
ABSTRACT

LISZEWSKI, KATIE THERESE. The Charged Free Boson Integrable Hierarchy. (Under
the direction of B. Bakalov and N. Jing.)

Fully integrable PDEs, those with an infinite number of conservation laws, are of par-

ticular interest to the modeling community as exact solutions can often be found. There

are several methods currently used to study integrable systems. Constructing integrable

hierarchies using the language of vertex algebras provides a simple formulation of the

structure of the hierarchy. It also allows us to easily find desirable solutions, such as

soliton solutions to the KP hierarchy. For classical hierarchies, such as the KP and Toda

hierarchies, this construction relies on the boson-fermion correspondence.

The vertex algebra formed by two charged free bosons does not have a fermionic Fock

space. To investigate the charged free boson integrable hierarchy, Friedan-Martinec-

Shenker bosonization is used in place of the boson-fermion correspondence. The charged

free bosons were studied by Kac and Radul; while the hierarchy was mentioned it was

not studied in any detail. We thoroughly investigate this hierarchy and several of its

reductions. This gives a generalization of the vertex algebra methods currently used to

study integrable hierarchies. We also find several interesting PDEs, including the Euler

beam equation which was known to be integrable but had not been studied using an

algebraic approach.
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Chapter 1

Introduction

Since the dawn of modern mathematics partial differential equations have been essential

to modeling. However, it is often difficult or impossible to find exact solutions, or even

in many cases reasonable approximate solutions, to these equations. Fully integrable

PDEs, those with an infinite number of conservation laws, are the exception to this rule.

There are several methods currently used to study integrable systems, each with its own

advantages.

The KP equation describes the flow of shallow water in a 2D channel. Historically

and even today flow is often restricted to a 1D channel by eliminating the y variable.

This gives the KdV equation for shallow water. The KdV equation has been used to

model an incredible number of physical situations. It is used not only in water waves,

but also everything from glaciers to air flow near the wing of an airplane.

Of course, the KdV equation was studied using numerical methods long before it was

known to be integrable. However, fluids problems are usually difficult to solve numeri-
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cally as the surface of the fluid reacts to the movement of the fluid. The surface is one

of the boundaries needed to solve the boundary problem so this creates obvious com-

plications. The KdV equation is produced by turning this extremely difficult boundary

value problem into an initial value problem. This eliminates the complication of the free

boundary, but the partial differential equation, the KdV equation, is more complex than

the original PDE used for the boundary value problem. The KdV equation has been

solved numerically, however the solutions are given in terms of elliptic functions and are

often too complicated to be of any use. The Kyoto group’s groundbreaking series of

papers developed the idea of using vertex algebra structures to find desirable solutions

to the KdV and KP equations.

We begin with a review of the Lie algebra material necessary for the reader to under-

stand this thesis. Although we introduce all necessary notation, we highly recommend

the reader refer to a text on Lie algebras if they are unfamiliar with the subject. We

then quickly discuss Schur polynomials, which will be used frequently in computations.

We review gl∞, the algebra of Z×Z matrices with finitely many nonzero diagonals, in

some detail as it will later provide solutions to our PDEs. The Virasoro and Heisenberg

algebras are also defined. Representations of these algebras on the space of polynomials

and derivatives are discussed, as this is how algebraic equations are translated into PDEs.

We then begin a fairly thorough review of vertex algebras focusing on lattice vertex

algebras. The standard examples are computed. With this, we give the classical vertex

algebra construction of the KP hierarchy. An alternate, although equivalent construction

will be given during the research portion of the the thesis as a reduction of the charged
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free boson hierarchy.

To construct the KP hierarchy we first define the fermionic and bosonic Fock spaces.

The bosonic Fock space, the polynomials in infinitely many variables, is also used later to

construct the charged free boson hierarchy. The Casimir element of gl∞ gives PDEs after

some amount of expansion. The Kyto group, after some cleaver simplifications, found

the smallest PDE contained in the hierarchy was the KP equation, which we re-derive

for the reader.

The Lax formulation of the hierarchy is then derived from the Hirota equations by

reproducing van Morebeke’s computations. The Lax formulation of a hierarchy is often

useful to study physical properties of the PDEs including their conservation laws.

We discuss soliton solutions for the KP hierarchy. These are perhaps the most desir-

able solutions for the modeling community as they are standing waves. Solitons describe

physical phenomena such as tsunamis and light traveling through a fiber optic cable.

They are also found at the leading edge of shock waves in dispersive systems.

The research section begins with a review of the charged free boson algebra and the

boson-boson correspondence as our notation differs from that of previous authors. We

then find PDEs in the hierarchy and some solutions.

We look at several reductions, made both in the algebra and by setting variables equal

to zero in the equations. Using twisted modules eliminates indices from solutions and

allows us to make reductions without guesswork. This is a new perspective on how to
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make reductions even in the case of known hierarchies; however, when used on known

hierarchies it gives known reductions. For example, one can produce the BKP hierarchy

from the KP hierarchy using this method. We explore other reductions produced by

simply setting variables equal to zero. These reductions give interesting PDEs, such as

Euler’s beam equation, and additional solutions. We also discuss some of the difficulties

of making these reductions.

Our section of open problems is devoted to attempts at finding a Lax pair formulation

of the hierarchy. We show this problem is significantly more difficult for the charged free

boson hierarchy than for the KP hierarchy. We successfully find wave equations and

make significant progress towards finding Lax operators.
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Chapter 2

Lie Algebra

2.0.1 Introduction

This chapter will review the notions from Lie algebra needed to formulate the charged

free boson hierarchy. We also review the Lie algebras commonly used in this thesis, in-

cluding the Heisenberg algebra and gl∞.

2.1 Lie Algebra

We begin with a review Lie algebras and Lie algebra notation used in this thesis. For a

thorough introduction we refer the reader to Humphreys’ text [H].

All Lie algebras mentioned in this thesis are over the complex numbers unless stated

otherwise. A (complex) Lie algebra is a vector space L over C with a bilinear bracket

operation [, ] : L × L → L that satisfies skew symmetry and the Jacobi identity. For

completeness we list these here.
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Jacobi identity:

[a, [b, c]] = [[a, b], c] + [b, [a, c]];

skew symmetry:

[a, a] = 0.

Perhaps the most classical example of a Lie algebra is gln, the n × n matrices, with

bracket structure [a, b] = ab−ba. Note this example makes clear why the words ”bracket”

and ”commutator” are both used for [a, b].

The standard basis for gln is the set of elementary matrices Ei,j. Here Ei,j is the

matrix with a 1 in the i, jth position and zeros elsewhere. The bracket of two basis

elements is given by

[Ei,j, Ek,l] = Ei,jEk,l − Ek,lEi,j = δj,kEi,l − δi,lEk,j

.

A subspace of a Lie algebra is called a (Lie) subalgebra if it is closed under taking

brackets. A Lie algebra representation is a linear map to the space of matrices which

preserves the bracket structure. An equivalent notion is that of a module, which is a

vector space with an action of a Lie algebra satisfying [a, b]v = a(bv) − b(av) for a, b in

the Lie algebra and v in the module.
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One Lie subalgebra of gln is sln, the n× n matrices with trace zero. We check this is

closed under taking brackets.

Let a, b ∈ sln then tr([a, b]) = tr(ab− ba) = tr(ab)− tr(ba) = 0.

An example of a module, and hence a representation, of gln is its action on the space

Cn. Let ei be the vector with a 1 in the ith component and zeros elsewhere. Then

[Ei,j, Ek,l]en = δj,kEi,len − δi,lEk,jen = δj,kδl,nei − δi,lδj,nek,

which equals

Ei,j(Ek,len)− Ek,l(Ei,jen) = Ei,jδl,nek − Ek,lδj,nei = δj,kδl,nei − δi,lδj,nek.

To introduce a particularly useful type of module called a highest weight module we

will need a few definitions from representation theory. The standard example we will

here is sl2 with basis e = E1,2, f = E2,1, h = E1,1 − E2,2 and commutators

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

A Cartan subalgebra H of a Lie algebra is defined to be a nilpotent subalgebra with

the property that [x, y] ∈ H for all x ∈ H implies y ∈ H.

For our example of sl2 the Cartan subalgebra is just Ch .
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We define a weight space Vλ with weight λ ∈ H∗ for a module V to be Vλ = {v ∈

V |hv = λ(h)v ∀h ∈ H}.

For sl2 as an sl2-module under the adjoint action we have

V2 = Ce V−2 = Cf V0 = Ch.

We can divide gln into three parts {Ei,j|i < j}, {Ei,i}, and {Ei,j|i > j}. These are the

upper triangular, diagonal, and lower triangular matrices respectively and this process is

called a triangular decomposition. This works in a more general setting, for example in

sl2, e is upper triangular, h is diagonal, and f is lower triangular.

With this definition we can now define a highest weight and a highest weight vector.

A highest vector is an element v0 of V such that the upper triangular part of the Lie

algebra acts on v0 as zero. The highest weight is the weight of v0.

For example, sl2 as an sl2-module has a highest weight vector e since [e, e] = 0. The

highest weight is 2, the weight of e.

A representation is called irreducible if it does not have a nontrivial proper subrepre-

sentation.

The functionals ωi that act on the Cartan subalgebra of gln or sln by ωi(Ei,i) = 1,

ωi(Ej,j) = 0 for j 6= i are known as fundamental weights.

Any irreducible gln-module is a highest weight module with highest weight c1ω1 +
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c2ω2 + . . . where the ci are non-negative integers, and it is uniquely determined by its

highest weight. Conversely, every c1ω1 +c2ω2 + . . . where the ci are non-negative integers

is the highest weight of an irreducible gln-module.

A module is called completely reducible if it can be written as a direct sum of ir-

reducible modules. Weyl’s theorem states any finite dimensional representation of any

finite dimensional semi-simple Lie algebra is completely reducible. However, this is not

true for infinite dimensional Lie algebras.

A Lie algebra is called reductive if it is completely reducible as a module over itself

under the adjoint action. One example of a reductive Lie algebra is gln.

We will need GLn, the Lie group of invertible n× n matrices. The only fact we will

use from Lie group theory is that exponentation of elements of gln gives elements of GLn.

We will frequently let an n-dimensional Lie algebra act on the space of complex poly-

nomials in n variables.

For example, below is a very nice representation of gln on the space of polynomials

inx1, x2, x3, . . . , xn. Note this vector space will be important later.

Let Ei,j = xi∂xj for i, j ≥ 1. Then

[Ei,j, Ek,l] = [xi∂xj , xk∂xl ] = δj,kxi∂xl − δi,lxk∂xj .
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This gives us a natural action on the space of polynomials. For example, E1,3 ·x2x3 =

x1∂x3 · x2x3 = x1x2 This representation is very similar to the one used to construct the

2-KP hierarchy.

2.2 Schur polynomials

In this thesis we will often need infinite dimensional algebras. We want to extend

C[x1, x2, . . . , xn] to C[x1, x2, . . . ], the polynomials in infinitely many variables.

Normally the degree of xn is defined to be 1, however in C[x1, x2, . . . ] this would pro-

duce infinitely many basis vectors of each degree. If the degree of xn is instead defined

to be n there are only finitely many basis vectors of each degree. For example, the basis

vectors of degree 2 are x21 and x2.

We will use a basis of the algebra C[x1, x2, . . . ] known as the Schur polynomials. Note

that our definition is a change of basis from the combinatorial definition. The generating

function for the elementary Schur polynomials is

∑
n≥0

Sn(x)zn = exp(
∑
k≥1

xkz
k). (2.1)

For example, S0 = 1, S1 = x1, S2 =
x21
2

+ x2, S3 =
x31
3!

+ x2x1 + x3 and
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Sn(x) =
∑

n1+2n2+···+rnr=n

xn1
1

n1!
· · · x

nr
r

nr!
.

2.3 gl∞

The remainder of this chapter follows [KR2] and [K1].

The Lie algebra we will use most is gl∞ which is the collection of Z × Z matrices

with only finitely many nonzero diagonals. This condition allows multiplication to be

well defined.

Note most texts introduce gl∞ as matrices with finitely many nonzero elements and

then arrive at the algebra with finitely many nonzero diagonals by adding a central ex-

tension. This first algebra is too small to be of use - for example it does not contain the

identity matrix - so we will start with the larger algebra.

A standard basis for gl∞ is Ei,j, i, j ∈ Z with central element c. Commutators are

given by the formula

[Ei,j, Ek,l] = δj,kEi,l − δi,lEk,j + δi,l≤0δk,j>0c

.
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One of the most commonly used representations is to let gl∞ act on C∞, the space

of vectors indexed by the integers with finitely many nonzero entries. Once again this

condition allows multiplication by a matrix to be well defined. Note C∞ has basis ei

i ∈ Z. As with the finite dimensional case Ei,jek = δj,kei and we let cek = 0 for all k.

2.4 Heisenberg Algebra

The Heisenberg algebra has basis {an, c|n ∈ Z} where c is central. Commutations rela-

tions are

[am, an] = mδm,−nc.

We can find a representation of the Heisenberg algebra on the space of polynomials

C[x1, x2, . . . ] :

an → ∂xn , a−n → nxn, a0 → k, c→ c, n > 0.

Also the representation of the Heisenberg algebra in gl∞ used to construct the KP

hierarchy is given by an =
∑
i∈Z

Ei,i+n. These are commonly referred to as the shift matri-

ces as they map ek to ek−n.
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2.5 Virasoro Algebra

The Virasoro algebra has a basis that consists of elements Ln n ∈ Z and a central element

c. Commutation relations are given by

[Lm, Ln] = (m− n)Lm+n + δm,−n
m3−m

12
c.

We can write the Virasoro algebra in terms of the Heisenberg algebra

Li = 1
2

∑
n∈Z

: a−nan+i :.

We can also find Li in gl∞

Li =
∑
j∈Z

jEj,j+i.
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Chapter 3

Vertex Algebra

3.0.1 Introduction

In this chapter we begin with a review of vertex algebras and, in particular, lattice ver-

tex algebras. We then discuss two formulations of the KP hierarchy, the Hirota and Lax

equations, in detail. We review some of the more useful solutions of the KP equation

that can be produced using vertex operators. We end by introducing twisted modules

for lattice vertex algebras which will be needed in chapter 4.

3.1 Vertex algebras

This section follows [K1]. A vertex algebra is constructed over a vector space V . El-

ements of V are called states. The vacuum vector 1 will act as an ”identity” for the

vertex algebra. A field or vertex operator is a series a(z) = Y (a, z) =
∑
n∈Z

anz
−n−1 where

an ∈ End(V ) and an(v) = 0 for n sufficiently large.
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For the purpose of this construction, one can think of z as a formal variable and an as

linear operators. In this case we will call a(z) the generating function of the algebra. For

example, once again consider the Heisenberg algebra, and write the generating series for

the algebra as a(z) =
∑
n∈Z

anz
−n−1. This is a vertex operator with commutation relation

[a(z), a(w)] = ∂wδ(z−w). We can obtain [ai, aj] by finding the coefficient of z−i−1w−j−1.

Here we define δ(z − w) = 1
z−w + 1

w−z =
∑
n∈Z

znw−n−1.

We will now present two equivalent definitions of a vertex algebra. We will need these

definitions at various times.

Definition 3.1.1. A vertex algebra consists of states, the vacuum vector, and a linear

map called the state-field correspondence, a→ Y (a, z), with the axioms below.

Translation covariance: [T, Y (a, z)] = ∂zY (a, z), where T is defined by Tv = v−21.

Vacuum: Y (1, z) = I where I is the identity operator on V and Y (a, z)1|z=0 = a.

Locality: (z − w)N [Y (a, z), Y (b, w)] = 0 for N sufficiently large.

The first two axioms ensure an identity and a derivative. Normally multiplication,

and hence the commutator, of two formal Laurent series is not necessarily well defined.

Axiom 3 ensures we can bracket vertex operators.

Definition 3.1.2. A vertex algebra consists of states, the vacuum vector, and a linear

map called the state-field correspondence, a→ Y (a, z), with the axioms below.

Vacuum: Y (1, z) = I where I is the identity operator on V and a−11 = a.

15



Borcherds identity:

∑
j≥0

(
m

j

)
(an+jb)m+k−jc =

∑
j≥0

(−1)j
(
n

j

)
am+n−jbk+jc−

∑
j≥0

(−1)j+n
(
n

j

)
bn+k−jam+jc

(3.1)

The Borcherds identity is not as intuitive as Definition 1, but it will be extremely

useful later on.

Also useful is a special case of Borcherds formula called the commutator formula.

[Y (a, z), Y (b, w)] =
∑
n≥0

Y (anb, w)
∂nw
n!
δ(z − w). (3.2)

We also include the commutator formula written in terms of modes

[am, bn] =
∑
j≥0

(
m

j

)
(ajb)m+n−j, (3.3)

and the −1st product identity

(a−1b)n =
∑
j<0

ajbn−j−1 +
∑
j≥0

bn−j−1aj. (3.4)

3.2 Lattice Vertex Algebras

This section follows [K1]. We will give the general definition of a lattice vertex algebra.

The reader that finds this unclear can think of the lattice relations producing the com-

mutation relations.
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An integral lattice L is a free abelian group L with a bilinear form L× L→ Z.

A lattice vertex algebra with lattice L = γ1Z × · · · × γnZ is a vertex algebra with

elements of the form (γ1)i1 . . . (γ1)ij . . . (γn)k1 . . . (γn)kle
γ for γ ∈ L.

For an example we will look at the algebra with lattice αZ with (α, α) = 1 which will

be used in the construction of the KP hierarchy next section.

It is generated by α(z) =
∑
j∈Z

αjz
−j−1 and

Y (e±α, z) = eα : exp(±
∫
a(z)) := z±α0eαexp(±

∑
j>0

α−j
zj

j
)exp(±

∑
j>0

αj
z−j

−j
).

Here e±α are elements of the group algebra C[L] with multiplication eαeβ = eα+β

To compute commutators we will need the following formulas:

[αn, e
γ
m] = (α, γ)eγm+n, (3.5)

and

eγ1n e
γ2 =: S−(γ1,γ2)−n−1(γ1,

∂γ1
2!
,
∂2γ1

3!
...)eγ1+γ2 : (3.6)

and the commutator formula, equation 3.3.

Here we define the normally ordered product, : a(z)b(w) := a(z)+b(w)+b(w)a(z)−, where

a(z)+ is the part of a(z) with nonnegative powers of z and a(z)− is the part with negative

powers of z.

As an exercise we now compute
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[Y (eα, z), Y (eα, w)] =
∑
n/ge0

Y (eαne
α, w)

∂nw
n!
δ(z − w).

Now eαne
α =: S−n−2(α,

∂α
2!
, ∂

2α
3!
...)e2α: but Sn = 0 for n < 0 which gives

[Y (eα, z), Y (eα, w)] = 0.

Similarly,

[Y (eα, z), Y (e−α, w)] =
∑
n/ge0

Y (eαne
−α, w)

∂nw
n!
δ(z − w).

Here eαne
−α =: S−n(γ1,

∂α
2!
, ∂

2α
3!
...)e0 : so we get a contribution of 1 when n = 0,

which gives

[Y (eα, z), Y (e−α, w)] = δ(z − w).

3.3 Boson-fermion correspondence

This section follows [KR2]. Before beginning construction of the KP hierarchy, we have

to describe the space that gl∞ will be acting on, which is called the Fock space. In

previous sections the algebra of polynomials in N variables was mentioned. This is one

description of the Fock space called the bosonic Fock space. This section will also intro-

duce the fermionic description. The isomorphism between the two spaces is the famous
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boson-fermion correspondence. Physicists think of bosons as light waves, this is because

squaring a polynomial just gives another polynomial and having photons of the same fre-

quency in the same place just gives a laser beam. Fermions have the property of squaring

to zero; equivalently, two pieces of matter can not be in the same place at the same time.

For continuity we define here the bosonic Fock space B = C[x1, x2, . . . ]. We have two

gradings, or measurements of degree. One is given by the usual definition of the degree

of a polynomial. The other, which will often be more useful, is to declare the degree of

xn to be n.

To familiarize the reader with the bosonic Fock space we examine the action of the

Heisenberg algebra.

Recall from section 2.4 the Heisenberg algebra has an irreducible representation

an → ∂xn , a−n → nxn, a0 → k, c→ c, n > 0.

Notice if we apply sums and products of various a−n to the polynomial 1 we can create

any polynomial. If we apply the appropriate ans to any element of the Fock space it will

become 1, and an1 = 0 for n > 0. Due to this a−n are referred to as creation operators

and an are annihilation operators. The polynomial 1 is referred to as the vacuum. This

has the physical interpretation of creating and annihilating photons from the vacuum of

space.

The fermionic Fock space does not have as intuitive a definition as the bosonic Fock

space. We begin by introducing the wedge product, commonly used in topology.
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Define the wedge product a ∧ b to be the tensor product with the added relation

a ∧ a = 0. The fermionic Fock space is then

F =
⊕
n∈Z

Fn

where Fn consists of vectors of the form

f = vin ∧ vin−1 ∧ . . .

with the conditions in > in−1 > . . . and ij = j + n for j sufficiently less than zero.

The degree of f is defined to be deg(f) =
∑
j≤n

ij − j − n.

The vector

fn = vn ∧ vn−1 ∧ . . .

is the vector of degree zero in Fn and will play the role of the vacuum vector.

We will now once again look at the action of the Heisenberg algebra. To do this we

define two operators.

Let Ψk(f) = Ψk(vin ∧ vin−1 ∧ . . . ) = vk ∧ vin ∧ vin−1 ∧ . . . where Ψk(f) is then reordered

so the indices are once again decreasing, picking up a sign in the process. Notice if vk

was already a component of f then Ψk(f) = 0 by definition.

Let Ψ∗k(f) = Ψ∗k(vin ∧ vin−1 ∧ . . . ) first permute vk to the front of f , picking up a sign in

the process, then remove vk. If f does not contain vk we define Ψ∗k(f) = 0.
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The Heisenberg operators act by

an =
∑
k>0

ΨkΨ
∗
k+n +

∑
k≤0

Ψ∗k+nΨk.

Here, as with the bosonic Fock space, the annihilation operators take the vacuum to

zero and the creation operators applied to the vacuum generate the Fock space. These

representation are isomorphic and the isomorphism gives the famed boson-fermion cor-

respondence.

We also define the generating series Ψ(z) =
∑
k∈Z

Ψkz
k−1 and Ψ∗(z) =

∑
k∈Z

Ψ∗kz
−k for

use in the next section.

3.4 Constructing the KP hierarchy

This section follows [KR2]. To construct an integrable system using vertex operators one

essentially picks an operator in a clever way and that operator is mapped to a space of

polynomials and derivatives giving PDEs. Solutions to the hierarchy are then any oper-

ator that commutes with the one producing PDEs. This intuition suggests to choose the

Casimir of gl∞ to give PDEs as it commutes with all of GL∞ producing a large number

of solutions. For the reader familiar with Lie algebras what we call a Casimir operator

does not always coincide with the classical definition, but will still commute with the

action of gl∞.
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We reviewed the fermionic Fock space in the previous section. To construct the KP

hierarchy we now need to find the Casimir element of gl∞. We will denote the fermionic

Casimir operator by ΩF :

ΩF = ReszΨ(z)⊗Ψ∗(z) =
∑
k∈Z

Ψk ⊗Ψ∗k.

The KP hierarchy is the collection of equations found by expanding ΩF (τ ⊗ τ) = 0.

Solutions, τ , to this equation are called tau functions. However, this is not the usual

family of differential equations one thinks of as the KP hierarchy. To construct these

PDEs we need to use the boson-fermion correspondence. We will denote the Casimir

operator after applying the boson-fermion correspondence as ΩB.

The boson-fermion correspondence maps Ψ(z)→ Y (eα, z) , Ψ∗(z)→ Y (e−α, z) where

Y (e±α, z) = z±α0e±αexp(±
∑
j>0

α−j
zj

j
)exp(±

∑
j>0

αj
z−j

−j
)

as mentioned in section 3.2 and α(z) is the Heisenberg algebra from section 2.4.

This gives

ΩB = Reszz
α0eαexp(

∑
j>0

α−j
zj

j
)exp(

∑
j>0

αj
z−j

−j
)⊗z−α0e−αexp(−

∑
j>0

α−j
zj

j
)exp(−

∑
j>0

αj
z−j

−j
).
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From this formula we can find the KP and KdV equations. A similar calculation will

be used in later sections to produce PDEs in the charged free boson hierarchy and its

reductions.

We begin by using that α(z) is the Heisenberg algebra to construct a representation

on polynomial algebra. Specifically, we map α−n → nxn, αn → ∂xn for n > 0.

This gives

ΩB = Reszz
α0eαexp(

∑
j>0

xjz
j)exp(

∑
j>0

∂xj
z−j

−j
)⊗z−α0e−αexp(−

∑
j>0

xjz
j)exp(−

∑
j>0

∂xj
z−j

−j
).

When acting on τ ∈ C[x1, x2, . . . ], α0 acts trivially, thus in the above formula we can

remove the prefactors z±α0e±α.

We denote the first tensor factor by primes and the second by double primes. Then

ΩB(τ ⊗ τ) = Reszexp
(∑
j>0

x′jz
j
)
exp(

∑
j>0

∂x′j
z−j

−j
)

exp(−
∑
j>0

x′′j z
j)exp(−

∑
j>0

∂x′′j
z−j

−j
)(τ(x′)⊗ τ(x′′))

Since the two tensor factors commute, we get

ΩB = Reszexp
(∑
j>0

(x′j − x′′j )zj
)
exp
(∑
j>0

(∂x′j − ∂x′′j )
z−j

−j
)
.
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We introduce the following change of variables:

x′ → x− y, x′′ → x− y, and obtain

Resz(exp(
∑
n>0

−2ynz
n)exp(

∑
n>0

∂yn
z−n

n
)(τ(x− y)τ(x+ y)) = 0

Recalling formula 2.1 we can expand the exponentials using Schur polynomials:

Resz
(∑
n>0

Sn(−2y)zn
)(∑

n>0

Sn(∂̄y)
z−n

n

)
(τ(x− y)τ(x+ y)) = 0.

where ∂̄x = (∂x1 ,
1
2
∂x2 ,

1
3
∂x3 . . . ). Taking the residue gives

∑
n≥0

Sn(−2y)Sn+1(∂̄y)(τ(x− y)τ(x+ y)) = 0.

We rewrite this as

∑
n≥0

Sn(−2y)Sn+1(∂̄u)(τ(x− y − u)τ(x+ y + u))|u=0 = 0

and use Taylor’s formula to get

∑
n≥0

Sn(−2y)Sn+1(∂̄u)exp(
∑
m>0

ym∂um)(τ(x− u)τ(x+ u))|u=0 = 0. (3.7)
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Notice here that we have eliminated all y derivatives. Because of this we can now use

y as an indexing variable.

The KP equation is the coefficient of y3:

∂u3∂u1 − 2S4(∂̄u)(τ(x− u)τ(x+ u))|u=0 = 0

after the change of variables

f(x1, x2, x3) =
∂2

∂x21
log(τ(x1, x2, x3)).

3.5 Lax Equations

Instead of the Hirota equations it is sometimes advantageous to study what are known as

Lax equations. For example, it is easier to derive conservation laws from Lax equations

and Lax equations from conservation laws. When the Lax equations for the KP hier-

archy were first formulated it was not known how they related to the Hirota equations.

Since then several authors, including [M] who we follow for this section, have thoroughly

studied the connections between the Lax and Hirota equations.

We start by computing wave functions by solving Y (eα, z)τ = Ψτ and Y (e−α, z)τ =

Ψ∗τ . Expanding we get:

exp
(∑
n>0

xnz
n
)
exp
(
−
∑
n>0

∂xn
zn

n

)
τ(x) = Ψ(x, z)τ(x),

exp
(
−
∑
n>0

xnz
n
)
exp
(∑
n>0

∂xn
zn

n

)
τ(x) = Ψ∗(x, z)τ(x).
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We use Taylor’s formula and divide by τ to get

Ψ(x, z) = exp
(∑
n>0

xnz
n
)τ(x− [z−1])

τ(x)
,

Ψ∗(x, z) = exp
(
−
∑
n>0

xnz
n
)τ(x+ [z−1])

τ(x)
,

where τ(x− [z−1]) = τ(x1 − z−1, x2 − 1/2z−2, x3 − 1/3z−3 . . . ).

Our dressing operators are now the wave functions excluding the exponential after

replacing z with ∂x1 .

S =
τ(x− [∂x1 ])

τ(x)
, S∗ =

τ(x+ [∂x1 ])

τ(x)
.

The operators L = S∂x1S
−1, and L∗ = S∗(∂x1)(S

∗)−1 satisfy Lax equations

∂L

∂tn
= [(Ln)+, L] n > 0

. Here L+ is the portion of L with only non-negative powers of ∂x1 .

Note L = ∂x1 +
∑
n>0

fn(x)∂−nx1 is called a pseudo-differential operator. Multiplication
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is given by Leibnitz’s rule

f(x)∂nx1 · g(x)∂mx1 =
∑
k≥0

(
n

k

)
f(x)(k)g(x)∂n+m−kx1

which coincides with the usual definition when n and m are positive.

3.6 Solitons and the Virasoro Algebra

This section follows [K1]. In shallow water wave theory, a soliton looks like a hump of

water that moves along the surface without changing shape or speed. The KP equation

has solutions of this form. Remarkably, these solutions have very nice mathematical

properties that allow for explicit construction using vertex algebras. For an algebraist

soliton solutions are a wider class of functions that can be found by exponentiating gl∞.

This construction starts by finding a generating series Γ(z, w) for gl∞:

Γ(z, w) =
∑
i,j∈Z

Ei,jz
i−1w−j = exp(

∑
i≥0

(zi − wi)xi)exp(−
∑
i≥0

(z−i − w−i)∂xi
i

)

We can see this by expanding Γ(z, w) =: Y (eα, z)Y (e−α, w) where Y (e±α, z) are the lat-

tice operators from section 3.2.

An n soliton solution is of the form τ = exp(
n∑
i=1

ciΓ(zi, wi))1. This is τ function

because 1 is a τ function and the Casimir commutes with gl∞.

For example, a one soliton solution to the KP hierarchy is τ = exp(cΓ(z, w))1.
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Since Γ(z, w)2 = 0, we have τ(x) = 1 + cΓ(z, w)1. Expanding gives

τ = 1 + c exp(
∑
i≥0

(zi − wi)xi)exp(−
∑
i≥0

(z−i − w−i)∂xi
i

)1

Evaluation on 1 kills the partials giving τ = 1 + c exp(
∑
i≥0

(zi − wi)xi)1.

If we set all but x1, x2, x3 to zero we get that

τ = 1 + c exp(x1(z − w) + x2(z
2 − w2) + x3(z

3 − w3))1

is a 1 soliton solution to the KP equation. Applying the usual change of variables will

give the formula seen in fluid mechanics texts.

Solutions can be obtained from the Virasoro algebra in a similar fashion. Virasoro is

given by the generating series:

: Y (eα, z)∂zY (e−α, z) :=
1

2
: α(z)α(z) :

3.7 Twisted modules

In this section we will review twisted modules of a lattice vertex algebra following the

work of [BK].

Let VQ be a lattice vertex algebra with lattice Q. Let σ be an automorphism of Q of

order N . We give the definition of a σ-twisted module.

Definition 3.7.1. A σ-twisted module M of a vertex algebra V is equipped with a linear

28



map from V to N-twisted fields, a → Y TW (a, z) =
∑
n∈ 1

N
Z

aTWn z−n−1, aTWn ∈ End(M),

with the axioms below.

Vacuum: Y TW (|0〉, z) = I where I is the identity in the module,

Automorphism: Y TW (σa, z) = Y TW (a, e2πiz),

Borcherds identity:

∑
j≥0

(
m

j

)
(aTWn+jb

TW )m+k−jc
TW =

∑
j≥0

(−1)j
(
n

j

)
aTWm+n−j(b

TW
k+jc

TW )

−
∑
j≥0

(−1)j+n
(
n

j

)
bTWn+k−j(a

TW
m+jc

TW ) (3.8)

for a, b ∈ V , c ∈M .

We specifically want twisted modules over a lattice vertex algebra. Thus we will now

expand [BK]’s formula for a twisted lattice vertex algebra module:

Y TW (eγ, z) = zbγUTW
γ ETW

γ (z) (3.9)

We now need to describe b, U , and E:

bγ =
|γ0|2 − |γ|2

2
(3.10)

UTW is defined by the relation

UTW
γ1

UTW
γ2

= ε(γ1, γ2)B
−1
γ1,γ2

UTW
γ1+γ2

(3.11)
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where

ε(γ1, γ2)ε(γ2, γ1) = (−1)(γ1,γ2)+|γ1|
2|γ1|2 (3.12)

and for a lattice automorphism σ of order N

Bγ1,γ2 = N−(γ1,γ2)
N−1∏
k=1

(1− e
2πik
N )(σ

kγ1,γ2). (3.13)

Also

ETW
γ (z) =: exp(

∫
γTW (z)) : (3.14)

where γTW (z) =
∑
n∈ 1

N
Z

γTWn z−n−1.

Here γTW (z) are the twisted analog of the Heisenberg currents, and act on the Fock space

as an irreducible highest weight module with highest weight 1.
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Chapter 4

Results

4.0.1 introduction

In this chapter we begin with a review of the charged free bosons. We then construct

the Hirota equations for the charged free boson hierarchy and some explicit equations

and solutions are found. The majority of the chapter discusses reductions of the hier-

archy. At the end of the chapter we discuss progress towards an important open problem.

4.1 Charged free bosons

This section follows [W].

Consider the charged free bosons

a(z) =
∑
n∈Z

anz
−n, a∗(z) =

∑
n∈Z

a∗nz
−n−1
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where commutation relations are given by

[an, a
∗
m] = δm,−n, [an, am] = [a∗n, a

∗
m] = 0.

We can also write the commutators in terms of the operators as follows:

[a(z), a∗(w)] = δ(z − w) =
∑
n∈Z

znw−n−1.

Lemma 4.1.1. A representation of gl∞ is given by

En,m = a∗na−m + δn,m≤0.

We can check this by commuting the commutators:

[a∗nam, a
∗
i aj] = a∗nama

∗
i aj − a∗i aja∗nam

= a∗na
∗
i amaj + δm,−ia

∗
naj − a∗i aja∗nam = δm,−ia

∗
naj − δn,−ja∗i am.

The above relation can also be written in terms of generating functions as the coeffi-

cient of z−n−1w−n−1 in : a∗(z)a(w) : is : a∗nam := En,−m.

We say that : a∗(z)a(w) : generates gl∞.
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4.2 Casimir

At this point it is possible to compute the Casimir element of gl∞, which was first done by

Kac and Van de Leur [KV], and find one formulation of the charged free boson hierarchy.

These are simple equations and can be solved without techniques of integrable systems.

However, as with the KP hierarchy, we are able to easily compute solutions to these

equations. The image of these solutions under the boson-boson correspondence become

interesting. We compute the hierarchy here and discuss solutions more thoroughly in a

later section.

The Casimir element Ω is

Ω = Resza
∗(z)⊗ a(z) =

∑
n∈Z

a∗n ⊗ a−n.

The hierachy is given by Ω(τ ⊗ τ) = 0 where solutions to the PDEs are call τ functions.

Proposition 4.2.1. The Casimir commutes with the diagonal action of gl∞.

Proof. We check:

[a∗n ⊗ a−n, 1⊗ a∗i aj + a∗i aj ⊗ 1]

= a∗n ⊗ a−na∗i aj + a∗na
∗
i aj ⊗ a−n − a∗n ⊗ a∗i aja−n − a∗i aja∗n ⊗ a−n

= δn,ia
∗
n ⊗ aj − δn,−ja∗i ⊗ a−n = 0.

To produce PDEs a representation of the charged free bosons on the space of poly-

nomials is needed. The generating series a∗(z) and a(z) give polynomials in
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C[x1, x2, x3 . . . ; y0, y1, y2 . . . ] using the below isomorphism:

an = y−n for n ≤ 0, an = ∂xn for n > 0,

a∗n = x−n for n < 0, a∗n = −∂yn for n ≥ 0.

Note that this is an irreducible highest weight representation with highest weight vector

1 satisfying an1 = 0 for n > 0 and a∗n1 = 0 for n ≥ 0.

Applying this isomorphism to Ω(τ ⊗ τ) = 0 gives

(
∑
n>0

xn ⊗ ∂xn −
∑
n≥0

∂yn ⊗ yn)(τ ⊗ τ) = 0.

Solutions to this equation are of the form τ = exp(
∑

m>0,n≥0

cn,mxmyn).

We check this directly. We have:

∂xkτ = (
∑
n>0

cn,kyn)exp(
∑

m>0,n≥0

cn,mxmyn),

∂ykτ = (
∑
m>0

ck,mxm)exp(
∑

m>0,n≥0

cn,mxmyn);

therefore

(
∑
n>0

xn ⊗ ∂xn −
∑
n>0

∂yn ⊗ yn)(τ ⊗ τ)

=
∑
n>0

xnexp(
∑
m,k>0

ck,mxmyk)⊗ (
∑
k>0

ck,nyk)exp(
∑

m>0,k≥0

ck,mxmyk)

−(
∑
m>0

cn,mxm)exp(
∑
m,k>0

ck,mxmyk)⊗ ynexp(
∑
m,k>0

ck,mxmyk) = 0.
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4.3 Boson-Boson Correspondence

In [A] and [W] the charged free boson algebra was embedded into a lattice vertex algebra

using the boson-boson correspondence.

Consider the lattice L = Zα + Zβ with the following relations:

|α|2 = 1, |β|2 = −1, and 〈α, β〉 = 0.

The boson-boson correspondence is given by:

a∗(z) = Y (e−α−β, z),

a(z) =: α(z)Y (eα+β, z) := Y (α−1e
α+β, z) .

Recall from sections 3.1 and 3.2

[Y (a, z), Y (b, w)] =
∑
n/ge0

Y (anb, w)
∂nw
n!
δ(z − w),

[αn, e
±(α+β)
m ] = ±e±(α+β)m+n ,

and eγ1n e
γ2 =: S−n−1(γ1,

∂γ1
2!
, ∂

2γ1
3!
...)eγ1+γ2 for γ1, γ2 = ±(α + β)

We can now check the commutation relations. We have

[Y (e−α−β, z), Y (e−α−β, w)] =
∑
n/ge0

Y (e−α−βn e−α−β, w)∂nwδ(z − w).

Notice e−α−βn e−α−β = 0 for n ≥ 0 since Schur polynomials with negative indices are zero

by definition. Thus [Y (e−α−β, z), Y (e−α−β, w)] = 0.

Similarly
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[Y (α−1e
α+β, z), Y (α−1e

α+β, w)] =
∑
n/ge0

Y ((α−1e
α+β)nα−1e

α+β, w)∂nwδ(z − w).

To compute (α−1e
α+β)nα−1e

α+β we will need the −1st product identity given in section

3.1.

Applying the −1st product identity,

(α−1e
α+β)nα−1e

α+β =
∑
j<0

αje
α+β
n−j−1α−1e

α+β +
∑
j≥0

eα+βn−j−1αjα−1e
α+β.

After a lengthy computation using the above formulas one finds

[Y (α−1e
α+β, z), Y (α−1e

α+β, w)] = 0.

Finally

[Y (e−α−β, z), Y (α−1e
α+β, w)] =

∑
n/ge0

Y (e−α−βn α−1e
α+β, w)∂nwδ(z − w).

Now

e−α−βn α−1e
α+β = α−1e

−α−β
n eα+β − e−α−βn−1 eα+β = −1.

Thus

[Y (e−α−β, z), Y (α−1e
α+β, w)] = −δ(z − w).

Under the boson boson correspondence gl∞ is now generated by
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: Y (e−α−β, z) : α(w)Y (eα+β, w) ::

4.4 Constructing Hirota Equations

We now construct Hirota equations for the charged free boson integrable hierarchy. We

begin by computing the Casimir element Ω of gl∞ which generates PDEs under the

boson-boson correspondence. Solutions to Ω(τ ⊗ τ) = 0 are called τ functions.

The Casimir element, originally computed by Kac and Van de Leur [KV], is Ω =

Resza
∗(z)⊗a(z). The boson-boson correspondence maps this to Ω = ReszY (e−α−β, z)⊗ :

α(z)Y (eα+β, z) :.

To expand Ω(τ⊗τ) = 0 we need the following representation of the lattice vertex alge-

bra in the space of polynomials and derivatives in C[eα+β, e−α−β, x1, x2, x3 . . . ; y1, y2 . . . ]:

for n > 0

α−n = nxn, αn = ∂xn ,

β−n = nyn, βn = −∂yn .

This gives

Ω = Resze
−α−βexp(−

∑
n>0

(xn + yn)zn)exp(
∑
n>0

(∂xn − ∂yn)
zn

n
)⊗

: (
∑
k≥0

kxkz
k−1 +

∑
k>0

∂xkz
−k−1)eα+βexp(

∑
n>0

(xn + yn)zn)exp(−
∑
n>0

(∂xn − ∂yn)
zn

n
) : .
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Denoting the first tensor factor by primes and the second by double primes gives:

Ω = Resze
−α′−β′eα

′′+β′′exp(
∑
n>0

(x′′n + y′′n − x′n − y′n)zn)

(
∑
k≥0

kx′′kz
k−1 +

∑
k>0

∂x′′kz
−k−1)exp(

∑
n>0

(∂x′n − ∂y′n − ∂x′′n + ∂y′′n)
zn

n
).

We now make the following change of variables:

x′′ → w + t, x′ → w − t, y′′ → x+ y, y′ → x− y, eα+β → q.

This gives:

Ω = Reszq
′−1q′′exp(

∑
n>0

(2yn + 2tn)zn)

(
∑
k≥0

k(wk + tk)z
k−1 +

∑
k>0

(∂wk + ∂tk)z
−k−1)exp(

∑
n>0

(∂yn − ∂tn)
zn

n
).

Expanding in terms of Schur polynomials and taking the residue:

Ω = q′−1q′′
∑
i,j≥0

Si(2y + 2t)

(
(j − i)(wj−i + tj−i) + ∂wi−j + ∂ti−j + δi,j(w0 + t0)

)
Sj(∂̄y − ∂̄t)
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We also expand using Taylor’s formula finally arrive at:

Theorem 4.4.1. We have q′−1q′′
∑
i,j≥0

Si(2y + 2t)(
(j − i)(wj−i + tj−i) + ∂wi−j + ∂µi−j + δi,j(w0 + t0)

)
Sj(∂̄λ − ∂̄µ)exp(

∑
k≥1

yk∂λk)exp(
∑
l≥1

tl∂µl)τ(x− λ,w − µ; q′)τ(x+ λ,w + µ; q′′)|λ=µ=0 = 0

where ∂̄x = (∂x1 ,
1
2
∂x2 ,

1
3
∂x3 . . . ) and any variable with a negative index is 0.

The charged free boson hierarchy is most easily compared to the 2-KP hierarchy. As

with the 2-KP hierarchy τ functions will have two indices due to the q’s and individual

PDEs can be found by looking at coefficients of y and t. However, neither hierarchy is

a reduction of the other. Also, each coefficient of yptq will split into one equation plus a

second one multiplied by w0.

The coefficient of yptqw0 is actually quite nice so we include the general formula:

(4Sp+q(∂̄λ − ∂̄µ) + 2Sq(∂̄λ − ∂̄µ)∂λp + 2Sp(∂̄λ − ∂̄µ)∂µq + ∂µq∂λp)

τ(x− λ,w − µ; q′)τ(x+ λ,w + µ; q′′)|λ=µ=0 = 0.

This gives us the following PDEs:

p = 1, q = 1, f = ∂x1log(τ(x1, w1)), (4∂x1 − 3∂w1)f = 0,

p = 2, q = 1, f = log(τ(x1, w1, x2, w2)), (4∂x1,x2 − 2∂x1,w2 − 2∂w1,x2 + 2∂w1,w2)f = 0,

p = 1, q = 2, f = ∂x2log(τ(x1, w1, x2, w2)), (3∂x1 − 2∂w1)f = 0,
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4.5 Soliton-like Solutions

Computing soliton solutions for the KP hierarchy is easy due to the fact that fermions

are square free. For the charged free boson hierarchy it is non-trivial to explicitly com-

pute elements of GL∞ by exponentiation. Note that our representation of gl∞ is a Lie

algebra representation, multiplication in the vertex algebra often does not correspond to

multiplication in gl∞.

Formally, 1-soliton solutions are derived by computing exp(cX) where c is a constant

and X ∈ gl∞. In terms of vertex operators we use the generating series Γ for gl∞

computed in section 4.3:

Γ(z, w) =: Y (e−α−β, z) : α(w)Y (eα+β, w) :: .

In general, this exponential can only be formally expanded as a series. To find explicit

formulas we set z = w. This gives shift operators, which function identically to those

used in computations with fermions [KR2].

Γ(z, z) was originally computed by Wang [W], note that his notation is quite different.

Lemma 4.5.1. Γ(z, z) = −β(z).

Proof. We compute

Γ(z, z) =: Y (e−α−β, z) : α(z)Y (eα+β, z) ::
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=: Y (e−α−β, z)Y (α−1e
α+β, z) :

= Y (e−α−β−1 α−1e
α+β, z) : .

Now

e−α−β−1 α−1e
α+β = α−1e

−α−β
−1 eα+β + e−α−β−2 eα+β

= α−1 + S1(−α− β) = −β.

Thus exp(cΓ(z, z)) = exp(−cβ(z)). Since modes of −β(z) are shift operators, by def-

inition the corresponding matrices −βn → Bn where Bn =
∑
k∈Z

Ek,k+n have the property

BiBj = Bi+j. We can now explicitly compute exp(cΓ(z, z)) = ecB0exp(c
∑
n6=0

Bn
1 ).

Through computation one also finds lim
w→z

Γ(z, w) is well defined and equals Γ(z, z).

Thus in a neighborhood around z = w explicit formulas for soliton-like solutions can be

approximated.

4.6 Twisted reduction

One of the advantages of using a lattice vertex algebra is the ease of finding reductions

for a hierarchy. The methods we use here can also be applied to the N-KP hierarchies to

find their natural reductions quickly and without any guesswork. This is clear from our

method of construction.

We find reductions by twisting the root lattice. As with 2-KP, the automorphism
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x → −x, x = α, β gives τ functions that do not have indices by eliminating the zero

modes.

Using general formulas from [BK] we calculate the twisted : α(z)Y (eα+β, z) : and

Y (e−α−β, z). Denote twisted operators with TW.

Recall from section 3.7 that Y TW (eγ, z) = zbγUTW
γ ETW

γ (z). We now find b, U , and E

for γ = ±(α + β).

From section 3.7, bγ = |γ0|2−|γ|2
2

but | ± (α + β)|2 = 0 so b±(α+β) = 0.

Also from section 3.7, UTW
γ1

UTW
γ2

= ε(γ1, γ2)B
−1
γ1,γ2

UTW
γ1+γ2

where ε(γ1, γ2)ε(γ2, γ1) =

(−1)(γ1,γ2)+|γ1|
2|γ1|2 and for a lattice automorphism σ of order 2 we have

Bγ1,γ2 = 2−(γ1,γ2)(1− eπi)(σγ1,γ2).

Thus ε(α + β,−α− β) = 1.

and Bα+β,−α−β = 2−(α+β,−α−β)(1− eπi)(−α−β,−α−β) = 1.

This gives UTW
α+βU

TW
−α−β = ε(α + β,−α− β)B−1α+β,−α−βU

TW
0 = 1.

We will pick UTW
α+β = UTW

−α−β = 1.

Now this just leaves us to find ETW
γ (z). Once again we refer the reader back to sec-

tion 3.7 giving ETW
γ (z) =: exp(

∫
γTW (z)) :. Fortunately γTW (z) for an automorphism of
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order 2 is easy to calculate:

γTW (z) =
∑
n∈Z

2

γTWn z−n−1 where γTWn = γn for n ∈ Z and 0 otherwise.

This gives us

Y TW (e−α−β, z) = exp(−
∑

n∈Z+1/2

(α−n + β−n)
zn

n
) and

Y TW (eα+β, z) = exp(
∑

n∈Z+1/2

(α−n + β−n)
zn

n
).

We now have to calculate aTW (z). To do this we use the following nth product for-

mula from[BK] with n = −1:

Y TW (α, z)−1Y
TW (eα+β, z) =

∑
m≥0

(
−1/2

m

)
z−mY TW (αm−1e

α+β, z)

and recall from section 3.2 that αm−1e
α+β = 0 for m > 1 and α0e

α+β = eα+β.

Proposition 4.6.1. We obtain a∗TW (z) = exp(−
∑

n∈Z+1/2

(α−n + β−n)
zn

n
),

aTW (z) =: (
∑

n∈Z+1/2

αnz
−n−1)exp(

∑
n∈Z+1/2

(α−n + β−n)
zn

n
) :

− 1
2z
exp(

∑
n∈Z+1/2

(α−n + β−n)
zn

n
).

Once again define ΩTW = Resza
∗
TW (z) ⊗ aTW (z). However, due to the correction in

the normally ordered product this is now no longer a highest weight module. Thus a

second correction term is needed and the correct definiton is ΩTW = a∗TW (z)⊗aTW (z)+ 1
2
.

Denoting the first tensor factor by primes and the second by double primes gives:
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ΩTW = Reszexp(
∞∑

n=1/2

(x′′n+y′′n−x′n−y′n)zn)(
∞∑

k=1/2

kx′′kz
k−1+

∞∑
k=1/2

∂x′′kz
−k−1)exp(

∞∑
n=1/2

(∂x′n−

∂y′n − ∂x′′n + ∂y′′n)
zn

n
)

− 1
2z
exp(

∞∑
n=1/2

(x′′n + y′′n − x′n − y′n)zn)exp(
∞∑

n=1/2

(∂x′n − ∂y′n − ∂x′′n + ∂y′′n)
zn

n
) +

1

2

We now make the following change of variables:

x′′ → w + t, x′ → w − t, y′′ → x+ y, y′ → x− y

This gives:

ΩTW = Reszexp(
∞∑

n=1/2

(2yn+2tn)zn)(
∞∑

k=1/2

k(wk+tk)z
k−1+

∞∑
k=1/2

(∂wk+∂tk)z
−k−1)exp(

∞∑
n=1/2

(∂yn−

∂tn)
zn

n
)− 1

2z
exp(

∞∑
n=1/2

(2yn + 2tn)zn)exp(
∞∑

n=1/2

(∂yn − ∂tn)
zn

n
) +

1

2

Theorem 4.6.2. We have:
∑
i,j≥0

Si(2y + 2t)
(
(j − i)(wj−i + tj−i) + ∂wi−j + ∂µi−j

)
Sj(∂̄λ − ∂̄µ)exp(

∑
k≥1

yk∂λk)exp(
∑
l≥1

tl∂µl)τ(w − λ, x− µ)τ(w + λ, x+ µ)|λ=µ=0

−

(∑
i≥0

Si(2y + 2t)Si(∂̄λ − ∂̄µ)− 1

)
exp(

∑
k≥1

yk∂λk)exp(
∑
l≥1

tl∂µl)τ(x−λ,w−µ)τ(x+

λ,w + µ)|λ=µ=0 = 0

This gives us the following PDEs:

p = 1, q = 1, f = log(τ(x1, w1)), (16∂x1,w1 + 3∂x1,x1 + ∂w1,w1)f = 0,

p = 3, q = 1, f = ∂x1log(τ(x1, x3)), 11∂w1,w1,w1f + 66(∂x1f)2 − 32∂w3f = 0,

p = 1, q = 3, f = ∂x1log(τ(x1, x3)), 13∂w1,w1,w1f + 78(∂x1f)2 + 32∂w3f = 0.
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4.7 α = 0 reduction

We show that setting α = 0 gives the KP hierarchy. However, as we see below, setting

α = 0 in the algebra and in the equations is not equivalent. While the Hirota equations

behave the same regardless of where we make the reduction, setting variables equal to

zero in the generating series for gl∞ does not give another copy of gl∞ using fewer vari-

ables. This means that most solutions of the charged free boson integrable hierarchy

with some variables set equal to zero can not be found by setting setting variables equal

to zero in the generating series for gl∞.

Define the following operators:

a∗B(z) = Y (e−β, z), aB(z) = Y (eβ, z), ΩB = Resza
∗
B(z)⊗ aB(z).

We write

Y (e±β, z) = z±β0e±βexp(
∑
n>0

±β−n
zn

n
)exp(

∑
n<0

±βn
z−n

−n
)

when it is convenient.

We will call ΩB our Casimir operator.

First we show that ΩB does not commute with Y (e−β, z)Y (eβ, w), which should be

the generating series for gl∞. Note we left off the normally ordered product as Y (e−β, z)

and Y (eβ, w) commute. We show this using the commutator formula from section 3.1

and the formulas from section 3.2.
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[Y (e−β, z), Y (eβ, w)] =
∑
n>0

Y (e−βn eβ, w)
∂nw
n!
δ(z − w)

But this is zero since e−βn eβ =: S−n−2(−β, ∂−β2!
, ∂

2−β
3!
...) : e0 and Schur polynomials with

negative indices are zero by definition.

We also need the following commutators, note the computation of [Y (eβ, z), Y (eβ, w)]

is similar :

[Y (eβ, z), Y (eβ, w)] =
∑
n>0

Y (eβne
β, w)

∂nw
n!
δ(z − w)

where eβne
β =: S−n(β, ∂β

2!
, ∂

2β
3!
...) : e2β.

Here we get a contribution from n = 0 giving

[Y (e±β, z), Y (e±β, w)] = Y (e±2β, w)δ(z − w).

Unlike the previous cases discussed in this thesis, Y (e−β, z) and Y (eβ, w) do not close a

subalgebra.

Now we compute

[ResxY (e−β, x)⊗ Y (eβ, x), 1⊗ Y (e−β, z)Y (eβ, w) + Y (e−β, z)Y (eβ, w)⊗ 1]

= ResxY (e−β, x)⊗[Y (eβ, x), Y (e−β, z)Y (eβ, w)]+[Y (e−β, x), Y (e−β, z)Y (eβ, w)]⊗Y (eβ, x)

= ResxY (e−β, x)⊗ Y (e−β, z)Y (e2β, w)δ(x− w)− Y (e−2β, z)Y (eβ, w)δ(x− z)⊗ Y (eβ, x)

= Y (e−β, w)⊗ Y (e−β, z)Y (e2β, w)− Y (e−2β, z)Y (eβ, w)⊗ Y (eβ, z).
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Here we changed the sign since the computations involved odd operators. Notice the

Casimir only commutes with Y (e−β, z)Y (eβ, w) when z = w. This happens for other

reductions.

We expand ΩB(τ ⊗ τ) to produce the KP hierarchy:

ΩB(τ ⊗ τ) = Resze
−βz−β0exp(−

∑
n>0

β−n
zn

n
)exp(

∑
n<0

βn
z−n

n
)

⊗zβ0eβexp(
∑
n>0

β−n
zn

n
)exp(−

∑
n<0

βn
z−n

n
)(τ ⊗ τ).

We use the change of variables from section 4.4 to obtain

ΩB = Reszz
−x0e−βexp(−

∑
n>0

xnz
n)exp(−

∑
n>0

∂xn
z−n

n
)⊗zx0eβexp(

∑
n>0

xnz
n)exp(

∑
n>0

∂xn
z−n

n
).

Denote the first tensor factor by primes and the second by double primes:

Ω = Resze
−β′eβ

′′
exp(

∑
n>0

(x′′n − x′n)zn)exp(
∑
n>0

(−∂x′n + ∂x′′n)
zn

n
).

We now make the change of variables:

x′′ → x+ y, x”→ x− y, eβ → q and get

ΩB(τ ⊗ τ) = Reszq
′−1q′′exp(

∑
n>0

(2yn)zn)exp(
∑
n>0

(∂yn)
zn

n
)(τ(x− y)⊗ τ(x+ y)).

Expanding in terms of Schur polynomials gives

Reszq
′−1q′′(

∑
n>0

Sn(2y)zn)(
∑
n>0

Sn(∂̄y)z
−n)(τ(x− y)⊗ τ(x+ y)).
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We then take the residue and expand using Taylor’s formula:

q′−1q′′(
∑
n>0

Sn(2y)Sn+1(∂̄µ)exp(
∑
l≥1

tl∂µl)τ(x− µ)τ(x+ µ)|µ=0 = 0.

This may look slightly different from the KP hierarchy, but setting t = iy and assum-

ing τ is independent of q gives the usual formula.

4.8 β = 0 reduction

We can also make a reduction by setting β = 0. This can be done in a straightforward

manner using the equations but we must be careful with the solutions. Define the fol-

lowing operators:

a∗A(z) = Y (e−α, z),

aA(z) =: α(z)Y (eα, z) : .

The Casimir is the expected formula, ΩA = Resza
∗
A(z) ⊗ aA(z) and the expected

generating series for gl∞ is : a∗A(z)aA(w) :. As in the last section, ΩA commutes with

: a∗A(z)aA(w) : only when z = w. This computation is similar to the computation in the

last section.

Performing the usual algebra to expand the Casimir we arrive at:

ΩA = Resze
−αz−α0exp(−

∑
n>0

(xn)zn)exp(
∑
n>0

(∂xn)
zn

n
)⊗
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: (
∑
k≥0

kxkz
k−1 +

∑
k>0

∂xkz
−k−1)eαzα0exp(

∑
n>0

(xn)zn)exp(−
∑
n>0

(∂xn)
zn

n
) :

Denoting the first tensor factor by primes and the second by double primes gives:

ΩA = Reszz
−α′0+α′′0 e−α

′′+α′′exp(
∑
n>0

(x′′n − x′n)zn)

(
∑
k≥0

kx′′kz
k−1 +

∑
k>0

∂x′′kz
−k−1)exp(

∑
n>0

(∂x′n − ∂x′′n)
zn

n
).

We now make the following change of variables:

x′′ → w + t, x′ → w − t, eα → q.

This gives:

ΩA = Reszq
′−1q′′exp(

∑
n>0

(2tn)zn)

(
∑
k≥0

k(wk + tk)z
k−1 +

∑
k>0

(∂wk + ∂tk)z
−k−1)exp(

∑
n>0

(−∂tn)
zn

n
).

Expanding in terms of Schur polynomials and taking the residue, we have

ΩA = q′−1q′′
∑
i,j≥0

Si(2t)
(
(j − i)(wj−i + tj−i) + ∂wi−j + ∂ti−j + δi,j(w0 + t0)

)
Sj(−∂̄t).

Theorem 4.8.1. We have:

q′−1q′′
∑
i,j≥0

Si(2t)
(
(j − i)(wj−i + tj−i) + ∂wi−j + ∂µi−j + δi,j(w0 + t0)

)

Sj(−∂̄µ)exp(
∑
l≥1

tl∂µl)τ(x− µ; q′)τ(x+ µ; q′′)|µ=0 = 0.

By stripping off coefficients of tp, assuming τ only depends on the first N variables
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for some N , and using the change of variables f = log(τ) we can find the following PDEs:

p = 1, τ(t0, t1, t2),

fx + yfx,y=0,

fxxxx + 6f 2
xx − 3fyy = 0,

p = 1, τ(t0, t1, t2, t3),

4fx + 4yfxy − zfxxxx − 6zf 2
xx + 3zfyy + 4zfxz = 0,

4fyz − 6fxyfxx − fxxxy = 0,

p = 2, τ(t0, t1, t2),

6fz + 6fxyy + 12fxfyy + zfyyyy + zf 2
yy − 3zfzz = 0.

The equation (?) fxxxx + 6f 2
xx − 3fyy = 0 is particularly nice so we will thoroughly

investigate its solutions. We will take y to be the time variable and x position. This

choice gives that fyy is acceleration.

First let f → εf . Plugging in to (?) gives εfxxxx + 6ε2f 2
xx − 3εfyy = 0 Factoring out

an ε and letting ε→ 0 removes the nonlinearity. The resulting equation fxxxx− 3fyy = 0

is Euler’s beam equation.

For completeness, the dispersion relation can be calculated by linearizing and com-

puting the Forier transform. To linearize, rewrite (?) as fxxxx + 6afxx − 3fyy = 0 where

a = fxx. Computing the Forier transform and examining the exponent, or equivalently

replacing ∂y → −iω and ∂x → ik, gives 3ω2 = −6ak2 + k4.
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To force solutions to approach 0 for large time, we need ω to be real. This happens when

6a < k2.

From the dispersion relation it is easy to calculate the group velocity ω′(k) of traveling

wave solutions. We get ω′(k) = −2ak+2/3k3

(−2ak2+1/3k4)(1/2)
provided that 6a < k2.

To look for traveling wave solutions, assume f(x, y) = g(x − cy). Plugging into (?),

we get 3c2g′′ = g(4) + 6(g′′)2. Letting h = g′′ gives h′′ = 3c2h− 6h2. This gives solutions

which are elliptic functions.

We also notice that if f(x, y) is a solution to (?), so is f(cx, c2y). This motivates us to

look for similarity solutions f(x, y) = g( x√
y
). Once again plugging into (?) and denoting

x√
y

= w gives:

g(4)

y2
+ g′′2

y2
= x2g′′

4y3
+ 3xg′

4y5/2
. We can write this as an equation for g′ = h giving 4h(3)+24(h′)2 =

3w2h′ + 9wh.

4.9 Virasoro solutions with β = 0

Virasoro with β = 0 is by definition : a∗A(z)∂zaA(z) :. Expanding in terms of lattice

operators gives : α(z)α(z) : +∂zα(z).

We further expand in terms of modes to get:∑
m,n>0

nmxnxmz
n+m−2 + 2

∑
m,n>0

nxn∂xmz
n−m−2 +

∑
m,n>0

∂xn∂xmz
−n−m−2

+2
∑
n>0

nxnx0z
n−2 + 2

∑
n>0

x0∂xnz
−n−2 + x20z

−2 + 2
∑
n>1

n(n− 1)xnz
n−2

+2
∑
n>0

(−n− 1)∂xnz
−n−2 − x0z−2
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Taking the coefficient of z−k−2 gives

Lk =
∑
m>0

(−k −m)mx−k−mxm + 2
∑
m>0

(m− k)xm−k∂xm +
∑
m>0

∂xk−m∂xm

−2kx−kx0 + 2x0∂xk + (x20 − x0)δk,0 + 2k(k + 1)x−k − 2(k + 1)∂xk

where variables with negative indices are zero.

We now exponentiate c Lk and apply to 1 which gives the following solutions:

L0 → τ(x0) = exp(c x20 − c x0),

L−1 → τ(x0, x1, x2) = exp(4c x0x1 − 2c x0x2),

L−2 → τ(x0, x1, x2, x3, x4) = exp(−3c x23−16c x4x0−6c x3x1−8c x4+c x21+4c x0x2+2c x2).

4.10 Future Research: Lax Equations

To derive and solve Lax equations for the charged free boson hierarchy we will reverse

engineer them from the Hirota equations and then prove we have found the correct op-

erators. Note we caution the reader to observe that while this section appears to be

complete we have no proof that the operator S is invertible. This is actually quite a deep

question and may lead to new algebra results. The partial results are worthwhile as we

have formulated wave equations. These do not depend on S−1 so this part of the section

is complete.

Since Hirota equations are derived from Lax equations using S−1 and we have Hirota

equations, it is reasonable to assume some analog of S−1 exists. However, ∂−1z does not

exist in the charged free boson vertex algebra. We suspect that this question can be
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answered algebraically by restricting the space on which S operates. A similar question

has also been partially answered geometrically for the super KP hierarchy.

We start by computing wave functions by solving a(z)τ = Ψτ and a∗(z)τ = Ψ∗τ .

Expanding we get:

∂z1z
x0
1 z

y0exp(
∑
n>0

(xnz
n
1 + ynz

n)exp(−
∑
n>0

(∂xn
zn1
n
− ∂yn

zn

n
)τ(x, y)|z1=z = Ψτ(x, y),

z−x0−y0exp(−
∑
n>0

(xn + yn)zn)exp(
∑
n>0

(∂xn − ∂yn)
zn

n
)τ(x, y) = Ψ∗τ(x, y).

We use Taylor’s formula and divide by τ and make the change of variables y → iy to

obtain the following result.

Theorem 4.10.1. We have

Ψ = ∂z1exp(
∑
n>0

(xnz
n
1 + ynz

n)
τ(x− [z−11 ], y − [z−1])

τ(x, y)
|z1=z,

Ψ∗ = exp(−
∑
n>0

(xn + yn)zn)
τ(x+ [z−1], y + [z−1])

τ(x, y)
,

where τ(x− [z−1]) = τ(x1 − z−1, x2 − 1/2z−2, x3 − 1/3z−3...).

Our dressing operators are now the wave functions excluding the exponential:

S = ∂z1
τ(x− [z−11 ], y − [z−1])

τ(x, y)
|z1=z,

S∗ =
τ(x+ [z−1], y + [z−1])

τ(x, y)
.

We will now attempt to derive Lax equations for L = S(∂x1 + ∂y1)S
−1, and L∗ =
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S∗(∂x1 + ∂y1)(S
∗)−1.

First we note that ∂ is a linear operator so we split L and L∗ into x and y parts. The

y equations are identical to the KP Lax equations. The x equations require more proof.

Let

ΨA = ∂zexp(
∑
n>0

xnz
n)
τ(x− [z−1])

τ(x)
,

Ψ∗A = exp(−
∑
n>0

xnz
n)
τ(x+ [z−1])

τ(x)
,

SA = ∂z
τ(x− [z−1])

τ(x)
|z=∂x1 ,

S∗A =
τ(x+ [∂−1x1 ])

τ(x)
,

LA = SA∂x1S
−1
A ,

L∗A = S∗A∂x1(S
∗
A)−1.

Also define S̄ =
τ(x−[∂−1

x1
])

τ(x)
.

We first show

Lemma 4.10.2.

Resz(
∑
i≥0

ai(∂x1)z
−iτ(x))(

∑
n≥0

nxnz
n−1)(

∑
j≥0

bj(∂y1)z
−jτ(y))exp((x1 − y1)z)

is well defined and zero only if aibj = 0 for x1 > y1 > 0.

Proof. We begin by expanding the exponential and moving any terms independent of z
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outside of the residue:

∑
i,j,n,k≥0

ai(∂x1)z
−iτ(x)(nxnz

n−1)bj(∂y1)z
−jτ(y)

(x1 − y1)k

k!
Reszz

−i−j+n−1+k.

Taking the residue gives

∑
i,j,n≥0

ai(∂x1)z
−iτ(x)(nxnz

n−1)bj(∂y1)z
−jτ(y)

(x1 − y1)i+j−n

(i+ j − n)!

which is clearly well defined.

We now compute ( ∂
∂xn
− (LA)n+) acting on ΨA where (LA)n+ is the portion of LA with

only positive powers of ∂x1 :

(
∂

∂xn
− (LA)n+)ΨA = (

∂

∂xn
− (LA)n+)SAexp(

∑
i>0

xiz
i)

= (
∂SA
∂xn

+ znSA − (LA)n+SA)exp(
∑
i>0

xiz
i) = (

∂SA
∂xn

+ SA
∂

∂xn1
− (LA)n+SA)exp(

∑
i>0

xiz
i)

= (
∂SA
∂xn

+ LnASA − (LA)n+SA)exp(
∑
i>0

xiz
i) = (

∂SA
∂xn

+ (LA)n−SA)exp(
∑
i>0

xiz
i).

Now consider Resz((
∂
∂xn
− (LA)n+)ΨA(x))Ψ∗A(y). This is zero due to the Hirota equa-

tions. We now show that implies ( ∂
∂xn
− (LA)n+)SA = 0.

Start by setting yi = xi, i > 1 giving

Resz((
∂

∂xn
− (LA)n+)SAe

x1z)S∗A(y1, x)e−y1z = 0.
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Rearranging gives

Resz(
∂SA
∂xn

+ (LA)n−SA)ex1zS∗Ae
−y1z = 0.

By lemma 4.10.1 this is well defined and (∂SA
∂xn

+ (LA)n−SA)S∗A = 0.

All that is left is to show S∗A is invertible, but this is clear from the vertex algebra

structure. Thus if we find where S−1A is defined, we will have a Lax formulation of the

charged free boson hierarchy.
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