
ABSTRACT

BANCROFT, ERIC DANIEL. Products of Triangular Idempotents and Units. (Under the
direction of Mohan Putcha.)

We explore when elements of a monoid can be written as a product of units and idempotents.

Specifically, we are interested in whether or not triangular elements can be decomposed in this

manner. We first look at decompositions of nilpotent and partial permutation matrices in

Tn(k) = {n × n upper triangular matrices over the field k} into a product of idempotents in

Tn(k). It follows that every element of Tn(k) can be expressed as a product of idempotents and

a unit in Tn(k). We then find necessary and sufficient conditions for a matrix in Tn(k) to be

decomposed into product of idempotents. The proof of this theorem gives us an algorithm for

performing such a decomposition when it exists.

An implementation of this algorithm in Maple is given, along with a bound on the number

of idempotents needed in the implementation.

Finally, we look at triangular elements of a ring with respect to orthogonal idempotents and

necessary and sufficient conditions for them to be written as a product of units and idempotents.

© Copyright 2011 by Eric Daniel Bancroft

All Rights Reserved

Products of Triangular Idempotents and Units

by
Eric Daniel Bancroft

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2011

APPROVED BY:

Nathan Reading Ernest Stitzinger

Kailash Misra Mohan Putcha
Chair of Advisory Committee

DEDICATION

To my wife, Erin.

ii

BIOGRAPHY

Eric Daniel Bancroft was born in Massachusetts in the early 1980’s to Daniel and Cheryl

Bancroft and grew up in central Florida. He was home-schooled from second grade until he

graduated from high school. After high school Eric attended Seminole Community College,

where he initially pursued an interest in automotive service. After a year and a half, he

realized that working on cars was not the best career choice for him and turned his attention to

mathematics. Eric finished his associate’s degree at SCC and then transferred to the University

of Central Florida to complete his bachelor’s degree in mathematics. In 2005, Eric moved to

Raleigh for graduate school in mathematics at North Carolina State University. He received

his master’s degree in 2007 and completed his Ph.D. in 2011. Along the way he met the love

of his life, and married her in 2008. After completing their Ph.D.’s, Eric and his wife will be

moving to northwest Pennsylvania to start a family and pursue careers in academia.

iii

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Mohan Putcha, for the privilege of studying under

him over the last six years. Without his patient help and guidance I would not have been able

to complete this undertaking.

I would like to thank my wife for her love and support, and for believing in me even when

I did not.

I would like to thank my parents for investing so much of their lives in my education

(particularly the eleven years that they home-schooled me), and for encouraging me to go to

college. I would also like to thank Dean, Seth, David, Rachel, Caleb, and Sarah for patiently

enduring much of the twenty-five years of my formal education.

I would like to thank Dr. Bruce Glastad for introducing me to the overwhelming beauty

of mathematics, for all of the time he spent mentoring and tutoring me throughout my under-

graduate years, for inspiring me to go on to graduate school, and, most importantly, for his

friendship.

Above all, I thank God for His blessings and faithfulness to me. To God alone be the glory.

iv

TABLE OF CONTENTS

Chapter 1 Motivation and Background . 1
1.1 Semigroups . 1

1.1.1 Connections to Geometry . 3
1.2 Question . 5
1.3 The Renner Decomposition . 5
1.4 Notation . 7

Chapter 2 Nilpotent and Partial Permutation Matrices 14
2.1 Nilpotent Matrices in Tn(k) . 14
2.2 Partial Permutation Matrices in Tn(k) . 19

Chapter 3 General Theorem for Tn(k) . 23
3.1 Theorem and Proof . 23
3.2 Examples . 36

Chapter 4 The Algorithm in Maple . 44
4.1 Introduction . 44
4.2 WindowSum . 44
4.3 IsIdempotent . 48
4.4 ZeroIdentitySize . 50
4.5 FitsTheorem . 54
4.6 MakeIdempotents . 58
4.7 Bounding the Algorithm . 68

Chapter 5 Rings . 74
5.1 Definitions . 74
5.2 Results for Rings . 74

Chapter 6 Future Directions . 85

References . 87

v

Chapter 1

Motivation and Background

1.1 Semigroups

Definition 1.1.1. A semigroup is a non-empty set S with an associative binary operation [2].

Definition 1.1.2. e ∈ S is called an idempotent if e2 = e. We denote the set of idempotents

of S by E(S).

Definition 1.1.3. A semigroup M is a monoid if there is an identity element 1 ∈M .

Definition 1.1.4. Given a semigroup S, a subset T ⊆ S which is also a semigroup is called a

subsemigroup. If T ⊆ S is also a group then it is called a subgroup.

Definition 1.1.5. An invertible element of a monoid M is called a unit. The group of units of

M is denoted by G.

Theorem 1.1.6. If e is an idempotent and b is a unit in M , then e ′ = beb−1 is also an

idempotent:

(e ′)2 = beb−1beb−1 = beeb−1 = beb−1 = e ′

Corollary 1.1.7. Suppose e1, e2, . . . , en are idempotents and b is a unit in M . Let fi =

1

beib
−1, gi = b−1eib. Then fi and gi are idempotents and

e1 . . . ekbek+1 . . . en = bg1 . . . gkek+1 . . . en

and

e1 . . . ekbek+1 . . . en = e1 . . . ekfk+1 . . . fnb
−1

If 1 /∈ S, then we can simply add an identity element to form a monoid:

S1 = {1} ∪ S.

Example 1.1.8. Some natural examples of semigroups are:

1. The semigroup Tn of all maps from {1, . . . , n} to itself.

2. The multiplicative semigroup Mn(k) of all n× n matrices over a field F.

3. If k is an algebraically closed field and G ⊆ Gln(k) is a reductive group, then the Zariski

closure M = G of G in Mn(k) is called a reductive monoid.

Definition 1.1.9. S is said to be strongly π-regular (written sπr) if for each a ∈ S, there exists

a positive integer i such that ai lies in a subgroup of S.

Definition 1.1.10. An element s ∈ S is said to be regular if there exists x ∈ S such that

a = axa and x = xax. S is called a regular semigroup if every element of S is regular.

All of the semigroups in Example 1.1.8 are regular semigroups.

Definition 1.1.11. For a, b ∈ S, a|b (a divides b) if b = xay for some x, y ∈ S1.

We now turn our attention to inverse semigroups.

Definition 1.1.12. S is said to be an inverse semigroup if for all a ∈ S there exists a unique

a−1 ∈ S such that a−1aa−1 = a−1 and aa−1a = a.

2

From [2] we have the following theorem:

Theorem 1.1.13. The following are three conditions on a semigroup S are equvialent:

1. S is an inverse semigroup.

2. S is regular, and any two idempotents elements of S commute with each other.

3. Every principal right ideal and every principal left ideal of S has a unique idempotent

generator.

Definition 1.1.14. Let JX denote the set of all one-to-one partial transformations on a set

X. JX is an inverse semigroup, called the symmetric inverse semigroup (see [2], [15]).

Example 1.1.15. Within Mn(k), the rook monoid R consisting of all partial permutation

matrices is the symmetric inverse semigroup.

Suppose a monoid M with unit group G is generated by G and E(M). Then M =

G〈E(M)〉 = 〈E(M)〉G (by Corollary 1.1.7) and G acts on E(M) as ga = gag−1, where

g ∈ G, a ∈ 〈E(M)〉. Hence E(M)×G becomes a semidirect product of E(M) and G:

(a, g)(a′, g′) = (aga′, gg′)

and M is a homomorphic image of this semidirect product via the map (a, g)→ ag.

1.1.1 Connections to Geometry

Definition 1.1.16. G is an algebraic group if

1. G is a group,

2. G is an affine variety,

3. and the two maps µ : G×G→ G and ι : G→ G, given by µ(x, y) = xy and ι(x) = x−1,

are morphisms of varieties.

3

The unique irreducible component of G containing 1 is denoted by Gc. G is connected if Gc = G

Definition 1.1.17. Let G be a connected group. a ∈ G is unipotent if the only eigenvalue of

a is 1. G is unipotent if every element of G unipotent.

Definition 1.1.18. Let G be a connected group. G is reductive if it has no non-trivial normal

unipotent subgroups.

The idempotents of a semigroup often represent a connection to geometry. For a maximal

torus T of G, E(T) is isomorphic to the face lattice of a polytope (see [12]), with partial order

e ≤ f when e = ef = fe for e, f ∈ E(T). For a reductive monoid M , E(M) is closely related

to the Tits building of G by [14].

Definition 1.1.19. Let S be a semigroup such that S =
⊔
α∈Ω Sα with Sα’s being subsemi-

groups of S and for all α, β ∈ Ω, SαSβ ∪ SβSα ⊆ Sγ for some γ ∈ Ω. Then S has the structure

of a semilattice [union] of semigroups Sα (α ∈ Ω).

Example 1.1.20. T (the closure of a torus) is a semilattice of eiT ’s, where ei ∈ E(T).

Definition 1.1.21. Let S be a semigroup. a ∈ S is said to be completely regular if a lies

in some subgroup of S. S is completely regular if every element of S is completely regular.

Equivalently, S is completely regular if it is a union of its subgroups.

Definition 1.1.22. A completely simple semigroup S is a sπr-semigroup with no ideals other

than S.

Theorem 1.1.23. A semigroup S is completely regular if and only if it is a semilattice of

completely simple semigroups. (This concept is due to Clifford in [1].)

Definition 1.1.24. A semigroup S is said to be archimedean if a|bi for some positive integer

i and all a, b ∈ S.

Tamura and Kimura in [20] show that any commutative semigroup is a semilattice of

archimedean semigroups Sα, α ∈ Ω.

General semilattices of archimedean semigroups were characterized by Putcha in [12]:

4

Theorem 1.1.25. A semigroup S is a semilattice of archimedean semigroups if and only if for

all a, b ∈ Sα there exists a positive integer i such that

a|b =⇒ a2|bi.

It is shown in [13] that for a connected solvable subgroup B ⊆ GLn(k) the closure B in

Mn(k) is a semilattice of archimedean semigroups. In particular, the monoid Tn(k) of all upper

triangular matrices over a field k is a semilattice of achimedean semigroups.

1.2 Question

How do we study idempotents? One way to study idempotents is to study the semigroup

〈E(S)〉 generated by E(S). In [5], we see that the singular matrices of Mn(k) are the product

of idempotents. An analogous result was proved by J. Howie in [6]. The semigroup generated

by idempotents is a reductive monoid and is studied in [18].

However, singular matrices in Tn(k) are not necessarily products of idempotents in Tn(k).

So a natural question is whether Tn(k) is generated by idempotent matrices and units in Tn(k).

For Tn(Fq), where Fq is a finite field, this was shown by Putcha in [17]. This is proved in

the more general context of triangular monoids within a finite reductive monoid using monoid

Hecke algebras, not available in the infinite case. Our first question then is whether or not we

can extend these results to an infinite field.

1.3 The Renner Decomposition

L.E. Renner in [19] develops a decomposition for reductive monoids which is analogous to the

Bruhat decomposition for reductive groups. Renner’s decomposition is an important tool for

studying 〈E(S)〉.

Given a reductive group G, a maximal torus T ⊆ G, a Borel subgroup B ⊆ G (i.e., a

5

maximal, connected, solvable subgroup) such that T ⊆ B, and Weyl group W = NG(T)/T ,

then the Bruhat decomposition of G is

G =
⊔
w∈W

BwB

Example 1.3.1. In Gln(k), the Bruhat decomposition says that given G = Gln(k), the Borel

subgroup B of upper triangular invertible matrices, and the Weyl group W of permutation

matrices, then

G =
⊔
w∈W

BwB

So, we can express any element of G as the product of an upper triangular unit, a permutation

matrix, and an upper triangular unit.

Within a reductive monoid, M = G, the Renner monoid R = NG(T)/T is an inverse monoid.

Renner’s decomposition extents to the Bruhat decomposition of G to M as

M =
⊔
σ∈R

BσB

Example 1.3.2. In Mn(k), Renner’s decomposition allows us to take M = Mn(k), R =

{partial perumation matrices}, the Borel subgroup B of upper triangular invertible matrices,

and then decompose M as

M =
⊔
r∈R

BrB

This allows us to express elements of M as the product of an upper triangular unit, a partial

permutation matrix, and an upper triangular unit.

Example 1.3.3. If we restrict to upper triangular matrices, Renner’s decomposition says that

given B = Tn(k) and R+ = {upper triangular partial perumation matrices}, then

B =
⊔
r∈R+

BrB

6

So, every upper triangular matrix can be written as the product of a unit, a partial permutation

matrix, and a unit in Tn(k).

We will later use this to show that every upper triangular matrix can be written as the

product of a unit and idempotents in Tn(k).

1.4 Notation

Trying to express how the nilpotent matrices could be written as a product of idempotents in

general was rather tedious, and similar issues came up when looking at the partial permutation

matrices. Putcha suggested a new notation to simplify the process. We need the following

definition before we can define the notation:

Definition 1.4.1. Let [n] = {1, 2, . . . , n}. Then define an equivalence relation ∼ with equiva-

lence classes

X1 = {i11 < · · · < i1n1
}, X2 = {i21 < · · · < i2n2

}, . . . , Xt = {it1 < · · · < itnt
},

where
⊔t
j=1Xj = [n] (disjoint union), so Xk

⋂
Xl = ∅ for k 6= l, and n1 + n2 + · · ·+ nt = n.

Note: For an element irp, the upper index r indicates the equivalence class, and the lower

index p indicates the index within the equivalence class. When using this notation to index the

elements of a matrix A, we will denote the entry (A)irp,irq by airp,q .

Example 1.4.2. For example, the n1 × n1 matrix indexed by X1 would be denoted as

AX1 =


ai11,1 ai11,2 . . . ai11,n1

ai12,1 ai12,2 . . . ai12,n1
...

. . .
...

ai1n1,1
ai1n1,2

. . . ai1n1,n1



7

Definition 1.4.3 (The “window sum”). Let AX1 , AX2 , . . . , AXt be n1×n1, n2×n2, . . . , nt×nt

matrices, respectively, whose entries are indexed by elements of X1, X2, . . . , Xt. Then we can

define

A = (AX1 �AX2 � . . .�AXt)∼,

where

(A)kl =

{
(AXr)kl, if k = irp, l = irq, 1 ≤ r ≤ t
0, if k = irp, l = isq, r 6= s

or

(A)irp,isq =

{
(AXr)pq, if r = s

0, if r 6= s

Example 1.4.4. Let

AX1 =


1 0 1

0 2 3

3 1 0


{1,2,4}

and

AX2 =

[
1 2

0 1

]
{3,5}

Find:

A = AX1 �AX2 .

First we fill in the entries from the first matrix...

=



1 0 1

0 2 3

3 1 0



8

..then we fill in the entries from the second matrix...

=



1 0 1

0 2 3

1 2

3 1 0

0 1


...and finally we fill in the rest of the matrix with zeros:

=



1 0 0 1 0

0 2 0 3 0

0 0 1 0 2

3 1 0 0 0

0 0 0 0 1


Theorem 1.4.5. If AX1 , AX2 , . . . , AXt are upper-triangular (so airp,q = 0 if p > q), then so is

A = (AX1 �AX2 � . . .�AXt)∼ .

Proof. Let (A)kl = akl be such that k > l. We want to show that akl = 0: If k = irp, l = isq,

where r 6= s, then akl = 0 by definition. If k = irp, l = irq, then k > l ⇒ irp > irq ⇒ p > q ⇒

airp,q = akl = 0. Thus, A is upper-triangular. Q.E.D.

Example 1.4.6. �-ing the upper triangular matrices


1 0 3 4

0 1 0 2

0 0 0 1

0 0 0 1


{1,2,4,6}

and

[
1 1

0 1

]
{3,5}

9

yields the upper triangular matrix


1 0 3 4

0 1 0 2

0 0 0 1

0 0 0 1


{1,2,4,6}

�

[
1 1

0 1

]
{3,5}

=



1 3 4

0 1 2

1 1

0 1

0 1

0 1


=



1 0 0 3 0 4

0 1 0 0 0 2

0 0 1 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1


Theorem 1.4.7. Let A = (AX1 �AX2 � . . .�AXt)∼ and B = (BX1 �BX2 � . . .�BXt)∼.

Then

AB = (AX1BX1 �AX2BX2 � . . .�AXtBXt)∼ .

Proof. The klth entry of the left-hand side of the equation is going to be the dot product of the

kth row of A with the lth column of B, i.e.,

(
ak1 ak2 . . . akn

)


b1l

b2l
...

bnl

 ,

where k = irp, l = isq for some r, s, and aku = 0 if u /∈ Xr, bvl = 0 if v /∈ Xs (by definition of ()∼

above). So then

(
ak1 ak2 . . . akn

)


bl1

b2l
...

bnl

 =

n∑
j=1

akjbjl = 0

unless {k, j, l} ⊆ Xr for some r (i.e., r = s), in which case we would have

n∑
j=1

akjbjl =

nr∑
j=1

airp,jbirj,q

=

nr∑
j=1

akirj birj l

 .

The klth entry of the right-hand side is going to be 0 if k = irp, l = irq, r 6= s (again from

10

the definition of ()∼). If r = s, the it comes from the klth = irp,q
th entry of AXrBXr , which is

the kth row of AXr dotted with the lth column of BXr , i.e.,

(
airk,1 airk,2 . . . airk,nr

)


bir1,l
bir2,l

...

birnr,l

 =

nr∑
j=1

airk,jbi
r
j,l

But this is precisely what we had on the left-hand side.

Therefore

AB = (AX1BX1 �AX2BX2 � . . .�AXtBXt)∼ .

Q.E.D.

Remark 1.4.8. In the preceding theorem, the equivalence classes X1, X2, . . . , Xt are the same

in both A and B. If this is not the case, then we cannot use this theorem to compute AB.

Example 1.4.9. Consider the two 5× 5 matrices



3 0 −1 0 3

0 1 0 −2 0

2 0 1 0 0

0 −3 0 0 0

0 0 −2 0 −1


=


3 −1 3

2 1 0

0 −2 −1


{1,3,5}

�

[
1 −2

−3 0

]
{2,4}

and 

−2 0 0 0 0

0 1 0 −1 0

−2 0 0 0 −1

0 2 0 1 0

1 0 3 0 −2


=


−2 0 0

−2 0 −1

1 3 −2


{1,3,5}

�

[
1 −1

2 1

]
{2,4}

11

If we multiply in the usual way, we get:



−1 0 9 0 −5

0 −3 0 −3 0

−6 0 0 0 −1

0 −3 0 3 0

3 0 −3 0 4


If we multiply before �-ing, then we get:


−1 9 −5

−6 0 −1

3 −3 4


{1,3,5}

�

[
−3 −3

−3 3

]
{2,4}

=



−1 0 9 0 −5

0 −3 0 −3 0

−6 0 0 0 −1

0 −3 0 3 0

3 0 −3 0 4


Corollary 1.4.10. If AX1 , AX2 , . . . , AXt are idempotent, then (AX1 �AX2 � . . .�AXt)∼ is

also idempotent.

Proof.

(AX1 �AX2 � . . .�AXt)
2
∼ = (AX1 �AX2 � . . .�AXt)∼ (AX1 �AX2 � . . .�AXt)∼

=
(
A2
X1
�A2

X2
� . . .�A2

Xt

)
∼ (by the previous theorem)

= (AX1 �AX2 � . . .�AXt)∼

Q.E.D.

When the dimension of the matrices with which we are working is clear from the context,

we may omit any identity matrices from the �-sum in order to simplify the notation:

AX1 � . . .�AXi � IXi+1 = AX1 � . . .�AXi

We may also write the equivalence classes underneath the matrices to make the notation more

12

compact.

Example 1.4.11. [
1 −2

−3 4

]
{4,9}

� I[9]\{4,9} =

[
1 −2

−3 4

]
{4,9}

13

Chapter 2

Nilpotent and Partial Permutation

Matrices

2.1 Nilpotent Matrices in Tn(k)

Having developed some background and notation, we now turn to the problem of decomposing

a nilpotent upper triangular matrix into a product of upper triangular idempotent matrices.

We begin with two examples:

Example 2.1.1. The matrix


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 can be written as a product of idempotents in

T4(R) as follows:

14


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 =


1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0




1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 1




1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=


1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0




1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 1




1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


This example begins to develop the method which we will use in general to compose an

upper triangular nilpotent matrix into a product of idempotents. Reading the product from

right to left and viewing each multiplication as acting on the rows of the first matrix, we begin

with the idempotent matrix 
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


and multiply it on the left by the idempotent matrix which moves the second row in the original

matrix up into the first row (leaving zeros in the second row):


1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 =


0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1


The next multiplication moves the original third row to the second row and leaves zeros in

the third row: 
1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 1




0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 =


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1



15

The final multiplication moves the original fourth row to the third row, leaving zeros in the

fourth row and giving us the desired matrix:


1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0




0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


Example 2.1.2. The nilpotent matrix

A =



0 3 2 −5 8

0 0 −1 2 6

0 0 0 7 8

0 0 0 0 4

0 0 0 0 0


can be written as the following product of idempotents in T5(R):



1 0 0 0 8

0 1 0 0 6

0 0 1 0 8

0 0 0 1 4

0 0 0 0 0


·



1 0 0 −5 0

0 1 0 2 0

0 0 1 7 0

0 0 0 0 0

0 0 0 0 1


·



1 0 2 0 0

0 1 −1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


·



1 3 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


·



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


or, using the � notation, as:



1 0 0 0 8

0 1 0 0 6

0 0 1 0 8

0 0 0 1 4

0 0 0 0 0


[5]

·


1 0 0 −5

0 1 0 2

0 0 1 7

0 0 0 0


[4]

·


1 0 2

0 1 −1

0 0 0


[3]

·

[
1 3

0 0

]
[2]

·
[
0
]

[1]

This example illustrates the general procedure for decomposing a nilpotent matrix into a prod-

uct of idempotents. We begin with the matrix obtained by taking an identity matrix and

16

changing the (1, 1) entry to 0 (so the first column of this matrix is the first column of A). To

form the second column of A, we multiply on the left by the matrix which adds 3 times the

second row to the first row (since the only non-zero element in the second row was the 1 in the

(2, 2) position, only the second column is changed by this action) and multiplies the second row

by zero: 

1 3 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


·



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


=



0 3 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


We then multiply the result by the matrix which adds 2 times the third row and −1 times the

third row to the first and second rows, respectively, and then multiplies the third row by zero.

Because the only non-zero element of the third row was the 1 in the (2, 2) position, this creates

the second column of A without changing any other column:



1 0 2 0 0

0 1 −1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


·



0 3 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


=



0 3 2 0 0

0 0 −1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


The fourth and fifth rows are created in a similar manner:



1 0 0 −5 0

0 1 0 2 0

0 0 1 7 0

0 0 0 0 0

0 0 0 0 1


·



0 3 2 0 0

0 0 −1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


=



0 3 2 −5 0

0 0 −1 2 0

0 0 0 7 0

0 0 0 0 0

0 0 0 0 1



17



1 0 0 0 8

0 1 0 0 6

0 0 1 0 8

0 0 0 1 4

0 0 0 0 0


·



0 3 2 −5 0

0 0 −1 2 0

0 0 0 7 0

0 0 0 0 0

0 0 0 0 1


=



0 3 2 −5 8

0 0 −1 2 6

0 0 0 7 8

0 0 0 0 4

0 0 0 0 0


The method we used in the preceding example is generalized in the proof of the following

theorem:

Theorem 2.1.3. Every nilpotent matrix N ∈ Tn(k) can be written as a product of upper

triangular idempotents.

Proof. We start with the idempotent n × n matrix with 1’s on diagonals two through n and

zeros elsewhere: 
0 0 . . . 0

0 1
...

...
. . . 0

0 . . . 0 1

 =
[
0
]

[1]

We then multiply on the left by the idempotent matrix



1 a12 0 . . . 0

0 0 0
...

... 1

0
. . . 0

0 . . . 0 1


=

[
1 a12

0 0

]
[2]

18

to create the second column. Next we multiply by the idempotent matrix



1 0 a13 0 . . . 0

0 1 a23 0
...

0 0 0 0

0 0 0 1
...

. . . 0

0 . . . 0 1


=


1 0 a13

0 1 a23

0 0 0


[3]

to create the third column. We continue in this manner to create the remaining columns and

complete our matrix. This yields the following decomposition into a product of upper triangular

idempotents:


0 a1,2 . . . a1,n

...
. . .

. . .
...

0 an−1,n

0 . . . 0 0

 =


n−2∏
j=0



1 0 . . . 0 a1,n−j

0 1
. . .

...
...

. . . 0

1 an−j−1,n−j

0 . . . 0 0


[n−j]


·
[
0
]

[1]

Q.E.D.

2.2 Partial Permutation Matrices in Tn(k)

Definition 2.2.1. A partial permutation matrix is a permutation matrix with some of the

non-zero entries changed to zero.

Corollary 2.2.2. Every partial permutation matrix in Tn(k) can be written as a product of

upper triangular idempotents.

Proof. Given a partial permutation matrix P ∈ Tn(k) we can decompose P into its nilpotent

and fixed parts, writing it as N1 � . . . � Nm � I where each Ni ∈ Tn(k) is nilpotent and I is

19

an identity matrix. By Theorem 2.1.3, each Ni can be written as a product of idempotents in

Tn(k), and thus P can be expressed as a product of upper triangular idempotents. Q.E.D.

Example 2.2.3. Consider the partial permutation matrix:



0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0


Using the �-notation, we can write this matrix as

[
0 1

0 0

]
{1,3}

�


0 1 0

0 0 1

0 0 0


{2,5,6}

� I{4}

where the first two matrices are nilpotent. Using Theorem 2.1.3 we can now write:

[
0 1

0 0

]
{1,3}

�


0 1 0

0 0 1

0 0 0


{2,5,6}

� I{4} =

([
1 1

0 0

][
0 0

0 1

])
{1,3}

�




1 0 0

0 1 1

0 0 0




1 1 0

0 0 0

0 0 1




0 0 0

0 1 0

0 0 1



{2,5,6}

� I{4} (1)

where the matrices on the right hand side are all idempotent.

To split this into a product of idempotent matrices, we must have the same number of

matrices corresponding to each equivalence class. Since the second term in the �-sum has the

greatest number of matrices (three), we need to write the other two terms as a product of three

matrices. This can be accomplished in a number of ways. One way is to multiply by identity

20

matrices as needed:

([
1 1

0 0

]
·

[
0 0

0 1

])
{1,3}

=

([
1 1

0 0

]
·

[
0 0

0 1

]
· I

)
{1,3}

(the identity matrix may go in front or in-between as well) and

I{4} = (I · I · I){4}

We may also obtain the other matrices needed by inserting additional copies of any idempotent

matrices. In this example, we can write

([
1 1

0 0

]
·

[
0 0

0 1

]
·

)
{1,3}

=

[1 1

0 0

]2

·

[
0 0

0 1

]
{1,3}

or ([
1 1

0 0

]
·

[
0 0

0 1

]
·

)
{1,3}

=

[1 1

0 0

]
·

[
0 0

0 1

]2

{1,3}

So, one of several possible ways to write (1) would be

([
1 1

0 0

][
0 0

0 1

][
0 0

0 1

])
{1,3}

�




1 0 0

0 1 1

0 0 0




1 1 0

0 0 0

0 0 1




0 0 0

0 1 0

0 0 1



{2,5,6}

� (I · I · I){4}

21

Using Theorem 1.4.7 we then write as three separate idempotent matrices:


[

1 1

0 0

]
{1,3}

�


1 0 0

0 1 1

0 0 0


{2,5,6}

� I
{4}

 ·

[

0 0

0 1

]
{1,3}

�


1 1 0

0 0 0

0 0 1


{2,5,6}

� I
{4}

 ·

[

0 0

0 1

]
{1,3}

�


0 0 0

0 1 0

0 0 1


{2,5,6}

� I
{4}



=



1 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

0 0 0 0 0 0


·



0 0 0 0 0 0

0 1 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1


·



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Corollary 2.2.4. Every matrix in Tn(k) can be written as a product of upper triangular idem-

potents and a unit.

Proof. Given A ∈ Tn(k), by Renner’s decomposition we can write A as a product of units

and partial permutation matrices in Tn(k). By Corollary 2.2.2, all of the partial permutation

matrices can be written as a product of idempotents in Tn(k). Thus we can write A as the

product of units and idempotents. Finally, we use Corollary 1.1.7 to move the units to one side

of the product and multiply them together to obtain a single unit. Q.E.D.

22

Chapter 3

General Theorem for Tn(k)

3.1 Theorem and Proof

Theorem 3.1.1. A ∈ Tn(k) can be written as a product of idempotents if and only if it is of

the form: 

0
. . .

0︸ ︷︷ ︸
n1

∗ · · · ∗

In2×n2

0
. . .

0︸ ︷︷ ︸
n3

∗
...

In4×n4

. . .

. . . ∗
0 Inm−1×nm−1

nm︷ ︸︸ ︷
0

. . .

0


n×n

23

i.e., If we have consecutive 1’s on the diagonal, then they must be part of an identity matrix

block; other elements above the diagonal can be whatever we like.

Lemma 3.1.2. All idempotents in Tn(k) fit the form of the theorem.

Proof. (By contradiction.) Suppose there exists an idempotent that does not fit the form of

the theorem. This can happen in one of two ways:

1. The matrix has an element other than 0 or 1 on the diagonal, i.e.,

A =


∗ ∗ ∗

0 a ∗

0 0 ∗


Then

A2 =


∗ ∗ ∗

0 a2 ∗

0 0 ∗

 6= A

which is a contradiction. Thus, A must have only 0 or 1 on the diagonal.

2. There are consecutive 1’s on the diagonal that are not part of an identity block, i.e.,

A =


∗ ∗ ∗

0 B ∗

0 0 ∗



24

where B = I + U and U 6= 0 is strictly upper triangular. Then

A2 =


∗ ∗ ∗

0 B2 ∗

0 0 ∗


so if B were idempotent then B2 = B ⇒ (I + U)2 = I + U ⇒ I2 + 2U + U2 = I + U ⇒

U + U2 = 0 ⇒ U(U + I) = 0 ⇒ U = 0 or I, which is a contradiction since U is non-zero

and strictly upper triangular. Thus any consecutive 1s on the diagonal must be part of

an identity block.

Thus all idempotents in Tn(k) must fit the form of the theorem. Q.E.D.

Lemma 3.1.3. The set of matrices that fit the form of the theorem is closed under matrix

multiplication.

Proof. Let A,B be arbitrary matrices of this form, and suppose we multiply them together

in the order AB. We view both as block matrices, partitioning into blocks in such a way

that the diagonal blocks of A are either 1× 1 0-matrices or identity matrices containing adja-

cent/consecutive 1’s, and made as large as possible. B is then partitioned into blocks based on

the divisions of A, so that the block containing bij has the same dimensions and position as the

block containing aij . Once we have partitioned B into blocks, the blocks on the diagonal of B

25

will also satisfy the terms of the conjecture. Now when we multiply the two together, we get

AB =



0 ∗ ∗ ∗ ∗
0 I ∗ ∗ ∗
0 0 0 ∗ ∗

0 0 0
. . . ∗

0 0 0 0 I





B11 ∗ ∗ ∗ ∗
0 B22 ∗ ∗ ∗
0 0 B33 ∗ ∗

0 0 0
. . . ∗

0 0 0 0 Bnn



=



0 ∗ ∗ ∗ ∗
0 B22 ∗ ∗ ∗
0 0 0 ∗ ∗

0 0 0
. . . ∗

0 0 0 0 Bnn


So, on the diagonal we either have 0’s or block matrices that fit the form of the theorem. Thus,

AB fits the form, so the set is closed under multiplication. Q.E.D.

Example 3.1.4. Let

A =



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 5 4

0 0 0 0 0 0 4 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 1



26

and

B =



0 1 2 3 4 5 6 7

0 0 8 9 0 1 2 3

0 0 1 0 4 5 6 7

0 0 0 1 8 9 0 1

0 0 0 0 0 2 3 4

0 0 0 0 0 0 5 6

0 0 0 0 0 0 1 7

0 0 0 0 0 0 0 0


.

Note that both of these matrices fit the form of the theorem. We divide both into blocks as

described above:

A =



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 5 4

0 0 0 0 0 0 4 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 1



B =



0 1 2 3 4 5 6 7

0 0 8 9 0 1 2 3

0 0 1 0 4 5 6 7

0 0 0 1 8 9 0 1

0 0 0 0 0 2 3 4

0 0 0 0 0 0 5 6

0 0 0 0 0 0 1 7

0 0 0 0 0 0 0 0



27

Multiplying together we get

AB =



0 1 4 6 36 54 90 165

0 0 11 13 44 66 49 112

0 0 0 5 40 61 36 92

0 0 0 1 8 9 16 55

0 0 0 0 0 2 23 57

0 0 0 0 0 0 4 28

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


which also fits the form of the theorem.

Before proving the theorem, we introduce the following notation:

Definition 3.1.5. We use an arrow to denote a product written out right to left:

n

⇐
∏
i=1

ai = an · an−1 · . . . · a2 · a1

Definition 3.1.6. For an integer m ≥ 1 we define

σ(m) =

m∑
i=1

ni

Proof of Theorem 3.1.1. If: This follows from Lemmas 3.1.2 and 3.1.3.

Only if: We show that a matrix that fits the form of the conjecture can be written as a product

of idempotents in by using the following construction. All multiplication is left multiplication.

1. If the matrix starts with an identity block (n1 = 0), then proceed to the next step.

If there are zeros on the diagonal (n1 > 0), then we start with the idempotent matrix

28

formed by an identity matrix whose first row has been replaced with the first row of A:



0 a1,2 a1,3 · · · a1,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]

To obtain the second row of A, we then multiply on the left by the idempotent matrix

formed by taking an identity matrix and replacing its second row with the second row of

A: 

0 a2,3 a2,4 · · · a2,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[1]

·



0 a1,2 a1,3 · · · a1,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]

This left-multiplication leaves the all but the second row of the first matrix fixed. In the

second row, we have

a2,3 · [0 0 1 0 . . . 0] + a2,4 · [0 0 0 1 0 . . . 0] + . . .+ a2,n · [0 . . . 0 1] =

= [the second row of A]

29

Thus we now have a matrix whose first two rows are the same as A:

0 a1,2 a1,3 · · · · · · a1,n

0 0 a2,3 a2,4 · · · a2,n

0 0 1 0 · · · 0

. . .
...

0 1 0

0 1


[n]

We repeating this process for the remaining n1−2 rows, which yields the following product:

n1

⇐
∏
i=1



0 ai,i+1 ai,i+2 · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[i−1]

The result is a matrix whose first n1 rows are the first n1 rows of A, with identity rows

everywhere else.

2. To form the rows corresponding to the first identity block, we first create the n1 + 1

through n2 entries of the (σ(2) + 1)st column (the part of the column immediately to the

right of the first identity block) by multiplying the result of the previous steps by the

30

idempotent matrix 

1 0 · · · 0 an1+1,σ(2)+1

0 1
. . .

...
...

. . . 0
...

1 aσ(2),σ(2)+1

0 0 0


{n1+1,...,σ(2)+1}

This multiplication leaves all but rows n1 + 1 through n2+1 fixed, adds ai,σ(2)+1 · eσ(2)+1

to row n1 + 1 ≤ i ≤ σ(2), and multiplies the (σ(2) + 1)st row by zero (we will use this

zero row as a ‘work space’).

To form the remaining parts of rows n1 + 1 through σ(2), we start by multiplying by the

idempotent matrix 

0 an1+1,σ(2)+2 · · · · · · an1+1,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[σ(2)]

This forms the remainder of row n1 + 1 in the zero row left after the previous step.

We then move this part of row n1 + 1 into place by multiplying by the idempotent matrix

[
1 1

0 0

]
{n1+1,σ(2)+1}

This matrix leaves all but rows σ(2) + 1 and n1 + 1 fixed, adding row σ(2) + 1 to row

n1 + 1 to complete row n1 + 1, and then zeros out row σ(2) + 1 (resetting our ‘work space’

for the next repetition).

31

We repeat this process for rows n1 + 2 through σ(2). This yields the following product:

σ(2)

⇐
∏

i=n1+1



[
1 1

0 0

]
{i,σ(2)+1}



0 ai,σ(2)+2 · · · · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[σ(2)]





1 0 · · · 0 an1+1,σ(2)+1

0 1
. . .

...
...

. . . 0
...

1 aσ(2),σ(2)+1

0 0 0


{n1+1,...,σ(2)+1}

The first σ(2) rows of the resulting matrix are equal to the corresponding rows of A,

the (σ(2) + 1)st row is zero, and remaining rows have ones on the diagonals and zeros

everywhere else.

3. We continue this process, alternately using the process in step 1 for rows with zeros on

the diagonal, and then the process in step 2 for rows corresponding to identity blocks.

4. When we get to n(m), the algorithm ends in one of two ways, depending on whether we

end with zeros on the diagonal or an identity block.

If we end with zeros on the diagonal, then we still proceed as outlined in 2:

n

⇐
∏

i=n(m−1)+1



0 ai,i+1 ai,i+2 · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[i−1]

32

where the last matrix we multiply by is

[
0
]

[n]\[n−1]

If we end with an identity block on the diagonal, then we stop after forming the previous

nm−1 rows:

n(m−1)

⇐
∏

i=n(m−2)+1



0 ai,i+1 ai,i+2 · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[i−1]

Thus, any matrix that fits the form of the theorem can be written as the following product

of idempotents (reading from right to left):

. . . ·



σ(1)

⇐
∏
i=1



0 ai,i+1 ai,i+2 · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[i−1]



33

. . .



σ(2)

⇐
∏

i=σ(1)+1



[
1 1

0 0

]
{i,σ(2)+1}



0 ai,σ(2)+2 · · · · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[σ(2)]





1 0 · · · 0 aσ(1)+1,σ(2)+1

0 1
. . .

...
...

. . . 0
...

1 aσ(2),σ(2)+1

0 0 0


{σ(1)+1,...,σ(2)+1}



. . . ·



σ(3)

⇐
∏

i=σ(2)+1



0 ai,i+1 ai,i+2 · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[i−1]



. . .



σ(4)

⇐
∏

i=σ(3)+1



[
1 1

0 0

]
{i,σ(4)+1}



0 ai,σ(4)+2 · · · · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[σ(3)]





1 0 · · · 0 aσ(3)+1,σ(4)+1

0 1
. . .

...
...

. . . 0
...

1 aσ(4),σ(4)+1

0 0 0


{σ(3)+1,...,n(4)+1}



34

. . . ·



σ(j+1)

⇐
∏

i=σ(j)+1



0 ai,i+1 ai,i+2 · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[i−1]



. . .



σ(j+2)

⇐
∏

i=σ(j+1)+1



[
1 1

0 0

]
{i,σ(j+2)+1}



0 ai,σ(j+2)+2 · · · · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[σ(j+2)]





1 0 · · · 0 aσ(j+1)+1,σ(j+2)+1

0 1
. . .

...
...

. . . 0
...

1 aσ(j+2),σ(j+2)+1

0 0 0


{σ(j+1)+1,...,n(j+2)+1}





n

⇐
∏

i=σ(m−1)+1



0 ai,i+1 ai,i+2 · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[i−1]︸ ︷︷ ︸

if ends with consecutive zeros on diagonal

or

σ(m−1)

⇐
∏

i=σ(m−2)+1



0 ai,i+1 ai,i+2 · · · ai,n

0 1 0 · · · 0

. . .
. . .

...

0

0 0 1


[n]\[i−1]︸ ︷︷ ︸

if ends with an identity block on diagonal


Q.E.D.

35

3.2 Examples

Example 3.2.1. We can write the matrix



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 5 4

0 0 0 0 0 0 4 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 1


as a product of idempotents as follows:



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 3 6 9 9 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

. . . form rest of first row, . . .



1 0 2 0 0 0 0 0

0 1 3 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Start with elts next to 1st identity block, . . .

=



1 0 2 0 0 0 0 0

0 1 3 0 0 0 0 0

0 0 0 3 6 9 9 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



36



1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

...and move it into place.



1 0 2 0 0 0 0 0

0 1 3 0 0 0 0 0

0 0 0 3 6 9 9 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 4 7 0 8 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Form rest of 2nd row...



1 0 2 3 6 9 9 0

0 1 3 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 0 0 0 0 0

0 0 0 4 7 0 8 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

...and move it into place.



1 0 2 3 6 9 9 0

0 1 3 0 0 0 0 0

0 0 0 4 7 0 8 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



37



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 5 8 1 7 2

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Form 3rd row.



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 2 0 0

0 0 0 0 1 3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Form elts next to 2nd identity block.



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 0 0

0 0 0 0 1 3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 6 3

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Form rest of 4th row...



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 0 0

0 0 0 0 1 3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 0 0

0 0 0 0 1 3 0 0

0 0 0 0 0 0 6 3

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



38



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

...and move it into place.



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 0 0

0 0 0 0 1 3 0 0

0 0 0 0 0 0 6 3

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 5 4

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Form rest of 5th row...



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 0 0

0 0 0 0 0 0 5 4

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

...and move it into place.



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 0 0

0 0 0 0 0 0 5 4

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 5 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



39



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 4 5

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Form 6th row.



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 5 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 5 4

0 0 0 0 0 0 4 5

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 1


︸ ︷︷ ︸
Form 7th row (completes matrix).



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 5 4

0 0 0 0 0 0 4 5

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 2 3 6 9 9 0

0 1 3 4 7 0 8 1

0 0 0 5 8 1 7 2

0 0 0 1 0 2 6 3

0 0 0 0 1 3 5 4

0 0 0 0 0 0 4 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 1



Example 3.2.2. We can write the matrix



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 6 0 5 0

0 0 0 0 7 1 6 1

0 0 0 0 0 2 7 2

0 0 0 0 0 1 0 3

0 0 0 0 0 0 1 4

0 0 0 0 0 0 0 0



40

as a product of idempotents as follows:



0 4 8 3 8

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


[8]\[3]︸ ︷︷ ︸

. . . form rest of 3rd row...


1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 0


[4]︸ ︷︷ ︸

Start with elts next to 1st identity block. . .

=



1 0 0 1 0 0 0 0

0 1 0 2 0 0 0 0

0 0 1 3 0 0 0 0

0 0 0 0 4 8 3 8

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



[
1 1

0 0

]
{1,4}︸ ︷︷ ︸

...and move into place.



1 0 0 1 0 0 0 0

0 1 0 2 0 0 0 0

0 0 1 3 0 0 0 0

0 0 0 0 4 8 3 8

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 0 1 4 8 3 8

0 1 0 2 0 0 0 0

0 0 1 3 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





0 5 9 4 9

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


[8]\[3]︸ ︷︷ ︸

Form rest of 2nd row...



1 0 0 1 4 8 3 8

0 1 0 2 0 0 0 0

0 0 1 3 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 0 1 4 8 3 8

0 1 0 2 0 0 0 0

0 0 1 3 0 0 0 0

0 0 0 0 5 9 4 9

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



41

[
1 1

0 0

]
{2,4}︸ ︷︷ ︸

...and move into place.



1 0 0 1 4 8 3 8

0 1 0 2 0 0 0 0

0 0 1 3 0 0 0 0

0 0 0 0 5 9 4 9

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





0 6 0 5 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


[8]\[3]︸ ︷︷ ︸

Form rest of 3rd row...



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 0 0 0 0

0 0 0 0 6 0 5 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



[
1 1

0 0

]
{3,4}︸ ︷︷ ︸

...and move into place.



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 0 0 0 0

0 0 0 0 6 0 5 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 6 0 5 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



42



0 7 1 6 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


[8]\[3]︸ ︷︷ ︸

Form 4th row.



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 6 0 5 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 6 0 5 0

0 0 0 0 7 1 6 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




0 2 7 2

0 1 0 0

0 0 1 0

0 0 0 1


[8]\[4]︸ ︷︷ ︸

Form 5th row.



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 6 0 5 0

0 0 0 0 7 1 6 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 6 0 5 0

0 0 0 0 7 1 6 1

0 0 0 0 0 2 7 2

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




1 0 3

0 1 4

0 0 0


[8]\[5]︸ ︷︷ ︸

Form rest of matrix.



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 6 0 5 0

0 0 0 0 7 1 6 1

0 0 0 0 0 2 7 2

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


=



1 0 0 1 4 8 3 8

0 1 0 2 5 9 4 9

0 0 1 3 6 0 5 0

0 0 0 0 7 1 6 1

0 0 0 0 0 2 7 2

0 0 0 0 0 1 0 3

0 0 0 0 0 0 1 4

0 0 0 0 0 0 0 0



43

Chapter 4

The Algorithm in Maple

4.1 Introduction

Given a matrix that fits the form of Theorem 3.1.1, writing out the decomposition into the

product of idempotents as outlined in the proof is a tedious task. C. Mangum and I wanted to

create a package for Maple that would check whether a matrix was of the form of the theorem

and, if so, compute the decomposition for us (see [11]).

In this chapter we begin with descriptions of the Maple procedures used to implement the

algorithm; examples using each procedure are included along with the code. We then find an

upper bound on the number of idempotents necessary to perform the decomposition of a given

n× n matrix.

4.2 WindowSum

The input in the “WindowSum” procedure is a user-determined number of square matrices and

their corresponding index equivalence classes. The procedure outputs the “window sum” of

these matrices. It begins with error-checking, ensuring that the user inputs the matrices and

index equivalence classes in the correct order and also checks to whether the procedure is in fact

needed (guarding against the user inputting nothing or only one matrix). Assuming arguments

44

are given properly, the procedure finds the size of the output matrix, and then reads off its

entries from the arguments input by the user to create the window sum.

Code

WindowSum := proc()

#--

Input: Square matrices A[1] to A[k]

Matrix indices n[1] to n[k] (sets) respectively for each A[i]

(All of the matrices are given first, then the corresponding index lists)

#

Output: M, the "window sum" of the k matrices

#--

local h, i, j, M, m, n;

m:=0;

n:=0;

if nargs=0 then #If no arguments given, alert the user.

lprint("Error: No arguments");

return; #Return nothing

elif not type(nargs/(2),integer) then #If number of args is odd, not all

matrices are paired with an index list

lprint("Error: Matrices and index lists not paired");

return; #Return nothing

elif nargs=2 then #If number of args is 2, there is 1 matrix with its

45

index list, so no sum needed.

lprint("Only given one matrix; no sum needed");

return args[1]; #In that case, return the matrix that was entered.

else #Check to see if inputs are in the corect order (Matrices first then

eqv classes).

for h from 1 to nargs do

if h<=nargs/2 and not type(args[h], Matrix) then

lprint("Error: Element in first half of args not of data type Matrix");

return; #Return nothing

elif h>nargs/2 and not type(args[h], set) then

lprint("Error: Element in second half of args not of data type set");

return; #Return nothing

end if:

end do:

end if:

#Otherwise, the window sum is necessary, so ...

for h from nargs/(2)+1 to nargs do #For each index list entered by the

user...

n:=max(args[h]); #Find dimension of M

if n>m then

m:=n;

end if:

end do:

M:=Array(1..m,1..m,[[0],[0]]); #Filling M with zeroes

46

for h from 1 to (nargs)/(2) do #For each of the matrices entered by the

user...

for i from 1 to nops(args[(nargs)/(2)+h]) do

for j from 1 to nops(args[(nargs)/(2)+h]) do

M[args[nargs/(2)+h][i],args[nargs/(2)+h][j]]:= args[h][i,j];

#Fill M with corresponding entries from the matrices entered by the user.

end do:

end do:

end do:

return M;

end proc:

Examples

1.



>A := Matrix([[5, 6], [7, 8]]);

B := Matrix([[9, 10], [11, 12]]);

C := Matrix([[13, 14], [15, 16]]);

n := {1, 4};
p := {2, 5};
q := {3, 6};

47

A :=

[
5 6

7 8

]

B :=

[
9 10

11 12

]

C :=

[
13 14

15 16

]

n := {1, 4}

p := {2, 5}

q := {3, 6}

[> WindowSum(A, B, C, n, p, q);



5 0 0 6 0 0

0 9 0 0 10 0

0 0 13 0 0 14

7 0 0 8 0 0

0 11 0 0 12 0

0 0 15 0 0 16



4.3 IsIdempotent

The IsIdempotent procedure takes a matrix as input, tests to see whether it is idempotent, and

then returns “true” or “false”.

48

Code

IsIdempotent := proc(A)

#--

Input: The matrix A.

Output: Tests whether A is idempotent, returns true or false.

#--

if IsMatrixShape(A^2-A, zero) then

return true;

else

return false;

end if:

end proc:

Examples

1.

[
>A := Matrix([[1 , 2 , 2], [0 , 1 , 3], [0 , 0 , 0]]);

IsIdempotent(A);

A :=


1 2 2

0 1 3

0 0 0


false

49

2.

[
>A := Matrix([[1 , 0 , 2], [0 , 1 , 3], [0 , 0 , 0]]);

IsIdempotent(A);

A :=


1 0 2

0 1 3

0 0 0


true

4.4 ZeroIdentitySize

The ZeroIdentitySize procedure searches along the diagonal the input matrix for consecutive

entries which are equal. Although Theorem 3.1.1 only applies to matrices with zeros or ones on

the diagonal, checking that that condition is satisfied is done with the FitsTheorem procedure.

ZeroIdentitySize adds the starting position of each set of consecutive diagonal entries to the list

ZeroIdentitySize[1], and cardinality of the set to the list ZeroIdentitySize[2]. In order to make

referencing the entries in these lists easier later on, we make two assumptions:

1. That the matrix starts with zeros on the diagonal. If this is not the case, then the first

starting position and cardinality are both 0.

2. That the cardinality of ZeroIdentitySize[1] is even. Given the first assumption, this means

that the diagonal ends with ones. If this is not the case, then the last starting position is

one more than the dimension of the matrix and the last cardinality is 0.

Code

ZeroIdentitySize := proc(A)

#--

Input: The matrix A.

50

Output:

n: The list of the sizes of each set of consecutive

zeros or identity block (n[1], n[2], ..., n[m]).

Odd subscripts correspond to zeros (n[1]=0 if

matrix starts with identity block), even subscripts

correspond to identity blocks. nops(n) always even.

sigma: The list of starting positions of each set of

consecutive zeros or identity block (if n[1]=0, then

sigma[1] also =0).

#--

local m1,i,i1,i2,j1,j2,n, sigma;

m1 := LinearAlgebra[RowDimension](A);

j1:=1; #j1 = where we are on the diagonal

j2:=0; #j2 = how many elements we have in list n

n:=[]; #Start off with an empty list (fixes recusion error with nops(n)

when starting with zeros on diag)

sigma:=[];

if LinearAlgebra[RowDimension](A)<>LinearAlgebra[ColumnDimension](A) then

return print("Error: Matrix is not square.");

end if:

if A[1,1]<>0 then #Checks to see if we start with zeros or not.

n:=[0]; #n is going to be the list of lengths of consecutive zeros/dim

51

of id blocks

j2:=nops(n); #j2 = how many elements currently we have in list n

sigma:=[0,1]; # If we start with 1s, then say that 0s start in the [non-

existant] 0th place on the diagonal, and then 1s start on the 1st.

else

sigma:=[1]; #Otherwise, simply have 1s starting on 1st place on the di-

agonal.

end if:

for i from 1 to m1-1 do #This loops counts all but the last eltement of

n.

if A[i,i]<>A[i+1, i+1] then #If elt on diag is <> next elt on diag,

then...

n:=[op(n), i-sum(n[j],j=1..j2)];

j2:=nops(n); #j2 = how many elements we currently have in list n

sigma:=[op(sigma), i+1]; #Record where the next set of zeros or iden-

tity block starts.

end if:

end do:

n:=[op(n), m1-sum(n[j],j=1..j2)];

if A[m1,m1]<>1 then #Always end with the size of an identity block (0 if

dosn’t exist).

n:=[op(n), 0];

sigma:=[op(sigma), m1+1];

52

end if:

return n,sigma;

end proc:

Examples

1.



> A :=

Matrix([[1,9 , 2 , 3 , 4],

[0 , 0 , 5 , 6 , 7],

[0 , 0 , 1 , 0 , 2],

[0 , 0 , 0 , 1 , 3],

[0 , 0 , 0 , 0 , 0]]);

ZeroIdentitySize(A);

A :=



1 9 2 3 4

0 0 5 6 7

0 0 1 0 2

0 0 0 1 3

0 0 0 0 0



[0, 1, 1, 2, 1, 0], [0, 1, 2, 3, 5, 6]

2.



> A :=

Matrix([[0,9 , 2 , 3 , 4],

[0 , 1 , 0 , 6 , 7],

[0 , 0 , 1 , 0 , 2],

[0 , 0 , 0 , 0 , 3],

[0 , 0 , 0 , 0 , 1]]);

ZeroIdentitySize(A);

53

A :=



0 9 2 3 4

0 1 0 6 7

0 0 1 0 2

0 0 0 0 3

0 0 0 0 1



[1, 2, 1, 1], [1, 2, 4, 5]

4.5 FitsTheorem

The FitsTheorem checks to see if a given matrix fits the form of Theorem 3.1.1. In order for

this procedure to return true, the following three conditions must be satisfied:

1. The matrix must be upper triangular.

2. The matrix may only have zeros or ones on the diagonal.

3. Any consecutive ones must form an identity matrix block on the diagonal.

Any conditions not satisfied will result in an error message being printed. If the matrix fails to

satisfy multiple conditions, the error message for each is printed.

Code

FitsTheorem := proc(A)

#--

Input:

A: A matrix.

sigma: The result of ZeroIdentitySize

#

54

Output:

If it fits the form of the theorem,

then it outputs true.

If not, then it prints an

error message and returns false.

#--

local i,j,k,sigma,NextSigma,errors;

sigma:=ZeroIdentitySize(A)[2];

if IsMatrixShape(A,triangular[upper])=false then #Check to see if the ma-

trix is upper triangular (and square).

lprint("Error: Matrix is not upper triangular.");

errors:=true;

end if:

for i from 1 to LinearAlgebra[RowDimension](A) do #Check to see if there is

anything other than 0 or 1 on the diagonal.

if A[i,i]<>0 and A[i,i]<>1 then

lprint("Error: Number other than 0 or 1 on diagonal.");

errors:=true;

end if:

end do:

for i from 1 to nops(sigma)/2 do #These loops check to see if 1s are part

of an identity block.

55

if 2*i+1 < nops(sigma) then #Avoids the error that occurs if diago-

nal ends with an identity block (still need this).

NextSigma:=sigma[2*i+1]-1

else

NextSigma:=LinearAlgebra[RowDimension](A)

end if:

for j from sigma[2*i] to NextSigma-1 do

for k from j+1 to NextSigma do

if A[j,k]<>0 then

lprint("Error: Consecutive ones do not form an identity block.");

errors:=true;

end if:

end do:

end do:

end do:

if errors=true then

return false;

else

return true;

end if:

end proc:

56

Examples

1.

[
> A := Matrix([[1 , 0 , 2], [0 , 1 , 3], [0 , 0 , 0]]);

FitsTheorem(A);

A :=


1 0 2

0 1 3

0 0 0


true

2.

[
> A := Matrix([[1 , 0 , 2], [0 , 2 , 3], [0 , 0 , 0]]);

FitsTheorem(A);

A :=


1 0 2

0 2 3

0 0 0


“Error: Number other than 0 or 1 on diagonal”

3.

[
> A := Matrix([[1 , 0 , 2], [0 , 1 , 3], [4 , 0 , 0]]);

FitsTheorem(A);

A :=


1 0 2

0 1 3

4 0 0


“Error: Matrix is not upper triangular.”

4.

[
> A := Matrix([[1 , 1, 2], [0 , 1 , 3], [0 , 0 , 0]]);

FitsTheorem(A);

A :=


1 1 2

0 1 3

0 0 0


“Error: Consecutive ones do not form an identity block.”

57

4.6 MakeIdempotents

The “MakeIdempotents” procedure utilizes the previous procedures and applies the algorithm

described in the proof of Theorem 3.1.1 to decompose the input matrix into a product of upper

triangular idempotents.

This procedure first calls the IsIdempotent procedure to see whether the input matrix is

already idempotent (in which case the rest of the algorithm is not needed) and, if not, then

uses FitsTheorem to test whether the input matrix that can be written as a product of upper

triangular idempotents. If a decomposition into upper triangular idempotents is possible, then

the algorithm is applied.

The procedure works with zero and identity blocks in pairs (that is, the procedure forms the

idempotents related to the first zero and identity blocks together, then related to the second

pair of blocks of each type, and so on) rather than separately.

There is a special case that deserves mention: if the input matrix ends with a 1×1 zero block

on the diagonal, then some of the steps in the algorithm are unnecessary and yield matrices

which, while they do not make the product incorrect, are not needed in the decomposition. A

check for this case is included to remove these extraneous matrices from the output.

Code

MakeIdempotents:=proc(A)

#--

Input: A, a matrix of the form in the theorem

Output: Idempotents whose product is A,

E[m]: the ith idempotent in the product (E[1] is rightmost)

#--

local i,j,j1,m1,E,sigma;

58

m1 := LinearAlgebra[RowDimension](A); #Size of A

j1 := 1; #j1 = where we are on the diagonal

E:=[]; #List of idempotents

sigma:=ZeroIdentitySize(A)[2]; #List of starting points of each new block

(whether 0 or identity block)

if IsIdempotent(A)=true then #If A is already idempotent, then...

lprint("Matrix is idempotent.");

return A;

end if:

if FitsTheorem(A)=false then

return lprint("Matrix cannot be written as a product of upper triangular idem-

potents.");

end if:

#If A is not idempotent, then do algorithm

for j from 1 to nops(ZeroIdentitySize(A)[1])-1 do

if type(j,even) then #If we are at an even entry of n (i.e. an iden-

tity block), then...

E:=[LinearAlgebra[RowOperation]. . .

. . . (LinearAlgebra[IdentityMatrix](m1),1,1),op(E)];

for i from sigma[j] to sigma[j+1]-1 do

E[1][i,sigma[j+1]]:=A[i,sigma[j+1]]; #Elements next to identity

59

block

end do:

E[1][sigma[j+1],sigma[j+1]]:=0;

if j=nops(ZeroIdentitySize(A)[1])-2 and ZeroIdentitySize(A)[1][j+1]=1 and Ze-

roIdentitySize(A)[1][j+2]=0 then #If...

E:=[LinearAlgebra[RowOperation]. . .

(LinearAlgebra[IdentityMatrix](m1),1,1),op(E)];

E[1][sigma[j+1],sigma[j+1]]:=0;

return op(E);

else

for i from sigma[j] to sigma[j+1]-1 do #For each row in identity

block, do...

E:=[LinearAlgebra[RowOperation]. . .

(LinearAlgebra[IdentityMatrix](m1),1,1),op(E)];

E[1][sigma[j+1]]:=A[j1]; #Filling "workspace" row

E[1][sigma[j+1],sigma[j+1]], E[1][sigma[j+1],j1]:=0,0;

E:=[LinearAlgebra[RowOperation]. . .

(LinearAlgebra[IdentityMatrix](m1),1,1),op(E)];

E[1][j1,sigma[j+1]]:=1;

E[1][sigma[j+1],sigma[j+1]]:=0; #Move into place

j1:=j1+1;

end do:

end if:

60

end if:

#Finishing identity block

if type(j,odd) and ZeroIdentitySize(A)[1][j]<>0 then #If we are at an EX-

ISTING odd entry of n (i.e. a zero block), then...

for i from sigma[j] to sigma[j+1]-1 do #For each row in the zero block,

do...

E:=[LinearAlgebra[RowOperation]. . .

(LinearAlgebra[IdentityMatrix](m1),1,1),op(E)];

E[1][i]:=A[i]; #ith row of E[1] is ith row of A

j1:=j1+1;

end do: #Finishing zero block

end if:

end do:

return op(E);

end proc:

end module;

61

Examples

1.



> A:=

Matrix([[1 , -3 , 2 , 3 , 4],

[0 , 0 , 5 , 6 , 7],

[0 , 0 , 1 , 0 , 0],

[0 , 0 , 0 , 1 , 0],

[0 , 2 , 0 , 0 , 1]]);

MakeIdempotents(A);

A :=



1 −3 2 3 4

0 0 5 6 7

0 0 1 0 0

0 0 0 1 0

0 2 0 0 1


“Error: Matrix is not upper triangular.”

“Matrix cannot be written as a product of upper triangular idempotents.”

2.



> A:=

Matrix([[1 , -3 , 2 , 3 , 4],

[0 , 0 , 5 , 6 , 7],

[0 , 0 , 1 , 0 , 0],

[0 , 0 , 0 , 1 , 0],

[0 , 0 , 0 , 0 , 1]]);

MakeIdempotents(A);

A :=



1 −3 2 3 4

0 0 5 6 7

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



62



1 0 0 0 0

0 0 5 6 7

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,



1 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,



1 0 0 0 0

0 0 2 3 4

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,



1 −3 2 3 4

0 0 5 6 7

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



3.


> A:=

Matrix([[0 , 0],

[0 , 1]]);

MakeIdempotents(A);

A :=

[
0 0

0 1

]

“Matrix is idempotent.”

4.



> A:=

Matrix([[1 , 2 , 3 , 4],

[0 , 0 , 6 , 5],

[0 , 0 , 1 , 2],

[0 , 0 , 0 , 0],

MakeIdempotents(A);

A :=


1 2 3 4

0 0 6 5

0 0 1 2

0 0 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 ,


1 0 0 0

0 1 0 0

0 0 1 2

0 0 0 0

 ,


1 0 0 0

0 0 6 5

0 0 1 0

0 0 0 1

 ,


1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 0 3 4

0 0 1 0

0 0 0 1

 ,

63


1 2 0 0

0 0 0 0

0 0 1 0

0 0 0 1



5.

[
>A := Matrix([0]);

MakeIdempotents(A);

A :=
[
0
]

“Matrix is idempotent”

[
0
]

6.



> A:=

Matrix([[1 , 0 , 0 , 0 , 5 , -2 , -9 , 12 , 15 , 100],

[0 , 1 , 0 , 0 , 18 , 20 , 0 , 19 , -5/4 , 8],

[0 , 0 , 1 , 0 , exp(1) , -15 , 3 , 4 , 6 , -9],

[0 , 0 , 0 , 1 , 9 , -8 , 7 , -6 , 5 , -4],

[0 , 0 , 0 , 0 , 0 , 28 , Pi , -53/4 , 2 , 3],

[0 , 0 , 0 , 0 , 0 , 0 , 4 , 5 , 6 , 0],

[0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0],

[0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 48 , 9],

[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 999],

[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1]]);

MakeIdempotents(A);

64

A :=



1 0 0 0 5 −2 −9 12 15 100

0 1 0 0 18 20 0 19 −5/4 8

0 0 1 0 e1 −15 3 4 6 −9

0 0 0 1 9 −8 7 −6 5 −4

0 0 0 0 0 28 π −53
4 2 3

0 0 0 0 0 0 4 5 6 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 48 9

0 0 0 0 0 0 0 0 0 999

0 0 0 0 0 0 0 0 0 1




1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 999

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1



,

65



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 48 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 4 5 6 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 28 π −53
4 2 3

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 −8 7 −6 5 −4

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,

66



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 −15 3 4 6 −9

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 20 0 19 −5/4 8

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 −2 −9 12 15 100

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,

67



1 0 0 0 5 0 0 0 0 0

0 1 0 0 18 0 0 0 0 0

0 0 1 0 e1 0 0 0 0 0

0 0 0 1 9 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


4.7 Bounding the Algorithm

Given the MakeIdempotents algorithm, we want to find the least upper bound for the number

of idempotent matrices needed to perform the decomposition. To do so, we sum the number

needed for each block (that is, a zero or identity block on the diagonal of the input matrix) for

an arbitrary input matrix. We consider two broad cases in this sum: if the matrix ends with

a zero block on the diagonal, or an identity block. To be consistent with the way in which we

wrote the code and for computational simplicity, we assume that the first block of the matrix is

always a zero block (if in fact the matrix starts with an identity block, then the first zero block

is defined to have size 0). Thus, letting m be the number of blocks in the matrix, we have two

cases: m odd, and m even. (Note: in the following summations, nj is the number of rows in

the jth block.)

For m odd, the number of idempotents output by the algorithm is

m−1
2∑
i=1

(n2i−1 + 2n2i + 1)

+ nm

n2i−1 is the number of idempotents for each zero block in the matrix (one idempotent is needed

for each row of a zero block), and 2n2i + 1 is the number of idempotents for each identity block

(one idempotent is needed for the elements in the column next to the identity block, and two

68

are needed for each row: filling the “workspace” row, and then moving that row into place as

per the algorithm). The bound m−1
2 causes the summation to count all but the very last block

in the inputted matrix; this block contributes nm idempotents to the sum.

For m even, we have the following sum:

m
2
−1∑

i=1

(n2i−1 + 2n2i + 1)

+ nm−1

The new bound on the summation m
2 − 1 counts all but the last two blocks of the matrix. The

second to the last block contributesnm−1 idempotents to the sum. Since the last block is an

identity matrix and there can be no column to the right of that last block, that block does not

contribute any additional idempotents to the sum.

With these two sums, we can determine an upper bound for how many idempotents will

be output. We group terms in each sum in such a way as to write the sum in terms of n, the

dimension of the input matrix.

For the first case (m odd), we rearrange as follows:

m−1
2∑
i=1

(n2i−1 + n2i) + nm +

m−1
2∑
i=1

(n2i + 1) = n+ (n2 + 1 + n4 + 1 + . . .+ nm−3 + 1 + nm−1 + 1)

since n = n1 +n2 +n3 + . . .+nm−1 +nm. At this point, we need a few more cases to determine

how the quantity in parentheses compares to n:

If n1 6= 0 (that is, if the matrix starts with a zero block on the diagonal), then this last

quantity is strictly less than n because all other terms are less than or equal to their counterparts

in the expression for n. If n1 = 0, we then consider nm. If nm > 1, then the quantity

in parentheses is strictly less than n (since the last term in parentheses is a 1). The only

remaining case is when n1 = 0 and nm = 1. In that case, the summation alone says that the

quantity in parentheses is less than or equal to n, and hence the overall sum is ≤ 2n. However,

n1 = 0 and nm = 1 puts us in the special case where the matrix ends with a 1 × 1 zero block

69

on the diagonal. In that case, the algorithm outputs unnecessary matrices (the “workspace”

and “move into place” matrices are not needed when there is only one column to the right of

the last identity block), so even though the sum is possibly equal to 2n, the upper bound is

strictly less than 2n. Thus, when m is odd, in each case the upper bound for the number of

idempotents output by the algorithm is 2n− 1.

A similar computation is performed for the m even case. We rearrange the sum as:

m
2
−1∑

i=1

(n2i−1 + 2n2i + 1) + nm−1

=

m
2
−1∑

i=1

(n2i−1 + n2i + nm−1) +

m
2
−1∑

i=1

(n2i + 1)

= (n1 + n2 + n3 + . . .+ nm−2 + nm−1) + (n2 + 1 + n4 + 1 + . . .+ nm−4 + 1 + nm−2 + 1)

Since nm > 0, the quantity in the first set of parentheses is strictly less than n (i.e., ≤ n− 1).

The quantity in the second set of parentheses is ≤ n− 1 for the same reason. Thus the sum is

≤ 2n− 2, and so our upper bound when m is even is 2n− 2.

Hence, considering all cases and values of n, the upper bound for the number of idempotents

output by the algorithm is 2n− 1.

For n ≤ 10, C. Mangum and I have constructed examples to show that the bounds derived

here are attained in certain cases; thus, they are in fact the least upper bounds. We conjecture

that they are the least upper bounds for all n, but were not able to construct general examples

to show that this bound can be attained for any n. The following examples show the upper

bounds being attained when n = 6, for both m odd and m even:

Example 4.7.1. This example shows the bound 2n− 1 being attained when m is odd:

70



> A:=

Matrix([[1 , 2 , 5 , 0 , 0 , 0],

[0 , 0 , 5 , 0 , 8 , 0],

[0 , 0 , 1 , 0 , 6 , 4],

[0 , 0 , 0 , 1 , 7 , 9],

[0 , 0 , 0 , 0 , 0 , 8],

[0 , 0 , 0 , 0 , 0 , 0]]);

MakeIdempotents(A);

A :=



1 2 5 0 0 0

0 0 5 0 8 0

0 0 1 0 6 4

0 0 0 1 7 9

0 0 0 0 0 8

0 0 0 0 0 0



71



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 8

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 0

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 9

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 4

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 6 0

0 0 0 1 7 0

0 0 0 0 0 0

0 0 0 0 0 1


,



1 0 0 0 0 0

0 0 5 0 8 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,



1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,



1 0 0 0 0 0

0 0 5 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,



1 2 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Example 4.7.2. This example shows the bound 2n− 2 being attained when m is even:

> A:=

Matrix([[1 , 2 , 3 , 0 , 0 , 0],

[0 , 0 , 4 , 0 , 0 , 0],

[0 , 0 , 1 , 0 , 5 , 6],

[0 , 0 , 0 , 1 , 7 , 8],

[0 , 0 , 0 , 0 , 0 , 9],

[0 , 0 , 0 , 0 , 0 , 1]]);

MakeIdempotents(A);

72

A :=



1 2 3 0 0 0

0 0 4 0 0 0

0 0 1 0 5 6

0 0 0 1 7 8

0 0 0 0 0 9

0 0 0 0 0 1




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 9

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 0

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 8

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 6

0 0 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 5 0

0 0 0 1 7 0

0 0 0 0 0 0

0 0 0 0 0 1


,



1 0 0 0 0 0

0 0 4 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,



1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,



1 0 0 0 0 0

0 0 3 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,



1 2 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



73

Chapter 5

Rings

5.1 Definitions

Definition 5.1.1. Let R be a ring, and Γ = {e1, . . . , en} be orthogonal idempotents of R:

1. e2
i = ei,

2. eiej = 0 for i 6= j,

3. e1 + · · ·+ en = 1.

Definition 5.1.2. a ∈ R is said to be triangular if eiaej = 0 for i > j.

a ∈ R is said to be strictly triangular if eiaej = 0 for i > j.

Definition 5.1.3. eiRei = {a ∈ R | aei = a = eia}

Definition 5.1.4. TΓ(R) = {a ∈ R | eiaej = 0, i > j}

Theorem 5.1.5. TΓ(R) is a ring, and hence a monoid with respect to multiplication.

5.2 Results for Rings

Theorem 5.2.1. The multiplicative monoid TΓ(R) is generated by idempotents and units (in

TΓ(R)) if and only if each multiplicative monoid eiRei is generated by idempotents and units

74

(in eiRei).

Proof. If: Suppose TΓ(R) is generated by idempotents and units. There is a homomorphism

TΓ(R)→ eiRei given by a 7→ eiaei, and thus eiRei is also generated by idempotents and units.

Only if: Let n = 2, Γ = {e1, e2} where e1, e2 are orthogonal idempotents, and a ∈ TΓ(R).

Then

a = 1 · a · 1 = (e1 + e2)a(e1 + e2) = e1ae1 + e1ae2 + e2ae1 + e2ae2 = a1 + a12 + 0 + a2,

where a1 = e1ae1, a12 = e1ae2, and a2 = e2ae2.

Since each eiRei is generated by idempotents and units, we can write

a1 = u1f1 . . . fl

and

a2 = u2h1 . . . hk

where u1 is a unit in e1Re1, f1 . . . fl are idempotents e1Re1, u2 is a unit in e2Re2, and h1 . . . hk

are idempotents e2Re2.

b = 1 + a12 is a unit in R with inverse 1− a12:

(1 + a12)(1− a12) = 1− a12 + a12 − a12a12 = 1− 0 = 1 = (1− a12)(1 + a12)

Now, u = u1 + u2 is an unit in R with u−1 = u−1
1 + u−1

2 :

(u1 + u2)(u−1
1 + u−1

2) = u1u
−1
1 + u1u

−1
2 + u2u

−1
1 + u2u

−1
2 = e1 + 0 + 0 + e2 = 1

75

Multiplying a by u−1, we have

u−1a =u−1(a1 + a12 + a2)

=(u−1
1 + u−1

2)(a1 + a12 + a2)

=(u−1
1 + u−1

2)a1 + (u−1
1 + u−1

2)a12 + (u−1
1 + u−1

2)a2

=u−1
1 a1 + u−1a12 + u−1

2 a2

=f1 . . . fl + u−1a12 + h1 . . . hk

Also, v = 1 + u−1a12 is a unit in R with inverse 1− u−1a12:

(1 + u−1a12)(1− u−1a12) =1− u−1a12 + u−1a12 − u−1a12u
−1a12

=1− u−1a12u
−1a12

=1− u−1a12(u−1
1 + u−1

2)a12

=1− u−1a12(u−1
1 a12 + u−1

2 a12)

=1− u−1a12u
−1
1 a12

=1

So without loss of generality, we may assume a1 = f1 . . . fl and a2 = h1 . . . hk.

We claim that

h′i = e1 + hi

and

f ′j = fj + e2

are idempotents in R:

76

(h′i)
2 =(e1 + hi)

2

=(e1 + hi)(e1 + hi)

=e2
1 + e1hi + hie1 + h2

i

=e1 + hi = h′i

(f ′j)
2 =(fj + e2)2

=(fj + e2)(fj + e2)

=f2
j + fje2 + e2fj + e2

2

=fj + e2 = f ′j

Now

a = h′1 . . . h
′
kvf

′
1 . . . f

′
l :

We first show (by induction) that h′1 . . . h
′
k = e1 + h1 . . . hk:

h′1h
′
2 =(e1 + h1)(e1 + h2)

=e2
1 + e1h2 + h1e1 + h1h2

=e1 + 0 + 0 + h1h2

=e1 + h1h2

77

Now suppose h′1 . . . h
′
k−1 = e1 + h1 . . . hk−1, and then

(h′1 . . . h
′
k−1)h′k =(e1 + h1 . . . hk−1)(e1 + hk)

=e2
1 + e1hk + h1 . . . hk−1e1 + h1 . . . hk−1hk

=e1 − h1 . . . hk

=e1 + h1 . . . hk

Similarly, f ′1 . . . f
′
l = f1 . . . fl + e2

Then

h′1 . . . h
′
kvf

′
1 . . . f

′
l =(e1 + h1 . . . hk−1)(1 + u−1a12)(f1 . . . fl + e2)

=(e1 + h1 . . . hk−1)(f1 . . . fl + e2 + u−1a12f1 . . . fl + u−1a12e2)

=(e1 + h1 . . . hk−1)(f1 . . . fl + e2 + 0 + u−1a12)

=e1f1 . . . fl + e1e2 + e1u
−1a12 + h1 . . . hk−1f1 . . . fl

+ h1 . . . hk−1e2 + h1 . . . hk−1u
−1a12

=f1 . . . fl + 0 + u−1a12 + 0 + h1 . . . hk−1 + 0 + 0

=f1 . . . fl + u−1a12 + h1 . . . hk

=u−1a

So u−1a can be written as the product of a unit and idempotents, and thus a can be written

as the product of a unit and idempotents.

Now let e1, e2, . . . , em be orthogonal idempotents, Γm−1 = {e1, e2, . . . , em−1},

Γm = {e1, e2, . . . , em}, and assume the result holds for TΓm−1(R). Let ẽ1 = e1 + e2 + · · ·+ em−1,

ẽ2 = em, and a ∈ TΓm(R). Then

a = 1 · a · 1 = (ẽ1 + ẽ2)a(ẽ1 + ẽ2) = ẽ1aẽ1 + ẽ1aẽ2 + ẽ2aẽ1 + ẽ2aẽ2 = ẽ1aẽ1 + ẽ1aẽ2 + ẽ2aẽ2,

78

By induction ẽ1aẽ1 ∈ TΓm−1(R) can be written as the product of a unit and idempotents, and

then using the n = 2 case we can write a ∈ TΓm(R) as the product of a unit and idempotents.

Q.E.D.

Corollary 5.2.2. Every block upper triangular matrix can be written as a product of block

upper triangular units and idempotents.

Proof. In the matrix case we have the orthogonal idempotents

e1 =

[
Ir1 0

0 0

]
, e2 =


0 0

Ir2

0 0

 , . . . , em =

[
0 0

0 Irm

]

Then TΓ(Mn(k))={Block upper triangular matrices in Mn(k)} and eiMn(k)ei ∼= eiRei.

eiMn(k)ei is a product of units and idempotents by the Renner’s decomposition and Corollary

2.2.2, and thus the result follows from Theorem 5.2.1. Q.E.D.

Example 5.2.3. We can write the matrix



1 −1 1 2 3

−1 1 4 5 6

0 0 2 2 −2

0 0 5 1 −3

0 0 1 5 −3


as a product of units and idempotents:

In this example we have

e1 =



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, e2 =



0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



79

Also observe that we can write the blocks on the diagonal as products of idempotents as

[
1 −1

−1 1

]
=

[
1 0

−1 0

][
1 −1

0 0

]

and 
2 2 −2

5 1 −3

1 5 −3

 =


0 1

3
1
3

0 1 0

0 0 1




3 –
10
9

–
4
9

5 –
16
9

–
10
9

1 –
5
9

7
9




1 25
9

–
17
9

0 34
9

–
17
9

0 50
9

–
25
9


Then



1 −1 1 2 3

−1 1 4 5 6

0 0 2 2 −2

0 0 5 1 −3

0 0 1 5 −3


=



1 0 0 0 0

0 1 0 0 0

0 0 0 1
3

1
3

0 0 0 1 0

0 0 0 0 1





1 0 0 0 0

0 1 0 0 0

0 0 3 –
10
9

–
4
9

0 0 5 –
16
9

–
10
9

0 0 1 –
5
9

7
9





1 0 0 0 0

0 1 0 0 0

0 0 1 25
9

–
17
9

0 0 0 34
9

–
17
9

0 0 0 50
9

–
25
9




1 0 1 2 3

0 1 4 5 6

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





1 0 0 0 0

−1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





1 −1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



80

We can also use Corollary 1.1.7 to move the unit to either side of the product and have



1 −1 1 2 3

−1 1 4 5 6

0 0 2 2 −2

0 0 5 1 −3

0 0 1 5 −3


=



1 0 1 2 3

0 1 4 5 6

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





1 0 1 –
1
3

–
1
3

0 1 4 –
4
3

–
4
3

0 0 0 1
3

1
3

0 0 0 1 0

0 0 0 0 1





1 0 −15 25
3

10
3

0 1 −39 65
3

26
3

0 0 3 –
10
9

–
4
9

0 0 5 –
16
9

–
10
9

0 0 1 –
5
9

7
9




1 0 0 −25 17

0 1 0 –
175
3

119
3

0 0 1 25
9

–
17
9

0 0 0 34
9

–
17
9

0 0 0 50
9

–
25
9





1 0 0 0 0

−1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





1 −1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


or



1 −1 1 2 3

−1 1 4 5 6

0 0 2 2 −2

0 0 5 1 −3

0 0 1 5 −3


=



1 0 0 0 0

0 1 0 0 0

0 0 0 1
3

1
3

0 0 0 1 0

0 0 0 0 1





1 0 0 0 0

0 1 0 0 0

0 0 3 –
10
9

–
4
9

0 0 5 –
16
9

–
10
9

0 0 1 –
5
9

7
9





1 0 0 0 0

0 1 0 0 0

0 0 1 25
9

–
17
9

0 0 0 34
9

–
17
9

0 0 0 50
9

–
25
9




1 0 0 0 0

−1 0 5 7 9

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





1 −1 4 5 6

0 0 4 5 6

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





1 0 1 2 3

0 1 4 5 6

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



81

Example 5.2.4. We can write



1 −1 1 2 3 7 8

−1 1 4 5 6 9 −9

0 0 2 2 −2 −8 −7

0 0 5 1 −3 −6 −5

0 0 1 5 −3 −4 −3

0 0 0 0 0 2 −1

0 0 0 0 0 4 −2


as a product of units and idempotents:

Observe that [
2 −1

4 −2

]
=

[
1 0

2 0

][
1 −1

0 0

][
0 0

0 1

][
0 0

−2 1

]

and [
1 −1

−1 1

]
and


2 2 −2

5 1 −3

1 5 −3


can be written as products of idempotents as in example 5.2.3.

82

Making use of the decomposition we found in Example 5.2.3, we can write



1 −1 1 2 3 7 8

−1 1 4 5 6 9 −9

0 0 2 2 −2 −8 −7

0 0 5 1 −3 −6 −5

0 0 1 5 −3 −4 −3

0 0 0 0 0 2 −1

0 0 0 0 0 4 −2


=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 2 0





1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 −1

0 0 0 0 0 0 0




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1





1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −2 1





1 0 0 0 0 7 8

0 1 0 0 0 9 −9

0 0 1 0 0 −8 −7

0 0 0 1 0 −6 −5

0 0 0 0 1 −4 −3

0 0 0 0 0 1 0

0 0 0 0 0 0 1




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1
3

1
3 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 3 –
10
9

–
4
9 0 0

0 0 5 –
16
9

–
10
9 0 0

0 0 1 –
5
9

7
9 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 25
9

–
17
9 0 0

0 0 0 34
9

–
17
9 0 0

0 0 0 50
9

–
25
9 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




1 0 1 2 3 0 0

0 1 4 5 6 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





1 0 0 0 0 0 0

−1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





1 −1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



83

Using Corollary 1.1.7 to move the units to one side (say, the left), we have



1 −1 1 2 3 7 8

−1 1 4 5 6 9 −9

0 0 2 2 −2 −8 −7

0 0 5 1 −3 −6 −5

0 0 1 5 −3 −4 −3

0 0 0 0 0 2 −1

0 0 0 0 0 4 −2


=



1 0 1 2 3 7 8

0 1 4 5 6 9 −9

0 0 1 0 0 −8 −7

0 0 0 1 0 −6 −5

0 0 0 0 1 −4 −3

0 0 0 0 0 1 0

0 0 0 0 0 0 1





1 0 0 0 0 −68 34

0 1 0 0 0 −124 62

0 0 1 0 0 14 −7

0 0 0 1 0 10 −5

0 0 0 0 1 6 −3

0 0 0 0 0 1 0

0 0 0 0 0 2 0




1 0 0 0 0 0 73

0 1 0 0 0 0 157

0 0 1 0 0 0 −15

0 0 0 1 0 0 −11

0 0 0 0 1 0 −7

0 0 0 0 0 1 −1

0 0 0 0 0 0 0





1 0 0 0 0 39 0

0 1 0 0 0 95 0

0 0 1 0 0 −8 0

0 0 0 1 0 −6 0

0 0 0 0 1 −4 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1





1 0 0 0 0 107 0

0 1 0 0 0 219 0

0 0 1 0 0 −22 0

0 0 0 1 0 −16 0

0 0 0 0 1 −10 0

0 0 0 0 0 0 0

0 0 0 0 0 −2 1




1 0 1 –
1
3

–
1
3 0 0

0 1 4 –
4
3

–
4
3 0 0

0 0 0 1
3

1
3 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





1 0 −15 25
3

10
3 0 0

0 1 −39 65
3

26
3 0 0

0 0 3 –
10
9

–
4
9 0 0

0 0 5 –
16
9

–
10
9 0 0

0 0 1 –
5
9

7
9 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





1 0 0 −25 17 0 0

0 1 0 –
175
3

119
3 0 0

0 0 1 25
9

–
17
9 0 0

0 0 0 34
9

–
17
9 0 0

0 0 0 50
9

–
25
9 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




1 0 0 0 0 0 0

−1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





1 −1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



84

Chapter 6

Future Directions

In the future, I would like to continue to expand on the ideas developed in this dissertation.

Some specific problems which I would like to answer are:

Problem 1: When is a block upper triangular matrix expressible as a product of block upper

triangular idempotent matrices?

Once proved, the following conjecture will provide a partial answer to this question:

Conjecture 6.0.5. Nilpotent block upper triangular matrices in Mn(k) can be written as

a product of block upper triangular idempotents.

Example 6.0.6. The nilpotent block upper triangular matrix

N =



2 2 −2 1 2

5 1 −3 3 4

1 5 −3 5 6

0 0 0 −2 −2

0 0 0 2 2


∈Mn(R)

can be written as a product of block upper triangular idempotents as follows:

85

N =



1 0 0 –
10309
648 0

0 1 0 –
793
108 0

0 0 1 –
55
18 0

0 0 0 0 0

0 0 0 −2 1





1 0 0 637
81

–
637
324

0 1 0 98
27

–
49
54

0 0 1 10
9

–
5
18

0 0 0 1 0

0 0 0 4 0




389
9

–
1615
18

–
1235
324

1235
243

6175
1944

20 –
83
2

–
65
36

65
27

–
325
216

8 −17 5
18

26
27

–
65
108

0 0 0 1 0

0 0 0 0 1





–
109
9

295
9

–
767
81

–
118
243

–
649
486

−6 16 –
13
3

–
2
9

–
11
18

−4 10 –
17
9

–
4
27

–
11
27

0 0 0 1 0

0 0 0 0 1




1 169
12

–
845
24

2197
216

–
3887
1296

0 15
2

–
65
4

169
36

–
299
216

0 3 –
13
2

13
6

–
23
36

0 0 0 1 0

0 0 0 0 1



Problem 2: Theorem 5.2.1 gives necessary and sufficient conditions for an element of TΓ(R)

to be expressible as a product of idempotents and units in TΓ(R). I would like to determine

when an element of TΓ(R) is expressible strictly as a product of idempotents in TΓ(R).

Problem 3: Another way in which I would like to expand on the work done in Chapter 5 is

by determining 〈E(R)〉, where R is a ring.

Problem 4: In Chapter 3 we determined 〈E(B)〉, where B ⊆ Gln(k) is the Borel subgroup of

upper triangular invertible matrices and B = Tn(k). I would like to generalize this and

determine when, in a reductive monoid M with a Borel subgroup B, an element of B is

a product of idempotents in B.

86

REFERENCES

[1] A.H. Clifford. Semigroups Admitting Relative Inverses. Annals of Mathematics,
42(4):1037–1049, October 1941.

[2] A.H. Clifford and G.B. Preston. The Algebraic Theory of Semigroups, volume 1. American
Mathematical Society, 1961.

[3] A.H. Clifford and G.B. Preston. The Algebraic Theory of Semigroups, volume 2. American
Mathematical Society, 1967.

[4] D. Cox, J. Little, and D. O’Shea. Ideal, Varieties, and Algorithms. Undergraduate Texts
in Mathematics. Springer, 2007.

[5] J.A. Erdos. On Products of Idempotent Matrices. Glasgow Mathematics Journal, 8:118–
122, August 1966.

[6] J.M. Howie. The Subsemigroup Generated by the Idempotents of a Full Transformation
Semigroup. Journal London Mathematical Society, s1-41(1):707–716, 1966.

[7] J.E. Humphreys. Linear Algebraic Groups. Number 21 in Graduate Texts in Mathematics.
Springer-Verlag, 1975.

[8] T.W. Hungerford. Algebra. Number 73 in Graduate Texts in Mathematics. Springer, 1974.

[9] S. Lang. Algebra. Number 211 in Graduate Texts in Mathematics. Springer, 2002.

[10] S. Lipscomb. Symmetric Inverse Semigroups, volume 46 of Mathematics Surveys and
Monographs. American Mathematical Society, 1996.

[11] C. Mangum and E.D. Bancroft. Exploring Products of Idempotent Matrices Using Maple.
Results of summer 2010 NCSU REG, August 2010.

[12] M.S. Putcha. Semilattice Decompositions of Semigroups. Semigroup Forum, 6:12–34, 1973.

[13] M.S. Putcha. The Group of Units of a Connected Algebraic Monoid. Linear and Multilinear
Algebra, 12:37–50, 1982.

[14] M.S. Putcha. A Semigroup Approach to Linear Algebraic Groups III. Buildings. Canadian
Journal of Mathematics, 38(3):751–768, 1986.

[15] M.S. Putcha. Linear Algebraic Monoids. Number 133 in London Mathematical Society
Lecture Note Series. Cambridge University Press, 1988.

[16] M.S. Putcha. Classification of Monoids of Lie Type. Journal of Algebra, 163(3):636–662,
February 1994.

[17] M.S. Putcha. Parabolic Monoids I. Structure. International Journal of Algebra and Com-
putation, 16(6):1109–1129, December 2006.

87

[18] M.S. Putcha. Products of Idempotents in Algebraic Monoids. Journal of the Australian
Mathematical Society, 80:193–203, 2006.

[19] L.E. Renner. Analogue of the Bruhat Decomposition for Algebraic Monoids. Journal of
Algebra, 101:303–338, 1986.

[20] T. Takayuki and N. Kimura. On Decompositions of a Commutative Semigroup. Kodai
Mathematical Seminar Reports, 6(4):109–112, 1954.

88

	Motivation and Background
	Semigroups
	Connections to Geometry

	Question
	The Renner Decomposition
	Notation

	Nilpotent and Partial Permutation Matrices
	Nilpotent Matrices in Tn(k)
	Partial Permutation Matrices in Tn(k)

	General Theorem for Tn(k)
	Theorem and Proof
	Examples

	The Algorithm in Maple
	Introduction
	WindowSum
	IsIdempotent
	ZeroIdentitySize
	FitsTheorem
	MakeIdempotents
	Bounding the Algorithm

	Rings
	Definitions
	Results for Rings

	Future Directions
	References

