ABSTRACT

BEAM, ANDREW LANE. A Bayesian Framework for the Analysis of the Peroxisome Proliferator-Activated Receptor Signaling Pathway. (Under the direction of Alison Motsinger-Reif.)

Toxicology is currently developing computational tools to assess chemical hazard and risk using high-throughput screening assays. These approaches often employ pathway-based or “Mode-of-Action” analyses to understand how a compound may affect an organism. One such set of pathways are those triggered by the interactions of chemicals with the peroxisome-proliferator activating receptors (PPARs). These are of interest to researchers due known associations between PPAR activity and various adverse effects in mammals. We propose the use of a Bayesian framework to incorporate and synthesize multiple pieces of evidence about a chemical’s PPAR interaction. We use data from a recent high-throughput screening effort at the Environmental Protection Agency to build a hierarchical model for PPAR signaling that incorporates the structure of this network known in the literature. We compare the results of this model against the known activities of several chemicals and show how this model allows us to make confident statements about the ability of a chemical to perturb the overall PPAR pathway in the face of noisy experimental data.
DEDICATION

For Nana:

“A grandmother is a little bit parent, a little bit teacher, and a little bit best friend.”
BIOGRAPHY

Andrew Beam is a native of North Carolina and received Bachelors of Science degrees in Computer Science, Computer Engineering, and Electrical Engineering from N.C. State. He plans to finish his PhD in Bioinformatics at N.C. State.
ACKNOWLEDGMENTS

First I would like to thank my parents and friends for their constant support and encouragement. I would like to thank my N.C. State advisor and EPA mentor, Dr. Alison Motsinger-Reif and Dr. Richard Judson, for their continued advice and scientific guidance. I would like to thank Dr. David Dix of the U.S. EPA for believing in and recruiting me for this project. Finally, I would like to thank and acknowledge the U.S. Environmental Protection Agency and the incredibly talented individuals at the National Center for Computational Toxicology for funding this project, as well as supporting me intellectually and scientifically. Without their help, this project would not have been possible.
TABLE OF CONTENTS

List of Tables ... vi
List of Figures .. vii
List of Equations ... viii

Chapter 1 Introduction .. 1
 1.1 Background and Motivation ... 1
 1.2 Peroxisome Proliferator-Activated Receptor (PPAR) .. 3
 1.3 Hierarchical Bayes Models and MCMC Methods ... 9

Chapter 2 Methods ... 14
 2.1 Data Description .. 14
 2.2 Graphical Model Description .. 17

Chapter 3 Results .. 20
 3.1 Variable Selection and Preliminary Analysis .. 20
 3.2 Contribution of Each Variable to the Model and Convergence Assessment 24
 3.3 Discussion and Future Directions .. 36

References ... 38

Appendices ... 41
 A.1 R Code ... 42
 A.2 WinBUGS Code .. 44
LIST OF TABLES

Table 1: Summary of assays used in final model ... 21

Table 2: Parameter estimates for simple model ... 26

Table 3: Parameter estimates from model including PPARα binding and LXRα-driven suppression of PPARα RG expression ... 29

Table 4: Parameter estimates from model including PPARα binding and LXRα-driven suppression of PPARα RG expression ... 33
LIST OF FIGURES

Figure 1: Pathway Map for PPAR Signaling (KEGG) shows the signal cascade leading to PPAR activation. The three isoforms, PPAR-α/δ/γ, are boxed in blue................................. 5

Figure 2: An alternate pathway map for PPAR signaling from Ingenuity Systems, Inc. PPAR-α/δ/γ are boxed in blue... 6

Figure 3: Measurement error model of the PPARα neighborhood represented as a graph. The dark ovals represent the true, unobserved biological values and the light blue nodes represent the response values observed in the assays. The grey epsilon nodes represent random error associated with each observation... 17

Figure 4: Scatter plots investigating the relationships between parent-child nodes............... 22

Figure 5: Plot showing PPARα RG vs. LXRα RG responses. This plot is suggestive of a negative, nonlinear relationship between the parent node LXRα RG and the child node PPARα RG.. 23

Figure 6: Summary of results for the simplest model fit. The intensity of each cell represents the posterior probability of activity greater than 2 FOC... 27

Figure 7: Summary of results for model including PPARα Binding and LXRα RG. More chemicals, including those suspected to be PPARα agonist, show strong posterior signals. . 30

Figure 8: Summary of results for model including PPARα binding, LXRα RG , and HMGCS2 .. 34
LIST OF EQUATIONS

Equation 1 ... 10
Equation 2 ... 10
Equation 3 ... 10
Equation 4 ... 13
Equation 5 ... 13
Equation 6 ... 13
CHAPTER 1

Introduction

1.1 Background and Motivation

Toxicology is the science concerned with the study of chemically induced adverse effects on biological systems and living organisms. An adverse effect may refer to maladies ranging from mild discomfort, specific system failure, all the way to chemically triggered death (1). Chemical toxicity, risk, and hazard have traditionally been assessed using observational animal studies (2). Typically these studies divide a cohort of animals into different dosage levels of the chemical under study and the effects (i.e. tissue lesions, tumor formation, or subject death) are recorded after a fixed amount of time. Next, standard statistical tests are performed to see at what level the treatment chemical differs from the control group and this is taken as an estimate as the lowest effect level (LEL). These studies typically take years and cost millions of dollars to complete (3). Furthermore, these types of studies often lack a mechanistic explanation of the chemical’s mode of toxicity, making comparisons with future chemicals difficult. Recently there has been a growing effort to move toxicity from an observational science to a predictive one. Recent advances in high-throughput assay technology have made it possible to produce large volumes of data at the granularity needed for such an endeavor. Moreover, these types of mechanistically targeted data are being use to perform pathway-based or “Mode-of-Action” analyses, where the data are used to infer the mode or mechanism a compound is taking to cause the adverse outcome.

Here we describe an approach that combines multiple of sources of data from high-throughput assays in a Bayesian framework to model a specific biological pathway. The
model described will leverage the structure and relationships in these data that have been
mined from the biological and toxicological literature to create a more biologically informed
and relevant model. We will show that the use of these methods result in a set of analytical
tools that is more reflective of how a chemical may affect a living organism. In particular,
the data we start with is derived from in vitro (cell-based or cell-free) assays that probe
different nodes of the pathway. These assays are noisy (i.e. they produce some number of
false positive and false negative calls). The overall goal here is to integrate noisy data across
many chemicals and many nodes of the pathway to produce posterior statements about
whether each chemical does or does not interact with the pathway.

In section 1.2 we will begin by giving a brief introduction of the biological pathway
under study, the peroxisome proliferator-activated receptor (PPAR) pathway, and motivate
why understanding of this pathway is important for assessing chemical risk and hazard. In
section 1.3 we introduce the mathematical notation of Hierarchical Bayes models as well an
overview of the Bayesian/MCMC paradigm. Next, in section 2.1 we will introduce the data
and discuss various aspects that must be addressed during the analysis. We will conclude
Chapter 2 in section 2.2 by discussing how the PPAR pathway may be viewed as a graph as
well as discussing the mathematical framework necessary for this abstraction. Chapter 3 will
contain discussion of the model building process as well as an evaluation of the model
performance against a literature search. We will conclude with discussion of the approach as
well as future directions.
1.2 Peroxisome Proliferator-Activated Receptor (PPAR)

Peroxisome proliferator-activated receptors (PPARs) represent a set of nuclear receptor proteins that function as ligand-dependent transcription factors that are involved in gene expression. Three isoforms have been discovered and named as PPAR-α/γ/δ according to differential tissue distributions and biological profiles (4). PPARα is primarily expressed in liver, heart, muscle, and kidney tissue and is involved with lipid and fatty acid metabolism (5).

Compounds that activate PPARs are known as peroxisome proliferators (PPs). It has been shown PPAR activation can be achieved by compounds with a broad spectrum of structures and functions. Several adverse effects have been associated with PPs including diabetes, obesity, atherosclerosis, and hepatocellular carcinomas. It has been proposed that PPARα is profoundly involved in mediation of these events; however the species difference between rodents and humans in PPARα is not yet fully understood (4).

In general, a biological pathway is a structured series of molecular events that lead to a product (such as a protein or lipid) or a change in cell state. The PPAR receptor proteins are key components of the PPAR signal transduction pathways. In signal transduction pathways, a biological signal (a molecule’s potentiation), is moved from the cell’s exterior through the cytoplasm and finally into the nucleus. In the PPAR pathway, a ligand (chemical) first binds to one of the PPARs. This ligand-activated protein translocates into the nucleus where co-factor proteins are recruited to form a transcription factor complex. This complex then binds to DNA and leads to the transcription of multiple genes into mRNA. The mRNA sequences are in turn translated into proteins, some of which can negatively regulate upstream parts of
the pathway. Other proteins sit upstream from the PPARs and provide further regulations of signaling. This cascade of events for PPAR has been mapped in initiatives such as Kyoto Encyclopedia of Genes and Genomes (KEGG) (6) and by Ingenuity Systems, Inc. Figure 1 and Figure 2 show the KEGG and Ingenuity pathway maps for PPAR, respectively.
Figure 1: Pathway Map for PPAR Signaling (KEGG) shows the signal cascade leading to PPAR activation. The three isoforms, PPAR-α/δ/γ, are boxed in blue.
Figure 2: An alternate pathway map for PPAR signaling from Ingenuity Systems, Inc. PPAR-α/δ/γ are boxed in blue.
Both representations of the pathway give similar topologies and connections for PPAR signaling, with a few minor exceptions that will be discussed later. From these maps we will introduce the notions of “upstream” and “downstream” relative to PPAR. In this treatment, we will focus on the PPARα pathway, but similar analyses could be performed for the other isoforms. An element in the pathway is said to be “upstream” of PPARα if it occurs before chemical interactions with PPARα takes place. Similarly, an element is “downstream” of PPARα if occurs after chemical interactions with PPARα. If we view PPAR signaling as a directed graph, then the notions of upstream and downstream correspond to parental and children nodes respectively, relative to the node representing PPARα expression. We will adopt this graph theoretic notation more fully in later sections. Note that there is also a causal interpretation of these signaling pathways. Each element along the pathway is caused by the elements preceding it. PPARα activity (as measured by assays that detect PPAR-mediated expression of mRNA or proteins) is caused by the elements upstream of it in the pathway, and in turn, PPARα activity contributes to causal influences of the elements further downstream.

When assessing a compound’s effect on PPARα, typically in vitro or in vivo expression levels are used. However, as is clear from the pathway maps, PPARα expression is the result of complex cascade of signaling events. In particular, for PPARα to be activated, one or more events must take place. The primary mode of action is through binding of a ligand to the PPARα protein, causing translocation to the nucleus where PPARα heterodimerizes with the protein RXRα, forming a transcription factor complex, which in turn binds to specific regions of DNA known as peroxisome-proliferator response-elements
A secondary path is through Mitogen-activated protein kinase 3 (MAPK3 is a synonym for ERK1/2 shown in Figure 2), where activation of MAPK3 leads to elevated expression levels for PPARα, which then again heterodimerizes with RXRα and continues further to regulate gene expression.

Several issues arise when trying to measure PPARα activity both \textit{in vivo} and \textit{in vitro}. \textit{In vivo} levels must be measured in a surrogate species, as it requires the subject to be sacrificed to assess, and this is most often done in rodents. However, these studies are both slow and expensive, making screening any more than a few chemicals simultaneously intractable. Furthermore, there is a species difference for PPARα between rodents and humans, making interpretation of results difficult and unclear. Despite most of these issues, an \textit{in vivo} study is currently used as the gold standard for assessing a compound’s PPARα activity.

Newer technologies are capable of measuring levels of PPARα expression directly \textit{in vitro} through the use of species-specific proteins or cells. These technologies make possible screening hundreds or thousands of chemicals at multiple concentrations faster and at a more affordable cost. However, \textit{in vitro} assays do not contain the full complement of interacting cellular processes or inter-cellular interactions seen \textit{in vivo}. In addition, these assays, run in cells or cell-free, are inherently noisy and produce some number of false positive and false negative findings. Often, these errors are systematic and involve interference between the chemical being tested and the assay technology. For instance, some assays use fluorescence methods to detect activity, so compounds which are themselves fluorescent can appear to be active in the assays even in the absence of the specific molecular interactions being probed.
Another source of assay interference is that as the concentration of a chemical approaches the level at which cells die (cytotoxicity), cells often turn pathways on or off in a chemical-independent way, again confounding our ability to understand chemical-specific effects. However, these types of issues tend to be assay or technology-specific, so by combining data from multiple assays and technologies for the same pathway, one can in principle control for these false-positive and false-negative findings in specific assays.

1.3 Hierarchical Bayes Models and MCMC Methods

Bayesian methods for inference are a set of approaches for drawing conclusions from data conditioned on a probability model. The hallmark of Bayesian inference is the explicit role that the probability model serves in quantifying uncertainty during the analysis process and for summarizing the results through a probability distribution on the parameters under study (9). First, we introduce some notation and the basic concept of a probability density. Let \(x \) be the observed data vector and \(\theta \) be the unobserved population parameters of interest. Typically it is the goal of an experiment to estimate \(\theta \). Next, \(p(x|\theta) \) represents the conditional probability density function for values of \(x \) given a fixed value for \(\theta \) and \(p(x) \) represents the marginal probability density function of \(x \). This allows us to calculate the probability of a given event, such as \(p(x > 0) = \int_{x>0} p(x) dx \). However, we may use this notation for inference about the population parameters through the use of the *likelihood* function. In the likelihood, \(L(\theta|x) \), the data are viewed as fixed and used to estimate the population parameters by searching for values of \(\theta \) that maximize the likelihood. The likelihood and
probability density function have the same form for a given family of probability distributions, the only difference being how one views them. From the likelihood perspective, we view our data sample as being fixed and use it to estimate the population parameters, whereas the density function views the parameters as fixed and the aim is to make statements about future observations.

The namesake of Bayesian inference procedures comes from the repeated use of Bayes’ rule. Again, letting \(x \) represent our data vector and \(\theta \) be the parameter vector, Bayes’ rule is stated as follows:

\[
p(x, \theta) = p(x|\theta) \cdot p(\theta)
\]

Equation 1

This relationship factors the joint probability distribution of \(x \) and \(\theta \) in terms of the marginal distribution of \(\theta \) and the distribution of \(x \) conditioned on \(\theta \). A common and equivalent method of writing Bayes’ rule is:

\[
p(\theta|x) = \frac{p(x, \theta)}{p(\theta)} = \frac{p(x|\theta) \cdot p(\theta)}{p(x)}
\]

Equation 2

which yields the normalized *posterior* likelihood for \(\theta \) conditioned on the data sample of \(x \). In Bayesian terminology, \(p(\theta) \) is the *prior* distribution for \(\theta \), encapsulating knowledge or uncertainty about the unknown parameters. Again, we are typically interested in inference about the population parameters \(\theta \), given our set of observations. With this in mind we can rewrite the Bayes’ rule as:

\[
p(\theta|x) \propto p(x|\theta) \cdot p(\theta)
\]

Equation 3
This yields an unnormalized (\(\propto\) indicates “proportional to”) posterior distribution for \(\theta\) given our set of observations \(x\). Given a fully specified probability model for both \(x\) and \(\theta\), Bayes’ rule allows for inference about the quantity \(\theta\), given the observed values of \(x\). This forms the core of Bayesian inference procedures.

Hierarchical Bayes models are a set of approaches used to encapsulate and model randomness that occur at multiple levels. The fundamental concept is the notion of hyperparameters. Hyperparameters are elements from the prior distribution which are themselves random. For example, the prior distribution for the variance of a normal random variable may follow a gamma distribution whose shape and scale parameters themselves follow some other probability distribution. All Bayesian models may be viewed as inherently hierarchical because the prior distribution on \(\theta\) represents the first level and the likelihood/posterior \(p(\theta \mid x)\) represents the final level of the hierarchy (7). These models are easily represent as directed, acyclic graphs with the top-most hyperparameters being the top parental nodes and the bottom-most child nodes being the final posterior distributions. Each node in this graph encapsulates quantitative probability information about a variable of interest (8). In the computer science literature, these types of models are often referred to as Bayesian networks. The structure of the network specifies the conditional dependencies between the nodes; moreover an arrow between two nodes leads to a causal interpretation. From a probability standpoint, we say that a child node’s value is specified by a probability distribution conditioned on the values of its parents. Together with the network structure, or topology, the full set of conditional distributions is sufficient to fully specify the joint probability distribution for all variables under consideration.
For complex probability models, the posterior distribution may not be able to be expressed in closed form. For situations such as these, Markov Chain Monte-Carlo (MCMC) methods are typically used to evaluate and analyze the posterior (9). These approaches represent a class of samplers for generating data from the posterior used for the inference. Once such technique is the Gibbs sampler, which is implemented in the well known WinBUGS software platform (10). MCMC methods can be used to generate samples from the true posterior distribution and inference is made using these samples. This is done by constructing a Markov chain whose stationary distribution is the desired posterior distribution. Constructing this chain is usually straightforward; however for subsequent inference to be correct, checks must be carried out to ensure that the chain has converged to its stationary distribution. A common graphical check is done by running multiple simultaneous chains and plotting their values over the final period for the simulation and qualitatively inspecting if the chains are well mixed. A more quantitative approach offered by Gelman and Brooks is the potential scale reduction, \hat{R}, (11) which monitors the factor by which the current distribution might be reduced as the number of iterations grows. For \hat{R} close to 1 (often values less than 1.1 are sufficiently close to 1 (9)), the Markov chain is thought have converged to the desired posterior distribution.

For model selection, Bayesian methods typically use the deviance information criterion (DIC). The DIC seeks to pick the model with the best out-of-sample predictive power (9) and is a generalization of the Akaike information criterion (AIC) and Bayesian information criterion (BIC). It is based on the notation of deviance, which is defined as:
\[D(\theta) = -2 \cdot \log(p(x|\theta)) + C \]

Equation 4

where C is a constant that gets canceled during the comparison process and is irrelevant. The expectation of the deviance with respect to \(\theta \) is typically denoted as \(\bar{D} \). Next, we define the effective number of parameters in the model as:

\[p_D = \bar{D} - D(\bar{\theta}) \]

Equation 5

where \(D(\bar{\theta}) \) is the deviance for the expected value of \(\theta \). Finally, the DIC is computed as:

\[DIC = p_D + \bar{D} \]

Equation 6

Models with smaller DIC are to be preferred to models with larger DIC. Thus DIC, like AIC and BIC, attempts to strike a balance between the number of parameters in the model \((p_D) \) and how well the model fits the data \((\bar{D}) \). DIC is often used in Bayesian approaches because it can be easily calculated from MCMC simulations, whereas AIC and BIC require computing the maximum likelihood value for \(\theta \), which is may not be easily evaluated for complex problems.
CHAPTER 2

Methods

2.1 Data Description

The U.S. Environmental Protection Agency’s ToxCast (12), (3) is measuring in vitro activity in a battery of over 500 high-throughput assays in a collection of ~1,000 environmental and industrial chemicals, and using this data to construct pathway-based models of toxicity. The National Research Council has advocated for this type of molecular-based in vitro toxicity testing as a practical way to manage the lack of toxicity information for the vast majority of environmental chemicals (2). In this study we will focus on data for 309 environmental chemicals in a subset of assays probing targets in the PPAR pathways. For a more comprehensive treatment of this data set, see (13).

The data used to build and evaluate the model represent four distinct technologies from Attagene Inc. (12), the CellzDirect/Life Technologies Corporation (13), the NIH Chemical Genomics Center (“NCGC”, (14)), and Novascreen, Inc (15). Datasets from these technologies measure various points in the PPARα pathway. A cell-free competitive binding assay (assay key: NVS_NR_hPPARα) measures the binding affinity of a compound for the PPARα protein. The cell-free MAPK3 assay (assay key: NVS_ENZ_hMAPK3) is a recombinant kinase assay that measures enzymatic activity. Two assays (assay keys: ATG_PPARα_TRANS, NCGC_PPARα_Agonist) measure expression of downstream reporter gene (RG) mRNA that is induced by the PPARα transcription factor which is activated due to binding of the chemical to PPARα. Finally, one assay measures levels of
expression of hydroxymethylglutaryl-CoA synthase, mitochondrial (HMGCS2, assay key: CLZD_HMGCS2), which is a specific gene whose expression is regulated by PPARα.

Each observation used from the data is a measure of the amount of the respective biological target produced for each chemical-concentration-assay pair, hereto referred as the “response”. Each raw response is in units of the assay’s measurement method (typically fluorescence or luminescence) and was normalized by dividing the raw response of the compound by the measured value of negative control dimethyl sulfoxide (DMSO) to yield a fold-over-control (FOC) value. All assays were run in concentration-response format, and the response was fit to a 4-parameter logistic model to derive a characteristic activating concentration, which is the AC50 (concentration at which 50% of maximal activity is seen). Compound-assay combinations were also characterized by whether there was any activity seen over the concentration range tested (hit vs. no hit). For the ATG_PPARa_TRANS assay, 7 chemicals were identified as hits: Bromoxynil, Diclofop-methyl, Diethylhexyl phthalate (DEHP), Fenthion, Imazalil, Lactofen and Perfluorooctanoic acid (PFOA). The chemicals identified as positive in this assay will be of interest to us because the assay is designed to be an indication of PPARα expression through the use of a reporter gene (RG) which is regulated by PPARα. We will evaluate the model’s performance by examining how the model’s results deviate from this assay. Additionally, since there are two assays that attempt to measure PPARα expression levels through the use of a reporter gene (ATG_PPARa_TRANS, NCGC_PPARa_Agonist), but use different technologies to do so, we will use one (ATG_PPARa_TRANS) to build the model and withhold the other (NCGC_PPARa_Agonist) for use as a pseudo validation set.
Since the data are derived from 4 separate technologies they were run on different sets of concentrations, all responses were interpolated to a common, synthetic set of concentrations of \{0.01,0.1,1,10,20,50,75,100\} micromolar. If a compound was identified by the initial data analysis as active, the response was interpolated using the 4-parameter logistic model. If it was not identified as active, a simple linear regression was performed to interpolate to the synthetic set of concentrations. If a compound did not have a full concentration response because it was negative in the prescreen (Novascreen assays only), then the negative control, dimethyl sulfoxide (DMSO), average was used as the response at all concentrations. To ensure that extraneous noise was not introduced by the interpolation, a correlation analysis was performed. All datasets after interpolation were found to have a correlation > 90% with the raw, uninterpolated response data. The original data were run on roughly the same concentration scale (0.01 micromoles to 100 micromoles) despite using different technologies, making this interpolation procedure reasonable.
2.2 Graphical Model Description

We wish to combine the datasets described in section 2.1 in a way that is reflective of the biological structure shown in Figures 1 and 2. The measurement error model for the PPAR-α neighbor is represented using a directed, acyclic graph (DAG) abstraction and assumes an additive measurement error term for each observation. This is shown below:

Measurement Error Model for PPARα Activity

![Graphical Model](image)

Legend:
- Measurement/Assay Error
- Observed Value – Random Variable
- True Value

Figure 3: Measurement error model of the PPARα neighborhood represented as a graph. The dark ovals represent the true, unobserved biological values and the light blue nodes represent the response values observed in the assays. The grey epsilon nodes represent random error associated with each observation.

Each response observation (light-blue nodes) is the result of a true biological value (dark-blue nodes) and an additive random error term (grey nodes). Primarily, a compound
may act via directly binding to the PPARα protein, represented by the “PPARα Binding” node in graph. It may also act by binding to mitogen-activated protein kinase 3 (MAPK3). The effect of this is to enhance the effect of PPARa transcription. The activity at the PPARα RG node is a result of both ligand binding and MAPK3 activity, though this exact relationship will be specified later. Similarly, we see that biological endpoints further downstream, such as HMGCS2 are influenced by PPARα activity.

Thus far we have specified the causal relationships reported in the biological literature, but have not specified a mean model for the parent-child relationships. One approach is to assume that each child’s expected value is a linear combination of its parents. Under this assumption the expected value of the PPARa RG node, conditioned on the values of its parental nodes would be:

$$E(PPARa \ RG \ | \ PPARa \ Binding, MAPK3 \ activity) =$$

$$\beta_0 + \beta_1 \cdot (PPARa \ Binding) + \beta_2 \cdot (MAPK3 \ activity)$$

because the parental nodes for PPARa RG in our measurement error model are the nodes for PPARa binding and MAPK3 activity. This model is attractive because it is easy to fit, simple, and has high interpretability. However, it has been shown that often relationships in genetic and biological networks cannot be accurately captured by linear models (12). Basis-splines, or B-splines, have been shown to be an attractive approach for estimating these potential nonlinear relationships automatically (13).

B-splines take a set of basis functions that may be nonlinear and assume the target response is a linear combination of these basis functions. To detect potential nonlinearities while trying to avoid overfitting, we also fit a second order B-spline model. For this model,
the expected value for the PPARα RG node is:

\[E(PPARα RG \mid PPARα Binding, MAPK3 Activity) = \]

\[\beta_0 + \beta_1 \times (PPARα Binding) + \beta_2 \times (MAPK3 Activity) + \]

\[\beta_3 \times (PPARα Binding)^2 + \beta_4 \times (MAPK3 Activity)^2 \]

Finally, a well known model that incorporates the notations of exponential activation or suppression with asymptotic saturation is the 4 parameter logistic model (14). This model is defined by an upper and lower asymptote, an inflection point, and a factor known as the “hill-slope”, which is the rate at which the response grows or decays. The form of this model is:

\[f(x) = T - \frac{T - L}{1 + \left(\frac{x}{C}\right)^W} \]

where T and L are the upper and lower asymptotes respectively, C is the inflection point, and W is the Hill-slope. Typically the four parameters in these models are estimated under the least-squares criterion using nonlinear methods such as Gauss-Newton (15) or by using alternative methods (16). Returning to mean model PPARα RG, the expected value under this model is:

\[E(PPARα RG) = f(PPARα Binding) + f(MAPK3 Activity) \]

where the \(f(.) \) are the 4 parameter logistic models previously discussed. These models will be evaluated and discussed further in Chapter 3.
CHAPTER 3

Results

3.1 Variable Selection and Preliminary Analysis

To maximize the signal-to-noise ratio in the data used to build the model, we employed some simple heuristics to eliminate uninformative data. First, we performed a preliminary analysis of all endpoints shown in Figure 3, the graphical representation of the measurement error model. These assays represent measurements for direct nuclear receptor ligand binding (NVS_NR_hPPARa), MAPK3 enzymatic activity (NVS_ENZ_hMAPK3), PPARα RG expression (ATG_TRANS_PPARa), LXRα RG expression (ATG_TRANS_LXRa), and HMCS2 expression (CLZD_HMGCS2). We eliminated assays that had three or fewer chemicals identified as positives in the EPA’s initial analysis. This eliminated the assays for RXRα RG (0 positives) and MAPK3 activity (3 positives). Recall that MAPK3 is from the Novascreen suite of assays, which was subject to an initial prescreen before any data analysis was performed. As a result, only 22 chemicals passed the initial prescreen and only 3 of these were identified later as positives. Thus there is no concentration-response data for 298 chemicals, which makes the information content available from this assay quite low. The Novascreen assay for PPARα binding only had 4 chemicals identified as positives during the data analysis, but 118 chemicals passed the initial prescreen, meaning there was at least some data for a large portion of the chemicals.

Next, only chemicals that were identified by the internal initial analysis as active in at least one of the remaining endpoints (NVS_NR_hPPARa, ATG_TRANS_PPARa, ATG_TRANS_LXRa, CLZD_HMGCS2) were included. There was a total 48 chemicals
across 4 assays that satisfied these initial selection criteria. The results are summarized below in Table 1.

<table>
<thead>
<tr>
<th>Biological Target</th>
<th>Assay Name</th>
<th>Number of Positive Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPARα Binding</td>
<td>NVS_NR_hPPARa</td>
<td>4</td>
</tr>
<tr>
<td>PPARα RG Expression</td>
<td>ATG_PPARa_TRANS</td>
<td>9 (7 unique)</td>
</tr>
<tr>
<td>LXRα RG Expression</td>
<td>ATG_LXRa_TRANS</td>
<td>23</td>
</tr>
<tr>
<td>HMGCS2 Expression</td>
<td>CLZD_HMGCS3</td>
<td>47</td>
</tr>
</tbody>
</table>

Within the ToxCast chemical library, several chemicals were run in duplicate and triplicate to assess assay variance and to compute concordance measures. One of the compounds run in triplicate, Diclofop-methyl, was positive in the ATG_PPARa_TRANS assay for all three replicates. As such, all three replicates were included in the model building and evaluation process.

Finally, we examined which relationships in Chapter 2 would be most promising for further analysis. To help visualize the data we made simple scatter plots of each child node vs. one of its parental nodes. These plots are displayed in Figure 4.
Figure 4: Scatter plots investigating the relationships between parent-child nodes.

From the plots, the relationship between the nodes for PPARα binding and PPARα RG expression appears to be best explained by a linear relationship. We fit more complex models discussed in Section 2.1 and both the 2nd order B-spline and Hillslope models suffered from convergence issues in addition to having DIC values that were several orders of magnitude larger than the linear model. The same was true when fitting the more complex models between PPARα RG and HMGCS2. For these reasons, we favored the simple linear relationships between these nodes because the more complex models appear to suffer from lack of fit. The relationship between LXRα RG and PPARα RG does not appear to be linear,
and convergence and DIC were poor for all three models discussed in Section 2.1. The final relationship decided upon for LXRα RG-PPARα RG for further analysis aims to capture the suppression relationship of LXRα RG on PPARα RG found in the literature. If we examine the plot of PPARα RG vs. LXRα RG more closely a potential model becomes evident. This is shown in Figure 5 below.

![Figure 5: Plot showing PPARα RG vs. LXRα RG responses. This plot is suggestive of a negative, nonlinear relationship between the parent node LXRα RG and the child node PPARα RG.](image)

Figure 5 is suggestive of the suppression-type role that LXRα plays in PPARα expression. It appears from the plot that if LXRα is sufficiently high, little to no PPARα expression takes
place. From this, we propose the following functional relationship between PPARα and LXRα:

\[E(\text{PPARα RG}|\text{LXRα RG}) = z \times I(\text{LXRα RG} < \gamma) \]

where z represents PPARα activity from other sources. In this formulation, LXRα acts on PPARα in manner similar to a step function, and for suitably large values, stops PPARα expression almost entirely. However, there is a discrepancy between the KEGG and Ingenuity pathway maps for the direction for this dependency. KEGG shows LXRα downstream from PPARα while the Ingenuity pathway map shows the reverse. However, KEGG pathway map shows PPARα leading to LXRα activity, which we do not see in the data (e.g. Figure 5). In truth, there may be a feedback mechanism between LXRα and PPARα, whereby PPARα RG expression leads to LXRα expression, which in turn limits the activity of PPARα. This type of mechanism cannot be modeled in a hierarchical fashion, as all dependencies must be acyclic. Considering this, we will use the place LXRα RG above PPARα RG in the hierarchy and assume its behavior as limiting PPARα RG.

3.2 Contribution of Each Variable to the Model and Convergence Assessment

We will begin by building the model in a hierarchical fashion, starting from the top and adding nodes as they appear during the PPAR signaling process. We simulated each model for 100,000 iterations on 3 chains, keeping 1000 samples to use for inference and evaluation. We evaluate the level of convergence for each simulation by examining the \(\hat{R} \) value and recorded the DIC for model comparison.
First we model the simple process of PPARa binding leading to PPARα RG expression. The hierarchical model for this scenario is given as:

\[E(PPARa \ Binding) = \mu_1 \sim N(1,10^6) \]

\[E(PPAR\alpha \ RG \mid \mu_1) = \mu_2 = \beta_0 + \beta_1 \mu_1 \]

\[\beta_0, \beta_1 \sim N(1,1000) \]

Next, we assume the observations from the dataset are jointly normal:

\[\mathbf{X}_{2x1} \sim MVN \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \mathbf{\Sigma}_{2x2} \right) \]

\[\mathbf{\Sigma}_{2x2} \sim InverseWishart(I_2, 3) \]

where \(I_2 \) is the 2x2 identity matrix. Each \(\mathbf{X}_{ij} \) represents a data point for a given chemical at a given concentration from the PPARa binding while each \(\mathbf{X}_{2j} \) represents a data point for a given chemical at a given concentration from the Attagene PPARα RG data (ATG_PPARa_TRANS). We assume that our observations share a common covariance matrix and make the standard assumption of an inverse-Wishart prior on this covariance matrix. Note that all variance terms are coded as terms of precision for WinBUGS, where precision is the inverse of variance. The parameter estimates from this model are shown below in Table 2 and the posterior results are summarized in Figure 6.
Table 2: Parameter estimates for simple model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>\hat{R}</th>
<th>Effective Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>1.46</td>
<td>0.081</td>
<td>1.00</td>
<td>1000</td>
</tr>
<tr>
<td>β_1</td>
<td>0.0077</td>
<td>0.0038</td>
<td>1.00</td>
<td>550</td>
</tr>
<tr>
<td>$\Sigma_{1,1}$</td>
<td>12.89</td>
<td>49.00</td>
<td>1.02</td>
<td>190</td>
</tr>
<tr>
<td>$\Sigma_{1,2}$</td>
<td>-0.014</td>
<td>2.69</td>
<td>1.04</td>
<td>1000</td>
</tr>
<tr>
<td>$\Sigma_{2,1}$</td>
<td>-0.014</td>
<td>2.69</td>
<td>1.04</td>
<td>1000</td>
</tr>
<tr>
<td>$\Sigma_{2,2}$</td>
<td>2.47</td>
<td>0.18</td>
<td>1.00</td>
<td>770</td>
</tr>
<tr>
<td>DIC</td>
<td></td>
<td></td>
<td></td>
<td>3801.49</td>
</tr>
</tbody>
</table>
Figure 6: Summary of results for the simplest model fit. The intensity of each cell represents the posterior probability of activity greater than 2 FOC.
Figure 6 is a heatmap showing the posterior probability that PPARα RG expression will be greater than two times the control level. Each cell represents one chemical at one concentration. Two-fold over control was chosen for display purposes, as this level was anecdotally observed to be the noise-band in the PPARα RG expression data. This threshold was not used in the model in any way, but only used to determine the color intensity of each cell: darker colors correspond to higher posterior probabilities. The probability was calculated by the dividing the number of posterior samples greater than two FOC by the total number of samples for the mean of a given chemical/concentration pair.

In this model, the only way to induce PPARα RG expression is by directly binding PPARα. Even though the diagnostic statistics for the model parameters are quite good, there is very little literature support for the chemicals identified as positive in the posterior, except for Perfluorooctanoic acid (PFOA). From this we conclude that this simplistic model is not sufficient to fully capture PPARα expression.

Next, we add LXRα RG to the model. The conditional dependency model is specified below.

\[
E(PPAR\alpha\ Binding) = \mu_1 \sim N(1, 10^6)
\]
\[
E(LXR\alpha\ RG) = \mu_3 \sim N(1, 10^6)
\]
\[
z \sim N(1,10^6), \quad \gamma \sim uniform(2,10)
\]
\[
E(PPAR\alpha\ RG \mid \mu_1, \mu_3, \gamma, z) = \mu_2 = \beta_0 + \beta_1 \ast \mu_1 + I(\mu_3 < \gamma) \ast z
\]
\[
\beta_0, \beta_1 \sim N(1,1000)
\]

Again, we assume multivariate normality on our observations and an inverse-Wishart prior on the covariance matrix.
An important point to note is that this model explicitly allows for PPARα RG activity even in absence of PPARa binding. We know that we do not have all possible sources for PPARα RG activity in our dataset, as we eliminated the assay for MAPK3 due to a lack of information content. However, the term \(I(\mu_3 < \gamma) \) attempts to mediate this lack of data by “trusting” the PPARα RG expression data so long as LXRα RG expression is not too high.

The parameter estimates are shown in Table 3 (covariance parameters omitted, but all were found to have converged) and the posterior results are shown in Figure 7.

\[
X_{3x1} \sim MVN \left(\begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix}, \Sigma_{3x3} \right)
\]

\[
\Sigma_{3x3} \sim InverseWishart(I_3, 4)
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>(\hat{R})</th>
<th>Effective Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0)</td>
<td>0.93</td>
<td>0.062</td>
<td>1.00</td>
<td>700</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>0.00067</td>
<td>0.0041</td>
<td>1.00</td>
<td>1000</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>2.004</td>
<td>0.00024</td>
<td>1.00</td>
<td>1000</td>
</tr>
<tr>
<td>DIC</td>
<td></td>
<td></td>
<td>4668.64</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Parameter estimates from model including PPARα binding and LXRα-driven suppression of PPARα RG expression
Figure 7: Summary of results for model including PPARa Binding and LXRα RG. More chemicals, including those suspected to be PPARa agonist, show strong posterior signals.
The results for this model are encouraging, as many compounds identified in the literature as positive show a strong signal in the posterior. There is strong evidence in the literature that diclofop-methyl (4), lactofen (17), perfluorooctanioc acid (PFOA) (18) are potent \textit{in vivo} PPAR\(\alpha\) agonists and are capable of inducing PPAR\(\alpha\) activity \textit{in vitro}. The only chemical with a strongly positive signal in the posterior not currently well supported in the literature is bromoxynil. However, as of May 2011 a literature search did not yield any evidence that bromoxynil is not a PPAR\(\alpha\) agonist, so it may be that this compound’s PPAR profile has not yet been well studied. Indeed our model suggests that it may be a PPAR\(\alpha\) agonist as it has PPAR\(\alpha\) Binding activity (~ 26 FOC at highest concentration), good PPAR\(\alpha\) RG expression (~ 5.6 FOC at highest concentration), and it does not induce LXR\(\alpha\) (max of 1.1 FOC). All four chemicals that showed strong signals in the posterior also induced PPAR\(\alpha\) RG activity in the independent NCGC PPAR\(\alpha\) RG assay, which was not used in the model.

Three compounds that were identified in the initial analysis as positive for ATG_PPAR\(\alpha\)_TRANS have little to no signal in the posterior. These compounds are fenthion, imazalil, and diethylhexyl phthalate (DEHP). Fenthion has been shown to not be a PPAR\(\alpha\) agonist \textit{in vitro} (4) and there is no evidence which shows it to be an agonist \textit{in vivo}. Imazalil has been shown to be agonist \textit{in vitro}, however it has been shown to be negative \textit{in vivo} (4). DEHP has gained recent notoriety because it is a widely used plasticizer and might be possible endocrine disruptor. However, its PPAR\(\alpha\) activity is more complicated. While DEHP is known to be a PPAR\(\alpha\) agonist \textit{in vitro}, it does not cause PPAR\(\alpha\) expression directly but rather through one of several of its metabolites, mono-2-ethylhexyl phthalate (MEHP) (19). MEHP was determined to be negative in the initial analysis for all PPAR\(\alpha\) assays under
consideration and was left out of the data used to build the model. At first glance this may be worrisome, but the relationship between DEHP’s and MEHP’s interaction with PPARα is complex and not yet settled. Also, it has been suggested that one of endpoints of concern with DEHP (liver tumors) may be caused by a pathway independent of PPARα (20). We will discuss the DEHP/MEHP-PPARα interaction further in the discussion section. Finally, fenthion, imazalil, and DEHP were negative in the NCGC PPARα RG assay as well, giving further corroboration to this model’s results.

Finally we evaluate the full model that includes HMGCS2. The conditional dependency model is specified below:

\[
E(PPARα Binding) = \mu_1 \sim N(1, 10^6) E(LXRα RG) = \mu_3 \sim N(1, 10^6)
\]

\[
z_1, z_2 \sim N(1,10^6), \quad \gamma \sim \text{uniform}(2,10)
\]

\[
E(PPARα RG \mid \mu_1, \mu_3, \gamma, z) = \mu_2 = \beta_0 + \beta_1 \ast \mu_1 + \mathbb{I}(\mu_3 < \gamma) \ast z_1
\]

\[
E(HMGCS2 \mid \mu_2) = \beta_2 \ast \mu_2 + z_2
\]

\[
\beta_0, \beta_1, \beta_2 \sim N(1,1000)
\]

Finally, we again assume the observations are multivariate normal of the form:

\[
X_{4 \times 1} \sim \text{MVN}
\left(
\begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3 \\
\mu_4
\end{pmatrix}
, \Sigma_{4 \times 4}
\right)
\]

\[
\Sigma_{4 \times 4} \sim \text{InverseWishart}(I_4, 5)
\]

The parameter estimates are shown in Table 4 and the posterior summary is shown in Figure 8.
Table 4: Parameter estimates from model including PPARα binding, LXRα RG, and HMGCS2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>\hat{R}</th>
<th>Effective Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>0.93</td>
<td>0.062</td>
<td>1.00</td>
<td>830</td>
</tr>
<tr>
<td>β_1</td>
<td>0.00024</td>
<td>.0041</td>
<td>1.00</td>
<td>1000</td>
</tr>
<tr>
<td>β_2</td>
<td>0.38</td>
<td>.792</td>
<td>1.02</td>
<td>1000</td>
</tr>
<tr>
<td>γ</td>
<td>2.004</td>
<td>.00024</td>
<td>1.00</td>
<td>1000</td>
</tr>
<tr>
<td>DIC</td>
<td></td>
<td></td>
<td></td>
<td>6414.06</td>
</tr>
</tbody>
</table>
Figure 8: Summary of results for model including PPARα binding, LXRα RG, and HMGCS2
This model produces nearly identical results to the previous one. This can be explained by a couple of reasons. The overlap between chemicals activating HMGCS2 and not activating LXRα is considerable. Thus, adding HMGCS2 to the model reinforces signals that were found in model that did not include HMGCS2. However, the DIC is nearly 1,750 worse with HMGCS2 in the model. Since we are primarily concerned with analysis of these chemicals, and both models produce identical conclusions, this is not much of a concern.
3.3 Discussion and Future Directions

In this paper we have outlined a technique for combining multiple sources of information about chemical’s potential activity in a biological pathway. We have shown how these biological pathways can be abstracted as graphs and then viewed in terms of hierarchical models and Bayesian networks.

The results of this approach are promising. The raw data showed 9 chemicals (7 unique) as being positive for PPARα binding. However, when other sources of data related the PPARα signaling were incorporated, the posterior showed that only 4 unique chemicals had truly strong biological signals. Of these 4 positives, 3 had literature evidence corroborating both in vitro and in vivo PPARα activity. We could not find any literature supporting Bromoxynil as a PPARα agonist, but we were also unable to find any literature to dispute this claim. Of the three compounds initially identified as positive for PPARα RG in the raw data but were not in the posterior, 2 (imazalil and fenthion) were supported by the literature as being negatives. While DEHP is largely thought to be a PPARα agonist, it is believed to activate this pathway through its metabolites, primarily MEHP. Since these assays have limited metabolic competency, it is not surprising that the DEHP’s posterior shows a weak signal according to conventional wisdom about the DEHP-PPARα relationship. However, there is some dissent in the literature about the nature of DEHP’s, and consequently MEHP’s, agonist behavior on PPARα. The conventional notion that peroxisome proliferators, such as DEHP and MEHP, interact directly with PPARα has been questioned (25), and our data and model appear to agree with this challenge. Therefore, we
believe that the apparent partial agonism we see in the posterior may be an accurate portrayal of complex and perhaps not yet fully understood interaction between DEHP and PPARα.

Finally, all 3 of these compounds were also negative in the separate and independent NCGC PPARα RG assay, strengthening the belief that the model is correctly identifying compounds that directly interact with PPARα. However, since the NCGC assay also has limited metabolic capacity, it too would miss compounds that interact with PPARα via a metabolite.

This type of approach can be used on any biological pathway that can be probed using multiple assays. These techniques can be viewed as filtering or smoothing raw and noisy, in vitro data, giving researchers a clearer picture of how a compound is acting on the pathway as a whole. Bayesian networks and hierarchical models have been previously successful in modeling high-throughput biological data (18, 28) due to their ability to incorporate and synthesize various sources of information while encapsulating differing degrees of uncertainty. The approach outlined here has benefitted from these strengths of the Bayesian approach while also being general enough to extend to other pathways.
REFERENCES

A.1 R code

The code used to load the data, call WinBUGs, and analyze the simulation is given below.

All work was done using the standard R platform along with the packages listed.

```r
library(R2WinBUGS)
library(coda)
library(ggplot2)

data.dir <- "F:/Thesis/data/"
data.in <- read.csv(paste(data.dir,"PPARa data.csv",sep=""),header=T)
dsstox.table <- read.csv("F:/Thesis/data/DSSTOX_KEY.csv",header=T)
X <- data.in[unique(c(which(data.in[,"PPARa.active"]==TRUE),
which(data.in[,"PPAR_BINDING.active"]==TRUE),
which(data.in[,"LXRa.active"]==TRUE),
which(data.in[,"HMGCS2.active"]==TRUE))),]
X <- X[,c(1,3:8)]
dsstox.ids <- X[,1]
chems <- NULL
for(dss in dsstox.ids)
{
  chems <- c(chems,as.character(dsstox.table[which(dsstox.table[,1]==dss),3]))
}

bugs.dir <- "C:/Program Files (x86)/WinBUGS14"
J <- nrow(X)

Y1 <- as.numeric(X[,4])  #DB
Y2 <- as.numeric(X[,2])  #PPARa
Y3 <- as.numeric(X[,6])  #LXR
Y4 <- as.numeric(X[,7])  #HMGCS2

## Allows for easy switching between various models ##
lin <- "MVNPPARa.bug"
simp <- "Simple.PPARa.bug"
hmg <- "PPARa-HMGCS2.bug"
lxr <- "PPARa-LXRa.bug"
full <- "PPARa-HMGCS2-LXRa.bug"
work.lin <- "F:/Thesis/PPARa example/code/worklin"

#Data and parameters used in full model
#data <- list ("J", "Y1", "Y2","Y3","Y4","mu")
#parameters <- c("a","SIGMA","mu","I1","cutoff")

#Data for LXR model
#data <- list ("J", "Y1", "Y2","Y3")

data <- list ("J", "Y1", "Y2","Y4")
parameters <- c("a","SIGMA","mu")
sim <- bugs(data, inits=NULL, parameters,model.file=hmg,
bugs.dir=bugs.dir,working.directory=work.lin, n.chains=3, n.iter=10000, debug=F)
stats <- sim$summary

# Some Diagnostics from WinBUGS #
mean.rhat <- mean(stats[,8])
```

42
med.rhat <- median(stats[,8])
max.rhat <- max(stats[,8])
min.n <- min(stats[,9])
DIC <- sim$DIC

ppara.post <- sim$sims.list$mu[,2]
thresh <- 2
percent.greater <- NULL
Get % distribution > 2 for each PPPARa
for(i in 1:ncol(ppara.post))
{
 this.mu <- ppara.post[,i]
p.val <- as.numeric(round(length(which(this.mu > thresh))/length(this.mu),5))
conc <- as.numeric(data.in[i,"conc"])
##because I don't know how to get proper ordering in ggplot2##
if(conc == 100) conc <- 99
 percent.greater <- rbind(percent.greater, c(chems[i],conc,p.val))
}
colnames(percent.greater) <- c("Name","Concentration","p.val")
CDF <- data.frame(Name=percent.greater[,"Name"],
 Concentration=percent.greater[,"Concentration"],
 p.val=percent.greater[,"p.val"])

#Code for plotting posterior results#
(p <- ggplot(CDF, aes(Concentration, Name)) + geom_tile(aes(fill=
 as.numeric(as.character(p.val))),colour = "grey")
 + scale_fill_gradient(name = paste("Pr(Xij) > ",thresh,sep=""),low="white",
 high="steelblue", limits=c(0,1)))

base_size <- 10
p + theme_grey(base_size = base_size) + labs(x = "Concentration", y = "Chemical") +
 scale_x_discrete(expand = c(0, 0)) +
 scale_y_discrete(expand = c(0, 0)) +
 plot.title = theme_text(size = 20, hjust = .7, vjust=1), title="Posterior
Results for PPAR-alpha (Full Model)",
 axis.title.x = theme_text(size = 15, hjust=.6, vjust = 0),
 axis.title.y = theme_text(size = 15, angle=90),
 axis.ticks = theme_blank(),
 legend.title = theme_text(size = 10, face = "bold", hjust=.15),legend.position
 = "right",
 legend.text = theme_text(size = 10),
 axis.text.x = theme_text(colour = "black"))
A.2 WinBUGS code

The probability models discussed in Chapter 3 are implemented in WinBUGS code below.

The version of WinBUGS used is 1.4.

```winbugs
## Model for NR binding -> PPARa expression ##
model {
  ## Scale matrix for precision matrix ##
  R[1,1] <- 1.0E1; R[1,2] <- 0;
  R[2,1] <- 0; R[2,2] <- 1.0E1;

  TAU[1:2,1:2] ~ dwish(R[,],3)
  SIGMA[1:2,1:2] <- inverse(TAU[1:2,1:2])

  a[1] ~ dnorm(1,1.0E-3)
  a[2] ~ dnorm(1,1.0E-3)

  for (j in 1 : J)
  {
    mu[j,1] ~ dnorm(1, 1.0E-6)

    X[j,1] <- Y1[j]
    X[j,2] <- Y2[j]

    X[j,1:2] ~ dmnorm(mu[j,1:2],TAU[,])
  }
}

## Model for (NR binding, LXRa) -> PPARa ##
model {
  ## Scale matrix for precision matrix ##
  R[1,1] <- 1.0E1; R[1,2] <- 0; R[1,3] <- 0
  R[2,1] <- 0; R[2,2] <- 1.0E1; R[2,3] <- 0
  R[3,1] <- 0; R[3,2] <- 0; R[3,3] <- 1.0E1

  TAU[1:3,1:3] ~ dwish(R[,],4)
  SIGMA[1:3,1:3] <- inverse(TAU[1:3,1:3])

  ## Set up alphas to scale basis functions ##
  a[1] ~ dnorm(1,1.0E-2)
  a[2] ~ dnorm(1,1.0E-2)
  cutoff ~ dunif(2,10)

  for (j in 1 : J)
  {
    mu[j,1] ~ dnorm(1, 1.0E-6)
    mu[j,3] ~ dnorm(1, 1.0E-6)

    I1[j] <- step(cutoff - Y3[j])
    z[j] ~ dnorm(1, 1.0E-6)
  }
```

\[
X[j,1] \leftarrow Y1[j] \\
X[j,2] \leftarrow Y2[j] \\
X[j,3] \leftarrow Y3[j] \\
X[j,1:3] \sim \text{dmnorm}(\mu[j,1:3], \mathbf{T}) \\
\]

}\}

Full Model
model {
 ## Scale matrix for precision matrix ##
 R[1,1] \leftarrow 1.0E1; R[1,2] \leftarrow 0; R[1,3] \leftarrow 0; R[1,4] \leftarrow 0 \\
 R[2,1] \leftarrow 0; R[2,2] \leftarrow 1.0E1; R[2,3] \leftarrow 0; R[2,4] \leftarrow 0 \\
 R[3,1] \leftarrow 0; R[3,2] \leftarrow 0; R[3,3] \leftarrow 1.0E1; R[3,4] \leftarrow 0 \\
 R[4,1] \leftarrow 0; R[4,2] \leftarrow 0; R[4,3] \leftarrow 0; R[4,4] \leftarrow 1.0E1 \\
 \mathbf{T}[1:4,1:4] \sim \text{dwish}(\mathbf{R}, 5) \\
 \Sigma[1:4,1:4] \leftarrow \text{inverse}(\mathbf{T}[1:4,1:4]) \\

 ## Set up alphas to scale basis functions ##
 a[1] \sim \text{dnorm}(1, 1.0E-2) \\
 a[2] \sim \text{dnorm}(1, 1.0E-2) \\
 a[3] \sim \text{dnorm}(1, 1.0E-2) \\
 \text{cutoff} \sim \text{dunif}(2, 10) \\
 \text{for } (j \in 1 : J) \\
 {
 \mu[j,1] \sim \text{dnorm}(1, 1.0E-3) \\
 \mu[j,3] \sim \text{dnorm}(1, 1.0E-3) \\
 z[j] \sim \text{dnorm}(1, 1.0E-3) \\
 \text{II}[j] \leftarrow \text{step}(\text{cutoff} - Y3[j]) \\
 \mu[j,2] \leftarrow a[1] + a[2]*\mu[j,1] + \text{II}[j]*\mu[j,3] \\
 \mu[j,4] \leftarrow a[3]*\mu[j,2] + z[j] \\
 X[j,1] \leftarrow Y1[j] \\
 X[j,2] \leftarrow Y2[j] \\
 X[j,3] \leftarrow Y3[j] \\
 X[j,4] \leftarrow Y4[j] \\
 X[j,1:4] \sim \text{dmnorm}(\mu[j,1:4], \mathbf{T}) \\
 } \\
 }

Full Model