block when acting on L2. Hence there exists a basis {x1, . . . , xn} of

L2 such that [x, xi] = αxi+xi+1 for i = 1, . . . , n−1 and [x, xn] = αxn, where 0 6= α ∈ K.

If n > 2, then B = 〈x, x2, . . . , xn〉 has F (B) = 0 and ad(x) acts diagonally on B2 by

Proposition 1 of [28] which contradicts the multiplication just given for L. Thus n = 2

and the result holds. The converse is clear. �
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