
ABSTRACT

HOLM, KATHLEEN JENNIFER. Comparison of Optimal Design Methods in Inverse Problems.
(Under the direction of H.T. Banks.)

This project was initiated with an investigation by Banks et al [6] into the use of traditional

and generalized sensitivity functions for experimental design. The authors developed tools for

finding the best duration of the data ([0, T ]), as well as the regions of importance for collecting

data based on information from the sensitivity functions. These investigations led to the proposal

of a new optimal design method. This work will provide a necessary testing of this new optimal

design method with a comparison to more established optimal design methods.

Typical optimal design methods for inverse or parameter estimation problems are designed

to choose optimal sampling distributions through minimization of a specific cost function related

to the resulting error in parameter estimates. It is hoped that the inverse problem will produce

parameter estimates with increased accuracy using data collected according to the optimal

sampling distribution. Motivation of the optimal design cost functionals is presented, drawing

from linear algebra, geometry and statistics. We formulate the classical optimal design problem

in the context of general optimization problems over distributions of sampling times. We

present a new Prohorov metric based theoretical framework that permits one to treat succinctly

and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A

fundamental approximation theory is also included in this framework. A new optimal design,

SE-optimal design (standard error optimal design), is then introduced in the context of this

framework. We compare this new design criteria with the more traditional D-optimal and

E-optimal designs. The optimal sampling distributions from each design are used to compute

and compare parameter estimates and standard errors. Given an optimal mesh, the standard

errors for parameters are computed using asymptotic theory or bootstrapping. We use three

examples to illustrate ideas: the Verhulst-Pearl logistic population model [8], the standard

harmonic oscillator model [8] and a popular glucose regulation model [11, 17, 32]. A Monte

Carlo analysis provides a comparison of the optimal design methods over a broad spectrum of

simulated data sets. We present an overview of modeling autocorrelated data and formulate

the inverse problem for the estimation of model and variance parameters. The optimal design

methods are compared in the context of autocorrelated data. The consequences of making an

incorrect assumption about the independence of the data is investigated for the optimal design

time points.

The goal of this project is to test this newer optimal design method, SE-optimal, against

the more traditional methods, D-optimal and E-optimal. As we conduct this comparison in

a variety of examples (in terms of mathematical models, statistical models, and variation on



the constraint implementation) we hope to provide a robust analysis, as well as provide the

exposure of optimal design methods to a larger community of researchers. The use of optimal

experimental design can increase efficiency and the accuracy of parameter estimates, and can

provide more information on the problem being investigated.
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Chapter 1

Introduction

Mathematical models are used to describe dynamics arising from biological, physical and

engineering systems. If the parameters in the model are known, the model can be used for

simulation, prediction, control design, etc. However, typically one does not have accurate values

for the parameters. Instead, one must estimate the parameters using experimental data. The

simulation and predictive capabilities of the model depend on the accuracy of the parameter

estimates. A major question that experimentalists and inverse problem investigators alike often

face is how to best collect the data to enable one to efficiently and accurately estimate model

parameters. This is the well-known and widely studied optimal design problem.

Traditional optimal design methods (D-optimal, E-optimal, c-optimal) [1, 2, 9, 20, 21] use

information from the model to find the sampling distribution or mesh for the observation times

(and/or locations in spatially distributed problems) that minimizes a design criterion, quite often

a function of the Fisher Information Matrix (FIM). Experimental data taken on this optimal

mesh is then expected to result in accurate parameter estimates.

A new optimal design, SE-optimal design (standard error optimal design), is introduced and

compared with the more traditional D-optimal and E-optimal designs. SE-optimal design was

first introduced in [6]. The goal of SE-optimal design is to find the observation times τ = {ti}
that minimize the sum of squared normalized standard errors of the estimated parameters as

defined by asymptotic distribution results from statistical theories [5, 7, 15, 30]. D-optimal

and E-optimal design methods minimize functions of the covariance in the parameter estimates

[2, 9, 21]. D-optimal design finds the mesh that minimizes the volume of the confidence ellipsoid

of the asymptotic covariance matrix. E-optimal design minimizes the largest principle axis of

the confidence ellipsoid of the asymptotic covariance matrix.

We consider the performance of these three different optimal design methods for three

different dynamical systems: the Verhulst-Pearl logistic population model, a harmonic oscillator

model and a simple glucose regulation model. The three examples we use were chosen primarily
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because they offer qualitatively different solutions. The Verhulst-Pearl logistic population model

is a very well studied model [6, 7, 8] whose solution is a monotone increasing trajectory with a

steady state. The harmonic oscillator model [8], whose solution oscillations which decay over

time may provide increased challenges to the optimal design methods. The glucose regulation

model [10, 11, 17, 25] is a more complex system of nonlinear differential equations with a vector

observation or model output. The glucose regulation model also has a clinical application to the

diagnosis of diabetes which could potentially benefit in the information obtained using optimal

design methods.

In an effort to provide a reasonably fair comparison, for each optimal design method, standard

errors are computed by several methods using the optimal mesh. The optimal design methods

are compared based on these standard errors. The goal of this dissertation is not just to test the

newer optimal design method, SE-optimal, against the more traditional optimal design methods,

D-optimal and E-optimal. We also hope to motivate the use of optimal design methods in

a range of practical applications where experimentalists and modelers have common goals to

increase efficiency and accuracy in parameter estimates.

The organization of this dissertation is as follows. Chapter 2 carefully motivates the cost

functionals for each of the optimal design methods and outlines their relationship to the

confidence ellipsoid. To motivate the optimal design cost functions we must bring together

ideas from linear algebra, geometry and statistics. In Chapter 3 we formulate the classical

optimal design problem in the context of general optimization problems over distributions of

sampling times. We present a new Prohorov metric based theoretical framework that allows one

to treat succinctly and rigorously any optimal design criteria based on the Fisher Information

Matrix (FIM). A fundamental approximation theory is also included in this framework. We

also outline how we implement the optimal design methods to actually solve for the optimal

design points in this chapter. Our formulation of the inverse problem is given in Chapter 4.

Additionally, different methods for the computation of standard errors are given corresponding

to variations on the mathematical model and statistical models. The mathematical models used

in this optimal design comparison are carefully defined in Chapter 5. Also contained in this

chapter are the results of our comparison in terms of parameter estimates and standard errors.

We discuss which optimal design methods perform the best based on different criteria. Chapter

6 contains our Monte Carlo analysis ensuring that our comparison is robust to the variation

in parameter estimates resulting from many different (simulated) data sets corresponding to

the optimal design points. Finally, in Chapter 7, we introduce statistical models which account

for autocorrelated data. We carefully explain how autocorrelation can be detected in the data,

how it can be modeled, and then how to estimate autocorrelation parameters along with model

parameters. The optimal design methods are compared in the context of autocorrelated data.
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Chapter 2

Motivation for Optimal Design

Methods

2.1 Introduction

Optimal design methods use information from the model to find the sampling distribution

or mesh for the observation times (and/or locations in spatially distributed problems) that

minimizes a design criterion, quite often a function of the Fisher information matrix (FIM).

Experimental data taken on this optimal mesh are then expected to result in accurate parameter

estimates.

In this chapter we will give the motivation behind the three optimal design methods we

consider in this comparison. First we must briefly introduce the setting in which we will employ

these optimal design methods. Underlying our considerations is a mathematical model, which

may describe some physical, sociological or biological phenomenon, e.g.,

ẋ(t) = g(t, x(t), q),

x(0) = x0, (2.1)

f(t, θ) = C(x(t, θ)), t ∈ [0, T ],

where x(t) ∈ Rn is the vector of state variables of the system, f(t, θ) ∈ Rm is the vector of

observable or measurable outputs, q ∈ Rr are the system parameters, θ = (q, x0) ∈ Rp, p = r+n

is the vector of system parameters plus initial conditions x0, while g and C are mappings

R1+n+r → Rn and Rn → Rm, respectively. To consider measures of uncertainty in estimated

parameters [5], one also requires a statistical model. Our statistical model is given by the

stochastic process

Y (t) = f(t, θ0) + E(t). (2.2)
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Here E is a noisy random process representing measurement errors and, as usual in statistical

formulations [5, 6, 30], θ0 is a hypothesized “true” value of the unknown parameters. Let

σ(t)2 = Var(E(t)). We make the following standard assumptions on the random variable E(t)

throughout our analysis in Chapters 5 and 6:

E(E(t)) = 0, t ∈ [0, T ],

Var(E(t)) = σ2
0, t ∈ [0, T ],

Cov(E(t)E(s)) = σ2
0δ(t− s), t, s ∈ [0, T ],

where δ(s) = 1 for s = 0 and δ(s) = 0 for s 6= 0. A realization of the observation process is given

by

y(t) = f(t, θ0) + ε(t), t ∈ [0, T ],

where the measurement error ε(t) is a realization of E(t).

Usually our observed data is discrete, {tj , yj}Nj=1. Optimal design methods seek the sampling

distribution of times, τ = {tj}Nj=1, that will minimize some function of the Fisher information

matrix, F = Σ−1, where Σ is the covariance matrix

Σ = σ2
0

[
χT (θ0)χ(θ0)

]−1
,

where χ is the N×p (number of time points: N , and number of parameters: p) sensitivity matrix

such that χi,j = ∂f(ti,θ)
∂θj

for i = 1, . . . , N and j = 1, . . . , p, θ0 is the vector of true parameters,

and σ2
0 is the true constant variance of the model residuals.

Each optimal design method proposes its own cost functional, J (F ). To obtain the optimal

design points, τ∗ = {t∗i }, i = 1, . . . , N , one must perform the following minimization.

J (F (τ∗, θ0, )) = min
τ∈T
J (F (τ, θ0)),

where T is the set of all time meshes such that 0 ≤ t1 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ≤ tN ≤ T .

In general, the cost function J (F ) is a metric that attempts to quantify our uncertainty in

the parameters. Thereby minimizing the cost function often leads to small variance/covariance

in the parameter estimates. Solution of the inverse problem on the optimal sampling distribution

should produce parameter estimates with improved accuracy. In this chapter, we will offer

motivation behind D-optimal, E-optimal and SE-optimal design. In order to do this, we first

need to explore the properties of the Fisher information matrix and of linear algebra.
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2.2 Properties of the Fisher information matrix

The discrete asymptotic Fisher information matrix (FIM) is defined as

F =
1

σ2
0

[
χT (θ0)χ(θ0)

]
.

Note: For any m× n matrix A of (column) rank r, the product ATA is a symmetric matrix

and its rank is also r [31]. This implies that if the sensitivity matrix, χ, is not full rank, then

the Fisher information matrix will also not be full rank, and therefore not invertible (note:

Σ = F−1).

Definition: Positive definite matrix

A p × p real-valued matrix A, is called positive definite if xTAx > 0 for all non-zero column

vectors x ∈ Rp.
Definition: Non-negative definite matrix, or Positive semi-definite

A p× p real-valued matrix A, is called non-negative definite if xTAx ≥ 0 for all non-zero column

vectors x ∈ Rp.
The Fisher information and covariance matrices are symmetric (ΣT = Σ) and non-negative

definite. The covariance matrix has variance of the parameters along its diagonal and Var(θ) ≥ 0.

Additionally, the elements of the covariance are real-valued. By definition Cov(x, y) = Cov(y, x),

making the covariance matrix symmetric.

The following theorems will help us prove properties of the confidence ellipsoid.

Theorem (3.25, [29])

If the p× p matrix A is symmetric, then

(i) A is positive definite if and only if the eigenvalues of A, λi > 0 for all i = 1, . . . , p.

(ii) A is non-negative definite if and only if λi ≥ 0 for all i = 1, . . . , p and λi = 0 for at least one

i.

Theorem (3.11, [29])

If a p× p matrix is symmetric, then it is possible to construct a set of eigenvectors of A such

that the set is orthonormal.

Theorem

Let A be a symmetric positive definite matrix, and x a vector. Then

xTAx = 1

defines an ellipsoid, where the eigenvectors of A define the principle directions of the ellipsoid
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and λ
− 1

2
i define the half lengths of the principle axes, where λi are the corresponding eigenvalues.

Proof

Let A be a p× p matrix, with eigenvalues λi for i = 1 . . . p.

Let x be a vector in the column space of A. Let S be a p×p matrix that contains the orthonormal

set of eigenvectors of A; note that S is an orthonormal matrix (S−1 = ST ). Let Λ be the

corresponding p × p diagonal matrix that contains the corresponding eigenvalues of A. The

spectral decomposition of A is [31]

A = S−1ΛS.

We now have a linear transformation from the column space of A into the orthonormal space

spanned by the eigenvectors of A

Λ = SAS−1.

The ellipsoid defined by xTAx = 1, where x ∈ Rp, is often tilted. To show that xTAx = 1 truly

gives rise to an ellipse, we want to rotate the ellipse using a linear transformation such that we

can write the ellipsoid in standard form:(
x1

r1

)2

+ . . .+

(
xp
rp

)2

= 1,

where xT = (x1, x2, . . . , xp) ∈ Rp, and {r1, . . . , rp} are the elliptical radii or half lengths of the

principle axes. The transformation into the orthonormal space spanned by the eigenvectors of

A will transform xTAx = 1 into standard form. Consider the transformation A = S−1ΛS of

xTAx = 1

xTAx = xTS−1ΛSx = xTSTΛSx = (Sx)TΛSx = vTΛv = 1,

where v := Sx. Now in the v coordinates - the space spanned by the eigenvectors of A, we can

write the ellipse in standard form, let vT = (v1, . . . , vp)

vTΛv = 1,

[v1, . . . , vp]


λ1 0 · · ·

0 λ2
. . .

. . .
. . .

. . .

. . . 0 λp



v1

...

vp

 = 1,

[λ1v1, . . . , λpvp]


v1

...

vp

 = 1,
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λ1v
2
1 + . . .+ λpv

2
p = 1, v1

λ
− 1

2
1

2

+ . . .+

 vp

λ
− 1

2
p

2

= 1.

This orthonormal eigenvector transformation results in an ellipsoid with minor axes lengths

equal to λ
− 1

2
i , for i = 1 . . . p. The axes are aligned with v, the space spanned by the orthogonal

eigenvectors of A. Therefore the original xTAx = 1 gives the equation for an ellipse with

principle axis corresponding to the orthonormal eigenvectors of A with minor axes of length

λ
− 1

2
i , for i = 1 . . . p, where λi, i = 1 . . . p, are the eigenvalues of A. �

Example: Let A be defined as follows

A =

(
3 −2

−2 4

)
.

Note that A is symmetric positive definite. We are interested in the ellipse formed by xTAx = 1.

To demonstrate the theorem above we will plot the ellipse formed by matrix A. We will also

show how the spectral decomposition of A will form an equivalent ellipse rotated into the space

spanned by the eigenvectors of A. The spectral decomposition is defined by

A = S−1ΛS.

For this example, the spectral decomposition of A is given by

A =

(
−.7882 −.6154

−.6154 .7882

)(
1.4384 0

0 5.5616

)(
−.7882 −.6154

−.6154 .7882

)
.

In Fig. 2.1 are the ellipses formed by A and the transformation derived above: vTΛv = 1. The

ellipse formed by A is tilted with axes in the direction of its two eigenvectors (with slopes ≈
1.28, and -0.78). The half lengths of the two axis are the same in both plots and are equal to

λ
− 1

2
i ≈ (1.4384−

1
2 , 5.5616−

1
2 ) = (.8338, .4240). The plot on the right is just a rotation of the plot

on the left.
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Figure 2.1: Ellipses corresponding to symmetric positive-definite matrices, xTAx = 1 (panel (a)),
and linear transformation into orthonormal set of eigenvectors of A: (xTS−1)Λ(Sx) = vTΛv = 1
(panel (b)). Both plots have the same axes bounds, tick marks and dimensions, though plotted
in different variables (x: panel (a), v: panel (b)).

2.3 Relation to Confidence Ellipsoid

The confidence ellipsoid is a visualization of the confidence intervals for multiple parameter

estimates all in the common parameter space. The confidence ellipsoid is defined as

(θ − θ̂)T F̂ (θ − θ̂) = m,

where the parameter estimate is θ̂, the estimated Fisher information matrix is F̂ = Σ̂−1, and

m represents the test statistic associated with the confidence level, α, for the 100%(1 − α)

confidence ellipsoid and the sample size, N . The definition of the specific test statistic requires

assumptions about the distribution of the residuals. A common distributional assumption is

to take E ∼ N (0, σ2
0). This assumption results in the 100(1 − α)% confidence ellipsoid being

defined by [30]

(θ − θ̂)T F̂ (θ − θ̂) = pFαp,N−p ⇐⇒
(θ − θ̂)T [χT (θ̂)χ(θ̂)](θ − θ̂)

pσ̂2
= Fαp,N−p,
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where Fαp,N−p denotes the F-distribution with numerator degrees of freedom p and denominator

degrees of freedom (N − p) at the α critical level. Note here m = pFαp,N−p.

The confidence ellipsoid will have principle axes along the eigenvectors of F in Rp, possibly

tilted when plotted on the θT = (θ1, . . . , θp) axes. The confidence ellipsoid will be centered at

the parameter estimates, θ̂. The half axes will be proportional to (due to the constant m) λ
− 1

2
i ,

where λi represents the eigenvalues of F (i = 1 . . . p). Note that λ
− 1

2
i = (λ−1

i )
1
2 = λ̃

1
2
i , where λ̃i

are the eigenvalues of Σ, assuming F is invertible. As the width of the confidence interval is

proportional to the standard error in the estimates, the length of the axes in the confidence

ellipsoid are also proportional to the standard error. The 100(1 − α)% confidence interval is

defined as [5]

θ̂ ± tN−p1−α/2SE(θ̂),

where the standard error is given by SE(θ̂i) =
√

Σii for i = 1 . . . p.

The theorem proved in the previous section holds for symmetric positive definite matrices.

The Fisher information matrix is only symmetric non-negative definite. Supposing that the

sensitivity matrix is not of full rank, the FIM will also not be full rank, and the FIM matrix

may have at least one zero eigenvalue (λi = 0). Then the ellipsoid of xTFx = 1 will only have s

principle axes, where s is the number of non-zero eigenvalues (s < p), and the ellipsoid will exist

in s-dimensional space, Rs.

2.3.1 The Effect of Covariance on the Confidence Ellipsoid

Covariance between parameters is evident in the tilt of the confidence ellipsoid. If there is no

covariance between the parameters, the covariance matrix will be diagonal, and the the confidence

ellipsoid will be aligned along the standard axes. Positive covariance between parameters will

negatively rotate the ellipsoid (in the clockwise direction) proportional to the degree of covariance

between the parameters. Negative covariance between parameters will positively rotate the

confidence ellipsoid (in the counter-clockwise direction). Whether or not the optimal design

methods are taking the covariance between parameters into effect is still under investigation,

and is part of our future research.

The goal of D-optimal and E-optimal design is to minimize the confidence ellipsoid in order

to have smaller error in the parameter estimates. These optimal design methods take different

approaches to this problem. SE-optimal design’s cost functional can also be related to the

confidence ellipsoid. We will motivate each of of the optimal design methods in the following

sections respectively.
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2.4 D-optimal

Optimal design methods find the optimal sampling distribution that minimizes some function of

the FIM. The cost functional that D-optimal minimizes is

J (F ) = det(F−1).

We will show how minimizing this cost functional is equivalent to minimizing the volume of the

confidence ellipsoid.

Let λi for i = 1, ..., p represent the eigenvalues of the matrix A. Then the following holds

[31]:

detA =

p∏
i=1

λi.

Note that this result does not place any requirements on the matrix A.

Consider the ellipsoid with axes’ half lengths equal to r1, . . . , rp. The volume of this ellipsoid

is proportional to the product of the the half lengths

volume(ellipsoid) = C

p∏
i=1

ri,

where C depends on p (e.g. C = π for p = 2, C = 4π/3 for p = 3, C = π2/2 for p = 4,

C = 8π2/15 for p = 5, etc.).

Now let us consider the volume of the confidence ellipsoid

(θ − θ̂)T F̂ (θ − θ̂) = m.

Recall that this ellipsoid has axes with half-lengths proportional to λ
− 1

2
i , where λi are the

eigenvalues of F , or equivalently λ̃
1
2
i where λ̃i are the eigenvalues of Σ = F−1. Therefore the

volume of the ellipsoid is proportional to

VCE = volume(Confidence ellipsoid) ∝
p∏
i=1

λ
− 1

2
i =

(
p∏
i=1

λ−1
i

) 1
2

=

p∏
i=1

λ̃
1
2
i =

(
p∏
i=1

λ̃i

) 1
2

.

Since f(x) =
√

(x), x ≥ 0, is a monotone increasing function in x, minimizing f(x) is equivalent

to minimizing x when x ≥ 0 . Recall that we have F is non-negative definite. Therefore, the
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eigenvalues of F are such that λi ≥ 0, so the following equivalence also holds

arg min
τ∈T

(VCE) = arg min
τ∈T

(
p∏
i=1

λ−1
i

) 1
2

= arg min
τ∈T

(
p∏
i=1

λ−1
i

)
= arg min

τ∈T
det(F (τ)−1).

From this we can see that minimizing the cost functional for D-optimal design is equivalent to

minimizing the volume of the confidence ellipsoid.

2.5 E-optimal

E-optimal design seeks the optimal sampling distribution which minimizes the following cost

functional

J (F ) = max
1

λi
,

where λi are the eigenvalues of F , i = 1 . . . p. Here we will show how minimizing this cost

functional is equivalent to minimizing the largest principle axis of the confidence ellipsoid.

Consider the confidence ellipsoid

(θ − θ̂)T F̂ (θ − θ̂) = m.

The half-lengths of the principle axes of the confidence ellipsoid are proportional to λ
− 1

2
i , where λi

are the eigenvalues of F . The largest principle axis will have length proportional to maxi(λ
−1
i )

1
2

Largest principle axis length ∝ max
i
λ
− 1

2
i = (max

i
λ−1
i )

1
2 .

Again since f(x) =
√
x, for x ≥ 0, is a monotone increasing function of x, and since λi ≥ 0, we

have that maxi(λ
−1
i )

1
2 is equivalent to maxi(λ

−1
i )

arg min
τ∈T

(max
i
λ−1
i )

1
2 = arg min

τ∈T
(max

i
λ−1
i ).

Minimizing the cost functional for E-optimal is equivalent to minimizing the largest principle

axis of the confidence ellipsoid.
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2.6 SE-optimal

SE-optimal design method minimizes the following design cost functional

J (F ) =

p∑
i=1

1

θ2
0,i

(F−1)ii.

Note that F−1
ii = SEi(θ0)2. Therefore, SE-optimal design minimizes the sum of squared

normalized standard errors. Recall that the length of the axes in the confidence ellipsoid, λ
− 1

2
i ,

where λi represents the eigenvalues of F (i = 1 . . . p), are also proportional to the standard error.

SE-optimal is optimizing over a normalized sum of the eigenvalues of the FIM, λi, or the sum

of squares of the normalized ellipsoidal radii.

2.7 Discussion

The confidence ellipsoid is a useful visualization of variance in parameter estimates in relation

to each other. The tilt of the confidence ellipsoid is a way to visualize the covariance between

parameters. The cost functionals proposed by D-optimal, E-optimal, and SE-optimal minimize

this confidence ellipsoid in different ways. D-optimal minimizes the volume of the confidence

ellipsoid. If several points from the sampling distribution are at the same location, the sensitivity

matrix may not be full rank, and the FIM may be ill-conditioned and possibly singular. Since

the cost functional of D-optimal requires inverting the FIM, we hope that ill-conditioning of the

FIM is avoided by the optimization algorithm. Note that we initialize this algorithm with the

uniform mesh for every optimal design method when finding the optimal design points.

E-optimal design minimizes the largest principle axis of the confidence ellipsoid. In making

one axis smaller the other axes may become larger. E-optimal will try to minimize the maximum

principle axis where the parameter with the largest axis may change at every step of the

optimization.

SE-optimal design minimizes the sum of normalized standard errors which are proportional

to the half-lengths of the confidence ellipsoid axes. By minimizing the sum of the ellipsoidal

radii the error in all parameters is simultaneously being minimized.

The theory behind these optimal design methods prefer that the FIM be symmetric and

positive definite, having λi > 0,∀i. However statistical theory only guarantees that the FIM is

symmetric and non-negative definite. The possibility that λi = 0 for some eigenvalue of the FIM

may cause some issues for these optimal design methods. If this happens, it may mean that the

number of sample points can be decreased. If the sensitivity matrix is full rank, and the FIM

is invertible then FIM will be positive definite. Ideally, we would want the optimal sampling

distribution to correspond to a FIM with full rank and good condition number in addition to
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having an optimal confidence ellipsoid.

Now that we have motivated the cost functions for the optimal design methods we will be

comparing, in the following chapter, we will more carefully define the theoretical context of our

optimal design problem.
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Chapter 3

Optimal Design Formulations

Following [6], we introduce a formulation of ideal inverse problems in which continuous in time

observations are available-while not practical, the associated considerations provide valuable

insight. A major question in this context is how to choose sampling distributions in an intelligent

manner. Indeed, this is the fundamental question treated in the optimal design literature and

methodology.

We introduce a generalized weighted least squares criterion

J(y, θ) =

∫ T

0

1

σ(t)2

(
y(t)− f(t, θ)

)2
dP (t), (3.1)

where P is a general measure on [0, T ]. We seek the parameter estimate θ̂ by minimizing J(y, θ)

for θ. Since P represents a weighting of the difference between data and model output, we can,

without loss of generality, assume that P is a bounded measure on [0, T ].

If, for points τ = {ti}, t1 < · · · < tN in [0, T ], we take

Pτ =

N∑
i=1

∆ti , (3.2)

where ∆a denotes the Dirac delta distribution with atom {a}, we obtain

Jd(y, θ) =
N∑
i=1

1

σ(ti)2

(
y(ti)− f(ti, θ)

)2
, (3.3)

which is the weighted least squares cost functional for the case where we take a finite number of

measurements in [0, T ]. Of course, the introduction of the measure P allows us to change the

weights in (3.3) or the weighting function in (3.1). For instance, if P is absolutely continuous

with density m(·) the error functional (3.1) is just the weighted L2-norm of y(·)− f(·, θ) with
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weight m(·)/σ(·)2.

To facilitate our discussions we introduce the Generalized Fisher Information Matrix (GFIM)

F (P, θ0) ≡
∫ T

0

1

σ2(s)
∇T
θ f(s, θ0)∇θf(s, θ0) dP (s), (3.4)

where ∇θ is a row vector given by (∂θ1 , . . . , ∂θp) and hence ∇θf is an N × p matrix. It follows

that the usual discrete FIM corresponding to Pτ as in (3.2) is given by

F (τ) = F (Pτ , θ0) =
N∑
j=1

1

σ2(tj)
∇θf(tj , θ0)T∇θf(tj , θ0). (3.5)

Subsequently we simplify notation and use τ = {ti} to represent the dependence on P = Pτ

when it has the form (3.2). When one chooses P as simple Lebesgue measure then the GFIM

reduces to the continuous FIM

FC =

∫ T

0

1

σ2(s)
∇θf(s, θ0)T∇θf(s, θ0) ds. (3.6)

The major question in optimal design of experiments is how to best choose P in some family

P(0, T ) of observation distributions. We observe that one optimal design formulation we

might employ is a criterion that chooses the times τ = {ti} for Pτ in (3.4) so that (3.5) best

approximates (3.6)–i.e., one minimizes |FC − F (τ)| over τ where | · | is the norm in Rp×p–see [6].

We do not consider this design here, but rather focus on the SE-optimal design also proposed in

[6] and its comparison to more traditional designs.

The introduction of the measure P above allows for a unified framework for optimal design

criteria which incorporates all the popular design criteria mentioned in the introduction. As

already noted, the GFIM F (P, θ) introduced in (3.4) depends critically on the measure P . We

also remark that we can, without loss of generality, further restrict ourselves to probability

measures on [0, T ]. Thus, let P(0, T ) denote the set of all probability measures on [0, T ] and

assume that a functional J : Rp×p → R+ of the GFIM is given. The optimal design problem

associated with J is one of finding a probability measure P̂ ∈ P(0, T ) such that

J
(
F (P̂ , θ0)

)
= min

P∈P(0,T )
J
(
F (P, θ0)

)
. (3.7)

A general theoretical framework for existence and approximation in the context of P(0, T ) taken

with the Prohorov metric [3, 12, 22, 28] is given for these problems in Section 4 of [6]. In

particular, this theory permits development of computational methods using weighted discrete

measures (i.e., weighted versions of (3.2)).
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3.1 Theoretical Summary

To summarize and further develop the theoretical considerations that are the basis of our efforts

here, we first recall that the Prohorov metric ρ on the space P(0, T ) of probability measures on

the Borel subsets of [0, T ] can be defined [3, 12, 22, 28] in terms of probabilities on closed subsets

of [0, T ] and their neighborhoods. However for our uses here it is far more useful to work with

an equivalent characterization in terms of convergences when viewing the probability measures

P(0, T ) as a subset of the topological dual Cb[0, T ]∗ of the bounded continuous functions on

[0, T ] taken with the supremum norm. More precisely, ρ-convergence is equivalent to weak∗-

convergence on P(0, T ) when considering P(0, T ) as a subset of Cb[0, T ]∗. It is then known that

(P(0, T ), ρ) is a complete, compact and separable metric space. (We will hereafter just denote

this space by P(0, T ) since the ρ will be understood.)

Our first observation is that the GFIM as defined in (3.4) is ρ continuous on P(0, T ) for

problems in which the observation functions f(·, θ) are continuously differentiable on [0, T ].

Thus, whenever J : Rp×p → R+ is continuous we find that P → J (F (P, θ)) is continuous from

P(0, T ) to R+. Since P(0, T ) is ρ compact, we obtain immediately the existence of solutions for

the optimization problems

P̂J ≡ argminP∈P(0,T )J (F (P, θ0)). (3.8)

Our second observation is related to the separability of P(0, T ) and in particular to the

density of finite convex combinations over rational coefficients of Dirac measures ∆a with atoms

at a. Specifically, one can prove [3] that the set

P0(0, T ) :=
{
P ∈ P(0, T )

∣∣∣P =
k∑
j=1

pj∆tj , k ∈ N+, tj ∈ T0, pj ≥ 0, pj rational,
k∑
j=1

pj = 1
}

is dense in P(0, T ) in the Prohorov metric ρ. Here T0 = {tj}∞j=1 is a countable, dense subset

of [0, T ]. In short, the set of P ∈ P(0, T ) with finite support in T0 and rational masses is

dense in P(0, T ). This leads, for a given choice J , to approximation schemes for P̂J as defined

in (3.8). To implement these for a given choice of J (examples are discussed below) would

require approximation by PN{pj ,tj} =
∑N

j=1 pj∆tj in the GFIM (3.4) and then optimization over

appropriate sets of {pj , tj} in (3.8) with P replaced by PN{pj ,tj}. For a fixed N , existence of

minima in these problems follow from the theory outlined above. In standard optimal designs

these problems are approximated even further by fixing the weights or masses pj as pj = T
N

(which then becomes simply a scale factor in the sum) and searching over the {tj}. This, of

course, is equivalent to replacing the PN{pj ,tj} by Pτ of (3.2) in (3.4) and searching over the

τ = {tj} for a fixed number N of grid points. This embodies the tacit assumption of equal
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value of the observations at each of the times {tj}. We observe that weighting of information at

each of the observation times is carried out in the inverse problems via the weights σ(tj) for

observation variances in (3.3). We further observe that the weights {pj} in PN{pj ,tj} are related

to the value of the observations as a function of the model sensitivities ∇θf(tj , θ0) in the FIM

while the weights 1
σ(tj)2

are related to the reliability in the data measurement processes. We

note that all of our remarks on theory related to existence above in the general probability

measure case also hold for this discrete minimization case.

The formulation (3.8) incorporates all strategies for optimal design which entail optimization

of a functional depending continuously on the elements of the Fisher information matrix. In case

of the traditional design criteria, J is the determinant (D-optimal), or the smallest eigenvalue

(E-optimal), respectively, of the inverse of the Fisher information matrix. Specifically, the

optimal design methods we consider are SE-optimal design, D-optimal design, and E-optimal

design. The design cost functional for the SE-optimal design method is given by (see [6])

J (F ) =

p∑
i=1

1

θ2
0,i

(F−1)ii,

where F = F (τ) is the FIM, defined above in (3.5), θ0 is the true parameter vector, and p is

the number of parameters to be estimated. Note that both inversion and taking the trace of a

matrix are continuous operations. We observe that F−1
ii = SEi(θ0)2. Therefore, SE-optimal

design minimizes the sum of squared normalized standard errors.

D-optimal design minimizes the volume of the confidence interval ellipsoid for the covariance

matrix (ΣN
0 = F−1). The design cost functional for D-optimal design is given by (see [9, 21])

J (F ) = det(F−1).

Again we note that taking the determinant is a continuous operation on matrices so that the

cost functional for D-optimal is continuous in F as required by the theory.

E-optimal design minimizes the principle axis of the confidence interval ellipsoid of the

covariance matrix. The design cost functional for E-optimal design is given by (see [2, 9])

J (F ) = max
1

λi
,

where λi, i = 1 . . . p are the eigenvalues of F (which are continuous functions of F ). There-

fore 1
λi

, i = 1 . . . p, corresponds to the eigenvalues of the asymptotic covariance matrix ΣN
0 = F−1.
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3.2 Constrained Optimization and Implementations

Each optimal design computational method we employ is based on constrained optimization to

find the mesh of time points τ∗ = {t∗i }, i = 1, . . . , N that satisfy

J (F (τ∗, θ0, )) = min
τ∈T
J (F (τ, θ0)),

where T is the set of all time meshes such that 0 ≤ t1 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ≤ tN ≤ T .

These optimal design methods were implemented using constrained optimization algorithms,

either MATLAB’s fmincon or SolvOpt, developed by A. Kuntsevich and F. Kappel [23], with

four variations on the constraint implementation.

These constrained optimization algorithms solve the grid selection minimization problem of

the form

~ν∗ = min
~ν
J (~ν),

subject to the constraint(s)

A~ν ≤ b, and/or Aeq~ν = beq,

where ~ν is an N -vector, A is an (N + 1)×N matrix, b is an (N + 1)-vector, Aeq is an N ×N
matrix, and beq is a scalar.

For our problem, we have the constraint

0 ≤ ν1 ≤ ν2 ≤ . . . ≤ νN ≤ 1,

where ~t = (t1, ..., tN ) = ~νT = (ν1T, ..., νnT ), then

0 ≤ t1 ≤ t2 ≤ . . . ≤ tN ≤ T.

To express this constraint in the form

A~ν ≤ b, and/or Aeq~ν = beq,

we have several options in algebraic formulations. We denote the different constraint implemen-

tations (which result in different parameter and SE outcomes even in cases where the {ti} are

initially required to satisfy similar constraints) by (C1)− (C4). Our four different constraint

implementations are detailed below and the differences in the implementations of the constrained

optimization algorithm account for the differences in the optimal meshes generated. As is

explained, a primary difference in carrying out the optimizations is the number of points over

which we optimize (i.e., the number of degrees of freedom in the problem).

18



Constraint implementation (C1):

For this constraint implementation, it differs from the other three in that it is not required that

the end points are included in the optimal mesh. For this constraint we define the (N + 1)×N
matrix,

A =



1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
...

. . .
. . .

. . .
. . .

0 · · · 0 −1 1


.

We define the (N + 1)-vector

b = [0, · · · , 0, 1]T.

The constraint Aν ≤ b, implies

0 ≤ ν1 ≤ ν2 ≤ . . . ≤ νN ≤ 1.

Setting ~t = ~νT , we obtain

0 ≤ t1 ≤ t2 ≤ . . . ≤ tN ≤ T.

In this case we optimize over N points.

Constraint implementation (C2):

For this constraint implementation, we require that the end points are included in the optimal

mesh. We optimize over the remaining mesh points (t2, . . . tN−1). For this constraint we define

the (N − 1)× (N − 2) matrix,

A =



1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
...

. . .
. . .

. . .
. . .

0 · · · 0 −1 1


.

We define the (N − 1)-vector

b = [0, · · · , 0, 1]T.

The constraint Aν ≤ b, implies

0 = ν1 ≤ ν2 ≤ ν2 ≤ . . . ≤ νN−1 ≤ νN = 1.
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Upon setting ~t = ~νT , we obtain

0 = t1 ≤ t2 ≤ . . . ≤ tN−1 ≤ tN = T.

In this case we optimize over N − 2 points.

Constraint implementation (C3):

For the third constraint implementation, we include the end points in the optimal mesh. We

optimize over the remaining mesh points (t2, . . . tN−1). For this constraint we define the

(N − 1)× (N − 2) matrix,

A =



−1 0 0 0 · · ·
0 −1 0 0 · · ·
0 0 −1 0 · · ·
...

. . .
. . .

. . .
. . .

0 · · · 0 0 −1

1 · · · 1 1 1


.

We define the (N − 1)-vector,

b = [0, · · · , 0, T ]T.

The constraint Aν ≤ b, implies

νi ≥ 0, for i = 2, . . . , N − 1

and

ν2 + ν3 . . .+ νN−1 ≤ T.

To form ~t from ~ν, we first must define the (N − 2)× (N − 2) matrix

B =



1 0 0 0 · · ·
1 1 0 0 · · ·
1 1 1 0 · · ·
...

. . .
. . .

. . .
. . .

1 · · · 1 1 1


.

Setting t1 = 0, tN = T and

[t2, . . . , tN−1]T = B[ν2, . . . , νN−1]T,
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which implies that

tk =

k∑
j=2

νj , for all k = 2, . . . N − 1.

Then

0 = t1 ≤ ν2 ≤ ν2 + ν3 ≤ . . . ≤ (ν2 + ν3 + . . .+ νN−1) ≤ tN = T,

or equivalently,

0 = t1 ≤ t2 ≤ . . . ≤ tN−1 ≤ tN = T.

We again optimize over N − 2 points.

Constraint implementation (C4):

For the fourth constraint, we include the end points in the optimal mesh. For this constraint we

define the (N − 1)× (N − 1) matrix,

A =



−1 0 0 0 · · ·
0 −1 0 0 · · ·
0 0 −1 0 · · ·
...

. . .
. . .

. . .
. . .

0 · · · 0 0 −1


.

We define the (N − 1)-vector,

b = [0, · · · , 0]T.

The constraint Aν ≤ b, implies

νi ≥ 0, for i = 2, . . . , N.

In addition, we define the (N − 1)-row vector

Aeq = [1, 1, . . . , 1],

and the scalar beq = T . The additional constraint, Aeqν = beq, implies

N∑
j=2

νj = T
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To form ~t from ~ν, we first must define the (N − 1)× (N − 1) matrix

B =



1 0 0 0 · · ·
1 1 0 0 · · ·
1 1 1 0 · · ·
...

. . .
. . .

. . .
. . .

1 · · · 1 1 1


.

Setting t1 = 0 and

[t2, . . . , tN ]T = B[ν2, . . . , νN ]T,

which implies that

tk =

k∑
j=2

νj , for all k = 2, . . . N.

Then

0 = t1 ≤ ν2 ≤ ν2 + ν3 ≤ . . . ≤ (ν2 + ν3 + . . .+ νN ) = tN = T,

or equivalently,

0 = t1 ≤ t2 ≤ . . . ≤ tN−1 ≤ tN = T.

In this algorithm we again effectively optimize over N − 2 points.
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Chapter 4

Inverse Problem and Standard Error

Methodology

We begin by finding the optimal discrete sampling distribution of time points τ = {ti}Ni=1, for a

fixed number N of points in a fixed interval [0, T ], using one of three optimal design methods

described above in Chapters 2 and 3. These three optimal design methods are then compared

based on the standard errors computed for parameters using these sampling times. Since there

are different ways to compute standard errors, we will compare the optimal design method using

different techniques for computing the standard errors.

We assume statistical models with constant variance for most of this work, but for complete-

ness we also define our standard error methodology for statistical models with non-constant

variance (relative error). In addition throughout this chapter independence of the errors is

assumed. In a later chapter we will discuss the necessary modifications for a statistical model

with correlated errors (Chapter 7).

4.1 Standard Error Methodology for Constant Variance Data

In the following sections we will describe the methods for computing standard errors. First we

consider the scalar observation case (m = 1).

Assume we are given experimental data (y1, t1), . . . , (yN , tN ), corresponding to our optimal

time points τ = {ti}Ni=1, from the following underlying observation process

Yj = f(tj , θ0) + Ej ,

where j = 1, . . . , N and the Ej are iid with constant variance. Note that E(Yj) = f(tj , θ0) and
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Var(Yj) = σ2
0, with associated corresponding realizations of Yj given by

yj = f(tj , θ0) + εj .

Once we have an optimal distribution of time points we will obtain data or simulated data,

{yi}Ni=1, a realization of the random process {Yi}Ni=1, corresponding to the optimal time points,

τ = {ti}Ni=1. Parameters are then estimated using inverse problem formulations as described

in [5]. Since the variance Var(E(t)) = σ2
0 is assumed to be constant, the inverse problem is

formulated using ordinary least squares (OLS). The OLS estimator is defined by

ΘOLS = ΘN
OLS = arg min

θ

N∑
j=1

[Yj − f(tj , θ)]
2. (4.1)

The estimate θ̂OLS is defined as

θ̂OLS = θ̂NOLS = arg min
θ

N∑
j=1

[yj − f(tj , θ)]
2.

The OLS cost function can be optimized to get the estimate θ̂ corresponding to data from the

optimal time points. This nonlinear optimization is implemented in MATLAB using fminsearch,

using simulated data, with initial parameter guess θ0 = 1.4θ0, where θ0 represents the vector of

true parameter values. Specifics about our simulated data is given for each example.

4.1.1 Asymptotic Theory for Computing Standard Errors

To compute the standard errors of the estimated parameters, we first must compute the sensitivity

matrix

χj,k =
∂(Cx(tj))

∂θk
=
∂f(tj , θ)

∂θk
, for j = 1, . . . N, k = 1, . . . p.

Note that χ = χN is an N × p matrix. The true constant variance

σ2
0 =

1

N
E

 N∑
j=1

[Yj − f(tj , θ0)]2

 ,
can be estimated by

σ̂2
OLS =

1

N − p

N∑
j=1

[yj − f(tj , θ̂OLS)]2.
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The true covariance matrix is approximately (asymptotically as N →∞) given by,

ΣN
0 = σ2

0[χT (θ0)χ(θ0)]−1.

Note that the approximate Fisher Information Matrix (FIM) is defined by

F = F (τ) = F (τ, θ0) = (ΣN
0 )−1, (4.2)

and is explicitly dependent on the sampling times τ .

When the true values, θ0 and σ2
0, are unknown, the covariance matrix is estimated by

ΣN
0 ≈ Σ̂N (θ̂OLS) = σ̂2

OLS[χT (θ̂OLS)χ(θ̂OLS)]−1. (4.3)

The corresponding FIM can be estimated by

F̂ (τ) = F̂ (τ, θ̂OLS) = (Σ̂N (θ̂OLS))−1. (4.4)

The asymptotic standard errors are given by

SEk(θ0) =
√

(ΣN
0 )kk, k = 1, . . . , p. (4.5)

These standard errors are estimated in practice (when θ0 and σ0 are not known) by

SEk(θ̂OLS) =

√
(Σ̂N (θ̂OLS))kk, k = 1, . . . , p. (4.6)

It can be shown, under certain conditions, for N →∞, that the estimator ΘN
OLS is asymptotically

normal [30]; i.e., for N large

ΘN
OLS ∼ Np(θ0,Σ

N
0 ). (4.7)

4.1.2 Monte Carlo Method for Asymptotic Standard Errors

To account for the variability in the asymptotic standard errors due to the variability in the

residual errors in the simulated data, we use Monte Carlo trials to examine the average behavior.

For a single Monte Carlo trial, we generate simulated data on the optimal mesh {tj}Nj=1,

yj = f(tj , θ0) + εj , j = 1, . . . N,

where εj are realizations of Ej ∼ N (0, σ2) for j = 1, . . . , N . Parameters are estimated using OLS

with initial parameter guess θ0 = 1.4θ0, where θ0 are the true parameters. Standard errors are

estimated using asymptotic theory (4.6). The parameter estimates and their estimated standard
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errors are stored, and the process is repeated with new simulated data corresponding to the

optimal mesh for M Monte Carlo trials (e.g., M = 1000). The average of the M parameter

estimates and standard errors are used to compare the optimal design methods in one of our

examples (Section 5.1).

4.1.3 The Bootstrapping Method

An alternative way of computing parameter estimates and standard errors uses the bootstrapping

method [7]. Again we outline this for the case of scalar (m = 1) observations.

As in the previous section, assume we are given experimental data (y1, t1), . . . , (yN , tN ) from

the following underlying observation process

Yj = f(tj , θ0) + Ej , (4.8)

where j = 1, . . . , N and the Ej are independent identically distributed (iid) from a distribution

F with mean zero (E(Ej) = 0) and constant variance σ2
0, and θ0 is the “true” parameter value.

Associated corresponding realizations of Yj are given by

yj = f(tj , θ0) + εj .

The bootstrapping algorithm is presented for sample points corresponding to the tj , j =

1 . . . N . To compare the optimal design methods based on their bootstrapping standard errors,

we will take our sample points corresponding to the optimal time distribution (τ = {ti}Ni=1).

The following algorithm [7] can be used to compute the bootstrapping estimate θ̂boot of θ0

and its empirical distribution.

1. First estimate θ̂0 from the entire sample, using OLS.

2. Using this estimate define the standardized residuals:

r̄j =

√
N

(N − p)

(
yj − f(tj , θ̂

0)
)

for j = 1, . . . , N . Then {r̄1,. . . ,r̄N} are realizations of iid random variables R̄j from the

empirical distribution FN , and p for the number of parameters. Observe that

E(r̄j |FN ) = N−1
N∑
j=1

r̄j = 0, Var(r̄j |FN ) = N−1
N∑
j=1

r̄2
j = σ̂2.

Set m = 0. Note that in this algorithm, m represents the mth bootstrap sample, and
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unrelated to the number of states (scalar or vector).

3. Create a bootstrap sample of size N using random sampling with replacement from the

data (realizations) {r̄1,. . . ,r̄N} to form a bootstrap sample {rm1 , . . . , rmN}.

4. Create bootstrap sample points

ymj = f(tj , θ̂
0) + rmj ,

where j = 1, . . . , N .

5. Obtain a new estimate θ̂m+1 from the bootstrap sample {ymj } using OLS. Add θ̂m+1 into

the vector Θ, where Θ is a vector of length Mp (M is the number of bootstrap samples)

which stores the bootstrap estimates.

6. Set m = m+ 1 and repeat steps 3–5.

7. Carry out the above iterative process M times where M is large (e.g., M=1000), resulting

in a vector Θ of length Mp.

8. We then calculate the mean and standard error from the vector Θ using the formulae

θ̂boot = 1
M

∑M
m=1 θ̂

m,

Cov(θ̂boot) = 1
M−1

∑M
m=1(θ̂m − θ̂boot)T (θ̂m − θ̂boot), (4.9)

SEk(θ̂boot) =

√
Cov(θ̂boot)kk.

4.2 Standard Error Methodology for a Vector System

Though the vector methodology is similar to that in the scalar case, for completeness we outline

it here for a system of differential equations such as the simple glucose regulation model (see

Section 5.3).

We begin by finding the optimal discrete sampling distribution of time points τ = {ti}Ni=1,

for a fixed number of points, N , and a fixed final time, T , using either SE-optimal, D-optimal,

or E-optimal. These three optimal design methods are then compared based on their parameter

estimates and standard errors using these sampling times. The standard errors can be computed

using asymptotic theory or the bootstrapping method.

More specifically, once we have an optimal distribution of time points we will obtain data or

simulated data, {~yi}Ni=1, a realization of the random process {~Yi}Ni=1 = {(Gi, Ii)T }Ni=1 given by

~Yi = ~f(ti, θ0) + ~Ei,
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corresponding to the optimal time points, τ = {ti}Ni=1, where ~Ei = ~E(ti). Note that here G(t)

and I(t) represent the concentration of glucose and insulin, respectively, in the blood at time t,

and represent the two compartments in our vector system (m = 2). (Gi, Ii) represents the ith

observation corresponding to time ti.

Define V0 = Var(~Ei) = diag(σ2
0,G, σ

2
0,I). Though now we have a vector system, we still assume

constant variance.

4.2.1 Asymptotic Theory for Computing Standard Errors for a Vector Sys-

tem

When the variance is assumed to be constant, the inverse problem is formulated using ordinary

least squares (OLS). The OLS estimator for a vector system is defined by

ΘOLS = ΘN
OLS = arg min

θ

N∑
j=1

[~Yj − ~f(tj , θ)]
TV −1

0 [~Yj − ~f(tj , θ)].

For a given realization {yj}, the OLS estimate θ̂OLS is defined as

θ̂OLS = θ̂NOLS = arg min
θ

N∑
j=1

[~yj − ~f(tj , θ)]V
−1

0 [~yj − ~f(tj , θ)].

The definition of variance gives

V0 = diag E

 1

N

N∑
j=1

[~Yj − ~f(tj , θ0)][~Yj − ~f(tj , θ0)]T

 .

In the case that V0 is unknown, an unbiased estimate can be obtained from the realizations

{~yi}Ni=1 and θ̂ by

V0 ≈ V̂ = diag

 1

N − p

N∑
j=1

[~yj − ~f(tj , θ̂)][~yj − ~f(tj , θ̂)]
T

 ,

which is solved simultaneously (in an iterative procedure - see [5]) with normal equations for

the estimate θ̂ = θ̂OLS, where p is the number of parameters being estimated.

To compute the standard errors of the estimated parameters, we first must compute the

2× p sensitivity matrices Dj(θ) = DN
j (θ) which are given by

Dj =

(
∂f1(tj ,θ)
∂θ1

∂f1(tj ,θ)
∂θ2

. . .
∂f1(tj ,θ)
∂θp

∂f2(tj ,θ)
∂θ1

∂f2(tj ,θ)
∂θ2

. . .
∂f2(tj ,θ)
∂θp

)
,
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for j = 1, . . . , N . For this system we can rewrite Dj in terms of (G(tj , θ), I(tj , θ))
T

(since (f1(tj , θ), f2(tj , θ))
T = (G(tj , θ), I(tj , θ))

T ). We have

Dj =

(
∂G(tj ,θ)
∂θ1

∂G(tj ,θ)
∂θ2

. . .
∂G(tj ,θ)
∂θp

∂I(tj ,θ)
∂θ1

∂I(tj ,θ)
∂θ2

. . .
∂I(tj ,θ)
∂θp

)
.

The true covariance matrix is approximately (asymptotically as N →∞) given by

ΣN
0 ≈

 N∑
j=1

DT
j (θ0)V −1

0 Dj(θ0)

−1

.

When the true values, θ0 and V0, are unknown, the covariance matrix is estimated by

ΣN
0 ≈ Σ̂N =

 N∑
j=1

DT
j (θ̂OLS)V̂ −1Dj(θ̂OLS)

−1

.

The corresponding FIM, asymptotic standard errors and asymptotic distribution are again

given by (4.4), (4.5), (4.6), and (4.7), respectively.

4.2.2 The Bootstrap Method for a Vector System

The bootstrap method for a system of differential equations is the same as described in the

previous section, except that each state variable has its own residuals that must be separately

sampled with replacement. The first four steps of the bootstrap algorithm of Section 4.1.3

modified for a system with vector observations is outlined here for completeness.

1. First estimate θ̂0 from the entire sample, using OLS.

2. Using this estimate define the standardized residuals:

r̄G,j =

√
N

(N − p)

(
y1,j − f1(tj , θ̂

0)
)
,

r̄I,j =

√
N

(N − p)

(
y2,j − f2(tj , θ̂

0)
)

for j = 1, . . . , N . Then {r̄G,1,. . . ,r̄G,N},{r̄I,1,. . . ,r̄I,N} are realizations of iid random

variables from the empirical distribution FN , and p for the number of parameters.

Set m = 0.
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3. Create a two different bootstrap samples of size N using random sampling with replacement

from the data (realizations) {r̄G,1,. . . ,r̄G,N} and {r̄I,1,. . . ,r̄I,N} to form the bootstrap

samples {rmG,1, . . . , rmG,N} and {rmI,1, . . . , rmI,N}.

4. Create bootstrap sample points

ym1,j = f1(tj , θ̂
0) + rmG,j ,

ym2,j = f2(tj , θ̂
0) + rmI,j ,

where j = 1,. . . ,N .

5. Steps 5-8 are the same as those of the algorithm for scalar observations in Section 4.1.3.

4.3 Standard Error Methodology for Non-constant Variance

Data

We present this standard error methodology for the scalar case (m = 1), but this could be

generalized for a vector case as was shown for the constant variance case (section 4.2).

We suppose now that we are given experimental data (y1, t1), . . . , (yN , tN ) from the following

underlying observation process

Yj = f(tj , θ0)(1 + Ej) (4.10)

where j = 1, . . . , N and the Ej are iid with mean zero and non-constant variance. Note that

E(Yj) = f(tj , θ0) and Var(Yj) = σ2
0f

2(tj , θ0), with associated corresponding realizations of Yj

given by

yj = f(tj , θ0)(1 + εj).

We see that the variance generated in this fashion is model dependent and hence generally

is longitudinally non-constant variance. The appropriate method to use to estimate θ0 and σ2
0 is

a particular form of the Generalized Least Squares (GLS) method [5, 15].

To define the random variable θGLS the following equation must be solved for the estimator

θGLS:

N∑
j=1

wj [Yj − f(tj , θGLS)]∇f(tj , θGLS) = 0, (4.11)

where Yj obeys (4.10) and wj = f−2(tj , θGLS). We note these are the normal equations (obtained

by equating to zero the gradient of the weighted least squares criterion in the case where the

weights wj are not dependent on θ). The quantity θGLS is a random variable, hence if {yj}Nj=1 is
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a realization of the random process Yj then solving

N∑
j=1

f−2(tj , θ̂)[yj − f(tj , θ̂)]∇f(tj , θ̂) = 0, (4.12)

for θ̂ we obtain an estimate θ̂GLS for θGLS.

The GLS Algorithm

An estimate θ̂GLS can be solved for iteratively. The iterative procedure as described in [15] is

summarized as follows:

1. Estimate θ̂GLS by θ̂(0) using the OLS equation (4.1). Set k = 0.

2. Form the weights ŵj = f−2(tj , θ̂
(k)).

3. Re-estimate θ̂ by solving

θ̂(k+1) = arg min
θ∈Θad

N∑
j=1

ŵj
(
yj − f

(
tj , θ

))2
to obtain the k + 1 estimate θ̂(k+1) for θ̂GLS.

4. Set k = k+ 1 and return to 2. Terminate the process when two of the successive estimates

for θ̂GLS are sufficiently close.

4.3.1 Asymptotic Theory for Computing Standard Error for Non-Constant

Variance Data

Assume we are given experimental data (y1, t1), . . . , (yN , tN ) from the following underlying

observation process

Yj = f(tj , θ0)(1 + Ej),

where j = 1, . . . , N and the Ej are iid with non-constant variance. Note that E(Yj) = f(tj , θ0)

and Var(Yj) = σ2
0f

2(tj , θ0), with associated corresponding realizations of Yj given by

yj = f(tj , θ0)(1 + εj).

When using asymptotic theory [5, 8], we obtain the estimate θ̂ using the Generalized Least

Squares (GLS) algorithm. Then σ2
0 is approximated by

σ2
0 ≈ σ̂2

GLS =
1

N − p

N∑
j=1

1

f2(tj , θ̂)
(f(tj ; θ̂)− yj)2.

31



We estimate the covariance matrix using θ̂ and σ̂2
GLS by

ΣN
0 ≈ Σ̂N (θ̂) = σ̂2

GLS [χT (θ̂)W (θ̂)χ(θ̂)]−1,

where W−1(θ) = diag(f2(t1, θ), . . . , f
2(tN , θ)). We compute the standard error using Σ̂N (θ̂) and

SEk(θ̂) =

√
Σ̂N
kk(θ̂).

4.3.2 Bootstrapping Algorithm for Computing Standard Error for Non-constant

Variance Data

The following algorithm [13, 14, 16, p. 287–290] can be used to compute the bootstrapping

estimate θ̂boot of θ0 and its empirical distribution.

1. First obtain the estimate θ̂0 from the entire sample, using GLS.

2. For the case where f(tj , θ0) is a linear function of the parameters θ0:

(a) Using this estimate define the standardized residuals:

r̄j =

√
N

(N − p)

(
yj − f(tj , θ̂

0)
)

f(tj , θ̂0)

for j = 1, . . . , N . Then {r̄1,. . . ,r̄N} are realizations of iid random variables R̄j , and p for

the number of parameters.

(b) Define r̄avg = N−1
∑N

j=1 r̄j .

(c) Define σ̂2
boot = N−1

∑N
j=1 r̄

2
j .

(d) Define the non-constant variance standardized residuals:

s̄j =

(
1−

r̄2
avg

σ̂2
boot

)−1/2

(r̄j − r̄avg).

Then {s̄1 . . . s̄N} are iid from the empirical distribution FN . We modify the standardized

residuals from what we had in the constant variance case, so that the following conditions

would continue to hold:

E(s̄j |FN ) = 0, Var(s̄j |FN ) = σ̂2.

Set m = 0.

For the case where f(tj , θ0) is a non-linear function of the parameters θ0:

32



Define the non-constant variance standardized residuals

s̄j =
(
yj − f(tj , θ̂

0)
)
/f(tj , θ̂

0).

Then {s̄1 . . . s̄N} are iid from the empirical distribution FN . Again the standardized

residuals have been modified from the linear model case so that the following conditions

only approximately hold:

E(s̄j |FN ) ≈ 0, Var(s̄j |FN ) ≈ σ̂2.

Set m = 0.

3. Create a bootstrap sample of size N using random sampling with replacement from the

data (realizations) {s̄1,. . . ,s̄N} to form a bootstrap sample {sm1 , . . . , smN}.

4. Create bootstrap sample points

ymj = f(tj , θ̂
0) + f(tj , θ̂

0)smj ,

where j = 1,. . . ,N .

5. Obtain a new estimate θ̂m+1 from the bootstrap sample {ymj } using GLS. Add θ̂m+1 into

the vector Θ, where Θ is a vector of length M which stores the bootstrap estimates.

6. Set m = m+ 1 and repeat steps 3–5.

7. Carry out the above iterative process M times where M is large (e.g., M = 1000), resulting

in a vector Θ of length M.

8. We then calculate the mean, standard error, and confidence intervals from the vector Θ

using the same formulae (4.9) as before.

If bootstrapping samples {ym1 , ..., ymN } resemble the data {y1, ..., yN} in terms of the empirical

error distribution, FN , then the parameter estimates are expected to be consistent. The

modification of the standardized residuals allows each of the bootstrapping samples to have an

empirical distribution with the same mean and variance as the original FN .

4.4 Choosing the Correct Statistical Model: Constant vs Non-

constant Variance

In practice it is important to choose the correct statistical model. Residual tests can be useful in

determining where a constant variance or non-constant variance assumption should be made. To
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test the assumption of constant variance, one can plot the residuals vs time. If the assumption

is correct, one should observe no pattern in the residuals across time with relatively constant

variance. If the pattern of the residuals over time is non-constant one can propose a model in

the form

Var(Yj) = σ2g2(tj , θ).

If the residuals exhibit relative error: i.e., the amount of variance in the residuals scales with

the model’s function value, then one can choose g(t, θ) = f(t, θ). The choice of g(t, θ) can be

tested using the weighted residual test. Define the weighted residuals as follows

εj,GLS =
yj − f(tj , θ̂)

σ̂g(tj , θ̂)
.

If your statistical model is correct, plotting the weighted residuals vs time should exhibit a

random pattern. We will discuss testing the assumption of independent errors in Chapter 7.

4.5 Discussion of Asymptotic Theory vs Bootstrapping

A simulation study comparing standard error computations from asymptotic theory and the

bootstrapping method is given in [7]. Here we summarize the conclusions from this comparison.

In general, the time to compute standard errors from asymptotic theory is shorter compared to

that for the bootstrapping method. However, asymptotic theory requires sensitivity equations to

be solved analytically or numerically, where as the bootstrapping method does not. Examining

the standard errors themselves, they found no advantage in asymptotic theory or bootstrapping

for constant variance data. With non-constant data there can be an advantage to using the

bootstrapping method. If local variation in the data is present in regions of importance for the

estimation of the parameters, then the bootstrapping standard error estimate for those parameters

will be larger due to a corrective term. When this corrective term is present, the bootstrapping

standard error estimate will be larger yet more accurate and more conservative than the smaller

asymptotic theory standard error estimate. If local variance is not sufficiently large in regions of

importance for the estimation of a parameter, then there will be no advantageous method for

computing the standard error for that parameter.
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Chapter 5

Optimal Design Comparison for

Three Examples

We will compare the optimal design methods using the standard errors resulting from the optimal

time points each method proposes. Since there are different ways to compute the standard

errors we will present results for several of these computational methods.

We compare the optimal design methods for mathematical models of increasing complexity.

First is the Verhulst-Pearl logistic population model: a first order differential equation whose

solution is a monotone increasing function with a steady state, a very well studied model. Second

is the harmonic oscillator model: a second order differential equation whose solution exhibits

oscillatory behavior. Lastly is a glucose regulation model: a system of nonlinear differential

equations.

5.1 The Logistic Growth Example

We first compare the optimal design methods for the logistic example using the Monte Carlo

method for asymptotic estimates and standard errors.

5.1.1 Logistic Model

The Verhulst-Pearl logistic population model describes a population that grows at an intrinsic

growth rate until it reaches its carrying capacity. It is given by the differential equation:

ẋ(t) = rx(t)

(
1− x(t)

K

)
, x(0) = x0,
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where K is the carrying capacity of the population, r is the intrinsic growth rate, and x0 is the

initial population size. The analytical solution to the differential equation above is given by,

x(t) = f(t, θ0) =
K

1 + (K/x0 − 1)e−rt
,

where θ0 = (K, r, x0) is the true parameter vector.

Our statistical model is given by

Y (t) = f(t, θ0) + E(t),

where we choose E ∼ N (0, σ2
0) to generate simulated data (for use in the Monte Carlo calcula-

tions). A realization of the observation process is given by

y(t) = f(t, θ0) + ε(t), t ∈ [0, T ].

5.1.2 Logistic Results

For the logistic model, we use SolvOpt to solve for the optimal mesh for each of the optimal

design methods (D-optimal, E-optimal and SE-optimal), using the second constraint (C2) on

the time points: t1 ≥ 0, tN ≤ T and ti ≤ ti+1, such that the optimal mesh contains 0 and T .

For this example, we took T = 25 and N = 10 or N = 15. Figures 5.1 and 5.3 contain plots of

the resulting optimal distribution of time points for the different optimal design methods, along

with the uniform mesh, plotted on the logistic curve, for N = 10 and N = 15, respectively.

These optimal design methods are compared based on their average Monte Carlo asymptotic

estimates and standard errors (described in Section 4.1.2). The simulated data was generated

assuming the true parameter values θ0 = (K, r, x0) = (17.5, 0.7, 0.1), and constant variance

σ2
0 = 0.16. The average estimates and standard errors are based on M = 1000 Monte Carlo

trials. Since we obtain histograms of estimates and standard errors from this Monte Carlo

analysis, we can also gain information for comparison from the median of these histograms

or sampling distributions. Monte Carlo asymptotic estimates and standard errors were also

computed on the uniform mesh. We report the average and median estimates and standard

errors in Tables 5.1 and 5.2 (N = 10, and N = 15). Histograms for the Monte Carlo standard

errors are given in Figs. 5.2 and 5.4 for N = 10 and N = 15, respectively.

5.1.3 Discussion of Logistic Results

The average asymptotic estimates from the uniform distribution and each of the optimal design

methods are very close to the true values, θ0. For N = 10 (Table 5.1), SE-optimal has the

closest average and median estimates, followed by D-optimal (for r and x0) and E-optimal
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Table 5.1: Average and Median estimates and standard errors using SolvOpt, N = 10, M = 1000,
and θ0 = (17.5, 0.7, 0.1). Optimization with constraint implementation (C2).

Parameter Method Average Est Median Est Average SE Median SE

K Unif 17.4978 17.4954 1.789× 10−1 1.789× 10−1

SE-opt 17.4985 17.4995 2.000× 10−1 2.000× 10−1

D-opt 17.5066 17.5024 2.039× 10−1 2.038× 10−1

E-opt 17.4959 17.4957 1.512× 10−1 1.512× 10−1

r Unif 0.7042 0.6996 5.020× 10−2 4.983× 10−2

SE-opt 0.7019 0.7000 3.473× 10−2 3.444× 10−2

D-opt 0.7020 0.7029 3.821× 10−2 3.816× 10−2

E-opt 0.7139 0.7033 9.696× 10−2 9.090× 10−2

x0 Unif 0.1037 0.0999 3.730× 10−2 3.696× 10−2

SE-opt 0.1018 0.1002 2.448× 10−2 2.432× 10−2

D-opt 0.1025 0.0982 2.947× 10−2 2.859× 10−2

E-opt 0.1103 0.0977 6.417× 10−2 6.174× 10−2

Table 5.2: Average and Median estimates and standard errors using SolvOpt, N = 15, M = 1000,
and θ0 = (17.5, 0.7, 0.1). Optimization with constraint implementation (C2).

Parameter Method Average Est Median Est Average SE Median SE

K Unif 17.5004 17.5009 1.467× 10−1 1.466× 10−1

SE-opt 17.4941 17.4899 1.633× 10−1 1.633× 10−1

D-opt 17.5017 17.4974 1.553× 10−1 1.552× 10−1

E-opt 17.5006 17.5006 1.265× 10−1 1.265× 10−1

r Unif 0.7018 0.6983 4.118× 10−2 4.086× 10−2

SE-opt 0.7008 0.6993 2.739× 10−2 2.721× 10−2

D-opt 0.7022 0.7016 3.353× 10−2 3.353× 10−2

E-opt 0.7056 0.7004 8.078× 10−2 7.799× 10−2

x0 Unif 0.1027 0.1004 3.040× 10−2 3.020× 10−2

SE-opt 0.1016 0.0997 1.999× 10−2 1.977× 10−2

D-opt 0.1014 0.0992 2.476× 10−2 2.440× 10−2

E-opt 0.1078 0.0989 4.920× 10−2 4.788× 10−2
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Figure 5.1: The distribution of optimal time points and uniform sampling time points plotted on
the logistic curve. Optimal times points obtained using SolvOpt, with N = 10, and the optimal
design methods SE-optimality, D-optimality, and E-optimality. Optimization with constraint
implementation (C2).

(for K). For N = 15 (Table 5.2), the closest average estimate of K came from E-optimal, for

r the closest average estimate is from SE-optimal, and for x0 it was D-optimal. Comparing

the average and median estimates, we see that for all cases the averages and medians are very

close, indicating that the parameter distributions are symmetric. However, for both N = 10 and

N = 15 the averages were slightly larger than the medians for r and x0 for all methods, implying

that those parameter distributions are slightly skewed to the right (see Tables 5.1 and 5.2).

Comparing the standard errors (Tables 5.1 and 5.2 and Figs. 5.2 and 5.4): For K, we find

that E-optimal has the smallest average standard errors, then the uniform grid, then SE-optimal

when N = 10 or D-optimal when N = 15. For r and x0, SE-optimal has the smallest average

standard errors, followed by D-optimal, then the uniform grid. The average and median standard

errors are very close. However, E-optimal’s distribution of standard errors for r seems to be

slightly right-skewed.

In conclusion, all of the optimal design methods produce parameter estimates that are close

to the true value. In addition, the standard error estimates are similar when comparing the

different optimal design methods. Based on the standard errors, E-optimal is more favorable for
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Figure 5.2: Using SolvOpt, with N = 10, a comparison of optimal design methods using SE-
optimality, D-optimality, E-optimality, with a uniform sampling time points in terms of SEK
(panel (a)), SEr (panel (b)), and SEx0 (panel (c)). Optimization with constraint implementation
(C2).

the accuracy of K, and SE-optimal is more favorable for the accuracy of r and x0 (followed

closely by D-optimal).
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Figure 5.3: The distribution of optimal time points and uniform sampling time points plotted on
the logistic curve. Optimal times points obtained using SolvOpt, with N = 15, and the optimal
design methods SE-optimality, D-optimality, and E-optimality. Optimization with constraint
implementation (C2).
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Figure 5.4: Using SolvOpt, with N = 15, a comparison of optimal design methods using SE-
optimality, D-optimality, E-optimality, with a uniform sampling time points in terms of SEK
(panel (a)), SEr (panel (b)), and SEx0 (panel (c)). Optimization with constraint implementation
(C2).
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5.2 The Harmonic Oscillator Model

In our next example, we consider the harmonic oscillator, also known as the spring-mass-dashpot

model. The model for the harmonic oscillator can be derived using Hooke’s Law and mass-balance

(see [8]) and is given by

mẍ+ cẋ+ kx = 0, ẋ(0) = x1, x(0) = x2.

Here, m is mass, c is damping, and k is the spring constant. Dividing through by m, and

defining C = c/m and K = k/m, we can reduce the number of parameters.

ẍ+ Cẋ+Kx = 0, ẋ(0) = x1, x(0) = x2.

The analytical solution for the position at time t can be obtained and is given by

x(t) = e−at (C1 cos bt+ C2 sin bt) ,

where C1 = x2, C2 = (x1 + ax2)/b, a = 1
2C, and b =

√
K − 1

4C
2. Substituting in C1 and C2,

we obtain,

x(t) = x(t, θ0) = f(t, θ0) = e−at
(
x2 cos bt+

x1 + ax2

b
sin bt

)
, for 0 ≤ t ≤ T,

where for our considerations the true parameter vector is given by θ0 = (C,K, x1, x2) =

(0.1, 0.2,−1, 0.5) in our examples here.

5.2.1 Results for the Oscillator Model

The first way we will compare these optimal design methods, given that we know θ0 =

(C,K, x1, x2) = (0.1, 0.2,−1, 0.5) and σ2
0 = 0.16, is to simply use their corresponding stan-

dard errors from the asymptotic theory, i.e., the values of SE(θ0) given in (4.5). Recall that

uncertainty is quantified by constructing confidence intervals using parameter estimates with the

asymptotic standard error. Since our main focus here is the width of the confidence intervals,

we can forgo the obtaining of the parameter estimates themselves which, for now, we tacitly

assume may be similar for the three data sampling distributions we investigate here.

The optimal time points were found using the constrained nonlinear optimization algorithm

SolvOpt. The optimal time points for each of the three optimal design methods are plotted with

the model for different T and N under the first constraint implementation (C1) in Fig. 5.5, the
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second constraint implementation (C2) in Fig. 5.6, the third constraint implementation (C3) in

Fig. 5.7, and the last constraint implementation (C4) in Fig. 5.8. The standard errors (4.5)

from the asymptotic theory corresponding to these optimal meshes are given in Table 5.3-5.6,

respectively for the four different constraints.
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Figure 5.5: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (C,K, x1, x2), with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10
(panel (c)) and T = 28.28 (two periods) for N = 10 (panel (b)) and N = 20 (panel (d)).
Optimization with constraint implementation (C1).
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Table 5.3: Approximate asymptotic standard errors from the asymptotic theory (4.5) resulting
from different optimal design methods for θ0 = (C,K, x1, x2), optimization with constraint
implementation (C1).

T N Method SE(C) SE(K) SE(x1) SE(x2)

14.14 5 SE-optimal 7.603× 10−2 4.320× 10−2 2.869× 10−1 3.714× 10−1

5 D-optimal 8.244× 10−2 2.539× 10−2 2.551× 10−1 3.940× 10−1

5 E-optimal 1.243× 10−1 2.508× 10−2 3.685× 10−1 3.815× 10−1

14.14 10 SE-optimal 5.527× 10−2 2.519× 10−2 2.113× 10−1 2.716× 10−1

10 D-optimal 5.963× 10−2 1.845× 10−2 1.949× 10−1 2.821× 10−1

10 E-optimal 1.136× 10−1 4.187× 10−2 2.193× 10−1 2.272× 10−1

28.28 10 SE-optimal 4.049× 10−2 1.980× 10−2 2.604× 10−1 2.305× 10−1

10 D-optimal 3.919× 10−2 1.372× 10−2 1.936× 10−1 2.816× 10−1

10 E-optimal 7.080× 10−2 2.343× 10−2 2.242× 10−1 2.274× 10−1

28.28 20 SE-optimal 2.438× 10−2 1.457× 10−2 1.517× 10−1 1.633× 10−1

20 D-optimal 3.177× 10−2 1.102× 10−2 1.609× 10−1 2.632× 10−1

20 E-optimal 4.422× 10−2 1.608× 10−2 1.355× 10−1 1.385× 10−1

Table 5.4: Approximate asymptotic standard errors from the asymptotic theory (4.5) resulting
from different optimal design methods for θ0 = (C,K, x1, x2), optimization with constraint
implementation (C2).

T N Method SE(C) SE(K) SE(x1) SE(x2)

14.14 5 SE-optimal 7.900× 10−2 2.657× 10−2 2.852× 10−1 3.657× 10−1

5 D-optimal 8.251× 10−2 2.541× 10−2 2.561× 10−1 3.921× 10−1

5 E-optimal 1.371× 10−1 2.900× 10−2 3.583× 10−1 3.736× 10−1

14.14 10 SE-optimal 5.667× 10−2 2.484× 10−2 1.964× 10−1 2.310× 10−1

10 D-optimal 6.055× 10−2 1.648× 10−2 1.986× 10−1 2.822× 10−1

10 E-optimal 8.507× 10−2 2.657× 10−2 2.211× 10−1 2.283× 10−1

28.28 10 SE-optimal 3.430× 10−2 2.149× 10−2 1.970× 10−1 2.274× 10−1

10 D-optimal 7.445× 10−2 1.711× 10−2 4.314× 10−1 3.919× 10−1

10 E-optimal 8.826× 10−2 2.532× 10−2 2.132× 10−1 2.169× 10−1

28.28 20 SE-optimal 2.457× 10−2 1.500× 10−2 1.516× 10−1 1.784× 10−1

20 D-optimal 3.254× 10−2 1.166× 10−2 1.722× 10−1 2.867× 10−1

20 E-optimal 5.135× 10−2 1.628× 10−2 1.451× 10−1 1.492× 10−1
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Figure 5.6: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (C,K, x1, x2), with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10
(panel (c)) and T = 28.28 (two periods) for N = 10 (panel (b)) and N = 20 (panel (d)).
Optimization with constraint implementation (C2).
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Figure 5.7: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (C,K, x1, x2), with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10
(panel (c)) and T = 28.28 (two periods) for N = 10 (panel (b)) and N = 20 (panel (d)).
Optimization with constraint implementation (C3).

46



Table 5.5: Approximate asymptotic standard errors from the asymptotic theory (4.5) resulting
from different optimal design methods for θ0 = (C,K, x1, x2), optimization with constraint
implementation (C3).

T N Method SE(C) SE(K) SE(x1) SE(x2)

14.14 5 SE-optimal 7.900× 10−2 2.657× 10−2 2.852× 10−1 3.657× 10−1

5 D-optimal 9.483× 10−2 2.106× 10−2 2.675× 10−1 3.898× 10−1

5 E-optimal 1.371× 10−1 2.900× 10−2 3.583× 10−1 3.736× 10−1

14.14 10 SE-optimal 5.666× 10−2 2.484× 10−2 1.963× 10−1 2.309× 10−1

10 D-optimal 6.071× 10−2 1.656× 10−2 1.978× 10−1 2.828× 10−1

10 E-optimal 1.125× 10−1 2.838× 10−2 2.532× 10−1 2.639× 10−1

28.28 10 SE-optimal 3.673× 10−2 2.399× 10−2 1.925× 10−1 2.000× 10−1

10 D-optimal 3.764× 10−2 1.373× 10−2 1.881× 10−1 2.812× 10−1

10 E-optimal 7.949× 10−2 2.509× 10−2 2.154× 10−1 2.183× 10−1

28.28 20 SE-optimal 2.671× 10−2 1.812× 10−2 1.368× 10−1 1.413× 10−1

20 D-optimal 2.882× 10−2 1.057× 10−2 1.176× 10−1 1.959× 10−1

20 E-optimal 6.467× 10−2 2.604× 10−2 1.361× 10−1 1.376× 10−1

Table 5.6: Approximate asymptotic standard errors from the asymptotic theory (4.5) resulting
from different optimal design methods for θ0 = (C,K, x1, x2), optimization with constraint
implementation (C4).

T N Method SE(C) SE(K) SE(x1) SE(x2)

14.14 5 SE-optimal 7.900× 10−2 2.657× 10−2 2.852× 10−1 3.657× 10−1

5 D-optimal 8.249× 10−2 2.538× 10−2 2.553× 10−1 3.935× 10−1

5 E-optimal 1.371× 10−1 2.900× 10−2 3.583× 10−1 3.736× 10−1

14.14 10 SE-optimal 5.666× 10−2 2.484× 10−2 1.963× 10−1 2.309× 10−1

10 D-optimal 6.073× 10−2 1.657× 10−2 1.978× 10−1 2.828× 10−1

10 E-optimal 1.125× 10−1 2.838× 10−2 2.532× 10−1 2.639× 10−1

28.28 10 SE-optimal 3.554× 10−2 2.395× 10−2 1.906× 10−1 2.000× 10−1

10 D-optimal 3.765× 10−2 1.373× 10−2 1.881× 10−1 2.812× 10−1

10 E-optimal 7.948× 10−2 2.509× 10−2 2.154× 10−1 2.183× 10−1

28.28 20 SE-optimal 2.512× 10−2 1.698× 10−2 1.348× 10−1 1.510× 10−1

20 D-optimal 2.920× 10−2 1.035× 10−2 1.221× 10−1 1.788× 10−1

20 E-optimal 6.095× 10−2 2.597× 10−2 1.300× 10−1 1.315× 10−1
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Figure 5.8: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (C,K, x1, x2), with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10
(panel (c)) and T = 28.28 (two periods) for N = 10 (panel (b)) and N = 20 (panel (d)).
Optimization with constraint implementation (C4).
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5.2.2 Discussion for the Oscillator Model

The constrained optimization algorithm, SolvOpt, was chosen over MATLAB’s fmincon for

comparisons using the harmonic oscillator example because it overall resulted in more well-

behaved standard errors (real and finite values), and fmincon often did not.

In most cases, optimal meshes with a larger number of points were nested in the optimal

meshes with a reduced the number of points. In some cases for T = 28.28 (Figs 5.5 and 5.6)

doubling the number of points resulted in extra points being dispersed to otherwise empty

regions, while other points were nested in the optimal mesh with fewer points. Often the larger

number of points in the optimal mesh resulted in smaller standard errors.

Examining the asymptotic standard errors (Tables 5.3-5.6), different optimal sampling

distributions produced the smallest standard errors for different parameters, with no optimal

design method having consistently smaller standard errors. For C, most of the time SE-optimal

had the smallest standard error, then D-optimal. For K, D-optimal most often had the smallest

standard error, followed by SE-optimal. For x1, D-optimal had the smallest standard errors in

most cases. For x2, either SE-optimal or E-optimal had the smallest standard errors.

The standard errors from the different optimal design methods were usually on the same

order of magnitude. No method was always the best while comparing asymptotic standard

errors, though for specific parameters some optimal sampling distributions were favorable.

Since the asymptotic standard errors appear explicitly in the cost function we are minimizing

for SE-optimal design, it may not be fair to compare these methods based on their asymptotic

standard errors. To account for any possible bias in our comparison, we will compare these

optimal design methods in the next section using simulated data and the inverse problem to

estimate parameters using asymptotic theory and bootstrapping. In these computations, we

will compare the optimal design methods based on how close their parameter estimates are to

the true parameters, and the values of their estimated standard errors and covariances.

5.2.3 Results for the Oscillator Model - with the Inverse Problem

We solve the inverse problem with the OLS formulation to obtain parameter estimates and

standard errors from both asymptotic theory (4.6) and the bootstrapping method (4.9). We

create simulated noisy data (in agreement with our statistical model (2.2)) corresponding to

the optimal time meshes using true values θ0 = (C,K, x1, x2) = (0.1, 0.2,−1, 0.5) and iid noise

with Ej ∼ N (0, σ2
0) and σ2

0 = 0.16. In this section we only estimate a subset of the parameters

θ = (C,K). In addition to the estimates and standard errors, we also report the estimated

Cov(C,K) according to asymptotic theory (4.3) and bootstrapping (4.9). For comparison

purposes we also present these results for a uniform grid using the same T and N .

The optimal time points for each of the three optimal design methods are plotted with
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the model for T = 14.14 and T = 28.28 for N = 15 under the first constraint implementation

(C1) in Fig. 5.9, the second constraint implementation (C2) in Fig. 5.10, the third constraint

implementation (C3) in Fig. 5.11, and the last constraint implementation (C4) in Fig. 5.12.

The estimates, standard errors, and covariance between parameters as estimated from the

asymptotic theory (4.6) corresponding to these optimal meshes are given in Table 5.7, 5.9, 5.11,

and 5.13, respectively for the four different constraint implementations. The estimates, standard

errors, and covariance between parameters when estimated from the bootstrapping method (4.9)

corresponding to these optimal meshes are given in Table 5.8, 5.10, 5.12, and 5.14, respectively

for the four different constraints. In each of the tables are also results on the uniform grid of

time points for the same T and N . Since this is unaffected by constraints, the results for the

uniform grid are repeated in the tables.
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Figure 5.9: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (C,K), N = 15, with T = 14.14 (one period) (panel (a)) and T = 28.28 (two
periods) (panel (b)). Optimization with constraint implementation (C1).

5.2.4 Discussion of Oscillator Results with the Inverse Problem

The simulated data was created using the “true” parameter values θ0 = (C,K) = (0.1, 0.2). So

we can compare the optimal design methods based on how close the parameter estimates are as

well as how large the estimates of the standard errors and covariances are.
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Table 5.7: Estimates and standard errors from the asymptotic theory (4.6) resulting from
different optimal design methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2)
and N = 15, optimization with constraint implementation (C1).

T Method Ĉasy ŜE(Ĉasy) K̂asy ŜE(K̂asy) Ĉov(Ĉasy, K̂asy)

14.14 SE-optimal 0.0865 1.369× 10−2 0.1979 1.165× 10−2 −3.597× 10−5

14.14 D-optimal 0.1112 2.104× 10−2 0.2038 8.974× 10−3 −1.027× 10−4

14.14 E-optimal 0.0592 3.009× 10−2 0.1736 1.285× 10−2 −9.801× 10−5

14.14 Uniform 0.1300 3.529× 10−2 0.1938 1.278× 10−2 −2.803× 10−4

28.28 SE-optimal 0.1111 3.221× 10−2 0.2040 2.827× 10−2 −3.391× 10−4

28.28 D-optimal 0.0705 1.710× 10−2 0.1974 7.444× 10−3 −6.045× 10−5

28.28 E-optimal 0.0843 1.664× 10−2 0.1953 1.381× 10−2 4.378× 10−5

28.28 Uniform 0.0854 1.792× 10−2 0.2122 7.326× 10−3 −6.219× 10−5

Table 5.8: Estimates and standard errors from the bootstrap method (4.9) resulting from
different optimal design methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2),
M = 1000 bootstraps and N = 15, optimization with constraint implementation (C1).

T Method Ĉboot ŜE(Ĉboot) K̂boot ŜE(K̂boot) Ĉov(Ĉboot, K̂boot)

14.14 SE-optimal 0.0871 1.460× 10−2 0.1988 1.092× 10−2 8.013× 10−5

14.14 D-optimal 0.1035 1.565× 10−2 0.2025 8.225× 10−3 −1.731× 10−5

14.14 E-optimal 0.0603 2.861× 10−2 0.1743 1.297× 10−2 6.383× 10−5

14.14 Uniform 0.1170 2.469× 10−2 0.1989 1.009× 10−2 −4.978× 10−5

28.28 SE-optimal 0.0827 2.486× 10−2 0.1991 1.624× 10−2 1.567× 10−4

28.28 D-optimal 0.0705 1.428× 10−2 0.1972 7.177× 10−3 −5.355× 10−6

28.28 E-optimal 0.0843 2.138× 10−2 0.2035 2.598× 10−2 3.099× 10−6

28.28 Uniform 0.0837 1.475× 10−2 0.2122 6.350× 10−3 −4.436× 10−6

For asymptotic estimates:

Comparing optimal design methods based on which has parameter estimates closest to the

true values, there is no method that is always the best. For constraint implementation (C1),

with T = 14.14 (Table 5.7) the closest parameter estimates result from either SE-optimal or

D-optimal, for T = 28.28 no method is consistently closest. For constraint implementation
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Figure 5.10: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (C,K), N = 15, with T = 14.14 (one period) (panel (a)) and T = 28.28 (two
periods) (panel (b)). Optimization with constraint implementation (C2).

Table 5.9: Estimates and standard errors from the asymptotic theory (4.6) resulting from
different optimal design methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2)
and N = 15, optimization with constraint implementation (C2).

T Method Ĉasy ŜE(Ĉasy) K̂asy ŜE(K̂asy) Ĉov(Ĉasy, K̂asy)

14.14 SE-optimal 0.0841 2.852× 10−2 0.2314 1.996× 10−2 −3.540× 10−4

14.14 D-optimal 0.0934 2.635× 10−2 0.2054 9.968× 10−3 −1.414× 10−4

14.14 E-optimal 0.1076 2.220× 10−2 0.1952 1.060× 10−2 −9.008× 10−5

14.14 Uniform 0.1300 3.529× 10−2 0.1938 1.278× 10−2 −2.803× 10−4

28.28 SE-optimal 0.0649 1.440× 10−2 0.1842 7.006× 10−3 2.883× 10−6

28.28 D-optimal 0.1088 1.888× 10−2 0.2086 8.425× 10−3 −6.880× 10−5

28.28 E-optimal 0.1115 2.397× 10−2 0.2046 2.073× 10−2 −1.256× 10−4

28.28 Uniform 0.0854 1.792× 10−2 0.2122 7.326× 10−3 −6.219× 10−5

(C2) (Table 5.9), either D-optimal or E-optimal had the closest parameter estimates to the true

values when looking at results from T = 14.14 and T = 28.28. For constraint implementation

(C3) (Table 5.11), either D-optimal or E-optimal had the closest parameter estimate for C, and

either SE-optimal or D-optimal has the closest estimate for K. For constraint implementation
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Table 5.10: Estimates and standard errors from the bootstrap method (4.9) resulting from
different optimal design methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2),
M = 1000 bootstraps and N = 15, optimization with constraint implementation (C2).

T Method Ĉboot ŜE(Ĉboot) K̂boot ŜE(K̂boot) Ĉov(Ĉboot, K̂boot)

14.14 SE-optimal 0.0783 2.076× 10−2 0.2320 1.628× 10−2 4.751× 10−5

14.14 D-optimal 0.0976 2.243× 10−2 0.2070 9.921× 10−3 −4.040× 10−5

14.14 E-optimal 0.1031 1.930× 10−2 0.1956 9.636× 10−3 3.043× 10−5

14.14 Uniform 0.1170 2.469× 10−2 0.1989 1.009× 10−2 −4.978× 10−5

28.28 SE-optimal 0.0576 1.479× 10−2 0.1842 6.057× 10−3 3.937× 10−5

28.28 D-optimal 0.1194 1.694× 10−2 0.2105 8.317× 10−3 4.750× 10−6

28.28 E-optimal 0.0947 2.161× 10−2 0.2045 1.927× 10−2 1.499× 10−4

28.28 Uniform 0.0837 1.475× 10−2 0.2122 6.350× 10−3 −4.436× 10−6
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Figure 5.11: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (C,K), N = 15, with T = 14.14 (one period) (panel (a)) and T = 28.28 (two
periods) (panel (b)). Optimization with constraint implementation (C3).

(C4) (Table 5.13), SE-optimal and D-optimal had the closest estimates for T = 14.14, and

E-optimal had the closest estimates for T = 28.28.

Comparing the optimal design methods based on the estimated standard errors and co-

variance between parameters, we find that no method is always the best. For constraint
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Table 5.11: Estimates and standard errors from the asymptotic theory (4.6) resulting from
different optimal design methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2)
and N = 15, optimization with constraint implementation (C3).

T Method Ĉasy ŜE(Ĉasy) K̂asy ŜE(K̂asy) Ĉov(Ĉasy, K̂asy)

14.14 SE-optimal 0.1238 2.515× 10−2 0.2028 2.302× 10−2 −1.640× 10−4

14.14 D-optimal 0.0970 2.061× 10−2 0.1997 7.973× 10−3 −9.382× 10−5

14.14 E-optimal 0.1156 2.204× 10−2 0.1953 2.055× 10−2 6.635× 10−5

14.14 Uniform 0.1300 3.529× 10−2 0.1938 1.278× 10−2 −2.803× 10−4

28.28 SE-optimal 0.0899 1.617× 10−2 0.2015 1.368× 10−2 −5.288× 10−5

28.28 D-optimal 0.0966 1.540× 10−2 0.2084 6.787× 10−3 −4.422× 10−5

28.28 E-optimal 0.1029 1.705× 10−2 0.2098 2.111× 10−2 −1.575× 10−4

28.28 Uniform 0.0854 1.792× 10−2 0.2122 7.326× 10−3 −6.219× 10−5

Table 5.12: Estimates and standard errors from the bootstrap method (4.9) resulting from
different optimal design methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2),
M = 1000 bootstraps and N = 15, optimization with constraint implementation (C3).

T Method Ĉboot ŜE(Ĉboot) K̂boot ŜE(K̂boot) Ĉov(Ĉboot, K̂boot)

14.14 SE-optimal 0.1204 2.652× 10−2 0.2047 2.186× 10−2 3.199× 10−4

14.14 D-optimal 0.0919 1.574× 10−2 0.1978 7.301× 10−3 −2.363× 10−5

14.14 E-optimal 0.1069 2.756× 10−2 0.1978 1.967× 10−2 3.763× 10−4

14.14 Uniform 0.1170 2.469× 10−2 0.1989 1.009× 10−2 −4.978× 10−5

28.28 SE-optimal 0.0870 1.753× 10−2 0.2028 1.542× 10−2 8.280× 10−5

28.28 D-optimal 0.0906 1.133× 10−2 0.2030 5.540× 10−3 5.491× 10−6

28.28 E-optimal 0.0926 1.783× 10−2 0.2113 2.202× 10−2 4.422× 10−5

28.28 Uniform 0.0837 1.475× 10−2 0.2122 6.350× 10−3 −4.436× 10−6

implementation (C1) (Table 5.7), when T = 14.14 SE-optimal had the smallest standard errors

and covariance, when T = 28.28 either E-optimal or D-optimal had the smallest standard errors

and covariances. For constraint implementation (C2) (Table 5.9), the smallest standard errors

and covariances came from E-optimal when T = 14.14 and SE-optimal when T = 28.28, and

followed by D-optimal in both cases. For constraint implementation (C3) (Table 5.11), the
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Figure 5.12: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (C,K), N = 15, with T = 14.14 (one period) (panel (a)) and T = 28.28 (two
periods) (panel (b)). Optimization with constraint implementation (C4).

Table 5.13: Estimates and standard errors from the asymptotic theory (4.6) resulting from
different optimal design methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2)
and N = 15, optimization with constraint implementation (C4).

T Method Ĉasy ŜE(Ĉasy) K̂asy ŜE(K̂asy) Ĉov(Ĉasy, K̂asy)

14.14 SE-optimal 0.0837 2.312× 10−2 0.2136 2.087× 10−2 −2.385× 10−4

14.14 D-optimal 0.0771 2.206× 10−2 0.1827 8.461× 10−3 −1.074× 10−4

14.14 E-optimal 0.0343 1.387× 10−2 0.1719 7.166× 10−3 2.825× 10−5

14.14 Uniform 0.1300 3.529× 10−2 0.1938 1.278× 10−2 −2.803× 10−4

28.28 SE-optimal 0.0908 1.473× 10−2 0.2206 1.330× 10−2 −1.480× 10−4

28.28 D-optimal 0.1160 2.358× 10−2 0.1875 9.149× 10−3 −9.691× 10−5

28.28 E-optimal 0.0964 1.218× 10−2 0.2070 1.445× 10−2 −4.984× 10−5

28.28 Uniform 0.0854 1.792× 10−2 0.2122 7.326× 10−3 −6.219× 10−5

smallest standard errors and covariances came from D-optimal or E-optimal when T = 14.14,

and from D-optimal followed by SE-optimal when T = 28.28. For constraint implementation

(C4) when T = 14.14, E-optimal had the smallest standard errors and covariances followed by

D-optimal.
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Table 5.14: Estimates and standard errors from the bootstrap method (4.9) resulting from
different optimal design methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2),
M = 1000 bootstraps and N = 15, optimization with constraint implementation (C4).

T Method Ĉboot ŜE(Ĉboot) K̂boot ŜE(K̂boot) Ĉov(Ĉboot, K̂boot)

14.14 SE-optimal 0.0856 2.185× 10−2 0.2184 2.027× 10−2 1.904× 10−4

14.14 D-optimal 0.0658 1.611× 10−2 0.1822 7.297× 10−3 −2.611× 10−5

14.14 E-optimal 0.0334 1.769× 10−2 0.1729 6.841× 10−3 7.838× 10−5

14.14 Uniform 0.1170 2.469× 10−2 0.1989 1.009× 10−2 −4.978× 10−5

28.28 SE-optimal 0.0835 8.868× 10−3 0.2111 7.826× 10−3 2.677× 10−5

28.28 D-optimal 0.1265 1.872× 10−2 0.1986 9.266× 10−3 −1.156× 10−5

28.28 E-optimal 0.0963 1.594× 10−2 0.2195 2.443× 10−2 −1.188× 10−4

28.28 Uniform 0.0837 1.475× 10−2 0.2122 6.350× 10−3 −4.436× 10−6

For bootstrap estimates:

Comparing optimal design methods based on which has bootstrapping parameter estimates

closest to the true value, again no method is always the best. For constraint implementations

(C1) and (C4) (Tables 5.8 and 5.14), when T = 14.14 either SE-optimal or D-optimal have

the closest estimates. For constraint implementation (C2) (Table 5.10), either D-optimal or

E-optimal had parameter estimates closest to the true values. For T = 14.14 (Table 5.10), the

parameter estimate for K was in fact closest from the uniform mesh, followed by D-optimal. For

constraint implementation (C3) (Table 5.12), when T = 14.14 either D-optimal or E-optimal

had the closest estimates. For cases that were not reported, there was no method that was

consistently better in terms of closeness of parameter estimates to the true values.

Comparing optimal design methods based on which method produces the smallest bootstrap-

ping estimated standard errors and parameter estimates, no method is consistently favorable.

For constraint implementation (C1) (Table 5.8), D-optimal has the smallest standard errors

and covariances. For constraint implementation (C2) (Table 5.10), when T = 14.14 the smallest

standard errors and covariances come from E-optimal, when T = 28.28 either SE-optimal or

the uniform grim had the smallest standard errors and covariances, followed by D-optimal. For

constraint implementation (C3) (Table 5.12), the smallest standard errors and covariances are

from D-optimal, followed by SE-optimal. For constraint implementation (C4) (Table 5.14),

when T = 14.14 the smallest standard errors and covariances come from D-optimal followed by

E-optimal, when T = 28.28 either SE-optimal or D-optimal were the smallest.
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In conclusion, all of the optimal design methods are favorable under specific conditions. In

many of the cases the parameter estimates, standard errors, and covariances are on the same

order of magnitude resulting from different optimal design criteria.
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5.3 A Simple Glucose Regulation Model

Next we will consider a well-known model for the intervenous glucose tolerance test (IVGTT).

This model is referred to as the minimal model in the literature [11, 17, 32]. Prior to the IVGTT

the patient is asked to fast. When the patient comes in for the IVGTT, measurements of their

baseline glucose and insulin concentrations, Gb and Ib, respectively, are first taken. The IVGTT

procedure consists of injecting a bolus resulting in an initial concentration p0 of glucose into the

blood, and measuring the glucose and insulin concentrations in the blood at various time points

after the injection.

The body carefully regulates the glucose concentration in the blood within a narrow range.

Extremely high blood glucose concentration is referred to as hyperglycemia, whereas hypo-

glycemia results when the blood glucose concentration is too low. The IVGTT initially brings

the blood glucose concentration to hyperglycemic levels. In normal healthy patients, the high

level of glucose in the blood signals the beta cells of the pancreas to secrete insulin. Insulin

helps the fat and muscle cells to uptake glucose from the blood, either for fuel or for storage

as glycogen. When the blood glucose concentration is too low, the pancreas secretes glucagon

which releases glucose stored in the liver into the blood. Glucagon is another dynamic variable

[4] during the IVGTT. Though glucagon is not included in this model, it is acknowledged that

the liver can regulate glucose independently from insulin through glucagon.

5.3.1 Model

The minimal model is given by the following system of ordinary differential equations (see

[11, 17, 32] for details):

Ġ(t) = −p1

(
G(t)−Gb

)
−X(t)G(t), G(0) = p0, (5.1)

Ẋ(t) = −p2X(t) + p3

(
I(t)− Ib

)
, X(0) = 0, (5.2)

İ(t) = p4tmax
(
0, G(t)− p5

)
− p6

(
I(t)− Ib

)
, I(0) = p7 + Ib, (5.3)

where G(t) is the glucose concentration (in mg/dl) in plasma at time t, I(t) is the insulin

concentration (in µU/ml) in plasma at time t and X(t) represents insulin-dependent glucose

uptake activity (proportional to a remote insulin compartment) in units 1/min.

We use the following approximate max function in equation (5.3) since it is continuously

differentiable:

maxfunc1(v) =


v for v > ε0,

0 for v < −ε0,
1

4ε0

(
v + ε0

)2
for v ∈ [−ε0, ε0],
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where ε0 > 0 is chosen sufficiently small (for example, ε0 = 10−5).

An interpretation of the parameters is given in Table 5.15.

Table 5.15: Description of model parameters and typical values.

θ Description value

Gb basal pre-injection level of glucose 83.7 mg/dl

Ib basal pre-injection level of insulin 11 µU/ml

p0 the theoretical glucose concentration in 279 mg/dl

plasma at time t = 0

p1 the rate constant of insulin-independent 2.6× 10−2 min−1

glucose uptake in muscles, and adipose

tissue

p2 the rate constant for decrease in tissue 0.025 min−1

glucose uptake ability

p3 the rate constant for the 1.25× 10−5 min−2(µU/ml)−1

insulin-dependent increase in glucose

uptake ability in tissue per unit of

insulin concentration above Ib

p4 the rate constant for insulin secretion 4.1× 10−3 (µU/ml) min−2(mg/dl)−1

by the pancreatic β-cells after the

glucose injection and with glucose

concentration above p5

p5 the threshold value of glucose in plasma 83.7 mg/dl

above which the pancreatic β-cells

secrete insulin

p6 the first order decay rate for insulin in 0.27 min−1

plasma

p7 p7 + Ib is the theoretical insulin 352.7 µU/ml

concentration in plasma at time t = 0

In the following we will describe the model and its underlying assumptions.
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Equation (5.1) (Glucose concentration in plasma)

At t = 0 a bolus of glucose is injected such that the initial glucose concentration in the blood

is p0. The first term represents hepatic glucose balance, which occurs independent of insulin

level. The second term is the loss of glucose due to insulin-dependent uptake by peripheral tissues.

Equation (5.2) (Insulin-dependent glucose uptake activity)

At t = 0 there is no glucose uptake activity. Spontaneously, tissue loses the ability to uptake

glucose, even in the presence of insulin. Glucose uptake activity increases proportionally to the

amount by which insulin concentration is greater than baseline insulin concentration.

Equation (5.3) (Insulin concentration in the plasma)

At t = 0 the initial insulin concentration is at some level over baseline, given by p7 + Ib. The

increase in insulin concentration is proportional to the amount by which glucose concentration

exceeds some threshold, p5, and the amount of time that has elapsed since the glucose injection.

There is a loss of insulin to degradation in the plasma. The pancreas secretes low levels of

insulin, even in hypoglycemic conditions, to maintain insulin concentration at or above baseline

Ib.

The analysis of this model found in [11, 32] gives a metabolic portrait for the first phase

sensitivity to glucose (φ1) (corresponding to initial secretion of insulin), the second phase glucose

sensitivity (SG) (corresponding to a secondary phase of insulin secretion), and the insulin

sensitivity index (SI). The metabolic portrait is given by

SI =
p3

p2
, SG = p1, φ1 =

Imax − Ib
p6

(
p0 −Gb

) , (5.4)

where Imax is the maximal value of insulin concentration in plasma.

Bergman et al., [10] suggest the use of this model in the clinical IVGTT setting. Parameters

from the model are estimated using patient-specific data. The parameter estimates are then

used in the metabolic portrait for diabetes diagnosis purpose for that patient. This process

was made readily available to clinicians in the computer software MINMOD [25]. Since the

estimation of these parameters plays such a crucial role in the diagnosis, it appears that optimal

design methods would be of great assistance. Data sampled at the optimal time points would

result in a more accurate metabolic portrait produced by this mathematical model.

Next we will describe the corresponding statistical model for this system involving vector obser-

vations. We obtain numerical solutions using MATLAB’s ode45 since there does not exist an ana-

lytical solution to this system of differential equations. Let ~z(t, θ0) = (G(t, θ0), X(t, θ0), I(t, θ0))T
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represent our model solution. Since we can observe realizations of G(t, θ0) and I(t, θ0), but not

X(t, θ0), our observation process is given by

~y(t) = ~f(t, θ0) = (G(t, θ0), I(t, θ0))T .

Our statistical model is given by the stochastic process

~Y (t) = ~f(t, θ0) + ~E(t),

where ~E(t) is a noisy vector random process. We assume the following about the vector random

variable ~E(t):

E(~E(t)) = 0, t ∈ [0, T ],

Var~E(t) = diag(σ2
0,G, σ

2
0,I), t ∈ [0, T ],

Cov(E1(t)E1(s)) = σ2
0,Gδ(t− s), t, s ∈ [0, T ],

Cov(E2(t)E2(s)) = σ2
0,Iδ(t− s), t, s ∈ [0, T ],

Cov(E1(t)E2(s)) = 0, t, s ∈ [0, T ].

We assume constant variance, σ2
0,G = 25 and σ2

0,I = 4. A realization of the observation process

is given by

~y(t) = ~f(t, θ0) + ~ε(t), t ∈ [0, T ],

where the measurement error ~ε(t) is a realization of ~E(t).

We compute the optimal time mesh using SE-optimality, D-optimality, and E-optimality for

a subset of the parameters θ = (p1, p2, p3, p4), and a fixed number of time points (N = 30) and

a final time of T = 150 minutes. We remark that a subset of parameters was chosen to avoid an

ill-conditioned FIM. The subset of parameters was chosen based on the traditional sensitivity

functions. The glucose and insulin model solutions were most sensitive to θ = (p1, p2, p3, p4).

The approximate asymptotic standard errors (4.5) for θ = (p1, p2, p3, p4) were computed on the

optimal mesh corresponding to an optimal design method (see Section 4.2.1).

The optimal design methods were implemented using the constrained minimization algorithm

SolvOpt. The variations on the constraint employed were the same as in the previous section

((C1)− (C4)). We compare SE-optimal, D-optimal and E-optimal design methods based on

these approximate asymptotic standard errors (4.5).
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5.3.2 Results for the Glucose Regulation Model

The optimal time points (found using the SolvOpt algorithm) for each of the three optimal design

methods are plotted with the model for T = 150 minutes and N = 30 under the first constraint

implementation (C1) in Fig. 5.13, the second constraint implementation (C2) in Fig. 5.14,

the third constraint implementation (C3) in Fig. 5.15, and the last constraint implementation

(C4) in Fig. 5.16. The standard errors (4.5) from the asymptotic theory corresponding to

these optimal meshes are given in Table 5.16-5.19, respectively for the four different constraint

implementations.

Note that for constraint implementations (C2) and (C4) initializing SolvOpt with the

uniform mesh resulted in a terminal error for D-optimal, stating that the gradient at the

starting point was zero. In these cases other initial mesh points were chosen such that D-

optimal’s initial gradient was non-zero, and optimization could be achieved. To be consistent,

all three methods were initialized by the same non-uniform mesh. For (C2) the initial mesh

was τ0 = {0, . . . , 0, 10, 37, 150, . . . , 150}, and for (C4) it was τ0 = {5, 15, 19, 21, 24, 26, 42,

59, 63, 73, 82, 95, 98, 98, 102, 111, 114, 119, 120, 122, 127, 136, 137, 137, 140, 144, 144, 144, 145, 146}.
Optimal design methods are guaranteed to converge in a local sense.
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Figure 5.13: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose
model in panel (a) and with the Insulin model in panel (b). Optimization, using SolvOpt, with
constraint implementation (C1).
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Table 5.16: Approximate asymptotic standard errors from the asymptotic theory (4.5) resulting
from different optimal design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with
constraint implementation (C1).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.173× 10−3 6.501× 10−3 3.100× 10−6 2.959× 10−4

D-optimal 8.411× 10−3 1.236× 10−2 6.133× 10−6 1.714× 10−4

E-optimal 4.381× 10−3 6.520× 10−3 3.182× 10−6 4.941× 10−4
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Optimal mesh with N=30, and T=150 using SolvOpt algorithm.
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Optimal mesh with N=30, and T=150 using SolvOpt algorithm.
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Figure 5.14: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose
model in panel (a) and with the Insulin model in panel (b). Optimization, using SolvOpt, with
constraint implementation (C2).

5.3.3 Discussion for the Glucose Regulation Model

Comparing the optimal design methods using approximate asymptotic standard errors, we find

that the optimal design methods that are best for (p1, p2, p3) are different than the ones best

for the standard error of p4. For constraint implementation (C1) (Table 5.16), SE-optimal

followed by E-optimal had the smallest standard errors for (p1, p2, p3), and D-optimal followed

by SE-optimal had the smallest standard errors for p4. For constraint implementation (C2)

(Table 5.17), the smallest standard errors were from E-optimal followed by SE-optimal for

(p1, p2, p3), and for p4 it was D-optimal followed by SE-optimal. For constraint implementations
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Table 5.17: Approximate asymptotic standard errors from the asymptotic theory (4.5) resulting
from different optimal design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with
constraint implementation (C2).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.019× 10−3 6.451× 10−3 3.088× 10−6 3.452× 10−4

D-optimal 8.322× 10−3 1.103× 10−2 6.230× 10−6 2.748× 10−4

E-optimal 3.882× 10−3 6.284× 10−3 3.063× 10−6 5.390× 10−4
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Optimal mesh with N=30, and T=150 using SolvOpt algorithm.
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Optimal mesh with N=30, and T=150 using SolvOpt algorithm.
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Figure 5.15: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose
model in panel (a) and with the Insulin model in panel (b). Optimization, using SolvOpt, with
constraint implementation (C3).

(C3) and (C4) (Tables 5.18 and 5.19), SE-optimal followed by E-optimal had the smallest

standard errors for (p1, p2, p3), and D-optimal followed by E-optimal had the smallest standard

errors for p4.

In conclusion, D-optimal tended to have the smallest standard errors for p4, whereas SE-

optimal or E-optimal had the smallest standard errors for (p1, p2, p3). In the next section

we compute the estimated standard errors from simulated data using asymptotic theory and

bootstrapping as a different method of comparing the optimal design methods.
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Table 5.18: Approximate asymptotic standard errors from the asymptotic theory (4.5) resulting
from different optimal design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with
constraint implementation (C3).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.205× 10−3 6.535× 10−3 3.151× 10−6 3.041× 10−4

D-optimal 7.434× 10−3 1.517× 10−2 6.171× 10−6 1.181× 10−4

E-optimal 7.528× 10−3 1.123× 10−2 5.509× 10−6 1.833× 10−4
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Optimal mesh with N=30, and T=150 using SolvOpt algorithm.
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Figure 5.16: Plot of model with optimal time points resulting from different optimal design
methods for θ0 = (p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose
model in panel (a) and with the Insulin model in panel (b). Optimization, using SolvOpt, with
constraint implementation (C4).

5.3.4 Result for the Glucose Regulation Model with the Inverse Problem

As in the harmonic oscillator example, we use the inverse problem with the OLS formulation

to obtain parameter estimates and standard errors from both asymptotic theory (4.6) and the

bootstrapping method (4.9) (see Sections 4.2.1 and 4.2.2). We create simulated noisy data

corresponding to the optimal time meshes (presented in the previous section) in agreement with

our statistical model (absolute error, with independent error processes for G and I) assuming

true values θ0 to be the parameter values found in Table 5.15 and iid noise with ~Ej ∼ N (0, ~σ2
0).

We assume the true variances: σ2
0,G = 25 and σ2

0,I = 4. In this section we only estimate a
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Table 5.19: Approximate asymptotic standard errors from the asymptotic theory (4.5) resulting
from different optimal design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with
constraint implementation (C4).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.921× 10−3 6.995× 10−3 3.633× 10−6 4.796× 10−4

D-optimal 8.767× 10−3 1.249× 10−2 6.405× 10−6 1.965× 10−4

E-optimal 7.154× 10−3 1.020× 10−2 5.253× 10−6 2.302× 10−4

subset of the parameters θ = (p1, p2, p3, p4). In addition to the estimates and standard errors,

we also report the estimated covariance between estimated parameters according to asymptotic

theory (4.6) and bootstrapping (4.9). For comparison purposes we also present these results for

a uniform grid using the same T = 150 and N = 30.

The optimal time points for each of the three optimal design methods are the same as

computed in the previous results section, and are plotted with the model in Figs. 5.13-5.16

for the four different constraints. The parameter estimates, standard errors and covariances

are estimated from the asymptotic theory (4.6) corresponding to these optimal meshes are

given in Tables 5.20, 5.22, 5.24, and 5.26, respectively for the four different constraints. The

parameter estimates, standard errors, and covariance between parameters are estimated from

the bootstrapping method (4.9) corresponding to these optimal meshes are given in Tables 5.21,

5.23, 5.25, and 5.27, respectively for the four different constraints. In each of the tables are also

results on the uniform grid of time points.

5.3.5 Discussion for the Glucose Regulation Model with the Inverse Problem

Comparing the resulting parameter estimates from simulated data on the different optimal meshes

to the true parameter values, θ0 = (p1, p2, p3, p4) = (2.6×10−2, 2.5×10−2, 1.25×10−5, 4.1×10−3),

we find there is no optimal design method that is always favorable. Using either asymptotic

theory or bootstrapping to compute parameter estimates for different optimal design methods

and different constraints, we examine how close the parameter estimates are to the true values.

Often (but not always) these parameter estimates from the different optimal meshes are the

same order of magnitude as the true values.

The results for the uniform mesh are given for comparison. In most cases, the optimal design

methods produce closer parameter estimates with smaller standard errors and covariances (as

estimated by asymptotic theory and bootstrapping) than the uniform mesh.
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Table 5.20: Estimates, standard errors, and covariances between parameters from the asymptotic
theory (4.6) resulting from different optimal design methods (as well as for the uniform mesh) for
θ0 = (p1, p2, p3, p4) = (2.6× 10−2, 2.5× 10−2, 1.25× 10−5, 4.1× 10−3) and N = 30, optimization,
using fmincon, with constraint implementation (C1).

SE-optimal D-optimal E-optimal Uniform

p̂1 3.036× 10−2 2.303× 10−2 2.267× 10−2 2.045× 10−2

ŜE(p̂1) 4.977× 10−3 1.138× 10−2 4.634× 10−3 1.056× 10−2

p̂2 2.180× 10−2 2.723× 10−2 2.818× 10−2 3.607× 10−2

ŜE(p̂2) 7.657× 10−3 1.660× 10−2 6.818× 10−3 1.536× 10−2

p̂3 9.213× 10−6 1.414× 10−5 1.565× 10−5 1.766× 10−5

ŜE(p̂3) 3.946× 10−6 8.421× 10−6 3.732× 10−6 7.787× 10−6

p̂4 3.544× 10−3 4.174× 10−3 4.238× 10−3 4.027× 10−3

ŜE(p̂4) 7.822× 10−4 4.510× 10−4 1.140× 10−3 4.817× 10−4

Ĉov(p̂1, p̂2) −3.377× 10−5 −1.846× 10−4 −2.779× 10−5 −1.579× 10−4

Ĉov(p̂1, p̂3) −1.873× 10−8 −9.520× 10−8 −1.630× 10−8 −8.160× 10−8

Ĉov(p̂1, p̂4) 5.458× 10−7 8.794× 10−7 1.117× 10−6 8.615× 10−7

Ĉov(p̂2, p̂3) 2.815× 10−8 1.383× 10−7 2.289× 10−8 1.181× 10−7

Ĉov(p̂2, p̂4) 2.851× 10−7 −6.379× 10−7 2.679× 10−7 −5.341× 10−7

Ĉov(p̂3, p̂4) −5.0551× 10−10 −5.785× 10−10 −1.308× 10−9 −5.605× 10−10

Asymptotic theory: parameter estimates.

For the constraint implementation (C1) using asymptotic theory (Table 5.20), the estimates

for p1, p2, p3, and p4 are closest to the true values for D-optimal followed by E-optimal. In other

constraint implementations, which optimal sampling distribution produced estimates closest to

the true values was different depending on the parameter.

For constraint implementation (C2) (Table 5.22), parameters estimates of (p1, p2, p3) were

closest to the true values for the optimal sampling distributions from D-optimal followed by

SE-optimal. For p4 the closest parameter estimates were from the uniform mesh, followed by

D-optimal.

For constraint implementation (C3) (Table 5.24), the closest parameter estimate for p1

came from D-optimal followed by SE-optimal. For (p2, p3, p4) the closest estimates came from

E-optimal followed by SE-optimal (for p2, p3) and D-optimal (for p4).

For the last constraint implementation (C4) (Table 5.26), D-optimal followed by SE-optimal
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Table 5.21: Estimates, standard errors, and covariances between parameters from the bootstrap
method (4.9) resulting from different optimal design methods (as well as for the uniform mesh)
for θ0 = (p1, p2, p3, p4) = (2.6× 10−2, 2.5× 10−2, 1.25× 10−5, 4.1× 10−3), M = 1000 bootstraps
and N = 30, optimization, using fmincon, with constraint implementation (C1).

SE-optimal D-optimal E-optimal Uniform

p̂1 2.908× 10−2 2.220× 10−2 2.073× 10−2 1.973× 10−2

ŜE(p̂1) 6.215× 10−3 8.052× 10−3 5.708× 10−3 8.563× 10−3

p̂2 2.486× 10−2 2.855× 10−2 3.126× 10−2 3.730× 10−2

ŜE(p̂2) 1.179× 10−2 1.169× 10−2 9.810× 10−3 1.279× 10−2

p̂3 1.075× 10−5 1.552× 10−5 1.864× 10−5 1.916× 10−5

ŜE(p̂3) 6.541× 10−6 6.570× 10−6 6.302× 10−6 8.017× 10−6

p̂4 3.688× 10−3 4.215× 10−3 3.809× 10−3 3.984× 10−3

ŜE(p̂4) 3.743× 10−4 1.855× 10−4 6.223× 10−4 2.098× 10−4

Ĉov(p̂1, p̂2) −6.799× 10−5 −9.116× 10−5 −5.323× 10−5 −1.053× 10−4

Ĉov(p̂1, p̂3) −3.868× 10−8 −5.198× 10−8 −3.479× 10−8 −6.722× 10−8

Ĉov(p̂1, p̂4) −3.337× 10−7 2.268× 10−7 1.075× 10−7 5.716× 10−8

Ĉov(p̂2, p̂3) 7.452× 10−8 7.529× 10−8 6.005× 10−8 9.990× 10−8

Ĉov(p̂2, p̂4) 1.050× 10−6 −1.262× 10−7 7.158× 10−7 2.310× 10−7

Ĉov(p̂3, p̂4) 5.432× 10−10 −8.735× 10−11 −1.465× 10−10 8.308× 10−11

had parameter estimates closest to the true values for parameters (p1, p2, p3). E-optimal followed

by SE-optimal had the closest estimate of p4.

Asymptotic theory: standard errors.

Here we compare the optimal design methods based on which has the smallest standard error

estimates. Again, the results are dependent on the parameter and the constraint implementation.

For the first constraint implementation (C1) (Table 5.20), the smallest standard errors

estimated using asymptotic theory are from D-optimal followed by SE-optimal for parameters

(p1, p2, p3), and followed by E-optimal for p4.

For the constraint implementation (C2) (Table 5.22), the smallest standard error for param-

eters (p1, p2, p3) come from SE-optimal followed by E-optimal. For p4, the smallest standard

error estimates are from the uniform mesh followed by D-optimal.

For the constraint implementation (C3) (Table 5.24), the standard error estimates for
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Table 5.22: Estimates, standard errors, and covariances between parameters from the asymptotic
theory (4.6) resulting from different optimal design methods (as well as for the uniform mesh) for
θ0 = (p1, p2, p3, p4) = (2.6× 10−2, 2.5× 10−2, 1.25× 10−5, 4.1× 10−3) and N = 30, optimization,
using fmincon, with constraint implementation (C2).

SE-optimal D-optimal E-optimal Uniform

p̂1 2.118× 10−2 2.232× 10−2 2.116× 10−2 2.045× 10−2

ŜE(p̂1) 5.063× 10−3 8.596× 10−3 5.298× 10−3 1.056× 10−2

p̂2 3.509× 10−2 3.337× 10−2 4.356× 10−2 3.607× 10−2

ŜE(p̂2) 8.020× 10−3 1.139× 10−2 8.465× 10−3 1.536× 10−2

p̂3 1.772× 10−5 1.628× 10−5 1.958× 10−5 1.766× 10−5

ŜE(p̂3) 4.247× 10−6 6.573× 10−6 4.874× 10−6 7.787× 10−6

p̂4 4.486× 10−3 3.993× 10−3 4.249× 10−3 4.027× 10−3

ŜE(p̂4) 9.537× 10−4 5.919× 10−4 1.607× 10−3 4.817× 10−4

Ĉov(p̂1, p̂2) −3.569× 10−5 −9.416× 10−5 −3.811× 10−5 −1.579× 10−4

Ĉov(p̂1, p̂3) −2.036× 10−8 −5.566× 10−8 −2.376× 10−8 −8.160× 10−8

Ĉov(p̂1, p̂4) 6.620× 10−7 1.227× 10−7 1.774× 10−6 8.615× 10−7

Ĉov(p̂2, p̂3) 3.131× 10−8 7.280× 10−8 3.585× 10−8 1.181× 10−7

Ĉov(p̂2, p̂4) 4.626× 10−7 4.238× 10−7 9.670× 10−7 −5.341× 10−7

Ĉov(p̂3, p̂4) −6.824× 10−10 9.532× 10−13 −2.353× 10−9 −5.605× 10−10

parameters (p1, p2, p3) are smallest using the mesh from SE-optimal, followed by D-optimal (for

p1) and E-optimal (for p2, p3). For parameter p4, the smallest standard error is from D-optimal

followed by E-optimal.

For the last constraint implementation (C4) (Table 5.26), E-optimal has the smallest stan-

dard errors for parameters (p1, p3, p4), followed by SE-optimal (for p1, p3) and D-optimal (for

p4). For p2, the smallest standard errors are from SE-optimal followed by E-optimal.

Asymptotic theory: covariance estimates.

We also compare the optimal design methods based on which has the smallest covariance

estimates in absolute value.

For the first constraint implementation (C1) (Table 5.20), the smallest in absolute value

covariance estimates come from either SE-optimal or E-optimal for different pairs of parameters.

For constraint implementation (C2) (Table 5.22), SE-optimal or D-optimal have the smallest
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Table 5.23: Estimates, standard errors, and covariances between parameters from the bootstrap
method (4.9) resulting from different optimal design methods (as well as for the uniform mesh)
for θ0 = (p1, p2, p3, p4) = (2.6× 10−2, 2.5× 10−2, 1.25× 10−5, 4.1× 10−3), M = 1000 bootstraps
and N = 30, optimization, using fmincon, with constraint implementation (C2).

SE-optimal D-optimal E-optimal Uniform

p̂1 1.874× 10−2 1.883× 10−2 2.104× 10−2 1.973× 10−2

ŜE(p̂1) 6.619× 10−3 8.291× 10−3 6.397× 10−3 8.563× 10−3

p̂2 4.034× 10−2 4.249× 10−2 4.337× 10−2 3.730× 10−2

ŜE(p̂2) 1.305× 10−2 1.458× 10−2 1.409× 10−2 1.279× 10−2

p̂3 2.124× 10−5 2.069× 10−5 2.075× 10−5 1.916× 10−5

ŜE(p̂3) 8.241× 10−6 8.799× 10−6 7.733× 10−6 8.017× 10−6

p̂4 4.341× 10−3 3.920× 10−3 3.988× 10−3 3.984× 10−3

ŜE(p̂4) 4.228× 10−4 3.107× 10−4 6.192× 10−4 2.098× 10−4

Ĉov(p̂1, p̂2) −8.157× 10−5 −1.149× 10−4 −7.952× 10−5 −1.053× 10−4

Ĉov(p̂1, p̂3) −5.272× 10−8 −7.128× 10−8 −4.687× 10−8 −6.722× 10−8

Ĉov(p̂1, p̂4) 1.240× 10−8 1.275× 10−7 −5.657× 10−7 5.716× 10−8

Ĉov(p̂2, p̂3) 1.048× 10−7 1.249× 10−7 1.042× 10−7 9.990× 10−8

Ĉov(p̂2, p̂4) 4.220× 10−7 8.311× 10−8 2.226× 10−6 2.310× 10−7

Ĉov(p̂3, p̂4) 6.133× 10−11 −2.764× 10−11 9.390× 10−10 8.308× 10−11

in absolute value covariance estimates.

For constraint implementation (C3) (Table 5.24), SE-optimal or D-optimal have the smallest

in absolute value covariance estimates, except for ˆCov(p̂2, p̂4) where E-optimal is the smallest.

For constraint implementation (C4) (Table 5.26), E-optimal has the smallest in absolute

value covariance estimates, except for ˆCov(p̂1, p̂2) where SE-optimal is the smallest.

Bootstrapping: parameter estimates.

Here we compare the optimal design methods based on which had bootstrapping parameter

estimates closest to the true values. Often these results are different for the different parameters,

as well as the constraint implementation.

For the first constraint implementation (C1) (Table 5.21), bootstrapping parameter estimates

for (p1, p2, p3) were closest to the true values for SE-optimal followed by D-optimal. For p4, the

closest parameter estimates came from D-optimal and then E-optimal.
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Table 5.24: Estimates, standard errors, and covariances between parameters from the asymptotic
theory (4.6) resulting from different optimal design methods (as well as for the uniform mesh) for
θ0 = (p1, p2, p3, p4) = (2.6× 10−2, 2.5× 10−2, 1.25× 10−5, 4.1× 10−3) and N = 30, optimization,
using fmincon, with constraint implementation (C3).

SE-optimal D-optimal E-optimal Uniform

p̂1 2.960× 10−2 2.851× 10−2 2.970× 10−2 2.045× 10−2

ŜE(p̂1) 5.210× 10−3 8.937× 10−3 9.018× 10−3 1.056× 10−2

p̂2 1.894× 10−2 1.303× 10−2 1.951× 10−2 3.607× 10−2

ŜE(p̂2) 7.987× 10−3 1.853× 10−2 1.338× 10−2 1.536× 10−2

p̂3 9.558× 10−6 8.981× 10−6 1.018× 10−5 1.766× 10−5

ŜE(p̂3) 4.201× 10−6 7.459× 10−6 6.701× 10−6 7.787× 10−6

p̂4 3.915× 10−3 3.945× 10−3 4.166× 10−3 4.027× 10−3

ŜE(p̂4) 8.373× 10−4 2.882× 10−4 4.366× 10−4 4.817× 10−4

Ĉov(p̂1, p̂2) −3.688× 10−5 −1.563× 10−4 −1.168× 10−4 −1.579× 10−4

Ĉov(p̂1, p̂3) −2.081× 10−8 −6.595× 10−8 −5.988× 10−8 −8.160× 10−8

Ĉov(p̂1, p̂4) 5.971× 10−7 1.045× 10−8 5.570× 10−7 8.615× 10−7

Ĉov(p̂2, p̂3) 3.113× 10−8 1.353× 10−7 8.834× 10−8 1.181× 10−7

Ĉov(p̂2, p̂4) 3.520× 10−7 4.275× 10−7 −2.100× 10−7 −5.341× 10−7

Ĉov(p̂3, p̂4) −5.579× 10−10 5.546× 10−11 −3.461× 10−10 −5.605× 10−10

For constraint implementation (C2) (Table 5.23), parameter estimates for p1 the closest

parameter estimates came from E-optimal followed by D-optimal. For p2, the closest parameter

estimates came from the uniform mesh followed by E-optimal. For p3, the uniform mesh then

SE-optimal had the closest parameter estimates to the true value. For p4 the closest estimate

came from D-optimal followed by E-optimal.

For constraint implementation (C3) (Table 5.25), the closest estimates for p1 came from

D-optimal followed by E-optimal. For (p2, p3, p4) the closest estimates came from E-optimal

followed by SE-optimal (for p2, p3) and D-optimal (for p4).

For the last constraint (C4) (Table 5.27), the closest estimates for (p1, p2, p3) came from

D-optimal and then SE-optimal. For p4 the closest estimate to the true value came from

SE-optimal followed by E-optimal.

None of the optimal design methods are consistent with parameter estimates that are the

closest to the true values for all cases.
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Table 5.25: Estimates, standard errors, and covariances between parameters from the bootstrap
method (4.9) resulting from different optimal design methods (as well as for the uniform mesh)
for θ0 = (p1, p2, p3, p4) = (2.6× 10−2, 2.5× 10−2, 1.25× 10−5, 4.1× 10−3), M = 1000 bootstraps
and N = 30, optimization, using fmincon, with constraint implementation (C3).

SE-optimal D-optimal E-optimal Uniform

p̂1 2.812× 10−2 2.738× 10−2 2.749× 10−2 1.973× 10−2

ŜE(p̂1) 5.495× 10−3 6.344× 10−3 7.838× 10−3 8.563× 10−3

p̂2 2.160× 10−2 1.513× 10−2 2.300× 10−2 3.730× 10−2

ŜE(p̂2) 9.465× 10−3 1.166× 10−2 1.183× 10−2 1.279× 10−2

p̂3 1.122× 10−5 1.030× 10−5 1.240× 10−5 1.916× 10−5

ŜE(p̂3) 5.360× 10−6 5.291× 10−6 6.429× 10−6 8.017× 10−6

p̂4 3.695× 10−3 4.011× 10−3 4.188× 10−3 3.984× 10−3

ŜE(p̂4) 3.244× 10−4 1.311× 10−4 1.946× 10−4 2.098× 10−4

Ĉov(p̂1, p̂2) −4.787× 10−5 −6.858× 10−5 −8.971× 10−5 −1.053× 10−4

Ĉov(p̂1, p̂3) −2.768× 10−8 −3.288× 10−8 −4.933× 10−8 −6.722× 10−8

Ĉov(p̂1, p̂4) −1.523× 10−7 2.531× 10−8 9.876× 10−8 5.716× 10−8

Ĉov(p̂2, p̂3) 4.913× 10−8 5.882× 10−8 7.443× 10−8 9.990× 10−8

Ĉov(p̂2, p̂4) 6.607× 10−7 9.576× 10−8 9.573× 10−8 2.310× 10−7

Ĉov(p̂3, p̂4) 3.331× 10−10 3.083× 10−11 4.247× 10−11 8.308× 10−11

Bootstrapping: standard errors.

We compare the optimal design methods based on how small their standard errors are as

estimated by the bootstrap method.

Comparing the standard error estimates from the first constraint implementation (C1)

(Table 5.21) we find that for parameters (p1, p2, p3) the optimal mesh from E-optimal has the

smallest standard errors followed by SE-optimal. For p4, the smallest standard errors come

from D-optimal followed by E-optimal.

For the second constraint implementation (C2) (Table 5.23), the smallest standard errors

for parameters (p1, p3) are from E-optimal followed by SE-optimal. For p2, the uniform mesh

has the smallest standard errors, followed by SE-optimal. For p4, the uniform mesh has the

smallest standard errors followed by the optimal mesh from D-optimal.

For the constraint implementation (C3) (Table 5.25), the smallest standard errors come
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Table 5.26: Estimates, standard errors, and covariances between parameters from the asymptotic
theory (4.6) resulting from different optimal design methods (as well as for the uniform mesh) for
θ0 = (p1, p2, p3, p4) = (2.6× 10−2, 2.5× 10−2, 1.25× 10−5, 4.1× 10−3) and N = 30, optimization,
using fmincon, with constraint implementation (C4).

SE-optimal D-optimal E-optimal Uniform

p̂1 3.285× 10−2 2.540× 10−2 3.401× 10−2 2.045× 10−2

ŜE(p̂1) 6.396× 10−3 1.102× 10−2 6.353× 10−3 1.056× 10−2

p̂2 1.783× 10−2 2.452× 10−2 1.079× 10−2 3.607× 10−2

ŜE(p̂2) 8.983× 10−3 1.562× 10−2 9.052× 10−3 1.536× 10−2

p̂3 9.094× 10−6 1.226× 10−5 6.025× 10−6 1.766× 10−5

ŜE(p̂3) 5.375× 10−6 8.277× 10−6 4.850× 10−6 7.787× 10−6

p̂4 3.980× 10−3 3.958× 10−3 4.040× 10−3 4.027× 10−3

ŜE(p̂4) 1.362× 10−3 4.896× 10−4 4.257× 10−4 4.817× 10−4

Ĉov(p̂1, p̂2) −5.251× 10−5 −1.692× 10−4 −5.587× 10−5 −1.579× 10−4

Ĉov(p̂1, p̂3) −3.260× 10−8 −9.060× 10−8 −3.043× 10−8 −8.160× 10−8

Ĉov(p̂1, p̂4) 2.000× 10−6 1.1481× 10−6 4.352× 10−7 8.615× 10−7

Ĉov(p̂2, p̂3) 4.436× 10−8 1.281× 10−7 4.316× 10−8 1.181× 10−7

Ĉov(p̂2, p̂4) −2.356× 10−7 −1.016× 10−6 −2.022× 10−7 −5.341× 10−7

Ĉov(p̂3, p̂4) −2.203× 10−9 −8.152× 10−10 −3.102× 10−10 −5.605× 10−10

from SE-optimal for parameters (p1, p2) followed by D-optimal. For parameters (p3, p4) the

optimal mesh from D-optimal has the smallest standard errors, followed by SE-optimal (for p3)

and E-optimal (for p4).

For the last constraint implementation (C4) (Table 5.27), the smallest standard errors for

parameters (p1, p2, p3) are from E-optimal followed by SE-optimal. For parameter p4, the

smallest standard errors are from E-optimal followed by D-optimal.

Bootstrapping: covariance estimates.

For the first constraint implementation (C1) (Table 5.21), the smallest in absolute value

covariance estimates as estimated by the bootstrapping method came from the optimal meshes

of D-optimal (for ˆCov(p̂2, p̂4)) or E-optimal (for ˆCov(p̂1, p̂2), ˆCov(p̂1, p̂3), and ˆCov(p̂2, p̂3)) or

the uniform mesh (for ˆCov(p̂1, p̂4) and ˆCov(p̂3, p̂4)).

For constraint implementation (C2) (Table 5.23), D-optimal or E-optimal have the smallest
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Table 5.27: Estimates, standard errors, and covariances between parameters from the bootstrap
method (4.9) resulting from different optimal design methods (as well as for the uniform mesh)
for θ0 = (p1, p2, p3, p4) = (2.6× 10−2, 2.5× 10−2, 1.25× 10−5, 4.1× 10−3), M = 1000 bootstraps
and N = 30, optimization, using fmincon, with constraint implementation (C4).

SE-optimal D-optimal E-optimal Uniform

p̂1 3.243× 10−2 2.409× 10−2 3.304× 10−2 1.973× 10−2

ŜE(p̂1) 4.851× 10−3 7.282× 10−3 3.410× 10−3 8.563× 10−3

p̂2 1.899× 10−2 2.659× 10−2 1.262× 10−2 3.730× 10−2

ŜE(p̂2) 6.864× 10−3 1.056× 10−2 5.304× 10−3 1.279× 10−2

p̂3 9.688× 10−6 1.385× 10−5 6.571× 10−6 1.916× 10−5

ŜE(p̂3) 3.843× 10−6 5.780× 10−6 2.220× 10−6 8.017× 10−6

p̂4 4.117× 10−3 3.967× 10−3 4.025× 10−3 3.984× 10−3

ŜE(p̂4) 7.050× 10−4 2.147× 10−4 1.892× 10−4 2.098× 10−4

Ĉov(p̂1, p̂2) −2.970× 10−5 −7.462× 10−5 −1.700× 10−5 −1.053× 10−4

Ĉov(p̂1, p̂3) −1.680× 10−8 −4.139× 10−8 −7.230× 10−9 −6.722× 10−8

Ĉov(p̂1, p̂4) 2.879× 10−8 6.162× 10−8 9.816× 10−8 5.716× 10−8

Ĉov(p̂2, p̂3) 2.477× 10−8 5.986× 10−8 1.133× 10−8 9.990× 10−8

Ĉov(p̂2, p̂4) 6.321× 10−7 1.286× 10−7 2.627× 10−9 2.310× 10−7

Ĉov(p̂3, p̂4) 4.890× 10−11 2.363× 10−11 −1.770× 10−11 8.308× 10−11

in absolute value covariance estimates, except for ˆCov(p̂1, p̂4) where SE-optimal is the smallest

and ˆCov(p̂2, p̂3) where the uniform mesh is the smallest.

For the third constraint implementation (C3) (Table 5.25), D-optimal or SE-optimal have

the smallest in absolute value covariance estimates, except for ˆCov(p̂2, p̂4) where E-optimal is

the smallest.

For the last constraint implementation (C4) (Table 5.27), the smallest in absolute value

covariance estimates are from E-optimal, except for ˆCov(p̂1, p̂4) where SE-optimal is the smallest.

Comparing the optimal design methods based on the bootstrapping covariance estimates,

we find there is not one method that is always favorable.
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5.4 Conclusions

We compared D-optimal, E-optimal and SE-optimal design methods for a simple differential

equation model: the logistic population model, a second order differential equation: the harmonic

oscillator model, and a vector system for glucose regulation. D-optimal and E-optimal design

methods are more established in the literature. Our comparisons test the performance of

SE-optimal design, which is a relatively newer method.

For the logistic example, the optimal design methods were compared using the Monte Carlo

method for asymptotic standard errors. Comparing the average and median parameter estimates

to their true values, we find that SE-optimal has closest parameter estimates for N = 10 time

points. For N = 15, no method had estimates that were always closest to the true values. In all

cases each optimal design methods produced estimates close to the true values. The average

and median standard errors for K were smallest from the optimal mesh from E-optimal. For

parameters r and x0, SE-optimal had the smallest average and median standard errors. Overall,

no optimal design method is consistently favorable for this logistic example.

For the harmonic example, comparing the approximate asymptotic standard errors, we found

that different optimal design methods were favorable for different parameters. D-optimal often

had the smallest standard errors for K and x1. SE-optimal often had the smallest standard

errors for C. For x2, either SE-optimal or E-optimal had the smallest standard errors. We also

compared methods using the inverse problem with simulated data and asymptotic theory and

bootstrapping. Comparing methods based on who’s parameter estimates were closest to the true

values, and who had the smallest standard errors or covariances, there was no method that was

preferred over the others. In each comparison, the best optimal design method often depended

on the constraint implementation, the choice of T = 14.14 or T = 28.28, and the parameter.

For the glucose regulation model, comparing the approximate asymptotic standard errors, we

found that for parameters (p1, p2, p3) either SE-optimal or E-optimal had the smallest standard

errors. D-optimal tended to have the smallest standard errors for p4. We also compared the

optimal design methods for the inverse problem using asymptotic theory and bootstrapping.

Comparing the parameter estimates to their true values, none of the optimal design methods

were consistently closer. Comparing the optimal design methods based on who had the smallest

standard errors and covariances we found that no method was preferable over the others.

However, the optimal design methods often had smaller standard errors and covariances than

the uniform mesh. The constraint implementation, parameter, and choice of asymptotic theory

or bootstrapping influenced which optimal design method would be favorable for this example.

The best choice of optimal design method depends on the complexity of the model, the type

of constraint one is using, the subset of parameters you are estimating, and even the choice of N

and T . The examples in this comparison provide evidence that SE-optimal design is competitive

75



with D-optimal and E-optimal design, and in some cases SE-optimal design is a more favorable

method.
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Chapter 6

Monte Carlo Analysis

The results in the previous chapter (Chapter 5) may not be representative of typical behavior

since often the results were given for a single realization. In this section we present a Monte

Carlo analysis of the performance of the Optimal Design methods for the logistic and harmonic

oscillator examples.

6.1 Monte Carlo Methodology

For a single Monte Carlo trial, we generate simulated data on the optimal mesh {tj}Nj=1 based

on the true parameter values θ0 corresponding to our statistical model

yi = f(tj , θ0) + εj , j = 1, . . . , N,

where the εj are realizations of Ej ∼ N (0, σ2
0) for j = 1, . . . , N . Parameters are estimated using

OLS taking the initial parameter guess to be θ0 = 1.4θ0. The parameter estimates are stored,

and the process is repeated with new simulated data corresponding to the optimal mesh for

M = 1000 Monte Carlo trials. The choice of M = 1000 Monte Carlo trials was made since fewer

trials would not reliably depict the distribution of parameter estimates. More trials increase the

resolution though the results remain unchanged.

In addition, for each simulated data set we computed the estimated FIM, F̂ , to determine if

the 95% confidence ellipsoid contains the true parameter values θ0. The 95% confidence ellipsoid

corresponding to normally distributed residuals is defined by [30]

(θ − θ̂)T F̂ (θ − θ̂) = pFαp,n−p,

where Fαp,n−p is the F distribution with p numerator degrees of freedom, n − p denominator

degrees of freedom, and critical level α = 0.05. The confidence ellipsoid will contain the true
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parameter values if the following inequality holds:

(θ0 − θ̂)T F̂ (θ0 − θ̂) ≤ pFαp,n−p. (6.1)

The Monte Carlo analysis was repeated for the three different optimal design methods as well

as for the uniform mesh, each time with M = 1000 new sets of simulated data. For each Monte

Carlo analysis, the average parameter estimate is reported along with its standard deviation.

We will compare the standard deviation of these Monte Carlo trials to the standard errors as

computed using asymptotic theory reported in a previous section.

In addition, we report the proportion of confidence ellipsoids containing the true value and

the corresponding standard error,

P̂ =
# of 95% Confidence Ellipsoids containing θ0

M
, SE(P̂ ) =

√
P̂ (1− P̂ )

M
.

Note that P̂ is the estimate of P0 the true proportion. Figure 6.1 gives an example of 95%

confidence ellipsoids corresponding to parameter estimates from simulated data. The true

parameter values are plotted as a point in Rp = R2. Ellipsoids that contain the true parameter

are gray and those that do not are black, as determined by the inequality given in (6.1). We are

interested to see if p̂ is close to 0.95 (95% confidence ellipsoid) for the different optimal design

methods and the uniform mesh.

6.2 Logistic Results

Monte Carlo analysis was performed using the same optimal design points as reported earlier

in Section 5.1. As stated previously, these optimal design points (see Figs. 5.1 and 5.3)

were found using constraint implementation (C2) and SolvOpt with N = 10 or N = 15,

θ0 = (K, r, x0) = (17.5, 0.7, 0.1), and T = 25. The Monte Carlo analysis was conducted

three times for each optimal design mesh taking different levels of noise in the simulated data,

σ2
0 = (0.01, 0.05, 0.10). Tables 6.1-6.3 and 6.5-6.7 contain the average estimates and standard

deviations from the Monte Carlo trials for N = 10 and N = 15 respectively and for the three

different noise levels. In addition, the tables contain the asymptotic standard errors (4.5),

using the true parameter values, for comparison with the standard deviations of the Monte

Carlo parameter estimates. The percentage of 95% confidence ellipsoids which contain the true

parameter values are given in Tables 6.4 and 6.8. Histograms of the parameter estimates are

plotted in Figures 6.2-6.4 for N = 10 and Figures 6.5-6.7 for N = 15. Each figure corresponds

to a specific value of σ2
0. Subfigures represent histograms for different parameter estimates,
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Figure 6.1: A generic example of 95% Confidence Ellipsoids (from M = 30 simulated data sets,
estimating p = 2 parameters), where the true value is given by the star, confidence ellipsoids
containing the true value are gray, and confidence ellipsoids not containing the true value are
black.

θ̂ = (K̂, r̂, x̂0). Within each subfigure are histograms for a specific parameter originating from

an optimal design mesh or the uniform mesh.

Table 6.1: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000 Monte
Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using true values
θ0 = (17.5, 0.7, 0.1), N = 10, and 1% noise (σ2

0 = 0.01).

SE-opt D-opt E-opt Uniform

K̂Avg 17.5019 17.5015 17.5013 17.5003

K̂SD 4.527× 10−2 4.378× 10−2 3.495× 10−2 4.354× 10−2

SE(K) 4.466× 10−2 4.534× 10−2 3.535× 10−2 4.266× 10−2

r̂Avg 0.7003 0.7004 0.7004 0.6995

r̂SD 8.560× 10−3 9.341× 10−3 2.247× 10−2 1.198× 10−2

SE(r) 7.167× 10−3 7.673× 10−3 1.928× 10−2 1.005× 10−2

x̂0,Avg 0.1000 0.1000 0.1009 0.1007

x̂0,SD 6.087× 10−3 7.058× 10−3 1.577× 10−2 8.944× 10−3

SE(x0) 4.297× 10−3 4.965× 10−3 9.996× 10−3 6.194× 10−3
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Table 6.2: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000 Monte
Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using true values
θ0 = (17.5, 0.7, 0.1), N = 10, and 5% noise (σ2

0 = 0.05).

SE-opt D-opt E-opt Uniform

K̂Avg 17.5009 17.4979 17.5021 17.5059

K̂SD 1.022× 10−1 1.027× 10−1 8.133× 10−2 9.990× 10−2

SE(K) 9.987× 10−2 1.014× 10−1 7.906× 10−2 9.540× 10−2

r̂Avg 0.7002 0.7005 0.7028 0.7007

r̂SD 1.895× 10−2 2.091× 10−2 5.290× 10−2 2.748× 10−2

SE(r) 1.603× 10−2 1.716× 10−2 4.312× 10−2 2.248× 10−2

x̂0,Avg 0.1007 0.1009 0.1044 0.1017

x̂0,SD 1.334× 10−2 1.607× 10−2 3.612× 10−2 2.025× 10−2

SE(x0) 9.608× 10−3 1.110× 10−2 2.235× 10−2 1.385× 10−2

Table 6.3: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000 Monte
Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using true values
θ0 = (17.5, 0.7, 0.1), N = 10, and 10% noise (σ2

0 = 0.10).

SE-opt D-opt E-opt Uniform

K̂Avg 17.5037 17.4942 17.4912 17.5067

K̂SD 1.390× 10−1 1.449× 10−1 1.069× 10−1 1.369× 10−1

SE(K) 1.412× 10−1 1.4339× 10−1 1.118× 10−1 1.349× 10−1

r̂Avg 0.7004 0.7008 0.7079 0.7015

r̂SD 2.756× 10−2 3.140× 10−2 7.641× 10−2 3.882× 10−2

SE(r) 2.266× 10−2 2.426× 10−2 6.098× 10−2 3.179× 10−2

x̂0,Avg 0.1015 0.1023 0.1072 0.1028

x̂0,SD 1.926× 10−2 2.441× 10−2 5.158× 10−2 2.832× 10−2

SE(x0) 1.359× 10−2 1.570× 10−2 3.161× 10−2 1.959× 10−2
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Figure 6.2: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel
(c)) resulting from Monte Carlo simulation with M = 1000. Different histograms within each
subfigure represent results from different optimal design methods as well as from the uniform
mesh. Simulated data was generated with N = 10 and 1% noise (σ2

0 = 0.01).

6.2.1 Discussion of Logistic Monte Carlo Results

A general observation from these results is that as the noise level decreases, variance in the

parameters (θ̂SD) decreases, and parameter estimates approach the true parameter values.

Comparing the standard deviation of the parameter estimates (θ̂SD) to the asymptotic standard
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Figure 6.3: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel
(c)) resulting from Monte Carlo simulation with M = 1000. Different histograms within each
subfigure represent results from different optimal design methods as well as from the uniform
mesh. Simulated data was generated with N = 10 and 5% noise (σ2

0 = 0.05).

errors (SE(θ)) we find that they are always on the same order of magnitude, and often the

asymptotic standard errors are slightly smaller.

In all cases the average parameter estimates were very close to the true values. Comparing

the optimal design methods based on the standard deviations of the parameter estimates, we

find different results based on which parameters are considered. For parameter K, E-optimal
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Figure 6.4: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel
(c)) resulting from Monte Carlo simulation with M = 1000. Different histograms within each
subfigure represent results from different optimal design methods as well as from the uniform
mesh. Simulated data was generated with N = 10 and 10% noise (σ2

0 = 0.10).

had the smallest standard deviation in every case, followed by the uniform distribution. For

parameters r and x0, SE-optimal always had the smallest standard deviation, often followed by

D-optimal. Visually, E-optimal appears right-skewed for parameters r and x0 for σ2
0 = 0.10,

and N = 10 and N = 15 (see Figs. 6.4 and 6.7). Overall, these results seem to be in agreement

with the performance of the optimal design methods in Section 5.1.
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Table 6.4: Percent of Confidence Ellipsoids which contain the true parameter values (N=10).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 94.8% (SE = 0.70%) 94.5% (SE = 0.72%) 92.2% (SE = 0.85%)

D-opt 94.7% (SE = 0.71%) 93.3% (SE = 0.79%) 88.3% (SE = 1.02%)

E-opt 91.2% (SE = 0.90%) 82.7% (SE = 1.20%) 76.7% (SE = 1.34%)

Uniform 94.4% (SE = 0.73%) 89.7% (SE = 0.96%) 89.0% (SE = 0.99%)

Table 6.5: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000 Monte
Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using true values
θ0 = (17.5, 0.7, 0.1), N = 15, and 1% noise (σ2

0 = 0.01).

SE-opt D-opt E-opt Uniform

K̂Avg 17.5001 17.4990 17.4980 17.5000

K̂SD 3.747× 10−2 3.544× 10−2 2.914× 10−2 3.534× 10−2

SE(K) 3.774× 10−2 3.612× 10−2 3.015× 10−2 3.537× 10−2

r̂Avg 0.7002 0.7000 0.7010 0.7001

r̂SD 6.740× 10−3 8.543× 10−3 1.946× 10−2 9.622× 10−3

SE(r) 5.547× 10−3 6.862× 10−3 1.713× 10−2 8.088× 10−3

x̂0,Avg 0.0999 0.1002 0.1001 0.1002

x̂0,SD 4.895× 10−3 6.309× 10−3 1.197× 10−2 6.993× 10−3

SE(x0) 3.524× 10−3 4.185× 10−3 7.560× 10−3 4.989× 10−3

Examining the proportion of 95% confidence ellipsoids that contain the true parameter value

(Tables 6.4 and 6.8) we find that often the proportion falls short of the expected 0.95, especially

for increased values of σ2
0. Comparing the optimal design methods based on which has the

best coverage of the true parameter value, we find that SE-optimal is the best, followed by

D-optimal or the uniform mesh, with E-optimal being the worst for this logistic example.
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Table 6.6: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000 Monte
Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using true values
θ0 = (17.5, 0.7, 0.1), N = 15, and 5% noise (σ2

0 = 0.05).

SE-opt D-opt E-opt Uniform

K̂Avg 17.4980 17.5029 17.4994 17.5002

K̂SD 8.612× 10−2 7.832× 10−2 6.850× 10−2 7.883× 10−2

SE(K) 8.438× 10−2 8.077× 10−2 6.742× 10−2 7.910× 10−2

r̂Avg 0.7009 0.7005 0.7017 0.7008

r̂SD 1.529× 10−2 1.966× 10−2 4.524× 10−2 2.250× 10−2

SE(r) 1.240× 10−2 1.534× 10−2 3.831× 10−2 1.809× 10−2

x̂0,Avg 0.1000 0.1006 0.1028 0.1007

x̂0,SD 1.120× 10−2 1.453× 10−2 2.757× 10−2 1.647× 10−2

SE(x0) 7.880× 10−3 9.357× 10−3 1.690× 10−2 1.116× 10−2

Table 6.7: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000 Monte
Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using true values
θ0 = (17.5, 0.7, 0.1), N = 15, and 10% noise (σ2

0 = 0.10).

SE-opt D-opt E-opt Uniform

K̂Avg 17.4987 17.5014 17.5014 17.5071

K̂SD 1.192× 10−1 1.135× 10−1 9.545× 10−2 1.151× 10−1

SE(K) 1.193× 10−1 1.142× 10−1 9.535× 10−2 1.119× 10−1

r̂Avg 0.7011 0.7017 0.7046 0.7010

r̂SD 2.070× 10−2 2.703× 10−2 6.565× 10−2 3.132× 10−2

SE(r) 1.754× 10−2 2.170× 10−2 5.417× 10−2 2.558× 10−2

x̂0,Avg 0.1007 0.1009 0.1043 0.1018

x̂0,SD 1.530× 10−2 2.026× 10−2 4.032× 10−2 2.317× 10−2

SE(x0) 1.114× 10−2 1.323× 10−2 2.391× 10−2 1.578× 10−2
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Figure 6.5: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel
(c)) resulting from Monte Carlo simulation with M = 1000. Different histograms within each
subfigure represent results from different optimal design methods as well as from the uniform
mesh. Simulated data was generated with N = 15 and 1% noise (σ2

0 = 0.01).

86



17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8
0

20

40

60

80

100

120

140

160

180

200

fr
eq

ue
nc

y

Estimates of K, σ
0
2=0.05

 

 

Uniform
SE−optimal
D−optimal
E−optimal

(a)

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

50

100

150

200

250

300

350

400

450

fr
eq

ue
nc

y

Estimates of r, σ
0
2=0.05

 

 

Uniform
SE−optimal
D−optimal
E−optimal

(b)

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

50

100

150

200

250

300

350

fr
eq

ue
nc

y

Estimates of x
0
, σ

0
2=0.05

 

 

Uniform
SE−optimal
D−optimal
E−optimal

(c)

Figure 6.6: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel
(c)) resulting from Monte Carlo simulation with M = 1000. Different histograms within each
subfigure represent results from different optimal design methods as well as from the uniform
mesh. Simulated data was generated with N = 15 and 5% noise (σ2

0 = 0.05).

87



17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18
0

50

100

150

200

250

fr
eq

ue
nc

y

Estimates of K, σ
0
2=0.10

 

 

Uniform
SE−optimal
D−optimal
E−optimal

(a)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

50

100

150

200

250

300

350

400

450

fr
eq

ue
nc

y

Estimates of r, σ
0
2=0.10

 

 

Uniform
SE−optimal
D−optimal
E−optimal

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

200

250

300

350

400

450

500

fr
eq

ue
nc

y

Estimates of x
0
, σ

0
2=0.10

 

 

Uniform
SE−optimal
D−optimal
E−optimal

(c)

Figure 6.7: Histograms of parameter estimates (K̂ in panel (a), r̂ in panel (b), x̂0 in panel
(c)) resulting from Monte Carlo simulation with M = 1000. Different histograms within each
subfigure represent results from different optimal design methods as well as from the uniform
mesh. Simulated data was generated with N = 15 and 10% noise (σ2

0 = 0.10).
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Table 6.8: Percent of Confidence Ellipsoids which contain the true parameter values (N=15).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 95.7% (SE = 0.64%) 94.0% (SE = 0.75%) 93.5% (SE = 0.78%)

D-opt 95.1% (SE = 0.68%) 92.3% (SE = 0.84%) 89.2% (SE = 0.98%)

E-opt 93.9% (SE = 0.76%) 87.8% (SE = 1.04%) 82.5% (SE = 1.20%)

Uniform 94.0% (SE = 0.75%) 91.2%,(SE = 0.90%) 89.7% (SE = 0.96%)
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6.3 Harmonic Oscillator Results

Monte Carlo analysis for the Harmonic Oscillator model was conducted using the optimal design

points found in the previous section (Section 5.2.3) with N = 15, T = 14.14 or T = 28.28, and

four different implementations of the constraint (C1) − (C4) (See Figs. 5.9-5.12). For each

optimal mesh or uniform mesh, Monte Carlo analysis was repeated three times for different

noise levels σ2
0 = (0.01, 0.05, 0.10). Figures 6.8-6.15 contain histogram plots of the parameter

estimates (Ĉ, K̂). Each figure represents results from a specific constraint implementation and

a value of T . Each subfigure represents one of the parameters and one value of σ2
0. Within a

subfigure are histograms corresponding to each optimal design method (SE-optimal, D-optimal,

and E-optimal) and the uniform mesh.

Tables 6.9-6.11, 6.14-6.16, 6.19-6.21, and 6.24-6.26 contain the average estimates and standard

deviations from the Monte Carlo trials for the four constraints respectively, and both T = 14.14

and T = 28.28, as well as for the three different noise levels. In addition, the tables contain

the asymptotic standard errors (4.5), using the true parameter values, for comparison with the

standard deviations of the Monte Carlo parameter estimates. The percentage of 95% confidence

ellipsoids which contain the true parameter values are given in Tables 6.12, 6.13, 6.17, 6.18, 6.22,

6.23, 6.27, and 6.28.
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Figure 6.8: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panel (b),(d),(f))
resulting from Monte Carlo simulation. Simulated data was generated with σ2

0 = 0.01 (top row),
σ2

0 = 0.05 (middle row), and σ2
0 = 0.10 (bottom row) (T = 14.14 and constraint implementation

(C1)).
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Table 6.9: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000 Monte
Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using true values
θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise level σ2

0 = 0.01.
Simulated data corresponds to optimal design points using N = 15, T = 14.14 and T = 28.28,
and constraint implementation (C1).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.0998 0.0999 0.0999 0.1002

ĈSD 5.197× 10−3 4.904× 10−3 5.928× 10−3 6.495× 10−3

SE(C) 5.004× 10−3 4.746× 10−3 5.818× 10−3 6.577× 10−3

K̂Avg 0.2002 0.2001 0.2000 0.2000

K̂SD 4.049× 10−3 2.360× 10−3 3.482× 10−3 2.977× 10−3

SE(K) 3.678× 10−3 2.378× 10−3 3.416× 10−3 2.895× 10−3

T = 28.28

ĈAvg 0.1000 0.0999 0.0999 0.1000

ĈSD 4.493× 10−3 4.319× 10−3 5.707× 10−3 5.123× 10−3

SE(C) 4.342× 10−3 4.284× 10−3 5.214× 10−3 5.127× 10−3

K̂Avg 0.2002 0.2000 0.2002 0.2000

K̂SD 3.238× 10−3 1.854× 10−3 3.981× 10−3 2.413× 10−3

SE(K) 3.021× 10−3 1.994× 10−3 3.412× 10−3 2.307× 10−3
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Table 6.10: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise level
σ2

0 = 0.05. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C1).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.0999 0.1008 0.0994 0.0994

ĈSD 1.145× 10−2 1.019× 10−2 1.286× 10−2 1.457× 10−2

SE(C) 1.119× 10−2 1.061× 10−2 1.301× 10−2 1.471× 10−2

K̂Avg 0.2008 0.2000 0.2001 0.2001

K̂SD 8.782× 10−3 5.430× 10−3 7.761× 10−3 6.469× 10−3

SE(K) 8.224× 10−3 5.318× 10−3 7.640× 10−3 6.473× 10−3

T = 28.28

ĈAvg 0.0996 0.0997 0.0988 0.1001

ĈSD 9.659× 10−3 9.588× 10−3 1.224× 10−2 1.183× 10−2

SE(C) 9.708× 10−3 9.579× 10−3 1.166× 10−2 1.146× 10−2

K̂Avg 0.2004 0.2000 0.2013 0.2001

K̂SD 7.795× 10−3 4.295× 10−3 1.129× 10−2 5.114× 10−3

SE(K) 6.755× 10−3 4.459× 10−3 7.629× 10−3 5.159× 10−3
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Table 6.11: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise level
σ2

0 = 0.10. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C1).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.0999 0.1003 0.0991 0.1008

ĈSD 1.621× 10−2 1.445× 10−2 1.842× 10−2 2.107× 10−2

SE(C) 1.582× 10−2 1.501× 10−2 1.840× 10−2 2.080× 10−2

K̂Avg 0.2008 0.2002 0.2007 0.2000

K̂SD 1.286× 10−2 7.447× 10−3 1.131× 10−2 9.192× 10−3

SE(K) 1.163× 10−2 7.521× 10−3 1.080× 10−2 9.154× 10−3

T = 28.28

ĈAvg 0.0991 0.0998 0.0978 0.0992

ĈSD 1.386× 10−2 1.353× 10−2 1.714× 10−2 1.628× 10−2

SE(C) 1.373× 10−2 1.355× 10−2 1.649× 10−2 1.621× 10−2

K̂Avg 0.2015 0.2003 0.2038 0.2001

K̂SD 1.106× 10−2 6.602× 10−3 1.807× 10−2 7.350× 10−3

SE(K) 9.553× 10−3 6.305× 10−3 1.079× 10−2 7.295× 10−3

Table 6.12: Percent of Confidence Ellipsoids which contain the true parameter values (T = 14.14,
constraint implementation (C1)).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 95.9% (SE = 0.63%) 94.7% (SE = 0.71%) 94.3% (SE = 0.73%)

D-opt 95.2% (SE = 0.68%) 96.7% (SE = 0.56%) 95.9% (SE = 0.63%)

E-opt 95.5% (SE = 0.66%) 94.4% (SE = 0.73%) 94.6% (SE = 0.71%)

Uniform 94.6% (SE = 0.71%) 95.2% (SE = 0.68%) 95.4% (SE = 0.66%)
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Figure 6.9: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panel (b),(d),(f))
resulting from Monte Carlo simulation. Simulated data was generated with σ2

0 = 0.01 (top row),
σ2

0 = 0.05 (middle row), and σ2
0 = 0.10 (bottom row) (T = 28.28 and constraint implementation

(C1)).
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Table 6.13: Percent of Confidence Ellipsoids which contain the true parameter values (T = 28.28,
constraint implementation (C1)).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 95.5% (SE = 0.66%) 92.6% (SE = 0.83%) 93.2% (SE = 0.80%)

D-opt 95.7% (SE = 0.64%) 95.1% (SE = 0.68%) 93.1% (SE = 0.80%)

E-opt 94.9% (SE = 0.70%) 92.8% (SE = 0.82%) 90.5% (SE = 0.93%)

Uniform 95.3% (SE = 0.67%) 94.2% (SE = 0.74%) 93.3% (SE = 0.79%)

Table 6.14: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise level
σ2

0 = 0.01. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28 and constraint implementation (C2).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.1000 0.1000 0.0998 0.0998

ĈSD 5.264× 10−3 5.261× 10−3 5.536× 10−3 6.431× 10−3

SE(C) 5.444× 10−3 4.987× 10−3 5.700× 10−3 6.577× 10−3

K̂Avg 0.2002 0.2000 0.2002 0.2000

K̂SD 3.424× 10−3 2.211× 10−3 3.112× 10−3 2.867× 10−3

SE(K) 3.344× 10−3 2.181× 10−3 3.008× 10−3 2.895× 10−3

T = 28.28

ĈAvg 0.0999 0.0998 0.0998 0.1001

ĈSD 4.741× 10−3 4.630× 10−3 5.454× 10−3 5.342× 10−3

SE(C) 4.537× 10−3 4.528× 10−3 5.279× 10−3 5.127× 10−3

K̂Avg 0.2001 0.2000 0.2000 0.2000

K̂SD 3.414× 10−3 2.202× 10−3 3.509× 10−3 2.285× 10−3

SE(K) 3.144× 10−3 2.137× 10−3 3.260× 10−3 2.307× 10−3
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Figure 6.10: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panel
(b),(d),(f)) resulting from Monte Carlo simulation. Simulated data was generated with σ2

0 = 0.01
(top row), σ2

0 = 0.05 (middle row), and σ2
0 = 0.10 (bottom row) (T = 14.14 and constraint

implementation (C2)).
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Table 6.15: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise level
σ2

0 = 0.05. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C2).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.0996 0.0997 0.0999 0.1005

ĈSD 1.247× 10−2 1.125× 10−2 1.238× 10−2 1.564× 10−2

SE(C) 1.217× 10−2 1.115× 10−2 1.275× 10−2 1.471× 10−2

K̂Avg 0.2002 0.1997 0.1999 0.2002

K̂SD 7.715× 10−3 5.107× 10−3 6.751× 10−3 6.549× 10−3

SE(K) 7.477× 10−3 4.876× 10−3 6.727× 10−3 6.473× 10−3

T = 28.28

ĈAvg 0.0990 0.0997 0.0998 0.1007

ĈSD 1.008× 10−2 9.940× 10−3 1.172× 10−2 1.153× 10−2

SE(C) 1.015× 10−2 1.012× 10−2 1.180× 10−2 1.146× 10−2

K̂Avg 0.2006 0.2000 0.2009 0.2000

K̂SD 7.797× 10−3 4.753× 10−3 8.777× 10−3 5.443× 10−3

SE(K) 7.030× 10−3 4.778× 10−3 7.289× 10−3 5.159× 10−3

98



Table 6.16: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise level
σ2

0 = 0.10. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C2).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.0988 0.1002 0.1003 0.1014

ĈSD 1.703× 10−2 1.492× 10−2 1.863× 10−2 2.138× 10−2

SE(C) 1.721× 10−2 1.577× 10−2 1.802× 10−2 2.080× 10−2

K̂Avg 0.1998 0.1997 0.2004 0.2000

K̂SD 1.073× 10−2 6.885× 10−3 9.921× 10−3 9.483× 10−3

SE(K) 1.057× 10−2 6.895× 10−3 9.513× 10−3 9.154× 10−3

T = 28.28

ĈAvg 0.0990 0.0997 0.0998 0.1007

ĈSD 1.008× 10−2 9.940× 10−3 1.172× 10−2 1.153× 10−2

SE(C) 1.015× 10−2 1.012× 10−2 1.180× 10−2 1.146× 10−2

K̂Avg 0.2006 0.2000 0.2009 0.2000

K̂SD 7.797× 10−3 4.753× 10−3 8.777× 10−3 5.443× 10−3

SE(K) 7.030× 10−3 4.778× 10−3 7.289× 10−3 5.159× 10−3

Table 6.17: Percent of Confidence Ellipsoids which contain the true parameter values (T = 14.14,
constraint implementation (C2)).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 95.5% (SE = 0.66%) 93.9% (SE = 0.76%) 94.3% (SE = 0.73%)

D-opt 95.3% (SE = 0.67%) 93.7% (SE = 0.77%) 95.5% (SE = 0.66%)

E-opt 94.6% (SE = 0.71%) 94.9% (SE = 0.70%) 94% (SE = 0.75%)

Uniform 95.1% (SE = 0.68%) 95.1% (SE = 0.68%) 94.5% (SE = 0.72%)
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Figure 6.11: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panel
(b),(d),(f)) resulting from Monte Carlo simulation. Simulated data was generated with σ2

0 = 0.01
(top row), σ2

0 = 0.05 (middle row), and σ2
0 = 0.10 (bottom row) (T = 28.28 and constraint

implementation (C2)).
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Table 6.18: Percent of Confidence Ellipsoids which contain the true parameter values (T = 28.28,
constraint implementation (C2)).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 94.6% (SE = 0.71%) 93.4% (SE = 0.79%) 93.1% (SE = 0.80%)

D-opt 93.7% (SE = 0.77%) 95% (SE = 0.69%) 92.3% (SE = 0.84%)

E-opt 93% (SE = 0.81%) 92.7% (SE = 0.82%) 92.4% (SE = 0.84%)

Uniform 94.6% (SE = 0.71%) 94.9% (SE = 0.70%) 95.2% (SE = 0.68%)

Table 6.19: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise levels
σ2

0 = 0.01. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C3).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.1002 0.1002 0.1003 0.0999

ĈSD 5.396× 10−3 4.957× 10−3 6.616× 10−3 6.664× 10−3

SE(C) 5.124× 10−3 4.938× 10−3 6.361× 10−3 6.577× 10−3

K̂Avg 0.2002 0.2000 0.2002 0.2000

K̂SD 3.888× 10−3 2.318× 10−3 4.770× 10−3 2.888× 10−3

SE(K) 3.735× 10−3 2.248× 10−3 4.162× 10−3 2.895× 10−3

T = 28.28

ĈAvg 0.0999 0.0999 0.1002 0.1000

ĈSD 4.785× 10−3 4.398× 10−3 5.593× 10−3 5.147× 10−3

SE(C) 4.492× 10−3 4.372× 10−3 5.409× 10−3 5.127× 10−3

K̂Avg 0.2001 0.1999 0.2005 0.1999

K̂SD 3.325× 10−3 2.027× 10−3 4.067× 10−3 2.317× 10−3

SE(K) 3.088× 10−3 2.005× 10−3 3.539× 10−3 2.307× 10−3
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Figure 6.12: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panel
(b),(d),(f)) resulting from Monte Carlo simulation. Simulated data was generated with σ2

0 = 0.01
(top row), σ2

0 = 0.05 (middle row), and σ2
0 = 0.10 (bottom row) (T = 14.14 and constraint

implementation (C3)).
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Table 6.20: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise levels
σ2

0 = 0.05. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C3).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.0997 0.1001 0.1008 0.0996

ĈSD 1.185× 10−2 1.082× 10−2 1.451× 10−2 1.474× 10−2

SE(C) 1.146× 10−2 1.104× 10−2 1.422× 10−2 1.471× 10−2

K̂Avg 0.2007 0.2002 0.2014 0.2000

K̂SD 9.063× 10−3 4.951× 10−3 1.089× 10−2 6.885× 10−3

SE(K) 8.351× 10−3 5.028× 10−3 9.307× 10−3 6.473× 10−3

T = 28.28

ĈAvg 0.0993 0.1000 0.0991 0.0992

ĈSD 1.010× 10−2 9.973× 10−3 1.313× 10−2 1.147× 10−2

SE(C) 1.005× 10−2 9.775× 10−3 1.209× 10−2 1.146× 10−2

K̂Avg 0.2006 0.2001 0.2027 0.2003

K̂SD 7.581× 10−3 4.465× 10−3 1.433× 10−2 5.200× 10−3

SE(K) 6.905× 10−3 4.484× 10−3 7.913× 10−3 5.159× 10−3
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Table 6.21: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise levels
σ2

0 = 0.10. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C3).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.1002 0.1001 0.0995 0.0988

ĈSD 1.736× 10−2 1.603× 10−2 2.028× 10−2 2.074× 10−2

SE(C) 1.620× 10−2 1.562× 10−2 2.012× 10−2 2.080× 10−2

K̂Avg 0.2012 0.2001 0.2021 0.2004

K̂SD 1.310× 10−2 7.205× 10−3 1.665× 10−2 9.417× 10−3

SE(K) 1.181× 10−2 7.110× 10−3 1.316× 10−2 9.154× 10−3

T = 28.28

ĈAvg 0.0989 0.1001 0.0968 0.1007

ĈSD 1.448× 10−2 1.372× 10−2 1.743× 10−2 1.730× 10−2

SE(C) 1.421× 10−2 1.382× 10−2 1.710× 10−2 1.621× 10−2

K̂Avg 0.2019 0.2002 0.2056 0.2002

K̂SD 1.218× 10−2 6.432× 10−3 2.156× 10−2 7.437× 10−3

SE(K) 9.765× 10−3 6.341× 10−3 1.119× 10−2 7.295× 10−3
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Table 6.22: Percent of Confidence Ellipsoids which contain the true parameter values (T = 14.14,
constraint implementation (C3)).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 94.7% (SE = 0.71%) 94.9% (SE = 0.70%) 93.5% (SE = 0.78%)

D-opt 93.9% (SE = 0.76%) 95.1% (SE = 0.68%) 95.1% (SE = 0.68%)

E-opt 94.9% (SE = 0.70%) 93.8% (SE = 0.76%) 92.1% (SE = 0.85%)

Uniform 94.3% (SE = 0.73%) 93.7% (SE = 0.77%) 95.6% (SE = 0.65%)

Table 6.23: Percent of Confidence Ellipsoids which contain the true parameter values (T = 28.28,
constraint implementation (C3)).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 93.9% (SE = 0.76%) 94.6% (SE = 0.71%) 93.3% (SE = 0.79%)

D-opt 94.4% (SE = 0.73%) 94.7% (SE = 0.71%) 94.6% (SE = 0.71%)

E-opt 95.3% (SE = 0.67%) 91.1% (SE = 0.90%) 86.5% (SE = 1.08%)

Uniform 94.7% (SE = 0.71%) 95.3% (SE = 0.67%) 93.9% (SE = 0.76%)
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Figure 6.13: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panel
(b),(d),(f)) resulting from Monte Carlo simulation. Simulated data was generated with σ2

0 = 0.01
(top row), σ2

0 = 0.05 (middle row), and σ2
0 = 0.10 (bottom row) (T = 28.28 and constraint

implementation (C3)).
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Figure 6.14: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panel
(b),(d),(f)) resulting from Monte Carlo simulation. Simulated data was generated with σ2

0 = 0.01
(top row), σ2

0 = 0.05 (middle row), and σ2
0 = 0.10 (bottom row) (T = 14.14 and constraint

implementation (C4)).
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Table 6.24: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise level
σ2

0 = 0.01. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C4).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.0999 0.1003 0.0998 0.0998

ĈSD 5.235× 10−3 5.136× 10−3 6.716× 10−3 6.532× 10−3

SE(C) 5.124× 10−3 5.108× 10−3 6.361× 10−3 6.577× 10−3

K̂Avg 0.2001 0.2000 0.2000 0.2001

K̂SD 4.010× 10−3 2.289× 10−3 4.426× 10−3 2.926× 10−3

SE(K) 3.735× 10−3 2.295× 10−3 4.162× 10−3 2.895× 10−3

T = 28.28

ĈAvg 0.0999 0.1001 0.1001 0.1000

ĈSD 4.434× 10−3 4.303× 10−3 5.596× 10−3 4.906× 10−3

SE(C) 4.504× 10−3 4.391× 10−3 5.419× 10−3 5.127× 10−3

K̂Avg 0.2001 0.1998 0.2002 0.1999

K̂SD 3.354× 10−3 1.989× 10−3 3.924× 10−3 2.371× 10−3

SE(K) 3.116× 10−3 2.003× 10−3 3.546× 10−3 2.307× 10−3
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Table 6.25: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise level
σ2

0 = 0.05. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C4).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.0994 0.1004 0.1000 0.1004

ĈSD 1.172× 10−2 1.196× 10−2 1.498× 10−2 1.459× 10−2

SE(C) 1.146× 10−2 1.142× 10−2 1.422× 10−2 1.471× 10−2

K̂Avg 0.2006 0.2000 0.2011 0.1996

K̂SD 9.001× 10−3 5.172× 10−3 1.100× 10−2 6.683× 10−3

SE(K) 8.351× 10−3 5.133× 10−3 9.307× 10−3 6.473× 10−3

T = 28.28

ĈAvg 0.0997 0.0997 0.0991 0.1000

ĈSD 9.840× 10−3 1.019× 10−2 1.299× 10−2 1.147× 10−2

SE(C) 1.007× 10−2 9.820× 10−3 1.212× 10−2 1.146× 10−2

K̂Avg 0.2007 0.2000 0.2022 0.1999

K̂SD 7.336× 10−3 4.351× 10−3 1.268× 10−2 5.005× 10−3

SE(K) 6.967× 10−3 4.478× 10−3 7.928× 10−3 5.159× 10−3
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Table 6.26: Average estimates (θAvg) with their standard deviations (θSD) from M = 1000
Monte Carlo trials as well as asymptotic standard errors (SE(θ)). Data was simulated using
true values θ0 = (C,K) = (0.1, 0.2), fixed parameter values (x1, x2) = (−1, 0.5), and noise level
σ2

0 = 0.10. Simulated data corresponds to optimal design points using N = 15, T = 14.14 and
T = 28.28, and constraint implementation (C4).

T = 14.14 SE-opt D-opt E-opt Uniform

ĈAvg 0.0992 0.1002 0.0996 0.1013

ĈSD 1.635× 10−2 1.691× 10−2 2.099× 10−2 2.089× 10−2

SE(C) 1.621× 10−2 1.615× 10−2 2.012× 10−2 2.080× 10−2

K̂Avg 0.2013 0.2000 0.2020 0.1994

K̂SD 1.326× 10−2 7.446× 10−3 1.611× 10−2 9.633× 10−3

SE(K) 1.181× 10−2 7.259× 10−3 1.316× 10−2 9.154× 10−3

T = 28.28

ĈAvg 0.0991 0.1004 0.0979 0.0995

ĈSD 1.404× 10−2 1.377× 10−2 1.752× 10−2 1.579× 10−2

SE(C) 1.424× 10−2 1.389× 10−2 1.714× 10−2 1.621× 10−2

K̂Avg 0.2012 0.2002 0.2046 0.2000

K̂SD 1.168× 10−2 6.757× 10−3 1.960× 10−2 7.242× 10−3

SE(K) 9.853× 10−3 6.333× 10−3 1.121× 10−2 7.295× 10−3

Table 6.27: Percent of Confidence Ellipsoids which contain the true parameter values (T = 14.14,
constraint implementation (C4)).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 94.6% (SE = 0.71%) 93.9% (SE = 0.76%) 95.5% (SE = 0.66%)

D-opt 94.8% (SE = 0.70%) 94.4% (SE = 0.73%) 94.3% (SE = 0.73%)

E-opt 94.6% (SE = 0.71%) 94% (SE = 0.75%) 93.1% (SE = 0.80%)

Uniform 95.2% (SE = 0.68%) 96.3% (SE = 0.60%) 94.5% (SE = 0.72%)
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Figure 6.15: Histograms of parameter estimates (Ĉ in panels (a),(c),(e), and K̂ in panel
(b),(d),(f)) resulting from Monte Carlo simulation. Simulated data was generated with σ2

0 = 0.01
(top row), σ2

0 = 0.05 (middle row), and σ2
0 = 0.10 (bottom row) (T = 28.28 and constraint

implementation (C4)).
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Table 6.28: Percent of Confidence Ellipsoids which contain the true parameter values (T = 28.28,
constraint implementation (C4)).

σ2
0 = 0.01 σ2

0 = 0.05 σ2
0 = 0.10

SE-opt 94.9% (SE = 0.70%) 94.4% (SE = 0.73%) 93.9% (SE = 0.76%)

D-opt 94.2% (SE = 0.74%) 94.4% (SE = 0.73%) 95% (SE = 0.70%)

E-opt 94.7% (SE = 0.71%) 92.5% (SE = 0.83%) 89.9% (SE = 0.95%)

Uniform 96.2% (SE = 0.60%) 94.9% (SE = 0.70%) 94.7% (SE = 0.71%)

6.3.1 Discussion of Harmonic Oscillator Monte Carlo Results

From the harmonic oscillator Monte Carlo results we again observe that as the level of noise

in the data decreases so does the variance in the parameter estimates (θ̂SD) and the estimates

approach the true values. Examining the average parameter estimates, we find that in all cases

the averages are close to the true values θ = (C,K) = (0.1, 0.2). However in Figures 6.8-6.15

often it appears as though for noise levels σ2
0 = 0.05 and 0.10 E-optimal and SE-optimal are

right-skewed for the parameter K. Also, often E-optimal appears to be left-skewed for parameter

C for the higher levels of noise in the data. This causes the average estimates of K to be slightly

larger than the true value for E-optimal and SE-optimal, and the average estimate of C to be

slightly smaller than the true value for E-optimal.

Comparing the standard deviations of the parameter estimates (θ̂SD) to the asymptotic

standard errors (SE(θ)) we find that they are very close in every case. Comparing the standard

deviations of the parameter estimates among the optimal design methods and the uniform mesh

often we find that D-optimal had the smallest standard deviations, followed by SE-optimal for

parameter C and the uniform mesh for parameter K. In Tables 6.14-6.16 for T = 28.28, and

6.24-6.26 D-optimal and SE-optimal had the smallest standard deviations for the parameter C.

For parameter K, D-optimal had the smallest standard deviation again followed by the uniform

mesh.

For the harmonic oscillator example 95% confidence ellipsoid coverage of the true parameter

value is better overall than in the logistic example. This may not be a reasonable comparison

since only p = 2 parameters are estimated for the harmonic oscillator example, whereas in the

logistic example p = 3. In this example, no optimal design mesh is consistently better in terms

of confidence ellipsoid coverage of the true parameter value. However, in almost every case

E-optimal has the worst coverage compared to the other optimal design methods (though still
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fairy decent).

113



Chapter 7

Autocorrelated Data with

Applications to Optimal Design

Methods

7.1 Introduction

Data taken at time points too close together may be similar and in fact contain little or no new

information. The phenomena of serial correlation, or autocorrelation, among repeated measure-

ments is often expected when the time points are taken too close together. Data corresponding

to time points sufficiently spaced apart may not be correlated, and thus independence of the

measurements is a good assumption in this case.

In this chapter we will discuss how to detect autocorrelation in the data, how to model it,

and an algorithm for solving the inverse problem while estimating autocorrelation and model

parameters. We will then define the optimal design methods in the context of a statistical model

with autocorrelation. We will compare the optimal design methods for the logistic model with

autocorrelated data.

7.2 Detection

Autocorrelation, which is summarized in [16], can be detected by examination of the residuals

based on the assumption that the errors are independent. In the case of a constant variance

statistical model, the assumption of independence is investigated using the OLS weighted

residuals:

εi,OLS =
yi − f(ti, θ̂OLS)

σ̂OLS
, for i = 1, . . . , n,
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which are realizations of the random variable

Ei =
Yi − f(ti, θ

0)

σ
, for i = 1, . . . , n,

where θ0 is the true parameter vector, σ is the true standard deviation and Yi is the observation

process.

In the case that you have a non-constant variance model, e.g,

Var(Ei) = σ2g2(θ, ti),

it can be useful to analyze the GLS weighted residuals

εi,GLS =
yi − f(ti, θ̂)

σ̂g(θ̂, ti)
,

which is a realization of the random variable

Ei =
Yi − f(ti, θ

0)

σg(θ0, ti)
, for i = 1, . . . , n. (7.1)

Residual plots are plots of the weighted residuals, for GLS, versus the time points, ti, for

i = 1, . . . , n. Residual plots can be used to test if the variance assumption is accurate. Plotting

the weighted residuals should exhibit a random pattern if your variance assumption is correct. To

test independence of errors, we examine the lagged weighted residuals. For a fixed l, 1 ≤ l ≤ n−1,

the lagged weighted residuals of lag l are defined by the random variable

Ei+l =
Yi+l − f(ti+l, θ

0)

σg(θ0, ti+l)
.

Autocorrelation can be observed visually by plotting εi+l versus εi, for a fixed lag l. This

correlation plot will resemble a symmetric blob centered about zero if the weighted residuals

corresponding to different times are uncorrelated. The autocorrelation function is a way to

visualize correlation for multiple lags. The autocorrelation function is defined by

ρ(l) = Corr(Ei, Ei+l) =
Cov(Ei, Ei+l)√

Var(Ei)
√

Var(Ei+l)
, for all i = 1 . . . n, and a fixed l = 1 . . . , n− 1.

The autocorrelation function, ρ(l), is a discrete function of l which can be plotted (for l =

1 . . . , n − 1) to examine patterns in autocorrelation. Often we would expect that as the lag

increases the autocorrelation would decrease in absolute value to zero.

For a small number of time points, n, it may be difficult to have sufficient supporting evidence
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for or against autocorrelation. If data is available for multiple subjects, typically the weighted

residuals from all individuals are pooled to detect autocorrelation. This tacitly assumes that

the pattern of correlation, if any, would be similar for all individuals. Having more residuals

makes a stronger case for the pattern of autocorrelation observed. Since standard errors are not

available for the autocorrelation as estimated by the sample correlation between times of lag

l, autocorrelation functions based on a small number of residuals should be interpreted with

caution.

The autocorrelation function defined above assumes equally spaced points. Something similar

can be done for unequally spaced time points. Having more replications at each time point

would be useful computing the autocorrelation function with more precision.

7.3 Autocorrelation Models

There are a number of models for autocorrelation. Each model defines a correlation matrix,

Γ = Γ(α, t). A common family of models involves a correlation matrix in the statistical model

with the form,

Var(E) = V = T 1/2ΓT 1/2,

where T is a diagonal n× n matrix with either constant or non-constant variance values along

the diagonal. A number of specific forms for Γ can be considered [16, 19].

Unstructured Correlation Model

Γ(α) =


1 α12 α13 · · · α1n

α21 1 α23 · · · α2n

...
. . .

...
...

...

αn1 αn2 · · · αn,n−1 1


Here α is a vector of arbitrary correlation parameters of length n(n− 1)/2.

Compound Symmetric Model

Γ(α) =


1 α · · · α

α 1 · · · α
...

...
. . .

...

α · · · α 1


This model only depends on a single scalar, α.
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One-Dependent Model

Γ(α) =



1 α1 0 · · · 0

α1 1 α2 · · · 0

0 α2 1 · · · 0
...

...
...

. . .
...

0 · · · 0 αn−1 1


A special case of this model is to assume that αj ≡ α for all j:

Γ(α) =



1 α 0 · · · 0

α 1 α · · · 0

0 α 1 · · · 0
...

...
...

. . .
...

0 · · · 0 α 1


Autoregressive Model of Order 1: AR(1)

Γ(α) =



1 α α2 · · · αn−1

α 1 α α2 · · ·

α2 α 1 α
...

...
...

...
. . .

...

αn−1 · · · α2 α 1


,

where 0 ≤ α ≤ 1. This correlation model describes the amount of autocorrelation decreasing as

the amount of time between points increases, for equally spaced time points.

Exponential Correlation Model

The exponential correlation model is represented by the autocorrelation function

ρ(l) = exp(−αl), α > 0,

implying

Corr(Yi, Yj) = exp(−α|ti − tj |),
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Γ(α, t) =



1 (α∗)|t1−t2| (α∗)|t1−t3| · · · (α∗)|t1−tn−1|

1 (α∗)|t2−t3| · · ·
...

. . .
...

...

1 (α∗)|tn−1−tn−2|

1


,

where α∗ = exp(−α), and Γ(α) is a symmetric matrix. The exponential correlation model is a

generalization of the AR(1) model for unequally-spaced times.

Gaussian Correlation Model

The exponential correlation model is represented by the autocorrelation function

ρ(l) = exp(−αl2), α > 0,

implying

Corr(Yi, Yj) = exp(−α(ti − tj)2).

7.4 Estimation of Parameters in Nonlinear Mathematical Mod-

els using Statistical Models with Autocorrelation

When one adds a correlation model to the statistical model the number of variance parameters

to be estimated increases γ = (σ, α), or more generally γ = (~σ, ~α) = (σ1, . . . , σn, α1, . . . , αn−1).

Approaches to this type of estimation procedure are possible using maximum likelihood, or

methods similar to generalized least squares (GLS). The latter will be described here. The

method will be given for a generic correlation model matrix, Γ, though later we implement it

for the exponential correlation model.

The model is given by

Yi = f(ti, θ) + Ẽi,

E(Ẽ) = 0,

Var(Ẽ) = V = T 1/2ΓT 1/2,

where Ẽ is the random variable representing the observation error. Note that our unknown

model parameters are given by the vector θ and our unknown variance parameters are given by

γ = (σ, α) where both σ and α may be vectors. Let q represent the total number of variance
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parameters to be estimated which are contained in the vector γ. Below we describe an algorithm

to solve for model and variance parameters. This algorithm is one in a family of methods solving

this type of inverse problem using General Estimating Equations [18, 24, 26, 27, 34].

Three-step Algorithm to solve the Linear General Estimating Equations (GEE-1), [16]:

(i) Estimate θ by θ̂(0) using the OLS estimator (assuming independence), and set k = 0.

(ii) Estimate the variance parameters γ = (σ, α), while taking θ̂(k) to be fixed, and store as

γ̂(k) = (σ̂(k), α̂(k)). To do this we start by defining the elements of V = V (γ) = Var(Ẽ):

E
[
{Yi − f(ti, θ)}2

]
= Vii(γ),

E [{Yi − f(ti, θ)}{Yj − f(tj , θ)}] = Vij(γ),

which can be stored in the (n(n + 1)/2)-vector, v, not repeating symmetric elements.

The vector will be of length n(n− 1)/2 if a constant variance model with known σ2
0, and

correlated errors are assumed. Note that the matrix V follows from the assumptions made

about our statistical model. For symmetric matrices A (such as V ), let us define the

following notation for vech(A), for example in the 3× 3 case,

A =


a11 a12 a13

a12 a22 a23

a13 a23 a33

 , vech(A) =



a11

a12

a13

a22

a23

a33


.

This vector can be obtained by going along the rows from the diagonal to the end, starting

from the top row and working your way down. Let v(γ) = vech(V (γ)). Also define a

symmetric matrix U with components

Uij = {Yi − f(ti, θ)}{Yj − f(tj , θ)} = ẼiẼj .

Note that E(U) = V (γ). The realizations of U are given by the (n(n + 1)/2)-vector u,

formed as described above by the vech() function. The elements of the vector u are based

on the corresponding residuals:

uij = (yi − f(ti, θ̂))(yj − f(ti, θ̂)).

119



Define the gradient matrix of the vector of variance components v:

H(γ) = ∂/∂γ[v(γ)].

Note that H(γ) will have n(n + 1)/2 rows and q columns, where q is the number of

variance or correlation parameters being estimated. Define the (n(n+ 1)/2)× (n(n+ 1)/2)

covariance matrix of the vector vech(U):

Z(γ) = Var(vech(U)),

with off-diagonal elements of Z defined by

Cov(Uij , Ulk) = E(UijUlk)− E(Uij)E(Ulk),

for example, where 1 ≤ i, j, k, l ≤ n. In order to define Z we must make some assumptions.

Note that our weighted residuals, defined in equation (7.1), have

E(Ei) = 0, Var(Ei) = 1, for all i = 1, . . . , n.

Assuming our correlation assumptions are correct, the weighted residuals are correlated

with Γ(α) correlation matrix. We can also derive the following quantities,

vjj = σ2g2(θ, γ, tj)E(E2
j ) = σ2g2(θ, γ, tj),

vjk = σ2g(θ, γ, tj)g(θ, γ, tk)E(EjEk) = σ2g(θ, γ, tj)g(θ, γ, tk)Γj,k,

Ujj = σ2g2(θ, γ, tj)E2
j ,

Ujk = σ2g(θ, γ, tj)g(θ, γ, tk)EjEk,

Cov(Uij , Ulk) = σ4g(θ, γ, ti)g(θ, γ, tj)g(θ, γ, tk)g(θ, γ, tl)

×{E(EiEjEkEl)− E(EiEj)E(EkEl)},

= σ4g(θ, γ, ti)g(θ, γ, tj)g(θ, γ, tk)g(θ, γ, tl){E(EiEjEkEl)− Γi,jΓk,l},

for i, j, k, l = 1, . . . , n and i 6= j 6= k 6= l. The assumptions we must make come in defining

an approximation for E(EiEjEkEl). Otherwise we are unable to fully define the Z matrix.

It is common to make the Gaussian working assumption. This assumes that the Yi are

normally distributed with mean and variance corresponding to the mathematical and

statistical model, (E(Y ) = f(t, θ0) and Var(Y ) = V ). Equivalently this assumes the errors

are also normally distributed with E(Ẽ) = 0 and Var(Ẽ) = V . Under this assumption we
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have:

Cov(Uij , Ulk) = σ4g(θ, γ, ti)g(θ, γ, tj)g(θ, γ, tk)g(θ, γ, tl)

×{E(EiEk)E(EjEl) + E(EiEl)E(EjEk)},

= σ4g(θ, γ, ti)g(θ, γ, tj)g(θ, γ, tk)g(θ, γ, tl){Γi,kΓj,l + Γi,lΓj,k},

Var(Ujj) = 2σ4g4(θ, γ, tj).

This assumption allows for the matrix Z(γ) = Var(vech(U)) to be clearly defined. There

are other ways to go about this, but this approach is the most common.

Now that we have defined the matrices H and Z and the vectors v and vech(U), we can

give the estimating equation for estimating γ = (σ, α) while holding θ̂(k) fixed:

H(γ)TZ(γ)−1{vech(U)− v(γ)} = 0.

Note that H is a (n(n+ 1)/2)× q matrix, Z is a (n(n+ 1)/2)× (n(n+ 1)/2) matrix and

vech(U) and v are (n(n+ 1)/2)-vectors, so the equation above is equivalent to a system of

q equations with q unknowns since q is the number of variance parameters being estimated

in γ.

Store the estimate of γ as γ̂(k) = (σ̂(k), α̂(k)).

(iii) Re-estimate θ by solving for θ in

(∇θf(~t, θ)))TV −1(σ̂(k), α̂(k))(~y − f(~t, θ)) = 0,

where ~t = {ti}ni=1, ~y = {yi}ni=1, and ∇θf(~t, θ) is the n× p sensitivity matrix. Note that V

is an n× n matrix and (~y − f(~t, θ)) is a n-vector, making the equation above a system of

p equations with p unknowns: θ.

Store the estimate of θ as θ̂(k). Set k = k + 1 and go to (ii).

Iterate between (ii) and (iii) to some convergence criteria.

The estimating equations given in steps (ii) and (iii) are nonlinear functions where solving for

the parameters involves finding the function’s root. Parameter estimates can be obtained from

the estimating equations using the Gauss-Newton algorithm, which is implemented in MATLAB

by the function fsolve. The implementation of the Gauss-Newton algorithm used by MATLAB’s

fsolve is called the Trust-region Dogleg implementation.
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7.5 Application to Optimal Design Methods

An extension of optimal design methods to this case where there is correlation between the time

points is possible due to the corresponding definition of the FIM [30, 33],

F = χT (θ)V −1(γ)χ(θ).

Recall that χ is the n× p sensitivity matrix (χj,k = ∂f(tj , θ)/∂θk, for j = 1, . . . n, k = 1, . . . p),

and V (γ) = T 1/2(σ)Γ(α)T 1/2(σ) is the n × n matrix where T is a n × n diagonal matrix

containing the constant or non-constant variances (σ) along the diagonal, and Γ = Γ(α) is the

n× n matrix from our assumed correlation model.

Optimal design methods can be related to the FIM. It is possible to find the optimal mesh

while optimizing on any set of the parameters, θ, and including the variance parameters γ = (σ, α)

as they appear in the V matrix.

7.5.1 Methodology for the Comparison of Optimal Design Methods with

Autocorrelation

Optimal design methods are compared based on parameter estimates for (θ, γ), and approximate

asymptotic standard errors. The approximate asymptotic standard errors for θ are defined as

follows

Σ̂ = [χT (θ̂)V −1(γ̂)χ(θ̂)]−1,

SEk(θ̂) =

√
(Σ̂)kk, k = 1, . . . , p, (7.2)

where p is the number of model parameters in the vector θ. Standard errors are not available

for the variance parameters, γ = (σ2, α).

In addition, optimal design methods are compared based on average parameter estimates,

for (θ, α), with their standard deviations from M = 1000 Monte Carlo trials.

Data was simulated according to our statistical model with realizations

yi = f(ti, θ) + εi, i = 1, . . . , n,

which correspond to the optimal design mesh points τ∗ = {ti}, i = 1, . . . , n. Our autocorrelated

errors are generated using a multivariate normal

~E ∼ N (~0, V ),

where V = V (γ) = T 1/2(σ)Γ(α)T 1/2(σ) is an n× n matrix with constant variance σ2 along the
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diagonal, where Γ(α) is modeled using the exponential correlation model which also depends on

the optimal time points:

Γi,j = Corr(Yi, Yj) = exp(−α|ti − tj |) = (α∗)|ti−tj |,

where α∗ = exp(−α). The resulting ~ε is an n-vector.

The inverse problem was solved using the GEE-1 algorithm described above. Our statis-

tical model implies that the variance function in the GEE-1 algorithm description reduces to

g(θ, γ, t) = 1. Also, the Gaussian working assumption in the definition of the matrix Z is

reasonable since our simulated autocorrelated errors are generated using a multivariate normal.

Most of the time MATLAB’s fsolve converged to a solution when solving the estimating

equations within the GEE-1 algorithm. However, in less than 8% of the Monte Carlo trials

the algorithm failed to converge to a solution. This error occurred within the Gauss-Newton

algorithm as it attempted to solve an estimating equation within the GEE-1 algorithm at step

(ii) or (iii). During our Monte Carlo simulation, data sets were not used if the algorithm failed

to converge, and more data was simulated until we obtained M = 1000 successful solutions (sets

of parameter estimates) from the GEE-1 algorithm.

In practice, one would choose a different initial guess of the parameter values if the GEE-1

algorithm failed to converge rather than throwing out the data set. Since this analysis consists

of Monte Carlo analysis of simulated data with M = 1000, it was feasible to use the same initial

guess for all trials and generate new data if the algorithm failed to converge for a particular

data set.

7.5.2 Results of Optimal Design Methods with Autocorrelation

Optimal design points were obtained corresponding to the same statistical model assumed

for our simulated data with autocorrelation, and the following assumed parameter values

(θ, γ) = (K, r, x0, α
∗, σ2) = (17.5, 0.7, 0.1, 0.67, 0.10). Figure 7.1 contains the optimal time points

using constraint implementation (C3) for N = 10 (panel (a)) and N = 15 (panel (b)).

For all inverse problems using the GEE-1 algorithm our initial parameter guess was (θ0, γ0) =

(1.4θ0, γ0), where (θ0, γ0) = (K, r, x0, α
∗) = (17.5, 0.7, 0.1, 0.67) are the true parameter values.

Note that the variance parameter σ2 was held fixed (σ2 = 0.10) and was not estimated. Our

convergence criteria for the GEE-1 algorithm is given by(
|K̂(k+1) − K̂(k)|, |r̂(k+1) − r̂(k)|, |x̂(k+1)

0 − x(k)
0 |, |α̂

∗(k+1) − α̂∗(k)|
)T
≤ (10−3, 10−5, 10−5, 10−5)T ,

where in this case the ≤ is component-wise in the 4-vector. Since we are estimating a total

of four parameters, we chose to compare the method based on the optimal design points with
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Figure 7.1: The distribution of optimal time points and uniform sampling time points plotted
on the logistic curve. Optimal times points assuming an exponential autocorrelation model were
obtained using SolvOpt, with N = 10 (panel (a)) and N = 15 (panel (b)).

N = 15 points (Fig. 7.1(b)).

We compare the optimal design methods based on the parameter estimates from the

GEE-1 algorithm and their approximate asymptotic standard errors (7.2). Table 7.1 contains

the parameter estimates and approximate asymptotic standard errors (7.2) from a set of

autocorrelated data corresponding to the optimal time points (with N = 15 and constraint

implementation (C3)).

We also compared the optimal design methods based on M = 1000 Monte Carlo trials.

Histograms of the parameter estimates obtained by the GEE-1 algorithm are given in Fig.

7.2. Each subfigure corresponds to a specific parameter. Within each subfigure are histograms

corresponding to the three different optimal design methods (SE-optimal, D-optimal, E-optimal)

and the uniform mesh. Table 7.2 contains the average and standard deviation of the M = 1000

parameter estimates.

7.5.3 Discussion of Optimal Design Methods with Autocorrelation

Examining the results from the inverse problem using asymptotic theory in Table 7.1, we find

that the parameter estimates closest to the true values resulted from D-optimal followed by

SE-optimal for K, and the uniform mesh followed by E-optimal for r and x0. E-optimal had the

closest estimate of the autocorrelation parameter α, followed by D-optimal. The uniform mesh

and SE-optimal estimated α to be very small. Comparing the optimal design methods based
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Table 7.1: Estimates and standard estimates (7.2) from the asymptotic theory resulting from
different optimal design methods (as well as the uniform mesh) for data simulated with θ0 =
(K, r, x0) = (17.5, 0.7, 0.1) and γ0 = (α∗, σ2) = (0.67, 0.10) and N = 15, optimization with
constraint implementation (C3). Parameters (K, r, x0, α

∗) were estimated using the GEE-1
algorithm.

SE-opt D-opt E-opt Uniform

K̂ 17.3630 17.4104 17.7273 17.3436

SE(K̂) 5.671× 10−2 1.411× 10−1 1.918× 10−1 1.182× 10−1

r̂ 0.7971 0.6555 0.6880 0.6966

SE(r̂) 3.316× 10−3 3.002× 10−2 4.991× 10−2 6.269× 10−3

x̂0 0.0581 0.1211 0.1119 0.1088

SE(x̂0) 1.511× 10−3 2.759× 10−2 4.099× 10−2 5.584× 10−3

α̂∗ 3.178× 10−4 0.7297 0.6921 4.793× 10−3

Table 7.2: Average estimates (θ̂Avg) with their standard deviations (θ̂SD) from M = 1000 Monte
Carlo trials. Autocorrelated data corresponding to the optimal time points was simulated using
true values (K, r, x0, α

∗) = (17.5, 0.7, 0.1, 0.67), N = 15, and 10% noise (σ2
0 = 0.10). Parameters

(K, r, x0, α
∗) were estimated using the GEE-1 algorithm.

SE-opt D-opt E-opt Uniform

K̂avg 17.4920 17.4997 17.4978 17.5077

K̂SD 2.042× 10−1 1.801× 10−1 1.746× 10−1 1.852× 10−1

r̂avg 0.7017 0.7021 0.7024 0.6999

r̂SD 3.447× 10−2 3.463× 10−2 3.951× 10−2 3.662× 10−2

x̂0,avg 0.1019 0.1017 0.1021 0.1042

x̂0,SD 2.661× 10−2 2.621× 10−2 3.091× 10−2 2.846× 10−2

α̂∗avg 0.2504 0.3522 0.4216 0.4784

α̂∗SD 2.812× 10−1 3.424× 10−1 2.834× 10−1 2.784× 10−1

on their approximate asymptotic standard errors we find that SE-optimal had the smallest

standard errors for (K, r, x0), followed by the uniform mesh.

Parameter estimates from the Monte Carlo analysis (M=1000) are visualized in histograms

in Figure 7.2. For parameters K (in panel (a)), r (in panel (b)), x0 (in panel (c)), the histograms

appear similar from the three optimal design methods and the uniform mesh and all are centered
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Figure 7.2: Histograms of parameter estimates (K in panel (a), r in panel (b), x0 in panel (c),
α∗ in panel (d)) resulting from Monte Carlo simulation with M = 1000. Different histograms
within each subgure represent results from different optimal design methods as well as from the
uniform mesh. Simulated autocorrelated data was generated with N = 15, α∗ = 0.67, 10% noise
(σ2

0 = 0.10), and true parameter values θ0 = (K, r, x0) = (17.5, 0.7, 0.1).

about the true values. The histogram for α∗ (in panel (d)) is more complicated. Both D-optimal

and SE-optimal have a spike of estimates close to zero, with approximate frequency of 400 out

of M = 1000. The uniform mesh and E-optimal have a small spike near zero, with approximate

frequency of 125. There is another peak that the uniform mesh, D-optimal and E-optimal have

around α∗ = 0.75 (frequency ≈ 150) Recall that the true value for α∗ was 0.67. All the optimal

design methods and the uniform mesh estimated α to be dispersed between 0 and 0.9, just with

lower frequency than the spikes already discussed.
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Table 7.2 summarizes the results from the MC trials with the average and standard deviation

of the parameter estimates. Comparing the methods based on how close their average parameter

estimates are to the true values, we find that for K D-optimal followed by E-optimal was the

closest, for r the closest average estimates where from the uniform mesh followed by SE-optimal,

for x0 D-optimal was closest followed by SE-optimal, and for α∗ the uniform mesh was closest

followed by E-optimal. In general, all parameter estimates were close to the true values for K,

r, and x0 for all the optimal design methods and the uniform mesh.

Comparing the methods based on the standard deviations of the parameter estimates (Table

7.2), for K E-optimal design has the smallest standard deviation followed by D-optimal, for r

the smallest standard deviation was from SE-optimal followed by D-optimal, for x0 D-optimal

followed by SE-optimal has the smallest standard deviation, and for α∗ the uniform mesh has

the smallest standard deviation followed by SE-optimal and E-optimal. For each of the optimal

design methods, as well as for the uniform mesh, the standard deviations for α∗ were larger

than the standard deviation for K even though the true value of α∗ is two orders of magnitude

smaller than the true value K.

Comparing the approximate asymptotic standard errors (Table 7.1) to the Monte Carlo trial

standard deviations (Table 7.2), we find that they are similar for D-optimal and E-optimal.

For SE-optimal and the uniform mesh, often the approximate asymptotic standard errors are

smaller. This maybe explained by the fact that SE-optimal and the uniform mesh approximated

the autocorrelation parameter α∗ to be close to zero in Table 7.1. Autocorrelation detected

in the data (as is the case for D and E-optimal in Table 7.1) would result in higher standard

errors compared to the case where the autocorrelation parameter is estimated to be small.

In conclusion, each optimal design method results in good estimates for the model parameters

(K, r, x0) with no method being favorable over the others. Parameter estimation for the

correlation parameter α∗ was not as good. The standard deviations in α∗ were large for all

optimal design methods. SE-optimal and D-optimal tended to estimate α∗ close to zero,

compared to E-optimal and the uniform mesh. The uniform mesh was the best for estimating

α∗ in terms of its average estimate and its standard deviation, followed by E-optimal. While

the uniform mesh appears favorable for estimating α∗, we find a wide range of estimates for α∗

from the M = 1000 Monte Carlo from the uniform mesh as is also the case with the optimal

design methods.
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7.6 Using the Incorrect Assumptions on the Correlation in the

Errors

In the previous section we observed that even with α∗ = 0.67 autocorrelation present in the

data, often α∗ was estimated to be close to zero (i.e. suggesting independence of the errors).

In this section we will explore the consequences of incorrectly assuming that the data is inde-

pendent when in fact the data is autocorrelated. We examine this question with autocorrelated

data with various levels of autocorrelation: α∗ = 10−4, 0.225, 0.45, 0.675, 0.9, respectively, true

model parameters θ0 = (K, r, x0) = (17.5, 0.7, 0.1) and constant variance σ2 = 0.10.

Assuming that the data is independent, we compare the optimal design methods based

on their optimal design points assuming the data is i.i.d with constant variance and N = 15

and constraint implementation (C2); see Figure 5.3 for the optimal design points. We use

Ordinary Least Squares (OLS) to solve the inverse problem. Note that we only estimate the

model parameters θ = (K, r, x0). We also compute the approximate asymptotic standard errors

according to our assumption of independent errors with constant variance:

σ̂2
OLS =

1

N − p

N∑
j=1

[yj − f(tj , θ̂)]
2,

Σ̂ = σ̂2
OLS [χT (θ̂)χ(θ̂)]−1,

SEk(θ̂) =

√
(Σ̂)kk, k = 1, . . . , p, (7.3)

where p is the number of parameters we are estimating using OLS.

For comparison purposes for a given data set with autocorrelation (corresponding to optimal

design points assuming independence), parameters were estimated using both OLS and the

GEE-1 algorithm. Using GEE-1, under the same conditions as in the previous section, we

estimate parameters (θ, γ) = (K, r, x0, α
∗), and compute approximate standard errors (7.2).

To get an idea of the typical behavior of the inverse problem approaches (OLS and GEE-

1) as well as the optimal design methods for each of the five levels of autocorrelation α∗ =

10−4, 0.225, 0.45, 0.675, 0.9, respectively, we repeat the analysis for M = 250 Monte Carlo trials.

If GEE-1 fails to converge for a given data set, that data set is not used for either GEE-1 or

OLS. New autocorrelated data sets are generated until each level of autocorrelation corresponds

to M = 250 successful sets of OLS and GEE-1 of parameter estimates. Comparisons are based

on average parameter estimates (θ̂avg), standard deviation of parameter estimates (θ̂SD), and

average approximate standard errors (SE(θ̂)avg) (computed differently for OLS and GEE-1).
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7.6.1 Results of using the Incorrect Assumptions on the Correlation in the

Errors

Results from the inverse problem using OLS (incorrect assumption) are given in Tables 7.3,

7.5, 7.7, 7.9 and 7.11, corresponding to the five different levels of autocorrelation in the data,

α∗ = 10−4, 0.225, 0.45, 0.675, 0.9, respectively. Results from the inverse problem using GEE-1

(correct assumption) are given in Tables 7.4, 7.6, 7.8, 7.10 and 7.12.

7.6.2 Discussion of using the Incorrect Assumption on the Correlation in

the Errors

In what follows is a discussion of the tables of results from OLS (incorrect assumption) and

GEE-1 (correct assumption) for each level of autocorrelation in the data.

Discussion for α∗ = 10−4:

We examine the results from OLS in Table 7.3 corresponding to M = 250 Monte Carlo

trials of data with α∗ = 10−4 autocorrelation. Comparing the optimal design methods based

on which average OLS parameter estimates are closest to the true values, we find that for K

and r the uniform mesh is closest followed by SE-optimal (for K) and D-optimal (for r), for x0

the closest was from D-optimal followed by SE-optimal. In this case, the standard deviations

(SD) of the estimates were very close to the average approximate asymptotic standard errors

(SE) for all the optimal design methods. The smallest SD’s and SE’s for parameter K came

from E-optimal followed by D-optimal. For r and x0 the smallest SD’s and SE’s came from

SE-optimal followed by D-optimal.

The results from GEE-1 for the Monte Carlo trials with autocorrelated data with α∗ = 10−4

are given in Table 7.4. Comparing the optimal design methods based on which has average

parameter estimates closest to the true values, for K, r, and α∗ the uniform mesh was closest

followed by D-optimal. For x0, SE-optimal was closest to the true value followed by D-optimal.

Though the average approximate asymptotic standard errors (SE) are very close to the standard

deviations (SD) of the parameter estimates, the results are different in terms of which method

had the smallest SD or SE. Comparing the methods based on which had the smallest SD, we find

that D-optimal is smallest for (K, r, x0) followed by the uniform mesh (for K) and SE-optimal

(for r and x0). E-optimal, followed by the uniform mesh, had the smallest SD for α∗. Comparing

the methods based on which has the smallest SE, we find for K the uniform mesh followed by

D-optimal is the smallest, and for r and x0 D-optimal is the smallest followed by the uniform

mesh.

Comparing the results from OLS (Table 7.3) to the results from GEE-1 (Table 7.4), we find

that the parameter estimates and standard deviations for (K, r, x0) are very similar from the

two different inverse problem methods. The average approximate standard errors are on the
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Table 7.3: Average estimates obtained from OLS (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.3) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 10−4 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.4986 17.4985 17.5104 17.4990

K̂SD 1.199× 10−1 1.070× 10−1 9.939× 10−2 1.151× 10−1

SE(K̂)avg 1.171× 10−1 1.112× 10−1 9.255× 10−2 1.115× 10−1

r̂avg 0.7015 0.7007 0.7052 0.7003

r̂SD 2.135× 10−2 2.481× 10−2 6.439× 10−2 3.111× 10−2

SE(r̂)avg 2.100× 10−2 2.560× 10−2 6.153× 10−2 3.114× 10−2

x̂0,avg 0.1002 0.1012 0.1037 0.1030

x̂0,SD 1.567× 10−2 1.864× 10−2 3.965× 10−2 2.323× 10−2

SE(x̂0)avg 1.523× 10−2 1.894× 10−2 3.710× 10−2 2.314× 10−2

Table 7.4: Average estimates obtained from GEE-1 (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.2) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 10−4 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.4989 17.4986 17.5060 17.4990

K̂SD 1.276× 10−1 1.069× 10−1 1.242× 10−1 1.151× 10−1

SE(K̂)avg 1.910× 10−1 1.118× 10−1 1.602× 10−1 1.115× 10−1

r̂avg 0.7027 0.7006 0.7053 0.7003

r̂SD 2.633× 10−2 2.489× 10−2 6.602× 10−2 3.111× 10−2

SE(r̂)avg 3.915× 10−2 2.835× 10−2 7.677× 10−2 3.114× 10−2

x̂0,avg 0.0998 0.1014 0.1040 0.1030

x̂0,SD 2.047× 10−2 1.885× 10−2 4.073× 10−2 2.323× 10−2

SE(x̂0)avg 2.906× 10−2 2.128× 10−2 4.712× 10−2 2.314× 10−2

α̂∗avg 3.521× 10−6 3.245× 10−3 1.306× 10−66 9.999× 10−5

α̂∗SD 5.354× 10−5 1.817× 10−2 2.061× 10−65 4.346× 10−19
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Table 7.5: Average estimates obtained from OLS (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.3) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 0.225 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.5390 17.5104 17.5345 17.5054

K̂SD 2.982× 10−1 1.240× 10−1 3.322× 10−1 1.213× 10−1

SE(K̂)avg 3.131× 10−2 9.477× 10−2 2.828× 10−2 1.074× 10−1

r̂avg 0.7014 0.7068 0.7126 0.6999

r̂SD 4.791× 10−2 4.337× 10−2 1.107× 10−1 3.344× 10−2

SE(r̂)avg 5.651× 10−3 2.194× 10−2 1.995× 10−2 2.988× 10−2

x̂0,avg 0.1042 0.0997 0.1122 0.1028

x̂0,SD 3.628× 10−2 3.265× 10−2 6.448× 10−2 2.414× 10−2

SE(x̂0)avg 4.165× 10−3 1.583× 10−2 1.154× 10−2 2.237× 10−2

Table 7.6: Average estimates obtained from GEE-1 (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.2) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 0.225 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.5405 17.5114 17.5339 17.5053

K̂SD 2.989× 10−1 1.233× 10−1 3.330× 10−1 1.213× 10−1

SE(K̂)avg 7.628× 10−2 9.887× 10−2 8.694× 10−2 1.095× 10−1

r̂avg 0.7011 0.7063 0.7116 0.6999

r̂SD 4.795× 10−2 4.303× 10−2 1.090× 10−1 3.342× 10−2

SE(r̂)avg 1.169× 10−2 2.782× 10−2 3.249× 10−2 3.025× 10−2

x̂0,avg 0.1044 0.1000 0.1126 0.1028

x̂0,SD 3.637× 10−2 3.245× 10−2 6.476× 10−2 2.413× 10−2

SE(x̂0)avg 8.573× 10−3 2.058× 10−2 1.965× 10−2 2.267× 10−2

α̂∗avg 0.1402 0.0550 0.0744 0.0572

α̂∗SD 1.497× 10−1 1.040× 10−1 9.364× 10−2 9.446× 10−2
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Table 7.7: Average estimates obtained from OLS (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.3) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 0.45 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.4942 17.4940 17.5236 17.4977

K̂SD 2.871× 10−1 1.616× 10−1 3.030× 10−1 1.368× 10−1

SE(K̂)avg 2.957× 10−2 9.268× 10−2 2.448× 10−2 1.055× 10−1

r̂avg 0.7046 0.7050 0.7188 0.7009

r̂SD 4.134× 10−2 3.971× 10−2 1.098× 10−1 3.659× 10−2

SE(r̂)avg 5.388× 10−3 2.143× 10−2 1.737× 10−2 2.945× 10−2

x̂0,avg 0.1010 0.1012 0.1075 0.1029

x̂0,SD 3.035× 10−2 3.048× 10−2 6.004× 10−2 2.802× 10−2

SE(x̂0)avg 3.875× 10−3 1.582× 10−2 9.813× 10−3 2.190× 10−2

Table 7.8: Average estimates obtained from GEE-1 (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.2) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 0.45 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.4941 17.4948 17.5253 17.4977

K̂SD 2.875× 10−1 1.609× 10−1 3.014× 10−1 1.381× 10−1

SE(K̂)avg 7.076× 10−2 1.054× 10−1 7.370× 10−2 1.169× 10−1

r̂avg 0.7045 0.7048 0.7191 0.7015

r̂SD 4.159× 10−2 3.896× 10−2 1.088× 10−1 3.718× 10−2

SE(r̂)avg 1.097× 10−2 2.912× 10−2 2.832× 10−2 3.083× 10−2

x̂0,avg 0.1011 0.1011 0.1068 0.1026

x̂0,SD 3.057× 10−2 2.993× 10−2 5.854× 10−2 2.815× 10−2

SE(x̂0)avg 7.830× 10−3 2.176× 10−2 1.641× 10−2 2.286× 10−2

α̂∗avg 0.2606 0.1536 0.1678 0.1565

α̂∗SD 2.318× 10−1 2.0446× 10−1 1.794× 10−1 1.978× 10−1
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Table 7.9: Average estimates obtained from OLS (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.3) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 0.675 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.5183 17.4833 17.4952 17.5060

K̂SD 2.851× 10−1 1.829× 10−1 3.042× 10−1 1.754× 10−1

SE(K̂)avg 2.525× 10−2 8.211× 10−2 2.223× 10−2 9.064× 10−2

r̂avg 0.6998 0.7009 0.7040 0.7009

r̂SD 3.755× 10−2 3.894× 10−2 1.020× 10−1 4.212× 10−2

SE(r̂)avg 4.522× 10−3 1.895× 10−2 1.513× 10−2 2.534× 10−2

x̂0,avg 0.1024 0.1032 0.1176 0.1047

x̂0,SD 2.798× 10−2 2.891× 10−2 6.622× 10−2 3.256× 10−2

SE(x̂0)avg 3.365× 10−3 1.420× 10−2 9.546× 10−3 1.890× 10−2

Table 7.10: Average estimates obtained from GEE-1 (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.2) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 0.675 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.5187 17.4834 17.4966 17.5083

K̂SD 2.838× 10−1 1.874× 10−1 3.033× 10−1 1.744× 10−1

SE(K̂)avg 6.181× 10−2 1.286× 10−1 6.232× 10−2 1.345× 10−1

r̂avg 0.6998 0.7019 0.7026 0.6994

r̂SD 3.779× 10−2 4.007× 10−2 1.031× 10−1 4.109× 10−2

SE(r̂)avg 9.027× 10−3 2.634× 10−2 2.377× 10−2 2.731× 10−2

x̂0,avg 0.1024 0.1026 0.1191 0.1058

x̂0,SD 2.839× 10−2 2.991× 10−2 6.726× 10−2 3.213× 10−2

SE(x̂0)avg 6.664× 10−3 2.013× 10−2 1.585× 10−2 2.105× 10−2

α̂∗avg 0.3724 0.4945 0.2178 0.4980

α̂∗SD 3.049× 10−1 3.079× 10−1 2.509× 10−1 2.806× 10−1
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Table 7.11: Average estimates obtained from OLS (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.3) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 0.9 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.4851 17.5056 17.4932 17.4922

K̂SD 3.061× 10−1 2.626× 10−1 3.304× 10−1 2.626× 10−1

SE(K̂)avg 2.547× 10−2 6.181× 10−2 1.458× 10−2 7.234× 10−2

r̂avg 0.7036 0.6995 0.7133 7.0199

r̂SD 2.906× 10−2 2.764× 10−2 8.105× 10−2 3.698× 10−2

SE(r̂)avg 4.649× 10−3 1.423× 10−2 1.052× 10−2 2.025× 10−2

x̂0,avg 0.0992 0.1035 0.1050 0.1039

x̂0,SD 2.129× 10−2 2.426× 10−2 5.448× 10−2 3.259× 10−2

SE(x̂0)avg 3.246× 10−3 1.078× 10−2 5.682× 10−3 1.513× 10−2

Table 7.12: Average estimates obtained from GEE-1 (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.2) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points was simulated using true values
(K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and α∗ = 0.9 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.4865 17.5050 17.4931 17.4904

K̂SD 3.061× 10−1 2.597× 10−1 3.301× 10−1 2.593× 10−1

SE(K̂)avg 6.105× 10−2 1.034× 10−1 3.336× 10−2 1.243× 10−1

r̂avg 0.7033 0.6996 0.7133 0.7022

r̂SD 2.916× 10−2 2.804× 10−2 8.438× 10−2 3.173× 10−2

SE(r̂)avg 9.184× 10−3 1.883× 10−2 1.619× 10−2 2.190× 10−2

x̂0,avg 0.0996 0.1033 0.1062 0.1022

x̂0,SD 2.143× 10−2 2.457× 10−2 5.751× 10−2 2.761× 10−2

SE(x̂0)avg 6.450× 10−3 1.465× 10−2 9.067× 10−3 1.656× 10−2

α̂∗avg 0.3149 0.5717 0.1143 0.5998

α̂∗SD 4.026× 10−1 3.030× 10−1 2.910× 10−1 2.645× 10−1
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same order of magnitude from the two different tables. Since the autocorrelation is so small in

this example, we expect that the two different formulations for approximate standard errors

(equations (7.2) and (7.3)) would be very similar.

Discussion for α∗ = 0.225:

For data simulated with autocorrelation level α∗ = 0.225, we compare the optimal design

methods based on their results using OLS (Table 7.5). Comparing the optimal design methods

based on how close their average estimates are to the true values, we find that for parameters K

and r the uniform mesh is the closest followed by D-optimal, and for x0 D-optimal is the closest

followed by the uniform mesh. Comparing the optimal design methods based on which has

smallest standard deviation we find that for all model parameters (K, r, x0) the uniform mesh

followed by D-optimal has the smallest SD’s. Comparing the average approximate asymptotic

standard errors (SE) to the standard deviations we find that the SE’s are smaller than the SD’s

in every case, and the optimal design methods that have the smallest SE’s are different than

those with the smallest SD’s. The optimal design methods with the smallest SE’s are D-optimal

followed by SE-optimal for K, and SE-optimal followed by E-optimal for r and x0.

We also compare the methods based on the results from the GEE-1 algorithm for data

simulated with α∗ = 0.225 (Table 7.6). Comparing the optimal design methods based on which

has average parameter estimates closest to the true value, we find that the uniform mesh is

closest for K and r followed by D-optimal (for K) and SE-optimal (for r), for x0 D-optimal is

closest followed by the uniform mesh, and for α∗ the closest is SE-optimal followed by D-optimal.

Comparing the optimal design methods based on which has smallest SD’s, we find that for

(K, r, x0) the uniform mesh is smallest followed by D-optimal (same as in the OLS case, Table

7.5), and E-optimal followed by the uniform mesh for α∗. The average asymptotic standard

errors are again smaller than the SD’s. Comparing the optimal design methods based on which

has the smallest SE’s, we find that SE-optimal is the smallest followed by E-optimal for K and

x0 and followed by D-optimal for r.

Comparing the OLS results (Table 7.5) to the GEE-1 results (Table 7.6) we find that

their average parameter estimates and their standard deviations are similar for the common

parameters (K, r, x0). In general the average approximate asymptotic standard errors are larger

from the GEE-1 algorithm compared to the OLS case.

Discussion for α∗ = 0.45:

Comparing which optimal design methods had average parameter estimates closest to the

true value from OLS with autocorrelated data α∗ = 0.45 (Table 7.7), we find that the uniform

mesh is closest for K and r followed by SE-optimal, and SE-optimal is closest for x0 followed

by D-optimal. Comparing the optimal design methods based on their standard deviations (SD),
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we find that the uniform mesh has the smallest SD’s followed by D-optimal (for K and r) and

SE-optimal (for x0). In general, the average approximate standard errors (SE) are smaller than

the SD’s. The optimal design method with the smallest SE is E-optimal followed by SE-optimal

for K, and SE-optimal followed by E-optimal for r and x0.

Comparing the optimal design methods based on the results using the GEE-1 (Table 7.8),

we find that the uniform mesh has closest average parameter estimate to the true values for

K and r followed by D-optimal (for K) and SE-optimal (for r). The average estimate closest

to the true value for x0 was SE-optimal followed by D-optimal, and for α∗ SE-optimal was

closest followed by E-optimal. Comparing the optimal design methods based on which has the

smallest SD, we find that for (K, r, x0) the uniform mesh is smallest followed by D-optimal,

and for α∗ E-optimal has the smallest SD followed by the uniform mesh. In every case the

average approximate asymptotic standard errors are smaller than the standard deviation, more

so with SE-optimal and E-optimal than with D-optimal and the uniform mesh. Comparing the

methods based on which has the smallest SE, we find that SE-optimal is the smallest followed

by E-optimal (for K and r) and D-optimal (for x0).

The average parameter estimates and standard deviations are very similar for (K, r, x0) com-

paring the OLS and GEE-1 results (Tables 7.7 and 7.8). The average approximate asymptotic

standard errors are smaller in the OLS results compared to GEE-1 results.

Discussion for α∗ = 0.675:

Table 7.9 contains the results from OLS with α∗ = 0.675 autocorrelated data. Comparing

the optimal design methods based on which has average estimates closest to the true value, we

find that for K E-optimal is closest followed by the uniform mesh, and for r and x0 SE-optimal

is closest followed by D-optimal. Comparing the optimal design methods based on which has

the smallest standard deviation we find that for K the uniform mesh is the smallest followed by

D-optimal, and for r and x0 SE-optimal is the smallest followed by D-optimal. Again, we find

that the average standard errors are smaller than the standard deviations. The optimal design

method with the smallest average asymptotic standard error is E-optimal for K followed by

SE-optimal, and SE-optimal followed by E-optimal for r and x0.

Table 7.10 contains the corresponding results from GEE-1, using the correct assumptions

about the errors. Comparing the average parameter estimates to the true values, we find that

for K E-optimal is the closest followed by the uniform mesh, for r and x0 SE-optimal is the

closest followed by the uniform mesh (for r) and D-optimal (for x0), and for α∗ the uniform

mesh is closest followed by D-optimal. Comparing the optimal design methods based on which

has the smallest SD, we find that for K the uniform mesh followed by D-optimal is the smallest,

for r and x0 SE-optimal is the smallest followed by D-optimal, and for α∗ E-optimal is the

smallest followed by the uniform mesh. The average asymptotic standard errors are smaller
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than the standard deviations. Comparing the optimal design methods based on which has the

smallest SE, we find that for (K, r, x0) SE-optimal is the smallest followed by E-optimal.

Comparing Tables 7.9 and 7.10, the average parameter estimates and their standard errors

are similar. The average asymptotic standard errors are smaller from OLS compared to the

GEE-1 results.

Discussion for α∗ = 0.9:

We compare the optimal design methods based on their OLS results (Table 7.11) for data

simulated with autocorrelation level α∗ = 0.9. Comparing the optimal design methods based on

how close their average estimates are to the true values, we find that for parameters K and r

D-optimal is the closest followed by E-optimal (for K) and the uniform mesh (for r), and for x0

SE-optimal is the closest followed by D-optimal. Comparing the optimal design methods based

on which has smallest standard deviation we find for K D-optimal and the uniform mesh are

the smallest, for r D-optimal is the smallest followed by SE-optimal, and for x0 SE-optimal is

the smallest followed by D-optimal. Comparing the average approximate asymptotic standard

errors (SE) to the standard deviations we find that the SE’s are smaller than the SD’s in every

case. The optimal design methods with the smallest SE’s are E-optimal followed by SE-optimal

for K, and SE-optimal followed by E-optimal for r and x0.

We also compare the methods based on the results from the GEE-1 algorithm (Table 7.12).

Comparing the optimal design methods based on which has average parameter estimates closest

to the true value, we find that for K and r D-optimal is closest followed by E-optimal (for

K) and the uniform mesh (for r), for x0 SE-optimal is closest followed by the uniform mesh,

and for α∗ the closest is the uniform mesh followed by D-optimal. Comparing the optimal

design methods based on which has smallest SD’s, we find that for K the uniform mesh is

smallest followed by D-optimal, for r D-optimal is the smallest followed by SE-optimal, for x0

SE-optimal is the smallest followed by D-optimal, and for α∗ the uniform mesh followed by

E-optimal is smallest. The average asymptotic standard errors are smaller than the SD’s. The

optimal design methods with the smallest SE’s are E-optimal followed by SE-optimal for K,

and SE-optimal followed by E-optimal for r and x0 (same as in the OLS case above).

Comparing the OLS results (Table 7.11) to the GEE-1 results (Table 7.12) we find that

their average parameter estimates and their standard deviations are similar for parameters

(K, r, x0). In general the average approximate asymptotic standard errors are larger from the

GEE-1 algorithm compared to the OLS case.

In conclusion, no optimal design method is consistently favorable among the OLS or GEE-1

results. Comparing the average estimates for (K, r, x0) and their standard deviations from OLS

to those from GEE-1, we find very similar results. For both inverse problem methods (OLS and
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GEE-1), we find that when autocorrelation is such that α∗ > 10−4, within any set of results the

average asymptotic standard error is less than the standard deviation. From this Monte Carlo

analysis, we find that using OLS with autocorrelated data may give too optimistic asymptotic

standard errors.

Here we used the optimal design methods assuming an independent error statistical model

(Fig. 5.3). For these optimal design points, using GEE-1, the averages estimates of α∗ were

lower than the true value in all cases with true autocorrelation α∗ > 10−4, and large standard

deviations (compared to the model parameters of similar magnitude). Also, for this analysis, no

optimal design method (or the uniform mesh) was favorable for estimating α∗ for all levels of

autocorrelation in the data.

7.6.3 The Effect of the Assumptions made within the Optimal Design meth-

ods about Correlation in the Errors.

In this analysis we explore the effect that the assumptions made when constructing the optimal

mesh have. We repeat the analysis from the previous section only for the case of having data

with an autocorrelation level of α∗ = 0.9 now using the optimal design points which assumed a

statistical model with autocorrelation (Fig 7.1(b), with N = 15 and constraint implementation

(C3)). In practice, this situation could arise if one person assumed autocorrelation in the optimal

design methods, and another person got the data corresponding to the optimal design points,

not knowing the underlying assumptions, and assumed the errors were independent and used

the OLS formulation of the inverse problem.

Now using optimal design points which assumed an autocorrelated statistical model, we

repeat M = 250 Monte Carlo trial using both OLS and GEE-1 for each data set which contains

α∗ = 0.9 autocorrelation in the errors. We will compare the results to Tables 7.11 and 7.12,

which is a similar Monte Carlo analysis with the only difference being the underlying optimal

design points.

Table 7.13 contains the results from OLS (incorrect assumption) solving the inverse problem

with autocorrelated data corresponding to optimal design points which assumed a statistical

model with autocorrelation. Table 7.14 contains the results from the GEE-1 algorithm (correct

assumption) for the same autocorrelated data.

Discussion

In the discussion below, we will start by discussing the results tables individually, and then

compare tables to each other and to the tables in the previous section.

Table 7.13 contains the results from OLS (incorrect assumption) from optimal design methods

(assuming autocorrelation in the errors), and autocorrelated data with α∗ = 0.9. Comparing
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Table 7.13: Average estimates obtained from OLS (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.3) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points with autocorrelation assumption
was simulated using true values (K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and
α∗ = 0.9 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.4832 17.4994 17.5099 17.5322

K̂SD 2.679× 10−1 2.749× 10−1 2.641× 10−1 2.589× 10−1

SE(K̂)avg 9.390× 10−2 6.822× 10−2 5.839× 10−2 7.022× 10−2

r̂avg 0.7007 0.7030 0.6998 0.7009

r̂SD 2.812× 10−2 2.779× 10−2 3.269× 10−2 3.235× 10−2

SE(r̂)avg 1.222× 10−2 1.455× 10−2 1.885× 10−2 1.958× 10−2

x̂0,avg 0.1020 0.1005 0.1034 0.1028

x̂0,SD 2.507× 10−2 2.274× 10−2 2.708× 10−2 2.733× 10−2

SE(x̂0)avg 8.252× 10−3 1.058× 10−2 1.326× 10−2 1.458× 10−2

Table 7.14: Average estimates obtained from GEE-1 (θ̂Avg) with their standard deviations (θ̂SD)

and average asymptotic standard errors (7.2) (SE(θ̂)avg) from M = 250 Monte Carlo trials.
Autocorrelated data corresponding to the optimal time points with autocorrelation assumption
was simulated using true values (K, r, x0) = (17.5, 0.7, 0.1), N = 15, 10% noise (σ2

0 = 0.10), and
α∗ = 0.9 autocorrelation.

SE-opt D-opt E-opt Uniform

K̂avg 17.4808 17.4992 17.5082 17.5312

K̂SD 2.695× 10−1 2.728× 10−1 2.592× 10−1 2.516× 10−1

SE(K̂)avg 1.195× 10−1 1.006× 10−1 1.024× 10−1 1.219× 10−1

r̂avg 0.7011 0.7027 0.6995 0.7014

r̂SD 2.694× 10−2 2.690× 10−2 3.041× 10−2 2.784× 10−2

SE(r̂)avg 1.555× 10−2 1.678× 10−2 2.068× 10−2 2.119× 10−2

x̂0,avg 0.1013 0.1004 0.1035 0.1010

x̂0,SD 2.285× 10−2 2.178× 10−2 2.559× 10−2 2.315× 10−2

SE(x̂0)avg 1.137× 10−2 1.250× 10−2 1.575× 10−2 1.587× 10−2

α̂∗avg 0.4450 0.4783 0.5709 0.6272

α̂∗SD 3.367× 10−1 3.637× 10−1 2.948× 10−1 2.405× 10−1
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the optimal design methods based on how close the average parameter estimate is to the true

value, we find that for K and x0 D-optimal is the closest followed by E-optimal (for K) and

SE-optimal (for x0), and for r E-optimal is closest followed by SE-optimal. Comparing the

optimal design methods based on their standard deviations, we find that for K the uniform

mesh is smallest, followed by E-optimal, and for r and x0 D-optimal is smallest followed by

SE-optimal. Comparing methods based on their average asymptotic standard errors, we find

that for K E-optimal is smallest followed by D-optimal, and for r and x0 SE-optimal is smallest

followed by D-optimal.

The results for GEE-1 are reported in Table 7.14, such that the optimal design assumptions

and the inverse methodology (GEE-1) make the correct assumption about autocorrelation in the

data. Comparing the optimal design methods based on how close their average estimate is to

the true value, we find that for K and x0 D-optimal is the closest followed by E-optimal (for K)

and the uniform mesh (for x0), for r E-optimal is closest followed by SE-optimal, and for α∗ the

uniform mesh was closest followed by E-optimal. Comparing the optimal design methods based

on which has the smallest standard deviation, we find that for K and α∗ the uniform mesh is

smallest followed by E-optimal, and for r and x0 D-optimal is smallest followed by SE-optimal.

Comparing the optimal design methods based on their average asymptotic standard errors, we

find that for K D-optimal is smallest followed by E-optimal, and for r and x0 SE-optimal is

the smallest followed by D-optimal.

Comparing the OLS and GEE-1 results (Tables 7.13 and 7.14) based on the model parameters

(K, r, x0) we find that the average estimates are similar, and the standard deviations from GEE-1

are slightly smaller than those from OLS. In addition, the average standard errors from GEE-1

are larger than those from OLS, which we expect based on equations (7.2) and (7.3) which

correspond to their respective assumptions. Though GEE-1 produces larger average asymptotic

standard errors, we know in this example that they are more realistic given the nature of our

simulated autocorrelated data.

Comparing the OLS estimates from the optimal design methods assuming independent errors

(Table 7.11) to the OLS estimates from the optimal design methods assuming autocorrelated

errors (Table 7.13) for autocorrelated data with α∗ = 0.9, the average estimates are similar,

and the standard deviations are similar and often slightly smaller in Table 7.13. The average

standard errors are often slightly larger in Table 7.13 comparing to Table 7.11. The optimal

design assumptions (independence vs autocorrelation) do have a subtle effect on the results

using OLS (incorrect assumption).

Comparing the GEE-1 estimates from the optimal design methods assuming independent

errors (Table 7.12) to the GEE-1 estimates from the optimal design methods assuming autocor-

related errors (Table 7.14), we find that the average estimates are similar for (K, r, x0). The

average estimates of α∗ are closer using the autocorrelated optimal design mesh (Table 7.14)
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for SE-optimal, E-optimal (much closer) and the uniform mesh. The standard deviations from

Table 7.14 were often slightly smaller than the standard deviations in Table 7.12. Comparing

the average asymptotic standard errors we find that for D-optimal and the uniform mesh were

smaller in Table 7.14 than in Table 7.12. The optimal design assumptions (independence vs

autocorrelation) effect the results from GEE-1, such as the average estimates of α, and the

standard deviation.

7.7 Conclusions

Just as residual analysis is useful in determining if the data has constant or non-constant variance,

it is also useful in determining if autocorrelation is present. If the data is autocorrelated it is

important to incorporate a suitable autocorrelation model into the statistical model. It is simple

to incorporate the new statistical model into the formulation of the FIM, which is essential in

computing the optimal design points. Data taken at these optimal design points can be used

with the GEE-1 algorithm to estimate the model parameters as well as the variance parameters:

γ = (σ2, α).

We compared the optimal design methods based on the logistic model corresponding to a

statistical model with autocorrelation in a Monte Carlo analysis with M = 1000. No optimal

design was favorable based on the results for the model parameters (K, r, x0). Estimation of the

autocorrelation parameter was more difficult (estimates had a wide range of values, and high stan-

dard deviation). The uniform mesh was the best for estimation of the autocorrelation parameter,

followed by E-optimal. On average, the autocorrelation parameter was underestimated.

We examined what happens if you incorrectly assume that the data is independent for the

optimal design point and use OLS to solve the inverse problem. For each data set, the inverse

problem was solved using OLS (incorrect assumption) and GEE-1 (correct assumption). In

general the average estimates, from M = 250 Monte Carlo trials, and standard deviation were

similar comparing OLS and GEE-1. For both OLS and GEE-1, when autocorrelation in the

data is such that α∗ > 10−4, the average standard error is smaller than the standard deviation.

The average asymptotic standard errors were smaller from OLS compared to GEE-1. Hence,

OLS should not be used for autocorrelated data. Though the OLS asymptotic standard errors

are smaller, the standard error estimates from GEE-1 are more realistic. In this analysis no

optimal design method is favorable over the others. The autocorrelation parameter was only

estimated from GEE-1. The average estimates of the autocorrelation parameter tended to be

lower than the true value and the standard deviation was relatively high. No optimal design

method was consistently favorable for estimation of the autocorrelation parameter.

Finally, we compared OLS and GEE-1 based on optimal design points which assumed an

autocorrelated statistical model. We find similar results to the previous analysis with optimal
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design point which assume independent errors. The optimal mesh which account for autocorre-

lation (compared to the results from the optimal design points which assumed independence)

result in OLS estimates with smaller standard deviation and larger average standard errors.

For the GEE-1 estimates, the optimal design points which account for autocorrelation result

in better average estimates of the autocorrelation parameter, and slightly smaller standard

deviations for all parameters. Again, for this analysis, no optimal design methods is favorable.

In general, all the optimal design methods perform similarly for the model parameters.

Estimation of the autocorrelation is much more difficult and inconsistent. Though the GEE-1

algorithm is one way to solve this type of inverse problem, it would be worth examining other

options. Often the uniform mesh was the best for estimating the autocorrelation parameter,

but even those results had relatively large standard deviation and an average estimate lower

than the true value. If estimation of the autocorrelation parameter was more precise, it may be

easier to compare the optimal design methods with autocorrelation.

From this analysis we have learned a useful protocol for determining whether or not to

include autocorrelation into our optimal design assumptions or not. Since the uniform mesh

often was the best for estimating the autocorrelation parameter, start by collecting data on

the optimal mesh. That data can be examined for the presence of autocorrelation (as well as

constant or non-constant variance). State the statistical model with underlying assumptions that

can either include autocorrelation or not depending on your findings. Then compute the optimal

design points using the formulation of the FIM which corresponds to your statistical model.

Parameters can be estimated using either GEE, OLS, or GLS, depending on your statistical

model, from data corresponding to your optimal design points. This methodology should result

in optimal design points with correct statistical assumptions, and more accurate parameter

estimates.
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Chapter 8

Concluding Remarks

8.1 Research Conclusions

We compared D-optimal, E-optimal and SE-optimal design methods for the logistic population

model, the harmonic oscillator model, and a model for glucose regulation. D-optimal and

E-optimal design methods are more established in the literature. Our comparisons test the

performance of SE-optimal design, which is a relatively newer method. In every example, we

found that the final time T , the number of points N , and the constraint implementation can

effect the optimal time points for each of the methods, and the resulting parameter estimates

and standard errors.

Here we give a brief overview of our finding from Chapters 5 and 6, where we assume

independent errors with constant variance.

For the logistic example, there were similarities between the results in Section 5.1 and Section

6.2, both using Monte Carlo analysis but with slight differences. Comparing the average and

median parameter estimates to their true values, we find that SE-optimal has closest parameter

estimates for N = 10 time points. For N = 15, no method had estimates that were always

closest to the true values. There were common findings about the smallest average and median

standard errors, and the smallest standard deviations: for K, E-optimal was the smallest, and

for r and x0 SE-optimal was the smallest followed by D-optimal.

Given what we know about the cost function, it makes sense why E-optimal has the smallest

standard errors and standard deviations for K. Since the true value of the parameter K is larger

than the true values of r and x0 ((K, r, x0) = (17.5, 0.7, 0.1)) we expect that its standard error

would also be larger. E-optimal minimizes the largest principle axis of the confidence ellipse,

which in this example will most likely always be the axis corresponding to K. SE-optimal and

D-optimal have smaller standard errors for r and x0 since their cost functionals are minimizing

the variance in all the parameters, in different ways.
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Comparing the optimal design methods based on which has the best coverage of the true

parameter value based on the 95% confidence ellipsoid, we find that SE-optimal is the best,

followed by D-optimal or the uniform mesh, with E-optimal being the worst for this logistic

example.

For the harmonic example, based on the parameter estimates none of the optimal design

methods were consistently favorable, and all optimal design methods were close to the true values.

Comparing the optimal design methods based on standard errors and standard deviations, D-

optimal or SE-optimal tended to be smallest for parameter C, and for parameter K D-optimal

and the uniform mesh tended to be the smallest. No optimal design method was best based on

the 95% confidence ellipsoids coverage of the true values, except that often E-optimal was the

worst.

For the glucose regulation model, comparing the approximate asymptotic standard errors, we

found that for parameters (p1, p2, p3) either SE-optimal or E-optimal had the smallest standard

errors. D-optimal tended to have the smallest standard errors for p4. Our results from the

inverse problem, using asymptotic theory and bootstrapping to compute standard errors, were

less conclusive. Comparing the parameter estimates to their true values, none of the optimal

design methods were consistently closer. Comparing the optimal design methods based on who

had the smallest standard errors and covariances we found that no method was preferable over

the others. In general, the optimal design methods had smaller standard errors and covariances

than the uniform mesh for this example.

In Chapter 7, we compared the optimal design methods for autocorrelated data. From

our Monte Carlo analysis, we found that no method was favorable for the model parameters.

The parameter estimation for the autocorrelation parameter, though less consistent, was often

best using the uniform mesh followed by E-optimal based on the average estimates and the

corresponding standard errors. We also examined the consequences of assuming the data is

independent, when it is in fact autocorrelated. There wasn’t a noticeable difference in the

average or standard deviation of the estimates from the inverse problem using either OLS or

GEE-1. However, the asymptotic standard errors from OLS were deceivingly smaller than the

standard errors computed under the correct assumption. It is important check your assumptions

and make sure you are using the correct statistical model.

The best choice of optimal design method depends on the complexity of the model, the type

of constraint one is using, the subset of parameters you are estimating, and even the choice of N

and T . The examples in this comparison provide evidence that SE-optimal design is competitive

with D-optimal and E-optimal design.
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8.2 Future Work

Some work remains to be done with optimal design methods applied to autocorrelated data.

In Sections 7.6, we discuss the implications of making the wrong assumptions: using OLS to

estimate parameters from autocorrelated data. For future work, it would be nice to quantify

using model comparison techniques which method (OLS, or GEE-1) gives a better fit to the data

for various levels of autocorrelation. It would also be informative to see if the autocorrelation

parameter α∗ is significantly different from 0 in the cases where its estimate from GEE-1 is

very small. Overall, the estimates of the autocorrelation parameters had high variance. In

future investigations it would be valuable to try other approaches to the inverse problem for the

estimation of model and variance (including autocorrelation) parameters, with the hope that

the autocorrelation parameter estimates may be more precise.

Much of this dissertation has focused comparing the optimal design methods based on

which has the smallest standard errors. A future goal would be minimizing correlation between

parameters using optimal design methods. Between D-optimal, E-optimal, and SE-optimal,

does one optimal design method reduce correlation between the parameters more than the

others? In Chapter 2, we observed that correlation between the parameters seemed to be related

to the tilt of the confidence ellipsoid. Investigating this hypothesis further may give insight into

an optimal design criteria that would be focused on reducing the correlation between parameters,

or help us understand why one of the current optimal design methods may be ideal for this

problem.
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