
ABSTRACT

COHEN, SEAN E. A Numerical Investigation into the Expansion of a Plasma Plume due to
Ablation of a Graphite Target by a Nano-second Laser Pulse. (Under the direction of Dr. Alina
Chertock.)

This thesis is concerned with the implementation of an effective numerical method to solve
the laser ablation problem modeled by fluid dynamic equations and, thereafter, numerically in-
vestigate the behavior of the solutions as a result of varying physical and numerical parameters.
Sharp results are obtained that effectively simulate the expansion of the plasma plume result-
ing from the nano-second laser pulse using both the Navier-Stokes equations and the quasi-gas
dynamic equations. In particular, we are able to simulate the one-dimensional expansion with a
wide array of parameters. Numerically, we determine parameters that most effectively balance
efficiency with accuracy. We also run numerical experiments that test a wide array of physi-
cal parameters and note their effects on the behavior of the solutions. The two-dimensional,
and quasi two-dimensional, simulations provide great insight to the behavior of the plasma
expansion as well as a vital tool in the computation of the laser ablation problem.

In Chapters 2 and 3 we study the one-dimensional problem. Our objectives include the
implementation of a numerical method that efficiently handles the problem while providing the
desired accuracy. With the numerical method set, we then turn our attention to documenting
the effects of the numerical parameters involved in the approximation. Of great concern is
the influence of the relaxation parameter controlling the viscosity and thermal diffusion in the
quasi-gas dynamic mathematical model. We are able to produce results with a varied range
of physical parameters. In particular, we are able to implement initial conditions that more
realistically mimic the physical experiments. The results are found to be in agreement with
physical experiments. Since such experiments are expensive and difficult to perform, we are
able to gain insight into the behavior of the expansion under disparate configurations.

Chapters 4 and 5 present results of our exploration into the two-dimensional problem.
With an efficient one-dimensional numerical scheme under our belts, we are able to simulate
the highly computationally demanding two-dimensional problem. We first present the quasi-
two dimensional radially symmetric model. This model simplifies the two-dimensional model
by treating the angular dimension in the polar coordinate realization as constant. In this way
we are able to simulate a two-dimensional problem while working in only one dimension. We
then tackle the full two-dimensional problem. The results show the effectives of the quasi-gas
dynamics model in providing an appropriate amount of smoothing in order to efficiently and
accurately realize solutions. This numerical scheme is of great importance and interest to the
scientists studying laser ablation.
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Chapter 1

Introduction

The computation of laser ablation is an area of research that encompasses many important topics
of mathematics, including mathematical modeling, numerical methods for partial differential
equations (PDEs), and data analysis. Laser ablation is the process of removing material from a
solid surface by irradiating it with a laser beam. The action of the short laser pulse striking the
target results in a high-pressure, high-temperature region near the target which then expands
into the low pressure region. There are many applications, including laser drilling where it is
possible to drill small, deep holes through very hard materials, and removing coatings from a
surface without damaging the underlying surface. Applications are found in dentistry and laser
machinery. The process of laser ablation can also produce a plasma - a partially ionized gas
with free electrons - which itself has many applications. Among these applications are growing
thin films and bulk crystals. A plasma bunch appears as a result of the laser pulse striking
the target material, which in this thesis is taken to be carbon. The plasma expands into the
surrounding atmosphere and covers the substrate in a thin film. The film’s quality is largely
determined by the velocity of the carbon flow. Shock waves, which are likely to occur due to
the low pressure setting, are detrimental to the film quality. The shock wave decelerates the
motion of the carbon flow, or even reverses part of the flow. Controlling the velocity of the
shock wave front is an important problem in the growth of thin films.

The physical problem being modeled here is the expansion of the plasma metamorphized by
the ablation of the target material. The nanosecond laser pulse strike results in an extremely
high-temperature, high-pressure plasma that expands into the surrounding atmosphere accord-
ing to the laws of fluid dynamics. After the laser strike, the high temperature and high pressure
laser blast transforms the strike material into a plasma. The plasma expands from the high
energy region into the surrounding low pressure, low temperature atmosphere. The evolution
of this expansion can be modeled by the Navier-Stokes (NS) equations. Due to the compu-
tational difficulties inherent in these equations, a variation of the Navier-Stokes equations has
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been proposed in [72]. This so-called quasi-gas dynamic (QGD) system is derived in [35]. The
main component of the QGD equations that differs from the NS equations is the addition of a
relaxation parameter that controls the additional dissipative terms provided by the QGD model
and has the dimension of time. For performing simulations, these extra terms can be used to
control the amount of artificial viscosity introduced to increase the computational stability.
The derivation of the system is presented in detail in Chapter 2. For now, let us note that
the difference between NS and QGD is that while the NS equations use spatial averaging at
the kinetic description, QGD is derived using both spatial and temporal averaging. The time
averaging leads to a loss in the conservation of momentum that is expressed in terms of the
relaxation parameter.

Some of the challenges that laser ablation poses to computation include the need to handle
large gradients in the initial conditions, accurate resolution and location of shocks that can occur
depending on physical parameters, and reducing computational cost so that multi-dimensional
models may be computed. The need for accurate computation of laser ablation is acutely
necessary in the study of plasma expansion. Unfortunately, the huge pressure and temperature
jump between the relatively tiny strike region and the surrounding atmosphere tends to wreak
havoc on numerical schemes. Of course, we can produce results for this problem with standard
finite difference schemes. However, stability constraints on the time evolution are prohibitive.
Also, the spatial mesh grids that must be constructed to handle the implementation of the
initial value problem limit the numerical experiments which scientists would like to carry out.
These huge computational costs also inhibit the implementation of higher dimensional models.

The computation of laser ablation using the QGD equations was carried out in [72], [115].
The problem was solved using standard second-order finite differences in space and first-order
forward differences in time. Besides the excessive smoothing of shock fronts, the scheme is
computationally expensive. Monte Carlo direct simulation of the gas dynamics is used to
investigate the expansion of the laser plume into a buffer gas in [46]. In [54], a hybrid model is
developed to study the expansion. The early stages of computation ignore diffusion and use a
macroscopic description of the expansion. Afterwards, diffusion and energy exchange are taken
into account, and the expansion is described using a microscopic approach computed by direct
Monte Carlo simulation. Also, models for different applications have been developed. E.g., in
[32], a pseudo one-dimensional model is developed for laser drilling which elegantly, efficiently,
and accurately measures the drilling depth. The process is assumed to be axis-symmetric.
Non-dimensionalizing the heat transfer shows that radial diffusion is negligible relative to the
vertical diffusion. Radial averaging provides the one-dimensional formulation.

By utilizing a semidiscrete finite-volume method we are able to cut the spatial mesh grid
size by over ninety percent. Also, the semidiscrete scheme allows us to implement efficient
ODE solvers which allow for larger time steps. The computational savings then allow for a
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thorough numerical investigation of the physical problem, the model’s parameters, and even the
parameters associated with the numerical scheme. The implementation of the two-dimensional
model gives us a broader, and previously not available, picture of the physical expansion of the
ablated plasma modeled using the quasi-gas dynamics equations. The numerical results imply
that the plasma behaves in very much the same way as a gas or fluid. The ability to represent
the expansion of the plasma using the equations of fluid dynamics points to this relationship.
Furthermore, the initial conditions of the numerical problem (representing the laser strike as a
”dam-break” problem) imply that the expansion of the plasma is driven by forces created by
the relatively, extremely high-pressure, high-temperature strike zone.

There are several goals to this numerical investigation. The first goal is to implement a
stable method that greatly reduces the cost of computation. The desired result is a method
whose computational savings allow it to be applied to multi-dimensional QGD models. In
particular, we want to gain the efficiency needed to solve the two-dimensional problem. The
second goal is to more accurately resolve the shocks that are present in the solutions, including
their locations. The finite volume method employed is able to accurately capture the behavior
of the shock evolution. The resolution of the shocks is greatly increased over the finite difference
method. In the binary gas problem, the surrounding atmosphere is taken to be nitrogen. Extra
terms are included to couple the interaction between the gases. Previous computations of this
problem were marred by excessive smoothing of the shocks and inaccuracy in the location of
shock wave propagating through the nitrogen atmosphere. In particular, there was a delay
in the appearance of the shock which should coincide with the propagation of the carbon jet.
These deficiencies are corrected using the numerical scheme employed here. The third goal is to
be able to handle more physically relevant initial conditions. When initial pressure conditions
in the strike zone are raised to values coinciding with those from physical experiments, previous
computations were only able to resolve solutions when the initial pressure in the surrounding
atmosphere is kept unreasonably high. The numerical method employed here is able to resolve
solutions for these conditions even as the initial pressure in the surrounding atmosphere drops
towards zero. Also, we are able to test other modifications to the initial conditions such as
adjusting the size of the strike zone. Finally, we introduce analysis of the relaxation parameter
by studying the behavior of solutions as the value of this parameter approaches zero. We also
provide results for the computation of laser ablation with the NS equations, which coincides
with removal of the QGD diffusive terms. This computation has been previously difficult to
carry out with the severe restrictions due to stability concerns.

The method employed here provides a computational advantage and the ability to con-
duct complete numerical investigations that were previously unobtainable, such as the two-
dimensional modeling. It also provides the efficiency and accuracy needed by researchers. In
the following, we describe conservation laws and the numerical methods used to approximate
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them.

1.1 Mathematical Models

The study of the flow of fluids is important in a variety of scientific applications, among which
are atmospheric sciences, aerodynamics, nuclear physics, and pollution control. The formulation
of the equations describing the dynamics of fluid flow stand among the greatest achievements
in science. Among the many excellent references on fluid dynamics are [3, 11, 29, 89, 63]. When
we speak of the flow of fluids we typically have in mind one of two states of matter, liquids or
gases. These states of matter differ from solids in that they do not have a preferred shape. The
removal of a shear force applied to a solid will result in its returning to its original shape. I.e,
the solid is perfectly elastic. Fluids however will deform continuously when acted upon by a
shear force. We say that the fluid flows.

There are also two distinct conceptual ways of viewing and describing fluid flow. They
are derived from the scale of observation. In particular we can observe phenomena at the
microscopic level or the macroscopic level. In the microscopic, or statistical, description, the
fluid flow is predicted by the interaction of individual molecules. At this level of description
the fundamental variables are the position, mass and velocity of each individual molecule. The
macroscopic, or continuum, description of a fluid flow is that of fluid particles moving along
stream lines. The stream lines are the integral curves of the velocity field

Although it is possible to study the flow of a fluid by studying the interaction of the molecules
by which it is comprised, we are concerned with the gross movement of the fluid. I.e., we are
concerned with the continuum description of the flow.

This description is derived from the three fundamental conservation principles, which are

1. Conservation of mass

2. Conservation of momentum

3. Conservation of energy

We now provide a description of general conservation laws.

1.1.1 Systems of Conservation Laws

A system of conservation laws in multi-dimensions can be represented in the general form

∂w
∂t

+
d∑

k=1

∂

∂xk
fk(w) = 0, (1.1)
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where w is an m-vector consisting of the quantities of interest, x = (x1, . . . , xd)T , and the flux
functions, fk : Rm → Rm for k = 1, . . . , d, are at least continuously differentiable. The flux
functions are generally nonlinear. In practice, x is the spatial variable and d = 1, 2 or 3. For
example, if d = 2, then x = (x, y)T and

∂w
∂t

+
∂

∂x
f1(w) +

∂

∂y
f2(w) = 0. (1.2)

The derivation of conservation laws follows from the fact that in a physical system, the
quantity being measured is conserved as the system evolves. Some examples of conserved
quantities are mass, momentum, energy, and electric charge. The conservation law is derived
by noting that any change of one of these conserved quantities in some region can only result
from a net change in flux of the quantity into or out of the region [111], [92]. Suppose that
Ω ∈ Rd is a bounded domain inside the fluid and ∂Ω is its smooth boundary. Let us consider
density given by ρ(x, t). Then the amount of ρ in the region Ω is given by the volume integral,

∫
Ω
ρ(x, t)dx. (1.3)

Since the quantity ρ is conserved, its value only changes due to fluid entering or exiting the
region. The rate at which the mass is exiting the region is given by f̃(ρ) ·n, where n is the unit
outward normal on the boundary and f̃ = (f̃1(ρ), f̃2(ρ), . . . , f̃d(ρ)), where f̃k is the flux of ρ in
the xk-direction, k = 1, . . . , d. Therefore,

d

dt

∫
Ω
ρ(x, t)dx = −

∫
∂Ω

f̃(ρ) · n dS, (1.4)

where dS is the surface measure on the boundary ∂Ω. The negative sign indicates that the
change in mass decreases if the net flow is outwards. The divergence theorem states that the
outward flux of a quantity through its boundary is equal to the volume integral of the divergence
of that quantity inside the region. I.e.,∫

∂Ω
f̃(ρ) · n dS =

∫
Ω
∇ · f̃(ρ)dx. (1.5)

Thus, we can deduce that ∫
Ω

(
∂ρ

∂t
+∇ · f̃(ρ)

)
dx = 0. (1.6)

Since Ω is an arbitrary region and the integrand is a continuous function, we obtain the
general form for conservation laws given in (1.1). Equation (1.1) is supplied with appropri-
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ate initial and boundary conditions. In particular, the Riemann problem consists of initial
conditions which are constant in different regions.

A linear system of partial differential equations (PDEs) in one spatial dimension can be
written as

wt +Awx = 0, (1.7)

where w is defined above in (1.1) and A is the m × m matrix of constant coefficients. Note
that the subscript notation used here indicates the partial derivative in the indicated direction
and will be used interchangeably. If A is diagonalizable with real eigenvalues, then we say the
system of PDEs, (1.7), is hyperbolic. Furthermore, if the eigenvalues are distinct, we say the
system is strictly hyperbolic. For linear systems in one dimension the diagonalizability of the
matrix A gives rise to the decoupling of the equations. This lends itself to writing the solution
as a linear combination of m waves traveling at constant speeds given by the eigenvalues of A.

In two or more dimensions we need this hyperbolicity condition to be satisfied not only
for each of the coefficient matrices, but also for any linear combination of these matrices. For
example, in two dimensions we have

wt +Awx +Bwy = 0. (1.8)

Then we say the system is hyperbolic if the matrix Ã = αA + βB is diagonalizable with real
eigenvalues for all α, β ∈ R.

For nonlinear systems the situation becomes more complicated as solutions generally involve
shock and/or rarefaction waves. In one dimension we can rewrite (1.1) as

wt + f1(w)x = 0. (1.9)

Furthermore, we can write this system in the following quasi-linear form:

wt +A(w)wx = 0, (1.10)

where A(w) is the Jacobian matrix consisting of the partial derivatives of the m components
of the flux function, f1 = (f11, f12, . . . , f1m)T , with respect to the components of the solution.
I.e.,

A(w) =


∂f11
∂w1

· · · ∂f11
∂wm

...
...

...
∂f1m

∂w1
· · · ∂f1m

∂wm

 (1.11)
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A one-dimensional nonlinear system of PDEs is hyperbolic at a point (x, t) if the Jacobian
matrix A(w) is diagonalizable with real eigenvalues at said point. Similar to above, in multi-
dimensions we need any linear combination of the Jacobian matrices of the flux functions
fk, k = 1, . . . , d to be a diagonalizable matrix with real eigenvalues. The quasi-linear system
(1.10) is hyperbolic in a region if it satisfies this hyperbolicity condition for all w in the region.
We strongly recommend [77], [114] and [41] for details on hyperbolic systems of PDEs. Further
general information on PDEs can be found in [99, 92, 111, 119, 57] and specifically on hyperbolic
PDEs in [25, 37, 40, 84, 53, 116, 104, 101].

Characteristic curves are curves in the solution space along which the PDE becomes an
ordinary differential equation (ODE). The union of the solutions, the integral surface, of the
ODEs that pass through the initial curve, which itself must not be a characteristic curve, is the
solution of the PDE. This is best imagined as flowing out from each point of the given initial
curve along the characteristic curve that passes through this point. In linear problems these
curves are parallel and their slopes, characteristic speeds, are given by the eigenvalues of the
coefficient matrix. In nonlinear problems the eigenvalues of the Jacobian matrices depend on
the solution, in which case the initial data is distorted as the solution evolves. So, as the solution
evolves we see regions on the wave that move faster or slower than other regions resulting in
compression or expansion. If two characteristics intersect, then we are faced with the quandary
that the solution has different values at the same point. This is imagined as the integral surface
folding over on itself. Thus, we can no longer speak of derivatives of the solution at these points.

Instead of giving up at this, we turn our attention to the weak form of the partial differential
equation. In this manner we may speak of discontinuous solutions.

We call w(x, t) a weak solution of (1.1), if

∫ ∞
0

∫
Ω

(wφt +
d∑

k=1

fk(w)
∂φ

∂xk
)dxdt = −

∫
Ω

w(x, 0)φ(x, 0)dx, (1.12)

for all φ(x, t) ∈ C1
0 , i.e., φ is smooth and has compact support.

As mentioned above, shocks occur when two characteristics carrying conflicting information
meet. Let Σ be a surface separating Ω into two regions, Ω1 and Ω2. Let w|Ω1 = w1 and
w|Ω2 = w2 be the constant initial states in each region. Then w is a weak solution of equation
(1.1) if and only if it is a classical solution in both Ω1 and Ω2, and the Rankine-Hugoniot jump
condition, see [92, 77], holds along Σ. The Rankine-Hugoniot jump condition is given by

nt[w] +
d∑

k=1

nxk
[fk(w)] = 0. (1.13)

where the unit normal vector is given by n = (nt, nx1 , . . . , nxd
). Here we have the jump of the
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solution across Σ given by

[w] = w2 −w1, (1.14)

and the jump of the flux functions is given by

[fk(w)] = fk(w2)− fk(w1). (1.15)

In one dimension (d = 1), we can represent the surface Σ by (t, ξ(t)), and (1.13) can be written
as

s[w] = [f1(w)], (1.16)

where s = dξ
dt is the speed at which the discontinuity propagates. For linear systems, the

shock speed becomes the eigenvalue of the coefficient matrix corresponding with the eigenvector
representing the jump in initial states. Note, this implies a specific relationship between the
initial states for a shock to occur.

The entropy condition is used to determine whether a weak solution is the physically correct
solution. The condition ensures that the characteristic curves behave correctly. Physically, this
is related to the expansion of gases and that the energy of the expansion is overtaking that
which is in front of it.

For the scalar conservation law in one-dimension (wt + f11(w)x = 0), the Lax entropy
condition, see, e.g., [92, 77], states that a discontinuity propagating with speed s given by
(1.16) satisfies the entropy condition if

f ′11(w1) > s > f ′11(w2). (1.17)

One of the ways to obtain an entropy solution is by considering the vanishing viscosity
problem, which is given by

∂w
∂t

+
d∑

k=1

∂

∂xk
fk(w) = ε4w. (1.18)

The hyperbolic problem, of course, breaks down as a differential equation when a shock forms.
In (1.18), ε > 0 is a small parameter. We expect the solutions to this parabolic problem to
approach the hyperbolic solution as ε → 0. Near discontinuities, where the spatial derivatives
become very large, the viscosity term ε4w exerts its influence of smoothing the solution.
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More generally, we can consider the solution wε of the regularized system,

∂wε

∂t
+

d∑
k=1

∂

∂xk
fk(wε) = Rε(wε), ε > 0. (1.19)

Here Rε is a regularizing term that can model diffusion, viscosity, friction, etc. Near a shock
wave, the viscous terms become important. In physical phenomena, shock waves manifest as
smooth transitions over very small regions [77], and the viscous terms provide this smoothing.

1.1.2 Euler Equations

Euler’s equations of gas dynamics were written down more than two hundred and fifty years
ago, and yet to this day they still are the backbone of fluid dynamics. The article “Principes
generaux du mouvement des fluides” was published in 1757 in Mmoires de l’Academie des
Sciences de Berlin. The equations describe the flow of an inviscid fluid through space and time.
The quantities that describe the motion are density, velocity and energy. For compressible
fluids an equation of state must be given.

The derivation of these equations follows from the three fundamental principles of conser-
vation. To see this let us consider a one-dimensional pipe with a given velocity u(x, t). In gas
dynamics compression or expansion can cause the density ρ to vary. The total mass in a section
of pipe, say [x1, x2], is given by the basic integral form of a conservation law,

d

dt

∫ x2

x1

ρ(x, t) dx = F1(t)− F2(t), (1.20)

where Fi(t) is the flux at the endpoint xi, i = 1, 2. So, the total mass in a section of the pipe
can only change if there is a difference in the fluxes at the endpoints. The flux of density at
(x, t) is given by ρ(x, t) · u(x, t). So the conservation law for the density ρ becomes

ρt + (ρu)x = 0. (1.21)

This is known as conservation of mass. Now we need a second equation for velocity. While
velocity is not conserved, momentum is conserved. The density of momentum ρu can only
change due to the flux of momentum at the endpoints. Now, momentum flux is made up of
two components: Momentum carried along by motion, i.e., momentum × velocity = ρu2, and
microscopic flux due to pressure, p.

So the momentum flux is ρu2 + p, and the conservation of momentum is thus given by

(ρu)t + (ρu2 + p)x = 0. (1.22)
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We now have a new unknown, pressure p(x, t). Pressure is not a conserved quantity, so we
introduce the density of energy, E(x, t). We use an equation of state to determine the pressure
in terms of mass, momentum, and energy, i.e., p = p(ρ, u,E). Similar to above, there is
a contribution to the flux of energy by the motion of the flow, Eu. Also, the microscopic
momentum flux leads to a flux in kinetic energy, pu. The conservation of energy is given by

Et + ((E + p)u)x = 0. (1.23)

These three equations give us the system of one-dimensional Euler equations,

ρt + (ρu)x = 0, (1.24)

(ρu)t + (ρu2 + p)x = 0, (1.25)

Et + ((E + p)u)x = 0. (1.26)

The system is completed by specifying an equation of state. We are interested in compressible
fluids, where an equation of state relating pressure to density, velocity and energy must be
appended. The multi-dimensional formula for an ideal polytropic gas is given by

E =
p

γ − 1
+
ρ

2
||u||2. (1.27)

γ is the adiabatic gas constant. There are many resources available on equations of state and
more generally, thermodynamics (see, e.g., [12, 30, 102]).

The Euler equations in multi-dimensions are given by

∂ρ

∂t
+∇ · (ρu) = 0, (1.28)

∂(ρu)
∂t

+∇ · (u⊗ (ρu)) +∇p = 0, (1.29)

∂E

∂t
+∇ · ((E + p)u) = 0. (1.30)

Here we have u is the velocity vector. For example, in three dimensions u = (u, v, w)T . The
symbol ⊗ is called the dyadic product of two vectors having the same dimension. The product
may be represented as a matrix, e.g. in three dimensions we get the following.

x⊗ y =

 x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3


It can be shown that the Euler equations are hyperbolic. Indeed, solutions of the Euler
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equations are expected to have shocks and/or rarefaction waves. The eigenvalues of the Jacobian
of the flux functions, considered here in the multi-dimensional sense described earlier, give the
wave speeds. The conservative variables in the solution vector w are density ρ, momentum ρu,
and energy E. In one-dimension, the solution vector looks like w = (ρ, ρu,E)T . Then the flux
for the one-dimensional Euler equations is given by

f(w) =

 ρu

ρu2 + p

(E + p)u

 (1.31)

Note that the equation of state provide us with a formula for pressure in terms of the solution
vector. The Jacobian for our one-dimensional example is given by the following matrix.

f ′(w) =

 0 1 0
1
2u

2(γ − 3) u(3− γ) γ − 1
1
2(γ − 1)u3 − uH H − (γ − 1)u2 uγ


Here we use the formula for enthalpy H = (E + p)/ρ to simplify calculations. The eigenvalues
of this matrix are given by the fluid velocity and the speed of sound in the fluid added and
subtracted from the fluid velocity. For the one-dimensional problem we have (λ1, λ2, λ3) =
(u−c, u, u+c), where the speed of sound is given by c =

√
(γp)/ρ. For a more detailed analysis

of the eigenvalues of the Euler flux Jacobian, see Appendix A.1.

1.1.3 Navier-Stokes Equations

The Navier-Stokes equations are a mathematical model that describes the way viscous fluids
flow and are named after Claude-Louis Navier and George Gabriel Stokes. The equations are a
continuation of the Euler equations and are derived from the same conservation laws with the
inclusion of the physical effects of viscosity [114]. While the ideas of viscosity, pressure, and
capillary action were studied heuristically by early philosophers and scientists, such as Leonardo
da Vinci, the development of Newtonian mechanics saw these concepts begin to be written
down in mathematical formulation. Navier first discovered the correct equations of motion for
viscous fluids through a heuristic understanding of the effects of viscosity on the fluid flow. In
1845 Stokes formulated the equations in the context of fluid dynamics. The equations aim to
reproduce the fluid flow given some initial perturbation to the velocity, density and energy of
the fluid.

In particular, we will be working with the Navier-Stokes with heat conduction. In this
formulation, the effects of viscosity and heat conduction are added to the Euler equations. The
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one-dimensional version (see [35]) is given as

∂ρ

∂t
+
∂(ρu)
∂x

= 0, (1.32)

∂(ρu)
∂t

+
∂(ρu2)
∂x

+
∂p

∂x
=
∂Π
∂x

, (1.33)

∂E

∂t
+
∂((E + p)u)

∂x
+
∂q

∂x
=
∂Πu
∂x

. (1.34)

The effects of viscosity, Π, are given by

Π =
(

4
3
η + η

(
5
3
− γ
)
B

)
∂u

∂x
. (1.35)

The coefficient B is related to temperature and intermolecular interaction. The dynamic vis-
cosity η and the adiabatic index γ are also used to calculate the viscous stress tensor.

The thermal conductivity component, or heat flux, q is proportional to the gradient of
temperature and is given by

q = −κ∂T
∂x

, (1.36)

where κ is the thermal conductivity. Temperature is calculated using the ideal gas law, see
equation (2.18). In order to close the system of equations (1.32)-(1.34) we use the equation of
state given by

E =
ρu2

2
+ p(γ − 1). (1.37)

In two dimensions, the NS equations read like this:

∂ρ

∂t
+
∂(ρu)
∂x

+
∂(ρv)
∂y

= 0, (1.38)

∂(ρu)
∂t

+
∂(ρu2)
∂x

+
∂(ρvu)
∂y

+
∂p

∂x
=
∂Π(xx)

∂x
+
∂Π(yx)

∂y
, (1.39)

∂(ρv)
∂t

+
∂(ρuv)
∂x

+
∂(ρv2)
∂y

+
∂p

∂y
=
∂Π(xy)

∂x
+
∂Π(yy)

∂y
, (1.40)

∂E

∂t
+
∂(u(E + p))

∂x
+
∂(v(E + p))

∂y
+
∂q(x)

∂x
+
∂q(y)

∂y
=

∂

∂x

(
Π(xx)u+ Π(xy)v

)
+

∂

∂y

(
Π(yx)u+ Π(yy)v

)
, (1.41)
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where the viscous stress tensor is given by

Π(xx) = η

(
2
∂u

∂x
−
[

2
3
− ζ

η

]
div ~u

)
, (1.42)

Π(xy) = η

(
∂v

∂x
+
∂u

∂y

)
, (1.43)

Π(yx) = η

(
∂u

∂y
+
∂v

∂x

)
, (1.44)

Π(yy) = η

(
2
∂v

∂y
−
[

2
3
− ζ

η

]
div ~u

)
. (1.45)

The parameter ζ in (1.45)is the bulk viscosity. Finally, the heat flux in equation (1.41) is given
by

q(x) = −κ∂T
∂x

, (1.46)

q(y) = −κ∂T
∂y

. (1.47)

Again, we close the system of equations (1.38)-(1.41) with equation of state given by

E = ρ(u2 + v2)/2 + p(γ − 1). (1.48)

It is noted that the equation of state provides a description of the thermodynamics of the system
and is an approximate statement on the nature of the medium [114].

1.2 Numerical Methods

Since exact answers to practical mathematical problems are usually unobtainable, numerical
approximations provide a tool for analyzing these problems. Numerical methods have been used
for centuries, even millennium. Ancient tablets provide numerical algorithms for approximating
square roots. Some of the most important algorithms, which still enjoy widespread popularity
and use, are named after some of the most prolific mathematicians from the eighteenth century.
For example, we have Newton’s method, Euler’s method, and Lagrange interpolation. The
proliferation of computational methods has been to mathematical modeling what the microscope
and telescope were to biology and astronomy.

The numerical schemes employed to solve PDEs and, in particular, conservation laws include
finite volume methods [5, 4, 28, 47, 19, 8], finite difference methods or WENO schemes [21,
78, 79] and finite element methods [10]. Of particular interest are upwind schemes [16, 20, 33].
There are many examples of high resolution methods [17, 60], positivity preserving and other
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types of non-oscillatory schemes [2, 20], and adaptive mesh schemes [15, 49].

1.2.1 Finite Volume Method

Finite Volume (FV) methods are the most popular methods for systems of conservation laws
[77] thanks to their ability to capture nonsmooth (discontinuous) solutions in an accurate and
non-oscillatory manner. In these methods, the solution is realized in terms of cell averages
which are evolved according to the integral formulation of the problem.

For simplicity, we present here a one-dimensional version,

∂w(x, t)
∂t

+
∂f(w(x, t))

∂x
= 0. (1.49)

Here, w is the vector of quantities being measured, f is the flux function, and x and t are the
spatial and time variables, repsectively. The conservation law, (1.49), is represented in integral
form as

d

dt

∫ b

a
w(x, t)dt = f(w(a, t))− f(w(b, t)). (1.50)

In order to do develop a FV approximation to (1.49), we create a grid over the spatial domain
by letting xj = j∆x, xj± 1

2
= xj ± ∆x

2 , j = 1, · · ·N , where N indicates the size of the grid. We
denote the jth grid cell by

Cj = (xj− 1
2
, xj+ 1

2
). (1.51)

We then denote the approximate cell average of w(x, t) over the grid cell Ci at time tn as w̄n
j ,

given by the following formula.

w̄n
j ≈

1
∆x

∫ x
j+1

2

x
j− 1

2

w(x, tn)dx. (1.52)

Note that, if w(x, t) is smooth, the midpoint rule gives a second-order approximation to the
integral in (1.52). We now would like to derive a formula for the evolution in time of this cell
average. If we integrate (1.50) in time from tn to tn+1, and divide through by ∆x, we get the
following equation.

1
∆x

∫ x
j+1

2

x
j− 1

2

w(x, tn+1)dx =
1

∆x

∫ x
j+1

2

x
j− 1

2

w(x, tn)dx− 1
∆x

 tn+1∫
tn

f(w(xj+ 1
2
, t))dt−

tn+1∫
tn

f(w(xj− 1
2
, t))dt


(1.53)
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This formula gives us the exact evolution in time of the cell averages. Note that the spatial
integrals in (1.53) are the cell averages w̄n+1

j and w̄n
j . Note also that we can not evaluate the

time integrals on the right-hand side of (1.53) since these functions are in general changing
along the grid interfaces over time. We can rewrite (1.53) using the cell averages as

w̄n+1
j = w̄n

j −
1

∆x

 tn+1∫
tn

f(w(xj+ 1
2
, t))dt−

tn+1∫
tn

f(w(xj− 1
2
, t))dt

 . (1.54)

The approximation of the flux functions here becomes the main challenge and the choice of
how to approximate the integrals on the right-hand side of (1.54) determines the class of finite
volume scheme.

In order to further discuss the nuances involved in approximating flux functions, let us
denote the approximation of the average of the time integral of the flux functions, called the
numerical flux, as Fn

j± 1
2

. I.e.,

Fn
j+ 1

2

≈ 1
∆t

tn+1∫
tn

f(w(xj+ 1
2
, t))dt. (1.55)

We can then represent equation (1.53) in terms of these approximate flux functions and the cell
averages. This is given below in equation (1.56),

w̄n+1
j = w̄n

j −
∆t
∆x

(
Fn
j+ 1

2

− Fn
j− 1

2

)
. (1.56)

There are several factors that go into the determination of an appropriate approximation of
the flux. In particular, we would like to choose the numerical flux so as to obtain a convergent
numerical method. The notion of convergence in numerical methods involves two conditions.
The method should be consistent and stable. Consistency denotes the ability of the numerical
method to accurately approximate the PDE. Stability demands that small changes in initial data
result in small changes in the numerical approximation. To further discuss these components
in detail, let us introduce notation to represent the numerical flux in terms of the values by
which it will be calculated. For convenience, we introduce the notation F̂, where

F̂j+ 1
2
(w̄n

j , w̄
n
j+1) = Fn

j+ 1
2

. (1.57)

This notation makes it clear that the numerical flux depends only on the cell averages on
either side of the flux boundary. If we rewrite (1.56) using this notation, we get an alternative
representation of this cell average update formula, given below in (1.58). Note that this method
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has a three-point stencil,

w̄n+1
j = w̄n

j −
∆t
∆x

(
F̂j+ 1

2
(w̄j , w̄j+1)− F̂j− 1

2
(w̄j−1, w̄j)

)
. (1.58)

In determining if a method is consistent, we need to check that it approximates the integral
given in (1.55). Note that if the function w(x, t) = c is a constant vector, then the integral is
equal to f(c). Thus, we can check for consistency by determining if it satisfies the following
condition,

F̂j+ 1
2
(c, c) = f(c). (1.59)

Also, we expect the numerical flux to satisfy a Lipshitz continuity condition. E.g., for some
constant L,

|F̂j+ 1
2
(w̄j , w̄j+1)− f(c)| ≤ L max (|w̄j − c|, |w̄j+1 − c|) . (1.60)

Recall that, for hyperbolic problems, information propagates along the characteristics at
finite speed. Thus, the domain of dependence for a fixed point (X,T ) is a bounded set. The
bounds of this set are determined by the eigenvalues of the flux of the Jacobian. In order for
the numerical method to be stable, it must necessarily satisfy the Courant-Friederichs-Lewy
(CFL) condition. The CFL condition states that the numerical domain of dependence must
contain the actual domain of dependence of the PDE. This is obviously necessary, since if there
exists information contributing to the evaluation of a quantity that is not being considered
by the numerical method, then a change in the initial data outside the numerical domain of
dependence would not affect the approximation, while the true solution would change.

An easy way to see this is by studying the linear scalar advection problem given below,

ut + aux = 0, (1.61)

where a is the advection speed. The CFL condition for the advection equation is given by

ν =
∣∣∣∣a∆t

∆x

∣∣∣∣ ≤ 1, (1.62)

where a is the advection speed and ν is called the Courant number. Figure 1.1 conveniently
illustrates this restriction.

The domain of dependence for the fixed point (X,T ) is the single point x − at. Thus, the
numerical domain of dependence must contain this point, and so we need the distance traveled
at speed a over the time step ∆t to be less than ∆x. For hyperbolic problems, this speed is
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Figure 1.1: Domain of dependence for advection

given by the eigenvalue of the flux Jacobian. For example, if we have a system of N hyperbolic
equations, the Courant number is determined by the maximum wave speed. Letting λk for
k = 1, . . . , N represent the eigenvalues of the Jacobian, we get

ν =
∆t
∆x

max
k
|λk| . (1.63)

It is restated that the CFL condition is only a necessary condition for stability.

Godunov-type Schemes

The core class of finite volume methods are Godunov-type schemes, named after Sergei Go-
dunov the Russian mathematician credited for developing the algorithm. In [42], the data
available at time tn is reconstructed as a piecewise constant over the grid cells. The update in
time is accomplished by solving exactly the resulting Riemann problem at each cell interface.
Originally, Godunov developed the algorithm to solve the nonlinear Euler equations of gas dy-
namics. However, its effectiveness has fostered the development of an entire class of methods
which have transformed computational fluid dynamics. In general, the algorithm involves three
distinct steps:

Godunov’s Method

1. Reconstruct a piecewise polynomial function using the cell averages available at time tn.

2. Evolve the hyperbolic problem with this initial data to obtain the updated piecewise
polynomial approximation.
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3. Average (project) this new approximation over the grid cells to obtain the updated cell
averages.

As mentioned above, a piecewise polynomial function is reconstructed over the grid cells.
In fact, the order of the numerical scheme is tied to the order of this piecewise reconstruction.
In general, the piecewise reconstruction is given as

w(x, tn) ≈ pnj (x), for x ∈ (xj− 1
2
, xj+ 1

2
). (1.64)

It is noted that the polynomial pieces are typically discontinuous at the cell interfaces x =
xj± 1

2
. The stability of the finite volume method is, in general, guaranteed when (1.64) is non-

oscillatory, which is accomplished by the use of slope limiters. A library of non-oscillatory
reconstructions is available, see e.g., [1, 31, 41, 48, 50, 55, 62, 68, 77, 78, 79, 82, 86, 87, 88,
95, 105, 106, 112, 117]. A more detailed description of the linear piecewise reconstruction is
provided in the subsequent section presenting the semidiscrete central upwind scheme.

The piecewise reconstruction allows for an exact evolution of the the solution, which is
comprised of a finite set of waves traveling at constant speeds. However, depending on the con-
figuration of the grid cells, Godunov’s method requires the solutions to the Riemann problems
that arise at the grid interfaces, and so Riemann solvers are needed at each time step. There is
considerable attention given to solving Riemann problems, see, e.g., [13, 14, 26, 27, 75, 107, 108].
It is noted that the solutions to Riemann problems are not always available, limiting the types of
problems to which the method may be applied. For systems, this can be even more complicated
by waves traveling in different directions.

Now we turn our attention to the task of defining the numerical flux functions in terms of
the cell averages available on either side of the flux interface. In particular, we will consider
two ways to configure the control volumes over which the flux function is integrated. These
are described in the figure below. As we will see, the Godunov-type schemes are divided into
upwind and central schemes.

Upwind Schemes

Upwind methods attempt to use information about the behavior of the solution in determining
the numerical flux function. Recall, solutions to hyperbolic problems are waves that propagate
with a finite speed. Upwind methods anticipate the arrival of information along the char-
acteristics on which they travel. Thus, these methods are able to produce results with less
diffusion.

Consider again the one-dimensional system (1.49). In upwind schemes, the cell averages
at time t = tn+1 are obtained by approximating the integrals on the right-hand side of (1.54).
Since the piecewise polynomial reconstruction is, in general, discontinuous at the cell interfaces,
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x = xj± 1
2
, upwind schemes depend on the approximate solution of the Riemann problems that

arise there. See, e.g., [14, 19, 31, 41, 42, 62, 77, 114]. As mentioned above, these are generally
expensive and complicated (or impossible) to approximate.

Central Schemes

Central schemes have the advantage of being readily applicable to a wide range of problems.
They have the distinct and important advantage of simplicity, since they do not require any
information about the solution. A drawback of these schemes is that they may exhibit excessive
smoothing or spurious oscillations.

Finite volume schemes based on the staggered control volumes shown in Figure 1.2 lead to
centered schemes. There are many examples of staggered central schemes. See, e.g.,[7, 8, 17, 56,
78, 79, 81, 88, 85, 95, 96, 97, 98, 100]. These schemes offer a much simpler, Riemann-solver-free
approach. The solution is evolved in terms of cell averages over the staggered grid:

w̄n+1
j+ 1

2

=
1

2∆x

∫ x
j+1

2

x
j− 1

2

pnj (x)dx+
∫ x

j+1
2

x
j− 1

2

pnj+1(x)dx

− 1
∆x

 tn+1∫
tn

f(w(xj+1, t))dt−
tn+1∫
tn

f(w(xj , t))dt

 .
(1.65)

As seen in Figure 1.2, when an appropriate CFL condition is satisfied, the solution w(x, t)
remains smooth along the lines x = xj± 1

2
for t ∈ [tn, tn+1] and so the integrals on the right-

hand side of (1.65) can be easily evaluated.

1.2.2 Semidiscrete Central Upwind Scheme

The semidiscrete central upwind (CU) scheme, developed in [64, 65, 66, 67, 68, 69, 70, 71],
combines the best of both central and upwind schemes. In particular, it combines the simplicity
and universality of central schemes with the higher accuracy and lower dissipation of central
schemes.

The CU scheme has its roots in the Lax-Friedrichs (LxF) method, (”...the stable all purpose
benchmark for approximate solutions of nonlinear systems”[113]), and the staggered central
scheme in [95]. The main idea is to use more precise information about the local speeds of
propagation to more accurately estimate the width of the Riemann fans. This gives the scheme
its upwind nature. The simplicity of central schemes is retained because it integrates over the
Riemann fan without utilizing a Riemann problem solver or characteristic decompositon. The
result is better resolution of shocks as well as a method that admits a semi-discrete formulation,
an important result that allows for coupling with appropriate ODE solvers. It is emphasized
that these local speeds are the only additional information required to modify the staggered
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scheme in [95].

Semidiscrete scheme for 1-D conservation laws

In this section, we describe a derivation of the one-dimensional CU scheme for conservation
laws, which was originally developed in [70, 66, 64]. We consider uniform spatial grids and use
the notation: xj = j∆x, xj± 1

2
= xj ± ∆x

2 , t
n = n∆t, wn

j = w(xj , tn).
The integral formulation of equation (1.49) is given as

d

dt

x
j+1

2∫
x

j− 1
2

w(x, t)dx =f(w(xj− 1
2
, t))− f(w(xj+ 1

2
, t)). (1.66)

As previously mentioned, we use the cell averages to interpolate a piecewise polynomial
reconstruction of degree r − 1, where r is the order of the scheme. For example, the second-
order scheme we are establishing here uses a piecewise linear polynomial. As such, we consider
the problem with the piecewise linear initial condition,

w̃(x, tn) = pnj (x) :=
∑
j

[w̄jn + (wx)nj (x− xj)] 1[x
j− 1

2
,x

j+1
2

], xj− 1
2
< x < xj+ 1

2
, (1.67)
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obtained from the cell averages at the previous step. Note that (1.67) is continuous except for
possible discontinuities at the interface points, xj± 1

2
. The spatial derivative in (1.67) may be

approximated by the use of an appropriate slope limiter in order to suppress spurious oscillations
or excessive smearing. A library of such limiters is available (see, e.g., [41, 62, 77, 83, 95, 112,
117]), and one can compute the numerical derivatives using one’s favorite limiter. In our
numerical experiments, we have used the generalized minmod reconstruction [83, 95, 117] given
by

(wx)nj ≈ snj = minmod
(
θ
w̄(x+ ∆x)− w̄(x)

∆x
,
w̄(x+ ∆x)− w̄(x−∆x)

2∆x
, θ

w̄(x)− w̄(x−∆x)
∆x

)
.

(1.68)

The parameter θ ∈ [1, 2] is chosen in an optimal manner as to balance dissipation and oscillation,
where θ = 2 corresponds to the most oscillation. The multivariable minmod function is defined
by

minmod(x1, x2, . . .) =


minj{xj}, if xj > 0 ∀j,
maxj{xj}, if xj < 0 ∀j,
0, otherwise.

(1.69)

The piecewise reconstruction w̃(x, tn) is then evolved exactly according to (1.54).
Recall, that the reconstruction (1.67) may contain discontinuities at the interface points

xj± 1
2
, see Figure 1.4. These discontinuities propagate with speeds which may be estimated by

the eigenvalues of the Jacobian of the flux. These right- and -left-sided local speeds are given
in equations (1.70) and (1.71).

a+
j+ 1

2

= max
ω∈C(w−

j+1
2

,w+

j+1
2

)

{
λN (

δf
δw

(ω)), 0
}
, (1.70)

a−
j+ 1

2

= min
ω∈C(w−

j+1
2

,w+

j+1
2

)

{
λ1(

δf
δw

(ω)), 0
}
. (1.71)

Here, λ1 < · · · < λN are the eigenvalues of the Jacobian δf
δw . The curve, C(w−

j+ 1
2

,w+
j+ 1

2

)

is a curve in phase space that connects the point values, w±
j+ 1

2

, which are the the values of
the piecewise polynomial, (1.67), evaluated on either side of the grid interface points. See
Figure 1.4. These point values are given by

w+
j+ 1

2

= pj+1(xj+ 1
2
) and w−

j+ 1
2

= pj(xj+ 1
2
). (1.72)
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The local speeds, a±
j+ 1

2

, are used to narrow the control volumes over which Riemann fans
are integrated. In this way, the non-smooth parts of the computed solution are averaged over
smaller cells. The development of the CU scheme allows for the separation of the spatial domain
into regions which are either smooth or non-smooth. This allows for the avoidance of costly
Riemann solvers, thus retaining the simplicity of central schemes.

Thanks to the finite speed of propagation, the smooth and non-smooth regions are separated
by points xn

j+ 1
2
,l

:= xj+ 1
2

+ ∆ta−
j+ 1

2

and xn
j+ 1

2
,r

:= xj+ 1
2

+ ∆ta+
j+ 1

2

. In particular, the smooth
regions are contained in the intervals [xn

j− 1
2
,r
, xn

j+ 1
2
,l
] and the non-smooth regions are contained

in the intervals [xn
j+ 1

2
,l
, xn

j+ 1
2
,r

].
First, according to the development of the CU scheme, let us consider integration over the

smooth region around xj which does not contain the Riemann fans. We would like to evolve
the piecewise polynomial (1.67) over the interval surrounding xj to obtain the new average over
this interval. Let this average be denoted by v̄n+1

j , where

v̄n+1
j =

1
xn
j+ 1

2
,l
− xn

j− 1
2
,r

∫ xn

j+1
2 ,l

xn

j− 1
2 ,r

pnj (x) dx−
∫ tn+1

tn

(
f(w(xn

j+ 1
2
,l
, t))− f(w(xn

j− 1
2
,r
, t))
)
dt

 .
(1.73)

To obtain v̄n+1
j+ 1

2

, the integration is divided between the smooth and non-smooth part of
the domain, [xn

j+ 1
2
,l
, xn

j+ 1
2
,r

]. The piecewise polynomial pnj (x) is integrated over the interval
[xn
j+ 1

2
,l
, xn

j+ 1
2

], and pnj+1(x) is integrated over the interval [xn
j+ 1

2

, xn
j+ 1

2
,r

]. Thus, the formula

(1.74) for v̄n+1
j+ 1

2

is obtained,

v̄n+1
j+ 1

2

=
1

xn
j+ 1

2
,r
− xn

j+ 1
2
,l

∫ xn

j+1
2

xn

j+1
2 ,l

pnj (x) dx+
∫ xn

j+1
2 ,r

xn

j+1
2

pnj+1(x) dx

−
∫ tn+1

tn

(
f(w(xn

j+ 1
2
,r
, t))− f(w(xn

j+ 1
2
,l
, t))
)
dt

]
, (1.74)

and the solution is realized at time tn+1 in terms of the approximate cell averages v̄n+1
j and

v̄n+1
j+ 1

2

. The cells in question are non-uniformally distributed over the the domain. As well, there
are twice as many cells as the original number of cells. The next step in the development of the
CU scheme is to project these averages back onto the uniform original grid consisting of cells
[xj− 1

2
, xj+ 1

2
]. To accomplish this, a conservative, non-oscillatory piecewise quadratic function

is reconstructed from the cell averages v̄n+1
j and v̄n+1

j+ 1
2

. This function is denoted by ṽn+1 and
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is given in (1.75).

ṽn+1(x) :=
∑
j

(
ṽn+1
j (x) · 1[xj− 1

2
,r, xj+ 1

2
,l] + ṽn+1

j+ 1
2

(x) · 1[xj+ 1
2
,l, xj+ 1

2
,r]
)
, xj− 1

2
,r < x < xj+ 1

2
,r.

(1.75)

In (1.75), ṽn+1
j (x) and ṽn+1

j+ 1
2

(x) are the piecewise quadratic functions on the indicated intervals.

Now, according to the development of the CU scheme, the updated cell averages w̄n+1
j are

calculated by integrating ṽn+1 over the original grid cells, as seen below:

w̄n+1
j =

1
∆x

∫ x
j+1

2

x
j− 1

2

ṽn+1(x)dx. (1.76)

We now continue with the derivation of the semi-discrete second-order central scheme. In order
to achieve this, equation (1.76) is used to express the time derivative w̄j(t), as follows:

d

dt
w̄j(t) = lim

∆t→0

w̄n+1
j (t)− w̄n

j (t)
∆t

= lim
∆t→0

1
∆t

 1
∆x

∫ x
j+1

2

x
j− 1

2

ṽn+1(x)dx

− w̄n
j

 . (1.77)

We can begin to tackle the integral of ṽn+1(x) by separating the regions of integration as follows.∫ x
j+1

2

x
j− 1

2

ṽn+1(x)dx =
∫ x

j− 1
2 ,r

x
j− 1

2

ṽn+1
j− 1

2

(x)dx+
∫ x

j+1
2 ,l

x
j− 1

2 ,r

ṽn+1
j (x)dx+

∫ x
j+1

2

x
j+1

2 ,l

ṽn+1
j+ 1

2

(x)dx. (1.78)

The first and last integrals on the right-hand side of (1.78) can be approximated by noting that
the width of the Riemann fans originating at xj± 1

2
are bounded by ∆t(a+

j± 1
2

− a−
j± 1

2

). Since we

can assume the slopes of ṽn+1
j± 1

2

are uniformly bounded independent of ∆t, we get the following
approximations of these integrals.∫ x

j− 1
2 ,r

x
j− 1

2

ṽn+1
j− 1

2

(x)dx ≈ ∆ta+
j− 1

2

v̄n+1
j− 1

2

(1.79)

∫ x
j+1

2

x
j+1

2 ,l

ṽn+1
j+ 1

2

(x)dx ≈ −∆ta−
j+ 1

2

v̄n+1
j+ 1

2

(1.80)

Also, due to the conservative nature of the piecewise reconstruction, (1.75), we get the following
formula,

1
xn
j+ 1

2
,l
− xn

j− 1
2
,r

∫ x
j+1

2 ,l

x
j− 1

2 ,r

ṽn+1
j (x)dx = v̄n+1

j . (1.81)
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Substituting equations (1.79), (1.80), and (1.81) into (1.78) gives us the following expression
for the integral of ṽn+1(x).∫ x

j+1
2

x
j− 1

2

ṽn+1(x)dx = ∆ta+
j− 1

2

v̄n+1
j− 1

2

+
(
xn
j+ 1

2
,l
− xn

j− 1
2
,r

)
v̄n+1
j −∆ta−

j+ 1
2

v̄n+1
j+ 1

2

. (1.82)

We can now substitute this expression into equation (1.77). This results in the following deriva-
tion for the time derivative of w̄j(t).

d

dt
w̄j(t) =

a+
j− 1

2

∆x
lim

∆t→0
v̄n+1
j− 1

2

+ lim
∆t→0

1
∆t

((
xn
j+ 1

2
,l
− xn

j− 1
2
,r

∆x

)
v̄n+1
j − w̄n

j

)
−
a−
j+ 1

2

∆x
lim

∆t→0
v̄n+1
j+ 1

2

.

(1.83)

Now, each of these limits is evaluated individually. In order to evaluate these limits, we must
first recall equations (1.73) and (1.74), which provide the formulas for the cell averages over the
non-uniform grid consisting of both smooth and non-smooth intervals that are involved in the
limit calculations. Let us begin with the first term on the right-hand side of equation (1.83),
which involves the cell average v̄n+1

j− 1
2

over the non-smooth interval [xn
j− 1

2
,l
, xn

j− 1
2
,r

]. Substituting
the appropriate version of (1.74) into this term gives us the following configuration of the limit.

lim
∆t→0

v̄n+1
j− 1

2

= lim
∆t→0

 1
xn
j− 1

2
,r
− xn

j− 1
2
,l

∫ xn

j− 1
2

xn

j− 1
2 ,l

pnj (x) dx+
∫ xn

j− 1
2 ,r

xn

j− 1
2

pnj+1(x) dx

−
∫ tn+1

tn

(
f(w(xn

j− 1
2
,r
, t))− f(w(xn

j− 1
2
,l
, t))
)
dt

])
. (1.84)

Since we are considering the limit as ∆t → 0, we have that xn
j− 1

2
,l
→ xn

j− 1
2

, by definition of

xn
j− 1

2
,l
, and similarly xn

j− 1
2
,r
→ xn

j− 1
2

. Thus, pnj (x) and pn+1
j (x) approach their values at the grid

point xj− 1
2
, namely and respectively, the point values w−

j− 1
2

and w+
j− 1

2

. Therefore, the spatial
integrals may be evaluated as the product of this point value and the length of the integration
interval. Note, for example, that xn

j− 1
2

− xn
j− 1

2
,l

= −∆ta−
j− 1

2

. Similarly, the flux functions in
the temporal integrals may also be evaluated at these point values. Thus, we get the following
expression for v̄n+1

j− 1
2

.

v̄n+1
j− 1

2

=
1

∆t(a+
j− 1

2

− a−
j− 1

2

)

[
−∆ta−

j− 1
2

w−
j− 1

2

+ ∆ta+
j− 1

2

w+
j− 1

2

−
(

∆tf(w+
j− 1

2

)−∆tf(w−
j− 1

2

)
)]

(1.85)
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Thus, the ∆t’s take care of themselves and the limit in (1.84) may be written as follows.

lim
∆t→0

v̄n+1
j− 1

2

=
1

(a+
j− 1

2

− a−
j− 1

2

)

[
a+
j− 1

2

w+
j− 1

2

− a−
j− 1

2

w−
j− 1

2

−
(

f(w+
j− 1

2

)− f(w−
j− 1

2

)
)]

(1.86)

Note that we get the evaluation of the limit in the third term of the right-hand side of (1.84)
for free by simply replacing the j − 1

2 subscripts with j + 1
2 . This is written below for our

convenience.

lim
∆t→0

v̄n+1
j+ 1

2

=
1

(a+
j+ 1

2

− a−
j+ 1

2

)

[
a+
j+ 1

2

w+
j+ 1

2

− a−
j+ 1

2

w−
j+ 1

2

−
(

f(w+
j+ 1

2

)− f(w−
j+ 1

2

)
)]

(1.87)

Now we would like to address the middle term of the right-hand side of (1.84). Here we are
working with the term reproduced for us below in equation (1.88). First, we substitute the
expression for v̄n+1

j into the equation and then evaluate the integrals. The temporal integrals
are evaluated analagously to the previous derivation. After noting that the spatial integral
is simply a linear function, it is integrated as the product of the average of the values of the
integrand at the endpoints of the interval of integration and the length of this interval. This is
written in equation (1.90). Next, in equation (1.91), we perform some algebra to rearrange the
terms. In this equation, we note that the first term is equal to the last term and thus negate
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each other. Finally, we are left with the desired expression (1.92).

lim
∆t→0

1
∆t

[(
xn
j+ 1

2
,l
− xn

j− 1
2
,r

∆x

)
v̄n+1
j − w̄n

j

]
(1.88)

= lim
∆t→0

1
∆t

(xn
j+ 1

2
,l
− xn

j− 1
2
,r

)

∆x
· 1
xn
j+ 1

2
,l
− xn

j− 1
2
,r

∫ xn

j+1
2 ,l

xn

j− 1
2 ,r

pnj (x) dx

−
∫ tn+1

tn

(
f(w(xn

j+ 1
2
,l
, t))− f(w(xn

j− 1
2
,r
, t))
)
dt

)
− w̄n

j

]
(1.89)

= lim
∆t→0

1
∆t

 1
∆x

∆x+ ∆t(a−
j+ 1

2

− a+
j− 1

2

)

2

(
w−
j+ 1

2

+ w+
j− 1

2

)

−∆t
(

f(w−
j+ 1

2

)− f(w+
j− 1

2

)
))
− w̄n

j

]
(1.90)

= lim
∆t→0

[
1

2∆t

(
w−
j+ 1

2

+ w+
j− 1

2

)
+

1
∆x

(
a−
j+ 1

2

w−
j+ 1

2

− a+
j− 1

2

w+
j− 1

2

)
− 1

∆x

(
f(w−

j+ 1
2

)− f(w+
j− 1

2

)
− 1

∆t
w̄n
j

]
(1.91)

=
1

∆x

(
a−
j+ 1

2

w−
j+ 1

2

− a+
j− 1

2

w+
j− 1

2

)
−
(

f(w−
j+ 1

2

)− f(w+
j− 1

2

)
. (1.92)

Now we are ready to compute the right-hand side of (1.83). This accomplished by sub-
stituting in the limits evaluated in equations (1.85), (1.86), and (1.92). Then equation (1.83)
becomes,

d

dt
w̄j(t) =

a+
j− 1

2

∆x
· 1

(a+
j− 1

2

− a−
j− 1

2

)

[
a+
j− 1

2

w+
j− 1

2

− a−
j− 1

2

w−
j− 1

2

−
(

f(w+
j− 1

2

)− f(w−
j− 1

2

)
)]

+
1

∆x

(
a−
j+ 1

2

w−
j+ 1

2

− a+
j− 1

2

w+
j− 1

2

)
−
(

f(w−
j+ 1

2

)− f(w+
j− 1

2

)

−
a−
j+ 1

2

∆x
· 1

(a+
j+ 1

2

− a−
j+ 1

2

)

[
a+
j+ 1

2

w+
j+ 1

2

− a−
j+ 1

2

w−
j+ 1

2

−
(

f(w+
j+ 1

2

)− f(w−
j+ 1

2

)
)]

. (1.93)

In keeping with the heuristics of finite-volume methods, we would like to express the right-hand
side here as a difference in numerical fluxes at the cell boundaries. This is accomplished by
separating the {j + 1

2} terms from the {j − 1
2} terms and performing some obligatory algebra.

Thus, the resulting CU scheme can be written in the conservative form as

d

dt
w̄j(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
, (1.94)
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where the numerical fluxes are given by

Hj+ 1
2
(t) =

a+
j+ 1

2

f
(
w−
j+ 1

2

)
− a−

j+ 1
2

f
(
w+
j+ 1

2

)
a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
w+
j+ 1

2

−w−
j+ 1

2

]
. (1.95)

The expression for the CU numerical flux Hj− 1
2
(t) is analogous to the numerical flux at xj+ 1

2
.

Semidiscrete scheme for 2-D conservation laws

The one-dimesional semi-discrete central-upwind scheme can be generalized to the two-dimensional
case by applying the one-dimensional numerical flux in both the x and y directions [66]. The
scheme is presented below. Let us consider the two-dimensional conservation law

wt + f(w)x + g(w)y = 0. (1.96)

We again consider uniform spatial grids and use the notation: xj = j∆x, yk = k∆y, xj± 1
2

=

xj ± ∆x
2 , yk± 1

2
= yk ± ∆y

2 , t
n = n∆t, wn

(j,k) = w(xj , yk, tn). We begin with an appropriate
order conservative piecewise polynomial reconstruction,

w̃(x, y, tn) =
∑
j,k

pnj,k(x, y)χj,k, (1.97)

where χj,k is the characteristic function over the the (j, k)th cell, Cj,k = [xj− 1
2
, xj+ 1

2
]×[yk− 1

2
, yk+ 1

2
].

Here we use the generalized minmod piecewise linear reconstruction at time tn, given by

pj,k := w̃(x, y) = w̄j,k + (wx)j,k(x− xj) + (wy)j,k(y − yk), (x, y) ∈ Cj,k. (1.98)

The cell average, w̄j,k, is given by

w̄j,k(t) =
∫∫
Cj,k

w(x, y, t)dxdy. (1.99)
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The numerical derivatives in (1.98) are computed componentwise using the minmod slope lim-
iter, with θ ∈ [1, 2], introduced in the one-dimensional case. I.e.,

(wx)j,k ≈ minmod
(
θ
w̄(x+ ∆x, y)− w̄(x, y)

∆x
,
w̄(x+ ∆x, y)− w̄(x−∆x, y)

2∆x
, θ

w̄(x, y)− w̄(x−∆x, y)
∆x

)
,

(1.100)

(wy)j,k ≈ minmod
(
θ
w̄(x, y + ∆y)− w̄(x, y)

∆y
,
w̄(x, y + ∆y)− w̄(x, y −∆y)

2∆y
, θ

w̄(x, y)− w̄(x, y −∆y)
∆y

)
.

(1.101)

The point values at the flux interfaces are computed using the values of the linear reconstruction
at the interfaces. These are denoted by the superscripts E, W, N, S, representing east, west,
north, and south. These point values are given below.

wE
j,k = w̄j,k +

∆x
2

(wx)j,k, wW
j,k = w̄j,k − ∆x

2
(wx)j,k, (1.102)

wN
j,k = w̄j,k +

∆y
2

(wy)j,k, wS
j,k = w̄j,k − ∆y

2
(wy)j,k. (1.103)

As in the one-dimensional case, we may have discontinuities along x = xj± 1
2

or y = yj± 1
2
. The

one-sided local speeds of propagation are estimated by the Jacobians of the flux functions, f(w)
and g(w), in each direction. These values are given below, where a refers to the speeds in the
x-direction and b refers to the speed in the y-direction.

a+
j+ 1

2
,k

= max
{
λN

(
∂f
∂w

(wW
j+1,k

)
, λN

(
∂f
∂w

(wE
j,k)
)
, 0
}
, (1.104)

a−
j+ 1

2
,k

= min
{
λ1

(
∂f
∂w

(wW
j+1,k

)
, λ1

(
∂f
∂w

(wE
j,k)
)
, 0
}
, (1.105)

b+
j,k+ 1

2

= max
{
λN

(
∂g
∂w

(wS
j,k+1

)
, λN

(
∂g
∂w

(wN
j,k)
)
, 0
}
, (1.106)

b−
j,k+ 1

2

= min
{
λ1

(
∂g
∂w

(wS
j,k+1

)
, λ1

(
∂g
∂w

(wN
j,k)
)
, 0
}
. (1.107)

As in the one-dimensional case, the semi-discrete scheme by integrating over the non-uniform
domains corresponding to the smooth and non-smooth regions of the reconstruction. After
projecting back to the original grid and taking limits we obtain the following semi-discrete,
two-dimensional scheme:

d

dt
w̄j,k(t) = −

Hx
j+ 1

2
,k
−Hx

j− 1
2
,k

∆x
−

Hy

j,k+ 1
2

−Hy

j,k− 1
2

∆y
, (1.108)
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with the numerical fluxes Hx and Hy are given by,

Hx
j+ 1

2
,k

(t) =
a+
j+ 1

2
,k

f
(
wE
j,k

)
− a−

j+ 1
2
,k

f
(
wW
j+1,k

)
a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
wW
j+1,k −wE

j,k

]
, (1.109)

Hy

j,k+ 1
2

(t) =
b+
j,k+ 1

2

g
(
wN
j,k

)
− b−

j,k+ 1
2

g
(
wS
j,k+1

)
b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
wS
j,k+1 −wN

j,k

]
. (1.110)

1.2.3 Finite Difference Methods

Finite difference methods consist of a discrete grid and a grid function that represent a dif-
ferential equation by replacing the derivatives by finite difference approximations. For linear
problems, this results in a large system of algebraic equations which may be solved by com-
puter. The solution to the finite difference scheme is realized as an approximation to the point
values of the exact solution. Finite difference schemes are generally straight forward and easy
to implement. Also, they are readily applicable to all linear and non-linear partial differential
equations, with the caveat that stability and accuracy issues may be overwhelming.

Let w(x, t) be a smooth function in one dimension. A one-sided approximation may be used
to obtain a first-order accurate approximation to the spatial derivative wx at the point (x̄, t).
The left and right one-sided approximations are given below:

wx(x̄, t) ≈ w(x̄+ ∆x, t)− w(x̄, t)
∆x

, or (1.111)

≈ w(x̄, t)− w(x̄−∆x, t)
∆x

. (1.112)

A second-order accurate approximation of the second spatial derivative wxx at the point (x̄, t)
is given by

wxx(x̄, t) ≈ w(x̄−∆x, t)− 2w(x̄, t) + w(x̄+ ∆x, t)
(∆x)2

. (1.113)

Furthermore, in the following, we encounter parabolic diffusion in the form

wt = (Λwx)x. (1.114)

Now, the right-hand side of (1.114) is discretized conservatively. To maintain second order
accuracy the following finite difference scheme is used, where Λ is approximated using the
midpoint rule and the derivatives are approximated by one-sided differences. This scheme uses
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a smaller stencil than using central differences for the derivatives while maintaing second-order.

dwj
dt

=
1

∆x

[
Λj+1 + Λj

2
wj+1 − wj

∆x
− Λj + Λj−1

2
wj − wj−1

∆x

]
=

1
2∆x2

[(Λj+1 + Λj)(wj+1 − wj)− (Λj + Λj−1)(wj − wj−1)]

=
1

2∆x2
[Λj+1 (wj+1 − wj) + Λj (wj+1 − 2wj + wj−1) + Λj−1 (wj−1 − wj)] . (1.115)

If we discretize the left-hand side of (1.115) using an explicit ODE solver then, analogous to
the heat equation, the method is restricted by the CFL condition of ∆t ∼ (∆x)2 (see Appendix
??). The two dimensional setup is described in detail in Section 5.2.

In the two-dimensional functions encountered later, the need arises for the computation
of mixed derivatives. These can, in general, be derived by applying a finite difference in one
direction, and then reapplying the finite difference in the next direction. Say we would like
to find an approximation for the mixed derivative wxy at the point (x̄, ȳ). Assume w(x, y) is
smooth. If we first apply a second-order accurate centered difference in the x direction and then
apply the same centered difference in the y direction, we obtain the following approximation:

wxy ≈ w(x̄+ ∆x, ȳ + ∆y)− w(x̄−∆x, ȳ + ∆y)
4∆x∆y

− w(x̄+ ∆x, ȳ −∆y)− w(x̄−∆x, ȳ −∆y)
4∆x∆y

(1.116)

1.2.4 ODE Solvers

It is common practice when solving time-dependent PDEs to obtain a semidiscrete method of
lines scheme. The result is an ODE system in the time variable. This allows for the utilization
of an appropriate ODE solver, of which there are many to choose from. See, e.g., [9, 51, 91, 34,
90, 58, 59, 38, 73, 103, 52, 39, 44, 45].

For hyperbolic conservation laws, the method of lines approximation results in

wt = L(w), (1.117)

where L(w) denotes the spatial discretization of the PDE, e.g., see the semidiscrete central
upwind scheme (1.108).

This allows us to apply appropriate ODE solvers depending on the problem. We chose the
strong stability preserving (SSP) high-order method presented in [43] in order to take advantage
of the stability it provides and the positivity preserving.
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In particular, we us the optimal third-order SSP Runge-Kutta method given by

w(1) = wn + ∆tL(wn),

w(2) =
3
4
wn +

1
4
w(1) +

1
4

∆tL(w(1)),

wn+1 =
1
3
wn +

2
3
w(2) +

2
3

∆tL(w(2)). (1.118)

We also utilize the the variable time-step DUMKA procedure put forth in [94, 93]. This
high-order integration produces accurate results, and its larger stability domains (in comparison
with the standard Runge-Kutta methods) allow for larger time steps; the explicit form retains
simplicity, and the embedded formulas permit an efficient stepsize control. In practice these
methods preserve all the advantages of explicit methods and work as fast as implicit methods.
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Chapter 2

One-Dimensional Laser Ablation -

Single Gas

2.1 Mathematical Model

The quasi-gas dynamic (QGD) equations are a mathematical model for gas and fluid dynamic
problem [35]. We now present the model derived in a general multi-dimensional setting, as
given in [35]. We then move to the one-dimensional description of the single gas model in the
following sections. The equations are a generalization of the Navier-Stokes equations. The
QGD equations include dissipative terms which are attenuated by a small parameter. This
parameter, called the relaxation parameter, is used to promote numerical stability. Thus the
QGD equations are applicable to a wider range of problems. Similar to the derivation of the
Euler and Navier-Stokes equations, the QGD equations can be derived from the general system
of conservation laws. The essential distinction of the derivation of the QGD equations from
the Navier-Stokes equations is the use of time-spatial averaging in defining the quantities of
interest of the fluid, namely velocity, density, and temperature. The extra terms in the QGD
equations arise from the additional smoothing provided by the time averaging.

The modeling of gas-dynamic problems may be carried out using the Newton equations
to describe the motion of each atom. However, this is not practical due to the large number
of atoms that need to be described. Kinetic theory takes into account the collisions between
molecules to explain pressure. In classical fluid dynamics, the approach uses averaging proce-
dures to transition from the large number of separate particles to the continuous description.
In the Navier-Stokes theory, spatial averaging is used as follows.

The spatial averages are obtained by averaging the quantities over a given volume. Let ∆V
be the volume of a ball of radius r, and let N(t) be the number of molecules present inside the
ball at time t. Then we have the following definitions for the average density, momentum, and
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energy, where m0 is the mass of a particle and ũi, i = 1 . . . N(t), are the velocities of each
particle and x is the vector of spatial variables.

ρ(x, t) =
m0

∆V
N(t) (2.1)

(ρu)(x, t) =
m0

∆V

N(t)∑
i=1

ũi(t) (2.2)

E(x, t) =
m0

∆V

N(t)∑
i=1

‖ũi‖2(t)
2

(2.3)

Spatial-time averaging includes an additional smoothing out over time. Over a small time
interval ∆t we get the following expressions for the quantities given above.

ρ(x, t) =
m0

∆V

∫ t+∆t

t
N(τ) dτ, (2.4)

(ρu)(x, t) =
m0

∆V

∫ t+∆t

t

N(t)∑
j=1

ũi(τ) dτ, (2.5)

E(x, t) =
m0

∆V

∫ t+∆t

t

N(t)∑
j=1

‖ũi‖2(τ)
2

dτ. (2.6)

In traditional fluid mechanics, the mass flux density is given by jm = ρũ. In spatial averaging
the principle of mass conservation holds. I.e.,

∂ρ(x, t)
∂t

+ div(ρ(x, t)ũ(x, t)) = 0. (2.7)

However, in spatial-time averaging the instantaneous values of momentum and density may
change over ∆t. Therefore, we must express the mass flux density in a more general form by
adding a term to the velocity that accounts for the gradient of the velocity vector. In the QGD
equations this is done by writing the mass flux density as jm = ρ(ũ − w). This extra term
begets the differences between the QGD equations and the Navier-Stokes equations.

The additional dissipative terms introduced by the averaging of time in the gas dynamic
equations consist of spatial derivatives of ρ, ũ and p multiplied by the so-called relaxation
parameter τ = τ(ρ, T ), [35]. This additional averaging takes into account the influence of small
fluctuations in the number of particles in a small volume ∆v and has the dimensions of time.
These fluctuations are neglected in classical gas dynamics. This addition is introduced in [35]
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as

w = τ (div(ρũ⊗ ũ) +5p− ρφ) . (2.8)

The only foreign term is the force of the exterior field, φ, which is ignored in the following
derivation, [35]. This expression can be rewritten and substituted into the mass flux density
equation to obtain

jm = ρ(u−w) = ρu− τdiv(ρu⊗ u)− τRT5ρ− τRρ5T. (2.9)

The first term is the contribution to the mass flux density by the convective motion of the gas.
The second term is the contribution given by the gradient in velocity. The third and fourth
terms account for self-diffusion and thermo-diffusion, respectively.

The relaxation parameter τ is essentially proportional to the Maxwell relaxation time, µ/p,
where µ is the coefficient of viscosity. It can be determined by individually examining the terms
in (2.9). E.g., let us consider the third term which accounts for self-diffusion. The self-diffusion
coefficient is known from experiments for many media. For polytropic gases, this coefficient is
given by

D =
µ

ρSc
, (2.10)

where Sc is the Schmidt number. The mass flux density that accounts for self-diffusion has the
form

jρ = −D5 ρ. (2.11)

Comparing this with the third term in equation (2.9), we see that µ

ρSc = τRT . This provides
us with the following expression for τ ,

τ =
µ

ρSc
· 1
RT

=
µ

pSc
. (2.12)

By examining the other terms in the mass flux density we arrive at similar formulas for τ , with
different orders of accuracy, see [35].

When performing computer simulations, however, τ no longer must be related to the molec-
ular properties of the gas. It may be determined by the mesh size, convergence conditions,
and accuracy concerns of the numerical problem [35]. There are many examples of artificial
viscosity in literature, see, e.g., [24, 118].
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Plasma Expansion into Vacuum

Now we present the model for plasma expansion into a vacuum after fast evaporation of the
target material caused by the laser blast. We consider here the one-dimensional (1-D) problem,
in which a laser pulse strikes a graphite target at a small angle to its axis. The gas is described
by three functions of the Eulerian coordinate x and time t. We have ρ(x, t) - gas density, u(x, t)
- macroscopic velocity, and p(x, t) - pressure. The quasi-gas dynamic (QGD) equations that
describe the model are a consequence of integral conservation laws, [35], and are given by

∂ρ

∂t
+
∂jm
∂x

= 0, (2.13)

∂(ρu)
∂t

+
∂(jmu)
∂x

+
∂p

∂x
=
∂Π
∂x

(2.14)

∂E

∂t
+
∂(jmH)
∂x

+
∂q

∂x
=
∂Πu
∂x

+Q (2.15)

jm = ρ(u− w), w =
τ

ρ

∂

∂x
(ρu2 + p). (2.16)

The energy E is related to pressure by the equation of state given in (1.37). The total specific
enthalpy H is calculated by

H =
E + p

ρ
, (2.17)

and the temperature T is determined by the ideal gas law,

T =
p

ρR
, (2.18)

where the gas constant R = R/Mmol is calculated via the absolute gas constant, R, and the
molar mass of the gas, Mmol. The other components entering into the equations (2.13)–(2.16)
are given by

Π = ΠNS + τ [u (ρuux + px) + (upx + γpux)] , (2.19)

ΠNS =
(

4
3
η + η

(
5
3
− γ
)
B

)
∂u

∂x
, (2.20)

q = qNS − τρu
[

u

γ − 1
∂

∂x

(
p

ρ

)
+ pu

∂

∂x

(
1
ρ

)]
, (2.21)

qNS = −κ∂T
∂x

. (2.22)

Equation (2.19) represents the viscous stress tensor. The first term ΠNS is the viscous stress
component from the Navier-Stokes (NS) equations with regard to bulk viscosity, [11]. Equation
(2.21) is the heat flux, in which the first term qNS is the thermal conductivity component from
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the NS equations. The term Q in equation (2.15) for energy describes gas heating by optical
radiation.

By expanding the jm terms in equation (2.13)-(2.16), we obtain a representation of the
quasi-gas dynamics equations that discernibly consists of Euler’s equations of gas dynamics.
This is given below, where w is given in (2.16).

ρt + (ρu)x = (ρw)x, (2.23)

(ρu)t + (ρu2 + p)x = Πx + (ρwu)x, (2.24)

Et + ((E + p)u)x = (Πu)x +Q− qx + (w(E + p))x. (2.25)

The coefficient B in (2.19) is taken in the form,

B = Zrot(γ − 1)(7− 2ω)(5− 2ω)/20, (2.26)

where
Zrot = 23/

(
1 + 0.5

√
91.5π3/T + (π + π2/4)(91.5/T )

)
, (2.27)

and constant ω > 0 describes the intermolecular interaction in the gas, see, e.g., [18, 35].
The parameter τ may be chosen experimentally to necessitate computational stability. The

dynamic viscosity η and thermal conductivity κ are related to τ by the following equations:

τ =
η

pSc
, κ =

ηγR

Pr (γ − 1)
, (2.28)

with Pr and Sc being the Prandtl and Schmidt numbers, respectively.

Relation between the QGD and Navier-Stokes Equations

The QGD equations (2.13)–(2.16) differ from the NS equations (1.32)-(1.34) in additional terms
involving the relaxation parameter τ as a coefficient [11, 35, 74], and are distinct from the NS
equations in that the conserved quantities are found using time-spatial averaging versus the
spatial averaging used in NS equations. The QGD equations are dissipative as demonstrated
by the theorem of nondecreasing total thermodynamic entropy in a closed volume in [35] and
act as regularizers.

As mentioned previously, the QGD equations become the NS equations when τ = 0. To
retrieve the NS equations we need to prescribe theoretical values for the dynamic viscosity η

and the thermal conductivity κ, since in the previous derivation they are tied to τ . This is
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accomplished with the following formulas:

η = η∗
(
T

T ∗

)ω
, κ =

ηγR

Pr(γ − 1)
. (2.29)

Here the ∗ notation refers to standard conditions. For nitrogen these are T ∗ = 300 K, P ∗ =
105 Pa and η∗ = 1.66× 10−5 kg/ms.

2.2 Numerics

In this section, we provide an overview of the numerics involved in computing the solution to
the QGD system described in the previous section.

We first rewrite the system (2.13)–(2.15) in the vector form:

ut + f(u)x = D(u). (2.30)

Here, u is the unknown vector of conservative variables, f represents the the convective nonlinear
flux and D the nonlinear diffusion term:

u =

 ρ

ρu

E

 , f(u) =

 ρu

ρu2 + p

(E + p)u

 , D(u) =

 (ρw)x
(Π + ρwu)x

(Πu− q + w(E + p))x

. (2.31)

Note that Q in equation (2.15), describing heating by optical radiation, is taken to be identically
zero, and w is given in (2.16).

In the following discussion we consider (for simplicity) a uniform spatial grid of size ∆x and
use the notation: xj = j∆x, xj± 1

2
= (j ± 1

2)∆x. According to the central-upwind approach,
the computed solution is realized at each time t in terms of cell averages,

uj(t) =
1

∆x

x
j+1

2∫
x

j− 1
2

u(x, t) dx, (2.32)

which are evolved in time by solving the following system of ODEs:

d

dt
uj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+

Pj+ 1
2
(t)−Pj− 1

2
(t)

∆x
, (2.33)

where the hyperbolic Hj+ 1
2

and parabolic Pj+ 1
2

numerical fluxes are constructed as follows (in
the sequel, we assume that the cell averages (2.32) are available at some time level t and supress
the dependence of all the variables on time to simplify the notation).
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Computation of Hyperbolic Numerical Fluxes

Following [66], in order to compute the hyperbolic fluxes, Hj+ 1
2
, we first use the cell averages

(2.32) to reconstruct a conservative second-order piecewise linear interpolant:

ũj(x) = uj + (ux)j(x− xj), x ∈ [xj− 1
2
, xj+ 1

2
], (2.34)

where (ux)j are (at least) first-order approximations of the partial derivative ux(xj , t)), com-
puted using the nonlinear limiter described in (1.68) to ensure a nonoscillatory nature of the
reconstruction (2.34).

The hyperbolic numerical fluxes are then computed according to (1.95) as

Hj+ 1
2

=
a+
j+ 1

2

f
(

u−
j+ 1

2

)
− a−

j+ 1
2

f
(

u+
j+ 1

2

)
a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
u+
j+ 1

2

− u−
j+ 1

2

]
. (2.35)

Here f is the nonlinear convective flux vector function, defined in (2.31), u±
j+ 1

2

are point values
of piecewise linear reconstruction (2.34):

u+
j+ 1

2

= ũj+1(xj+ 1
2
) = uj+1 − ∆x

2
(ux)j+1, u−

j+ 1
2

= ũj(xj+ 1
2
) = uj +

∆x
2

(ux)j ,

and a±
j+ 1

2

the right- and left-sided local speeds, which are obtained from the largest and smallest

eigenvalues of the Jacobian ∂f
∂u and can be estimated by

a+
j+ 1

2

= max
{
u−
j+ 1

2

+ c−
j+ 1

2

, u+
j+ 1

2

+ c+
j+ 1

2

, 0
}
, a−

j+ 1
2

= min
{
u−
j+ 1

2

− c−
j+ 1

2

, u+
j+ 1

2

− c+
j+ 1

2

, 0
}
,

(2.36)
where u is the macroscopic velocity and c =

√
γp
ρ is the speed of sound (see Section 1.1.2). Note

that the piecewise linear reconstruction provides second-order accuracy. A piecewise parabolic
reconstruction would provide a third-order method, and so on.

Computation of Parabolic Numerical Fluxes

The parabolic numerical fluxes, Pj+ 1
2
, are computed (see Section 1.2.3) by expressing the

parabolic flux (2.31) in the following computationally apt form:

D(u) =
∂

∂x


τWx

τuWx + τSx

τ
(
u2

2 + c2

γ−1

)
Wx + τuSx + τQx

 . (2.37)
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Note that since viscosity and and thermal conductivity are taken proportional to τ , D(u) is
also proportional to τ . The terms in (2.37) are defined below (note that Wx = ρ

τw):

Wx = (ρu2 + p)x,

Sx = 2upx + V ux, V =
(
ρu2 + p

(
γ + Sc

(
4
3

+
(

5
3
− γ
)
B

)))
,

Qx = Gρx − Fpx, G = RT
(

Scγ
Pr(γ − 1)

RT +
γu2

γ − 1

)
, F =

(
Scγ

Pr(γ − 1)
RT +

u2

γ − 1

)
.

(2.38)

The parabolic numerical flux is then written in component form as Pj+ 1
2

=
(
P

(1)

j+ 1
2

, P
(2)

j+ 1
2

, P
(3)

j+ 1
2

)T
,

where the individual components are computed in the following manner:

P
(1)

j+ 1
2

=τj+ 1
2
∆Wj , (2.39)

P
(2)

j+ 1
2

=P (1)

j+ 1
2

uj+ 1
2

+ τj+ 1
2
∆Sj , (2.40)

P
(3)

j+ 1
2

=P (1)

j+ 1
2

u2
j+ 1

2

2
+
c2
j+ 1

2

γ − 1

+ τj+ 1
2
uj+ 1

2
∆Sj + τj+ 1

2
∆Qj , (2.41)

where uj+ 1
2

:=
u+
j+ 1

2

+ u−
j+ 1

2

2
and cj+ 1

2
:=

c+
j+ 1

2

+ c−
j+ 1

2

2
. In (2.39)–(2.41), we have the expression

∆Wj ,∆Sj and ∆Qj , which are given by

∆Wj =
Wj+1 −Wj

∆x
,

∆Sj = 2uj+ 1
2

(
pj+1 − pj

∆x

)
+ Vj+ 1

2

(
uj+1 − uj

∆x

)
,

∆Qj = Fj+ 1
2

(
ρj+1 − ρj

∆x

)
−Gj+ 1

2

(
pj+1 + pj

∆x

)
,

with, for example, Wj = W (uj), Vj+ 1
2

= V (uj+ 1
2
) and uj+ 1

2
:=

u+
j+ 1

2

+ u−
j+ 1

2

2
.

Temporal Integration

The resulting semi-discretization (2.33) is a system of time-dependent ODEs that should be
solved by a stable ODE solver of an appropriate order. The stiffness of this system makes the
choice of integrator important. For the quasi-gas dynamic experiments, we use the nonlinear
SSP Runge-Kutta method (1.118) from [43] presented in Section 1.2.4. The ability to precisely
control the CFL number with respect to the amount of diffusion prescribed by the model allows
for the most accurate and efficient results. For the more computational challenging Navier-
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Stokes simulations we have used the explicit third-order large stability domain Runge-Kutta
method, called DUMKA ([93, 94]) presented in Section 1.2.4.

2.3 Numerical Experiments

In this section we present results of numerical experiments performed on the one-dimensional
single-gas laser ablation problem. The process of growing thin films using a nanosecond pulse
of a focused laser beam involves the ablation, or evaporation, of the target material and its
subsequent deposit onto the substrate. The ablation of the target material results in the
formation of a plasma which is a very complex process involving a Coulomb explosion [22, 6],
where the solid’s bonds are broken by the atomic motion caused by the excitation energy
delivered by the laser resulting in a dynamic plasma bunch. The charged atomic particles of
the plasma expand on to the substrate surface. The applied problem modeled here attempts
to describe the dynamics of this expansion using the quasi-gas dynamic (QGD) equations. It
should be noted here that the dynamics under investigation take place upon the substrate.
The one-dimensional model describes the density, pressure and velocity of the expansion in
the direction parallel to the surface of the substrate. This is in contrast to laser experiments
that measure drilling depth, e.g. [32], where the one-dimensional problem measures distance
orthogonal to the surface.

The use of fluid dynamic equations to model thin film growth is supported by [23, 72]. Since
the expansion takes place in a low pressure setting, and the quality of the thin film depends
on the deposition rate, it is important to avoid shock formations since they negatively impact
the quality of the thin film [36, 72]. The physiochemical processes that lead to shock waves
are difficult to measure in physical experiments. Thus, a computer simulation of the process
which is able to lend light to the factors that lead to the generation of shock waves is very much
desirable.

In the single-gas experiment we model the plasma expansion as a carbon-jet expanding into
a vacuum. This is represented by an extremely large high-pressure, high-temperature front that
expands into a low-pressure, low-temperature atmosphere meant to model a vacuum. This is
known as relaxation after explosion [72]. The set up of the problem is very much akin to shock
tube or dam-break problems. The fluid dynamic equation used to model the expansion are
systems of nonlinear hyperbolic conservation laws. Of course, there are numerical difficulties
that arise in the numerical approximation of these equations. In fact, the shock tube problem
is a tool used to test the accuracy of numerical methods, [110], since the solution to, e.g., the
shock tube problem evolved by Euler’s equations of gas dynamics, involves a rarefaction wave,
contact discontinuity, and shock wave.

In [72, 36], the numerical method employed is a basic finite difference scheme. A com-
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mon hinderance of finite difference schemes is the appearance of spurious oscillations behind a
discontinuity in the solution. Furthermore, stability constraints on the forward Euler scheme
require ∆t ∼ (∆x)2.

To solve the one-dimensional laser ablation problem in [72, 36], a standard second-order
central difference, (1.113), is used to approximate the spatial derivatives and forward Euler,
(1.111), is used to approximate the time derivatives. The computer simulation is carried out
on a rectangular mesh, X × T , where X = {xi : i = 0 . . . Nx − 1, xi = x0 + i∆x, x0 = −∆x/2}
and T = {tj : j = 0 . . . Nt − 1, tj = t0 + j∆t, t0 = 0}. Here we have Nx and Nt indicating
the number of internal nodes for the spatial and temporal discretizations. In order to resolve
a solution, the mesh parameters are set at ∆x = 0.45 × 10−6 (Nx = 45000), which prescribes
∆t = 2×10−13 (Nt = 2×107). In difference form, the boundary conditions are taken as (2.43).

In the following, we are able to decrease the magnitude of the spatial discretization by
an order of magnitude and, by applying efficient numerical integrators, greatly reduce the
computation time. The savings achieved in the numerical computation of the plasma expansion
due to laser ablation problem allow for the simulation of the numerical experiments necessary
to gain insight into the factors leading to shock formation.

The choice of which model to use in the simulation of laser ablation is nuanced and de-
pends on, among other things, the balance between accuracy and efficiency demanded by the
researcher. The full Navier-Stokes simulation provides highly accurate results at high compu-
tational cost, due to the numerical stability constraints imposed by the stiffness of the problem.
It is noted that heretofore the full Navier-Stokes simulation of laser ablation had not been
performed.

The QGD simulations provide an excellent, albeit smoothed, approximation of the Navier-
Stokes equations at fantastic computational efficiency. The relaxation parameter can either be
a function of the solution (2.44) or held constant. As previously noted, as τ → 0, the QGD
model approaches Navier-Stokes. We provide results describing this behavior. In fact, the
computational savings are substantial for both cases, while providing an extremely accurate
representation of the Navier-Stokes results.

In all the numerical experiments below, the spatial discretization is achieved by applying the
central-upwind scheme [66] presented in Chapter 1. The choice in time discretization methods
requires special care in realizing desired objectives. The SSP Runge-Kutta method proves to
be the best choice for the single-gas QGD problems. Note, for all experiments, computation
was carried out on a MacPro with 2 Quadcore Intel Xeon processors with 2.66 GHz processor
speed and 8 GB of RAM. In addition to allowing us to manipulate the relaxation parameter
and limiting the slope in the reconstruction steps, the method also allows us to choose the
CFL number to control the numerical stability and ensure that the oscillations that occur near
zero stay positive. In this way, we are able to produce desirably accurate results with a cost-
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effective, positivity-preserving method. However, the SSP Runge-Kutta method is less effective
in computing the full Navier-Stokes simulation. The CFL number here becomes prohibitively
small. In this case, we apply the DUMKA time-stepping method. This method provides a
carefully chosen, varying time-step in order to maintain stability while efficiently solving the
problem.

Single Gas

Under consideration is the spread of the plasma of molecular carbon C2 in a vacuum. Carbon
has constant parameters R = 346.25, γ = 7/5, ω = 0.74, Pr = 14/19 and Sc = 0.746. We
consider the system (2.13) - (2.15) subject to the initial conditions,

(p(x, 0), T (x, 0), u(x, 0)) =

{
(p(1), T (1), 0), if x ≤ 5× 10−6 m,
(p(2), T (2), 0), if x > 5× 10−6 m.

(2.42)

The boundaries of the domain are taken to be solid walls. The boundary conditions are taken
to be u = 0, ∂ρ

∂x = 0, and ∂T
∂x = 0. It is noted that more sophisticated moving interface methods

exist, see [80].
The calculation domain is taken to be 0 ≤ x ≤ L = 0.02 m. After the laser pulse, at

t = 0, there is a thin region, x ≤ l = 5 × 10−6, where the gas achieves high-pressure and
high-temperature while the rest of the domain is at low-pressure and low-temperature. The
time of integration is taken to be 0 ≤ t ≤ tf = 4µs. The conservative variables ρ, ρu, and E at
t = 0 are found using (1.37) and (2.18) and noting that ρu = 0 over the entire domain initially
since u = 0 initially. The boundary conditions are implemented numerically as follows,

ρ̄0 = ρ̄1, ū0 = −ū1, p̄0 = p̄1,

ρ̄N−1 = ρ̄N−2, ūN−1 = −ūN−2, p̄N−1 = p̄N−2, (2.43)

where, e.g. ρ̄, denotes the cell average of the given quantity and N is the grid size.
Example I verifies the ability of the scheme to qualitatively capture the dynamics of the

expansion using a coarser grid. Furthermore, we perform a grid refinement study which shows
convergence of the solutions. We also present an analysis of the relaxation parameter τ , which
is calculated, according to [72], by the formula

τ =
α∆x
Sc · c . (2.44)

Note that in this formulation, τ is proportional to the spatial step size and c, the speed of sound
in the gas, which itself is a function of the solution at each grid point. In [72], α = 0.6. In fact,
this parameter may be chosen to facilitate numerical stability. As previously mentioned, the
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QGD equations tend to the NS equations as τ → 0. With this in mind, we seek to minmize the
effect of τ in order to achieve a closer representation of a NS simulation. However, as is expected
in the full NS simulation, numerical stability becomes an issue and thus we must balance our
desire to run the full NS simulation with the desire to have a stable and efficient method,
especially keeping in mind our goal of expanding the numerical scheme to a two-dimensional
model. In this spirit we analyze the relaxation parameter and show that it may also be chosen
independent of the solution. Results obtained using a constant value for the parameter τ are
compared with results from the full Navier-Stokes simulation.

We also demonstrate the ability to run simulations with more physically accurate initial
conditions. To match the physical experiments, the pressure in the strike zone must be increased
by orders of magnitude. In [72], in order to resolve a solution, this increase in pressure in the
strike zone demanded an undesirable increase in the pressure of the surrounding atmosphere.

Example II provides results that match this experiment. To more realistically model the
physical experiment we want to minimize the pressure in the surrounding atmosphere which, in
the single-gas model, is meant to mimic a vacuum. In Example III, we show the ability to im-
plement significantly lower pressure in this region, thus obtaining a more physically appropriate
representation of the physical experiments. Example IV provides results for the variation of
the size of the strike zone. Finally, Example V provides details for the Navier-Stokes simulation
and a summary of the three models.

2.3.1 Example I

In this section we review results obtained computing the solution to the single-gas laser ablation
problem with the initial conditions given by (2.42) with,

p(1) = 108 Pa, p(2) = 3 Pa,

T (1) = 3× 104 K, T (2) = 300 K, (2.45)

and boundary conditions given by (2.43). These initial conditions coincide with ‘Case B’ in
[72].

The solutions to the laser ablation problem are first computed using the full QGD model.
The results computed using three spatial cell sizes are provided, namely ∆x = 4 × 10−6 m,
∆x = 2×10−6 m and ∆x = 4.44×10−7 m. The plots are of the normalized density versus time
at specified locations along the spatial domain, namely x = 5 mm and x = 11 mm. In other
words, the plot gives the view of the plasma expansion for someone standing at the indicated
distance from the laser strike as time evolves. The density is normalized by ρ× 104/ρ(1), with
ρ(1) = p(1)/(T (1)R). Note, this normalization procedure is carried out on all results in this
section. The data for these time plots are sampled at 100 equally spaced points along the time
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domain. As noted above, the results presented here for the QGD simulations are obtained
using the SSP RK time integrator. In general, the goal is to minimize the quasi-gas dynamics
diffusion, which is controlled by the relaxation parameter, while also minimizing the smoothing
performed via θ in the minmod function (1.69). The relaxation parameter is calculated via
(2.44), where α is chosen as small possible. Note that as α decreases the numerical stability
issues present in the full Navier-Stokes simulation become more dominant. This results in
necessarily decreasing the CFL number, which of course increases computation time. Table 2.1
shows the interplay between these parameters. The constants c1 and c2 control the convective
and diffusive CFL constraints, respectively. I.e.,

∆t = min
(
c1

(
∆x
amax

)
, c2(∆x)2

)
(2.46)

Note that amax is the largest in modulus of the left and right local speeds calculated in (2.36).
Table 2.1 shows the effects on computational time due to the adjustment of these parameters.

Table 2.1: QGD Computational Parameters

θ α c1 c2 Run Time
1 1.3 0.6 0.45 0.5 34m 52.381s
2 1.55 0.6 0.45 0.5 34m 22.113s
3 1.55 0.6 0.45 1.0 17m 16.509s
4 1.55 0.6 0.45 1.65 10m 36.695s
5 1.55 0.275 0.45 1.65 10m 44.895s

We see that c2, the parameter controlling the CFL number associated with diffusion has a great
impact on run time. Furthermore, we see that decreasing α, which provides sharper resolution
of the frontal shock, has a small effect on the run time. See Figure 2.5 to observe the smoothing
that occurs with larger values of α. The parameters that we chose to run the following QGD
simulations with are

θ = 1.55, α = 0.275, c1 = 0.45, c2 = 1.65. (2.47)

Table 2.1 is by no means an exhaustive list, but is meant to give the reader insight into the
effects of these parameters so that the numerical scheme may be tuned to specific needs.

Figure 2.1 presents results obtained using spatial cell size ∆x = 4 × 10−6 m. The results
capture the qualitative behavior including the shock front formation present at x = 11 mm.
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This step is the shock wave that under certain conditions may appear in front of the main flux.
The conditions leading to the appearance of this laser jet front are important since the shocks
are detrimental to the quality of the thin film produced by the spread of the plasma over the
substrate.
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Figure 2.1: Example I Solution (normalized density) plotted against time at the indicated
distance from the strike zone, computed on grid with ∆x = 4× 10−6 m.

In Figure 2.2, we supply results for mesh size ∆x = 2×10−6 m. The density is less than what
is obtained with ∆x = 4× 10−6 m, which is consistent with the non-monotonic convergence as
the cell size decreases, see Figure 2.4.

47



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time

ρ
×

10
4
/
ρ

(
1
)

(a) x = 5mm

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

ρ
×

10
4
/
ρ

(
1
)

(b) x = 11mm

Figure 2.2: Example I Solution (normalized density) plotted against time at the indicated
distance from the strike zone, computed on grid with ∆x = 2× 10−6 m.

48



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

1

2

3

4

5

6

time

ρ
×

10
4
/
ρ

(
1
)

(a) x = 5mm

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

0.5

1

1.5

2

2.5

time

ρ
×

10
4
/
ρ
(1

)

(b) x = 11mm

Figure 2.3: Example I Solution (normalized density) plotted against time at the indicated
distance from the strike zone, computed on grid with ∆x = 4.44× 10−7 m.
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Figure 2.3 provides a reference solution using ∆x = 4.44 × 10−7 m. The amplitude of
these plots exceed those in [72], pointing to less numerical dissipation. The step character in
the results model the shock wave that appears in front of the jet and is to be expected. The
increasing resolution of the spike in these plots indicate an increasingly better approximation
of the laser jet front.

The results obtained in [72] were computed using a standard second-order central difference
method to approximate the spatial derivatives and first-order forward differences for the time
derivatives. The finite difference scheme requires a cell size of ∆x = 4.44×10−7 m. In addition,
the forward Euler time integrator requires a time step on the order of (∆x)2.

The central-upwind scheme applied here is able to resolve a solution with a much larger
cell size. In fact, we are able to resolve solutions with ∆x = 9.995× 10−6 m. This decrease in
spatial grid points of over ninety percent, coupled with the use of an efficient ODE solver to
integrate the semi-discrete scheme, provides substantial computational savings.

Figure 2.4 provides a plot of the convergence of the scheme to the solution given in [72].

Relaxation Parameter Analysis As previously mentioned, the relaxation parameter τ is
tied to the solution. In particular, at each time step, τ must be calculated using updated values
of pressure and density. We want to analyze the effect this parameter has on solutions and
ascertain if it could be decoupled from the solution.

First, we present results of the numerical experiments where the magnitude of τ is pro-
gressively decreased through the manipulation of the constant α in (2.44). Figure 2.5 provides
plots of normalized density versus time at x = 11 mm as α decreases. The results are obtained
using the cell size ∆x = 4 × 10−6 m and the computational parameters given in (2.47), save
the varying values for α. The initial conditions are given in (2.45). As can be seen, the shock
front becomes more sharply resolved as α decreases, in accordance with what is expected re-
garding the smoothing effect of the relaxation parameter. Secondly, we conduct experiments
implementing a constant value for τ . Analysis of the values taken on by τ during the QGD
simulation provides approximate bounds. It was found that 3.047 × 10−10 ≤ τ ≤ 9.98 × 10−9.
The constant τ experiments were conducted using the initial conditions given in (2.45) and a
spatial cell size ∆x = 4× 10−6 m. The computational parameters must be chosen carefully to
compute a solution when τ is held constant.

Both the minmod parameter and the CFL constraint for diffusion must both be set at lower
values to compute solutions in these experiments. We were unable to compute solutions for
θ = 1.55, the value used in the previous QGD experiments, with the CFL condition kept at an
appropriate level for efficient computation. In this experiment we chose to hold θ = 1.3 and
c1 = 0.45. The value for c2, the CFL constraint on diffusion, must be chosen corresponding to
the value the constant τ is set.
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Figure 2.4: Example I Convergence of the solution (normalized density) plotted against time
at the indicated distance from the strike zone. Computed on grid with ∆x inversely proportional
to the indicated number of grid points.
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Figure 2.5: Example I Smoothing of the solution diminishes as relaxation parameter τ de-
creases. Solution (normalized density) is plotted against time at a distance x = 11mm from
the strike zone for the indicated parameter, computed on grid with ∆x = 4× 10−6 m.
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With regards to the balance of efficiency and accuracy, we found τ = 10−9 to be an ideal
choice for the parameter. The resolution of the solution is favorable and comparable to our
previous results. For this simulation we were able to compute results using c2 = 0.5. The run
time for this simulation is 33 m 12.849 s. Note that this is significantly longer than the QGD
simulation.

We were also able to obtain a result for τ = 10−8. This result is of course smoothed in
comparison, due to the larger amount of diffusion being allowed by the relaxation parameter.
However, to produce results here we need to lower c2 = 0.2 which results in a run time of 83
m 14.245 s. This is of course less than ideal, both in efficiency and accuracy. The plots for
these two experiments are compared in Figures 2.6 and 2.7, for x = 5 mm and x = 11 mm

respectively. Note the increased resolution of the shock front in Figure 2.7, which is expected
with the smaller amount of diffusion.

Finally, we attempted to obtain results for τ = 10−10. Using the RK time integration re-
quires an extremely small CFL number to resolve the solution, which results in an unacceptable
run time. Using the DUMKA time-stepping procedure produces results in a relatively efficient
manner. In fact, the procedure produces results for τ = 10−10 at a run time of 37 m 21.505 s.
These results are plotted in Figure 2.8. Note the extreme resolution of the shock fronts visible
in both plots. This is consistent with the NS results, see Figures 2.13(c) and 2.14(d), and agree
with the expected effect of decreasing τ . Note, however, the unsteady resolution due to the
increasing numerical instability.

So, we see that the full QGD simulation provides an acceptable approximation to the full
Navier-Stokes simulation at an extreme computational saving, approximately ten minutes versus
nearly 38 hours for the full Navier-Stokes simulation. Decoupling the relaxation parameter from
the solution and making it constant is able to provide results that approach more closely the
Navier-Stokes simulation, with only a slight loss of computational efficiency. A summary of the
three models is provided in Section 4.5.

2.3.2 Example II

In order to accurately model the physical experiments, the pressure in the strike zone is increased
by an order of magnitude. However, this places increased strain on numerical methods. In [72],
to resolve a solution, the increase in pressure in the strike zone demanded an increase in p(2). In
this example we review results obtained computing the solution to the laser ablation problem
with the initial conditions given by (2.42) with,

p(1) = 1010 Pa, p(2) = 103 Pa,

T (1) = 104 K, T (2) = 300 K. (2.48)
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Figure 2.6: Example I Constant τ solutions (normalized density) plotted against time at a
distance x = 5mm from the strike zone, computed on grid with ∆x = 4× 10−6 m.
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Figure 2.7: Example I Constant τ solutions (normalized density) plotted against time at a
distance x = 11mm from the strike zone, computed on grid with ∆x = 4× 10−6 m.
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Figure 2.8: Example I Constant τ = 10−10 solutions (normalized density) plotted against
time at the indicated distance from the strike zone, computed on grid with ∆x = 4 × 10−6 m
using DUMKA ODE solver.
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and boundary conditions given by (2.43). These initial conditions coincide with ‘Case D’ in
[72]. This experiment is actually a ’preliminary’ result on the way to the more realistic initial
conditions implemented in the next example. In this experiment the pressure of the carbon gas
in the strike zone and in the ‘vacuum’ atmosphere are increased. Figure 2.9 provides plots of
the results computed using a cell size of ∆x = 4× 10−6 m.

Notice the visible lag in the appearance of the shock front at x = 11 mm, Figure 4.2.9(b).
This is the effect of the high pressure atmosphere slowing down the expansion.
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Figure 2.9: Example II Solution (normalized density) plotted against time at the indicated
distance from the strike zone, computed on grid with ∆x = 4× 10−6 m.
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2.3.3 Example III - More Physically Realistic Initial Conditions

In this example we implement more physically appropriate initial conditions. In particular, we
would like a better representation of the vacuum into which the plasma expands when p(1) is
increased to a experimentally desired magnitude. The pressure p(2), in the atmosphere, should
be set as low as possible to more realistically model the physical experiment. The scheme
implemented here is able to produce results when p(2) ∼ O(1). Again, we consider the laser
ablation problem with the initial conditions given by (2.42) with

p(1) = 1010 Pa, p(2) = 3 Pa,

T (1) = 104 K, T (2) = 300 K, (2.49)

and boundary conditions given by (2.43).
The results provided in Figure 2.10 demonstrate the ability of the numerical scheme to

compute a solution to this demanding problem. We see that the shock front is smoothed away
in this experiment. It is again noted that these results were computed with a spatial cell size
of ∆x = 4× 10−6 m, and that they have not been previously obtained.

2.3.4 Example IV - Strike Zone

Next, we vary the size of the strike region to observe the effect on the solution. In particular,
we want to see how this affects the pre-shock visibile in the previously obtained plots of the
density at a distance x = 11 mm from the target. It should be noted that as the initial strike
region becomes smaller, the mesh size must increase in order to have a grid fine enough to
capture p(1) in at least one cell. I.e., x1 = 1

2∆x ≤ l. Thus, the mesh size N ≥ L
2l .

We consider the laser ablation problem with initial conditions given by (2.42) and boundary
conditions given by (2.43). The initial values of pressure and temperature are taken from the
first example. I.e.,

p(1) = 108 Pa, p(2) = 3 Pa,

T (1) = 3× 104 K, T (2) = 300 K. (2.50)

In this experiment, first we decrease the strike region to x ≤ l = 2 × 10−6 m. Figure 2.11
provides the results. To resolve the solution in this case, the cell size must be decreased
to ∆x = 2 × 10−6 m, which is the value used here. Next we increase the strike region to
x ≤ l = 7.5×10−6 m. The result for this case is provided in Figure 2.12. Notice that decreasing
the size of the strike zone has little effect on the plots. However, increasing the strike zone
noticeably affects the solution. The increased volume of high pressure and temperature results
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Figure 2.10: Example III Solution (normalized density) plotted against time at the indicated
distance from the strike zone, computed on grid with ∆x = 4× 10−6 m.
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in a higher density expansion.
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Figure 2.11: Example IV Decrease the size of the strike zone: l = 2µm. Solution (normalized
density) plotted against time at the indicated distance from the strike zone, computed on grid
with ∆x = 2× 10−6 m.

2.3.5 Example V - Navier-Stokes Model

In this section we present results obtained by applying the Navier-Stokes model to the laser
ablation problem and compare the results of the three different models applied to the single-gas
problem. These models are given below.
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Figure 2.12: Example IV Increase the size of the strike zone: l = 7.5µm. Solution (normalized
density) plotted against time at the indicated distance from the strike zone, computed on grid
with ∆x = 4× 10−6 m.
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1. Quasi-Gas Dynamics: τ is dependent on solution at each step.

2. Constant τ : τ is a constant parameter.

3. Navier-Stokes.

Recall that the relaxation parameter τ is used to provide computational stability by adding
numerical dissipation. With τ eliminated from the QGD equations, i.e. the Navier-Stokes
equations, resolving the solution with the given initial conditions becomes more challenging.
One of the main goals of this project is to resolve the solution to the Navier-Stokes equations
with the initial conditions given by the laser ablation problem, which had previously not been
accomplished. The scheme implemented here is able to resolve a solution for this problem,
accurately resolving shocks with a cost efficient mesh size.

Recall, the dynamic viscosity in the QGD equations is computed proportional to τ . For
the Navier-Stokes equations, the dynamic viscosity η is computed via equation (2.28). The
standard conditions for carbon are given by T ∗ = 300 K and η∗ = 1.66 × 10−5 kg/ms. The
simulations are run with a spatial mesh width given by ∆x = 4×10−6 m. The initial conditions
for the problem are given in (2.51).

p1 = 108 pa, T1 = 3× 104 K,

p2 = 3 pa, T2 = 300 K. (2.51)

The DUMKA time-stepping procedure is used to compute the Navier-Stokes solution to the
problem. Due to stiffness of the problem and the numerical stability issues presented by Navier-
Stokes’ equations, θ = 1.0 is the only value for this parameter that provides enough smoothing
to produce a solution. It is obvious that the QGD equations provide a much more reasonable
approach to obtaining approximations to the laser ablation problem.

Figures 2.13 and 2.14 provide results, at x = 5 mm and x = 11 mm respectively, comparing
the solutions obtained using the three models. We see that the results provided by the constant
τ simulation and by the QGD simulation provide a nice resolution of the shock front at x =
11 mm. Although neither match the sharp resolution of the expansion as well as the Navier-
Stokes simulation, the computational savings in these approximations lead us to determine that
the QGD method is the most effective model in approximating the plasma expansion.
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Figure 2.13: Example V Comparison of three single-gas models. Solution (normalized den-
sity) is plotted against time at a distance x = 5mm from the strike zone, computed on grid
with ∆x = 4× 10−6 m.
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Figure 2.14: Example V Comparison of three single-gas models. Solution (normalized den-
sity) is plotted against time at a distance x = 11mm from the strike zone, computed on grid
with ∆x = 4× 10−6 m.
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Chapter 3

One-Dimensional Laser Ablation -

Binary Gas

3.1 Mathematical Model

More realistically, ablation occurs in a low-pressure gaseous medium. The expanding laser
plasma is more accurately modeled by describing the binary gas mixture in order to analyze
the interaction of shock waves emerging during the expansion of the laser jet. This analysis
allows one to determine the minimum pressure at which the buffer gas begins to adversely affect
the the expansion of the carbon flow. In practical applications it is desirable to determine the
conditions under which the velocity of the carbon flow is approximately equal to the velocity of
the shock wave in the buffer gas. Drift in the location of shocks is common in the computation
of this system. The numerical scheme employed here is able to accurately resolve the location
of the shocks. In the following we consider the expansion of a carbon laser jet in a domain filled
with low-pressure nitrogen.

The dynamics of interaction between two different gases is considered using the quasi-
gas dynamic system of equations for a binary gas mixture [35]. Each component a and b of
the gas are described by three functions of the Eulerian coordinate x and time t. We have
ρa(x, t) - gas density, ua(x, t) - macroscopic velocity, and pa(x, t) - pressure of gas a, with
analogous descriptions for gas b. The equations for each gas are derived similarly to the single-
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gas equations, (2.13)-(2.16), and are given by

∂ρa
∂t

+
∂ja
∂x

= 0, (3.1)

∂(ρaua)
∂t

+
∂(jaua)
∂x

+
∂pa
∂x

=
∂Πa

∂x
+ Sua , (3.2)

∂Ea
∂t

+
∂(jaHa)
∂x

+
∂qa
∂x

=
∂Πaua
∂x

+ SEa , (3.3)

ja = ρa(ua − wa), wa =
τ

ρa

∂

∂x
(ρau2

a + pa). (3.4)

The viscous stress tensor and the heat flux are given by

Πa = ΠNS
a + τ [ua (ρaua(ua)x + (pa)x) + (ua(pa)x + γapa(ua)x)] , (3.5)

ΠNS
a =

(
4
3
ηa + ηa

(
5
3
− γa

))
∂ua
∂x

, (3.6)

qa = qNSa − τρaua
[

ua
γa − 1

∂

∂x

(
pa
ρa

)
+ paua

∂

∂x

(
1
ρa

)]
, (3.7)

qNSa = −κa∂Ta
∂x

. (3.8)

Note the equations for gas b are analogous and can be obtained by substituting the subscript b
into the above equations. Also, note that the Navier-Stokes viscous stress tensor is computed
slightly differently, by omitting the coefficient B.

The formulation of the system is completed by adding exchange terms describing the mo-
mentum and energy transfer between the gas mixture components. Sua and SEa give the exchange
terms, respectively, for the momentum and energy of gas a, and Sub and SEb give these terms
for gas b. The exchange terms are calculated as follows:

Sua = νabρa(ūa − ua), (3.9)

SEa = νab(Ēa − Ea), (3.10)

Sub = −Sua , (3.11)

SEb = −SEa . (3.12)

Here νab is the frequency of collisions between molecules of gases a and b,

νab =
pa
η∗a

Ωa

√
Ma +Mb

2Mb

ρb
ρa

Ma

Mb
, (3.13)
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with

Ωa =
30

(7− 2ωa)(5− 2ωa)
(3.14)

η∗a = η0
a

(
Ta
T 0
a

)ωa

, (3.15)

and ωa being the index describing the intermolecular interaction in gas a. For diatomic nitrogen
N2, ωa = 0.74. The dynamic viscosity and temperature of N2 under standard conditions is given
respectively as η0

a = 1.66×10−5 and T 0
a = 300K. The molar masses of the gases are Ma = 0.028

kg/mol and Mb = 0.024 kg/mol.
The other values in the exchange terms, (3.9) - (3.12), are calculated by

ūa =
(Maua +Mbub)

(Ma +Mb)
, (3.16)

Ēa =
ρaū

2
a/2 + ρaRaT̄a
(γa − 1)

, (3.17)

T̄a = Ta +
2MaMb

(Ma +Mb)2

(
Tb − Ta +

1
6Rb

(ub − ua)2

)
. (3.18)

Here we have the gas constants Ra = 296.8 and Rb = 346.25.
The dynamic viscosity ηa and the thermal conductivity κa are related to the relaxation

parameter τ by

ηa =
τpa
Sca

, κa =
ηaγaRa

Pra(γa − 1)
. (3.19)

The corresponding coefficients for gas b can be found by substituting the subscript a with b.
The remaining parameters are given as γa = γb = 7/5, ωa = ωb = 0.74, Pra = Prb = 14/19, and
Sca = Scb = 0.756.

3.2 Numerics

The numerics for the binary gas model are treated in much the same way as the numerics for
the single gas model. Again we rewrite the system in the vector form

ut + f(u)x = D(u). (3.20)
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Except, in this case the vectors each contain six components and the diffusion vectors is ap-
pended by the momentum and energy exchange terms.

u =



ρa

ρaua

Ea

ρb

ρbub

Eb


, f(u) =



ρaua

ρau
2
a + pa

(Ea + pa)ua
ρbub

ρbu
2
b + pb

(Eb + pb)ub


, D(u) =



(ρawa)x
(Πa + ρawaua)x + Sua

(Πaua − qa + wa(Ea + pa))x + SEa

(ρbwb)x
(Πb + ρbwbub)x + Sub

(Πbub − qb + wb(Eb + pb))x + SEb


.

(3.21)
We again consider a uniform spatial grid, xj = j∆x, xj± 1

2
= (j ± 1

2)∆x, and compute the
cell averages according to equation (2.32). The cell averages are evolved in time according
to equation (2.33). The hyperbolic Hj+ 1

2
and parabolic Pj+ 1

2
numerical fluxes are described

below.

Hyperbolic Flux

The hyperbolic numerical fluxes are computed analogously to the description in the single
gas model, following [66] . The important difference to keep in mind is that Hj+ 1

2
is now a

vector containing six components. With this in mind, we proceed as before. In particular,
we use the cell averages to reconstruct a conservative second-order piecewise linear interpolant
via equation (2.34). We again use the generalized minmod function given in (1.69) to limit
the slopes in the reconstruction. The hyperbolic numerical fluxes are then computed using
equation (2.35) with point values determined in the same manner and the local speeds estimated
again by (2.36).

Parabolic Flux

Again, keeping in mind that Pj+ 1
2

is now a vector containing six components, the parabolic flux
is constructed identically to that for the single gas except for the addition of the momentum
and energy transfer terms coupling the system. These terms are not fluxes and so care must
be taken to add them outside of the finite differences.

Temporal Integration

For the binary gas problem we have used the explicit third-order large stability domain Runge-
Kutta method, called DUMKA and developed in[93, 94]. This high-order integration produces
accurate results, and its larger stability domains (in comparison with the standard Runge-Kutta
methods) allow for larger time steps; the explicit form retains simplicity, and the embedded for-
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mulas permit an efficient stepsize control. In practice these methods preserve all the advantages
of explicit methods and work as fast as implicit methods (see [94] for details).

3.3 Numerical Experiments

In this section we present results of the numerical experiments conducted on the one-dimensional
binary-gas model. In this model the laser carbon jet expands into a nitrogen atmosphere. First
we justify the use of the scheme with direct comparisons to results found in [115]. We then
determine the lowest pressure admissible for the gas present in the atmosphere in Section 5.2.
Similar to the single-gas experiments, we implement a version of the QGD model using a
constant value for the relaxation parameter. We present these results in Section 5.3. Please
note that the DUMKA time-stepping procedure is used for all binary experiments.

In the following experiments we consider the expansion of a carbon (Gas a) laser jet into a
nitrogen (Gas b) atmosphere. This more accurately models the physical experiments. We would
like to analyze the interaction of the shock waves that emerge during the physical process. The
parameters for gas a and gas b are γa = γb = 7/5, ωa = ωb = 0.74, Pra = Prb = 14/19 and
Sca = Scb = 0.746. The molar masses of the gases are Ma = 0.028 kg/mol and Mb = 0.024
kg/mol. The gas constants are Ra = 296.8 and Rb = 346.25. We consider the system (3.1) -
(3.3) subject to the initial conditions,

(pa(x, 0), Ta(x, 0), ua(x, 0)) = (pa, Ta, 0), 0 ≤ x ≤ 0.02 m. (3.22)

(pb(x, 0), Tb(x, 0), ub(x, 0)) =

{
(p(1)
b , T

(1)
b , 0), if x ≤ 5× 10−6 m,

(p(2)
b , T

(2)
b , 0), if x > 5× 10−6 m.

(3.23)

The domain boundaries are taken to be solid walls. The boundary conditions for both gases
are taken to be u = 0, ∂ρ

∂x = 0, and ∂T
∂x = 0.

The calculation domain is taken to be 0 ≤ x ≤ L = 0.02m. After the laser pulse, at t = 0,
there is a thin region, x ≤ l = 5 × 10−6, where gas b has high pressure and high temperature,
while on the rest of the domain, it is at low pressure and temperature. Gas a is taken as
constant on the entire domain initially. The time domain is taken to be 0 ≤ t ≤ tf = 4µs. The
conservative variables ρ, ρu, and E at t = 0 are found using (2.18) and (1.37) and noting that
ρu = 0 over the entire domain initially since u = 0 initially.

The boundary conditions for both gases are implemented numerically as they were in the
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single-gas case. I.e.,

ρ̄0 = ρ̄1, ū0 = −ū1, p̄0 = p̄1,

ρ̄N−1 = ρ̄N−2, ūN−1 = −ūN−2, p̄N−1 = p̄N−2, (3.24)

where N is the number of grid points.
The relaxation parameter is chosen according to the formula given for the single gas problem,

with the parameter α = 0.6. Namely,

τa = τb =
0.6∆x
Sc · c , (3.25)

where c=
√
γaRaTa is the speed of sound in nitrogen.

3.3.1 Example A

In this section we present results from the computation of the binary gas laser ablation problem
with initial conditions given by (3.22) - (3.23). The initial values of pressure and temperature
for the different simulations are given below. Note that the changes between simulations are in
the pressure of gas a and the temperature and pressure of gas b in the strike zone. The initial
values that do not vary between simulations are,

Ta = 300 K, p
(2)
b = 103 Pa, T

(2)
b = 300 K. (3.26)

An increase in the pressure of the buffer gas is implemented in Version 2. Versions 3 and 4

are characterized by a decrease in the pressure of the carbon gas in the strike zone. The initial
conditions for the Versions 1− 4 are given below.

Version1 : pa = 103 Pa, p
(1)
b = 1010 Pa, T

(1)
b = 104 K. (3.27)

Version2 : pa = 104 Pa, p
(1)
b = 1010 Pa, T

(1)
b = 104 K. (3.28)

Version3 : pa = 103 Pa, p
(1)
b = 109 Pa, T

(1)
b = 3× 104 K. (3.29)

Version4 : pa = 104 Pa, p
(1)
b = 109 Pa, T

(1)
b = 3× 104 K. (3.30)

The spatial cell size is given as ∆x = 4 × 10−6. The minmod parameter is set at θ = 1.5,
except for Version 2 where θ = 1.3 is necessary to resolve a solution.

Figures 3.1 - 3.4 provide the corresponding results. It is noted that the results produced are
in agreement with those produced in [115]. When compared to previously obtained results, the
scheme produces substantially sharper resolution of the shock fronts. As important, the results
presented here display a much better alignment of the shock expansion in each gas. Numerical

70



drift had previously contributed to a separation in the approximations of the expansion of the
shocks.

3.3.2 Example B - Low Pressure

In this experiment we wanted to determine the lowest admissible pressure p(2)
b , the pressure of

carbon in the atmosphere. Physically, we would like this value to be as low as possible. The
initial conditions are the same as Version 1, except for the lower value for p(2)

b .

Ta = 300 K, p
(2)
b = 151 Pa, T

(2)
b = 300 K. (3.31)

pa = 103 Pa, p
(1)
b = 1010 Pa, T

(1)
b = 104 K (3.32)

The lowest admissible pressure achieved is p(2)
b = 151 Pa, which is a full order of magnitude

lower than previously obtained. Figure 3.5 shows the result plotted at x = 5 mm and x =
11 mm using a spatial cell size given by ∆x = 4 × 10−6 m. When compared with the results
using the initial conditions given in Version 1, see Figure 3.1, we see that at x = 11 mm a
smoother shock front is apparent in the experiment with the lower atmospheric pressure. This
is consistent with the expectation that having less pressure allows for a smoother spreading of
the plasma.

3.3.3 Example C - Constant τ

For this experiment we consider the binary-gas problem with the initial conditions given by
(3.27). The minmod parameter θ = 1.5. Again, we use a spatial cell size given by ∆x =
4× 10−6 m.

A numerical analysis of the relaxation parameter was carried out analogously with the
analysis in Section 4.5, with similar results. The value for the relaxation parameter in the
constant τ experiments is chosen according to optimum efficiency and accuracy. As with the
single-gas experiments, we found τ = 10−9 gives us a desirable approximation. We see, in
Figures 3.6 and 3.7, that the constant τ simulation provides a sharper resolution than QGD
simulation. We also found that for the binary gas model, the constant τ model actually provides
us with a modest computational-time savings.
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Figure 3.1: Example A (Version 1) Solution (normalized density) plotted against time at the
indicated distance from the strike zone, computed on grid with ∆x = 4× 10−6 m.
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Figure 3.2: Example A (Version 2) Solution (normalized density) plotted against time at the
indicated distance from the strike zone, computed on grid with ∆x = 4× 10−6 m.
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Figure 3.3: Example A (Version 3) Solution (normalized density) plotted against time at the
indicated distance from the strike zone, computed on grid with ∆x = 4× 10−6 m.
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Figure 3.4: Example A (Version 4) Solution (normalized density) plotted against time at the
indicated distance from the strike zone, computed on grid with ∆x = 4× 10−6 m.
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Figure 3.5: Example B - Lowest admissible initial atmospheric pressure. Solution (normalized
density) plotted against time at the indicated distance from the strike zone, computed on grid
with ∆x = 4× 10−6 m.
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(b) Constant τ = 10−9

Figure 3.6: Example C Comparison of the QGD model with constant τ model for the binary
gas problem. Solution (normalized density) is plotted against time at a distance x = 5mm from
the strike zone, computed on grid with ∆x = 4× 10−6 m.
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Figure 3.7: Example C Comparison of the QGD model with constant τ model for the binary
gas problem. Solution (normalized density) is plotted against time at a distance x = 11mm
from the strike zone, computed on grid with ∆x = 4× 10−6 m.
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Chapter 4

Quasi Two-Dimensional Radially

Symmetric Laser Ablation

4.1 Mathematical Model

This section presents the quasi two-dimensional, radially symmetric representation of the QGD
equations. This model is derived by rewriting the equations in polar coordinates. Then, by
taking advantage of symmetry, we can reduce the dependence of the system to the single space
variable, r:

∂ρ

∂t
+

1
r

∂(rjmr)
∂r

= 0 (4.1)

∂(ρur)
∂t

+
1
r

∂(rjmrur)
∂r

+
∂p

∂r
=

1
r

∂(rΠ(rr))
∂r

(4.2)

∂E

∂t
+

1
r

∂(rjmrH)
∂r

+
1
r

∂(rq(r))
∂r

=
1
r

(rur∂Π(rr))
∂r

(4.3)

In the above equations, the r notation indicates the r components of the notated variable. E.g.,
ur signifies the r component of velocity. Since this is the only component in the derivation, the
notation is dropped in the following. The mass flux density (jm), viscosity component (Π), and
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heat flux (q) are given below.

jm = ρu− τ
(

1
r

∂(rρu2)
∂r

+
∂p

∂r

)
(4.4)

Π = µ

(
2
∂u

∂r
−
[

2
3
− ζ

µ

]
1
r

∂(ru)
∂r

)
+ τρu

(
u
∂u

∂r
+

1
ρ

∂p

∂r

)
+ τ

(
u
∂p

∂r
+ γp

1
r

∂(ru)
∂r

)
(4.5)

q = −κ∂T
∂r
− u

[
τρ

γ − 1

(
u
∂

∂r

(
p

ρ

))
+ τρp

(
u
∂

∂r

(
1
ρ

))]
(4.6)

The coefficients for dynamic viscosity µ, thermal conductivity κ, and bulk viscosity ζ, are
related to the relaxation parameter τ . The formulas for these are given below.

τ = α
∆rmin
cs

(4.7)

µ = τpSc (4.8)

ζ = τp

(
5
3
− γ
)

(4.9)

κ =
µγR

Pr(γ − 1)
(4.10)

The speed of sound in an ideal gas is cs and the parameter α are determined experimentally.
In the above formulas we have cs = (γRT2)

1
2 = 381.3 m/s, where T2 is the temperature of

an ideal gas. The remaining parameters are given as R = 346.25 is the gas constant, γ = 1.4
is the adiabatic index, and Sc=0.746 and Pr=14/19 are the Schmidt and Prandtl numbers
respectively.

Multiplying equations (4.1)-(4.2) through by the spatial variable r gives us the following
configuration of the equations.

∂(rρ)
∂t

+
∂(rjm)
∂r

= 0 (4.11)

∂(rρu)
∂t

+
∂(rjmu)
∂r

+ r
∂p

∂r
=
∂(rΠ)
∂r

(4.12)

∂(rE)
∂t

+
∂(rjmH)

∂r
+
∂(rq)
∂r

=
∂(ruΠ)
∂r

(4.13)

Note that the conservative variables are now given by the vector u = (rρ, rρu, rE)T . Now, in
order to obtain a more numerically workable derivation, we expand the mass flux density in
each equation according to its formula.
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Equation (4.11)

Substituting the equation for the mass flux density, (4.4), into the conservation of mass equation,
(4.11), give us the following representation of the formula.

∂(rρ)
∂t

+
∂

∂r

[
r

(
ρu− τ

(
1
r

∂(rρu2)
∂r

+
∂p

∂r

))]
= 0 =⇒

∂(rρ)
∂t

+
∂(rρu)
∂r

=
∂

∂r

(
τ
∂

∂r
(rρu2) + τr

∂p

∂r

)
(4.14)

Equation (4.12)

The equation for conservation of momentum is expanded as follows. Again, we substitute the
equation for the mass flux density, (4.4), into the conservation of momentum equation, (4.12).
Note that the substitution, r ∂p∂r = ∂(rp)

∂r − p, is used in the following expansion.

∂(rρu)
∂t

+
∂

∂r

[
ru

(
ρu− τ

(
1
r

∂(rρu2)
∂r

+
∂p

∂r

))]
+
∂(rp)
∂r

− p =
∂(rΠ)
∂r

=⇒
∂(rρu)
∂t

+
∂(r(ρu2 + p))

∂r
=

∂

∂r
(rΠ) +

∂

∂r

(
τu

∂

∂r
(rρu2) + τru

∂p

∂r

)
+ p (4.15)

Equation (4.13)

The final equation in this section, the conservation of energy, is expanding similarly. Note that
the formula for enthalpy, H = E+p

ρ is used in the derivation.

∂(rE)
∂t

+
∂

∂r

[
r

(
ρu− τ

(
1
r

∂(rρu2)
∂r

+
∂p

∂r

))
H

]
=
∂(ruΠ)
∂r

− ∂(rq)
∂r

=⇒
∂(rE)
∂t

+
∂ (ru(E + p))

∂r
=

∂

∂r
(rΠu)− ∂

∂r
(rq) +

∂

∂r

(
τH

∂

∂r
(rρu2)

)
+

∂

∂r

(
τrH

∂p

∂r

)
(4.16)

4.2 Numerics

We use the one-dimensional version of the second-order central-upwind scheme [66] to solve the
radially symmetric QGD equations. Note that in the sequel, the subscript r notation refers to
the spatial derivative. First we rewrite the system derived in equations (4.14)-(4.15) in vector
form:

ut + f(u)r = D(u). (4.17)
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Here, u is the unknown vector of conservative variables, f represents the the convective nonlinear
flux and D the nonlinear diffusion term:

u =

 rρ

rρu

rE

 , f(u) =

 rρu

r(ρu2 + p)
ru(E + p)

 ,

D(u) =


∂
∂r

(
τ ∂
∂r (rρu2) + τr ∂p∂r

)
∂
∂r (rΠ) + ∂

∂r

(
τu ∂

∂r (rρu2) + τru∂p∂r

)
+ p

∂
∂r (rΠu)− ∂

∂r (rq) + ∂
∂r

(
τH ∂

∂r (rρu2)
)

+ ∂
∂r

(
τrH ∂p

∂r

)
. (4.18)

Note that the additional term for pressure in the second component of the diffusion flux is not
actually a flux and will be handled outside of the parabolic flux.

Again we consider a uniform grid of size ∆r and use the notation: rj = j∆r, rj± 1
2

=
(j ± 1

2)∆r. The cell averages are computed according to

uj(t) =
1

∆r

r
j+1

2∫
r
j− 1

2

u(r, t) dr. (4.19)

The semi-discrete version of the PDE is given by

d

dt
uj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆r
+

Pj+ 1
2
(t)−Pj− 1

2
(t)

∆r
+ (0, p, 0)T . (4.20)

The hyperbolic Hj+ 1
2

and parabolic Pj+ 1
2

numerical fluxes are constructed as follows.

Hyperbolic Flux

The hyperbolic numerical fluxes are computed identically to the one-dimensional single gas
problem, [66]. In particular, we use the cell averages to reconstruct a conservative second-order
piecewise linear interpolant via equation (2.34). We again use the generalized minmod function
given in (1.69) to limit the slopes in the reconstruction. The hyperbolic numerical fluxes are
then computed using equation (2.35) with point values determined in the same manner and the
local speeds estimated again by (2.36). Note that the spatial variable r is cancelled out in the
calculation of the local speeds.

Parabolic Flux

To compute the parabolic numerical fluxes, Pj+ 1
2
, we first rewrite the diffusion in a way similar

to the derivation of the parabolic fluxes in the single gas model (see Section 1.2.3). This,
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again, is to take advantage of redundant information to ease computation. In the following, let
W = rρu2 and recall enthalpy is given by H = (E + p)/ρ. The diffusion is then written as

D(u) =

 τWr + τrpr

u(τWR + τrpr) + rΠ
H(τWr + τrpr) + rΠu− rq

 . (4.21)

Observing the flux written this way makes apparent the information we will be able to reuse.
Namely, rΠ and τWr + τrpr. The viscous stress tensor Π is given as

Π = z1ur + z2(ru)r + z3pr, (4.22)

where the coefficents in (4.22) are given as

z1 = 2µ+ τρu2, (4.23)

z2 = −µβ 1
r

+ τγp
1
r
, (4.24)

z3 = 2τu. (4.25)

The heat flux is treated a bit more carefully to avoid the calculation of extraneous derivatives.
In particular, we would like to express the temperature gradient in terms of pressure and density.
The flux is repeated below for convenience,

q = −κTr +
(
− τu

2ρ

γ − 1

(
p

ρ

)
r

)
+
(
−τρpu2

(
1
ρ

)
r

)
. (4.26)

The first term in equation (4.26) is rewritten as

−κTr = − µγR

Pr(γ − 1)
Tr =

( −τγRSc
Pr(γ − 1)

)
pTr

.= c1pTr. (4.27)

Now we use the ideal gas law, T = p
ρR to express the temperature gradient as

Tr =
1
R

(
p

ρ

)
r

, (4.28)

and the product rule to expand the gradient of p
ρ as(

p

ρ

)
r

=
prρ− pρr

ρ2
. (4.29)
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Now we can express equation (4.27) as follows:

c1pTr =
c1

R
p

(
prρ− pρr

ρ2

)
=
c1

R

(
p

ρ
pr − p2

ρ2
ρr

)
=
c1

R

(
RTpr − (RT )2ρr

)
(4.30)

= c1(Tpr −RT 2ρr). (4.31)

Using again the expansion in (4.29), the second term becomes

−τ
γ − 1

(
u2ρ

(
p

ρ

)
r

)
.= c2

(
u2ρ

(
prρ− pρr

ρ2

))
(4.32)

= c2

(
u2pr − u2p

ρ
ρr

)
. (4.33)

Similarly, the third term can be written as

−τ
(
ρpu2

(
1
ρ

)
r

)
= −τ

(
ρpu2

(−ρr
ρ2

))
(4.34)

= τ
pu2

ρ
ρr. (4.35)

So, we can write the heat flux as

q = c1(Tpr −RT 2ρr) + c2(u2pr − u2p

ρ
ρr) + τ

pu2

ρ
ρr (4.36)

= (c1T + c2u
2)pr + (−c1RT

2 − c2
u2p

ρ
+ τ

pu2

ρ
)ρr, (4.37)

where

c1 =
( −τγRSc

Pr(γ − 1)

)
, (4.38)

c2 = − τ

γ − 1
. (4.39)

The parabolic numerical flux is written in component form as Pj+ 1
2

=
(
P

(1)

j+ 1
2

, P
(2)

j+ 1
2

, P
(3)

j+ 1
2

)T
.

The individual components are computed similarly to the equations (2.39)-(2.41) in the single
gas section. E.g.,

P
(1)

j+ 1
2

=τj+ 1
2

(
W j+1 −W j

∆r

)
+ τj+ 1

2
rj+ 1

2

(
pj+1 − pj

∆r

)
(4.40)

Again, the bar notation indicates cell averages, and the j + 1
2 terms are evaluated at the flux

boundaries.
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Temporal Integration

For the radially symmetric problem we have used the explicit third-order large stability domain
Runge-Kutta method, called DUMKA and developed in[93, 94]. This high-order integration
produces accurate results, and its larger stability domains (in comparison with the standard
Runge-Kutta methods) allow for larger time steps; the explicit form retains simplicity, and the
embedded formulas permit an efficient stepsize control. In practice these methods preserve all
the advantages of explicit methods and work as fast as implicit methods (see [94] for details).

4.3 Numerical Experiments

We reduce the complexity of the two-dimensional problem by introducing a radially symmetric
model. The model is presented in polar coordinates with the assumption that there is no
variation in the θ direction. By taking advantage of this symmetry we are able to reduce the
equations to a dependence on only the single spatial variable r. In addition to giving us insight
in to the behavior of the two-dimensional problem with a simple, efficient method, computing
the radially symmetric solution provides a valuable validation of multi-dimensional results [77].

Under consideration is the spread of the plasma of molecular carbon C2 in a vacuum. Carbon
has constant parameters R = 346.25, γ = 7/5, ω = 0.74, Pr = 14/19 and Sc = 0.746.

The schematic in Figure 5.1 gives the set-up for the two-dimensional laser ablation problem
including the boundary conditions. These initial conditions are implemented in one dimension
as follows.

The initial velocity is zero everywhere, i.e. u = 0. The initial conditions for pressure
and temperature are given in the experiments below. The calculation domain is given by
0 ≤ x ≤ L = 0.02 m. After the laser pulse, at t = 0, there is a small region where the strike
results in a high-pressure and high-temperature region, given by 0 ≤ x ≤ l = 5.45 × 10−5 m.
The time domain is taken to be 0 ≤ t ≤ tf = 4µs.

The boundary conditions are given in Figure 5.1. Since our problem has been simplified to
one-dimension, we implement the boundary conditions numerically as follows. Note, N is the
number of grid points.

ρ̄0 = ρ̄1, ū0 = −ū1, p̄0 = p̄1

ρ̄N+1 = ρ̄N , ūN+1 = ūN , p̄N+1 = p̄N (4.41)

The polar coordinates demand extra care when implementing the boundary conditions. This
is because our conservative variables are given by (rρ, rρu, rE)T . So we must take into account
the sign and value of r at the boundary. Note that r0 = −∆r/2 = −r1 and rN+1 = rN + ∆r.

So, for example, when we want to determine the boundary conditions at r = 0, we get the
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following expressions.

(rρ)0 = r0ρ0 = (−r1)ρ1 = −(rρ)1 (4.42)

(rρu)0 = r0ρ0u0 = (−r1)ρ1(−u1) = (rρu)1 (4.43)

(rE)0 = r0E0 = (−r1)(E1) = −(rE)1 (4.44)

Note that the boundary conditions for energy are determined through the equation of state.
The boundary conditions at r = L are given below.

(rρ)N+1 =rN+1ρN+1 = (rN + ∆r)ρN = (rN + ∆r)
(rρ)N
rN

=
rN + ∆r
rN

(rρ)N (4.45)

(rρu)N+1 =rN+1ρN+1uN+1 = (rN + ∆r)ρN (−uN ) = −(rN + ∆r)
(rρ)NuN

rN
= −rN + ∆r

rN
(rρu)N

(4.46)

(rE)N+1 =rN+1EN+1 = (rN + ∆r)EN = (rN + ∆r)
(rE)N
rN

=
rN + ∆r
rN

(rE)N (4.47)

4.3.1 Experiment 1

First we run the quasi two-dimensional radially symmetric simulation with the initial conditions
given for the two-dimensional problem. The initial pressure and temperature are

p1 = 108Pa, T1 = 5× 104 K,

p2 = 103Pa, T2 = 300 K. (4.48)

The simulation is run with θ = 1.3 and ∆r = 5 × 10−5 m. The relaxation parameter is given
by equation (4.7) with α = 0.3, which is determined experimentally. We are able to take such
a relatively large value for r due to the size of the initial strike zone in the two-dimensional
problem. This results in a blazing computation time. The run time for this experiment is about
15 seconds! Figure 4.1 gives the results for the experiment. Note that the high pressure in the
atmosphere radically slows the expansion, so much so that the plasma jet does not even reach
x = 11 mm in the allotted time. Note this is consistent with the corresponding results we find
in the two-dimensional simulation.

4.3.2 Experiment 2

Next we attempt to lower the atmospheric pressure, p2, while maintaining the remaining phys-
ical conditions constant. Again, the simulation is run with θ = 1.3 and ∆r = 5× 10−5 m. The
relaxation parameter is given by equation (4.7) with α = 0.3. First we lower the pressure in
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Figure 4.1: Experiment 1 Solution (normalized density) plotted against time at the indicated
distance from the strike zone, computed on grid with ∆x = 5× 10−5 m.
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Figure 4.2: Experiment 2 Solution (normalized density) plotted against time at the indicated
distance from the strike zone, computed on grid with ∆x = 5× 10−5 m.

the expansion atmosphere to p2 = 100 Pa. The initial conditions are given by

p1 = 108Pa, T1 = 5× 104 K,

p2 = 102Pa, T2 = 300 K. (4.49)

The results for this numerical experiment are given in Figure 4.2. Note that the expansion is
much quicker due to the lower atmospheric pressure. Next, we try to lower this pressure to
p2 = 10 Pa. In this case, the simulation is unable to complete the simulation. It produces
results only through the time t ≈ 2.8µs. Note that this corresponds to the time the at which
the expansion hits the outer boundary.
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4.3.3 Experiment 3

In this experiment, we increase the pressure in the strike zone to p1 = 109 Pa. Then we
again determine how low we can bring the pressure in the expansion atmosphere. Again, the
simulation is run with θ = 1.3 and ∆r = 5 × 10−5 m. The relaxation parameter is given by
equation (4.7) with α = 0.3. We see in Figure 4.3 the results to the problem with the following
initial conditions,

p1 = 109Pa, T1 = 5× 104 K,

p2 = 103Pa, T2 = 300 K. (4.50)

The expansion is nearly identical to the the Experiment 2, due to the similarity in the pressure
gradient of the initial condition. Again, the run times are about 15 seconds.

Next we try to the run the simulation with the pressure p2 lowered by an order of magnitude.
Again, we find the simulation runs until the time t ≈ 2.9µs, which again matches the time that
the expansion hits the outer boundary.

4.3.4 Experiment 4

In this section we attempt to run the radially symmetric model with the initial conditions given
as

p1 = 108Pa, T1 = 5× 104 K,

p2 = 3Pa, T2 = 300 K. (4.51)

We attempt to resolve a solution by manipulating the minmod parameter θ and the constant
α that controls the relaxation parameter τ .

We begin by lowering the minmod parameter θ. Recall that θ controls the slope limiter in
the reconstruction of the piecewise linear interpolant used in the computation of the hyperbolic
numerical flux. The parameter θ ∈ [1, 2], where θ = 1 provides the greatest amount of smooth-
ing. In trying to compute a solution with the large initial pressure gradient, we found that even
with θ = 1.0, the scheme was not able to complete the simulation.

Next, holding θ = 1.0, we increase the value of α. This adds additional smoothing through
its control of the artificial viscosity. We were only able to reach a full simulation when α = 0.8.
This is the amount of additional viscosity needed to slow the expansion. In fact, the relaxation
parameter may be made more oscillatory at this point. The plot in Figure 4.4, provides the
results obtained with θ = 1.3 and α = 0.8, computed on a grid with∆x = 5×10−5 m. Although
the numerical scheme is able to resolve a solution to the problem with initial conditions given

89



0 0.5 1 1.5 2 2.5 3 3.5 4
x 10−6

0

0.5

1

1.5

2

2.5

3

3.5

4

time

ρ
×

10
4
/
ρ

(
1
)

(a) x = 5mm

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10−6

1.5

2

2.5

3

3.5

4

4.5

5

5.5

time

ρ
×

10
4
/
ρ

(
1
)

(b) x = 11mm

Figure 4.3: Experiment 3 Solution (normalized density) plotted against time at the indicated
distance from the strike zone, computed on grid with ∆x = 5× 10−5 m.
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Figure 4.4: Experiment 4 Solution (normalized density) plotted against time at the indicated
distance from the strike zone, computed on grid with ∆x = 5× 10−5 m.

in (4.51), we see that the unnatural value for the relaxation parameter results in a solution that
is less than appealing.
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Chapter 5

Two-Dimensional Laser Ablation

5.1 Mathematical Model

In this section we present the two-dimensonal (2D) QGD system of equations. It is noted
that the computation of this model had not ever been done before. The 2D simulation provides
insight into the full three-dimensional (3D) simulation. The 2D simulation ignores the direction
orthogonal to the workpiece which greatly simplifies the equations that need to be solved. By
ignoring this vertical direction we are ignoring the heat transfer that takes place at the strike
zone between the energy of the laser and the workpiece. By assuming that all of this energy
is available for the expansion, we are simplifying the dynamics of the expansion of the plasma.
The full 3D simulation would give a much better and physically realistic representation of the
physical problem.

The gas is described by its density ρ, velocity components q = (u, v)T , and energy E. The
total energy per unit volume E is calculated using the equation of state given in equation (1.48),
and the total specific enthalpy H is calculated by H = (E + p)/ρ. The QGD equations are
given below.

∂ρ

∂t
+
∂j(x)

∂x
+
∂j(y)

∂y
= 0, (5.1)

∂(ρu)
∂t

+
∂(j(x)u)
∂x

+
∂(j(y)u)
∂y

+
∂p

∂x
=
∂Π(xx)

∂x
+
∂Π(yx)

∂y
, (5.2)

∂(ρv)
∂t

+
∂(j(x)v)
∂x

+
∂(j(y)v)
∂y

+
∂p

∂y
=
∂Π(xy)

∂x
+
∂Π(yy)

∂y
, (5.3)

∂E

∂t
+
∂(j(x)H)

∂x
+
∂(j(y)H)

∂y
+
∂q(x)

∂x
+
∂q(y)

∂y
=

∂

∂x

(
Π(xx)u+ Π(xy)v

)
+

∂

∂y

(
Π(yx)u+ Π(yy)v

)
.

(5.4)
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The terms j(x) and j(y) represent the transport of density in the x and y directions averaged
over time. They are given by the formuals,

j(x) = ρ(u− w(x)), w(x) =
τ

ρ

[
∂(ρu2)
∂x

+
∂(ρuv)
∂y

+
∂p

∂x

]
, (5.5)

j(y) = ρ(v − w(y)), w(y) =
τ

ρ

[
∂(ρuv)
∂x

+
∂(ρv2)
∂y

+
∂p

∂y

]
. (5.6)

Again, the relaxation parameter τ is present to control these extra diffusive terms. The com-
ponents of the viscosity tensor are given below.

Π(xx) = η

(
2
∂u

∂x
−
[

2
3
− ζ

η

]
div ~u

)
+ τγp div ~u+ τρu

(
u
∂u

∂x
+ v

∂u

∂y

)
+ τ

(
2u
∂p

∂x
+ v

∂p

∂y

)
(5.7)

Π(xy) = η

(
∂v

∂x
+
∂u

∂y

)
+ τρu

(
u
∂v

∂x
+ v

∂v

∂y
+

1
ρ

∂p

∂y

)
(5.8)

Π(yx) = η

(
∂u

∂y
+
∂v

∂x

)
+ τρv

(
u
∂u

∂x
+ v

∂u

∂y
+

1
ρ

∂p

∂x

)
(5.9)

Π(yy) = η

(
2
∂v

∂y
−
[

2
3
− ζ

η

]
div ~u

)
+ τγp div ~u+ τρv

(
u
∂v

∂x
+ v

∂v

∂y

)
+ τ

(
u
∂p

∂x
+ 2v

∂p

∂y

)
(5.10)

Finally, the heat flux is given by

q(x) = −κ∂T
∂x
− u ·Rq (5.11)

q(y) = −κ∂T
∂y
− v ·Rq, (5.12)

where

Rq = τρ
1

γ − 1

[
u
∂

∂x

(
p

ρ

)
+ v

∂

∂y

(
p

ρ

)]
+ τρp

[
u
∂

∂x

(
1
ρ

)
+ v

∂

∂y

(
1
ρ

)]
. (5.13)

Note that the viscous stress tensor and heat flux can be written with the respective terms from
Navier-Stokes’ equations, which differs from these equations by the presence of the relaxation
parameter τ . In fact, as τ → 0 we are left with the Navier-Stokes equations (see equations
(1.38)-(1.41)).

The coefficients for dynamic viscosity η, thermal conductivity κ, and bulk viscosity ζ, are
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related to the relaxation parameter τ . These are given below:

τ = α
min(∆x,∆y)

cs
, (5.14)

α = 0.3, cs = (γRT2)
1
2 , (5.15)

η = τpSc, (5.16)

ζ = τp

(
5
3
− γ
)
, (5.17)

κ =
ηγR

Pr(γ − 1)
. (5.18)

Now we would like to rearrange the terms in (5.1) - (5.4) so the left-hand side is the Euler’s
equations and the diffusive terms are on the right. This is done by expanding the j terms.

Equation (5.1)

The equation is repeated below for convenience.

∂ρ

∂t
+
∂j(x)

∂x
+
∂j(y)

∂y
= 0, (5.19)

Expanding j(x) and j(y) and combining like derivatives gives us

∂ρ

∂t
+
∂(ρu)
∂x

+
∂(ρv)
∂y

=
∂

∂x

[
τ

(
∂(ρu2 + p)

∂x
+
∂(ρuv)
∂y

)]
+

∂

∂y

[
τ

(
∂(ρuv)
∂x

+
∂(ρv2 + p)

∂y

)]
.

(5.20)

Equation (5.2)

The equation is repeated below for convenience.

∂(ρu)
∂t

+
∂(j(x)u)
∂x

+
∂(j(y)u)
∂y

+
∂p

∂x
=
∂Π(xx)

∂x
+
∂Π(yx)

∂y
. (5.21)

Again, expanding j(x) and j(y) and combining like derivatives gives us the following.

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
+
∂(ρuv)
∂y

=
∂

∂x

[
τu

(
∂(ρu2 + p)

∂x
+
∂(ρuv)
∂y

)]
+

∂

∂y

[
τu

(
∂(ρuv)
∂x

+
∂(ρv2 + p)

∂y

)]
+
∂Π(xx)

∂x
+
∂Π(yx)

∂y
.

(5.22)
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The viscous stress tensors are written as

∂Π(xx)

∂x
=

∂

∂x

[(
2η − βη + τγp+ τρu2

)
ux + (−βη + τγp) vy + (τρuv)uy + (2τu)px + (τv)py

]
,

(5.23)

∂Π(yx)

∂y
=

∂

∂y

[
(τρuv)ux + (η + τρv2)uy + ηvx + (τv)px

]
. (5.24)

Note that above and in the following the subscript notation refers to partial derivatives. E.g.,
ux = ∂u

∂x . Also, for simplicity of notation β =
[

2
3 − ζ

η

]
.

Equation (5.3)

The derivation here is similar to that for equation (5.2).

∂(ρv)
∂t

+
∂(j(x)v)
∂x

+
∂(j(y)v)
∂y

+
∂p

∂y
=
∂Π(xy)

∂x
+
∂Π(yy)

∂y
. (5.25)

Again, expanding j(x) and j(y) and combining like derivatives gives us the following.

∂(ρv)
∂t

+
∂(ρuv)
∂x

+
∂(ρv2 + p)

∂y
=

∂

∂x

[
τv

(
∂(ρu2 + p)

∂x
+
∂(ρuv)
∂y

)]
+

∂

∂y

[
τv

(
∂(ρuv)
∂x

+
∂(ρv2 + p)

∂y

)]
+
∂Π(xy)

∂x
+
∂Π(yy)

∂y
. (5.26)

The viscous stress tensors are written as

∂Π(xy)

∂x
=

∂

∂x

[
(η + τρu2)vx + (τρuv)vy + ηuy + (τu)py

]
, (5.27)

∂Π(yy)

∂y
=

∂

∂y

[(
2η − βη + τγp+ τρv2

)
vy + (−βη + τγp)ux + (τρuv) vx + (τu)px + (2τv)py

]
.

(5.28)

Equation (5.4)

The equation is repeated below for convenience.

∂E

∂t
+
∂(j(x)H)

∂x
+
∂(j(y)H)

∂y
+
∂q(x)

∂x
+
∂q(y)

∂y
=

∂

∂x

(
Π(xx)u+ Π(xy)v

)
+

∂

∂y

(
Π(yx)u+ Π(yy)v

)
.

(5.29)
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First note that

j(x)H = (E + p)u− (E + p)w(x), (5.30)

j(y)H = (E + p)v − (E + p)w(y). (5.31)

Recall that the total enthaply is given by H = (E+p)/ρ. Expanding j(x) and j(y) and combining
like derivatives gives us

∂E

∂t
+
∂ ((E + p)u)

∂x
+
∂ ((E + p)v)

∂y
=

∂

∂x

(
(E + p)w(x)

)
+

∂

∂y

(
(E + p)w(y)

)
+

∂

∂x

(
−q(x)

)
+

∂

∂y

(
−q(y)

)
+

∂

∂x

(
Π(xx)u+ Π(xy)v

)
+

∂

∂y

(
Π(yx)u+ Π(yy)v

)
. (5.32)

The terms of the right-hand side are expanded as follows.

∂

∂x

(
(E + p)w(x)

)
=

∂

∂x

(
τH(ρu2 + p)x + τH(ρuv)y

)
, (5.33)

∂

∂y

(
(E + p)w(y)

)
=

∂

∂y

(
τH(ρuv)x + τH(ρv2 + p)y

)
. (5.34)

Recalling equation (5.13), we get for the heat fluxes

∂

∂x

(
−q(x)

)
=

∂

∂x
[κTx + uR]

=
∂

∂x

[
κTx +

τρu2

γ − 1

(
p

ρ

)
x

+
τρuv

γ − 1

(
p

ρ

)
y

+ τρu2p

(
1
ρ

)
x

+ τρuvp

(
1
ρ

)
y

]
.

(5.35)

∂

∂y

(
−q(y)

)
=

∂

∂y
[κTy + vR]

=
∂

∂y

[
κTy +

τρuv

γ − 1

(
p

ρ

)
x

+
τρv2

γ − 1

(
p

ρ

)
y

+ τρuvp

(
1
ρ

)
x

+ τρv2p

(
1
ρ

)
y

]
. (5.36)
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Finally, the advection of viscosity is given by the following.

∂

∂x

(
Π(xx)u

)
=

∂

∂x

[
(2ηu− βηu+ τγpu+ τρu3)ux + (−βηu+ τγpu)vy

+(τρu2v)uy + (2τu2)px + (τuv)py
]
, (5.37)

∂

∂x

(
Π(xy)v

)
=

∂

∂x

[
(ηv + τρu2v)vx + (τρuv2)vy + (ηv)uy + (τuv)py

]
, (5.38)

∂

∂y

(
Π(yx)u

)
=

∂

∂y

[
(τρu2v)ux + (ηu+ τρuv2)uy + (ηu)vx + (τuv)px

]
, (5.39)

∂

∂y

(
Π(yy)v

)
=

∂

∂y

[
(2ηv − βηv + τγpv + τρv3)vy + (−βηv + τγpv)ux

+(τρuv2)vx + (τuv)px + (2τv2)py
]
. (5.40)

5.2 Numerics

In this section, we briefly describe a two-dimensional version of the second-order central-upwind
scheme used to numerically solve the two-dimensional QGD equations.

ut + F(u)x + G(u)y = D(x)(u) + D(y)(u). (5.41)

Here, u is the unknown vector of conservative variables, F represents the the convective nonlin-
ear flux in the x direction and G represents the the convective nonlinear flux in the y direction.
The parabolic diffusion in the x and y directions are represented by D(x) and D(y). These
vectors are given below.

u =


ρ

ρu

ρv

E

 , F =


ρu

ρu2 + p

ρuv

(E + p)u

 , G =


ρv

ρuv

ρv2 + p

(E + p)v

 , (5.42)

D(x)(u) =


τ
(
∂(ρu2+p)

∂x + ∂(ρuv)
∂y

)
τu
(
∂(ρu2+p)

∂x + ∂(ρuv)
∂y

)
+ Π(xx)

τv
(
∂(ρu2+p)

∂x + ∂(ρuv)
∂y

)
+ Π(xy)

(E + p)w(x) − q(x) + Π(xx)u+ Π(xy)v

 , (5.43)
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D(y)(u) =


τ
(
∂(ρuv)
∂x + ∂(ρv2+p)

∂y

)
τu
(
∂(ρuv)
∂x + ∂(ρv2+p)

∂y

)
+ Π(yx)

τv
(
∂(ρuv)
∂x + ∂(ρv2+p)

∂y

)
+ Π(yy)

(E + p)w(y) − q(y) + Π(yx)u+ Π(yy)v

 . (5.44)

In the following discussion we consider (for simplicity) a uniform two-dimensional spatial grid
of size ∆x and ∆y in the x and y directions, respectively. The grid points are given by (xj , yk),
where we use the notation: xj = j∆x, xj± 1

2
= (j ± 1

2)∆x and yk = k∆y, yk± 1
2

= (k ± 1
2)∆y.

According to the two -dimensional central-upwind approach, the computed solution is realized
at each time t in terms of cell averages,

uj,k(t) =
1

∆x∆y

x
j+1

2∫
x

j− 1
2

y
k+1

2∫
y

k− 1
2

u(x, y, t) dxdy, (5.45)

which are evolved in time by solving the following system of ODEs:

d

dt
uj(t) =−

Hx
j+ 1

2
,k

(t)−Hx
j− 1

2
,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y

+
Px
j+ 1

2
,k

(t)−Px
j− 1

2
,k

(t)

∆x
+

Py

j,k+ 1
2

(t)−Py

j,k− 1
2

(t)

∆y
, (5.46)

where the hyperbolic Hx
j+ 1

2
,k

, Hy

j,k+ 1
2

and parabolic Px
j+ 1

2
,k

, Py

j,k+ 1
2

numerical fluxes are con-
structed as follows.

Hyperbolic Flux

In order to compute the hyperbolic fluxes, Hx
j+ 1

2
,k

and Hy

j,k+ 1
2

, we first use the cell averages
(5.45) to reconstruct a conservative second-order piecewise linear interpolant:

ũ(x, y) = uj,k + (ux)j,k(x− xj) + (uy)j,k(y − yk), x ∈ [xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
], (5.47)

where the slopes in the reconstruction are computed using the generalized minmod reconstruc-
tion given in (1.101).

The hyperbolic numerical fluxes are then computed according to the formulas given in
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(1.109) and (1.110), which are repeated below for our convenience.

Hx
j+ 1

2
,k

(t) =
a+
j+ 1

2
,k

F
(
uEj,k

)
− a−

j+ 1
2
,k

F
(
uWj+1,k

)
a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
uWj+1,k − uEj,k

]
, (5.48)

Hy

j,k+ 1
2

(t) =
b+
j,k+ 1

2

G
(
uNj,k

)
− b−

j,k+ 1
2

G
(
uSj,k+1

)
b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
uSj,k+1 − uNj,k

]
. (5.49)

The point values of the piecewise linear reconstruction are denoted by uEj,k, uWj,k, uNj,k, and
uSj,k. The letters correspond to the direction the point value is taken at. E.g., the point values
directly east and north from (j, k) are given by

uEj,k = uj,k +
∆x
2

(ux)j,k, (5.50)

uNj,k = uj,k +
∆y
2

(uy)j,k. (5.51)

The local speeds in the x direction are given by a±
j+ 1

2
,k

, and are obtained from the largest and

smallest eigenvalues of the Jacobian ∂F
∂u and can be estimated by

a+
j+ 1

2
,k

= max
{
uWj+1,k + cWj+1,k, u

E
j,k + cEj,k, 0

}
, a−

j+ 1
2
,k

= min
{
uWj+1,k − cWj+1,k, u

E
j,k − cEj,k, 0

}
,

(5.52)
where u is the macroscopic velocity in the x direction and c =

√
γp
ρ is the speed of sound. Note,

e.g., cEj,k is the sound speed evaluated at uEj,k. The local speeds in the y direction are given by
b±
j,k+ 1

2

, and are obtained from the largest and smallest eigenvalues of the Jacobian ∂G
∂u and can

be estimated by

b+
j,k+ 1

2

= max
{
vSj,k+1 + cSj,k+1, v

N
j,k + cNj,k, 0

}
, b−

j,k+ 1
2

= min
{
vSj,k+1 − cSj,k+1, v

N
j,k − cNj,k, 0

}
,

(5.53)
where v is the macroscopic velocity in the y direction.

Parabolic Flux

The parabolic numerical fluxes in the x direction are represented by

Pj+ 1
2
,k(t)−Pj− 1

2
,k(t)

∆x
, (5.54)
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while the fluxes in the y direction are represented by

Pj,k+ 1
2
(t)−Pj,k− 1

2
(t)

∆y
. (5.55)

To compute the parabolic numerical fluxes we first notice that the diffusion terms can be
written as linear combinations of the form (VWx)x. E.g., in equation (5.22) letting V = τu

and W = ρu2 + p.
There are four types of derivatives that need to be considered. They are,

1. (VWx)x

2. (VWy)x

3. (VWx)y

4. (VWy)y

Terms such as (1) and (2) are discretized using (5.54), while (3) and (4) are discretized using
(5.55). For (1) and, the parabolic numerical flux is given by

Pj+ 1
2
,k = Vj+ 1

2
,k

(
W j+1,k −W j,k

∆x

)
, (5.56)

where Vj+ 1
2
,k is the average of the point values evaluated on either side of the flux boundary

and W j,k is evaluated at the cell average uj,k. The mixed derivatives are more complicated.
For (2) we can use a centered difference at the flux boundary. I.e.,

Pj+ 1
2
,k = Vj+ 1

2
,k

(
Wj+ 1

2
,k+1 −Wj+ 1

2
,k−1

2∆y

)
. (5.57)

The values Wj+ 1
2
,k+1 are computed as averages of the point values at the flux boundaries.

The parabolic numerical flux for (4) is given by

Pj,k+ 1
2

= Vj,k+ 1
2

(
W j,k+1 −W j,k

∆y

)
. (5.58)

The mixed derivative in (3) is handled similarly to (5.57). I.e.,

Pj,k+ 1
2

= Vj,k+ 1
2

(
Wj+1,k+ 1

2
−Wj−1,k+ 1

2

2∆x

)
. (5.59)
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5.3 Numerical Experiments

In this section we present results for two-dimensional single-gas problem. Again, we model the
expansion of plasma as a carbon-jet expanding into a vacuum. In the two-dimensional problem,
the plasma expands as a high-pressure, high-temperature front in both the x and y directions.
It is noted that this is the first time that computation of the two-dimensional laser ablation
problem using the QGD equations has been carried out. This has been accomplished by imple-
menting the high-resolution finite volume method coupled with an efficient ODE solver. The
two-dimensional expansion is computationally expensive and the ability to freely run simula-
tions is not as convenient as in the one-dimensional case. We hope that steps taken to optimize
the code make a thorough numerical investigation possible. Among these steps is the reduction
in the number of arrays used.

The QGD model is able to supress the numerical stability issues that arise in the application
of the NS equations to this problem. It is noted that the scheme applied to the NS simulation
of the two-dimensional laser ablation problem was not able to produce results. This is due
to the lack of numerical stability available in the numerical approximation of the NS diffusion.
Again, the extra smoothing provided by the temporal averaging in the QGD equations provides
usable results. The scheme’s ability to accurately and efficiently capture the shock behavior
allow for a realistic approximation of the plasma expansion. In fact, the plots of he results show
a remarkable simulation of the plasma expansion.

The schematic in Figure 5.1 gives the set-up for the two-dimensional laser ablation problem.
The initial velocity is zero everywhere, i.e. u = 0. The initial conditions for pressure and
temperature are given below.

p1 = 108Pa, T1 = 5× 104 K (5.60)

p2 = 103Pa, T2 = 300 K (5.61)

Under consideration is the spread of the plasma of molecular carbon C2 in a vacuum. Carbon
has constant parameters R = 346.25, γ = 7/5, ω = 0.74, Pr = 14/19 and Sc = 0.746.

The calculation domain is taken to be the square given by 0 ≤ x ≤ Lx = 0.02 m and
0 ≤ y ≤ Ly = 0.02 m. After the laser pulse, at t = 0, there is a small ellipse where the strike
results in a high-pressure and high-temperature region. The dimensions of the ellipse are given
by x00 = 5.45× 10−5 m and y00 = 2.52× 10−4 m. It should be noted that the size of the strike
zone here is on an order of magnitude bigger than that of the one-dimensional setup. This is in
fact a quite benevolent situation for the numerical scheme since it allows for a reasonable mesh
size. Recall that the mesh size was directly dependent on the size of the strike zone, because
we needed to pick up the initial data in the strike zone in at least one cell.
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Figure 5.1: Two-dimensional Initial Conditions

The evaporation can be separated into three regimes: the evaporation of the target material,
the interaction of the evaporated material with the laser beam resulting in the plasma formation,
and the expansion of the plasma [109]. The simulation produced here models the third regime
by using gas dynamic equations with appropriate initial conditions. Since the dynamics are
being modeled by equations of fluid flow, the velocities of the outward expansion are driven by
the pressure gradients of the plasma. The expansion of the plasma is outward along the top of
the substrate.

After the initial blast, the model represents a high density, high temperature gas which is
contained in a narrow region that is then allowed to expand into a vacuum. Figure 5.2 shows the
density of the gas immediately after the nano-second laser pulse. In the two-dimensional set-up
we witness a symmetric-like expansion as the energy from the laser transforms the evaporated
target material into a plasma. The subsequent deposition of a thin film occurs as the collective
motion of the ions and electrons race outward driven by the force of the laser explosion [61].

Figure 5.3 shows the density at the final time, t = tf = 4µs. Here we clearly see the front
of the expansion as the molecules rush outward. The density drops behind the expansion front
as the molecules are carried outward by the velocity of the expansion. Figure 5.4 show the
top view of the expansion. Figure (a) shows the density of the gas at t = 2µs, while Figure
(b) shows the expansion at t = tf = 4µs. Here we see the concentration of the molecules in a
narrow region along the outer boundary of the expansion, and we also see the dynamics of the
expansion play out. In these figures we see that the expansion length is elongated out in the x
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(a) Full domain view (b) Zoom in on strike zone

Figure 5.2: Solution (density) plotted against the 2D spatial grid immediately after (t = 0.02µs)
the nano-second laser pulse. Plot (a) shows the full picture. Plot (b) is an extreme zoom in to
the strike zone

direction. This due to the velocities being dictated by the lengths of the initial configuration
of the gas, [109]. The larger velocities occur in the direction of the smaller dimension, in this
case the x direction (see Figure 5.1). Figure 5.5 shows the magnitude of the velocities in the x
and y directions, Figures (a) and (b) respectively. Figure 5.6 is the top view of the pressure,
which is nearly identical to the expansion of density. The symmetry we see in these graphs is
expected since the initial conditions were symmetric. If there were, say, a gradient in the initial
pressure, we would see this evolve as a non-symmetric solution.

The two-dimensional model gives a much better physical interpretation of the dynamics
of the problem than does the one-dimensional view. In particular, we are able to see the
elongation of the expansion which match observations of physical experiments. Although the
two-dimensional simulation is computationally expensive, the ability to model this problem
allows for the continued advancement of the study of this problem and is hopefully a significant
step towards a full three-dimensional version.
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Figure 5.3: Solution (density) plotted against the 2D spatial grid at t = 4µs

(a) Front View (b) Back View

Figure 5.4: Solution (density) plotted against the 2D spatial grid at t = 2µs and t = 4µs
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(a) Velocity in the x-direction (b) Velocity in the y-direction

Figure 5.5: Solution (velocity) plotted against the 2D spatial grid at t = 4µs: in x and y
directions

Figure 5.6: Solution (pressure) plotted against the 2D spatial grid at t = 4µs
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Chapter 6

Conclusion

The results of this study show that the computer simulation of the expansion of a plasma
jet formed by the pulsed laser evaporation of a graphite target can be efficiently modeled by
the quasi-gas dynamic (QGD) equations. The numerical method employed here allows for
the accurate modeling of the plasma expansion by considering the plasma as a gas that flows
under the equations of fluid dynamics. In fact, the numerical method’s ability to accurately
and efficiently capture the propagation of the shock-like front even allows for the modeling
of the problem to be carried out using the Navier-Stokes (NS) equations. This had not been
achievable previously, due to the stability issues that arise in the numerical evaluation of the
NS equations with the initial configuration as is for the problem being studied. Furthermore,
the efficiency gained allows for the application of the QGD equations to the two-dimensional
problem. This too had previously not been calculated. Other numerical methods previously
used to solve the problem, such as direct numerical simulations using Monte Carlo methods and,
in particular, finite difference methods required enormous computational effort. For example,
the one-dimensional problem which was solved numerically using a finite difference method in
[72] required a spatial mesh with 45, 000 nodes. Two carry out this simulation in two dimensions
would require a 45, 000 × 45, 000 grid, which easily overwhelms computational capacity. Also,
due to the considerable computational efficiency gained we are able to produce an in-depth
exploration of the model, its parameters and physical conditions. These findings further support
the validity of the QGD equations use to simulate the dynamics of the plasma dynamics.

In the single-gas experiments we were able to complete a thorough investigation of the ef-
fects on solutions of a wide range of initial conditions as well as the varying of numerical and
physical parameters of the problem. The numerical schemes robustness allows for the appli-
cation of initial conditions which more accurately mimic the physical problem being studied.
In particular, we are able to compute solutions when the initial pressure and temperature are
raised to the order of magnitude that is present in physical experiments while, importantly,
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holding the pressure and temperature in the ambient atmosphere at the low orders of magni-
tude that are representative of the what is experienced in the laboratory. In previous numerical
experiments, the increase in the strike zone’s initial conditions was necessarily matched by a
proportional increase in the initial conditions of the ambient atmosphere. Also, thanks to the
efficiency gained by the application of the numerical scheme, we were able to run a plethora
of numerical experiments in order to balance the interplay of the numerical parameters used
to control numerical dissipation, artificial viscosity and time stepping in order to achieve the
optimal balance between efficiency and accuracy. Finally, we are able to compute solutions to
the one-dimensional laser ablation problem using Navier-Stokes to model the expansion. This
had previously not been done due to the difficult constraints demanded by the stiffness of the
problem. Also, we were able to compare this result with those computed using the quasi-gas
dynamics model as well as those previously computed in [72]. Although the Navier-Stokes
simulation provides a sharper resolution of the expansion that more accurately represents the
physical experiments, the extreme computational savings of the QGD model more than com-
pensates for the extra smoothing experienced with its use. Furthermore, we were able to show
that the artificial viscosity provided by the relaxation parameter could effectively be decoupled
from the solution, thus allowing for simpler numerical approximations and additional time sav-
ings. In fact, we were able to produce results that better approached the NS simulations than
did the QGD simulations. Although the computational time in these experiments were longer
than the QGD simulations, they were still only a fraction of the full NS computational time.

The Binary gas experiment saw similar accomplishments. Along with increased efficiency
and better shock resolution, we saw better control over shock drift. In particular, we were able
to align the propagation of the fronts for each gas. Previously, this alignment was not seen
as the numerical approximations of the fronts were not aligned. Also, we were able to run a
similar analysis on the relaxation parameter and found that the constant τ models provided
both increased resolution and better efficiency than the full QGD model.

The radially symmetric model provides results that form the basis of two-dimensional in-
vestigation. Not only do the results give us insight into the behavior of the two-dimensional
problem, the always act as a verification of the two-dimensional results. Furthermore, they pro-
vide an excellent starting point for the approximation of the three-dimensional problem. The
lightning-fast computational speeds achieved using the radially symmetric model can be lever-
aged to build a three-dimensional numerical simulation, using radial symmetry on the ground
plane.

The two-dimensional results provide a qualitative and quantitative view of the problem
that had not been previously available to researchers. The qualitative analysis provided by
this simulation will provide researchers with an effective tool in analyzing the dynamics of the
plasma expansion under varying physical conditions. Also, quantitatively the results provide a

107



breadth and depth that was not available in the one-dimensional solutions. Most importantly,
we are able to accurately model the elongated expansion of the plasma jet as it propagates along
the substrate. By being able to vividly capture the picture of the expansion, while retaining
the ability to drill down on physical parameters, we have provided researchers with a valuable
tool in the exploration of the dynamics of this problem.

In the future we would like to conduct further numerical investigations of the full two-
dimensional quasi-gas dynamics model applied to the laser ablation problem to confirm it
effectiveness at modeling the plasma expansion. Optimization of the two-dimensional numerical
scheme will allow for a full exploration of the physical parameters that affect the quality of thin
film growth. Furthermore, we plan to work towards a three-dimensional simulation. Although
a full three-dimensional simulation may be beyond the scope of computational capacity, we
are looking to other techniques to provide a three-dimensional approximation. Included in
the ideas for this are parallelization and using the radially symmetric model to obtain a quasi
three-dimensional model.
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Appendix A

Mathematics

A.1 Eigenvalues of the Flux Jacobian

A.1.1 One-dimensional Case

In the approximation of conservation laws using the semi-discrete upwind method developed
in [66], the local speeds of propagation are prescribed using the eigenvalues of the Jacobian
of the hyperbolic flux. The vector of conservative variables are given as u = (ρ, ρu,E)T =
(u1, u2, u3)T . The equation of state represented in this context is given below.

p = (γ − 1)(E − ρu2

2
) = (γ − 1)(u3 − u2

2

2u1
) (A.1)

The hyperbolic flux is given as

F(u) =

 ρu

ρu2 + p

u(E + p)

 =


u2

u2
2
u1

+ (γ − 1)(u3 − u2
2

2u1
)

u2
u1

(u3 + (γ − 1)(u3 − u2
2

2u1
))

 . (A.2)

The Jacobian, J , of a vector- valued function is defined as the matrix of all first- order partial
derivatives with respect to the independent vector. For example, if F = (F1(x1, ..., xn), ..., Fm(x1, ...xn))T ,
then

J =


∂F1
∂x1

· · · ∂F1
∂xn

...
. . .

...
∂Fm
∂x1

· · · ∂Fm
∂xn

 (A.3)

So, in order to compute the Jacobian for the hyperbolic flux function, (A.2), we must compute
the partial derivatives. These are computed below. Recall the formula for enthalpy is H =
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(E+p)
ρ . This formula is used in the following to simplify some of the expressions.

∂u2

∂u1
= 0,

∂u2

∂u2
= 1,

∂u2

∂u3
= 0,

∂

∂u1

(
u2

2

u1
+ p

)
= −u

2
2

u2
1

+ (γ − 1)(
u2

2

2u2
1

) =
u2

2
(γ − 3)

∂

∂u2

(
u2

2

u1
+ p

)
=

2u2

u1
+ (γ − 1)(−u2

u1
) = u(3− γ)

∂

∂u3

(
u2

2

u1
+ p

)
= γ − 1

∂

∂u1

(
u2

u1
(u3 + p)

)
= −u2

u2
1

(u3 + p) +
u2

u1

(
(γ − 1)(

u2
2

2u2
1

)
)

=
u3

2
(γ − 1)− uH

∂

∂u2

(
u2

u1
(u3 + p)

)
=

1
u1

(u3 + p) +
u2

u1

(
(γ − 1)(−u2

u1
)
)

= H − (γ − 1)u2

∂

∂u3

(
u2

u1
(u3 + p)

)
=
u2

u1
(1 + (γ − 1)) = γu

Therefore, the Jacobian of the hyperbolic flux is

F′(u) =

 0 1 0
u2

2 (γ − 3) u(3− γ) γ − 1
u3

2 (γ − 1)− uH H − (γ − 1)u2 γu

 . (A.4)

Now, to find the eigenvalues of the Jacobian we must solve for the roots of the characteristic
equation, which is given by

det

 0− λ 1 0
u2

2 (γ − 3) u(3− γ)− λ γ − 1
u3

2 (γ − 1)− uH H − (γ − 1)u2 γu− λ

 = 0. (A.5)

The characteristic equation can be simplified to the following.

−λ3 + 3uλ2 +
(
−u

2

2
(5 + γ) + (γ − 1)H

)
λ+

(
u3

2
(γ + 1)− (γ − 1)uH

)
= 0 (A.6)

It can easily be checked that the eigenvalues of the hyperbolic flux, u − c, u, u + c (where u is
the velocity and c is the speed sound), satisfy this equation.

A.1.2 Quasi Two-dimensional Radially Symmetric Case

In the quasi two-dimensional radially symmetric case, the vector of conservative variables are
given as w = (rρ, rρu, rE)T = (w1, w2, w3)T , where r is the spatial variable. In this case, we
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will see that the variable r is cancelled out in the calculations of the partial derivatives and
we end up with same Jacobian and eigenvalues as in the one-dimensional case. The hyperbolic
flux is given below and is in the same form as the flux given in (A.2).

F(w) =

 rρu

r(ρu2 + p)
ru(E + p)

 =


w2

w2
2

w1
+ (γ − 1)(w3 − w2

2
2w1

)
w2
w1

(w3 + (γ − 1)(w3 − w2
2

2w1
))

 (A.7)

Thus, the partial derivatives are of the same form as in the one-dimensional case. It is easily
seen that the simplification of the partial derivative expressions results in the elimination of
the spatial variable r. Note that the equation of state in terms of these conservative variables
is actually r times pressure. I.e.,

(γ − 1)
(
w3 − 1

2
w2

2

w1

)
= (γ − 1)

(
rE − 1

2
(rρu)2

rρ

)
= (γ − 1)

(
rE − 1

2
rρu2

)
= r(γ − 1)

(
E − 1

2
ρu2

)
= rp (A.8)

Take for example the partial derivative of the third component of the flux with respect to u2.

∂

∂w2

(
w2

w1
(w3 + rp)

)
=

1
w1

(w3 + rp) +
w2

w1

(
(γ − 1)(−w2

w1
)
)

=
1
rρ

(rE + rp) + u(γ − 1)(−u)

= H − (γ − 1)u2 (A.9)

Thus we end up with the same Jacobian matrix, which of course leads us to the same eignevalues,
namely u− c, u, u+ c.

A.1.3 Two-dimensional Case

Now we consider the full two-dimensional flux function in the x direction. The conservative
variable vector is given as (ρ, ρu, ρv, E)T = (u1, u2, u3, u4)T . The equation of state is given
below.

p = (γ − 1)(E − ρ(u2 + v2)
2

) = (γ − 1)(u4 − u2
2 + u2

3

2u1
) (A.10)
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The hyperbolic flux is given as

F(u) =


ρu

ρu2 + p

ρuv

u(E + p)

 =


u2

u2
2
u1

+ (γ − 1)(u4 − u2
2+u2

3
2u1

)
u2u3
u1

u2
u1

(u4 + (γ − 1)(u4 − u2
2+u2

3
2u1

))

 . (A.11)

To simplify notation, let fij = ∂fi

∂uj
. Then the Jacobian matrix is written as

F′(u) =


f11 f12 f13 f13

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44

 . (A.12)

After calculating these derivatives and performing the necessary operation to obtain the eigen-
values, we find a the eigenvalues for the two-dimensional Euler flux are given by u−c, u, u, u+c.
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