
ABSTRACT

ALLOCCA, MICHAEL P. L∞ Algebra Representation Theory. (Under the direction
of Dr. Thomas Lada).

L∞ algebras are natural generalizations of Lie algebras from a homotopy theoreti-

cal point of view. This concept was originally motivated by a problem in mathematical

physics, both as a supporting role in deformation theory and more recently in closed

field string theory. Many elementary properties and classical theorems of Lie algebras

have been proven to hold true in the homotopy context. Specifically, representation

theory of Lie algebras is a subject of current research. Lada and Markl proved the

existence of a homotopy theoretic version of Lie algebra representations in the form

of L∞ algebra representations and constructed a one-to-one correspondence between

these representations and the homotopy version of Lie modules, L∞ modules [9]. This

dissertation further explores L∞ modules, highly motivated by classical Lie algebra

representation theory.
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Chapter 1

Introduction

One of the most interesting phenomena in topology is the loss of certain algebraic

structures on topological spaces that is observed when continuously deforming one

space into another. Often times several relations will no longer hold as equalities,

but rather up to homotopy. A homotopy can be viewed as a continuous deformation

of one map into another. For example, associativity of multiplication is among the

simplest of algebraic structures. If we consider multiplication to be a binary map,

m2, on a topological space, the usual associativity relation states the following:

m2 ◦ (m2 × id) = m2 ◦ (id×m2)

When examining the loss of algebraic structures from a topological point of view,

it is interesting to investigate what happens if we instead have the following:

m2 ◦ (m2 × id) ' m2 ◦ (id×m2)

where ' means ‘homotopic’. More specifically, if X is a space endowed with an

associative multiplication and Y is homotopy equivalent to X, then the multiplication

inherited by Y from X need not be associative but rather homotopy associative in

the above sense. In fact, Y inherits a collection of compatible higher homotopies

mn : Kn × Y n → Y where Kn is a polytope of dimension n− 2 for n ≥ 2 as defined

by Stasheff in [12].
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As also explored by Stasheff in [12], all of this may be expressed in an analogous

setting over a chain complex using chain homotopies. In building a coderivation d

on the suspended complex satisfying d2 = 0, homotopy associativity requires similar

higher homotopies in the form of multilinear n-ary operations, mn, that build an

algebraic structure known as an A∞ algebra.

Similarly, the Jacobi identity is a significant algebraic structure that is central to

any Lie algebra. If a Lie bracket is expressed as a bilinear map, l2, then the Jacobi

identity states the following:

l2 ◦ l2 = 0

where l2 is extended via skew-symmetry when evaluated on three elements. Following

the same type of reasoning in an algebraic setting over a chain complex, the Jacobi

identity can then be expressed up to homotopy by the following relation:

l2 ◦ l2 ' 0

Through similar reasoning outlined above, the need arises for higher homotopies

in the form of skew-symmetric multilinear n-ary operations, ln, that form an algebraic

structure known as an L∞ algebra. This concept of a Lie algebra up to homotopy

was originally motivated by a problem in deformation theory [11], and more recently

in closed field string theory [13] [16]. From a purely mathematical viewpoint, A∞

and L∞ algebras function as natural generalizations of associative and Lie algebras

respectively.

In spite of the robust topological background and applications in theoretical

physics, the very nature of L∞ algebras as generalizations of Lie algebras warrants

further study from a purely algebraic point of view. L∞ algebras were first explored

in depth in [10] and further in [9]. Since then, many basic classical Lie algebra ideas

have proven to generalize beautifully to the homotopy context. However, due to the

intense computations associated with homotopy algebras, many unanswered ques-

tions that correspond to even the most basic concepts in classical Lie algebra remain.

Specifically, Lie algebra representation theory is a current topic of fruitful research
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that warrants an investigation of the manner in which it generalizes to the homotopy

context. In [9], the generalization of a Lie algebra representation up to homotopy

was explored and it was shown that there exists a one-to-one correspondence between

these structures and natural generalizations of Lie modules. There has been little

further investigation on this subject, which has great potential to facilitate the study

of L∞ algebras in a manner similar to classical Lie algebra representation theory.

This dissertation explores L∞ algebra representations in the equivalent language

of L∞ modules. We will synthesize and contribute to basic concepts from current

literature. We will construct a finite dimensional L∞ module and a new finite dimen-

sional L∞ algebra structure. We will also explore structure-preserving maps between

L∞ modules, a concept that is central to classical Lie algebra representation theory

and generalizes remarkably up to homotopy.
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Chapter 2

Background and Notation

We now establish some of the conventions and definitions that are central to

this thesis. We will then proceed with an understanding of the sign computations

associated with a graded setting and basic combinatorics that are relevant to the

main results of this dissertation.

2.1 Graded Vector Spaces and Koszul Signs

The investigation of algebraic structures up to homotopy is mostly conducted in

an analogous chain complex setting. The sequence of abelian groups or modules in

this setting will be interpreted as a more general version of a vector space.

Definition 2.1.1. A Z-graded vector space over a field F is a direct sum V =
⊕
i∈Z
Vi of

vector spaces over F. For n ∈ Z, elements x ∈ Vn are said to have degree n, denoted

|x| = n.

Remark 2.1.2. For simplicity, we will assume that any vector space we encounter will

be defined over a field of characteristic 0.

Remark 2.1.3. Given two Z-graded vector spaces, V and W , their direct sum inherits

the same gradation in the following sense:

(V ⊕W )i = Vi ⊕Wi
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Hence, for an element x⊕ y ∈ V ⊕W , |x⊕ y| = |x| = |y|.

As expected, adding vector multiplication to this type of structure will yield a

more general version of an algebra.

Definition 2.1.4. A Z-graded associative algebra over a field F is a Z-graded vector

space over F, A =
⊕
i∈Z
Ai, equipped with associative multiplication, denoted ‘·’, that

satisfies the following:

Ai · Aj ⊆ Ai+j

Remark 2.1.5. To avoid ambiguity, from now on we will assume that any graded

structure adheres to a Z-grading. It is, however, worth noting that many of the

topics that will be addressed in the following chapters have been studied in a Z2-

graded setting.

To generalize a binary map in a graded setting, we also consider an n-ary map on

the tensor product of elements.

Definition 2.1.6. Let V be a graded vector space. A map ln : V ⊗n → Vn is said to

be of degree k if ln(x1 ⊗ x2 ⊗ · · · ⊗ xn) ∈ Vk+|x1|+|x2|+···+|xn|.

Example 2.1.7. Let V be a graded vector space and suppose x1 ∈ V4, x2 ∈ V−1, and

x3 ∈ V0. Then |x1| = 4, |x2| = −1 and |x3| = 0. If l3 : V ⊗ V ⊗ V → V is of degree

1, then l3(x1 ⊗ x2 ⊗ x3) ∈ V1+4−1+0 = V4.

In the context of a graded vector space, objects often adhere to the “Koszul sign”

convention [14]. That is, whenever two “things” of degree p and q are permuted, we

multiply the result by (−1)pq. This applies to the degrees of vector space elements

as well as the degrees of maps. Given a permutation σ acting on a string of symbols,

we denote the Koszul sign of σ by ε(σ).

Commutativity is a rare luxury in a graded setting. However, skew-symmetry is

more common. When defining an n-ary map on elements in a graded setting in which

elements do not commute, the Koszul sign is often times employed in conjunction

with a permutation sign.
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Definition 2.1.8. Let V be a graded vector space and ln : V ⊗ → V be a multilinear

map on V . We say ln is skew-symmetric if

ln(v1 ⊗ v2 ⊗ · · · ⊗ vn) = (−1)σε(σ)ln
(
σ(v1 ⊗ v2 ⊗ · · · ⊗ vn)

)
for all σ ∈ Sn, where (−1)σ is the permutation sign and ε(σ) is the Koszul sign.

Example 2.1.9. Let V be a graded vector space and x1, x2, x3 ∈ V . Let σ = (132) be

a permutation in S3 and l3 : V ⊗ → V be a multilinear skew-symmetric map on V .

Then l3(x1, x2, x3) = −(−1)|x2||x3|l3(x1, x3, x2). Here, −1 is the permutation sign and

ε(σ) = (−1)|x2||x3| is the Koszul sign.

Remark 2.1.10. In a graded associative algebra, multiplication is a binary map that

in general is not commutative nor skew-symmetric. We will, however, primarily

encounter graded structures that do include skew-symmetric maps for the majority

of this dissertation.

2.2 Unshuffles

When n-ary maps are extended to be evaluated on more than n elements, often

times a certain pattern is utilized involving a collection of permutations that maintain

an ascending order in two groups.

Definition 2.2.1. Let Sn denote the symmetric group of degree n. A permutation

σ ∈ Sn is a (j, n− j)-unshuffle for 0 ≤ j ≤ n if

σ(1) < σ(2) · · · < σ(j) and σ(j + 1) < σ(j + 2) < · · · < σ(n).

Example 2.2.2. σ = (1 5 3 2)(4 6) ∈ S7 is a (4, 3)-unshuffle since

σ({1, 2, 3, 4, 5, 6, 7}) = { 2︸︷︷︸
σ(1)

, 3︸︷︷︸
σ(2)

, 4︸︷︷︸
σ(3)

, 6︸︷︷︸
σ(4)

}{ 1︸︷︷︸
σ(5)

, 4︸︷︷︸
σ(6)

, 7︸︷︷︸
σ(7)

}

To avoid confusion, we note that σ(i) in this definition refers to the element in the

ith position rather than the position to which i is sent via σ. For example, σ sends 1
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to 5 in the previous example, however σ(1) = 2 since 2 sits in the first position in the

resulting string. This convention is utilized in order to remain consistent with the

current literature.

We may further define unshuffles to include permutations that arrange more than

two groups of string elements in ascending order.

Definition 2.2.3. A permutation σ ∈ Sn is a (i1, i2, · · · , ik)-unshuffle (with i1 + i2 +

· · ·+ ik = n) if

σ(1) < · · · < σ(i1),

σ(i1 + 1) < · · · < σ(i1 + i2),

...

and σ(i1 + · · ·+ ik−1 + 1) < · · · < σ(n).

Example 2.2.4. σ = (26475) ∈ S7 is a (2,3,2)-unshuffle since

σ({1, 2, 3, 4, 5, 6, 7}) = { 1︸︷︷︸
σ(1)

, 5︸︷︷︸
σ(2)

}{ 3︸︷︷︸
σ(3)

, 6︸︷︷︸
σ(4)

, 7︸︷︷︸
σ(5)

}{ 2︸︷︷︸
σ(6)

, 4︸︷︷︸
σ(7)

}

The same interpretation of σ(i) is used for these generalized unshuffles.

In the homotopy setting associated with the main results of this thesis, n-ary maps

are often extended on strings of elements greater than n through unshuffles.

Example 2.2.5. Let l2 : V ⊗ V → V be a bilinear map on a vector space V . Let

x, y, z ∈ V . We may extend l2 : V ⊗ V ⊗ V → V ⊗ V on three inputs by summing

over all (2− 1)-unshuffles in the following sense:

l2(x⊗ y ⊗ z) = l2(x⊗ y)⊗ z ± l2(x⊗ z)⊗ y ± l2(y ⊗ z)⊗ x

The signs associated with the above relation are dependent on whether l2 is skew-

symmetric and the use of the Koszul sign in the given algebraic structure. It is

worth noting that the Jacobi identity of a Lie algebra discussed in the introduction

is extended via skew-symmetry on three inputs over all (2− 1)-unshuffles. This topic

will be addressd in greater deatil in the next chapter.
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Remark 2.2.6. This type of map extension over unshuffles coincides with the extension

of a linear map on a graded vector space V to a coderivation on the symmetric

coalgebra
∧∗ V . The extension of a linear map on V to a coderivation on the tensor

coalgebra T ∗V involves a different construction, however the main results of this

dissertation in the context of L∞ algebras do not utilize it. For a more explicit

description of these coderivations, see [7].

In general, a skew-symmetric multilinear map lk : V ⊗n → V ⊗(n−k+1) may be

extended on n > k elements by the following definition:

lk(v1 ⊗ v2 ⊗ · · · ⊗ vn) =
∑
σ

(−1)σε(σ)(lk(vσ(1) ⊗ · · · ⊗ vσ(k))⊗ vσ(k+1) ⊗ · · · ⊗ vσ(n)

where the summation is taken over all (k, n− k)-unshuffles.

If the bilinear map l2 of example 2.2.5 were to be skew-symmetric, it would extend

to three inputs as follows:

l2(x⊗ y ⊗ z) = l2(x⊗ y)⊗ z − (−1)|y||z|l2(x⊗ z)⊗ y + (−1)|x|(|y|+|z|)l2(y ⊗ z)⊗ x

Remark 2.2.7. An extension of a skew-symmetric multilinear map itself need not be

skew-symmetric. For example, l1(x⊗ y ⊗ z) 6= −(−1)|x||y|l1(y ⊗ x⊗ z) since

l1(x⊗ y ⊗ z) = l1(x)⊗ y ⊗ z − (−1)|x||y|l1(y)⊗ x⊗ z + (−1)|z|(|x|+|y|)l1(z)⊗ x⊗ y

and

− (−1)|x||y|l1(y ⊗ x⊗ z)

= −(−1)|x||y|
[
l1(y)⊗ x⊗ z − (−1)|x||y|l1(x)⊗ y ⊗ z + (−1)|z|(|x|+|y|)l1(z)⊗ y ⊗ x

]
= l1(x)⊗ y ⊗ z − (−1)|x||y|l1(y)⊗ x⊗ z − (−1)|x||y|+z|(|x|+|y|)l1(z)⊗ y ⊗ x

However, when paired with another skew-symmetric multilinear map, the composition

will itself be skew-symmetric. That is, if li : V ⊗i → V and lj : V ⊗j → V are skew-

symmetric and i+ j = n+ 1, then li ◦ lj : V ⊗n → V is skew-symmetric. For example,

if l3 : V ⊗3 → V is also multilinear and skew-symmetric, then l3l1(x ⊗ y ⊗ z) =
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−(−1)|x||y|l3l1(y ⊗ x⊗ z) since

l3l1(x⊗ y ⊗ z) = l3(l1(x)⊗ y ⊗ z)− (−1)|x||y|l3(l1(y)⊗ x⊗ z)

+ (−1)|z|(|x|+|y|)l3(l1(z)⊗ x⊗ y)

and

− (−1)|x||y|l3l1(y ⊗ x⊗ z)

= −(−1)|x||y|
[
l3(l1(y)⊗ x⊗ z)− (−1)|x||y|l3(l1(x)⊗ y ⊗ z)

+ (−1)|z|(|x|+|y|)l3(l1(z)⊗ y ⊗ x)
]

= l3(l1(x)⊗ y ⊗ z)− (−1)|x||y|l3(l1(y)⊗ x⊗ z)− (−1)|x||y|+z|(|x|+|y|)l3(l1(z)⊗ y ⊗ x)

= l3(l1(x)⊗ y ⊗ z)− (−1)|x||y|l3(l1(y)⊗ x⊗ z) + (−1)|z|(|x|+|y|)l3(l1(z)⊗ x⊗ y)

This will be a significant consideration in the later chapters, as it will eliminate

unnecessary computations.

It is also worth noting that if a permutation transposes consecutive elements of

odd order in a skew-symmetric setting, then no sign change takes place.

Example 2.2.8. Let V be a graded vector space and x1, x2, x3 ∈ V with x2 ∈ V−1 and

x3 ∈ V3. Let σ = (132) be a permutation in S3 and l3 : V ⊗ → V be a multilinear

skew-symmetric map on V . Then

l3(x1, x2, x3) = −(−1)|x2||x3|l3(x1, x3, x2) = −(−1)−3l3(x1, x3, x2) = l3(x1, x3, x2).

2.3 Shorthand Notation

For brevity, we will often times adopt a shorter notation for several expressions

when convenient:

• At times, we will omit ‘| |’ when describing degrees for the sake of concise

computations. For example, in lieu of (−1)|x||y| we will often write (−1)xy.



10

• When expressing maps on elements in V ⊗n, we will sometimes omit ‘⊗’ in

favor of commas for ease of viewing. For example, l4(x1 ⊗ x2 ⊗ x3 ⊗ x4) will

be synonymous with l4(x1, x2, x3, x4). When the context is clear, we will also

adopt this concision for elements in direct sums. For example, if x1 ⊕ x2 is an

element of the direct sum V ⊕W , we will sometimes write (x1, x2) instead.

• In the case of skew-symmetry, we will use χ(σ) to denote the total sign effect

of a permutation on an element of a graded vector space. That is, for any

unshuffle σ, χ(σ) = (−1)σε(σ) where (−1)σ is the permutation sign and ε(σ) is

the Koszul sign.

Example 2.3.1. Let V be a graded vector space, x1, x2, x3 ∈ V , and l2 : V ⊗ V → V

be a degree 0 skew-symmetric map. Then

l2(l2(x1, x2), x3) = (−1)︸︷︷︸
(−1)σ

(−1)(0+x1+x2)(x3)︸ ︷︷ ︸
ε(σ)︸ ︷︷ ︸

χ(σ)

l2(x3, l2(x1, x2))

It is important to observe that even though the degree of l2 is 0, it is taken into

account when permuting string elements with l2. For Koszul signs, this is true for

all n-ary maps, as their degrees must also be included when reordering strings. The

permutation sign is present as a result of the skew-symmetry of l2. These will be

important considerations in the later chapters, as we will be working with n-ary

skew-symmetric maps of various degrees.
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Chapter 3

Representations of Lie Algebras

The study of Lie algebras is not only intrinsically beautiful from a mathematical

viewpoint, it is also useful in many areas of theoretical physics. Furthermore, Lie

algebra representation theory has grown into a flourishing area of current research that

facilitates the study of Lie algebras in a more concrete manner. It is this robust nature

that provides the main motivation for the topics that this dissertation addresses.

In this chapter, we will review some basic concepts from the study of classical Lie

algebras that will be relevant in building the main results of the later chapters. Most

of the ideas in this chapter are summed up and proven concisely in [3] and [4].

3.1 Lie Algebras

Generally speaking, Lie algebras are vector spaces equipped with a special type

of “vector multiplication” that need not be commutative nor associative. They are

closely related to Lie groups and differentiable manifolds, as difficult problems with

Lie groups can be reduced to simpler problems in their associated Lie algebras. In

the context of this thesis, we focus on the basic properties of Lie algebras for the sake

of generalization up to homotopy.

Definition 3.1.1. A Lie algebra is a vector space L over a field F equipped with an

operation [ , ] : L × L → L called the bracket that satisfies the following conditions
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for all x, y, z ∈ L:

1. [ , ] is bilinear

2. [x, x] = 0

3. [[x, y], z]− [[x, z], y] + [[y, z], x] = 0 (Jacobi identity)

Property 2 implies skew-symmetry, provided char(F) 6= 2. That is, for all x, y ∈ L,

[x, y] = −[y, x]. This is an important consideration for L∞ algebras. Property 3 is

equivalent to the expression l2 ◦ l2 = 0 described in previous chapters by interpreting

the bracket as l2 and extending via skew-symmetry on three elements x, y, z and

summing over all (2− 1)-unshuffles.

It is fairly elementary to verify that given any associative algebra, A, its multipli-

cation ‘·’ induces a Lie algebra on A through the commutator bracket:

[x, y] = x · y − y · x

If we consider a finite dimensional vector space, V , then the set of linear trans-

formations on V (denoted end(V )) can be given the structure of a more concrete

Lie algebra and is easily computed by representing linear transformations as matri-

ces. This is because end(V ) is an associative algebra under composition, hence its

commutator gives it the structure of a Lie algebra. This also holds true for infinite

dimensional vector spaces. Due to its significance, this Lie algebra is given a special

name.

Definition 3.1.2. Let V be a vector space and end(V ) denote the associative algebra

of linear transformations on V . Define a bracket operator on end(V ) by [x, y] =

x◦y−y ◦x. Under this operator, end(V ) forms a Lie algebra called the general linear

algebra, denoted gl(V ).

Central to the study of any algebraic constructs are structure-preserving maps

between them. These maps preserve structure, for example, by respecting the addition

and/or multiplication of elements. In the case of Lie algebras, a very natural definition

of this arises in preserving the bracket.
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Definition 3.1.3. Let L and L′ be Lie algebras over a field F. A linear transformation

ϕ : L→ L′ is a (Lie algebra) homomoprhism if ϕ([x, y]) = [ϕ(x), ϕ(y)] ∀ x, y ∈ L.

This type of structure-preserving map is especially significant when associating a

Lie algebra with the general linear algebra, which gives rise to the basic ideas behind

representation theory.

3.2 Representations

Given a vector space V , the general linear algebra gl(V ) is very concrete in the

sense that the bracket is ultimately computed through matrix multiplication. When

a more abstract but finite dimensional Lie algebra is associated with gl(V ) through a

structure-preserving map, much can be told about it via this concrete nature. In fact,

for F = R or C, this is always true; by Ado’s theorem [4], for some finite dimensional

vector space V , L is isomorphic to a subalgebra of gl(V ).

This is the general idea behind Lie algebra representation theory. We operate

under the philosophy that the study of Lie algebras can be difficult, whereas linear

algebra can be much easier, so it is useful to represent Lie algebra problems as linear

algebra problems through homomorphisms.

Definition 3.2.1. Let L be a finite dimensional Lie algebra over a field F and V a

vector space over F. A representation of L is a homomorphism ϕ : L→ gl(V ).

Remark 3.2.2. V and L both need not be finite dimensional.

Example 3.2.3. Let L be a finite dimensional Lie algebra over F and x ∈ L. Define

adx : L → L by adx(y) = [x, y] ∀ y ∈ L. Then adx ∈ end(V ), hence adx ∈ gl(V ).

Furthermore, if we define ad : L→ gl(V ) by ad(x) = adx, then ad is a representation

called the adjoint representation.

The adjoint representation plays a particularly significant role in the study of

semisimple Lie algebras, which may be classified by the weights of their adjoint rep-

resentations.
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3.3 Lie Modules

Given a Lie algebra representation, it is often more convenient to express it in a

different but equivalent convention.

Definition 3.3.1. Let L be a Lie algebra over a field F and V a vector space over

F. V is an L-module if there exists an operation L× V → V given by (x, v)→ x · v
such that

1. x · (au+ bv) = a(x · u) + b(x · v)

2. (ax+ by) · v = a(x · v) + b(y · v)

3. [x, y] · v = x · (y · v)− y · (x · v)

The use of module language is equivalent to working with representations by

defining the homomorphism ϕ : L→ gl(V ) by

ϕ(x)(v) = x · v. (3.3.1)

That is, given a Lie module V , the equation ϕ(x)(v) = x ·v defines a representation of

L. Conversely, given a representation ϕ of L, using equation 3.3.1 to define a module

action induces an L-module, as all three properties of definition 3.3.1 can easily be

verified. Hence there is a one-to-one correspondence between representations of a Lie

algebra L and L-modules.

Any structure-preserving map between two L-modules must preserve the module

actions. Subsequently, we have the following definition.

Definition 3.3.2. Let L be a Lie algebra over F and M , M ′ be L-modules. An (L-

module) homomorphism is a linear map ψ : M → M ′ such that ψ(x ·m) = x · ψ(m)

∀x ∈ L, m ∈M .

The most fundamental example of a Lie module occurs over itself.

Example 3.3.3. Let L be a Lie algebra over F. Then L is an L-module via the action

x · y = [x, y] = adx(y).
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It is fairly simple to verify the module axioms for this example using the Jacobi

identity. Furthermore, this simple case where a Lie algebra L is itself an L-module

corresponds to the adjoint representation of L.
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Chapter 4

L∞ Algebras

From a purely algebraic viewpoint, an L∞ algebra is a natural generalization of

a Lie algebra. Its construction stems from a similar construction of an A∞ algebra,

which functions as a natural generalization of an associative algebra. In this chapter

we summarize many of the key results of [10] and [9], which in conjunction with

the previous chapters and recent developments will lay the groundwork for the main

results of this dissertation. The Koszul sign convention described earlier will be

employed in all graded settings.

4.1 A∞ Motivation

The study of A∞ algebras has grown into a fruitful area of research. Most of it

can be traced back to Stasheff’s work in [12]. It is beyond the scope of this thesis

to investigate these structures in detail. We will, however, summarize some of his

results for the sake of motivating recent work with L∞ Algebras.

We first consider a more general version of definition 2.1.4.

Definition 4.1.1. A differential graded associative algebra is a graded associative

algebra A equipped with a graded differential ∂ : A → A of degree −1 or 1 that

satisfies the following:

1. ∂ ◦ ∂ = 0
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2. ∂(x1 · x2) = ∂(x1) · x2 + (−1)x1x1 · ∂(x2)

for all x1, x2 ∈ A.

Equation 1 endows A with the structure of a chain or cochain complex, depending

on the degree of ∂. For the sake of uniform terminology, we denote ∂ by m1 and ‘·’ by

m2. Hence m1 is a degree −1 (or 1 for cochain complexes) map, and m2 is of degree

0. Furthermore, equation 2 is a graded version of the Leibniz formula.

Since A is a graded associative algebra, its multiplication, m2, must satisfy the

associative relation:

m2 ◦ (m2 × id)−m2 ◦ (id×m2) = 0

We motivate further study by considering what happens when this relation holds

only up to homotopy:

m2 ◦ (m2 × id)−m2 ◦ (id×m2) ' 0

In the (co)chain complex setting in which A lies, we then require a (co)chain

homotopy m3 : A⊗ A⊗ A→ A that must satisfy the following equation:

m1 ◦m3 +m3 ◦m1 +m2 ◦ (m2 × id)−m2 ◦ (id×m2) = 0 (4.1.1)

A few remarks are in order. Omitting some details and by ‘abuse of notation’,

the significance of this arises in building a coderivation, d, of degree −1 (or 1 for

cochain complexes) on the suspended complex of A satisfying d2 = 0. We will define

the suspension of A (denoted ↑ A) as the graded vector space with indices given

by (↑A)n = An−1, and the suspension operator, ↑: A → (↑A) (resp: desuspension

operator, ↓: V → (↓ V ) ) in the natural sense. The coderivation can be built by

letting d = m′1 +m′2 where m′k : (↑A⊗k)→↑A is given by m′k = (−1)
k(k−1)

2 ↑◦mk◦ ↓⊗k

and then extending m′1 and m′2 as coderivations on the tensor coalgebra T ∗(↑ A)

as explained in [8]. Under this construction, the equation d2 = 0 is satisfied when

evaluated on any two variables. However, when evaluated on three variables, this

equation is only satisfied if associativity holds. In the case of homotopy associativity,
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m3 is necessary in the construction of the differential in the sense that d2(x1, x2, x3) =

0 if d = m′1 + m′2 + m′3. It is also worth noting that since the maps m′1 and m′2 are

extended as coderivations on the tensor coalgebra when evaluated on higher numbers

of elements, the maps m1 and m2 exhibit the same type of extension when evaluated

on higher numbers of elements in A.

When evaluated on an element (x1, x2, x3) ∈ A ⊗ A ⊗ A and extending m1 and

m2 on three inputs as described above, equation 4.1.1 is then equivalent to

m1(m3(x1, x2, x3)) +m3(m1(x1), x2, x3) + (−1)|x1|m3(x1,m1(x2), x3)

+ (−1)|x1||x2|m3(x1, x2,m1(x3)) +m2(m2(x1, x2), x3)−m2(x1,m2(x2, x3)) = 0

Since m1 is of degree 1 or −1 depending on the setting as a cochain or chain

complex, m3 must be of degree −1 or 1 respectively.

Continuing in this fashion, we may consider what happens when homotopies are

themselves homotopic. That is, a similar problem arises on the suspended complex

when evaluating d2 on four inputs. To address this, we construct the first higher

homotopy, m4 : A⊗4 → A of degree 2 (or −2 for cochain complexes) and its analog

m′4 on the suspended complex. Continuing in this manner, the need for further higher

homotopies, m5,m6,m7 . . . arise and the relations that they satisfy are ultimately

encoded in an A∞ (strong homotopy associative) structure as follows [12].

Definition 4.1.2. Let V be a graded vector space. An A∞ algebra structure on V

is a collection of multilinear maps mk : V ⊗k → V of degree k − 2 that satisfy the

identity

n−1∑
λ=0

n−λ∑
k=1

α mn−k+1(x1 ⊗ · · · ⊗ xλ ⊗mk(xλ+1 ⊗ · · · ⊗ xλ+k)⊗ xλ+k+1 ⊗ · · · ⊗ xn) = 0

where α = (−1)k+λ+kλ+kn+k(|x1|+···+|xλ|), for all n ≥ 1.

This utilizes the chain complex convention. One may alternatively utilize the

cochain complex convention by requiring each map mk to have degree 2− k. For the

remainder of this thesis we will employ the chain complex convention.
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Remark 4.1.3. An A∞ structure on V is equivalent to the existence of a degree −1

coderivation d :=
∞∑
k=1

m′k where m′k was previously defined.

Remark 4.1.4. For n = 3, definition 4.1.2 reduces to the familiar expression

m1(m3(x1, x2, x3)) +m3(m1(x1), x2, x3) + (−1)|x1|m3(x1,m1(x2), x3)

+ (−1)|x1||x2|m3(x1, x2,m1(x3)) +m2(m2(x1, x2), x3)−m2(x1,m2(x2, x3)) = 0

If V =
⊕
i∈Z
Vi with Vi = 0 if i 6= 0, then for degree reasons this reduces to

m2(m2(x1, x2), x3)−m2(x1,m2(x2, x3)) = 0

which is precisely the elementary relation that multiplication must satisfy in an asso-

ciative algebra. Hence, it is perfectly reasonable to view an A∞ algebra as a natural

generalization of an associative algebra.

The mathematical reasoning exhibited here motivates a similar investigation in

the context of Lie algebras.

4.2 Graded Lie Algebras

Just as graded vector spaces may be equipped with an associative multiplication

that respects the vector space’s gradation, we may also endow them with a graded

bracket structure.

Definition 4.2.1. A graded Lie algebra is a graded vector space L with a graded Lie

bracket [ , ] : Lp ⊗ Lq → Lp+q that satisfies the following:

1. [x, y] = −(−1)xy[y, x]

2. [[x, y], z]− (−1)yz[[x, z], y] + (−1)x(y+z)[[y, z], x] = 0

for all x, y, z ∈ L.
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Property (1) illustrates graded skew-symmetry, utilizing the Koszul sign in addi-

tion to the permutation sign. Property (2) is the graded analog of the Jacobi identity.

We may once again extend this type of structure to form a chain complex by

equipping it with a graded differential that satisfies the Leibniz formula.

Definition 4.2.2. A differential graded Lie algebra is a graded Lie algebra L equipped

with a graded differential ∂ : L→ L of degree −1 that satisfies the following:

1. ∂ ◦ ∂ = 0

2. ∂[x1, x2] = [∂(x1), x2] + (−1)x1 [x1, ∂(x2)]

for all x1, x2 ∈ L.

As expected, a differential graded associative algebra will induce a differential

graded Lie algebra through the graded commutator:

[x1, x2] = x1 · x2 − (−1)x1x2x2 · x1.

One can easily verify that property 2 of definition 4.2.2 is satisfied under this

bracket.

4.3 Higher Homotopies

Following a similar line of reasoning in building differential graded associative

algebras, we denote ∂ by l1 and the graded bracket by l2, and express the graded

Jacobi identity in terms of maps as follows:

l2 ◦ l2 = 0

where l2 is extended via skew-symmetry over (2−1)-unshuffles when evaluated on an

element (x1, x2, x3) ∈ L⊗ L⊗ L.

Subsequently, we investigate what happens if the above relation holds only up to

homotopy:

l2 ◦ l2 ' 0
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In the chain complex setting in which L lies, we then require a chain homotopy

l3 : L⊗ L⊗ L→ L that must satisfy the following relation:

l1 ◦ l3 + l3 ◦ l1 + l2 ◦ l2 = 0 (4.3.1)

We may repeat the same type of investigation of the associative case here on the

suspended complex ↑L. That is, if the Jacobi identity only holds up to homotopy,

then the homotopy l3 is necessary in constructing a degree −1 coderivation satisfying

the equation d2 = 0 when evaluated on three inputs on the suspended complex. The

Lie analog to the associative setting involves the symmetric coalgebra
∧∗(↑ L) in

lieu of the tensor coalgebra. Hence coderivations in this case are extended using

unshuffles, as explained in remark 2.2.6.

When evaluated on an element (x1, x2, x3) ∈ L ⊗ L ⊗ L and extending l1 and l2

on three inputs, equation 4.3.1 is equivalent to

l1(l3(x1, x2, x3)) + l3(l1(x1), x2, x3)− (−1)x1x2l3(l1(x2), x1, x3)

+ (−1)x3(x1+x2)l3(l1(x3), x1, x2) + l2(l2(x1, x2), x3)

− (−1)x2x3l2(l2(x1, x3), x2)) + (−1)x1(x2+x3)l2(l2(x2, x3), x1) = 0

Continuing in the same fashion that was exhibited in the associative case, we

may explore what happens when homotopies are homotopic by introducing higher

homotopies l4, l5, l6, · · · . This was originally exposed by Lada and Stasheff in [10] and

further by Lada and Markl in [9]. This data is encoded concisely in an L∞ (strong

homotopy Lie) structure as follows.

Definition 4.3.1. Let V be a graded vector space. An L∞ algebra structure on

V is a collection of multilinear maps {lk : V ⊗k → V } of degree k − 2 which are

skew-symmetric in the sense that

lk(xσ(1), xσ(2), . . . , xσ(k)) = χ(σ)lk(x1, x2, . . . , xk)

for all σ ∈ Sk, xi ∈ V , with χ(σ) = (−1)σε(σ), and are also required to satisfy the

generalized form of the Jacobi identity:∑
i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0
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where the inner summation is taken over all (i, n− i)-unshuffles, i ≥ 1, n ≥ 1.

Remark 4.3.2. For n = 3, this reduces to the familiar expression

l1(l3(x1, x2, x3)) + l3(l1(x1), x2, x3)− (−1)x1x2l3(l1(x2), x1, x3)

+ (−1)x3(x1+x2)l3(l1(x3), x1, x2) + l2(l2(x1, x2), x3)

− (−1)x2x3l2(l2(x1, x3), x2)) + (−1)x1(x2+x3)l2(l2(x2, x3), x1) = 0

If V =
⊕
i∈Z
Vi with Vi = 0 if i 6= 0, then for degree reasons this yields

l2(l2(x1, x2), x3)− l2(l2(x1, x3), x2)) + l2(l2(x2, x3), x1) = 0

which is precisely the classic Jacobi identity of a Lie algebra when interpreting l2 as a

Lie bracket. Hence, an L∞ algebra serves as a natural generalization of a Lie algebra

from a homotopy theoretical point of view.

4.4 A Classical Relationship

Among the most elegant characteristics of A∞ and L∞ algebras is the manner in

which they behave as algebraic generalizations of their classical associative and Lie

algebra counterparts. As explored in an earlier chapter, one of the most fundamental

results in the study of classical Lie algebras is the relationship between associative

and Lie algebras through commutators, which also holds between differential graded

associative and differential graded Lie algebras. Remarkably, this relationship also

holds in the homotopy context. That is, given an A∞ algebra, commutators of its

structure maps will induce an L∞ structure.

Theorem 4.4.1 (Lada, Markl [9]). Let V be a graded vector space and {mk : V ⊗k →
V } define an A∞ structure on V . For n ≥ 1, define ln : V ⊗n → V by

ln(x1, x2, · · · , xn) =
∑
σ∈Sn

χ(σ)mn(xσ(1), xσ(2), · · · , xσ(n))

Then {lk : V ⊗k → V } defines an L∞ structure on V .
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Remark 4.4.2. For n = 2 in a “one nonzero term” graded vector space (V =
⊕
i∈Z
Vi

with Vi = 0 if i 6= 0), this is

l2(x1, x2) = m2(x1, x2)− (−1)0m2(x2, x1)

which is precisely the classical relationship between an associative and Lie algebra

with l2 representing the bracket and m2 representing multiplication.

4.5 A Finite Dimensional Example

Until recently, nontrivial finite dimensional examples of L∞ algebras have been

somewhat elusive. Trivial examples are plentiful, as any Lie algebra may be canoni-

cally embedded in an L∞ structure by associating its underlying vector space V with

a simple graded vector space consisting of V in degree 0 and trival vector spaces in

degree 6= 0, and setting all homotopies and the graded differential equal to the zero

map. In [2], Daily constructed one of the first “interesting” examples of a finite di-

mensional L∞ algebra that consists of a Lie algebra together with a non-Lie action

on another vector space.

Theorem 4.5.1 (Daily, Lada [2]). Let L be the graded vector space given by L =
⊕
i∈Z
Li

where L0 has basis < v1, v2 >, L−1 has basis < w >, and Li = 0 for i 6= 0,−1 with

skew-symmetric multilinear maps ln : L⊗n → L defined by the following:

l1(v1) = l1(v2) = w

l2(v1 ⊗ v2) = v1

l2(v1 ⊗ w) = w

For n ≥ 3 : ln(v2 ⊗ w⊗n−1) = Cnw

where C3 = 1 and Cn = (−1)n−1(n − 3)Cn−1 and ln = 0 when evaluated on any

element of L⊗n that is not listed above. Then (L, ln) is an L∞ algebra.
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Remark 4.5.2. When convenient, the recursive definition of Cn may be recognized

more explicitly by

Cn = (−1)
(n−2)(n−3)

2 (n− 3)!.

Remark 4.5.3. In this example, V0 is a strict Lie algebra under the bracket [v1, v2] =

l2(v1 ⊗ v2).

Remarkably, this small structure turns out to be surprisingly rich. For example,

recently in [5] Kadeishvili and Lada showed that this structure yields an example of

an open-closed homotopy algebra (OCHA), as defined by Kajiura and Stasheff [6].

Furthermore, it has been an ongoing subject of interest to expand homotopy algebra

structures over this same graded vector space. Recently, an A∞ structure has been

defined over it as follows.

Theorem 4.5.4 (Allocca, Lada [1]). Let V denote the graded vector space given by

V =
⊕
i∈Z
Vn where V0 has basis < v1, v2 >, V−1 has basis < w >, and Vn = 0 for

n 6= 0, 1. Define a structure on V by the following multilinear maps mn : V ⊗n → V :

m1(v1) = m1(v2) = w

For n ≥ 2 : mn(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗(n−2)−k) = (−1)ksnv1, 0 ≤ k ≤ n− 2

mn(v1 ⊗ w⊗(n−2) ⊗ v2) = sn+1v1

mn(v1 ⊗ w⊗(n−1)) = sn+1w

where sn = (−1)
(n+1)(n+2)

2 , and mn = 0 when evaluated on any element of V ⊗n that

is not listed above. Then (V,mn) is an A∞ algebra.

Remark 4.5.5. Although this A∞ structure is defined over the same graded vector

space described in the L∞ example in [2], its commutators do not induce it. This

creates an interesting area of future research, as the commutators will induce a dif-

ferent unknown finite dimensional L∞ algebra example. Furthermore, the question

of which A∞ structure induces the example in [2] remains open.



25

4.6 L∞ Modules and Representations

In light of the nature of L∞ algebras as generalizations of Lie algebras, we proceed

with significant motivation to generalize the most elementary properties of classical

Lie algebras to the homotopy context. We now explore the basics of classical Lie

algebra representation theory on this level.

To begin, we consider Lie modules as a language equivalent to Lie algebra rep-

resentations and aim to generalize the idea of a Lie module up to homotopy. As

previously explored, in classical Lie theory the most fundamental example of an L-

module occurs over itself. That is, a Lie algebra L is an L-module under the adjoint

action: x · y := [x, y]. Hence, in order to generalize the concept of a Lie module, we

require that an L∞ algebra be an L∞ module over itself via a generalization of the

adjoint action. Under this reasonable assumption, a natural definition arises, as given

by Lada and Markl in [9]:

Definition 4.6.1. Let (L, lk) be an L∞ algebra and M a differential graded vector

space with graded differential k1. A (left) L-module on M is a collection of skew-

symmetric multilinear maps {kn : L⊗n−1⊗M →M |1 ≤ n <∞} of degree n− 2 such

that the following identity holds:∑
i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)kj(ki(ξσ(1), . . . , ξσ(i)), ξσ(i+1), . . . , ξσ(n)) = 0 (4.6.1)

where σ ranges over all (i, n− i)-unshuffles, i ≥ 1, with n ≥ 1, ξ1, · · · , ξn−1 ∈ L, and

ξn ∈M .

This relation follows the same pattern of the generalized Jacobi identity, moti-

vated by the need to generalize the adjoint representation. A few observations are

appropriate here:

• By definition of an unshuffle, either ξσ(i) = ξn or ξσ(n) = ξn.

• Since we have kn : L⊗n−1 ⊗M →M , we must utilize the skew-symmetry of kn
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in the case where ξσ(i) = ξn as follows:

kj(ki(ξσ(1), . . . , ξσ(i))︸ ︷︷ ︸
∈M

, ξσ(i+1) . . . , ξσ(n)) = αkj(ξσ(i+1) . . . ξσ(n), ki(ξσ(1), . . . , ξσ(i))︸ ︷︷ ︸
∈M

)

With α = (−1)j−1(−1)(i+
Pi
k=1 |ξσ(k)|)(

Pn
k=i+1 |ξσ(k)|).

• If ξ1, · · · , ξn ∈ L, then we define kn(ξ1, · · · , ξn) = ln(ξ1, · · · , ξn).

If n = 3 and L =
⊕
i∈Z
Li with Li = 0 if i 6= 0, and M is defined similarly, equation

4.6.1 reduces to the following:

k3(k1(ξ1), ξ2, ξ3)− (−1)ξ1ξ2k3(k1(ξ2), ξ1, ξ3) + (−1)ξ3(ξ1+ξ2)k3(k1(ξ3), ξ1, ξ2)

+k2(k2(ξ1, ξ2), ξ3)− (−1)ξ2ξ3k2(k2(ξ1, ξ3), ξ2) + (−1)ξ1(ξ2+ξ3)k2(k2(ξ2, ξ3), ξ1)

+k1(k3(ξ1, ξ2, ξ3)) = 0

For degree reasons and using k2 = l2 where appropriate, this simplifies to:

k2(k2(ξ1, ξ2), ξ3)− k2(k2(ξ1, ξ3), ξ2) + k2(k2(ξ2, ξ3), ξ1) = 0

=⇒ k2(l2(ξ1, ξ2), ξ3) + (−1)0k2(ξ2, k2(ξ1, ξ3))− (−1)0k2(ξ1, k2(ξ2, ξ3)) = 0

=⇒ k2(l2(ξ1, ξ2), ξ3) = k2(ξ1, k2(ξ2, ξ3))− k2(ξ2, k2(ξ1, ξ3))

Interpreting k2 as a module action ‘·’ in the classical Lie case, this is precisely

property 3 of a Lie module (definition 3.3.1).

We now shift our attention to a homotopy analog of Lie algebra representations,

which should be equivalent to L∞ module language. Given an L∞ module M, its

differential k1 induces a graded analog to the associative algebra of endomorphisms.

Let End(M) denote the graded vector space of linear maps from M to M . Under

composition, together with the graded differential k1, End(M) forms a differential

graded associative algebra. Furthermore, End(M) induces a differential graded Lie

algebra through commutators, denoted End(M)L, which can be viewed as a homotopy

analog of gl(V ). Hence in order to generalize a Lie algebra representation, one requires

a structure-preserving map (homomorphism) between an L∞ algebra and a differential

graded Lie algebra. Lada and Markl defined this in [9].
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Definition 4.6.2. Let (L, li) be an L∞ algebra and (A, δ, [ , ]) a differential graded Lie

algebra. A weak L∞ map (homomorphism) from L to A is a collection {fn : L⊗n → A}
of skew-symmetric multilinear maps of degree n− 1 such that

δfn(ξ1, · · · , ξn) +
∑

j+k=n+1

∑
σ

χ(σ)(−1)k(j−1)+1fj(lk(ξσ(1), · · · , ξσ(k)), ξσ(k+1), · · · , ξσ(n))

+
∑
s+t=n

∑
τ

χ(τ)(−1)s−1(−1)(t−1)(
Ps
p=1 ξτ(p))

[
fs(ξτ(1), · · · , ξτ(s)), ft(ξτ(s+1), · · · , ξτ(n))

]
= 0

Where σ runs through all (k, n − k)-unshuffles and τ runs through all (s, n − s)-

unshuffles such that τ(1) < τ(s + 1), and [ , ] denotes the graded bracket on A, and

ξ1, · · · , ξn ∈ L.

One can easily verify that this reduces to the classical definition of a Lie algebra

homomorphism if both L and A are regular Lie algebras.

We may then associate this with the natural analog of a classical Lie algebra

representation (definition 3.2.1) as follows.

Definition 4.6.3. Let (L, ln) be an L∞ algebra and M a differential graded vector

space. A representation of L on M is a weak L∞ map L→ End(M)L.

The equivalence of modules and representations in the homotopy context is summed

up as concisely as it is in the classical Lie case.

Theorem 4.6.4 (Lada, Markl [9]). Let (L, ln) be an L∞ algebra and M a differential

graded vector space. Then there exists a one-to-one correspondence between L-module

structures and weak L∞ maps L→ End(M)L.

For the entirety of our investigation of L∞ algebra representation theory, we will

utilize L∞ module language and proceed under the assumption that all results may

also be described in terms of equivalent representations.
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4.7 L∞ Homomorphisms

In generalizing Lie algebra representations to the context of L∞ structures, one

only requires a structure-preserving map between an L∞ algebra and a differential

graded Lie algebra. Any differential graded Lie algebra can be canonically embedded

in an L∞ structure, however it is natural to wonder what a map between two struc-

tures that are strictly L∞ looks like. In [15], Frégier, Markl and Yau outlined this in

terms of maps. When evaluated on a collection of elements, we have the following

equivalent definition.

Definition 4.7.1. Let (L, li) and (L′, l′i) be L∞ algebras. An L∞ homomorphism

from L to L′ is a collection {fn : L⊗n → L′} of skew-symmetric multilinear maps of

degree n− 1 such that∑
j+k=n+1

∑
σ

χ(σ)(−1)k(j−1)+1fj(lk(ξσ(1), · · · , ξσ(k)), ξσ(k+1), · · · , ξσ(n))+∑
1≤t≤n

i1+···+it=n
ir≥1

∑
τ

α l′t
(
fi1(ξτ(1), · · · ξτ(i1)), fi2(ξτ(i1+1), · · · , ξτ(i1+i2)), · · ·

· · · , fit(ξτ(i1+···+it−1+1), · · · , ξτ(it))
)

= 0

Where ξ1, · · · , ξn ∈ L, and σ runs through all (k, n−k)-unshuffles and τ runs through

all (i1, · · · , it)-unshuffles satisfying τ(i1 + · · ·+il−1 +1) < τ(i1 + · · ·+il+1) if il = il+1,

and α = χ(τ)(−1)
t(t−1)

2
+

Pt−1
k=1 ik(t−k)ν with ν representing the Koszul sign that results

from evaluating (fi1 ⊗ fi2 ⊗ · · · ⊗ fit) on (ξτ(1) ⊗ ξτ(2) ⊗ · · · ⊗ ξτ(n)) .

Remark 4.7.2. Explicitly,

ν = (−1)(it−1)(
Pn−it
k=1 ξτ(k))+(it−1−1)(

Pn−(it+it−1)

k=1 ξτ(k))+···+(i2−1)(
Pn−(it+it−1+···+i2)

k=1 ξτ(k))

Remark 4.7.3. If L′ = A, δ = l′1, and [ , ] = l′2, then this agrees with definition 4.6.2.

Remark 4.7.4. As expected, for n = 3 and L =
⊕
i∈Z
Li with Li = 0 and L′ defined

similarly, this reduces to

f1(l2(x1, x2))− l′2(f1(x1), f1(x2)) = 0
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which is precisely a Lie algebra homomorphism (definition 3.1.3):

ϕ([x1, x2]) = [ϕ(x1), ϕ(x2)].

L∞ homomorphisms will play a significant role in constructing homomoprhisms

between L∞ modules.
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Chapter 5

A Finite Dimensional L∞ Module

As illustrated by the importance of the finite dimensional example of an L∞

algebra in [2], concrete examples of homotopy algebra structures are often times

elusive. Given the significance of Lie algebra representation theory and the established

introductory results in the homotopy context, we aim to further expand on its theory

by first building a concrete example of a finite dimensional L∞ module.

5.1 Groundwork

We focus on the example given in [2] over which we will build a module. Equiva-

lently, we will be constructing a representation of this L∞ algebra. So let L =
⊕
i∈Z
Li

where L0 has basis < v1, v2 >, L−1 has basis < w >, and Li = 0 for i 6= 0,−1 with

skew-symmetric multilinear maps ln : L⊗n → L defined by the following:

l1(v1) = l1(v2) = w

l2(v1 ⊗ v2) = v1

l2(v1 ⊗ w) = w

For n ≥ 3 : ln(v2 ⊗ w⊗n−1) = Cnw

where C3 = 1 and Cn = (−1)n−1(n − 3)Cn−1 and ln = 0 when evaluated on any

element of L⊗n that is not listed above.
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With this we must associate a graded vector space M =
⊕
i∈Z
Mi and equip it with a

collection of skew-symmetric multilinear maps kn : L⊗n−1 ⊗M →M of degree n− 2

such that the following relation holds for all n ≥ 1 (equation 4.6.1):∑
i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)kj(ki(ξσ(1), . . . , ξσ(i)), ξσ(i+1), . . . , ξσ(n)) = 0

where σ ranges over all (i, n− i)-unshuffles, i ≥ 1, with n ≥ 1, ξ1, · · · , ξn−1 ∈ L, and

ξn ∈M .

For the sake of minimizing computation and mirroring the construction of L, we

build M to be finite dimensional with two nonzero vector spaces that also reside in

degrees 0 and −1. For further simplification, we construct both of them to be one

dimensional. So let M =
⊕
i∈Z
Mi where M0 is a one dimensional vector space with

basis < m >, M−1 is a one dimensional vector space with basis < u > and Mi = 0 for

i 6= 0,−1. We require all module actions kn to work in tandem with equation 4.6.1.

Our strategy is to use linear algebra in conjunction with “educated guesses” to define

k1, k2, · · · .

Remark 5.1.1. Since all maps kn must be multilinear and will be extended via skew-

symmetry, it suffices to define them solely on various numbers of basis elements.

5.2 The Differential and Module Action

We first define the graded differential, k1 : M → M , which can only act nontriv-

ially on two elements: m and u. Since k1 must be of degree 1 − 2 = −1, there are

two possibilities:

k1(m) = cu for some constant c

k1(u) = 0

For simplicity, let c = 1. So the graded differential is defined by k1(m) = u and is

defined to be 0 when evaluated on any other element.
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We now shift our focus to the construction of k2 : L⊗M →M , which must be of

degree 2− 2 = 0. We define k2 by how it acts on elements (x,m) ∈ L⊗M where x is

any one of the three basis elements in L and m is any one of the two basis elements

in M . For degree reasons, some combinations of basis elements may be eliminated.

For example, the degree of k2(w, u) is 0− 1− 1 = −2, hence k2(w, u) = 0. Therefore

there are five general ways to describe the manner in which k2 acts nontrivially on

basis elements:

k2(v1,m) = a1m

k2(v2,m) = a2m

k2(w,m) = b1u

k2(v1, u) = b2u

k2(v2, u) = b3u

for some constants ai, bj. The choices for these constants are entirely dependent on

whether they satisfy equation 4.6.1 for n = 2 when evaluated on basis elements:

k1k2(x, q)− k2(l1(x), q)− (−1)xk2(x, k1(q)) = 0 (5.2.1)

for x ∈ {v1, v2, w}, q ∈ {m,u}.
Since deg(k1k2(x, q)) = −1 + 0 + |x| + |q| = deg(k2k1(x, q)) and every element

in equation 5.2.1 must be located in index 0 or −1 in order for the equation to be

nontrivial, it suffices to evaluate equation 5.2.1 on elements (x, q) such that |x| =

|q| = 0. For example, if x = w and q = m, then for degree reasons equation 5.2.1

reduces to 0 = 0.

Hence, there are only two pairs of basis elements to check: (v1,m) and (v2,m).

Equation 5.2.1 then dictates the following:

k1k2(v1,m)− k2(l1(v1),m)− (−1)v1k2(v1, k1(m)) = 0

k1k2(v2,m)− k2(l1(v2),m)− (−1)v2k2(v2, k1(m)) = 0
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Hence,

a1u− b1u− b2u = 0

a2u− b1u− b3u = 0

or equivalently

a1 − b1 − b2 = 0

a2 − b1 − b3 = 0

A small degree of guesswork is involved here, as there are infinitely many solutions

to this system of equations. Our strategy is to choose constants (preferrably natural

numbers) that simplify k2 enough to facilitate the construction of the homotopies

through a reasonable level of computation. One such “simple” solution is to let

a1 = b2 = 1 and b1 = a2 = a3 = 0. Hence we may proceed with the following

definition for k2 that satisfies equation 5.2.1:

k2(v1,m) = m

k2(v1, u) = u

with k2 = 0 when evaluated on any other element. We also extend k2 via skew-

symmetry.

5.3 First Homotopy

We follow similar reasoning to construct the first homotopy, k3 : L⊗L⊗M →M .

We define k3 by how it acts on any number of basis elements and will extend this

definition via skew-symmetry. Since k3 is of degree 3 − 2 = 1 and deg(k3(x, y, q)) =

1 + |x|+ |y|+ |q|, we have the following possibilities for nonzero actions of k3 on basis
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elements:

k3(v1, v1, u) = a1m

k3(v1, v2, u) = a2m

k3(v2, v2, u) = a3m

k3(v1, w,m) = b1m

k3(v2, w,m) = b2m

k3(v1, w, u) = c1u

k3(v2, w, u) = c2u

k3(w,w,m) = c3u

for some some constants ai, bj, ck. The nonzero actions of k3 on basis elements must

work in conjunction with the previously defined maps k1 and k2 to satisfy equation

4.6.1 for n = 3:

k3(l1(x), y, q)− (−1)xyk3(l1(y), x, q) + (−1)x+yk3(x, y, k1(q))

+k2(l2(x, y), q) + (−1)xyk2(y, k2(x, q))− k2(x, k2(y, q)) + k1k3(x, y, q) = 0 (5.3.1)

for x, y ∈ {v1, v2, w}, q ∈ {m,u}.
Since deg(kikj(x, y, q)) = |x| + |y| + |q| for all i + j = 4 and each element in

equation 5.3.1 must reside in degree 0 or −1, it suffices to examine this equation

when evaluated only on basis elements whose degrees add up to 0 or −1. Hence, any
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nonzero actions of k3 on basis elements must adhere to the following equations:

k3(l1(v1), v1, u)− (−1)v1v1k3(l1(v1), v1, u) + (−1)v1+v1k3(v1, v1, k1(u))

+k2(l2(v1, v1), u) + (−1)v1v1k2(v1, k2(v1, u))− k2(v1, k2(v1, u)) + k1k3(v1, v1, u) = 0

k3(l1(v1), v2, u)− (−1)v1v2k3(l1(v2), v1, u) + (−1)v1+v2k3(v1, v2, k1(u))

+k2(l2(v1, v2), u) + (−1)v1v2k2(v2, k2(v1, u))− k2(v1, k2(v2, u)) + k1k3(v1, v2, u) = 0

k3(l1(v2), v2, u)− (−1)v2v2k3(l1(v2), v2, u) + (−1)v2+v2k3(v2, v2, k1(u))

+k2(l2(v2, v2), u) + (−1)v2v2k2(v2, k2(v2, u))− k2(v2, k2(v2, u)) + k1k3(v2, v2, u) = 0

k3(l1(v1), w,m)− (−1)v1wk3(l1(w), v1,m) + (−1)v1+wk3(v1, w, k1(m))

+k2(l2(v1, w),m) + (−1)v1wk2(w, k2(v1,m))− k2(v1, k2(w,m)) + k1k3(v1, w,m) = 0

k3(l1(v2), w,m)− (−1)v2wk3(l1(w), v2,m) + (−1)v2+wk3(v2, w, k1(m))

+k2(l2(v2, w),m) + (−1)v2wk2(w, k2(v2,m))− k2(v2, k2(w,m)) + k1k3(v2, w,m) = 0

k3(l1(v1), v1,m)− (−1)v1v1k3(l1(v1), v1,m) + (−1)v1+v1k3(v1, v1, k1(m))

+k2(l2(v1, v1),m) + (−1)v1v1k2(v1, k2(v1,m))− k2(v1, k2(v1,m)) + k1k3(v1, v1,m) = 0

k3(l1(v1), v2,m)− (−1)v1v2k3(l1(v2), v1,m) + (−1)v1+v2k3(v1, v2, k1(m))

+k2(l2(v1, v2),m) + (−1)v1v2k2(v2, k2(v1,m))− k2(v1, k2(v2,m)) + k1k3(v1, v2,m) = 0

k3(l1(v2), v2,m)− (−1)v2v2k3(l1(v2), v2,m) + (−1)v2+v2k3(v2, v2, k1(m))

+k2(l2(v2, v2),m) + (−1)v2v2k2(v2, k2(v2,m))− k2(v2, k2(v2,m)) + k1k3(v2, v2,m) = 0
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Hence,

u− u+ a1u = 0

−c2u+ c1u+ u+ a2u = 0

a3u = 0

c3u− c1u+ b1u = 0

c3u− c2u+ b2u = 0

a1m = 0

−b2m+ b1m+ a2m+m = 0

a3m = 0

or equivalently

a1 = 0

a2 + c1 − c2 = −1

a3 = 0

b1 − c1 + c3 = 0

b2 − c2 + c3 = 0

a1 = 0

a2 + b1 − b2 = −1

a3 = 0
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As a matrix equation, we have:



1 0 0 0 0 0 0 0

0 1 0 0 0 1 −1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 −1 0 1

0 0 0 0 1 0 −1 1

0 1 0 1 −1 0 0 0





a1

a2

a3

b1

b2

c1

c2

c3


=



0

−1

0

0

0

−1



or as an equivalent row-reduced augmented matrix:

a1 a2 a3 b1 b2 c1 c2 c3

1 0 0 0 0 0 0 0 0

0 1 0 0 0 1 −1 0 −1

0 0 1 0 0 0 0 0 0

0 0 0 1 0 −1 0 1 0

0 0 0 0 1 0 −1 1 0

0 1 0 1 −1 0 0 0 −1


−→



1 0 0 0 0 0 0 0 0

0 1 0 0 0 1 −1 0 −1

0 0 1 0 0 0 0 0 0

0 0 0 1 0 −1 0 1 0

0 0 0 0 1 0 −1 1 0

0 0 0 0 0 0 0 0 0


Due to the infinite amount of solutions to this system, we must once again employ

clever guesswork that will permit the formation of patterns for higher homotopies.

One such solution would let b2 = c2 = 1 and all other constants be equal to 0.

Through this solution, k3 is defined as follows:

k3(v2, w,m) = m

k3(v2, w, u) = u

with k3 = 0 when evaluated on any other element. We also extend k3 via skew-

symmetry.

There is an important observation to be made regarding the previous computa-

tions. The equations a1 = 0 and a3 = 0 all stemmed from evaluating equation 5.3.1
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on basis elements containing multiple instances of v1 or v2. The following remark ad-

dresses this, and will facilitate the computations associated with building the higher

homotopies.

Remark 5.3.1. For degree reasons, maps on basis elements that contain two or more

copies of v1 or v2 must be zero since they will be extended via skew-symmetry. For

example, in building k3 we could immediately assume k3(v1, v1, u) = 0 since in order

for k3 to be skew-symmetric, the following must be true:

k3(v1, v1, u) = −(−1)v1v1k3(v1, v1, u)

⇒ k3(v1, v1, u) = −k3(v1, v1, u)

⇒ k3(v1, v1, u) = 0

A similar observation may be made for k3(v2, v2, u). This will apply to all higher

homotopies, kn. Furthermore, skew-symmetry will eliminate the need to compute

equation 4.6.1 for n ≥ 3 when evaluated on any basis elements that contain two or

more copies of v1 or v2 since this property extends to all maps kikj, i + j = n + 1

(per remark 2.2.7). By properties of the Koszul sign, this does not, however, apply

to multiple instances of elements in degree −1.

5.4 Higher Homotopies

With no clear pattern emerging in the construction of k1, k2, and k3, it is necessary

to make similar computations in building the first higher homotopy, k4 : L⊗L⊗L→
M , which must be of degree 4− 2 = 2. For degree reasons similar to those exhibited

in the previous sections, k4 may act nontrivially on a collection of basis elements

whose degrees sum up to either −2 or −3. Furthermore, remark 5.3.1 eliminates any

collection that contains more than one instance of v1 or v2. Hence the only candidates
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for nontrivial actions of k4 on basis elements are the following:

k4(v1, v2, w, u) = a1m

k4(v1, w, w,m) = a2m

k4(v2, w, w,m) = a3m

k4(v1, w, w, u) = b1u

k4(v2, w, w, u) = b2u

k4(w,w,w,m) = b3u

for some some constants ai, bj, ck. The nonzero actions of k4 on basis elements

must work in conjunction with the previously defined maps k1, k2, and k3 to satisfy

equation 4.6.1 for n = 4:

−k4

(
l1(x), y, z, q

)
+ (−1)xyk4

(
l1(y), x, z, q

)
− (−1)z(x+y)k4

(
l1(z), x, y, q

)
−(−1)x+y+zk4

(
x, y, z, k1(q)

)
+ k3

(
l2(x, y), z, q

)
− (−1)yzk3

(
l2(x, z), y, q

)
+(−1)x(y+z)k3

(
y, z, k2(x, q)

)
+ (−1)x(y+z)k3

(
l2(y, z), x, q

)
−(−1)yzk3

(
x, z, k2(y, q)

)
+ k3

(
x, y, k2(z, q)

)
− k2

(
l3(x, y, z), q

)
−(−1)z(x+y+1)k2

(
z, k3(x, y, q)

)
− (−1)xk2

(
x, k3(y, z, q)

)
+ k1k4(x, y, z, q)=0 (5.4.1)

for x, y, z ∈ {v1, v2, w}, q ∈ {m,u}.
Since deg(kikj(x, y, z, q)) = 1+ |x|+ |y|+ |z|+ |q| for all i+j = 5 and each element

in equation 5.4.1 must reside in index 0 or −1, it suffices to examine this equation

when evaluated only on collections of basis elements such that |x| + |y| + |z| + |q|
equals −1 or −2. Furthermore, the reasoning exhibited in remark 5.3.1 eliminates

the need to compute this on any collection of basis elements that contain more than

one instance of v1 or v2. Hence, any nonzero actions of k4 on basis elements must
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adhere to the following equations:

−k4

(
l1(v1), v2, w, u

)
+ (−1)v1v2k4

(
l1(v2), v1, w, u

)
− (−1)w(v1+v2)k4

(
l1(w), v1, v2, u

)
−(−1)v1+v2+wk4

(
v1, v2, w, k1(u)

)
+ k3

(
l2(v1, v2), w, u

)
− (−1)v2wk3

(
l2(v1, w), v2, u

)
+(−1)v1(v2+w)k3

(
v2, w, k2(v1, u)

)
+ (−1)v1(v2+w)k3

(
l2(v2, w), v1, u

)
−(−1)v2wk3

(
v1, w, k2(v2, u)

)
+ k3

(
v1, v2, k2(w, u)

)
− k2

(
l3(v1, v2, w), u

)
−(−1)w(v1+v2+1)k2

(
w, k3(v1, v2, u)

)
− (−1)v1k2

(
v1, k3(v2, w, u)

)
+ k1k4(v1, v2, w, u)=0

−k4

(
l1(v1), w, w,m

)
+ (−1)v1wk4

(
l1(w), v1, w,m

)
− (−1)w(v1+w)k4

(
l1(w), v1, w,m

)
−(−1)v1+w+wk4

(
v1, w, w, k1(m)

)
+ k3

(
l2(v1, w), w,m

)
− (−1)wwk3

(
l2(v1, w), w,m

)
+(−1)v1(w+w)k3

(
w,w, k2(v1,m)

)
+ (−1)v1(w+w)k3

(
l2(w,w), v1,m

)
−(−1)wwk3

(
v1, w, k2(w,m)

)
+ k3

(
v1, w, k2(w,m)

)
− k2

(
l3(v1, w, w),m

)
−(−1)w(v1+w+1)k2

(
w, k3(v1, w,m)

)
− (−1)v1k2

(
v1, k3(w,w,m)

)
+ k1k4(v1, w, w,m)=0

−k4

(
l1(v2), w, w,m

)
+ (−1)v2wk4

(
l1(w), v2, w,m

)
− (−1)w(v2+w)k4

(
l1(w), v2, w,m

)
−(−1)v2+w+wk4

(
v2, w, w, k1(m)

)
+ k3

(
l2(v2, w), w,m

)
− (−1)wwk3

(
l2(v2, w), w,m

)
+(−1)v2(w+w)k3

(
w,w, k2(v2,m)

)
+ (−1)v2(w+w)k3

(
l2(w,w), v2,m

)
−(−1)wwk3

(
v2, w, k2(w,m)

)
+ k3

(
v2, w, k2(w,m)

)
− k2

(
l3(v2, w, w),m

)
−(−1)w(v2+w+1)k2

(
w, k3(v2, w,m)

)
− (−1)v2k2

(
v2, k3(w,w,m)

)
+ k1k4(v2, w, w,m)=0

−k4

(
l1(v1), v2, w,m

)
+ (−1)v1v2k4

(
l1(v2), v1, w,m

)
− (−1)w(v1+v2)k4

(
l1(w), v1, v2,m

)
−(−1)v1+v2+wk4

(
v1, v2, w, k1(m)

)
+ k3

(
l2(v1, v2), w,m

)
− (−1)v2wk3

(
l2(v1, w), v2,m

)
+(−1)v1(v2+w)k3

(
v2, w, k2(v1,m)

)
+ (−1)v1(v2+w)k3

(
l2(v2, w), v1,m

)
−(−1)v2wk3

(
v1, w, k2(v2,m)

)
+ k3

(
v1, v2, k2(w,m)

)
− k2

(
l3(v1, v2, w),m

)
−(−1)w(v1+v2+1)k2

(
w, k3(v1, v2,m)

)
− (−1)v1k2

(
v1, k3(v2, w,m)

)
+ k1k4(v1, v2, w,m)=0
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Hence,

b2u− b1u+ u+ u− u+ a1u = 0

−b3u− b1u+ a2u = 0

−b3u− b2u+ a3 = 0

a3m− a2m+ a1m+m+m−m = 0

or equivalently

a1 − b1 + b2 = −1

a2 − b1 − b3 = 0

a3 − b2 − b3 = 0

a1 − a2 + a3 = −1

which may be expressed as a row-reduced augmented matrix:

a1 a2 a3 b1 b2 b3
1 0 0 −1 1 0 −1

0 1 0 −1 0 −1 0

0 0 1 0 −1 −1 0

1 −1 1 0 0 0 −1

→


1 0 0 −1 1 0 −1

0 1 0 −1 0 −1 0

0 0 1 0 −1 −1 0

0 0 0 0 0 0 0


Among the infinitely many solutions to this system, if we let a3 = b2 = −1 and

other constants be equal to 0, then we obtain a potential pattern for the next higher

homotopies. Hence, we define k4 as follows:

k4(v2, w, w,m) = −m

k4(v2, w, w, u) = −u

with k4 = 0 when evaluated on any other element and k4 is extended via skew-

symmetry.

The potential pattern with these choices of constants mirrors that of the constants

in the higher order structure maps of the L∞ algebra example in [2]. That is, in this
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example the homotopies adhere to the following sign pattern:

C3 = 1

C4 = −1

...

Cn = (−1)n−1(n− 3)Cn−1

By repeating the arguments in the past few sections for n = 5, 6, · · · , we find that

this pattern does continue for k5, k6, · · · . For brevity, we omit these computations

and form a finite dimensional L∞ module under the assumption that this pattern

continues.

Theorem 5.4.1. Let L denote the L∞ structure in [2] given by L =
⊕
i∈Z
Li where

L0 has basis < v1, v2 >, L−1 has basis < w >, and Li = 0 for i 6= 0,−1 with

skew-symmetric multilinear maps ln : L⊗n → L defined by the following:

l1(v1) = l1(v2) = w

l2(v1 ⊗ v2) = v1

l2(v1 ⊗ w) = w

For n ≥ 3 : ln(v2 ⊗ w⊗n−1) = Cnw

where C3 = 1 and Cn = (−1)n−1(n − 3)Cn−1 and ln = 0 when evaluated on any

element of L⊗n that is not listed above. Now let M denote the graded vector space

given by M =
⊕
i∈Z
Mi where M0 is a one dimensional vector space with basis < m >,

M−1 is a one dimensional vector space with basis < u > and Mi = 0 for i 6= 0,−1.

Define a structure on M by the following multilinear maps kn : L⊗n−1 ⊗M →M :

k1(m) = u

k2(v1 ⊗m) = m

k2(v1 ⊗ u) = u

For n ≥ 3 : kn(v2 ⊗ w⊗n−2 ⊗m) = Cnm

kn(v2 ⊗ w⊗n−2 ⊗ u) = Cnu



43

Extend these maps to be skew-symmetric and define kn = 0 when evaluated on any

element of L⊗n−1 ⊗M that is not listed above. Then (M,kn) is an L-module.

Remark 5.4.2. This utilizes the chain complex convention, whereas the equivalent

cochain complex convention is assumed in [2]. Hence |v1| = |v2| = |m| = 0, |w| =

|u| = −1 and ln and kn are of degree n − 2. They may be adapted to the cochain

complex convention by requiring |w| = |u| = 1 and defining each map kn to be of

degree 2− n.

Proof. We aim to prove the following:∑
i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)kj(ki(ξσ(1), . . . , ξσ(i)), ξσ(i+1), . . . , ξσ(n)) = 0

where σ ranges over all (i, n− i)-unshuffles, i ≥ 1, with n ≥ 1, ξ1, · · · , ξn−1 ∈ L, and

ξn ∈M .

In shorthand notation, this is equivalent to showing that

n∑
s=1

(−1)s(n−s)kn−s+1ks(ξ1, ξ2, · · · , ξn) = 0 (5.4.2)

where it is understood that ks will be extended on n > s elements over (s, n − s)-
unshuffles.

Since kn is multilinear and skew-symmetric, it suffices to show this relation holds

when evaluated only on basis elements and in any string order. Each element in

equation 5.4.2 also has degree (n − s − 1 − 2) + (s − 2) + |ξ1| + |ξ2| + · · · + |ξn| =

n− 3 + |ξ1|+ |ξ2|+ · · ·+ |ξn|, which must equal 0 or −1 in order for the elements to

be nonzero. So (ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) ∈ L⊗n−1 ⊗M must contain either 2 or 3 elements

in degree 0. If this tensor product contains v1 or v2 twice, then equation 5.4.2 holds

trivially since |v1| = |v2| = 0 and kn is skew-symmetric (as explored in remark 5.3.1).

For example,

kn−s+1ks(v1 ⊗ v1 ⊗ w ⊗n−3 ⊗u) =− (−1)v1v1kn−s+1ks(v1 ⊗ v1 ⊗ w ⊗n−3 ⊗u)

=− kn−s+1ks(v1 ⊗ v1 ⊗ w ⊗n−3 ⊗u)
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by permuting the first two elements. So kn−s+1ks(v1 ⊗ v1 ⊗ w ⊗n−3 ⊗u) = 0. Hence

it suffices to prove that equation 5.4.2 holds on the following string choices for (ξ1 ⊗
ξ2 ⊗ · · · ⊗ ξn):

(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) (5.4.3)

(v1 ⊗ w⊗n−2 ⊗m) (5.4.4)

(v2 ⊗ w⊗n−2 ⊗m) (5.4.5)

(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) (5.4.6)

For string 5.4.3, in regards to the summands of equation 5.4.2 we observe the

following:

k1kn(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u)) = k1(0) = 0

k2kn−1(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) = (−1)n−1k2

(
kn−1(v2 ⊗ w⊗n−2 ⊗ u)⊗ v1

)
= (−1)nCn−1k2(v1 ⊗ u)

= (−1)nCn−1u

krkn−r+1(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) = 0 for 3 ≤ r ≤ n − 2 since kr and kn−r+1 are only
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nonzero when they are evaluated on a tensor product containing v2.

kn−1k2(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) = −(n− 3)kn−1

(
l2(v1 ⊗ w)⊗ v2 ⊗ w⊗n−4 ⊗ u

)
− kn−1

(
k2(v1 ⊗ u)⊗ v2 ⊗ w⊗n−3

)
= (n− 3)kn−1(v2 ⊗ w⊗n−3 ⊗ u)

+ kn−1(v2 ⊗ w⊗n−3 ⊗ u)

= (n− 2)kn−1(v2 ⊗ w⊗n−3 ⊗ u)

= (n− 2)Cn−1u

knk1(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) = kn
(
k1(v1)⊗ v2 ⊗ w⊗n−3 ⊗ u

)
= kn(w ⊗ v2 ⊗ w⊗n−3 ⊗ u)

= −kn(v2 ⊗ w⊗n−2 ⊗ u)

= −Cnu

= −(−1)n−1(n− 3)Cn−1u

= (−1)n(n− 3)Cn−1u

Hence

n∑
s=1

(−1)s(n−s)kn−s+1ks(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) = (−1)1(n−1)(−1)n(n− 3)Cn−1u

+ (−1)2(n−2)(n− 2)Cn−1u

+ (−1)(n−1)(n−(n−1))(−1)nCn−1u

= −(n− 3)Cn−1u

+ (n− 2)Cn−1u

− Cn−1u

= 0

The case where equation 5.4.2 is evaluated on string 5.4.4 is trivial by definition

of kn and ln.
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Regarding string 5.4.5, we observe the following:

k1kn(v2 ⊗ w⊗n−2 ⊗m) = k1(Cnm) = Cnu

krkn−r+1(v2 ⊗ w⊗n−2 ⊗ m) = 0 for 2 ≤ r ≤ n − 1 for similar reasons encountered

above.

knk1(v2 ⊗ w⊗n−2 ⊗m) = (−1)n−1kn
(
k1(m)⊗ v2 ⊗ w⊗n−2

)
= −(−1)n−1kn(v2 ⊗ w⊗n−2 ⊗ u)

= (−1)nCnu

Hence

n∑
s=1

(−1)s(n−s)kn−s+1ks(v2 ⊗ w⊗n−2 ⊗m) = (−1)1(n−1)(−1)nCnu+ (−1)n(n−n)Cnu

= −Cnu+ Cnu

= 0

For string 5.4.6, we observe the following:

k1kn(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) = k1(0) = 0

k2kn−1(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) = (−1)n−1k2

(
kn−1(v2 ⊗ w⊗n−2 ⊗m)⊗ v1

)
= (−1)nCn−1k2(v1 ⊗m)

= (−1)nCn−1m

krkn−r+1(v1⊗ v2⊗w⊗n−3⊗m) = 0 for 3 ≤ r ≤ n− 2 for similar reasons encountered
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above.

kn−1k2(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) = −(n− 3)kn−1

(
l2(v1 ⊗ w)⊗ v2 ⊗ w⊗n−4 ⊗m

)
+ (−1)n−2kn−1

(
k2(v1 ⊗m)⊗ v2 ⊗ w⊗n−3

)
= −(n− 3)kn−1(w ⊗ v2 ⊗ w⊗n−4 ⊗m)

+ (−1)n−2kn−1(m⊗ v2 ⊗ w⊗n−3)

= (n− 3)kn−1(v2 ⊗ w⊗n−3 ⊗m)

+ (−1)(n−2)+(n−2)kn−1(v2 ⊗ w⊗n−3 ⊗m)

= (n− 3)Cn−1m

+ Cn−1m

= (n− 2)Cn−1m

knk1(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) = kn
(
k1(v1)⊗ v2 ⊗ w⊗n−3 ⊗m

)
= −kn(v2 ⊗ w⊗n−2 ⊗m)

= −Cnm

= −(−1)n−1(n− 3)Cn−1m

= (−1)n(n− 3)Cn−1m

Hence

n∑
s=1

(−1)s(n−s)kn−s+1ks(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) = (−1)1(n−1)(−1)n(n− 3)Cn−1m

+ (−1)2(n−2)(n− 2)Cn−1m

+ (−1)(n−1)(n−(n−1))(−1)nCn−1m

= −(n− 3)Cn−1m

+ (n− 2)Cn−1m

− Cn−1m

= 0

In all 4 cases, equation 5.4.2 holds. Hence M is an L-module.
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With the creation of a concrete example of an L∞ module, we hope that interesting

interpretations of it will arise in various topics in homotopy algebra. Furthermore, a

concrete L∞ module will induce another interesting L∞ algebra structure in a manner

that generalizes the relationship between a classical Lie module and a canonical Lie

algebra. This will be addressed in the next chapter.
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Chapter 6

A Canonical L∞ Algebra

Given a Lie algebra L and an L-module M , a rather simple vector space can

be formed via direct sum, L ⊕ M . This vector space may also be endowed with

an elementary Lie structure. In this chapter we review these results in both the

classical setting and the homotopy analog. Subsequently, a new finite dimensional

L∞ structure will be defined using the results of the previous chapter.

6.1 Lie Structures on L⊕M

One of the most fundamental results in the study of classical Lie algebras, as given

concisely in [4], is that given a Lie algebra L and an L−module M , the vector space

L⊕M forms a Lie algebra via the bracket[
(x1,m1), (x2,m2)

]
=
(

[x1, x2], x1 ·m2 − x2 ·m1

)
where ‘·’ denotes the module action in M . The bilinearity and skew-symmetry of the

Lie bracket in L permits an easy verification of properties 1 and 2 of a Lie algebra for

this bracket. Similarly, it is fairly elementary to verify that this bracket satisfies the

Jacobi identity. Hence, any Lie module will induce a new Lie algebra on the direct

sum.

It is not surprising that a homotopy theoretic version of the classical Lie algebra

L⊕M exists. Given an L∞ structure, L, and an L-module, M , we may construct a
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new graded vector space L ⊕M that can be endowed with its own L∞ structure as

follows.

Theorem 6.1.1 (Lada, [8]). Let (L, lk) be an L∞ algebra and (M,kn) be an L-

module. Then the graded vector space L⊕M inherits a canonical L∞ structure under

the collection of maps {jn : (L⊕M)⊗n → L⊕M} defined by

jn
(
(x1,m1)⊗ · · · ⊗ (xn,mn)

)
=
(
ln(x1 ⊗ · · · ⊗ xn),

n∑
i=1

(−1)n−i(−1)mi
Pn
k=i+1 xkkn(x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ xn ⊗mi)

)
where x̂i means omit xi.

Remark 6.1.2. By definition,

j2
(
(x1,m1), (x2,m2)

)
=
(
l2(x1, x2), k2(x1,m2)− (−1)x2m1k2(x2,m1)

)
which reduces to the familiar lie bracket when L is a strict Lie algebra under the

bracket l2 and M is a an L-module under the action k2:[
(x1,m1), (x2,m2)

]
=
(

[x1, x2], x1 ·m2 − (−1)0x2 ·m1

)
Hence, any L∞ module will induce a different L∞ algebra on the direct sum of

graded vector spaces.

6.2 Induced L∞ Structure

Given the newly constructed concrete example of an L∞ module in theorem 5.4.1,

it is natural to investigate the type of L∞ algebra structure it induces. Let L and

M denote the L∞ algebra and L-module in theorem 5.4.1. That is, L =
⊕
i∈Z
Li where

Li = 0 if i 6= 0,−1 and

L0 =< v1, v2 >

L−1 =< w >
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and M =
⊕
i∈Z
Mi where Mi = 0 if i 6= 0,−1 and

M0 =< m >

M−1 =< u >

As a graded vector space, elements (x,m) ∈ L⊕M must satisfy |x| = |m|. Hence

L⊕M =
⊕
i∈Z

(L⊕M)i where (L⊕M)i = 0 if i 6= 0,−1 and

(L⊕M)0 =< (v1,m), (v2,m) >

(L⊕M)−1 =< (w, u) >

Using the definition given in theorem 6.1.1, we may explicitly define the structure

maps {jn} on L⊕M . As a result of multilinearity and skew-symmetry, it suffices to

define these maps by how they act on any number of basis elements.

Since deg(j1) = −1, j1(w, u) = 0. Furthermore,

j1(v1,m) = (l1(v1), k1(m)) = (w, u)

j1(v2,m) = (l1(v2), k1(m)) = (w, u)

Hence j1 is very simply defined by

j1(v1,m) = j1(v2,m) = (w, u)

Examining all combinations of basis elements, we find j2 to be defined as follows:

j2
(
(v1,m), (v1,m)

)
=
(
l2(v1, v1), k2(v1,m)− (−1)v1mk2(v1,m)

)
= (0, 0)

j2
(
(v2,m), (v2,m)

)
=
(
l2(v2, v2), k2(v2,m)− (−1)v2mk2(v2,m)

)
= (0, 0)

j2
(
(v1,m), (v2,m)

)
=
(
l2(v1, v2), k2(v1,m)− (−1)v2mk2(v2,m)

)
= (v1,m)

j2
(
(v1,m), (w, u)

)
=
(
l2(v1, w), k2(v1, u)− (−1)wmk2(w,m)

)
= (w, u)

j2
(
(v2,m), (w, u)

)
=
(
l2(v2, w), k2(v2, u)− (−1)wmk2(w,m)

)
= (0, 0)

j2
(
(w, u), (w, u)

)
= (0, 0) since deg(j2) = 0
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Hence

j2
(
(v1,m), (v2,m)

)
= (v1,m)

j2
(
(v1,m), (w, u)

)
= (w, u)

with j2 = 0 when evaluated on any other element.

It is apparent that the graded differential j1 and bracket j2 are acting in precisely

the same manner as their counterparts in L. The homotopies, however, do not. Let

n ≥ 3 and consider jn : (L⊕M)⊗n → L⊕M . By definition of jn in theorem 6.1.1, in

conjunction with the definitions of ln and kn, the only nonzero action of jn on basis

elements occurs on (v2,m) ⊗ (w, u)⊗n−1 since both ln and kn require v2 as an input

when n ≥ 3.

jn
(
(v2,m)⊗ (w, u)⊗n−1

)
=
(
ln(v2 ⊗ w⊗n−1),

kn(v2 ⊗ w⊗n−2 ⊗ u) + kn(v2 ⊗ w⊗n−2 ⊗ u) + · · ·+ kn(v2 ⊗ w⊗n−2 ⊗ u)︸ ︷︷ ︸
(n−1)kn(v2⊗w⊗n−2⊗u)

+0
)

= (Cnw, (n− 1)Cnu)

= Cn(w, (n− 1)u)

These structure maps form a new L∞ algebra as follows.

Theorem 6.2.1. Let L⊕M =
⊕
i∈Z

(L⊕M)i where (L⊕M)0 is two dimensional with

basis < (v1,m), (v2,m) > and (L ⊕M)−1 is one dimensional with basis < (w, u) >

and (L ⊕M)i = 0 for i 6= 0,−1. Define a structure on (L ⊕M) by the following

multilinear maps {jn : (L⊕M)⊗n → L⊕M}:

j1(v1,m) = j1(v2,m) = (w, u)

j2
(
(v1,m)⊗ (v2,m)

)
= (v1,m)

j2
(
(v1,m)⊗ (w, u)

)
= (w, u)

jn
(
(v2,m)⊗ (w, u)⊗n−1

)
= Cn(w, (n− 1)u)

where C3 = 1, Cn = (−1)n−1(n− 3)Cn−1, and jn = 0 when evaluated on any element

of (L⊕M)⊗n that is not listed above. Then (L⊕M, jn) is an L∞ algebra.
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The proof is an immediate consequence of the previous computations and theorem

6.1.1.

It is worth noting that this is another example of an L∞ structure that is a strict

Lie algebra in degree 0. Finding an example that is not strictly Lie in degree 0 remains

an interesting open question.
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Chapter 7

Homomorphisms of L∞ Modules

Central to Lie algebra representation theory are structure-preserving maps (homo-

morphisms) between Lie modules. We aim here to investigate the homotopy theoretic

version of these maps in the form of L∞ module homomorphisms. In order to con-

struct such homomorphisms, we must first analyze classical properties that they will

mirror. Our strategy is to accomplish this through the relationship among a Lie

algebra L, an L-module M , and the direct sum vector space L⊕M .

7.1 Relationship Between Homomorphisms of Lie

Algebras and Modules

As explored in the previous chapter, a Lie algebra L and an L-module M form a

canonical Lie algebra on L ⊕M . Furthermore, if we define another L-module, M ′,

another canonical Lie algebra is formed on L⊕M ′. The following theorems illustrate

a basic relationship between Lie module homomorphisms ψ : M → M ′ (in the sense

of definition 3.3.2) and Lie algebra homomorphisms ϕ : L ⊕M → L ⊕M ′ (in the

sense of definition 3.1.3).

Theorem 7.1.1. Suppose L is a Lie algebra and M,M ′ are L-modules. Let ψ : M →
M ′ be an L-module homomorphism. Define ϕ : L ⊕ M → L ⊕ M ′ by ϕ(x,m) =
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(x, ψ(m)). Then ϕ is a Lie algebra homomorphism.

Proof. Let (x1,m1), (x2,m2) ∈ L⊕M ′. Then

ϕ([(x1,m1), (x2,m2)]) = ϕ([x1, x2], x1 ·m2 − x2 ·m1)

= ([x1, x2], ψ(x1 ·m2 − x2 ·m1))

= ([x1, x2], ψ(x1 ·m2)− ψ(x2 ·m1))

= ([x1, x2], x1 · ψ(m2)− x2 · ψ(m1))

= [(x1, ψ(m1)), (x2, ψ(m2))]

= [ϕ(x1,m1), ϕ(x2,m2)]

Theorem 7.1.2. Suppose L is a Lie algebra and M,M ′ are L-modules. Let ϕ :

L ⊕ M → L ⊕ M ′ be a Lie algebra homomorphism such that ϕ = idL × ψ where

ψ : M →M ′. Then ψ is a Lie module homomorphism.

Proof. Define ι : M → L⊕M by ι(m) = 0⊕m = (0,m). We note that ψ = π2 ◦ϕ ◦ ι
where π2 is the projection map since

(π2 ◦ ϕ ◦ ι)(m) = π2(ϕ(0,m)) = π2(0, ψ(m)) = ψ(m) ∀m ∈M

Hence

ψ(x ·m) = (π2 ◦ ϕ ◦ ι)(x ·m)

= (π2 ◦ ϕ)(ι(x ·m))

= π2(ϕ(0, x ·m))

= π2(ϕ([(x, 0), (0,m)]))

= π2([ϕ(x, 0), ϕ(0,m)])

= π2([(x, 0), (0, ψ(m)])

= π2(0, x · ψ(m)− 0)

= x · ψ(m) ∀x ∈ L, m ∈M
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These elementary results provide significant motivation for building a structure-

preserving map between L∞ modules in the homotopy context. Any candidate for

such a map should mirror the behavior exhibited here in the classical case. That is,

homomorphisms between L∞ structures are well-understood and definition 4.7.1 may

be applied to the two canonical L∞ algebras L ⊕M and L ⊕M ′. Any candidate

for an L∞ module homomorphism should be similarly related to this L∞ algebra

homomorphism.

7.2 Homotopy Context

Given the fact that the homotopy theoretic versions of Lie algebras L, Lie modules

M , canonical Lie algebras L⊕M , and homomorphisms among the algebras are well-

defined, we may proceed to build a homomorphism between L∞ modules by mirroring

the classical relationships.

Unless noted otherwise, (L, ln) will denote an L∞ structure. (M,kn) and (M ′, k′n)

will denote L∞ modules with (L⊕M, jn) and (L⊕M ′, j′n) their canonical L∞ algebras

respectively.

We will refer to an L∞ algebra homomorphism F : L⊕M → L⊕M ′ by structure

maps {fn : (L⊕M)⊗n → L⊕M ′}, and our candidate for an L∞ module homomor-

phism H : M →M ′ by structure maps {hn : L⊗n−1 ⊗M →M ′}.
With many types of maps being utilized simultaneously, it is beneficial to remem-

ber the following degrees:

• deg ln = n− 2.

• deg kn = n− 2.

• deg fn = n− 1.

• deg hn = n− 1.
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We start with the relationships between Lie algebra homomorphisms and L-

module homomorphisms given in theorems 7.1.1 and 7.1.2:

ϕ(x,m) = (x, ψ(m))

In this notation, we may view ϕ and ψ as degree 0 homomorphisms, say ϕ = f1

and ψ = h1. Hence

f1(x,m) = (x, h1(m)).

The compatibility between h1 and f1 provides significant motivation for the con-

struction of higher homotopies in this setting. In general, fn and hn should be com-

patible.

7.3 First Homotopy

We now explore the generalized setting where (L, ln) is an L∞ algebra, (M,kn) and

(M ′, k′n) are L-modules, and (L⊕M, jn) and (L⊕M ′, j′n) are the induced L∞ algebras.

h1 being a Lie module homomorphism entails commutativity of the following di-

agram:

L⊗M id⊗h1 //

k2
��

L⊗M ′

k′2
��

M
h1 // M ′

If the above diagram only commutes up to homotopy, we introduce our first ho-

motopy, h2 as follows:

L⊗M id⊗h1 //

k2
��

h2

))SSSSSSSS L⊗M ′

k′2
��

M
h1 // M ′

So if k1 and k′1 are graded differentials on M and M ′ respectively, then k′1h2 +

h2k1 = h1k2−k′2(id⊗h1) (by definition of chain homotopy). Evaluated on an element
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(x,m) ∈ L⊕M , this means :

k′1h2(x,m) + h2(l1(x),m) + (−1)xh2(x, k1(m))− h1k2(x,m) + k′2(x, h1(m)) = 0

(7.3.1)

We now shift our attention to f2 : (L⊕M)⊗ (L⊕M)→ L⊕M ′. Motivation from

the classical Lie setting dictates that f2 should be compatible with h2 in a manner

that permits the L∞ algebra homomorphism relation (definition 4.7.1) to hold on 2

inputs, (x1,m1), (x2,m2) ∈ L⊕M . That is, the following equation should hold true:

j′1f2((x1,m1), (x2,m2)) + j′2(f1(x1,m1), f1(x2,m2)) + f2(j1(x1,m1), (x2,m2))

−(−1)(x1,m1)(x2,m2)f2(j1(x2,m2), (x1,m1))− f1j2((x1,m1), (x2,m2)) = 0 (7.3.2)

We also observe that f2 is of degree 2−1 = 1. This limitation encourages a simple

definition for f2, as each coordinate must share this degree. The first coordinate of

f2

(
(x1,m1), (x2,m2)

)
, located in L, must combine x1 and x2 using a degree 1 map.

The second coordinate, located in M ′, ought to combine x1, x2, m1, and m2 using a

degree 1 map as well, creating an expected location for h2. A natural choice for f2

that generalizes the properties observed in the classical Lie setting is:

f2

(
(x1,m1), (x2,m2)

)
:=
(

0 , h2(x1,m2)− (−1)x2m1h2(x2,m1)
)

(7.3.3)

We also note that the second coordinate here adheres to the same pattern as the

second coordinate of the jn maps in the L∞ structure L⊕M (theorem 6.1.1), using

hn in lieu of kn.

Combining equations 7.3.2 and 7.3.3, we find:(
0 , k′1h2(x1,m2)− (−1)x2m1k′1h2(x2,m1)

)
+
(
l2(x1, x2), k

′
2(x1, h1(m2)− (−1)x2h1(m1)k′2(x2, h1(m1))

)
+
(

0 , h2(l1(x1),m2)− (−1)x2k1(m1)h2(x2, k1(m1))
)

−(−1)(x1,m1)(x2,m2)
(

0 , h2(l1(x2),m1)− (−1)x1k1(m2)h2(x1, k1(m2))
)

−
(
l2(x1, x2), h1k2(x1,m2)− (−1)x2m1h1k2(x2,m1)

)
=
(

0 , 0
)



59

In the first coordinate, we have 0 + l2(x1, x2) + 0− 0− l2(x1, x2) = 0.

In the second coordinate, we group together terms containing (x1,m2) and (x2,m1)

respectively, and find:

k′1h2(x1,m2) + k′2(x1, h1(m2)) + k2(l1(x1),m2)+

(−1)x1m2+x1m2+x1h2(x1, k1(m2))− h1k2(x1,m2)

−(−1)x2m1

[
k′1h2(x2,m1) + k′2(x2, h1(m1)) + k2(l1(x2),m1)

+(−1)x2h2(x2, k1(m1))− h1k2(x2,m1)
]

= 0

which holds true by applying equation 7.3.1 twice. Hence, equation 7.3.2 holds true,

implying that the relation observed in 7.3.1 is a natural generalization of the behavior

observed in the classical Lie case up to the first homotopy. As we investigate higher

homotopies, this behavior will validate any relations we derive.

7.4 Key Reasoning for Higher Homotopies

Before attempting to determine the relation that the first higher homotopy, h3,

must satisfy, we consider what would happen if we were not aware of the relation in

equation 7.3.1 that h2 must satisfy.

Our reasoning in determining equation 7.3.3 would not change. We would then

require a relation with h2 that permits equation 7.3.2 to hold true. Once again, the

first coordinate here would simply sum up to 0. The second coordinate would simplify

to

k′1h2(x1,m2) + k′2(x1, h1(m2)) + k2(l1(x1),m2)+

(−1)x1m2+x1m2+x1h2(x1, k1(m2))− h1k2(x1,m2)

−(−1)x2m1

[
k′1h2(x2,m1) + k′2(x2, h1(m1)) + k2(l1(x2),m1)

+(−1)x2h2(x2, k1(m1))− h1k2(x2,m1)
]
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We would then require this expression to be equal to 0. We have two groupings of

the same relation on two different inputs ((x1,m2) and (x2,m1)). If this expression

equals 0, then equation 7.3.2 holds. This would build the h2 relation from the ground

up without the knowledge that stemmed from a simple chain homotopy definition (a

luxury we will not have for h3), and is the type of logic we will employ in investigating

the next higher homotopies.

7.5 h3 Relation

We now execute the same type of strategy in constructing the first homotopy; h3

ought to be compatible with f3 in a manner such that the f3 relation (L∞ algebra

homomorphism on 3 inputs) holds:

j′1f3

(
(x1,m1), (x2,m2), (x3,m3)

)
+(−1)(x1,m1)j′2

(
f1(x1,m1), f2((x2,m2), (x3,m3)

)
+(−1)(x3,m3)[(x1,m1)+(x2,m2)+1]j′2

(
f1(x3,m3), f2((x1,m1), (x2,m2))

)
−(−1)(x2,m2)[(x1,m1)+1]j′2

(
f1(x2,m2), f2((x1,m1), (x3,m3))

)
+j′3
(
f1(x1,m1), f1(x2,m2), f1(x3,m3)

)
−f3

(
j1(x1,m1), (x2,m2), (x3,m3)

)
+(−1)(x1,m1)(x2,m2)f3

(
j1(x2,m2), (x1,m1), (x3,m3)

)
−(−1)(x3,m3)((x1,m1)+(x2,m2))f3

(
j1(x3,m3), (x1,m1), (x2,m2)

)
−f2

(
j2((x1,m1), (x2,m2)), (x3,m3)

)
+(−1)(x2,m2)(x3,m3)f2

(
j2((x1,m1), (x3,m3)), (x2,m2)

)
−(−1)(x1,m1)((x2,m2)+(x3,m3))f2

(
j2((x2,m2), (x3,m3)), (x1,m1)

)
−f1j3

(
(x1,m1), (x2,m2), (x3,m3)

)
= 0 (7.5.1)

We do not know what relation h3 is governed by , but we know that the construc-
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tion of f3 should involve h3. Once again, we observe that f3 is of degree 3 − 1 = 2.

Following similar reasoning in the construction of f2, a natural choice for f3 would

be:

f3

(
(x1,m1), (x2,m2), (x3,m3)

)
=
(

0 , h3(x1, x2,m3)− (−1)x3m2h3(x1, x3,m2)

+ (−1)m1(x2+x3)h3(x2, x3,m1)
)

(7.5.2)

Combining equation 7.5.2 with the left hand side of equation 7.5.1, we get:

j′1

(
0 , h3(x1, x2,m3)− (−1)m2x3h3(x1, x3,m2))

+ (−1)m1(x2+x3)h3(x2, x3,m1)
)

+(−1)(x1,m1)j′2

(
(x1, h1(m1)), ( 0 , h2(x2,m3)− (−1)x3m2h2(x3,m2))

)
+(−1)(x3,m3)[(x1,m1)+(x2,m2)+1]j′2

(
(x3, h1(m3)), ( 0 , h2(x1,m2)− (−1)x2m1h2(x2,m1))

)
−(−1)(x2,m2)[(x1,m1)+1]j′2

(
(x2, h1(m2)), ( 0 , h2(x1,m3)− (−1)x3m1h2(x3,m1))

)
+j′3

(
(x1, h1(m1)), (x2, h1(m2)), (x3, h1(m3))

)
−f3

(
(l1(x1), k1(m1)), (x2,m2), (x3,m3)

)
+(−1)(x1,m1)(x2,m2)f3

(
(l1(x2), k1(m2)), (x1,m1), (x3,m3)

)
−(−1)(x3,m3)[(x1,m1)+(x2,m2)]f3

(
(l1(x3), k1(m3)), (x1,m1), (x2,m2)

)
−f2

((
l2(x1, x2), k2(x1,m2)− (−1)x2m1k2(x2,m1)

)
,
(
x3,m3

))
+(−1)(x2,m2)(x3,m3)f2

((
l2(x1, x3), k2(x1,m3)− (−1)x3m1k2(x3,m1)

)
,
(
x2,m2

))
−(−1)(x1,m1)[(x2,m2)+(x3,m3)]f2

((
l2(x2, x3), k2(x2,m3)− (−1)x3m2k2(x3,m2)

)
,
(
x1,m1

))
−f1

(
l3(x1, x2, x3), k3(x1, x2,m3)− (−1)x3m2k3(x1, x3,m2)

+ (−1)m1(x2+x3)k3(x2, x3,m1)
)
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This expression simplifies to(
0 , k′1h3(x1, x2,m3)− (−1)m2x3k′1h3(x1, x3,m2)

+ (−1)m1(x2+x3)k′1h3(x2, x3,m1)
)

+(−1)(x1,m1)
(

0 , k′2
(
x1, h2(x2,m3)− (−1)x3m2h2(x3,m2)

)
− 0

)
+(−1)(x3,m3)[(x1,m1)+(x2,m2)+1]

(
0 , k′2

(
x3, h2(x1,m2)− (−1)x2m1h2(x2,m1)

)
− 0

)
−(−1)(x2,m2)[(x1,m1)+1]

(
0 , k′2

(
x2, h2(x1,m3)− (−1)x3m1h2(x3,m1)

)
− 0

)
+
(
l3(x1, x2, x3) , k

′
3

(
x1, x2, h1(m3)

)
− (−1)x3m2k′3

(
x1, x3, h1(m2)

)
+ (−1)m1(x2+x3)k′3

(
x2, x3, h1(m1)

) )
−
(

0 , h3

(
l1(x1), x2,m3

)
− (−1)m2x3h3

(
l1(x1), x3,m2

)
+ (−1)(m1+1)(x2+x3)h3

(
x2, x3, k1(m1)

) )
+(−1)(x1,m1)(x2,m2)

(
0 , h3

(
l1(x2), x1,m3

)
− (−1)m1x3h3

(
l1(x2), x3,m1

)
+

(−1)(m2+1)(x1+x3)h3

(
x1, x3, k1(m2)

) )
−(−1)(x3,m3)[(x1,m1)+(x2,m2)]

(
0 , h3

(
l1(x3), x1,m2

)
− (−1)m1x2h3

(
l1(x3), x2,m1

)
+

(−1)(m3+1)(x1+x2)h3

(
x1, x2, k1(m3)

) )
−
(

0 , h2

(
l2(x1, x2),m3

)
−(−1)x3(x1+m2)h2

(
x3, k2(x1,m2)

− (−1)x2m1k2(x2,m1)
) )

+(−1)(x2,m2)(x3,m3)
(

0 , h2

(
l2(x1, x3),m2

)
−(−1)x2(x1+m3)h2

(
x2, k2(x1,m3)

− (−1)x3m1k2(x3,m1)
) )

−(−1)(x1,m1)[(x2,m2)+(x3,m3)]
(

0 , h2

(
l2(x2, x3),m1

)
−(−1)x1(x2+m3)h2

(
x1, k2(x2,m3)

− (−1)x3m2k2(x3,m2)
) )

−
(
l3(x1, x2, x3) , h1k3(x1, x2,m3)

− (−1)x3m2h1k3(x1, x3,m2)

+ (−1)m1(x2+x3)h1k3(x2, x3,m1)
)

(7.5.3)
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Remark 7.5.1. |(xi,mj)| = |xi| = |mj|

Remark 7.5.2. |xi|+ |mj| = |xj|+ |mi|

To satisfy equation 7.5.1, expression 7.5.3 must equal (0, 0). It is clear that the first

coordinate sums up to 0. Setting the second coordinate equal to 0 should reveal what

relation h3 is governed by in a manner similar to the way the h2 relation appeared

twice in the previous section.

In the previous 2-input case, we were able to group all terms involving (x1,m2)

and all terms involving (x2,m1) and found two copies of the same relation, which

was coincidentally the h2 relation. We would expect to encounter the same type

of behavior on strings of 3 inputs. There are multiple expressions that repeat with

inputs (x1, x2,m3), (x1, x3,m2), or (x2, x3,m1), up to some sign. We thus place all

elements of the second coordinate of expression 7.5.3 into one of three groups:

k′1h3(x1, x2,m3) (x1, x2,m3 terms)

+k′3
(
x1, x2, h1(m3)

)
−h3

(
l1(x1), x2,m3

)
+(−1)x1x2h3

(
l1(x2), x1,m3

)
−(−1)x1+x2h3

(
x1, x2, k1(m3)

)
−h2

(
l2(x1, x2),m3

)
−h1k3(x1, x2,m3)

+(−1)x1k′2
(
x1, h2(x2,m3)

)
−(−1)x2(x1+1)k′2

(
x2, h2(x1,m3)

)
−(−1)x1x2h2

(
x2, k2(x1,m3)

)
+h2

(
x1, k2(x2,m3)

)
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−(−1)x3m2k′1h3(x1, x3,m2) (x1, x3,m2 terms)

−(−1)x3m2k′3
(
x1, x3, h1(m2)

)
+(−1)x3m2h3

(
l1(x1), x3,m2

)
−(−1)x3m2+x1x3h3

(
l1(x3), x1,m2

)
+(−1)x3m2+x1+x3h3

(
x1, x3, k1(m2)

)
+(−1)x3m2h2

(
l2(x1, x3),m2

)
+(−1)x3m2h1k3(x1, x3,m2)

−(−1)x3m2+x1k′2
(
x1, h2(x3,m2)

)
+(−1)x3m2+x3(x1+1)k′2

(
x3, h2(x1,m2)

)
+(−1)x3m2+x1x3h2

(
x3, k2(x1,m2)

)
−(−1)x3m2h2

(
x1, k2(x3,m2)

)

(−1)m1(x2+x3)k′1h3(x2, x3,m1) (x2, x3,m1 terms)

+(−1)m1(x2+x3)k′3
(
x2, x3, h1(m1)

)
−(−1)m1(x2+x3)h3

(
l1(x2), x3,m1

)
+(−1)m1(x2+x3)+x2x3h3

(
l1(x3), x2,m1

)
−(−1)m1(x2+x3)+x2+x3h3

(
x2, x3, k1(m1)

)
−(−1)m1(x2+x3)h2

(
l2(x2, x3),m1

)
−(−1)m1(x2+x3)h1k3(x2, x3,m1)

+(−1)m1(x2+x3)+x2k′2
(
x2, h2(x3,m1)

)
−(−1)m1(x2+x3)+x3(x2+1)k′2

(
x3, h2(x2,m1)

)
−(−1)m1(x2+x3)+x2x3h2

(
x3, k2(x2,m1)

)
+(−1)m1(x2+x3)h2

(
x2, k2(x3,m1)

)
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As expected, all three groups follow the same pattern on different strings of inputs.

This is more apparent after factoring out a common sign of −(−1)x2x3 in the second

grouping, and (−1)m1(x2+x3) in the third. Requiring all three groups to sum up to

zero yields the h3 relation as follows:

k′1h3(x, y,m) + k′3
(
x, y, h1(m)

)
− h3

(
l1(x), y,m

)
+ (−1)xyh3

(
l1(y), x,m

)
−(−1)x+yh3

(
x, y, k1(m)

)
− h2

(
l2(x, y),m

)
− h1k3(x, y,m) + (−1)xk′2

(
x, h2(y,m)

)
−(−1)y(x+1)k′2

(
y, h2(x,m)

)
− (−1)xyh2

(
y, k2(x,m)

)
+ h2

(
x, k2(y,m)

)
= 0

∀x, y ∈ L,m ∈M

7.6 Higher Homotopies

After examining the previous relations on 2 and 3 inputs respectively, a rather

simple pattern evolves, up to some signs. It would appear that all terms involving hjki

contain an extra sign of (−1)i(j−1)+1 stemming from the L∞ algebra homomorphism

definition (4.7.1). Also considering the pattern that emerges from each k′rhs term, we

have a likely natural description of an L∞ module homomorphism:

Definition 7.6.1. Let (L, li) be an L∞ algebra and (M,ki), (M
′, k′i) be two L-

modules. An L∞ module homomorphism from M to M ′ is a collection {hn : L⊗(n−1)⊗
M →M ′} of skew-symmetric multilinear maps of degree n− 1 such that∑
i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)+1hj(ki(ξσ(1), · · · , ξσ(i)), ξσ(i+1), · · · , ξσ(n))+∑
r+s=n+1

∑
τ

χ(τ)(−1)(s−1)(
Pn−s
t=1 xτ(t))k′r

(
xτ(1), · · · , xτ(n−s), hs(xτ(n−s+1), · · · , xτ(n−1),m)

)
= 0

Where σ runs through all (i, n − i)-unshuffles and τ runs through all (n − s, s − 1)-

unshuffles .
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A few remarks are in order.

Remark 7.6.2. We define ki = li when evaluated strictly on elements in L. This is

precisely the same requirement in the definition (4.6.1) of an L∞ module.

Remark 7.6.3. Since we have hn : L⊗(n−1)⊗M →M ′, we must utilize skew-symmetry

whenever the ‘m’ element is not in the nth position. For example, h3(x,m, y) =

(−1)ymh3(x, y,m).

Following this definition, the h4 relation is constructed as follows:

k′1h4(x, y, z,m) − h1k4(x, y, z,m)

+k′2(x, h3(y, z,m)) + h2(l3(x, y, z),m)

−(−1)xyk′2(y, h3(x, z,m)) − (−1)zmh2(k3(x, y,m), z)

+(−1)z(x+y)k′2(z, h3(x, y,m)) + (−1)y(z+m)h2(k3(x, z,m), y)

+k′3(x, y, h2(z,m)) − (−1)x(y+z+m)h2(k3(y, z,m), x)

−(−1)yz+x+zk′3(x, z, h2(y,m)) − h3(l2(x, y), z,m)

+(−1)(x+1)(y+z)k′3(y, z, h2(x,m)) + (−1)yzh3(l2(x, z), y,m)

+k′4(x, y, z, h1(m)) − (−1)m(y+z)h3(k2(x,m), y, z)

+ (−1)xy+m(x+z)h3(k2(y,m), x, z)

− (−1)x(y+z)h3(l2(y, z), x,m)

− (−1)(x+y)(z+m)h3(k2(z,m), x, y)

+ h4(l1(x), y, z,m)

− (−1)xyh4(l1(y), x, z,m)

+ (−1)z(x+y)h4(l1(z), x, y,m)

− (−1)m(x+y+z)h4(k1(m), x, y, z)

= 0

We consider remark 7.6.3 here to view this as in a more familiar form similar to
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equation 7.3.1:

k′1h4(x, y, z,m) − h1k4(x, y, z,m)

+k′2(x, h3(y, z,m)) + h2(l3(x, y, z),m)

−(−1)xyk′2(y, h3(x, z,m)) − (−1)z(x+y)+zh2(z, k3(x, y,m))

+(−1)z(x+y)k′2(z, h3(x, y,m)) + (−1)xy+yh2(y, k3(x, z,m))

+k′3(x, y, h2(z,m)) − (−1)xh2(x, k3(y, z,m))

−(−1)yz+x+zk′3(x, z, h2(y,m)) − h3(l2(x, y), z,m)

+(−1)(x+1)(y+z)k′3(y, z, h2(x,m)) + (−1)yzh3(l2(x, z), y,m)

+k′4(x, y, z, h1(m)) − (−1)x(y+z)h3(y, z, k2(x,m))

+ (−1)yzh3(x, z, k2(y,m))

− (−1)x(y+z)h3(l2(y, z), x,m)

− h3(x, y, k2(z,m))

+ h4(l1(x), y, z,m)

− (−1)xyh4(l1(y), x, z,m)

+ (−1)z(x+y)h4(l1(z), x, y,m)

− h4(x, y, z, k1(m))

= 0

The h5, h6, · · · relations follow similar patterns.

Given the relationship between Lie module and Lie algebra homomorphisms ob-

served in the classical Lie case and lower homotopy contexts, this definition for L∞

module homomorphisms is valid if the same relationship holds for all higher homo-

topies. That is, all higher homotopies should adhere to the following.

Theorem 7.6.4. Let (L, li) be an L∞ algebra and (M,ki), (M
′, k′i) be two L-modules

with (L⊕M, ji), (L⊕M ′, j′i) their canonical L∞ structures. Let H = {hn : L⊗(n−1)⊗
M →M ′} be an L-module homomorphism. Let F = {fn : (L⊕M)⊗n → L⊕M ′} be
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defined by

f1(x,m) = (x, h1(m))

fn
(
(x1,m1), · · · , (xn,mn)

)
=
(

0,
n∑
i=1

(−1)n−i(−1)mi
Pn
k=i+1 xkhn(x1 ⊗ · · ·

· · · ⊗ x̂i ⊗ · · · ⊗ xn,mi)
)

for n ≥ 2, where x̂i means omit xi. Then F is an L∞ algebra homomorphism.

Proof. We aim to prove that F is an L∞ algebra homomorphism by showing that the

following relation holds:∑
r+s=n+1

∑
σ

χ(σ)(−1)s(r−1)+1fr

(
js
(
(xσ(1),mσ(1)), · · · , (xσ(s),mσ(s))

)
, (xσ(s+1),mσ(s+1)), · · · , (xσ(n),mσ(n))

)
+∑

1≤t≤n
i1+···+it=n
i1≤···≤it

∑
τ

λ j′t

(
fi1
(
(xτ(1),mτ(1)), · · · , (xτ(i1),mτ(i1))

)
, fi2
(
(xτ(i1+1),mτ(i1+1)), · · ·

· · · (xτ(i1+i2),mτ(i1+i2)

)
, · · · , fit

(
(xτ(i1+···+it−1+1),mτ(i1+···+it−1+1)), · · · , (xτ(it),mτ(it))

))
= 0

Where σ runs through all (s, n − s)-unshuffles and τ runs through all (i1, · · · , it)-
unshuffles satisfying τ(i1 + · · · + il−1 + 1) < τ(i1 + · · · + il + 1) if il = il+1 , and

λ = χ(τ)(−1)
t(t−1)

2
+

Pt−1
k=1 ik(t−k)ν with ν representing the Koszul sign that results from

evaluating (fi1 ⊗ fi2 ⊗ · · · ⊗ fit) on (ξτ(1) ⊗ ξτ(2) ⊗ · · · ⊗ ξτ(n)) .

A few observations are in order:

• Each element in the above relation lies in L ⊕M ′. The first coordinate fairly

simply sums up to 0, as the only nonzero first coordinate element in the first

double sum is −ln(x1, · · · , xn) and the only nonzero first coordinate element in

the second double sum is ln(x1, · · · , xn). The second coordinate ought to have

n copies of definition 7.6.1 as previously observed for n = 2 and n = 3. This is

where the difficulty of the proof lies.
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• In the second coordinate, the frjs terms produce hikj terms, and the j′t(fi1 ⊗
· · · ⊗ fit) terms produce k′ihj terms.

First consider the frjs terms:∑
r+s=n+1

∑
σ

χ(σ)(−1)s(r−1)+1fr

(
js
(
(xσ(1),mσ(1)), · · · , (xσ(s),mσ(s))

)
, (xσ(s+1),mσ(s+1)), · · · , (xσ(n),mσ(n))

)
=

∑
r+s=n+1

∑
σ

χ(σ)(−1)s(r−1)+1fr

((
ls(xσ(1), · · · , xσ(s)),

s∑
i=1

(−1)s−i(−1)mσ(i)

Ps
k=i+1 xσ(k)ks(xσ(1), · · · , ˆxσ(i), · · · , xσ(s),mσ(i))

)
,

(xσ(s+1),mσ(s+1)), · · · , (xσ(n),mσ(n))
)

Where x̂i means omit xi. If r = 1, this is

− fr
(
ln(x1, · · · , xn),

n∑
i=1

(−1)n−i(−1)mi
Pn
k=i+1 xikn(x1, · · · , x̂i, · · · , xn,mi)

)
= −

(
ln(x1, · · · , xn),

n∑
i=1

(−1)n−i(−1)mi
Pn
k=i+1 xih1kn(x1, · · · , x̂i, · · · , xn,mi)

)
If r 6= 1, this is(
0,

r∑
j=2

(−1)n−j(−1)mσ(s+j−1)

Pn
k=s+j xσ(k)hr

(
ls(xσ(1), · · · , xσ(s)), xσ(s+1), · · ·

· · · ˆxσ(s+j−1), · · · , xσ(n),mσ(s+j−1)

)
+ (−1)n−1 α hr

(
xσ(s+1), · · · , xσ(n),

s∑
i=1

(−1)s−i(−1)mσ(i)

Ps
k=i+1 xσ(k)ks(xσ(1), · · · , ˆxσ(i), · · · , xσ(s),mσ(i))

))

where α = (−1)

(
s−2+xσ(1)+···+xσ(n−1)+mσ(n)

)(
xσ(s+1)+···+xσ(n)

)
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Remark 7.6.5. By properties of degrees in L⊕M ,

α =(−1)

(
s−2+xσ(1)+···+xσ(n−2)+xσ(n)+mσ(n−1)

)(
xσ(s+1)+···+xσ(n)

)
=(−1)

(
s−2+xσ(1)+···+xσ(n−3)+xσ(n−1)+xσ(n))

+mσ(n−2)

)(
xσ(s+1)+···+xσ(n)

)
etc.

By graded skew-symmetry, this becomes:(
0,

r∑
j=2

(−1)n−j(−1)mσ(s+j−1)

Pn
k=s+j xσ(k)hr

(
ls(xσ(1), · · · , xσ(s)), xσ(s+1), · · ·

· · · ˆxσ(s+j−1), · · · , xσ(n),mσ(s+j−1)

)
+ (−1)n−1hr

( s∑
i=1

(−1)s−i(−1)mσ(i)

Ps
k=i+1 xσ(k)ks(xσ(1), · · · , ˆxσ(i), · · · , xσ(s),mσ(i)),

xσ(s+1), · · · , xσ(n)

))
Given that each of the above elements in the second coordinate omit one term, we

find n different groups of elements in a similar fashion to what was exhibited when

n = 2, 3. That is, we can divide the above collection into groups with strings of the

following terms:

(x1, x2, · · · , xn−1,mn) terms

(x1, x2, · · · , xn−2, xn,mn−1) terms

...

(x2, x3, · · · , xn,m1) terms

Each of these groups ought to have a Koszul sign in common. For example, all

(x2, x3, · · · , xn,m1) terms should have a common factor of (−1)n−1+m1(x2+···+xn). In

general, all (x1, x2, · · · , xα−1, xα+1, · · ·xn,mα) terms should have a common factor of

(−1)n−α+mα
Pn
i=α+1 xi .

Another significant observation is that each specific unshuffle provides precisely

one of each different type of (x1, x2, · · · , xα−1, xα+1, · · ·xn,mα) terms. That is, for

each 1 ≤ α ≤ n there is a 1-1 correspondence between σ ∈ unsh(s, n − s) and
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(x1, x2, · · · , xα−1, xα+1, · · ·xn,mα) terms, where unsh(s, n−s) is the set of all (s, n−s)-
unshuffles.

Now let σ be a fixed (s, n − s)-unshuffle. Let r + s = n + 1 and 1 ≤ α ≤ n be

fixed. Consider the following expression:

χ(σ)(−1)s(r−1)+1fr

(
js
(
(xσ(1),mσ(1)), · · · , (xσ(s),mσ(s))

)
,

(xσ(s+1),mσ(s+1)), · · · , (xσ(n),mσ(n))
)

(7.6.1)

As a result of the 1-1 correspondence, there is precisely one term of the form

(x1, x2, · · · , xα−1, xα+1, · · ·xn,mα) in the second coordinate of the above expression.

It is formed by the omission of (xα,mα) through the definition of fr or js. This yields

2 cases that depend on where σ places (xα,mα):

Case 1: σ places (xα,mα) outside js. Then α = σ(p) for some s + 1 ≤ p ≤ n.

Therefore expression 7.6.1 becomes

χ(σ)(−1)s(r−1)+1fr

(
js
(
(xσ(1),mσ(1)), · · · , (xσ(s),mσ(s))

)
, (xσ(s+1),mσ(s+1)), · · ·

· · · , (xσ(p−1),mσ(p−1)), (xα,mα), (xσ(p+1),mσ(p+1)), · · ·

· · · (xσ(n),mσ(n))
)

=χ(σ′)(−1)s(r−1)+1(−1)n−α+mα
Pn
i=α+1 xifr

(
js
(
(xσ(1),mσ(1)), · · · , (xσ(s),mσ(s))

)
,

(xσ(s+1),mσ(s+1)), · · · , (xσ(p−1),mσ(p−1)),

(xσ(p+1),mσ(p+1)), · · · (xσ(n),mσ(n)), (xα,mα)
)

Where σ′ is the (s, n− s)-unshuffle such that

σ′
(
(x1, x2, · · · , xα−1, xα+1, · · ·xn,mα)

)
=(xσ(1), · · · , xσ(s), xσ(s+1), · · · , xσ(p−1), xσ(p+1), · · ·xσ(n),mα)

Taking the rth term of the second coordinate of fr, we have:

χ(σ′)(−1)s(r−1)+1(−1)n−α+mα
Pn
i=α+1 xihr

(
ls(xσ(1), xσ(2), · · · , xσ(s)),xσ(s+1), · · · xσ(n),mα

)
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which is the (x1, x2, · · · , xα−1, xα+1, · · ·xn,mα) term corresponding to σ.

Case 2: σ places (xα,mα) inside js. Then α = σ(p) for some 1 ≤ p ≤ s. Then

expression 7.6.1 becomes

χ(σ)(−1)s(r−1)+1fr

(
js
(
(xσ(1),mσ(1)), · · · , (xσ(p−1),mσ(p−1)), (xα,mα), (xσ(p+1),mσ(p+1)),

· · · , (xσ(s),mσ(s))
)
, (xσ(s+1),mσ(s+1)), · · · , (xσ(n),mσ(n))

)

= χ(σ)(−1)s(r−1)+1(−1)s−p+mα(xσ(p+1)+···+xσ(s))fr

(
js
(
(xσ(1),mσ(1)), · · · , (xσ(p−1),mσ(p−1)),

(xσ(p+1),mσ(p+1)), · · · , (xσ(s),mσ(s)), (xα,mα)
)
, (xσ(s+1),mσ(s+1)), · · · , (xσ(n),mσ(n))

)
Taking the sth term of the second coordinate of js, we have:

χ(σ)(−1)s(r−1)+1(−1)s−p+mα(xσ(p+1)+···+xσ(s))fr

((
ls(xσ(1), · · · , xσ(p−1), xσ(p+1), · · ·

· · ·xσ(s), xα), ks(xσ(1), · · · , xσ(p−1),

xσ(p+1), · · · , xσ(s),mα)
)
,

(xσ(s+1),mσ(s+1)), · · · , (xσ(n),mσ(n))
)

= βfr

(
(xσ(s+1),mσ(s+1)), · · · , (xσ(n),mσ(n)),(
ls(xσ(1), · · · , xσ(p−1), xσ(p+1), · · · , xσ(s), xα),

ks(xσ(1), · · · , xσ(p−1), xσ(p+1), · · · , xσ(s),mα)
))

Where

β =χ(σ)(−1)s(r−1)+1(−1)s−p+mα(xσ(p+1)+···+xσ(s))

(−1)n−s+(s−2+xσ(1)+···+xσ(p−1)+xσ(p+1)+···+xσ(s)+mα)(xσ(s+1)+···+xσ(n))

=χ(σ)(−1)s(r−1)+1(−1)n−p+mα(xσ(p+1)+···+xσ(s))

(−1)(s−2+xσ(1)+···+xσ(p−1)+xσ(p+1)+···+xσ(s)+mα)(xσ(s+1)+···+xσ(n))
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Taking the rth term of the second coordinate of fr, we have:

βhr

(
xσ(s+1), · · · , xσ(n), ks(xσ(1), · · · , xσ(p−1), xσ(p+1), · · · , xσ(s),mα)

)
(7.6.2)

Now since σ is an unshuffle, χ(σ) does not contain any sign of the form (−1)mαxγ

with γ > α. Hence

β =χ(σ)(−1)s(r−1)+1(−1)(s−2+xσ(1)+···+xσ(p−1)+xσ(p+1)+···+xσ(s))(xσ(s+1)+···+xσ(n))

(−1)n−p+mα
Pn
i=α+1 xi

Expression 7.6.2 then becomes

β(−1)(s−2+xσ(1)+···+xσ(p−1)+xσ(p+1)+···+xσ(s)+mα)(xσ(s+1)+···+xσ(n))

hr

(
ks(xσ(1), · · · , xσ(p−1), xσ(p+1), · · · , xσ(s),mα), xσ(s+1), · · · , xσ(n)

)
= χ(σ)(−1)s(r−1)+1(−1)mα(xσ(s+1)+···+xσ(n))(−1)n−p+mα

Pn
i=α+1 xi

hr

(
ks(xσ(1), · · · , xσ(p−1), xσ(p+1), · · · , xσ(s),mα), xσ(s+1), · · · , xσ(n)

)
= χ(σ′)(−1)s(r−1)+1(−1)n−α+mα

Pn
i=α+1 xi

hr

(
ks(xσ(1), · · · , xσ(p−1), xσ(p+1), · · · , xσ(s),mα), xσ(s+1), · · · , xσ(n)

)
Where σ′ is the (s, n− s)-unshuffle such that

σ′
(
(x1, x2, · · · , xα−1, xα+1, · · ·xn,mα)

)
=(xσ(1), · · · , xσ(s), xσ(s+1), · · · , xσ(p−1), xσ(p+1), · · ·xσ(n),mα)

and since α ≥ p.

In both cases, we have a common sign that factors out. Since we also sum over all

(s, n− s)-unshuffles, the collection of (x1, x2, · · · , xα−1, xα+1, · · ·xn,mα) terms in the

second coordinate of the first double sum of the L∞ algebra homomorphism relation

simplifies to the following:

(−1)n−α+mα
Pn
i=α+1 xi

∑
i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)+1hj(ki(ξσ(1), · · · , ξσ(i)), ξσ(i+1), · · · , ξσ(n))
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which contains the first double sum of our L∞ module homomorphism definition.

Now consider the j′t(fi1 ⊗ · · · ⊗ fit) terms:∑
1≤t≤n

i1+···+it=n
i1≤···≤it

∑
τ

λ j′t

(
fi1
(
(xτ(1),mτ(1)), · · · , (xτ(i1),mτ(i1))

)
, fi2
(
(xτ(i1+1),mτ(i1+1)), · · ·

· · · (xτ(i1+i2),mτ(i1+i2)

)
, · · · , fit

(
(xτ(i1+···+it−1+1),mτ(i1+···+it−1+1)), · · · , (xτ(it),mτ(it))

))
with λ = χ(τ)(−1)

t(t−1)
2

+
Pt−1
k=1 ik(t−k)ν.

We note again that the only nonzero element in the first coordinate here is

ln(x1, · · · , xn), and it occurs when t = n. Hence it suffices to examine only the sec-

ond coordinate. We now aim to show that this double sum in the second coordinate

induces a collection of groups of elements equal to the second double sum of our L∞

module homomorphism definition corresponding to (x1, x2, · · · , xα−1, xα+1, · · ·xn,mα)

terms, up to some common sign. That will give us n copies of the L∞ module homo-

morphism definition, summing up to 0 as needed.

We follow similar reasoning here to track down x1, x2, · · · , xα−1, xα+1, · · ·xn,mα

terms.

We make the following observations:

• By definition of j′t and fi, unless i1 = i2 = · · · = iβ−1 = iβ+1 = · · · = it = 1 for

some 1 ≤ β ≤ t, j′t(fi1 ⊗ · · · ⊗ fit) = 0.

• β = t since i1 ≤ i2 ≤ · · · ≤ it.

• j′t(fi1 ⊗ · · · ⊗ fit) will not produce a (x1, x2, · · · , xα−1, xα+1, · · ·xn,mα) term

unless τ places (xα,mα) inside fit (by definition of j′t).

Subsequently,

ν = (it − 1)
( t−1∑
k=1

xτ(k)

)
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and since t(t−1)
2

= 1 + 2 + · · ·+ t− 1,

(−1)
t(t−1)

2
+

Pt−1
k=1 ik(t−k) = (−1)1+2+···+t−1(t−1)+(t−2)+···(t−(t−1)) = 1

Therefore λ = χ(τ)(−1)(it−1)(
Pt−1
k=1 xτ(k)).

We now fix 1 ≤ t ≤ n and τ , and assume τ places mα in fit and α = τ(p) for some

t ≤ p ≤ n.

Consider the following:

λ j′t

(
fi1
(
(xτ(1),mτ(1)), · · · (xτ(i1),mτ(i1))

)
, fi2
(
(xτ(i1+1),mτ(i1+1)), · · ·

· · · , (xτ(i1+i2),mτ(i1+i2)

)
, · · ·

· · · , fit
(
(xτ(i1+···+it−1+1),mτ(i1+···+it−1+1)), · · · , (xτ(it),mτ(it))

))
Since i1 = i2 = · · · = it−1, this is

λ j′t

(
f1

(
(xτ(1),mτ(1))

)
, f1

(
(xτ(2),mτ(2))

)
, · · · , f1

(
(xτ(t−1),mτ(t−1))

)
,

fit
(
(xτ(t),mτ(t)), · · · , (xτ(p−1),mτ(p−1)), (xα,mα),

(xτ(p+1),mτ(p+1)), · · · , (xτ(n),mτ(n))
))

= λ j′t

(
(xτ(1), h1(mτ(1))), (xτ(2), h1(mτ(2))), · · · , (xτ(t−1), h1(mτ(t−1))),

fit
(
(xτ(t),mτ(t)), · · · , (xτ(p−1),mτ(p−1)), (xα,mα),

(xτ(p+1),mτ(p+1)), · · · , (xτ(n),mτ(n))
))

= λδ j′t

(
(xτ(1), h1(mτ(1))), (xτ(2), h1(mτ(2))), · · · , (xτ(t−1), h1(mτ(t−1))),

fit
(
(xτ(t),mτ(t)), · · · , (xτ(p−1),mτ(p−1)), (xτ(p+1),mτ(p+1)), · · ·

· · · , (xτ(n),mτ(n)), (xα,mα)
))

(7.6.3)

where δ = (−1)n−p+mα(xτ(p+1)+···+xτ(n)).

Now

λδ = χ(τ)(−1)(it−1)(
Pt−1
k=1 xτ(k))(−1)n−p+mα(xτ(p+1)+···+xτ(n))

= χ(τ ′)(−1)(it−1)(
Pt−1
k=1 xτ(k))(−1)n−α+mα

Pn
i=α+1 xi
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Where τ ′ is the unshuffle such that

τ ′
(
(x1, x2, · · · , xα−1, xα+1, · · ·xn,mα)

)
= (xτ(1), · · · , xτ(p−1), xτ(p+1), · · ·xτ(n),mα)

Taking the itht element of the second coordinate of fit and the tth element of the

second coordinate of j′t in expression 7.6.3, we have

χ(τ ′)(−1)(it−1)(
Pt−1
k=1 xτ(k))(−1)n−α+mα

Pn
i=α+1 xi

k′t
(
xτ(1), · · · , xτ(t−1), hit(xτ(t), · · · , xτ(p−1), xτ(p+1), · · ·xτ(n),mα)

)
Now since τ is a (i1, i2, · · · , it)-unshuffle with i1 = i2 = · · · = it−1 = 1 and

the property that τ(i1 + · · · + il−1 + 1) < τ(i1 + · · · + il + 1) if il = il+1 and τ

places (xα,mα) in fit , there is a 1-1 correspondence between these unshuffles and

(n− it, it − 1)-unshuffles. Since we sum over all of these unshuffles, the collection of

(x1, x2, · · · , xα−1, xα+1, · · ·xn,mα) terms simplifies to the following:

(−1)n−α+mα
Pn
i=α+1 xi

∑
r+s=n+1

∑
τ

χ(τ)(−1)(s−1)(xτ(1)+···+xτ(n−s))

k′r
(
xτ(1), · · · , xτ(n−s), hs(xτ(n−s+1), · · · , xτ(n−1),m)

)
Where τ runs through (n − s, s − 1)-unshuffles, which is the second double sum

in definition 7.6.1.

Hence, grouping all (x1, x2, · · · , xα−1, xα+1, · · ·xn,mα) terms together in the sec-

ond coordinate of the L∞ algebra homomorphism yields the left hand side of definition

7.6.1 with a common sign of (−1)n−α+mα
Pn
i=α+1 xi , allowing the second coordinate to

sum up to 0.

Since the first coordinate also sums up to 0, F is an L∞ algebra homomorphism.

This theorem validates definition 7.6.1 of an L∞ module homomorphism by illus-

trating that it serves as a generalization of properties exhibited by classical Lie alge-

bras. Any further investigation of L∞ modules may use this as a structure-preserving

map.
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Chapter 8

Further Implications

Given the results of [9] and the further exposition provided by this dissertation,

the basic tenets of L∞ algebra representation theory should be well-understood. The

main results of this dissertation expand this theory by constructing a concrete L∞

module and defining the concept of an L∞ module homomorphism. Despite the

computationally intense nature of these results, they serve as the homotopy theoretical

version of elementary results that would likely be addressed in the first few days of a

course on Lie algebra representation theory. Many basic ideas still remain unexplored.

We list a few of these here in the hopes that they are resolved in the near future.

• The concepts of submodules and irreducible modules are central to classical Lie

algebra representation theory. How are the homotopy theoretic versions of these

concepts defined?

• How can one define the kernel and image of a Lie algebra homomoprhism in the

L∞ context? How does it relate to sub(L∞) algebras?

• Does an analog of Schur’s lemma [3] exist in the homotopy context?

• Is there a homotopy analog to complete reducibility for finite dimensional L∞

modules? That is, can an L∞ module be classified as a direct sum of irreducible

submodules?
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• Is there a homotopy version of the representation theory of sl(2,F)?

• Can more concrete examples of L∞ modules be constructed in order to pro-

vide an explicit L∞ module homomorphism using the one constructed in this

dissertation?

We believe that these unexplored ideas will lead to a fruitful expansion of L∞

algebra representation theory.
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