
ABSTRACT

BOSKO, LINDSEY R. Schur Multipliers of Nilpotent Lie Algebras. (Under the direction of
Ernest L. Stitzinger.)

The multiplier of a group was first discovered by I. Schur in the early twentieth century. It

can be defined using the second cohomology group, a free presentation, or a central extension.

We examine the Schur multiplier for Lie algebras which are nilpotent. We compute multipliers

for a particular type of nilpotent Lie algebra, categorizing them in regard to a certain invariant.

Our computations indicate the existence of a bound on the dimension of the multiplier in terms

of the dimension of the algebra. We prove this conjecture is a theorem. The analogue of this

result is also shown to hold for a certain type of p−group. We use results from Berkovich [5],

Ellis [8], and Zhou [21] to prove the result. Additionally, we develop another bound for the

dimension of the multiplier in terms of its class and number of generators. We compare this

bound to a known result in [12]. There are many results concerning the Schur multiplier of a

group being trivial. See [13], [18], [6], and [19]. We examine sufficient conditions for making the

Schur multiplier of a Lie algebra nontrivial proving an elegant theorem involving the dimension

of the Lie algebra.
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Chapter 1

Introduction

Definition 1. A Lie Algebra, L, is a vector space over a field, K, with a product [ , ] : L×L→ L

called bracket such that

(i) [ , ] is K-bilinear

(ii) [x, x] = 0 for all x ∈ L

(iii) [x, [y, z]] = [[x, y], z] + [y, [x, z]] for all x, y, z ∈ L. This particular derivation is known as

the Jacobi identity.

Example 2. To clarify the definition, several examples of Lie algebras are given below.

(i) The set of n×n matrices in K, M(n,K), with a commutation bracket: [A,B] = AB−BA.

(ii) R3 with unit vector basis {x, y, z} and [v, w] = v × w where × is the usual cross product

of vectors.

(iii) L = spanK{x1, x2, . . . , xn, y1, y2, . . . , yn, z} with [xi, yj ] = δijz and all other products are

zero. This is the Heisenberg Lie algebra.

There are many parallels that exist between different algebraic structures. We will examine

groups and Lie algebras for new similarities and differences regarding their Schur multipliers.

We begin by describing several equivalent definitions of the Schur multiplier in some historical

context. We develop this by first reverting back to the theory of groups where the Schur

multiplier was first defined and studied.

Definition 3. A representation of a group, G, on a vector space, V , is a group homomorphism

from G into the general linear group on V , GL(V ).
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Representations are very useful for their ability to describe abstract groups (or other alge-

braic structures) in terms of linear transformations. In a representation, the group elements are

studied as matrices with the group operation becoming matrix multiplication. Representations

can give some level of concreteness to abstract objects. In the early twentieth century, Issai

Schur began studying a related topic, projective representations of groups.

Definition 4. A projective representation of a group, G, on a vector space, V , is a group

homomorphism from G into the projective general linear group, PGL(V ) = GL(V )/Z(V ).

Z(V ) is the center of V , which is just the set of scalar matrices.

Schur discovered that projective representations are related to regular representations in

the following way. For a finite group, G, there exists a group, C, such that each irreducible

projective representation of G can be lifted to an ordinary representation of C over the same

vector space. Pictorially,

C GL(V )

G PGL(V )

Ω

ω φ

π

Figure 1.1: Projective Representation on G, Lifting to a Representation on C

In Figure 1, π is a projective representation of the group G that can be lifted to an ordinary

representation, Ω of the group C. Using modern terminology, Schur found this lifting to involve

cohomology and, in particular, categorizing 2-cocylces modulo 2-coboundaries. With this, Schur

gave the first definition for his multiplier.

Definition 5. For a group, G, its Schur multiplier, M(G), can be defined as the second co-

homology group H2(G,C∗) where the modular multiplication acts identically: g · c = c for

g ∈ G, c ∈ C∗ and C∗ represents the nonzero complex numbers.

Before giving an equivalent definition known as Hopf’s formula, we define a few necessary

terms.

Definition 6. Given a group, G, its commutator subgroup, G2, is the group generated by all

commutators: [g, h] = ghg−1h−1 where g, h ∈ G

2



Definition 7. A free presentation of a group G is a short exact sequence of groups

1→ R→ F → G→ 1

where F is a free group on the generators of G and R is a normal subgroup of F generated by

the relations.

Definition 8 (Schur 1907, Hopf 1941). If 1 → R → F → G → 1 is a free presentation of G,

then C ∼= F/S for a normal subgroup S ⊆ [F,R]. In addition,

M(G) ∼= F 2 ∩R/[F,R]

where [F,R] is the group generated by all elements of the form frf−1r−1 for f ∈ F and r ∈ R.

We have one remaining equivalent definition for the Schur multiplier developed from central

extensions.

Definition 9. We call a group G∗ a central extension of a group G if there exists an onto

homomorphism Θ : G∗ → G such that ker Θ ⊆ Z(G∗). If ker Θ ⊆ Z(G∗) ∩ (G∗)2 then G∗ is

called a cover of G.

Definition 10. Given a finite group, G, a defining pair is two groups (C,M) such that:

(i)G ∼= C/M

(ii)M ⊆ Z(C) ∩ C2.

In this definition, C is a cover and the Schur multiplier is isomorphic to the M paired with

the C of maximum order. There may be more than one cover of maximum order, but if M1 and

M2 are each paired with C1 and C2 of maximum order, respectively, then M1
∼= M2

∼= M(G).

Furthermore, C1 and C2 are not necessarily isomorphic, but have been proven to be isoclinic

meaning C1/Z(C1) ∼= C2/Z(C2) and C2
1
∼= C2

2 .

Now we provide three analogous definitions for the Schur multiplier of a Lie algebra, the

first of which uses central extensions [16].

Definition 11. A pair of Lie algebras (C,M) is a defining pair for Lie algebra L if

(i) L ∼= C/M and

(ii) M ⊆ Z(C) ∩ C2.

If dimL = n then dimC ≤ 1
2n(n+ 1) and there is a C whose dimension is maximal. This is

called a cover of L and the M paired with a maximal C is defined to be the Schur multiplier.

3



Unlike the group theory definition, covers of a Lie algebra are isomorphic [2]. We note that

the Schur multiplier of a Lie algebra is central. Thus, computing the dimension of the Schur

multiplier will completely categorize it as an abelian Lie algebra. The Schur multiplier can also

be defined in terms of free Lie algebras [3].

Theorem 12. Let L be a finite-dimensional Lie algebra and let L ∼= F/R where F is a free Lie

algebra with ideal R. Then

M(L) ∼=
F 2 ∩R
[F,R]

.

Lastly, we can define the Schur multiplier as a second cohomology group [3].

Theorem 13. Let L be a finite dimensional Lie algebra over a field K. Consider K as a trivial

L−module. Then,

M(L) = H2(L,K)

where l · k = 0 for l ∈ L, k ∈ K.

K. Moneyhun computed covers and Schur multipliers for several specific types of Lie algebras

including the upper triangular matrices, triangular matrices, and Heisenberg algebras. In [15],

L. Levy computed multipliers for the central series of strictly upper triangular matrices. P.

Hardy considered an inverse of this problem. In [11] and [12] he searched for nilpotent Lie

algebras whose central extension was as large as possible in regard to a certain invariant.

Following Hardy’s lead, we also study nilpotent Lie algebras and the same invariant.

Definition 14. Given a Lie algebra, L, its lower central series is

L = L1 ⊃ L2 ⊃ L3 ⊃ · · · ⊃ Lt ⊃ Lt+1 ⊃ · · ·

where Li = [Li−1, L]. L is nilpotent if the series terminates, meaning Lt = 0 for some t and

all higher powers of L are also 0.

Example 15. An example of a nilpotent Lie algebra is the linear span of the set of strictly

upper triangular n × n matrices. Recall that the bracket product is commutation. So, if L =

spanK{Eij |i < j ≤ n} then L2 = spanK{Eij |i+ 1 < j ≤ n} and Ln = spanK{Eij |i+ (n− 1) <

j ≤ n} = {0} where Eij represents the elementary matrix with a 1 in the ith row and jth column

and zeros elsewhere.

Definition 16. A nilpotent Lie algebra, L, has class c if c is the smallest integer for which

Lc 6= 0 and Lc+1 = 0.

Example 17. If L is the Lie algebra of strictly upper triangular matrices of size n × n of

Example 15 then L has class n− 1 since Ln−1 = spanK{E1,n} and Ln = 0.

4



The group theory analogue of nilpotent Lie algebras are p−groups or, more generally, nilpo-

tent groups.

Definition 18. A p−group is any group of order pn where p is prime and n is a nonnegative

integer.

We return now to Hardy who studied Schur multipliers of nilpotent Lie algebras in regard to

an invariant. This invariant, t, was first developed in the study of Schur multipliers of p−groups.

Since there is an upper bound on the order of the cover, there is also an upper bound on the

order of the multiplier. Namely, for a group G of order pn, |M(G)| ≤ p
1
2
n(n−1) ( [10]).

Definition 19. For a group G of order pn we define t(G) as the nonnegative integer satisfying

the equation

|M(G)| = p
1
2
n(n−1)−t(G).

So, t(G) is a measure of how far the order of the multiplier is from being maximal. We have

a natural analogue of this in Lie algebras. Again, both the orders of the cover and multiplier

are bounded above. In particular, dimM(L) ≤ 1
2n(n− 1).

Definition 20. For a Lie algebra L of dimension n, t(L) is the nonnegative integer satisfying

the equation

dimM(L) =
1

2
n(n− 1)− t(L).

Remark 21. It is shown in [16] that dimM(L) = 1
2n(n− 1) if and only if L is abelian. In this

case, t(L) = 0.

In this paper, we study a subset of nilpotent Lie algebras in regard to the invariant, t(L)

and arrive at an inequality involving the dimension of L and t(L). Using the order of the group

and t(G), the analogue of this result is shown to hold in groups. This work can be found in

Chapter 4 after we directly compute Lie algebras and their Schur multipliers for various t(L) in

Chapter 3. Furthermore, we obtain a new bound on the dimension of the Schur multiplier for

nilpotent Lie algebras and compare it to an existing known bound. We also examine sufficient

conditions for the the Schur multiplier of any nilpotent Lie algebra to be nontrivial. This result

proves to be more elegant than theorems examining the conditions wherein the Schur multiplier

of a group in nontrivial. These results can be found in Chapter 5.

5



Chapter 2

Preliminaries

Hardy categorized nilpotent Lie algebras and their Schur multipliers for t(L) ≤ 8. What Hardy

discovered was that for bigger values of t, one uncovered families of Lie algebras. It is still

open for someone to examine larger values of t to find all Lie algebras and their corresponding

Schur multipliers which satisfy t(L) = 1
2n(n − 1) − dimM(L) for a given t > 8. Rather than

continue with Hardy’s categorization of all nilpotent Lie algebras for larger values of t, we take

a cue from Hall and Blackburn. They found that by putting restrictions on p−groups one could

uncover more information. Therefore, we will take Hardy’s approach on a subset of nilpotent

Lie algebra which meet a certain requirement.

Definition 22. If dimL/L2 = 2 and dimLi/Li+1 = 1 for i = 2, 3, . . . , c then we say L has

maximal class. An equivalent definition is c = n− 1 where n = dimL.

Example 23. The Lie algebra studied in Example 15 is non-abelian of maximal class only if

n = 3.

Maximal class Lie algebras were first studied by Vergne in the 1960’s under the alias of

filiform Lie algebras [17]. She defined and classified low dimension cases. Hall and Blackburn

studied the group theory counterpart called maximal class p−groups. Again, their intention

was to uncover information about p−groups by enforcing restrictions on the group. Before

venturing forth, we include a few known results based on the central series of a nilpotent Lie

algebra, which will be the focus of Chapter 3.

Definition 24. The lower central series of a nilpotent Lie algebra, L is

L = L1 ⊃ L2 ⊃ · · · ⊃ Lc ⊃ Lc+1 = 0

where Li = [L,Li−1].
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Maximal class Lie algebras have the longest possible lower central series of any nilpotent Lie

algebras. Since the minimum number of elements required to generate a nilpotent Lie algebra

is the dimension of L/L2, Lie algebras of maximal class are two generated. Additionally, there

is another important central series for a nilpotent Lie algebra.

Definition 25. The upper central series of nilpotent L is

0 = Z0(L) ⊂ Z1(L) ⊂ Z2(L) ⊂ . . . ⊂ Zc(L) = L

where Zi(L) is the ideal in L such that Zi(L)/Zi−1(L) = Z (L/Zi−1(L)). Thus, Z1(L) = Z(L).

Maximal class Lie algebras have the property that Zi(L) = Lc−i+1 for 0 ≤ i ≤ c where c

is the class of L. In particular, we will use Z(L) = Lc, which implies that dimZ(L) = 1 and

L/Z(L) is also a maximal class Lie algebra. With these definitions, we now develop several

theorems needed to begin computing Schur multipliers of maximal class Lie algebras.

Theorem 26. For any finite dimensional Lie algebra, L, over a field, K,

dimL2(dimL2 + 1) ≤ 2t(L).

Proof. By Corollary 3.5 of [20],

dimH2(L,K) ≤ dimH2(L/L2,K) + (dimL2)(dimL/L2 − 1)

where H2(L,K) represents the second cohomology group of L over field K. With Theorem 13,

dimM(L) ≤ dimM(L/L2) + (dimL2)(dim(L/L2)− 1).

Now, we use the invariant t(L) and substitute in dimL = n, dimL2 = s, and dimL/L2 = n−s
to obtain

1

2
n(n− 1)− t(L) ≤ 1

2
(n− s)(n− s− 1)− t(L/L2) + s(n− s− 1)

⇒1

2
n(n− 1)− t(L) ≤ 1

2
(n+ s)(n− s− 1)− t(L/L2)

⇒t(L) ≥ 1

2
s(s+ 1) + t(L/L2).

Since L/L2 is abelian, t(L/L2) = 0. Thus, s2 + s ≤ 2t(L).

7



The next few results will be used throughout the following section. The group theory

analogue of these can be found in [14] on pages 57-58. We provide the proofs of the Lie algebra

versions for completeness.

Theorem 27. Let L be a finite dimensional Lie algebra with ideal B and set A = L/B. Then

there exists a finite dimensional Lie algebra G with an ideal M such that

(i) L2 ∩B ∼= G/M

(ii) M ∼= M(L)

(iii) M(A) is a homomorphic image of G.

Proof. Let 0 → R → F → L → 0 be a free presentation of L and suppose B = S/R for

some ideal S in F . Then A = L/B ∼= F/R
S/R

∼= F/S. Now, set M = (F 2 ∩ R)/[F,R] and

G = F 2 ∩ S/[F,R]. Then

L2 ∩B ∼= (F/R)2 ∩ S/R ∼= ((F 2 +R) ∩ S)/R = ((F 2 ∩ S) +R)/R

∼= F 2 ∩ S/(R ∩ (F 2 ∩ S)) = F 2 ∩ S/F 2 ∩R ∼=
F 2 ∩ S/[F,R]

F 2 ∩R/[F,R]

= G/M.

Thus, (i) has been proven. By definition, M(L) ∼= M and (ii) has been proven. Also by

definition,

M(A) ∼= F 2 ∩ S/[F, S] ∼=
F 2 ∩ S/[F,R]

[F, S]/[F,R]
∼=

G

[F, S]/[F,R]
.

Therefore, M(A) is the image ofG under some homomorphism, whose kernel is [F, S]/[F,R].

This leads to the following result.

Corollary 28. Let L be a finite dimensional Lie algebra, B be any ideal of L, and A = L/B.

Then dimM(A) ≤ dimM(L) + dim(L2 ∩B).

Proof. From Theorem 27, dimG = dim(L2 ∩ B) + dimM(L) and dimM(A) ≤ dimG. Thus,

dimM(A) ≤ dimM(L) + dim(L2 ∩B).

Lemma 29. Let L be a finite dimensional Lie algebra with free presentation

0→ R→ F → L→ 0.

Let B be an ideal of L contained in Z(L) with B = S/R. Define A = L/B ∼= F/S. Then

[F, S]/([F,R] + S2) is a homomorphic image of A/A2 ⊗B/B2.

8



Proof. Define

λ : A/A2 ×B/B2 → [F, S]/([F,R] + S2) by

λ
(
f + (F 2 + S), x+R

)
= [f, x] + ([F,R] + S2) where f ∈ F, x ∈ S.

Note that A/A2 × B/B2 = F/S
(F 2+S)/S

× S/R ∼= F/(F 2 + S)× S/R. We claim λ is well-defined.

Let f ′ ≡ f (mod F 2 + S) and x′ ≡ x (mod R). This implies that f ′ = f + g+ s and x′ = x+ r

for some g ∈ F 2, s ∈ S, r ∈ R. Now,

[f ′, x′] = [f + g + s, x+ r] = [f, x] + [f, r] + [g, x] + [g, r] + [s, x] + [s, r].

From here, notice that [f, r] ∈ R and [s, x], [s, r] ∈ S2 since R is an ideal in S, which is an ideal

in F . Also,

[g, x] ∈ [F 2, S] = [[F, F ], S] ⊆ [F, [S, F ]] + [[S, F ], F ] ⊆ [F,R]

since 0 = [B,L] = [S/R,F/R] which implies [S, F ] ⊆ R. Thus, [f ′, x′] ≡ [f, x] (mod [F,R] +

S2) and λ is well-defined. So, there exists a unique homomorphism λ∗ : A/A2 ⊗ B/B2 →
[F, S]/([F,R] + S2). Since the linear span of the image of λ is [F, S]/([F,R] + S2), λ∗ is

onto.

Theorem 30. Let L be a finite dimensional Lie algebra and B ⊆ Z(L) an ideal. Let A = L/B.

Then

dimM(L) + dimL2 ∩B ≤ dimM(A) + dimM(B) + dim(A/A2 ⊗B/B2).

Proof. As before, begin with a free presentation of L : 0 → R → F → L → 0. Let B be a

central ideal of L. Then B = S/R for some ideal S of F . Then A = L/B ∼= F/S. By Lemma

29 and its proof, [F, S] ⊆ R. By Theorem 27 and its proof,

dimM(L) + dimL2 ∩B = dimM(A) + dim[F, S]/[F,R].

Since [F,S]/[F,R]
([F,R]+S2)/[F,R]

∼= [F, S]/([F,R] + S2),

dimM(L) + dimL2 ∩B = dimM(A) + dim([F,R] + S2)/[F,R] + dim[F, S]/([F,R] + S2).

But,
(
[F,R] + S2

)
/[F,R] ∼= S2/

(
[F,R] ∩ S2

) ∼= S2/[S,R]
(S2∩[F,R])/[S,R]

. Now, S2 ⊆ [F, S] ⊆ R ⇒
S2/[S,R] = S2 ∩ R/[S,R] ∼= M(B) since 0 → R → S → B → 0 is a free presentation of B.
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Thus,

dimM(L) + dimL2 ∩B = dimM(A) + dim([F,R] + S2)/[F,R]

+ dim[F, S]/([F,R] + S2)

= dimM(A) + dimM(B)− dim
(
S2 ∩ [F,R]

)
/[S,R]

+ dim[F, S]/([F,R] + S2)

≤ dimM(A) + dimM(B) + dimA/A2 ⊗B/B2.

This concludes the theorems which parallel group theory results found in [14]. As a conse-

quence of Theorem 30 we have a new result.

Corollary 31. If L is an n−dimensional nilpotent Lie algebra of maximal class, then

t(L/Z(L)) + dimL2 ≤ t(L).

Proof. Use Theorem 30 with B = Z(L). Then,

dimM(L) + dimL2 ∩ Z(L) ≤ dimM(L/Z(L)) + dimM(Z(L))

+ dim
L/Z(L)

(L/Z(L))2
⊗ Z(L)

(Z(L))2

⇒ dimM(L) + 1 ≤ dimM(L/Z(L)) + 0 + [n− 1− (n− 1− 2)](1)

⇒ dimM(L) + 1 ≤ dimM(L/Z(L)) + 2

⇒ 1

2
n(n− 1)− t(L) ≤ 1

2
(n− 1)(n− 2)− t(L/Z(L)) + 1

⇒ t(L/(Z(L)) + n− 2 ≤ t(L)

⇒ t(L/(Z(L)) + dimL2 ≤ t(L).

We will use Corollary 31 throughout the next chapter in which we begin computing Lie

algebras of maximal class and small t(L). In addition, we determine their Schur multipliers.
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Chapter 3

Lie Algebras of Maximal Class and

Small t(L)

We begin by computing Lie algebras of maximal class with t(L) = 0. This implies 1
2n(n− 1) =

dimM(L) where n is the dimension of L. We continue the computations by increasing the

value of t(L) up to t(L) = 16. Recall, for an n−dimensional Lie algebra of maximal class,

dimL2 = n − 2. Using this fact and an algorithm for each t(L) = 1
2n(n − 1) − dimM(L), we

compose all of our results in Table 3.1 following this section. We employ notation developed

by Hardy through most of the computations.

3.1 Algorithm

For a given value of t(L), the algorithm will proceed by first examining the result of Theorem

26 which states

dimL2
(
dimL2 + 1

)
≤ t(L).

Since dimL2 = n−2, we can determine an upper bound for dimL = n. Appealing to Corollary

31, which states that a maximal class Lie algebra must satisfy the equation

t(L/Z(L)) + dimL2 ≤ t(L),

the possibilities for t(L/Z(L)) can be known. Since L/Z(L) is a maximal class Lie algebra of

dimension n− 1, its categorization must be known (i.e. it will exist in our previous work). We

can now determine L, a one-dimensional central extension of L/Z(L).

Knowing the structure of L, we can determine its cover, C, and Schur multiplier, M(L).

By definition, L ∼= C/M(L) where M(L) ⊆ Z(C) ∩ C2. We look at those central extensions

of L that are as large as possible. We examine all possible dependencies by employing change
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of variables and the Jacobi identity. The remaining central elements that also appear in the

derived algebra of C are a basis for M(L). With L and M(L) known, we can also compute C.

We show the details of this algorithm most thoroughly in the case t(L) = 3. For larger values

of t(L), the formalities are dropped, but provide the important details.

3.2 Computations

3.2.1 t(L)=0

Suppose t(L) = 0, then L is abelian. Since L is of maximal class, L is two-dimensional and

denoted as A(1). In particular, L = spanx, y with [x, y] = 0 and M(L) is one-dimensional

abelian.

3.2.2 t(L)=1

Suppose t(L) = 1. Then by Corollary 31, dimL2 ≤ 1. If dimL2 = 0, then L is the two-

dimensional abelian Lie algebra and t(L) = 0. Thus, dimL2 = 1 and n = 3 which gives us

L = 〈x, y, z〉 and t(L/Z(L)) = 0. From above, L/Z(L) ∼= A(1) and since L is of maximal class,

dimZ(L) = 1. Therefore L has the following multiplication: [x, y] = z where Z(L) = 〈z〉. We

see that L is the three-dimensional Heisenberg Lie algebra, which we denote as H(1). Then

M(L) is spanned by {s1, s2, s3} where

[x, y] = z + s1 [x, z] = s2 [y, z] = s3.

We can relabel using z′ = z + s1. Since the Jacobi identity does not yield any dependencies,

M(L) = 〈s2, s3〉 and t(L) = 1
2n(n− 1)− 2 = 1.

3.2.3 t(L)=2

Suppose t(L) = 2. Using Theorem 26, dimL2(dimL2 + 1) ≤ 4. Thus, dimL2 ≤ 1 and n ≤ 3.

Hence, L ∼= A(1) with t(L) = 0 or L ∼= H(1) with t(L) = 1. Therefore, there are no maximal

class Lie algebras for which t(L) = 2.

3.2.4 t(L)=3

Suppose t(L) = 3. Then dimL2(dimL2 + 1) ≤ 6 ⇒ dimL2 ≤ 2. From above, dimL2 6= 0, 1.

If dimL2 = 2 then n = 4 and t(L/Z(L)) ≤ 1 by Corollary 31. We know t(L/Z(L)) = 0 leads

to L = H(1) and t(L) = 1. Thus, we examine t(L/Z(L)) = 1 where L/Z(L) ∼= H(1) and

12



Z(L) = 〈r〉 for some r ∈ L. L has a basis of {x, y, z, r} and nonzero multiplication:

[x, y] = z + α1r, [x, z] = α2r, [y, z] = α3r

where α2 and α3 are not both zero. Without loss of generality, we can assume that α2 6= 0

and then let z′ = z + α1r, y′ = y − α3
α2
x, r′ = α2r. This change of basis yields the following

non-zero multiplication for L : [x, y′] = z′ and [x, z′] = r′. Now, for brevity, we eliminate the

primes, leaving them to be understood.

Next, we will compute M(L) using the fact that L ∼= C/M(L) and M(L) ⊆ C2 ∩ Z(C)

where C is the cover for L. Letting π ∈ Hom(C,L) with kerπ = M(L) we define a linear

mapping µ to be a section for π. That is, µ : L→ C such that π ◦µ is the identity mapping on

L. For x, y ∈ L we have

π (µ[x, y]− [µ(x), µ(y)]) = π (µ[x, y])− [π(µ(x)), π(µ(y))] = 0.

Thus, µ[x, y] − [µ(x), µ(y)] ∈ kerπ = M(L). To compute a basis for M(L), we perform multi-

plications in C = M(L) ⊕ µ(L). For the above L = 〈x, y, z, r〉 with aforementioned relations,

the multiplication for C is given below. We use the simplified notation of x to represent µ(x)

for all x ∈ L, leaving the action of µ to be understood.

[x, y] = z + s1 [x, z] = r + s2 [x, r] = s3

[y, z] = s4 [y, r] = s5 [z, r] = s6

where {s1, s2, s3, s4, s5, s6} generate M(L) and {s1, s2, s3, s4, s5, s6, x, y, z, r} generate C.

Using the Jacobi identity in C we see that

[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ s5 = 0

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ s6 = 0

with all other Jacobi identities providing no new information. Using another change of basis

in which we define z′ = z + s1 and r′ = r + s2 we conclude that M(L) = 〈s3, s4〉. Thus,

t(L) = 1
2(4)(3) − 2 = 4. We denote this Lie algebra as L(3, 4, 1, 4) where each of the four

numbers represents, in order, the fact that this Lie algebra emerged from examining the t(L) = 3

case, the dimension of L, the dimension of Z(L), and the value of t(L). This notation has been

adopted from [12]. Since t(L) = 4, there are no Lie algebras of maximal class for which t(L) = 3.
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3.2.5 t(L)=4

Since we have examined the cases t(L) = 0, 1, 2, and 3 now suppose t(L) = 4. Then dimL2(dimL2+

1) ≤ 8 and, thus, dimL2 ≤ 2. We have already considered the cases where dimL2 = 0 and 1.

Now, if dimL2 = 2, we can employ Corollary 31 to conclude that t(L/Z(L)) ≤ 2. The cases in

which t(L/Z(L)) = 0 and 1 will lead to L ∼= H(1) and L(3, 4, 1, 4), respectively. Since there are

no maximal class Lie algebras for which t(L) = 2, t(L/Z(L)) 6= 2. Thus, there is only one Lie

algebra of maximal class for which t(L) = 4, L(3, 4, 1, 4).

3.2.6 t(L)=5 & t(L)=6

We consider the cases of t(L) = 5 and 6 together. For a maximal class Lie algebra, L, we know

that L/Z(L) must also be of maximal class. Thus, if L is a new maximal class Lie algebra,

L/Z(L) is isomorphic to a maximal class Lie algebra we have already categorized. With Corol-

lary 31 using L/Z(L) ∼= L(3, 4, 1, 4), we conclude t(L) is at least 7. Therefore, there are no Lie

algebras of maximal class for which t(L) = 5 or 6.

3.2.7 t(L)=7

Suppose t(L) = 7. From the explanation above, we begin by considering L/Z(L) ∼= L(3, 4, 1, 4).

Thus, L ∼= 〈x, y, z, r, c〉 with multiplication

[x, y] = z + α1c [x, z] = r + α2c [x, r] = α3c

[y, z] = α4c [y, r] = α5c [z, r] = α6c.

By a change of basis, we can conclude α1 = α2 = 0. Using the Jacobi identities we get

α5 = α6 = 0. Since r /∈ Z(L) = 〈c〉, α3 6= 0. Now we have two cases, either α4 = 0 or α4 6= 0.

Case 1: α4 = 0

If α4 = 0, then our resulting Lie algebra has multiplication [x, y] = z, [x, z] = r, [x, r] = c and

to compute M(L) we begin with the following multiplication:

[x, y] = z + s1 [x, z] = r + s2 [x, r] = c+ s3 [x, c] = s4 [y, z] = s5

[y, r] = s6 [y, c] = s7 [z, c] = s8 [z, r] = s9 [r, c] = s10.
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We relabel to achieve s1, s2, s3 = 0. Expanding with the Jacobi identity, we obtain

[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ s6 = 0

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ s9 = −s7

[x, [y, c]] = [[x, y], c] + [y, [x, c]]⇒ s8 = 0

[x, [z, c]] = [[x, z], c] + [z, [x, c]]⇒ s10 = 0.

So M(L) = 〈s4, s5, s7〉 and t(L) = 1
2(5)(4)− 3 = 7. We label this Lie algebra as L(7, 5, 1, 7).

Case 2: α4 6= 0

If α4 6= 0, we can relabel to get

[x, y] = z, [x, z] = r, [x, r] = c, [y, z] = αc

then let y′ = 1
αy, z

′ = 1
αz, r

′ = 1
αr c

′ = 1
αc. The multiplication becomes

[x, y′] = z′, [x, z′] = r′, [x, r′] = c′, [y′, z′] = c′.

Thus, in M(L) we have

[x, y] = z + s1 [x, z] = r + s2 [x, r] = c+ s3 [x, c] = s4 [y, z] = c+ s5

[y, r] = s6 [y, c] = s7 [z, c] = s8 [z, r] = s9 [r, c] = s10.

Notice that we have relabeled to drop the use of the primes. We relabel again to achieve

s1 = s2 = s3 = 0. Expanding with the Jacobi identity, we obtain

[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ s4 = s6

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ s9 = −s7

[x, [y, c]] = [[x, y], c] + [y, [x, c]]⇒ s8 = 0

[x, [z, c]] = [[x, z], c] + [z, [x, c]]⇒ s10 = 0

So M(L) = 〈s4, s5, s7〉 and t(L) = 1
2(5)(4)− 3 = 7. We label this Lie algebra as L′(7, 5, 1, 7).

3.2.8 t(L)=8, 9 & 10

We will handle the cases of t(L) = 8, 9, and 10 together. Since L/Z(L) is a Lie algebra of

maximal class, we can conclude the next case in which we potentially derive a new maximal
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class Lie algebra occurs when L/Z(L) ∼= L(7, 5, 1, 7) or L′(7, 5, 1, 7). For either of these cases,

t(L) = 11 is the first case to consider. We derive this from Corollary 31 with dimL2 = 4. Thus,

there are no Lie algebras of maximal class for which t(L) = 8, 9, or 10.

3.2.9 t(L)=11 & L/Z(L) ∼= L(7,5,1,7)

If t(L) = 11 then L/Z(L) ∼= L(7, 5, 1, 7) or L′(7, 5, 1, 7). If L/Z(L) ∼= L(7, 5, 1, 7) then L =

〈x, y, z, r, c, d〉 with multiplication

[x, y] = z + α1d [x, z] = r + α2d [x, r] = c+ α3d [x, c] = α4d [y, z] = α5d

[y, r] = α6d [y, c] = α7d [z, r] = α8d [z, c] = α9d [r, c] = α10d.

Using a change of variable we obtain α1, α2, α3 = 0. As before, we use the Jacobi identity to

eliminate several variables. Specifically, we obtain that α6 = α9 = α10 = 0 and α8 = −α7.

Next, expand the following Jacobi identities

[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ α6 = 0

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ α8 = −α7

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ α9 = 0

[x, [z, c]] = [[x, z], c] + [z, [x, c]]⇒ α10 = 0

Our multiplication is now

[x, y] = z [x, z] = r [x, r] = c [x, c] = α4d

[y, z] = α5d [y, c] = α7d [z, r] = −α7d.

Since c /∈ Z(L) = 〈d〉, α4 and α7 are not both 0.

Case 1: α7 = 0 = α5

We first assume α7 = 0. Then α4 6= 0. If α5 is also 0 then our multiplication with a change of

variable becomes

[x, y] = z, [x, z] = r, [x, r] = c, [x, c] = d.

We will denote this Lie algebra as L1(11).
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Case 2: α7 = 0 &α5 6= 0

If α5 6= 0 we let α = α4
α5

then

x′ = αx, y′ = α4y, z′ = α5z, r′ = α6r, c′ = α7c, d′ = α9α5d.

So, our multiplication becomes

[x′, y′] = z′ [x′, z′] = r′ [x′, r′] = c′
[
x′, c′

]
= d′

[
y′, z′

]
= d′.

We will denote this Lie algebra as L2(11).

Case 3: α7 6= 0

If α7 6= 0 then we define the following variables

x′ = x− α4

α7
y, y′ = y − α5

2α7
r, z′ = z − α5

2α7
c, r′ = r − α4α5

α7
d, d′ = α7d.

So, our nonzero multiplication is

[x′, y′] = z′, [x′, z′] = r′, [x′, r′] = c, [x′, c] = 0, [y′, z′] = 0, [y′, c] = d′, [z′, r′] = −d′.

We will denote this Lie algebra as L3(11).

L1(11) Computations

Now, we must compute the multipliers for these three algebras, beginning with L = L1(11).

Using the multiplication listed above, its multiplication in the cover will be

[x, y] = z + s1 [x, z] = r + s2 [x, r] = c+ s3 [x, c] = d+ s4 [x, d] = s5

[y, z] = s6 [y, r] = s7 [y, c] = s8 [y, d] = s9 [z, r] = s10

[z, c] = s11 [z, d] = s12 [r, c] = s13 [r, d] = s14 [c, d] = s15.

Using a change of variable, we obtain s1, s2, s3, s4 = 0. Using Jacobi identities, s7 = s9 = s11 =

s12 = s13 = s14 = s15 = 0, and s10 = −s8. Specifically,
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[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ s7 = 0

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ s10 = −s8

[x, [y, c]] = [[x, y], c] + [y, [x, c]]⇒ s11 = −s9

[x, [y, d]] = [[x, y], d] + [y, [x, d]]⇒ s12 = 0

[x, [z, r]] = [[x, z], r] + [z, [x, r]]⇒ s11 = 0

[x, [z, c]] = [[x, z], c] + [z, [x, c]]⇒ s13 = 0

[x, [z, d]] = [[x, z], d] + [z, [x, d]]⇒ s14 = 0

[x, [r, d]] = [[x, r], d] + [r, [x, d]]⇒ s15 = 0

Then M(L) = 〈s5, s6, s8〉 and t(L) = 1
2(6)(5)− 3 = 12. We denote this Lie algebra as L1(11) =

L(11, 6, 1, 12).

L2(11) Computations

Let us now examine L = L2(11) whose multiplication in C will be

[x, y] = z + s1 [x, z] = r + s2 [x, r] = c+ s3 [x, c] = d+ s4 [x, d] = s5

[y, z] = d+ s6 [y, r] = s7 [y, c] = s8 [y, d] = s9 [z, r] = s10

[z, c] = s11 [z, d] = s12 [r, c] = s13 [r, d] = s14 [c, d] = s15.

A change of variables will mean that s1, s2, s3, s4 = 0. Using the Jacobi identities, we obtain

s5 = s7, s10 = −s8, and s9 = s11 = s12 = s13 = s14 = s15 = 0. Specifically,

[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ s5 = s7

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ s10 = −s8

[x, [y, c]] = [[x, y], c] + [y, [x, c]]⇒ s11 = −s9

[x, [y, d]] = [[x, y], d] + [y, [x, d]]⇒ s12 = 0

[x, [z, r]] = [[x, z], r] + [z, [x, r]]⇒ s11 = 0

[x, [z, c]] = [[x, z], c] + [z, [x, c]]⇒ s13 = 0

[x, [z, d]] = [[x, z], d] + [z, [x, d]]⇒ s14 = 0

[x, [r, d]] = [[x, r], d] + [r, [x, d]]⇒ s15 = 0
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Then M(L) = 〈s5, s6, s8〉 and t(L) = 1
2(6)(5)− 3 = 12. We denote this Lie algebra as L2(11) =

L′(11, 6, 1, 12).

L3(11) Computations

Lastly we examine L = L3(11) whose multiplication in C will be

[x, y] = z + s1 [x, z] = r + s2 [x, r] = c+ s3 [x, c] = s4 [x, d] = s5

[y, z] = s6 [y, r] = s7 [y, c] = d+ s8 [y, d] = s9 [z, r] = −d+ s10

[z, c] = s11 [z, d] = s12 [r, c] = s13 [r, d] = s14 [c, d] = s15.

A change of variables will mean that s1, s2, s3, s8 = 0 Using the Jacobi identities, we obtain

s5 = s7 = s9 = s10 = s11 = s12 = s13 = s14 = s15 = 0. Specifically,

[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ s7 = 0

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ s10 = 0

[x, [y, c]] = [[x, y], c] + [y, [x, c]]⇒ s5 = s11

[x, [y, d]] = [[x, y], d] + [y, [x, d]]⇒ s12 = 0

[x, [z, r]] = [[x, z], r] + [z, [x, r]]⇒ −s5 = s11

[x, [z, c]] = [[x, z], c] + [z, [x, c]]⇒ s13 = 0

[x, [z, d]] = [[x, z], d] + [z, [x, d]]⇒ s14 = 0

[x, [r, d]] = [[x, r], d] + [r, [x, d]]⇒ s15 = 0

[y, [z, r]] = [[y, z], r] + [z, [y, r]]⇒ s9 = 0

Then M(L) = 〈s4, s6〉 and t(L) = 1
2(6)(5) − 2 = 13. We denote this Lie algebra as L3(11) =

L(11, 6, 1, 13).

3.2.10 t(L)=11 & L/Z(L) ∼= L′(7,5,1,7)

We must also consider if L/Z(L) ∼= L′(7, 5, 1, 7) which would give L = 〈x, y, z, r, c, d〉 with the

following multiplication

[x, y] = z + α1d [x, z] = r + α2d [x, r] = c+ α3d [x, c] = α4d [y, z] = c+ α5d

[y, r] = α6d [y, c] = α7d [z, r] = α8d [z, c] = α9d [r, c] = α10d.
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Using a change of variable, α1, α2, α3 = 0. Next, expand using the Jacobi identities to obtain

α4 = α6, α8 = −α7, and α9 = α10 = 0. Specifically,

[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ α4 = α6

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ α9 = −α7

[x, [y, c]] = [[x, y], c] + [y, [x, c]]⇒ α8 = 0

[x, [z, c]] = [[x, z], c] + [z, [x, c]]⇒ α10 = 0

Now our multiplication is

[x, y] = z [x, z] = r [x, r] = c [x, c] = α4d

[y, z] = c+ α5d [y, r] = α4d [y, c] = α7d [z, r] = −α7d.

Since c /∈ Z(L), α4 and α7 are not both 0.

Case 1: α7 = 0

Suppose α7 = 0 and perform the following change of variables

x′ = x+
α5

2α4
y, r′ = r +

α5

2α4
(c+ α5d), c′ = c+ α5d, d

′ = α4d.

Then we have

[x′, y] = z, [x′, z] = r′, [x′, r′] = c′, [x′, c′] = d′, [y, z] = c′, [y, r′] = d′.

We denote this Lie algebra as L′1(11).

Case 2: α7 6= 0

Now, suppose α7 6= 0 and change variables as follows:

x′ = x− α4
α7
y, y′ = y + α4

α7
z − α5

2α7
r, z′ = z + α4

α7
r −

(
α5
2α7

+
α2
4

α2
7

)
c− α2

4α5

2α2
7
d

r′ = r −
(
α4α5
α7

+
α3
4

α2
7

)
d, c′ = c− α2

4
α7
d d′ = α7d.

Then our multiplication becomes

[x′, y′] = z′, [x′, z′] = r′, [x′, r′] = c′, [y′, z′] = c′, [y′, c′] = d′, [z′, r′] = −d′

and we denote the Lie algebra as L′2(11).
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L′1(11) Computations

To compute the multiplier of L = L′1(11), we first look at the multiplication in C which is

[x, y] = z + s1 [x, z] = r + s2 [x, r] = c+ s3 [x, c] = d+ s4 [x, d] = s5

[y, z] = c+ s6 [y, r] = d+ s7 [y, c] = s8 [y, d] = s9 [z, r] = s10

[z, c] = s11 [z, d] = s12 [r, c] = s13 [r, d] = s14 [c, d] = s15.

Using a change of variable, s1 = s2 = s3 = s4 = 0. Proceed by examining the Jacobi identities

to yield s7 = s9 = s11 = s12 = s13 = s14 = s15 = 0 and s5 = s10 + s8. Specifically,

[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ s7 = 0

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ s5 = s10 + s8

[x, [y, c]] = [[x, y], c] + [y, [x, c]]⇒ s9 = −s11

[x, [y, d]] = [[x, y], d] + [y, [x, d]]⇒ s12 = 0

[x, [z, r]] = [[x, z], r] + [z, [x, r]]⇒ s11 = 0

[x, [z, c]] = [[x, z], c] + [z, [x, c]]⇒ s12 = −s13

[x, [z, d]] = [[x, z], d] + [z, [x, d]]⇒ s14 = 0

[x, [r, d]] = [[x, r], d] + [r, [x, d]]⇒ s15 = 0

Thus, we have M(L) = 〈s5, s6, s8〉 and t(L) = 1
2(6)(5)−3 = 12. We now denote this Lie algebra

as L′′(11, 6, 1, 12).

L′2(11) Computations

Lastly, we wish to compute the multiplier of L = L′2(11) which has multiplication

[x, y] = z + s1 [x, z] = r + s2 [x, r] = c+ s3 [x, c] = s4 [x, d] = s5

[y, z] = c+ s6 [y, r] = s7 [y, c] = d+ s8 [y, d] = s9 [z, r] = −d+ s10

[z, c] = s11 [z, d] = s12 [r, c] = s13 [r, d] = s14 [c, d] = s15.
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Using a change of variable, s1 = s2 = s3 = s8 = 0. Proceed by examining Jacobi identities to

yield s4 = s7 and s5 = s9 = s10 = s11 = s12 = s13 = s14 = s15 = 0. Specifically,

[x, [y, z]] = [[x, y], z] + [y, [x, z]]⇒ s4 = s7

[x, [y, r]] = [[x, y], r] + [y, [x, r]]⇒ s10 = −s8

[x, [y, c]] = [[x, y], c] + [y, [x, c]]⇒ s5 = s11

[x, [y, d]] = [[x, y], d] + [y, [x, d]]⇒ s12 = 0

[x, [z, r]] = [[x, z], r] + [z, [x, r]]⇒ −s5 = s11

[x, [z, c]] = [[x, z], c] + [z, [x, c]]⇒ s13 = 0

[x, [z, d]] = [[x, z], d] + [z, [x, d]]⇒ s14 = 0

[x, [r, d]] = [[x, r], d] + [r, [x, d]]⇒ s15 = 0

[y, [z, r]] = [[y, z], r] + [z, [y, r]]⇒ s9 = s13

Thus, we have M(L) = 〈s4, s6〉 and t(L) = 1
2(6)(5)−2 = 13. We now denote this Lie algebra as

L′(11, 6, 1, 13). In conclusion, there are no Lie algebras of maximal class for which t(L) = 11,

three for which t(L) = 12, and two for which t(L) = 13.

3.2.11 t(L)=14, 15, & 16

Since L/Z(L) is a Lie algebra of maximal class, we can conclude the next case in which we poten-

tially derive a new maximal class Lie algebra occurs when L/Z(L) is isomorphic to L(11, 6, 1, 12)

or L′(11, 6, 1, 12) or L′′(11, 6, 1, 12). For this case, t(L) = 17 is the first to consider since we

need dimL2 = 5 and t(L/Z(L)) + dimL2 ≤ t(L) from Corollary 31. Thus, there are no Lie

algebras of maximal class for which t(L) = 14, 15, or 16.

3.3 Remarks

We can continue to compute Schur multipliers with this method or, more interestingly, we

can examine our results as seen in Table 3.1 and conjecture on the relationship between the

dimension of L and t(L). This will be the content of the next chapter.
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Table 3.1: Maximal Class Lie Algebras

t(L) Name Basis Non-Zero Multiplication

0 A(1) {x, y}
1 H(1) {x, y, z} [x,y]=z
2 none
3 none
4 L(3,4,1,4) {x, y, z, r} [x,y]=z, [x,z]=r
5 none
6 none
7 L(7,5,1,7) {x, y, z, r, c} [x,y]=z, [x,z]=r, [x,r]=c
7 L′(7,5,1,7) {x, y, z, r, c} [x,y]=z, [x,z]=r, [x,r]=c, [y,z]=c
8 none
9 none
10 none
11 none
12 L(11,6,1,12) {x, y, z, r, c, d} [x,y]=z, [x,z]=r, [x,r]=c, [x,c]=d
12 L′(11,6,1,12) {x, y, z, r, c, d} [x,y]=z, [x,z]=r, [x,r]=c, [x,c]=d, [y,z]=d
12 L′′(11,6,1,12) {x, y, z, r, c, d} [x,y]=z, [x,z]=r, [x,r]=c, [x,c]=d, [y,z]=c, [y,r]=d
13 L(11,6,1,13) {x, y, z, r, c, d} [x,y]=z, [x,z]=r, [x,r]=c, [y,c]=d, [r,z]=d
13 L′(11,6,1,13) {x, y, z, r, c, d} [x,y]=z, [x,z]=r, [x,r]=c, [y,z]=c, [y,c]=d, [r,z]=d
14 none
15 none
16 none
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Chapter 4

Bounding the Dimension of L given

t(L)

If L is an n−dimensional Lie algebra then by Theorem 26, 1
2(n−1)(n−2) ≤ t(L). By definition

we have t(L) ≤ 1
2n(n− 1). Thus, we obtain the compound inequality for all finite-dimensional

Lie algebras

(n− 1)(n− 2) ≤ 2t(L) ≤ n(n− 1). (4.1)

Eq. 4.1 indicates that a given value for t(L) will result in two possible choices for n. For

instance if t(L) = 3, then both n = 3 and n = 4 satisfy Eq. 4.1. From the results collected in

Table 3.1, we do not see that to be the case for maximal class Lie algebras. Specifically, there

appears to be only one possible dimension of L for any given t(L). Accordingly, we conjecture

that the lower bound can be made a strict inequality: (n − 1)(n − 2) < 2t(L) when n > 3.

Additionally, this Lie algebra result indicates that a similar conclusion may be made in group

theory. This is the content of the following.

Theorem 32. Let L be a Lie algebra of maximal class with dimL = n > 3. Then

(n− 2)(n− 1) < 2t(L) ≤ (n− 1)n.

Proof. Let t = t(L) and suppose (n−2)(n−1) = 2t. Let B = Z(L). Since L is of maximal class,

L/B is of maximal class with dim(L/B) = n− 1. With Theorem 26, 1
2(n− 2)(n− 3) ≤ t(L/B).

By Corollary 31, t(L/B) ≤ t− (n− 2) = 1
2(n− 2)(n− 3). Thus, t(L/B) = 1

2(n− 2)(n− 3). We

can continue this process of factoring out by the center to obtain a maximal class Lie algebra,

J of maximal class with dim J = 4. This implies t(J) = 3. Upon examining Table 3.1, we see

no such algebra J exists. Hence, the assumption that (n−2)(n−1) = 2t has been contradicted

and the result holds.
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We summarize this for all t(L) by stating

Corollary 33. For each t ∈ Z+, for which there exists a maximal class Lie algebra, L with

t(L) = t, the dimension of L is unique.

Having established a result on the relationship between the dimension of a maximal class Lie

algebra, L, and t(L) we conjecture that an analogous result holds for a group of maximal class.

We must first address the necessary definitions and propositions to build up the machinery to

prove this conjecture.

Definition 34. The lower central series for a group, G, is

G = G1 ⊇ G2 ⊇ G3 ⊇ G4 ⊇ · · ·

where Gi = [G,Gi−1], the subgroup formed by ghg−1h−1 for g ∈ G and h ∈ Gi−1.

Definition 35. G is nilpotent if there exists some positive integer c such that Gc 6= {1} and

{1} = Gt for all t > c. Furthermore, G is said to have class c if c is the least such integer for

which Gc 6= {1} and Gc+1 = {1}.

Definition 36. A group with order pn has maximal class if its class is n− 1.

Recall, that if G is a group of order pn, where p is prime then |M(G)| divides p
1
2
n(n−1)

where M(G) is the Schur multiplier of G. We defined t(G) to be the non-negative integer which

makes the following equation true:

|M(G)| = p
1
2
n(n−1)−t(G).

Whereas nilpotent Lie algebras have been classified for t(L) ≤ 8, only the p−groups with

t(G) ≤ 3 have been determined ( [8], [21], and [5]) . Since results for groups are more limited,

we have not made a conjecture based on them. Rather, our initial prediction is that a Lie

algebra result will hold true for groups. Thus, for a maximal class group of order pn we will

derive the analogue of Theorem 32 showing that

(n− 1)(n− 2) < 2t(G) ≤ (n− 1)n.

For the remainder of this chapter we will take G to be of maximal class and of order

pn, n > 2 and p is prime unless otherwise noted. It will be of use to note that G/Z(G) is of

maximal class with |Z(G)| = p. As was the case in maximal class Lie algebras, both G and

G/Z(G) are two-generated. Now, we introduce several results, which are proved in [14].

25



Theorem 37. (Schur 1907) Let G be a group with G ∼= Zn1 × Zn2 × · · · × Znk
, where ni+1|ni

for all i ∈ 1, . . . , k − 1 and k ≥ 2, and let Z(m)
n denote the direct product of m copies of Zn.

Then

M(G) ∼= Zn2 × Z(2)
n3 × · · · × Z(k−1)

nk .

Corollary 38. If G ∼= Zp × Zp × · · · × Zp︸ ︷︷ ︸
n−times

, n ≥ 2 and p, prime then M(G) ∼= Zp × Z(2)
p × · · · ×

Z(n−1)
p . Thus, |M(G)| = p

1
2
n(n−1).

Definition 39. The Frattini subgroup of a group, G is the intersection of all maximal subgroups

of G and is denoted as Φ(G).

Definition 40. A group, G, is said to be an elementary abelian p−group if it is finite abelian

and every nontrivial element has order p.

Lemma 41. Let G be a finite p-group and let d(G) denote the minimal number of generators

of G. Then G/Φ(G) is elementary abelian of order pd where d = d(G).

Theorem 42. If |G| = pn, n > 2, and G is of maximal class then G/G2 is elementary abelian.

Proof. Since G is of maximal class, |G/G2| = p2. For any p-group, G2 ⊆ Φ(G) ( G. If G has

two distinct maximal subgroups M and N then |M ∩N | = pn−2 and

pn−2 = |G2| ≤ |Φ(G)| ≤ |M ∩N | = pn−2.

Thus, G2 = Φ(G) since G2 ⊆ Φ(G) and |G2| = |Φ(G)| and we conclude that G/G2 is elementary

abelian by Lemma 41. Now, suppose G has only one maximal subgroup, M and choose x ∈ G,

x /∈ M . This implies 〈x〉 * M . Since M is a maximal subgroup, 〈x〉 = G and G is cyclic and,

thus, abelian with G2 = {1}. Hence, |G| ≤ p2, which is a contradiction. Therefore, the result

holds.

Theorem 43. Let G be a p-group of maximal class with |G| = pn where n > 3 and p is prime.

Then

(n− 2)(n− 1) ≤ 2t(G) ≤ (n− 1)n.

Proof. From [9], we know |M(G)| ≤ |M(G/G2)| |G2|d(G/Z(G))−1 where d(G) denotes the mini-

mal number of generators of G. So,

1

2
n(n− 1)− t(G) ≤ logp|M(G/G2)|+ (d(G/Z(G))− 1) logp|G2|

= logp p+ (d(G/Z(G))− 1) logp p
n−2

= 1 + (2− 1)(n− 2) = n− 1.
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Thus,

1

2
n(n− 1)− (n− 1) ≤ t(G)

⇒ 1

2
(n− 1)(n− 2) ≤ t(G). (4.2)

By definition, t(G) ≤ 1
2n(n− 1). Together with Eq. 4.2, we have the result.

From Theorem 2.5.5 in [14],

Theorem 44. For any finite group G with central subgroup B and A = G/B,

∣∣M(G)
∣∣ ∣∣G2 ∩B

∣∣ divides
∣∣M(A)

∣∣ ∣∣M(B)
∣∣ ∣∣A/A2 ⊗B/B2

∣∣.
This theorem is used to prove the group theory analogue of Corollary 31.

Corollary 45. If |G| = pn and G is of maximal class, then t(G/Z(G)) + n− 2 ≤ t(G).

Proof. Use Theorem 44 with B = Z(G). Then,

∣∣M(G)
∣∣ ∣∣G2 ∩ Z(G)

∣∣ divides
∣∣M(G/(Z(G))

∣∣ ∣∣M(Z(G))
∣∣ ∣∣∣∣ G/Z(G)

(G/Z(G))2
⊗ Z(G)

Z(G)2

∣∣∣∣
⇒ p

1
2
n(n−1)−t(G) p divides p

1
2

(n−1)(n−2)−t(G/Z(G))
∣∣G/G2 ⊗ Z(G)

∣∣
⇒ p

1
2
n(n−1)−t(G) p divides p

1
2

(n−1)(n−2)−t(G/Z(G)) p2.

By taking logarithms and simplifying, we have t(G) ≥ n− 2 + t(G/Z(G)).

To prove the next theorem, we will need the following table, which details all groups of

maximal class for which t(G) ≤ 3 with |G| = pn.

Table 4.1: Maximal Class Groups

t(G) G n

0 Zp × Zp 2
1 E1 3
2 D8 3
3 Q8 3
3 E2 3
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In Table 4.1, D8 is the dihedral group of order 8, Q8 is the quaternion group of order 8, E1

is a p-group of order p3 with odd prime exponent p, and E2 is a p-group of order p3 with odd

prime exponent p2. The exponent of a group is defined to be the the least common multiple of

all orders of elements of the group.

Theorem 46. Let G be a p-group of maximal class with |G| = pn where n > 3 and p is prime.

Then

(n− 2)(n− 1) < 2t(G) ≤ (n− 1)n.

Proof. Let t = t(G) and suppose (n− 2)(n− 1) = 2t. Since G is of maximal class, |Z(G)| = p

and G/Z(G) is of maximal class with |(G/Z(G))| = pn−1. Hence, by Theorem 43, 1
2(n −

2)(n − 3) ≤ t(G/Z(G)) and by Corollary 45, t(G/Z(G)) ≤ t(G) − (n − 2) = 1
2(n − 2)(n − 3).

Thus, t(G/Z(G)) = 1
2(n − 2)(n − 3). We can continue this process to obtain a group H of

maximal class with |H| = p4. This implies t(H) = 3. Examining Table 4.1, we see that

no such group of maximal class exists. Thus, (n − 2)(n − 1) 6= 2t and we conclude that

(n− 2)(n− 1) < 2t(G) ≤ (n− 1)n.

Finally, we have the following corollary:

Corollary 47. For each t ∈ Z+, for which there exists a p−group of maximal class, G with

t(G) = t, the dimension of G is unique.
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Chapter 5

Other Bounds on the Dimension of

the Schur Multiplier

In Chapter 4, we obtained a boundary on the value of t(L) = 1
2n(n− 1)− dimM(L) in terms

of the dimension of L where L is a Lie algebra of maximal class. We then transfered the

result from Lie algebras to group theory. In this chapter, we consider the conditions needed

for dimM(L) > 0. This involves searching for sufficient conditions for the Schur multiplier to

be nontrivial. We also will address another bound involving the dimension of the multiplier for

nilpotent Lie algebras, which depends on the class and minimal number of generators of L.

An important definition follows.

Definition 48. The Möbius function µ is the function on N defined as

µ(n) =


1 if n = 1

(−1)k if n is the product of k distinct primes

0 if n is divisible by the square of a prime

This leads to a well-known formula. Suppose that L is generated by n elements. Let F be

a free Lie algebra generated by n elements and L ∼= F/R. Since R is an ideal in F , R is also

free. Witt’s formula from [1] gives us

dimF d/F d+1 =
1

d

∑
m|d

µ(m)nd/m ≡ ln(d) (5.1)

where µ is the Möbius function. We provide details of the formula’s derivation and a running

example in Appendix A.
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5.0.1 Nontrivial M(L)

To determine a lower bound for dimM(L), we note the classic problem of determining when the

Schur multiplier of a p-group is necessarily nontrivial. Suppose that X is a minimal generating

set for the finite p-group, G. If G has trivial multiplier and G is non-cyclic then there exists

x ∈ X such that 〈x〉 ∩ 〈X\{x}〉G2 6= 1 and |X| < 4. As a consequence, G cannot have a

generating set that consists entirely of elements of order p. This remarkable result is shown by

Johnson in [13] with a simple proof provided in [19]. See also [14]. Webb in [18] shows that

p-groups of class two have non-trivial multiplier. Recently, B. Eick showed that there are only

finitely many p−groups with trivial Schur multiplier of a given coclass if p is an odd prime.

Coclass of a group whose order is pn is defined to be n− c where c is its nilpotentcy class. She

went on to develop an algorithm to compute these finitely many p−groups using GAP ( [6]).

Note that covers and multipliers can be computed using the GAP program [7]. New results

arise when we consider the Lie algebra analogue of the group results cited above. Specifically,

we have been able to give an elementary proof of the Lie algebra version of Webb’s result.

Let L be a nilpotent Lie algebra generated by n > 1 elements. Hence, dimL/L2 = n. Let

F be a free Lie algebra generated by n elements with L ∼= F/R. Suppose that L has class c.

Hence, F c+2 ( F c+1 ⊆ R using the result in the last section. Furthermore, F/F c+2 is finite

dimensional and nilpotent of class c+ 1. Then,

n = dimL/L2 = dim
F/R

(F/R)2
= dim

F

F 2 +R
≤ dimF/F 2 = n. (5.2)

Lemma 49. If L is nilpotent and dimL = n > 1, then R ⊆ F 2 and M(L) ∼= R/[F,R].

Proof. Using Eq. 5.2, R ⊆ F 2. Together with Hopf’s formula: M(L) ∼= F 2∩R
[F,R] , we obtain the

result.

Theorem 50. If L is a finite dimensional nilpotent Lie algebra of dimension greater than 1

then M(L) 6= 0.

Proof. Suppose L is a finite dimensional nilpotent Lie algebra and dimL = n > 1. Assume,

on the contrary, that M(L) = 0. Then by Lemma 49, [F,R] = R. Since R ⊆ F 2, bracket

with F to obtain [F,R] ⊆ [F, F 2]. Thus, R ⊆ F 3 Inductively, [F,R] = R ⊆ F s for all

s > 1. But, 0 = Lc+1 ∼= (F/R)c+1 implies F c+1 ⊆ R. With R ⊆ F c+1 ⊆ R, F c+1 = R and

[F, F c+1] = [F,R]. Thus, F c+2 = R = F c+1, but dimF s/F s+1 6= 0 from Witt’s formula. With

F c+2 6= F c+1 we arrive at a contradiction. Thus, M(L) 6= 0.

In conclusion, we now have conditions for which the Schur multiplier of a Lie algebra is

nontrivial. Unlike the main results from Chapter 4, the sufficient conditions we obtained do
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not directly follow from or translate to information on nontrivial multipliers in group theory.

5.0.2 An Upper Bound for dim M(L)

It is known that if G is a nilpotent group with r generators and class c then the order of the

Schur multiplier, M(G), has an upper bound given in terms of r and c [14]. This bound is

then shown to be the best possible. We will find a similar bound in the Lie algebra case and

compare it to a known bound to determine if it is the best possible.

Begin with a free presentation of L : 0→ R→ F → L→ 0. Let N be an ideal in L and S

be an ideal in F such that (S + R)/R ∼= N . Recall that M(L) = (F 2 ∩ R)/[F,R] ( [4]). Then

M(L/N) ∼= (F 2 ∩ (S +R))/[F, S +R]. We will verify that there is a natural exact sequence

0→ R ∩ [F, S]

[F,R] ∩ [F, S]
→M(L)→M(L/N)→ N ∩ L2

[N,L]
→ 0. (5.3)

We proceed by examining the following map:

A/B
σ→ C/D

where B ⊆ A ⊆ C and B ⊆ D that is defined by σ(x+B) = x+D. We claim σ is well-defined.

A ↪→ C by inclusion. So, A → C/D is also well-defined. Since, B ⊆ D, B ⊆ kerσ and σ is

well-defined. Now, we prove Eq. 5.3 is an exact sequence.

Proof. We have L/N ∼= F/R
(S+R)/R

∼= F/(S +R). Then, from Hopf’s formula

M(L) ∼= (F 2 ∩R)/[F,R]

M(L/N) ∼=
(
F 2 ∩ (S +R)

)
/[F, S +R]

We can rewrite (N ∩ L2)/[N,L] ∼= ((S+R)/R)∩((F 2+R)/R))
[(S+R)/R,F/R]

∼= (F 2+R)∩(S+R)
[F,S]+R . Now, it suffices to

show the following sequence is exact

0→ R ∩ [F, S]

[F,R] ∩ [F, S]
→ F 2 ∩R

[F,R]
→ F 2 ∩ (S +R)

[F, S +R]
→ (F 2 +R) ∩ (S +R)

[F, S] +R
→ 0. (5.4)

Define π : (R ∩ [F, S])/([F,R] ∩ [F, S])→ (F 2 ∩R)/[F,R] by

π(x+ [F,R] ∩ [F, S]) = x+ [F,R] ∀x ∈ R ∩ [F, S]

Note that R∩ [F, S] ⊂ R∩F 2 and [F,R]∩ [F, S] ⊂ [F,R]. Now, suppose π(x+ [F,R]∩ [F, S]) =
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x + [F,R] = [F,R]. This implies x ∈ [F,R]. Thus, x ∈ [F, S] ∩ [F,R] and then the kernel of π

is [F,R] ∩ [F, S], which is the identity of (R ∩ [F, S])/([F,R] ∩ [F, S]). Thus π is injective and

well-defined.

Define σ : (F 2 ∩R)/[F,R]→
(
F 2 ∩ (S +R)

)
/[F, S +R] by

σ(y + [F,R]) = y + [F, S +R]

We have F 2 ∩ R ⊂ F 2 ∩ (S + R) and [F,R] ⊂ [F, S + R]. Then σπ(x + [F,R] ∩ [F, S]) =

σ(x+[F,R]) = x+[F, S+R] = [F, S+R] for x ∈ [F, S] ⊂ [F, S+R]. Thus, the Im(π) ⊆ Ker(σ).

Now suppose σ(y + [F,R]) ∈ [F, S +R] for y ∈ F 2 ∩R. Then y ∈ [F, S +R] and our goal is to

show that y + [F,R] ∈ Im(π). It will suffice to show y + [F,R] ∈ (R ∩ [F, S]) /[F,R]. Already

having the fact that y ∈ R, we need only show y ≡ [f, s] (mod [F,R]) for some f ∈ F, s ∈ S.

y ∈ [F, S +R]⇒ y = [f1, s1 + r] = [f1, s1] + [f1, r] for f1 ∈ F, s1 ∈ S, r ∈ R. Thus, y ≡ [f1, s1]

(mod [F,R]) and we have Ker(σ) = Im(π).

Define τ :
(
F 2 ∩ (S +R)

)
/[F, S +R]→ (F 2 +R) ∩ (S +R)

[F, S] +R
by

τ(z + [F, S +R]) = z + ([F, S] +R)

We have F 2 ∩ (S+R) ⊂ (F 2 +R)∩ (S+R) and [F, S+R] ⊂ [F, S] + [F,R] ⊂ [F, S] +R. Then,

for y ∈ F 2∩R, τσ(y+[F,R]) = y+([F, S]+R) = [F, S]+R since y ∈ R. Thus, Im(σ) ⊆ Ker(τ).

Next, suppose that for some z ∈ F 2 ∩ (S + R) we have τ(z + [F, S + R]) ∈ [F, S] + R. Thus,

z ∈ [F, S] + R as well. We need to show that z + [F, S + R] ∈ Im(σ). This occurs only if

z + [F, S + R] ∈
(
F 2 ∩R

)
/[F, S + R] and it will suffice to show that z ≡ r (mod [F, S + R]).

From above we have z = [f, s]+r for some f ∈ F, s ∈ S, r ∈ R. Thus, z−r = [f, s]⇒ z−r ≡ 0

(mod [F, S])⇒ z ≡ r (mod [F, S +R]). Therefore, Ker(τ) = Im(σ).

Lastly, we show that τ is onto. Let w + [F, S] +R ∈ (F 2+R)∩(S+R)
[F,S]+R ⇒ w = f ′ + r1 = s+ r2.

So, w ∈ (S + R). Additionally, w + [F, S] + R = f ′ + r + [F, S] + R = f ′ + [F, S] + R. Thus,

w ∈ F 2 and τ is onto.

Suppose L has class c ≥ 2. Let N = Lc and S = F c in Eq. 5.3. Then Lc ∼= (F c +R)/R and

[F, S] = F c+1 ⊆ R since Lc+1 = 0. Hence, Eq. 5.3 becomes

0→ F c+1

[F,R] ∩ F c+1

σ→M(L)→M(L/Lc)→ Lc → 0. (5.5)

Theorem 51. Let L be a nilpotent Lie algebra of class c which is generated by n elements.
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Then

dimM(L) ≤
c∑
j=1

ln(j + 1) (5.6)

where ln(d) = 1
d

∑
m|d

µ(m)nd/m.

Proof. Induct on c. Let F be free of rank n where L ∼= F/R. If c = 1, then F/R is abelian,

F 2 ⊆ R and M(L) = F 2/[F,R]. Since F 3 ⊆ [F,R], dimM(L) ≤ dimF 2/F 3 = ln(2). Now,

suppose that c > 1. By induction hypothesis, dimM(L/Lc) ≤ t :=
c−1∑
j=1

ln(j + 1). In Eq. 5.5,

let A = Im(σ). Then M(L)/A ∼= B ⊆ M(L/Lc). Hence, dimM(L)/A ≤ t. But F c+1 ⊆ R

and F c+2 ⊆ [F,R] ∩ F c+1. Thus, A is the homomorphic image of F c+1/F c+2. Therefore

dimA ≤ ln(c+ 1) by Eq. 5.1 and dimM(L) ≤ t+ ln(c+ 1) as desired.

This result is the analogue of a known boundary for M(G) which is proved to be the best

possible. We compare Eq. 5.6 to the upper bound for dimM(L) given in [12] to examine

whether it is the best possible bound. The other bound is

Theorem 52. If L is a Lie algebra of dimension n, then

dimM(L) ≤ 1

2
n(n− 1)− dimL2.

We now examine the Theorems 52 and 51 applied to different Lie algebras.

Example 53. Let F be a free Lie algebra on 2 generators and L = F/F 3. Then L is a nilpotent

Lie algebra of 2 generators and class 2. So, L ⊇ L2 ⊇ L3 = 0. Then, dimL/L2 = l2(1) = 2,

dimL2/L3 = l2(2) = 1
2 [µ(1)22 + µ(2)2] = 1

2(4 − 2) = 1. Thus, dimL = 3 and by Theorem 52,

dimM(L) ≤ 2. By Theorem 51,

dimM(L) ≤
2∑
j=1

l2(j + 1) = l2(2) + l2(3)

= 1 +
1

3
(µ(1)23 + µ(3)2)

= 1 +
1

3
(6) = 3.

Thus, using the result of Theorem 52 proves to be a better bound than the one obtained by

Theorem 51.

Example 54. Let F be a free Lie algebra of 2 generators and L = F/F 4. Then L is a nilpotent

Lie algebra of 2 generators and class 3. So, L ⊇ L2 ⊇ L3 ⊇ L4 = 0. Then, dimL/L2 = 2,
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dimL2/L3 = 1, dimL3/L4 = 1
3 [µ(1)23 + µ(3)2] = 2. Thus, dimL = 5 and by Theorem 52,

dimM(L) ≤ 7. By Theorem 51,

dimM(L) ≤
3∑
j=1

l2(j + 1) = l2(2) + l2(3) + l2(4)

= 1 + 2 +
1

4
[µ(1)24 + µ(2)22 + µ(4)2]

= 3 +
1

4
(16− 4)

= 3 + 3 = 6

Therefore, we see that in this case, Theorem 51 creates a better upper bound for dimM(L) than

the previously known result in Theorem 52.

From Examples 53 and 54, we cannot say either boundary is the best possible.
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Appendix A

The Dimensions of Lower Central

Factors of Free Lie Algebras

Recall,

Definition 55. The Möbius function µ is the function on N defined as

µ(n) =


1 if n = 1

(−1)k if n is the product of k distinct primes

0 if n is divisible by the square of a prime

Lemma 56. The Möbius function satisfies
∑
d|n

µ(d) =

{
1 if n = 1

0 if n > 1
for n ∈ N.

We will use the Möbius inversion formula which we list as:

Theorem 57. Möbius Inversion Formula

Let h and H be two functions from N into G, an additive abelian group. Then,

H(n) =
∑
d|n

h(d) ∀n ∈ N ⇐⇒ h(n) =
∑
d|n

µ
(n
d

)
H(d) =

∑
d|n

µ(d)H
(n
d

)
∀n ∈ N.

where µ is the Möbius function.

Proof. (⇒) Assume H(n) =
∑
d|n

h(d) ∀n ∈ N. Then
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∑
d|n

µ
(n
d

)
H(d) =

∑
d|n

µ(d)H
(n
d

)
=
∑
d|n

µ(d)
∑
c|n

d

h(c) by assumption

=
∑
c|n

∑
d|n

c

µ(d)h(c) =
∑
c|n

h(c)
∑
d|n

c

µ(d) =
∑
n|n

h(n) by Lemma 56

= h(n).

(⇐) Assume h(n) =
∑
d|n

µ
(n
d

)
H(d) =

∑
d|n

µ(d)H
(n
d

)
∀n ∈ N. Then,

∑
d|n

h(d) =
∑
d|n

∑
c|d

µ

(
d

c

)
H(c)


=
∑
d|n

H(d)
∑
c|n

d

µ(c) =
∑
n|n

H(n) by Lemma 56

= H(n).

Now, we wish to use the Möbius inversion formula to create a bound for M(L) where L

is a Lie algebra. We begin by counting the dimensions of the lower central factors of free Lie

algebras. We follow a familiar path to do this (see [1]). We include the details for clarity and

completeness.

Given a finite set X and a field K, we consider all words of the form xi1xi2 . . . xij , xi ∈ X.

These words have the multiplicative operation of juxtaposition. Specifically,

(xi1xi2 . . . xij )(xl1xl2 . . . xlk) = xi1xi2 . . . xijxl1xl2 . . . xlk .

Now, we define A(X) to be all K-linear combinations of these words. Thus, A(X) is a free

associative algebra that can be decomposed into an infinite direct sum of An(X), n ∈ Z≥0

where An(X) is the linear span of all words of length n.

Example 58. Suppose X = {x, y}. Then,
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A1(X) = 〈x, y〉

A2(X) = 〈xx, xy, yx, yy〉

A3(X) = 〈xxx, xxy, xyx, yxx, xyy, yxy, xyy, yyy〉
...

Note, dimA1(X) = 21, dimA2(X) = 22, and dimA3(X) = 23. In general, dimAn(X) =

|X|n where |X| = 2 in this example.

To generalize the example, if |X| = q, then dimAn(X) = qn. A generating function for

dimAn(X) = qn given any set X with order q and n ∈ Z≥0 is

1 + qt+ q2t2 + . . .+ qntn + · · · = 1

1− qt
. (A.1)

Our goal will be to develop a second generating function that also counts the dimension of

An(X), which we will then equate to Eq. A.1.

Next, we form a Lie algebra [A(X)] from A(X) by commutation: [S, T ] = ST − TS. Also,

define F (X) to be the free Lie algebra generated by X. The identity map on X gives rise

to a map ψ : X → [A(X)]. By the definition of a free Lie algebra, there exists a unique

homomorphism φ : F (X)→ [A(X)] such that the following diagram commutes:

Figure A.1: Commuting Diagram of a Free Lie Algebra

Define Fn(X) to be the span of all commutators of length n ∈ Z≥0. Then

F (X) = F0(X)⊕ F1(X)⊕ F2(X)⊕ . . . .

Example 59. If |X| = 2 as in Example 58, then
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F1(X) = spanK{x, y}

F2(X) = spanK{[x, y]}

F3(X) = spanK{[x, [x, y]], [y, [x, y]]}

F4(X) = spanK{[x, [x, [x, y]]], [x, [y, [x, y]]], [y, [y, [y, x]]]}
...

F4(X) is composed of all commutators of length four. We provide details that F4(X) is

spanned by the three elements given. In total, there are eight nonzero commutators in F4(X).

Three are listed above: [x, [x, [x, y]]], [x, [y, [x, y]]], [y, [y, [y, x]]]. The other five are linear com-

binations of these three.

[y, [x, [x, y]]] = [x, [y, [x, y]]]

[y, [y, [x, y]]] = −[y, [y, [y, x]]]

[x, [x, [y, x]]] = −[x, [x, [x, y]]]

[y, [x, [y, x]]] = −[x, [y, [x, y]]]

[x, [y, [y, x]]] = −[x, [y, [x, y]]]

Now, we ask if there is a formula to determine the dimension of Fn(X) if |X| = q. We

define lq(n) = dimFn(X). We create an order relation among the commutators formed from

X, inductively. To initialize, we arbitrarily order the elements of X : x1 < x2 < . . . < xq.

Now, suppose we have ordered all commutators wi of length less than some k, k > 1. Next,

we form certain commutators of length k using the already established order relations. Form

[wi, wj ] such that the length of wi and wj sum to k where wi > wj and if wi = [ws, wt], then

wj ≥ wt. Now choose any ordering of the commutators of length k. Once the arbitrary order

is established, we need only keep this order when determining commutators whose length is

greater than k.

Example 60. If X = {x, y} we arbitrarily order X by x < y. Then we have

w1 = x < w2 = y < w3 = [y, x] < w4 = [[y, x], x] < w5 = [[y, x], y]] <

w6 = [[[y, x], x], x] < w7 = [[[y, x], x], y] < w8 = [[[y, x], y], y] <

w9 = [[[[y, x], x], x], x] < w10 = [w6, w2] < w11 = [w7, w2] <

w12 = [w8, w2] < w13 = [w4, w3] < w14 = [w5, w3] < . . .
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w1 = x w2 = y w3 = [y, x]

xyx = w2w
2
1 − w3w1

xyy = −2w3w2 + w2
2w1 + w5

yyx = w2
2w1

xxy = w4 + w2w
2
1 − 2w3w1

yxx = w2w
2
1

yxy = −w3w2 + w2
2w1 + w5

yyy = w3
2

We claim A3(X) is the span of w5, w4, w3w1, w3w2, w
3
2, w

2
2w1, w2w

2
1, w

3
1. Note that there are

eight elements listed above. Since this is the dimension of A3(X), the elements are a basis if

they span A3(X). Indeed,

xxx = w3
1

xyx = w2w
2
1 − w3w1

xyy = −2w3w2 + w2
2w1 + w5

yyx = w2
2w1

xxy = w4 + w2w
2
1 − 2w3w1

yxx = w2w
2
1

yxy = −w3w2 + w2
2w1 + w5

yyy = w3
2

In general, it has been proved in [1] that given a finite set X and n ∈ N, An(X) has a

basis composed of those elements wi1wi2 . . . wis in [A(X)] such that di1 + di2 + . . . + dis = n

where di = degwi and i1 ≥ i2 ≥ . . . ≥ is. Now, if w1, w2, . . . , ws are all basic monomials with

dj = degwj , then we11 w
e2
2 . . . wess ∈ An(X) ⇔

∑s
i=1 eidi = n. Thus, we can now form a second

generating function for dimAn(X).

(1 + td1 + t2d1 + . . .)(1 + td2 + t2d2 + . . .)(1 + td3 + t2d3 + . . .) . . .

=

(
1

1− td1

)(
1

1− td2

)(
1

1− td3

)
. . . =

∞∏
j=1

1

1− tdj
. (A.2)

Since both equations A.1 and A.2 count the the dimension of An(X), they can be equated.

Thus,

∞∏
j=1

1

1− tdj
=

1

1− qt
. (A.3)

Now, du 6= du+1 = du+2 = du+3 = . . . = du+v 6= du+v+1 if there exist v monomials of

length m = du+1. So v = dimFm(X) = lq(m) where Fm(X) has been previously defined to

be the span of all commutators of length m. Thus, the left hand side of Eq. A.3 is equal to
∞∏
m=1

1

(1− tm)lq(m)
. If we now apply logarithms, we have

log

∞∏
m=1

1

(1− tm)lq(m)
= log

1

1− qt
(A.4)
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Using the fact that − log(1− x) =

∞∑
k=1

1

k
xk for |x| < 1, the left hand side of equation (A.4)

will become

∞∑
m=1

lq(m) log
1

1− tm
=
∞∑
m=1

lq(m)

( ∞∑
v=1

1

v
tmv

)
=

∞∑
m,v=1

lq(m)
1

v
tmv

and the right hand side will become

∞∑
n=1

1

n
(qt)n. Thus,

∞∑
n=1

1

n
(qt)n =

∞∑
m,v=1

lq(m)
1

v
tmv

⇒ 1

n
qn =

∑
m,v∈N
mv=n

1

v
lq(m) by equating powers of t

⇒ qn =
∑
m,v∈N
mv=n

mlq(m) =
∑
m∈N
m|n

mlq(m) ∀n ∈ N

Applying the Möbius inversion formula with H(n) = qn and h(n) = nlq(n), we now have

nlq(n) =
∑
m|n

µ
( n
m

)
qm =

∑
m|n

µ(m)qn/m

⇒ lq(n) =
1

n

∑
m|n

µ(m)qn/m.

In conclusion,

Theorem 61. Let F be a free Lie algebra of rank q with generating set X, where X contains q

elements and Fn(X) is the linear span of products of elements from X of length n. Then Fn(X)

is a grading for F and dimFn(X) = 1
n

∑
m|n

µ(m)qn/m where µ is the Möbius function.
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Example 62. Suppose, again, X = {x, y}. Then q = |X| = 2 and according to Theorem 61,

dimF1(X) = µ(1)2 = 2

dimF2(X) =
1

2
(µ(1)22 + µ(2)2) =

1

2
(4− 2) = 1

dimF3(X) =
1

3
(µ(1)23 + µ(3)2) =

1

3
(8− 2) = 2

dimF4(X) =
1

4
(µ(1)24 + µ(2)22 + µ(4)2) =

1

4
(16− 4) = 3

dimF5(X) =
1

5
(µ(1)25 + µ(5)2) =

1

5
(32− 2) = 6

From explicit computations in Example 59, we see these to be the correct dimensions of Fi(X)

for i = 1, 2, 3, 4.
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