
ABSTRACT

HUTTON, SHARON ELIZABETH. Exact Sums-of-Squares Certificates in Numeric
Algebraic Geometry. (Under the direction of Erich L. Kaltofen.)

We consider the problem of finding the nearest polynomial/system with either a

fixed or arbitrary root. Our distance measure to the nearest polynomial/system is the

weighted Euclidean, one, or infinity coefficient vector norm. Although much work has

already been done on this problem, we offer a new proof in the Euclidean norm case,

which uses parameterized Lagrangian multipliers. We present formulas for when the root

is real or complex, and when the function has real or complex coefficients. Our formulas

also allow fixing selected coefficients of f to their input values and only deforming the

other coefficients in f̃ , thus preserving sparsity or monicity, for instance. We present an

algorithm for computing the nearest polynomial with given linear equality and inequality

coefficient constraints. Linear inequality constraints on the coefficients of f̃ , for instance

non-negativity (ci ≥ 0), can now be imposed via Karush-Kuhn-Tucker (KKT) conditions

and the arising systems solved via linear programming, at least for a fixed real root. We

further extend our algorithms to systems.

Furthermore, we consider the weighted infinity norm and one norm as the distance

measure. We give explicit solutions for finding the nearest polynomial with a given

root. The resulting functions are optimizable over the root in the unconstrained case.

We also consider finding the nearest polynomial with linear inequality constraints on the

coefficients. For a given root, this results in solving a linear program, due to Tchebycheff,

and for an arbitrary root, this results in conducting a grid search.

In addition, we explore using sums-of-squares certificates to certify a lower bound for

the distance to the nearest polynomial with a real root. Some polynomials that cannot

be written as a sum-of-squares, such as a modified Motzkin polynomial, have a positive

distance to the nearest polynomial with a real root and a sum-of-squares certificate

for a positive lower bound on that distance. These sums-of-squares certificates offer

an alternative proof that a polynomial has no real root and a deformation analysis for

Seidenberg’s problem.

Our last result is on a somewhat separate area of research than the rest of our results,

approximate GCD. We generalize the univariate resultant to several polynomials.
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Chapter 1

Overview and Problem Statements

1.1 Introduction

1.1.1 Hybrid Symbolic-Numeric Computing

Hybrid symbolic-numeric computations should involve both a symbolic computation com-

ponent and a numerical computation component. Numerical computation is the study

of approximate techniques for numerically solving mathematical problems. Some ex-

amples are solving linear programs, numerical PDE’s, or optimization problems. The

computations often involve floating point numbers of fixed size. In numerical computing,

sometimes complex operations are solved using table lookup. Symbolic computing is dif-

ferent from numerical computing in two ways, namely that the results are symbolic and

exact, instead of numerical and approximate [16]. In symbolic computation, the compu-

tations are exact in the sense that they guarantee a certain precision or the algorithms

guarantee a real root lies within a given interval. Furthermore, the numerical arithmetic

performed cannot have digit overflow, since the computation is exact. Algorithms within

symbolic computation can also have symbolic variables as input variables versus only

numerical data. Hybrid symbolic-numeric computation includes topics such as [5]:

- Polynomial problems which are converted into eigenvalue problems

- The use of numerical coefficients in polynomial arithmetic

- Problems where the pre-computations utilize symbolic computation and later com-

putations use efficient and/or stable numerical algorithms
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- Problems where exact computations are combined with faster intermediate floating-

point arithmetic computations

Within hybrid symbolic-numeric computation, our focus is on exact computations that

utilize prior numerical approximation techniques. Our algorithm first utilizes the speed

of numerical sums-of-squares algorithms within Matlab’s solvesos package and then

utilizes the exactness of symbolic sums-of-squares algorithms. This hybrid approach is

faster than performing solely symbolic computations. It also achieves an exact solution

instead of a numerical approximate solution. We consider the problem of computing

the nearest polynomial, using some distance norm, which satisfies a property which the

original input polynomial does not. More specifically, given a polynomial that is positive

definite, we consider finding the nearest polynomial with a real root, with the distance

measure being the distance in coefficient vector Euclidean, one, and infinity norms. We

further extend this to finding the nearest consistent system to an inconsistent one. Using

semidefinite programming and exact sums-of-squares certificates, we certify a lower bound

on the distance to the nearest polynomial with a real root.

1.2 Problem Statements

Our problem of finding the nearest polynomial with a real root to a given positive semidef-

inite polynomial (see Section 1.2.2, Problem Formulation 2) can be formulated in a num-

ber of equivalent problem statements. We discuss three different problem formulations

below.

1.2.1 Problem Formulation 1: Coefficient Perturbation

Imprecision of empirical data can create ill-conditioned polynomial inequalities. For

example, for a given near singular matrix A and solution vector x, a slight deformation

in the matrix A can radically change the solution vector. This principle is also true for

inequalities: a tiny deformation in the coefficients of the polynomial f can cause the

inequality f ≥ 0 to become invalid. For example, consider the inequality

0.33 x2 − 0.66 x+ 0.33 ≥ 0.
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Is this inequality true for ∀x ∈ R? In Figure 1.1, we see that this is an ill-conditioned

inequality. The middle polynomial f(x) = 1
3
(x − 1)2 has a double real root at x = 1.

In fact, it is the nearest polynomial with a real root to the polynomial x2 + 1 under

the infinity norm [11]: ‖f(x) − (x2 + 1)‖∞ = 2
3
, where for a polynomial g the norm

‖g‖∞ is the maximum of the absolute values of the coefficients of g (i.e. the height of

g). Small perturbations in the leading coefficient (one could also perturb the constant

coefficient) make the polynomial f either indefinite (left polynomial in Figure 1.1, the

polynomial changes sign) or positive definite (right polynomial). Therefore, the right

polynomial, although positive definite, as an approximate polynomial is not numerically

positive because a small change in its coefficients can make the polynomial indefinite.

So, computations of approximate data can give rise to problems of ill-conditionness.
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Figure 1.1: Root sensitivity. This figure is from [13]

Therefore, one possible problem formulation is for the infimum h ∈ R of a polynomial

f ∈ R[x1, . . . , xn], we want to find the largest perturbation allowed in the coefficients of

f such that f(ξ1, . . . , ξn) − h ≥ 0, for all xi = ξi ∈ R. In other words, given a positive

semidefinite polynomial f (denoted by f � 0) with imprecise coefficients, then what is

the most the coefficients can be altered in order for the polynomial to remain positive

semidefinite?
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1.2.2 Problem Formulation 2: Nearest Polynomial with A Real

Root

This problem is equivalent to finding the nearest polynomial with a real root. As stated

in [18] deciding if a polynomial is not positive semidefinite is equivalent to deciding

if f(x1, . . . , xn)x
2
n+1 + 1 has a real root. Seidenberg’s Problem is: Determine whether

a multivariate polynomial has a real root. Therefore, all polynomial inequalities can

be reduced to solving Seidenberg’s problem. Given a polynomial f , what is the nearest

polynomial with a real root? The solution to an approximate polynomial (i.e., the nearest

polynomial with a real root) may be as useful as the exact solution and may be more

efficient. This problem can be extended to systems and reformulated as finding the

nearest system with a non-trivial GCD. We want to find the nearest polynomials f̃ and

g̃, where f̃ = f(x) +∆f(x) and g̃ = g(x) +∆g(x) to the given polynomials f and g that

have a common root or non-trivial GCD.

1.2.3 Problem Formulation 3: Global Minimum

As stated in [18] any polynomial inequality f ≥ h, where h is the infimum of all values of

f , is equivalent to f−h being positive semidefinite. Thus, if we can write f−h as a sum-of-

squares then we have proven the inequality. We use hybrid symbolic-numeric computing

to answer this problem. First, we use numerical optimization algorithms for semidefinite

programming. Then we convert the imprecise sum-of-squares to an exact identity over the

rational numbers [[29],[19],[20]]. Our method utilizes the speed of numerical algorithms

within Matlab’s solvesos to obtain an approximate sum-of-squares, while utilizing the

exactness of symbolic computation by converting this imprecise sum-of-squares to an

exact sum-of-squares certificate with exact rational scalars and polynomials. Thereby we

solve a truly hybrid symbolic-numeric problem.

If you have an equation resulting from imprecise measurement, how do you prove that

h is the global minimum? Many numerical algorithms will converge to a local minimum,

but not necessarily the global minimum. Certifying that f − h is a sum-of-squares

guarantees that we have obtained a lower bound for the global minimum. Consider the

polynomial f = 1/4x4 − 5/3x3 + x2 + 8x + 6, which has a local minimum at (4, 34/3)

and a global minimum at (−1, 11/12) (see Figure 1.2). If we are able to certify a local

minimum, i.e. f − 11/12 = SOS, then we know that it is the global minimum.
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1.3 Sums-Of-Squares Approach

Consider the polynomial

f = 1/4x4 − 5/3x3 + x2 + 8x+ 6

and its derivative

f ′ = (x− 2)(x− 4)(x+ 1).

Using methods from Calculus, we know that there are relative minima at x = −1 and

x = 4. See Figure 1.2.

Figure 1.2: Polynomial with relative minimum that is not the global minimum

If we are able to write f as a sum-of-squares then we know that f is positive semi-

definite. In order to find a sum-of-squares certificate for f , first we write f as

f = [1, x, x2]




q11 q12 q13

q12 q22 q23

q13 q23 q33


 [1, x, x2]T .

When we multiply-out the right-hand side of the equation and combine coefficients, we

obtain the equation

1/4x4 − 5/3x3 + x2 + 8x+ 6 = q11 + (2q12)x+ (2q13 + q22)x
2 + (2q23)x

3 + q33x
4. (1.1)
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Next, we equate the coefficients in Equation (1.1) and solve for the unknown qi,j values.

We then substitute these values into our matrix, which we call W .

W =




6 4 −1

4 3 −5/6

−1 −5/6 1/4




After we have our matrixW , we perform a Cholesky factorization on the matrixW . Note

that by construction W is symmetric. A symmetric matrix W is positive semidefinite if

xTWx ≥ 0, for all x 6= 0, or equivalently, if all of its eigenvalues are non-negative. The

values for W were determined in such a way that W is symmetric positive semidefinite.

Recall that a symmetric positive definite matrix W can be factored as W = RTR, where

R is the Cholesky factor of W , an unique upper triangular matrix with positive entries

on the diagonal.

The Cholesky decomposition of W is:

W =




√
6 0 0

2/3
√
6 1/3

√
3 0

−1/6
√
6 −1/6

√
3 0







√
6 2/3

√
6 −1/6

√
6

0 1/3
√
3 −1/6

√
3

0 0 0


 (1.2)

So we have that:

f = [1, x, x2]W [1, x, x2]T

= (
√
6 + (2/3)

√
6x− (1/6)

√
6x2)2 + ((1/3)

√
3x− (1/6)

√
3x2)2

= 6 (1 + 2/3x− 1/6x2)
2
+ 3 (1/3x− 1/6x2)

2
.

Remark 1 As shown in the previous example, we identify 1×1 matrices by their entries.

This problem becomes challenging when you increase the number of variables in f

from 1 to n variables. Bezout’s inequality states that when you increase the number of

variables in a polynomial, f , then the increase in the number of critical values of f is

exponential in the number of variables of f . Consider the polynomial

f(x1, . . . , xn) =
∑

i

fi(xi) = xd
1 − x1 + xd

2 − x2 + . . .+ xd
n − xn.

6



Then
∂f

∂xi
= 0 ⇔ dxd−1

i − 1 = 0 ⇔ xd−1
i − 1

d
= 0

There are d − 1 solutions for each xi where i = 1 . . . n. Thus, we have (d − 1)n critical

values of f of the form

(α1, . . . , αn) =

(
. . . , exp

( 2πji
d− 1

)
d−1

√
1

d
, . . .

)
, where 1 ≤ ji ≤ d− 1

Note that there are
∏
i

(di − 1) real points if all fi have only real roots. Therefore, an

increase in the number of variables is an exponential increase in the number of critical

values. We thank Mohab Safey El Din for this example. We further note that the com-

putation is even more difficult because the matrix W is singular at the minimizer.

1.4 Semidefinite Programming

We use a fixed-precision semidefinite programming solver in Matlab to obtain a numerical

positive semidefinite matrixW as described in section 1.3. Semidefinite programming can

be solved using interior-point methods of linear programming. Theoretically, a semidefi-

nite program (SDP) can be solved in polynomial time [19]. In semidefinite programming

we minimize a linear objective function over the intersection of the cone of positive

semidefinite matrices with an affine space, which is a convex optimization problem.

Semidefinite programming solves global optimization problems of the form [19]

r∗ :=min
x∈Rn

p(x)

s. t. q1(x) ≥ 0, . . . , ql(x) ≥ 0

where p, q1, ql ∈ R[X1, . . . ,Xn]





(1.3)

where the qj are the constraints.

We compute a lower bound r̃ ≤ r of our computed function
f(X)2

g(X)
≥ r, where

f(X)2

g(X)
is the formula for the distance to the nearest polynomial to f with a real root from

Theorem 2. We can reformulate the inequality
f(X)2

g(X)
≥ r as f(X)2 − rg(X) ≥ 0. If we

can write f(X)2 − rg(X) as a sum-of-squares (i.e. f(X)2−r̃g(X) = md(X)T W md(X)),

7



then we have shown that f(X)2 − rg(X) ≥ 0. We compute the matrix W by solving the

sums-of-squares program [15, 28, 19, 20]:

r∗ := sup
r∈R,W

r

s. t. f(X)2−r̃g(X) = md(X)T W md(X)

W � 0, W T = W





(1.4)

where md(X) is the column vector of all terms in X1, . . ., Xn up to degree d. The

dimension of md(X) is
(
n+d
d

)
. Using the SDP solver in Matlab, we can only obtain a

numerical positive semidefinite matrix W and floating point number r∗ which satisfy

approximately

f(X)2 − r∗g(X) ≈ md(X)T ·W ·md(X) � 0, W v 0. (1.5)

See section 5.3 for more details.

1.5 Related Previous Results

Real polynomial or rational function global optimization is equivalent to establishing a

polynomial inequality: the infimum h ∈ R of a polynomial f ∈ R[x1, . . . , xn] satisfies

f(ξ1, . . . , ξn) − h ≥ 0 for all xi = ξi ∈ R. In other words, the polynomial f − h is pos-

itive semidefinite. For univariate f (i.e., n = 1) Sturm sequences [14] yield an efficient

algorithm for deciding semidefiniteness. The bivariate case n = 2 can be solved by Sei-

denberg’s [37] algorithm (see also [14] and [17]), which is generalized to arbitrarily many

variables via Lagrangian multipliers in [1, 36] or used in nonstandard decision meth-

ods [41]. Alternatively, one can use Artin’s theorem of sum-of-squares and semidefinite

programming (see, e.g., [19, 20]).

Here we consider the more difficult situation when the coefficients of f are not ex-

actly known, which is the case when f is the result of an empirical measurement or a

computation with floating point numbers. As a simple example consider Figure 1.1.

As in Kharitonov’s [25] interval polynomial stability criterion, we seek to compute by

how much the coefficients in a polynomial can be deformed while still preserving non-

negativity. This distance is the coefficient vector norm distance to the nearest polynomial

with a real root, which we shall call the radius of positive semidefiniteness. Note that

8



there may not exist an affine optimizer—hence radius of positive semidefiniteness rather

than distance to the nearest polynomial with a real root.

We follow the approach by Karmarkar and Lakshman [24] (see also [4]) which first

fixes a real root (α1, . . . , αn) ∈ Rn and gives a rational function N (α1, . . . , αn) in the

indeterminate α’s for the minimal distance from the given f to the nearest polynomial

f̃ with f̃(α1, . . . , αn) = 0. One then can compute the infimum of N (α1, . . . , αn) over all

real α’s. The case n ≥ 2 is from [38].

We rederive the multivariate formula for N (α1, . . . , αn) in [38], for weighted ℓ2 dis-

tance norms, by the method of Lagrangian multipliers. The weighted norms subsume

the fixing of coefficients in [34] (see [5, Section 2.12.3.2.6] and Remark 7 below). Our ap-

proach also allows us to introduce linear constraints on the coefficients of f̃ , as is done in

[22] for the approximate GCD problem. Linear equality constraints on the coefficients of

f̃ generalize sparsity, which are equations of the form ci = 0. Because the Jacobian of the

Lagrange function remains linear in the control variables and multipliers, determinantal

formulas parametric in the real root coordinates can be computed. Linear inequality

constraints on the coefficients of f̃ , for instance non-negativity (ci ≥ 0), can now be im-

posed via Karush-Kuhn-Tucker (KKT) conditions (see, e.g., [6]) and the arising systems

solved via linear programming, at least for a fixed real root. Parametric root coordinates

or non-linear constraints necessitate non-linear techniques on the Lagrange and KKT

conditions and are therefore in general of much higher computational complexity. Our

approach allows multiple simultaneous f ’s and complex coefficients without modification.

Seidenberg’s algorithm (and Safey El Din’s generalization) computes to a given real

point in Rn the nearest real point on f in terms of Euclidean distance. If f has no

real solution the tangent equations have no real solutions. Our algorithm computes the

nearest surface (in terms of coefficient norm) that has a real point. If f has a real point,

the nearest surface is f itself. However, if a lower bound on the radius of semidefiniteness

for any weight vector is greater than zero, f has no real point, even when the coefficients of

f are approximate. The latter can be certified by a sum-of-squares of rational functions,

which leads to an entirely new verification that f is definite, i.e., has no real point, with

possibly a very short certificate.

Polynomials with a radius of positive semidefiniteness greater than zero are quite

special. Our Example 27 below demonstrates that a positive polynomial that is not

a sum-of-squares of polynomials can have a lower bound certificate for the radius of

positive semidefiniteness that is in fact a sum-of-squares of polynomials, which implies

9



positive semidefiniteness of the polynomial itself. For such polynomials, sum-of-squares

denominators in Artin-style certificates may never become necessary (see our conjecture

at the end of Chapter 5).

The computation of the nearest polynomial with a real root can be interpreted as

a dual of Seidenberg’s method that decides if a real hypersurface contains a real point.

Sums-of-squares rational lower bound certificates for the radius of semidefiniteness pro-

vide a new approach to solving Seidenberg’s problem, especially when the coefficients are

numeric. They also offer a surprising alternative sum-of-squares proof for those polyno-

mials that themselves cannot be represented by a polynomial sum-of-squares but that

have a positive distance to the nearest indefinite polynomial.

Our method is conceptually that of hybrid symbolic-numeric computation, such as

computing approximate polynomial greatest common divisors and factorization.

Hitz and Kaltofen [10] derive Lakshman’s and Karmarkar’s formula for univariate f by

a least square fit for the cofactor f(x)/(x−α) and introduce linear equality constraints on

the deformed coefficients. Zhi, Wu, Noda, Kai, Rezvan and Corless [43, 42, 33] generalize

the formula to roots with given multiplicities. In [11] ℓ∞-norm distances are introduced

and Markus Hitz in the Summer of 1999 considered dual ℓp-norms. Stetter [38] then

generalized Lakshman and Karmarkar’s formula to an arbitrary number of variables and

dual ℓp-norm distances via Hölders inequality. We generalize the infinity norm results for

the multivariate case (see section 4). Results from [11] are generalized.

In [34, 30] Stetter’s multivariate (complex) formula is applied to the important prob-

lem of computing the nearest consistent polynomial system, with zeros of a minimum

given multiplicity, and a different proof via generalized Lagrangian interpolation is given.

We observe that the ℓ∞-norm formulas apply to the problem of consistent systems as well

(see Theorem 4 below). In our setting, we determine the smallest deformation where all

inequalities are simultaneously violated.

A related result [11] computes the nearest matrix in Frobenius norm that has a real

eigenvalue. Sum-of-squares rational lower bound certificates were introduced in [19] to

overcome the high algebraic degree in the exact real algebraic minima.

This section was adapted from [13].
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1.6 Our Contributions - Results

We present five new results. The first four results are within the area of hybrid symbolic-

numeric computation. The last result is in the somewhat separate field of approximate

GCD.

Result 1:

Stetter [38] proved an inequality for the distance to the nearest polynomial with a real

or complex root. Szanto and Pope [30] generalized the result for systems with roots with

higher multiplicities. In Chapter 2, we present a new proof of [38] and [34] based on La-

grangian multipliers for finding the nearest polynomial in weighted Euclidean coefficient

vector norm with a constrained root (see Theorem 2). We present formulas for when

the root is real or complex, and when the function has real or complex coefficients (see

Theorem 2, 3). Our formulas also allow the keeping of selected coefficients of f as their

input values and only deforming the others in f̃ , thus preserving sparsity or monicity, for

instance. Since our formulas allow weighted norms, we can just set the weights of those

coefficients to infinity in the limit (see Remark 7). Sometimes there may not exist an

affine optimizer. We explore some examples where the radius of positive semidefiniteness

is 0 or when the infimum is not attainable (see Example 4).

Result 2:

We present an algorithm for computing the nearest polynomial with given linear equality

and inequality coefficient constraints. Because the Jacobian of the Lagrange function re-

mains linear in the control variables and multipliers, determinantal formulas parametric

in the real root coordinates can be computed (see Equation (2.11)). Linear inequality

constraints on the coefficients of f̃ , for instance non-negativity (ci ≥ 0), can now be im-

posed via Karush-Kuhn-Tucker (KKT) conditions (see, e.g., [6]) and the arising systems

solved via linear programming, at least for a fixed real root (see Equation (2.15), Equa-

tion (2.18)). In Chapter 3 we extend our algorithms to systems (see Equation (3.1)). We

are able to compute the nearest consistent system to an inconsistent one with additional

equality and inequality coefficient constraints.

Result 3:

We expand upon Stetter’s result [38] for finding the nearest polynomial with the weighted

infinity norm and one norm as the distance measure. In Chapter 4, we give explicit
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solutions for a given root (see Theorem 8 and Theorem 9). The functions are optimizable

over the root in the unconstrained case (see Example 21). We also consider finding the

nearest polynomial with linear equality constraints on the coefficients. For a given root,

this results in solving a linear program due to Tchebycheff [11] (see Linear Program 4.3

and 4.4). If we want to find the nearest polynomial with coefficient constraints on f̃ with

an arbitrary root, we conduct a grid search (see Example 24).

Result 4:

In Chapter 5, we use sums-of-squares certificates, as were introduced in [19], to certify

a lower bound for the radius of positive semidefiniteness. Given a polynomial f , then

in Theorem 2, we give a formula for the distance to the nearest polynomial to f with

root α, denoted here by N (α) =
f(α)2

g(α)
, a rational function in α. If the radius of

positive semidefiniteness, denoted by inf
α∈Rn

N (α), is greater than or equal to zero, call it

r, then minimizing the rational function N (α) is equivalent to maximizing r such that

f(α)2− rg(α) ≥ 0. We compute a lower bound of the radius of positive semidefiniteness,

inf
α∈Rn

N (α), by solving a a sums-of-squares program to write f(X)2 − rg(X) = SOS (see

SOS Program 5.1). We thereby prove
f(X)2

g(X)
� r. As a result, we are now able to show

polynomials, which themselves are not a sum-of-squares, are positive semidefinite via a

sums-of-squares certificate (see Example 27).

Result 5:

Our last result is on a somewhat separate area of research than the rest of our results.

We wanted to include a result in the research area of approximate GCD. In Chapter 6,

we generalize the univariate resultant to several polynomials (see Theorem 14).
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Chapter 2

Nearest Polynomial and Coefficient

Constraints

2.1 History

We give a stability criterion for real polynomial inequalities with floating point or inexact

scalars by estimating from below or computing the radius of positive semidefiniteness.

That radius is the maximum deformation of the polynomial coefficient vector measured

in a weighted Euclidean vector norm within which the inequality remains true. A large

radius means that the inequalities may be considered numerically valid.

The radius of positive (or negative) semidefiniteness is the distance to the nearest

polynomial with a real root, which has been thoroughly studied before.

Hitz and Kaltofen [10] derive Lakshman’s and Karmarkar’s formula for univariate f by

a least square fit for the cofactor f(x)/(x−α) and introduce linear equality constraints on

the deformed coefficients. Zhi, Wu, Noda, Kai, Rezvan and Corless [43, 42, 33] generalize

the formula to roots with given multiplicities. In [11] ℓ∞-norm distances are introduced

and Markus Hitz in the Summer of 1999 considered dual ℓp-norms. Stetter [38] then

generalized Lakshman and Karmarkar’s formula to an arbitrary number of variables and

dual ℓp-norm distances via Hölders inequality.

In [34, 30] Stetter’s multivariate (complex) formula is applied to the important prob-

lem of computing the nearest consistent polynomial system, with zeros of a minimum

given multiplicity, and a different proof via generalized Lagrangian interpolation is given.

We solve this problem for the Euclidean norm by parameterized Lagrangian mul-
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tipliers and Karush-Kuhn-Tucker conditions. Our algorithms can compute the radius

for several simultaneous inequalities including possibly additional linear coefficient con-

straints.

2.2 Stetter’s Results

Stetter proved an inequality for the distance to the nearest polynomial with a real root.

We discuss in more detail the results presented in [38, 5].

Definition 1 We consider Cn equipped with some norm ‖ . . . ‖. The associated dual

norm or operator norm ‖ . . . ‖∗ for the column vector v ∈ Cn is defined by

‖vT‖∗ = sup
u 6=0

|vTu|
‖u‖ = sup

‖u‖=1

|vTu|.

Since we are taking the supremum over a compact domain, the maximum value is

attained.

Proposition 1 (Proposition 1 in [38]) For each u ∈ Cn, with ‖u‖ = 1, there exist

vectors v ∈ Cn, with ‖vT‖∗ = 1, such that |vTu| = 1. �

It is well known that with 1
p
+ 1

q
= 1, 1 ≤ p, q ≤ ∞,

‖ . . . ‖ = ℓp-norm ⇔ ‖ . . . ‖∗ = ℓq-norm.

Theorem 1 (see [38]) Let the vector of possible term values of f and f̃ be given by
~f , ~̃f ∈ Cn respectively. Let the given root be denoted by α = [α1, . . . , αn] ∈ Cn. Let

τ = [1, α1, . . . , αn, . . . , α
i1
1 · · ·αin

n , . . .] the term vector evaluated at the root. Let ‖ . . . ‖ be

the given norm and ‖ . . . ‖∗ the associated dual norm. The nearest polynomial with a real

root, i.e. f̃(α) = τT
~̃
f = 0 requires

‖~f − ~̃
f ‖∗ ≥ |f(α)|

‖τ‖ .
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2.3 Nearest Polynomial with a Real Root in Weighted

Euclidean Norm

We present a new proof (see Theorem 2) using Lagrangian multipliers for finding the

nearest polynomial with a real/complex root. This new approach allows us to consider

linear inequality and equality constraints on the coefficients of the polynomial.

Definition 2 Let w ∈ Rn
>0 be a vector of positive weights. For x = [x1, . . . , xn]

T ∈ Rn

the weighted ℓ2-norm is

‖x‖2,w =
√
w1x2

1 + . . .+ wnx2
n.

Definition 3 Let α = [α1, . . . , αn] ∈ Rn be a prescribed real root and w ∈ Rn
>0 a weight

vector. The distance to the nearest polynomial with a real root α is defined as

N [f ]
2,w(α) = inf

f̃∈R[x1,...,xn]
‖f − f̃‖22,w

s. t. f̃(α) = 0,

deg(f̃) ≤ deg(f).





(2.1)

If f and the used norm are clear from the context, we may write N (α) for the above

infimum, which is actually a minimum (see Theorem 2 below).

Theorem 2 Let f ∈ R[x1, . . . , xn],

f(x1, . . . , xn) =

d∑

i1+···+in=0

fi1,...,inx
i1
1 · · ·xin

n .

For τ = [1, α1, . . . , αn, . . . , α
i1
1 · · ·αin

n , . . .]T , the vector of possible term values in f̃ , the

distance to the nearest polynomial with a real root α is

N [f ]
2,w(α) =

f(α)2

τTD−1
w τ

. (2.2)

Furthermore, the coefficient vector ~̃f , for the polynomial f̃ as in Equation (2.1), is

~̃
f = ~f − τT ~f

τTD−1
w τ

D−1
w τ, (2.3)

15



where ~f is the coefficient vector of f and Dw is a diagonal matrix of the weights. The

polynomial f̃ is the only polynomial that attains the infimum given in Equation (2.2).

Remark 2 The infimum

ρ2,w(f) = inf
α∈Rn

N [f ]
2,w(α) (2.4)

is the unconstrained radius of positive semidefiniteness.

Remark 3 If the weighted norm is the Euclidean norm then the formula becomes

N2(α) =
f(α)2

∑d
i1+···+in=0 α

2i1
1 · · ·α2in

n

. (2.5)

Remark 4 The formulas in [10] and [24] use the weights wi in the denominator of

Equation (2.2), not correctly their reciprocals 1/wi.

Remark 5 A degree constraint is required. If we are allowed to grow the degree of the

polynomial then the radius of positive semidefiniteness is always 0. To illustrate this

point consider a given polynomial f(x) which does not have a real root, and construct

the polynomial g(x) = (ǫ x + 1)f(x) = f(x) + ǫ x f(x). Notice that g(x) has the root

(−1/ǫ). Therefore, ρ2(f) = 0.

Remark 6 Different degree conditions in Equation (2.5) give different rational functions.

For example, if the individual variable degrees are bounded by d, where degxj
(f) ≤ d for

all j with 1 ≤ j ≤ n, then for the ℓ2-norm,

N2(α) =
f(α)2

∑d
i1=0 ...

∑d
in=0 α

2i1
1 · · ·α2in

n

.

Comparing the denominators, we have

d∑

i1=0

...
d∑

in=0

α2i1
1 · · ·α2in

n ≥
d∑

i1+···+in=0

α2i1
1 · · ·α2in

n ,

so

inf
f(α)2

∑d
i1=0 ...

∑d
in=0 α

2i1
1 · · ·α2in

n

≤ inf
f(α)2

∑d
i1+···+in=0 α

2i1
1 · · ·α2in

n

,

which must be, since we optimize over a larger set of f̃ .
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Remark 7 Theorem 2 is the real case of the theorems in [34] and [30] for complex roots.

However, they use generalized Lagrangian interpolation for their proof. They also allow

keeping selected coefficients of f as their input values and only deform the others in

f̃ , thus preserving sparsity or monicity, for instance. Our Theorem 2 has theirs as an

immediate corollary by setting the weights of those coefficients to infinity in the limit.

However, the problem may have no solution. Consider the case that f has a nonzero

constant coefficient which is fixed, and α = 0. Then the set of f̃ is empty. Notice that

lim
w→∞

N [f ]
2 (0) = 1/0.

If a weight wi → 0 in the limit then the corresponding coefficient in f̃ becomes a

“don’t care” deformation, i.e., any change in that coefficient is not taken into account in

the distance measure. The “nearest” polynomial f̃ with α ∈ (R\{0})n as a root then has

distance 0, namely f̃(x) = f(x)− (f(α)/αi) xi, unless there are additional constraints on

the coefficients of f̃ in effect.

In Section 2.6 we generalize our approach to handle arbitrary linear constraints on

the coefficients of f̃ .

Proof of Theorem 2. Let ~f , τ , and f be as above. Denote the coefficients of f̃ in

Equation (2.1) by

f̃(x1, . . . , xn) =

d∑

i1+···+in=0

f̃i1,...,inx
i1
1 · · ·xin

n .

Let ~̃f be the coefficient vector of f̃ . Also, f̃(α1, . . . , αn) = τT ~̃f = 0. We have

‖f − f̃‖2,w = (~f − ~̃f )TDw(~f − ~̃f ),

the weighted ℓ2-norm, where Dw is a diagonal matrix of the weights. Let λ be the

Lagrange multiplier and

L(α1, . . . , αn, λ) = (~f − ~̃
f )TDw(~f − ~̃

f ) + λτT
~̃
f

the Lagrange function of our constrained optimization problem. We must check that α

is a regular point (i.e., the gradient of the constraint is not 0 at α). Since ∇f̃(α) 6= 0

if τ 6= 0, then α is a regular point as long as α 6= 0. In the case α = 0 the constant

coefficient of f is deformed to 0 and the formulas hold. The Jacobian of L w.r.t.
~̃
f and
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λ is

JL =




...
∂L

∂( ~̃f )i
...
∂L
∂λ



=




−2Dw(~f − ~̃f ) + λτ

τT ~̃f



.

Looking at the first block of the vector we have

−2Dw(~f − ~̃
f ) + τλ = −2Dw

~f + 2Dw
~̃
f + τλ = 0. (2.6)

Multiplying by τTD−1
w we have

−2τTD−1
w Dw

~f + 2τTD−1
w Dw

~̃
f + τTD−1

w τλ = 0.

Recalling that f̃(α1, . . . , αn) = 0 which means that τT
~̃
f = 0, then we have

−2τT I ~f + 2τT I
~̃
f + τTD−1

w τλ = −2τT ~f + τTD−1
w τλ = 0.

Solving for λ we get λ =
2τT ~f

τTD−1
w τ

. Looking at Equation (2.6), we have ~f − ~̃
f =

D−1
w τλ

2
.

Substituting in for λ we obtain as the only solution ~f − ~̃
f =

τT ~f

τTD−1
w τ

D−1
w τ . Finally,

N [f ]
2,w(α) = (

τT ~f

τTD−1
w τ

D−1
w τ)TDw(

τT ~f

τTD−1
w τ

D−1
w τ) =

~f T ττTD−1
w ττT ~f

τTD−1
w ττTD−1

w τ
.

Therefore, N [f ]
2,w(α) =

f(α)2

τTD−1
w τ

. �

Example 1 Consider the polynomial f = x2 + y2 + 1. We want to find the nearest

polynomial f̃ = a2,0x
2 + a1,1xy + a0,2y

2 + a1,0x+ a0,1y + a0,0 with root (α, β) = (0, 0). In

other words, we are trying to find

N [f ]
2 (0, 0) = inf

f̃∈R[x1,...,xn]
(1−a2,0)

2+(0−a1,1)
2+(1−a0,2)

2+(0−a1,0)
2+(0−a0,1)

2+(1−a0,0)
2.
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Using Theorem 2 we get that

N [f ]
2 (0, 0) =

(02 + 02 + 1)2

[0, 0, 0, 0, 0, 1][0, 0, 0, 0, 0, 1]T
= 1

and

f̃ = x2 + y2.

The nearest polynomial with a real root is:

ρ2(f) = inf
(α,β)

N [f ]
2 (α, β) = 1. �

Example 2 Given the polynomial f(x) = x2 + 1, what is the relationship between ρ(f)

and ρ(g) where g(x) = f(x)(y2 + 1)? According to [10], the nearest polynomial to f

occurs at the root x = 0. Theorem 2 gives us that N f
2 (0) = 1. However, ρ2(g) = 0.

Consider g(x, 1) = 2x2 + 2. If we subtract ǫx4, we have g(x, 1)− ǫx4 = −ǫx4 + 2x2 + 2,

which has the root x =
−2±

√
4 + 8ǫ

−2ǫ
for all ǫ. This is similar to Remark 5. We have

increased the degree of the terms allowed in the root vector τ ; therefore, we will always

have ρ2(g) = 0. �

The majority of this section is from [13].

2.4 Deformation Analysis

As mentioned in Section 1.5, there may not exist an affine optimizer.

Example 3 Consider the polynomial

f = x2 + y2 − 2xy + 4.

The deformed polynomial (1 − ǫ2)x2 + y2 − 2xy + 4 attains for any ǫ > 0 negative

values at x = y > 2/ǫ. Thus the polynomial x2 + y2 − 2xy + 4 has a radius of positive

semidefiniteness = 0 although its global minimum is 4. �
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Example 4 Similar to Example 1, if we consider the polynomial f = x2 + 1 then

ρ2( x
2 + 1 ) = 1, and f̃ = x2.

Notice that f � 1, with ρ2(f) = 1. Consider the polynomial

g = x4y2 + x2y4 + z6 − 3x2y2z2 + 1 � 1.

However, the nearest polynomial with a real root has distance ρ2(g) = 0 because (1
ǫ
, 1
ǫ
, 1
ǫ
)

is a root of g − ǫ6x2y2z2. �

Remark 8 Within any ǫ of the radius, as in Equation (2.4), there is a polynomial that

attains negative values: for any ǫ > 0 there is an f̃ǫ with a real root α and

‖f − f̃ǫ‖22,w < ρ2,w(f) + ǫ/2.

Then (f̃ǫ − δ)(α) < 0 for all δ > 0, and in particular if w1δ
2 < ǫ/2 we have

‖f − (f̃ǫ − δ)‖22,w < ρ2,w(f) + ǫ.

In Section 2.6 we permit constraints for the coefficients of f̃ . Then a negative evalu-

ation may be impossible: e.g., f̃(x, y) = f̃2,0x
2 + f̃0,2y

2 and f̃2,0 ≥ 0, f̃0,2 ≥ 0. However,

within less of the distance to the nearest polynomial with a real root, a deformed f̃

remains positive definite.

Example 5 Here we give another example for the case that the infimum in Equa-

tion (2.4) is not always attainable. Consider the polynomial

f(x, y) = 1− 2xy + x2y2 + x2 = (1− xy)2 + x2.

We have that

N2(α, β) =
((1− αβ)2 + α2)2∑4

i+j=0 α
2iβ2j

.

Then inf
α,β

N2(α, β) = 0. Suppose now that there exists α, β such that the numerator is 0.

Then (1−αβ) = 0 and α = 0. But if α = 0 then αβ = 0. Then 1−αβ 6= 0, contradiction.
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Thus f does not have a real root and the infimum is not attainable.

We have

N2(ǫ,
1

ǫ
)=

ǫ4

δ
, δ=3+2ǫ2+

2

ǫ2
+2ǫ4+

2

ǫ4
+ǫ6+

1

ǫ6
+ǫ8+

1

ǫ8
,

and the nearest polynomial to f with (α, β) = (ǫ, 1/ǫ) as its root is

f̃(x, y) =−ǫ6

δ
x4−ǫ4

δ
x3y+(1−ǫ2

δ
)x2y2−1

δ
xy3− 1

ǫ2δ
y4

−ǫ5

δ
x3−ǫ3

δ
x2y− ǫ

δ
xy2− 1

ǫδ
y3+(1−ǫ4

δ
)x2

−(2+
ǫ2

δ
)xy−1

δ
y2−ǫ3

δ
x− ǫ

δ
y+1−ǫ2

δ
.

Note that f(ǫ, 1/ǫ)− ǫ2 = 0 has squared distance ǫ4 from f , which is larger than ǫ4/3 >

ǫ4/δ for all ǫ 6= 0. �

Example 6 Given a polynomial

f = x2y2 + x2 − xy + y4 − y2 + 1

= (xy − 1/2)2 + (y2 − 1/2)2 + x2 + 1/2,

decide the minimum perturbation such that the perturbed polynomial has a real root.

We can perturb f by any monomial term with degree bounded by 4, so we consider

f(x, y) − ǫx4. For f(x, y) − ǫx4 one has for x = y2 that g(y) = f(y2, y) − ǫy8. Notice

that g(y) always has a real root, because g(0) = 1 and g(∞) = −∞. We see that f has

a radius of positive semidefiniteness that is 0. �

Example 7 Consider the polynomial f(x, y) = (xy)2+1. Then f(x, y)−ǫx has the root

(2/ǫ, ǫ/2). Hence ρ(f) = 0. �

Another example of when the infimum is not attainable is given in Example 23. Most

of this section is from [13].
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2.5 Nearest Polynomial with Complex Coefficients

and/or Roots in Weighted Euclidean Norm

Theorem 2 can be generalized to a complex root α and real/complex coefficients for f ,

which is the original setting of [4, 24, 38, 34].

Below we present a proof for the Euclidean norm case. This can be easily generalized

to include weighted norms.

Theorem 3 Let f ∈ C[x1, . . . , xn],

f(x1, . . . , xn) =

d∑

i1+···+in=0

fi1,...,inx
i1
1 · · ·xin

n .

For τ = [1, α1, . . . , αn, . . . , α
i1
1 · · ·αin

n , . . .], the vector of possible term values in f̃ , the

distance to the nearest polynomial with root α ∈ Cn is

N [f ]
2 (α) =

(f̄(ᾱ))(f(α))

τHτ
. (2.7)

Here H denotes the Hermitian transpose and ¯ complex conjugation. Furthermore, the

coefficient vector
~̃
f , for the polynomial f̃ as in Equation (2.1), is

~̃f = ~f − τT ~f

τHτ
τ̄ , (2.8)

where ~f is the coefficient vector of f . The polynomial f̃ is the only polynomial that

attains the infimum (Equation (2.7)).

Proof of Theorem 3. Let ~f , τ , and f be as above. Denote the coefficients of f̃ by

f̃(x1, . . . , xn) =
d∑

i1+···+in=0

f̃i1,...,inx
i1
1 · · ·xin

n .

Let ~̃f be the coefficient vector of f̃ . Also, f̃(α1, . . . , αn) = τT ~̃f = 0. We have

‖f − f̃‖2 = (~f − ~̃f )H(~f − ~̃f ),
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the ℓ2-norm. Let ~f = R~f + I~f i and
~̃
f = R ~̃f

+ I ~̃f i where R~f , R ~̃f
are vectors of the real

parts of ~f and ~̃f and I~f , I ~̃f are vectors of the imaginary parts of ~f and ~̃f respectively.

Let λ be the Lagrange multiplier and

L(α1, . . . , αn, λ) =(RT
~f
+ IT~f i − (R ~̃

f
− I ~̃

f
i ))(RT

~f
+ IT~f i − (R ~̃

f
+ I ~̃

f
i ))

+ λ̄(RT
τ + ITτ i )(R ~̃

f
+ I ~̃

f
i ) + λT (RT

τ − ITτ i )(R ~̃
f
− I ~̃

f
i ) (2.9)

the Lagrange function of our constrained optimization problem.

The Jacobian of L with respect to R ~̃
f
and I ~̃

f
is

JL =




...
∂L

∂(R ~̃
f
)i

...
∂L
∂I ~̃

f



=




2R ~̃
f
− 2R~f + λ̄Rτ + λ̄Iτ i + λRτ − λIτ i

2I ~̃
f
− 2I~f + λ̄Rτ i − λ̄Iτ − λRτ i − λIτ



.

Adding the first block of the vector with −i times the second block of the vector we see

that

−2(R~f − I~f i − R ~̃f
+ I ~̃f i−) + 2λ̄(Rτ + Iτ i ) = 0.

Multiplying by (Rτ − Iτ i )
T and recalling τT ~̃f = 0 we get

−2(Rτ − Iτ i )
T (R~f − I~f i ) + 2λ̄(Rτ + Iτ i )

T (Rτ − Iτ i ) = 0.

Solving for λ̄ we get λ̄ =
τ̄T ~̄f

τHτ
.

Adding the first block of JL and i times the second block of JL we obtain

2(R ~̃
f
+ I ~̃

f
i − R~f − I~f i ) + 2λRτ − 2λIτ i = −2(~f − ~̃f ) + 2λτ̄ .

Multiplying by (Rτ + Iτ i )
T and recalling τT ~̃f = 0 we get

−2(RT
τ R~f +RT

τ I~f i + ITτ R~f i − ITτ I~f ) + 2λ(RT
τ + ITτ i )(Rτ − Iτ i ) = −2τT ~f + 2λτT τ̄ .
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Solving for λ we get λ =
τT ~f

τHτ
. Solving Equation (2.5) and substituting in for λ we obtain

~f − ~̃
f = λτ̄ =

τT ~f

τHτ
τ̄ .

Finally, N [f ]
2,w(α) = (

τT ~f

τHτ
τ̄)H(

τT ~f

τHτ
τ̄ ) =

~̄fT τ̄ τT τ̄ τT ~f

τT τ̄ τT τ̄
=

(f̄(ᾱ))f(α)

τHτ
. �

Remark 9 For α ∈ R then

inf
f̃∈C[x1,...,xn]

‖f − f̃‖22,w = inf
f̃∈R[x1,...,xn]

‖f − f̃‖22,w
s. t. f̃(α) = 0,

deg(f̃) ≤ deg(f).





(2.10)

Notice that ‖~f − ~̃f ‖2 = (R~f − (R ~̃
f
− I ~̃

f
))(R~f − (R ~̃

f
+ I ~̃

f
)) = ‖R~f −R ~̃

f
‖2 − I2~̃f

. Thus,

I ~̃
f
= 0. Therefore if we want to find the nearest polynomial to f ∈ R[x1, . . . , xn] with a

real root α then we only need to consider polynomials with real coefficients.

2.6 Coefficient Constraints

2.6.1 Linear Constraints

Our method can be further generalized to include problems with linear constraints of the

form H ~̃f = p, where H ∈ Rt×s, p ∈ Rt, on the coefficient vector ~̃f of f̃ . We define

N [f ;H]
2,w (α) = inf

f̃∈R[x1,...,xn]
‖f − f̃‖22,w

s. t. f̃(α) = 0, H
~̃
f = p,

deg(f̃) ≤ deg(f).





(2.11)

We note that the Jacobian of the Lagrange function corresponding to Equation (2.11)

constitutes a linear system in the unknown coefficients of f̃ and the multipliers, hence a

determinantal formula parameterized by the real root for the solution can be computed,

which one can minimize.

Example 8 Given a polynomial f(x, y) = x2 + y2 + 1 find the nearest polynomial

f̃(x, y) = f̃2,0x
2 + f̃0,2y

2 + f̃1,1xy + f̃1,0x + f̃0,1y + f̃0,0 with f̃1,1 = f̃0,0 and f̃0,1 = 0 and
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with the root (α, β). The Lagrangian function is

L(α, β, λ) = (~f − ~̃
f )T (~f − ~̃

f ) + λ0τ
T ~̃f + λ1(f̃1,1 − f̃0,0) + λ2f̃0,1,

with term vector τ = [α2, β2, αβ, α, β, 1]. The Jacobian of L in
~̃
f and λ is zero for

~̃
f =




f̃2,0

f̃0,2

f̃1,1

f̃1,0

f̃0,1

f̃0,0




=




−−α2−2β4+α2β2−2αβ−1+α3β
2α2+2β4+2α4+α2β2+2αβ+1

2α2+2α4−α2β2+2αβ+1−β2−αβ3

2α2+2β4+2α4+α2β2+2αβ+1
β4+α4−αβ3−α3β−β2

2α2+2β4+2α4+α2β2+2αβ+1

− α(1+2β2+αβ+2α2)
2α2+2β4+2α4+α2β2+2αβ+1

0
β4+α4−αβ3−α3β−β2

2α2+2β4+2α4+α2β2+2αβ+1




,

λ0 =
2(2α2 + αβ + 2β2 + 1)

2α4 + 2α2 + α2β2 + 2αβ + 1 + 2β4
,

λ1 =
−2(α4 + α3 β + α2 β2 + αβ + β3α + β4 − β2)

2α4 + 2α2 + α2β2 + 2αβ + 1 + 2β4
,

λ2 =
−2(2α2 + αβ + 2β2 + 1)β

(2α4 + 2α2 + α2β2 + 2αβ + 1 + 2β4)
.

The minimum perturbation is

N2=
3α4+2α3β+5α2β2+3α2+2αβ+2αβ3+1+3β4+2β2

2α2+2α4+2β4+α2β2+2αβ+1
. (2.12)

Running the Minimize procedure in Maple 14 we obtain min
(α,β)

N2 = 1 at the root (0, 0)

and f̃ = x2+y2. That is the same deformed polynomial as for the unconstrained problem

but derived from a different norm expression (Equation (2.12)).

Note that before minimizing Equation (2.12) one could restrict (α, β) to lie on a

parametric curve, thus constraining the variables rather than the coefficients, as is done

in [10]. �

Example 9 Given the polynomial f = x2 + y2 − 2xy + 4, find the nearest polynomial

f̃(x, y) = f̃2,0x
2 + f̃0,2y

2 + f̃1,1xy + f̃1,0x + f̃0,1y + f̃0,0 with f̃1,1 = −3 and with the root

(α, β).
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The Lagrangian function is

L(α, β, λ) = (~f − ~̃
f )T (~f − ~̃

f ) + λ0τ
T ~̃f + λ1(f̃1,1 + 3),

where the term vector τ = [α2, β2, αβ, α, β, 1].

The Jacobian of L in ~̃f and λ is zero for

~̃
f =




f̃2,0

f̃0,2

f̃1,1

f̃1,0

f̃0,1

f̃0,0




=




1−3α2+β2+β4−α2β2+3α3β
1+α2+β2+α4+β4

1+α2−3β2+α4−α2β2+3αβ3

1+α2+β2+α4+β4

−3

−α (4+α2+β2−3αβ)
1+α2+β2+α4+β4

−β (4+α2+β2−3αβ)
1+α2+β2+α4+β4

3αβ+3α2+3β2+4α4+4β4

1+α2+β2+α4+β4




λ0 =
2(4 + α2 + β2 − 3αβ)

1 + α2 + β2 + α4 + β4

λ1 =
2(1 + α2 + β2 + α4 + β4 − 4αβ − α3β − αβ3 + 3α2β2)

1 + α2 + β2 + α4 + β4

The minimum perturbation is

N2 =
2α4 − 6α3β + 9α2 + 11α2β2 − 6αβ3 − 24αβ + 17 + 9 β2 + 2 β4

1 + α2 + β2 + α4 + β4
. (2.13)

Running the Minimize procedure in Maple 14 we obtain min
(α,β)

N2 = 1 at the root (−2,−2)

and f̃ = x2 + y2 − 3xy + 4. �

Example 10 Looking at the same polynomial as in the last example f = x2+y2−2xy+4

but with the constraint f̃1,1 = −4f̃2,0 we obtain

N2=
5α4−40α3β+76α2+98α2β2−72αβ3−288αβ+21β4+140 β2+276

17+17α2+17β2+17β4+α4−8α3β+16α2β2 . (2.14)

The nearest polynomial is

f̃ = 0.5294117644 x2 + 0.9999999996 y2 − 2.117647058 xy + 3.999999998
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at

(3.58092825040923168, 5.68559836091241166)

with

min
(α,β)

N2 = 0.235294117647058626. �

This section has been adapted from [13].

2.6.2 Inequality Constraints

Our method can be generalized even further to include inequalities, G~̃f ≤ q with G ∈
Rm×s. Then

N [f ;H;G]
2,w (α) = inf

f̃∈R[x1,...,xn]
‖f − f̃‖22,w

s. t. f̃(α) = 0, G ~̃f ≤ q,H ~̃f = p,

deg(f̃) ≤ deg(f).





(2.15)

Note that our constraint functions, being linear, are always convex. We can use the

Karush-Kuhn-Tucker (KKT) conditions and the quantities as defined in Theorem 2.

The KKT conditions (for a regular point) are then (see [6]):

Given the canonical form nonlinear programming problem

min
x∈Rn

f0(x)

subject to fi(x) ≤ 0 i = 1, . . . , m,

if the Lagrangian function is given by

L(x, u) = f0(x) +
m∑

i=1

uifi(x)

then the KKT conditions for the problem are

∂L

∂(xj)
= 0, j = 1, . . . , n, gradient condition

uifi(x) = 0 i = 1, . . . , m orthogonality

fi(x) ≤ 0 i = 1, . . . , m feasibility

ui ≥ 0 i = 1, . . . , m non-negativity





(2.16)

A point (x̄, ū) satisfying the KKT conditions is called a KKT point. If the functions

fi(x) are all convex, the points x̄ are global minimizing points.
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Using the conditions in Equation (2.15) with the KKT conditions as defined in Equa-

tion (2.16) with the Lagrange function:

L = (~f − ~̃f )TDw(~f − ~̃f ) + λ0τ
T ~̃f + λT (H ~̃f − p) + µT (G~̃f − q), (2.17)

the KKT conditions (for a regular point) become

∂L

∂( ~̃f )i
= 0, i = 1, . . . , s,

τT
~̃
f = 0,

H
~̃
f = p,

G ~̃f ≤ q,

µi ≥ 0, i = 1, . . . , m,

µT (G
~̃
f − q) = 0.





(2.18)

The last orthogonality conditions constitute branching: µi = 0 or (G~̃f − q)i = 0, and

(2.18) form linear programs.

Example 11 Given a polynomial f(x, y) = x2 + y2 − 2y + 1 and constraint f̃0,1 ≥ 0,

we determine the nearest polynomial f̃(x, y) = f̃2,0x
2 + f̃0,2y

2 + f̃1,1xy + f̃1,0x + f̃0,1y

+ f̃0,0 with real root (0, 0). The term vector for the root is τ = [0, 0, 0, 0, 0, 1]. The

Lagrangian function is L(α, β, λ, µ) = (~f − ~̃
f )T (~f − ~̃

f ) + λτT
~̃
f + µ(−f̃0,1). We can

formulate the KKT conditions as solving two linear programs:

Minimize 1

subject to ∂L/∂(
~̃
f )i = 0, i = 1, . . . , 6

f̃0,0 = 0,

−f̃0,1 ≤ 0,

µ = 0,

and

Minimize 1

subject to ∂L/∂(
~̃
f )i = 0, i = 1, . . . , 6,

f̃0,0 = 0,

−f̃0,1 = 0,

µ ≥ 0.
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The first linear program is infeasible; for the second linear program we obtain:

f̃ = x2 + y2, λ = 2, µ = 4, and N [f ;G]
2 = 5.

The minimum perturbation can also be obtained by running the Minimize procedure in

Maple 14 on the original optimization problem Equation (2.15). �

Example 12 Given a polynomial f(x, y) = 1 + x + x2 − 2x3y + x2y2 and constraint

f̃3,1 ≥ 0, we determine the nearest polynomial

f̃(x, y) = f̃4,0x
4 + f̃0,4y

4 + f̃3,1x
3y + f̃1,3xy

3 + f̃2,2x
2y2 + f̃3,0x

3 + f̃0,3y
3

+ f̃2,1x
2y + f̃1,2xy

2 + f̃2,0x
2 + f̃0,2y

2 + f̃1,1xy + f̃1,0x+ f̃0,1y + f̃0,0,

with real root (2, 0). The Lagrangian function is

L(α, β, λ, µ) = (~f − ~̃
f )T (~f − ~̃

f ) + λτT
~̃
f + µ(−f̃3,1).

We can formulate the KKT conditions as solving two linear programs:

Minimize 1

subject to ∂L/∂( ~̃f )i = 0, i = 1, . . . , 15

τT
~̃
f = 0

−f̃3,1 ≤ 0,

µ = 0,

and

Minimize 1

subject to ∂L/∂( ~̃f )i = 0, i = 1, . . . , 15,

τT
~̃
f = 0,

−f̃3,1 = 0,

µ ≥ 0.

The first linear program is infeasible; for the second linear program we obtain:

f̃ = −0.328445747800586440x4 − 0.164222873900293276x3 + x2y2

+0.917888563049853224x2 + 0.958944281524926944x+ 0.979472140762463250,
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λ = 0.0410557184750733190, µ = 4

and

N [f ;G]
2 = 4.143695016.

For f without constraints, N f
2 (2, 0) =

49
341

≈ 0.1436950147. �

Example 13 We consider the polynomial f(x, y) = x2 + y2 + 1. We have seen that

the nearest polynomial with the root (0, 0) is f̃(x, y) = x2 + y2, but what is the nearest

polynomial with the root (1, 1) and the constraint that f̃0,0 ≥ 1? The Lagrangian function

is L(α, β, λ, µ) = (~f − ~̃f )T (~f − ~̃f ) + λτT ~̃f + µ(1− f̃0,0).

We can formulate the KKT conditions as solving two linear programs:

Minimize 1

subject to ∂L/∂( ~̃f )i = 0, i = 1, . . . , 6

f̃(1, 1) = 0,

−f̃0,0 ≤ −1,

µ = 0,

and

Minimize 1

subject to ∂L/∂(
~̃
f )i = 0, i = 1, . . . , 6,

f̃(1, 1) = 0,

f̃0,0 = 1,

µ ≥ 0.

The first linear program is infeasible; for the second linear program we obtain:

f̃ = 0.4x2 + 0.4y2 − 0.6x− 0.6y − 0.6xy + 1

λ = 1.2, µ = 1.2

and

N [f ;G]
2 = 1.8. �

This section has been adapted from [13].
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Chapter 3

The Case of Several Polynomials

3.1 System of Polynomials with a Real Root inWeighted

Euclidean Norm

Theorem 2 can be extended to systems. The distance to the nearest system with k

equations and common root α is defined as

inf
f̃ [1],...,f̃ [k]

‖f [1] − f̃ [1]‖22 + · · ·+ ‖f [k] − f̃ [k]‖22
s. t. f̃ [i](α) = 0, i = 1, . . . , k

f [i] ∈ R[x1, . . . , xn], i = 1, . . . , k

deg(f̃ [i]) ≤ deg(f [i]), i = 1, . . . , k





(3.1)

Applying Theorem 2 to each individual f̃ [i] easily yields the following. Since we are

summing up the smallest deformation of each individual f [i] for i = 1, . . . , k then we will

have the nearest system with a common root α.

Theorem 4 Let f [1], . . . , f [k] ∈ R[x1, . . . , xn], with di = deg(f [i]), The distance to the

nearest system with a common root α ∈ Rn is (in ℓ2-norm)

N {f [1],...,f [k]}
2 (α) =

f [1](α)2
∑d1

i1+···+in=0 α
2i1
1 · · ·α2in

n

+ · · ·+ f [k](α)2
∑dk

i1+···+in=0 α
2i1
1 · · ·α2in

n

. (3.2)
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The nearest polynomials, if they exist (see Example 5) are again determined by Equa-

tion (2.3). Theorem 4 easily generalizes to include weighted norms. Linear equality

and inequality constraints on the coefficients as described in Equation (2.11) and Equa-

tion (2.15) can also be applied.

Example 14 Given polynomials

f [1](x, y) = x4 + y4 + 1 and f [2](x, y) = x2 + x2y2 − 2xy + 1

we shall determine the minimum perturbation such that the deformed system of 2 equa-

tions has a real root.

For that, we compute the Gröbner basis of the numerators of the partial derivatives

of Equation (3.2) (cf. [2]). The Gröbner basis computation took 150.54 seconds1. In

Section 5 we present an alternative approach based on sums-of-squares certificates. The

first equation in the obtained Gröbner basis is a polynomial in terms of β of degree 195.

Next, we find all real roots of this polynomial and plug all 9 choices into a second

polynomial in the Gröbner basis. We compute the norm of each possible point and select

the minimum value. The minimum perturbation obtained by solving the Gröbner basis

of Equation (3.2) in Maple is

Ñ 2 = 0.64597306998078277667 (3.3)

for
(α, β) = (−0.9138289555225176138,

−1.1947071766554875688).

Note that for this example at least 25 mantissa digits must be used in Maple 14 in order

to obtain the correct minimum.

We can then find the nearest polynomial system by plugging the root into Equa-

tion (2.3) for each of the two polynomials:

f̃ [1] = 0.83448994938 + 0.15028000318 x + 0.19773604528 y − 0.17954059831 xy −
0.13645140747 x2 − 0.23623667238 y2 + 0.12389530347 x3 + 0.21449844130 xy2 +

0.16301947576 x2y + 0.28223364788 y3 + 0.88750540206 x4 − 0.14801860821 x3y −
0.19476053763 x2y2 − 0.25626282720 xy3 + 0.66281343538 y4,

1All reported timings were run on an 8 CPU (2.8GHz Xeon) MacPro with 8GB of memory under
Linux 2.6.32-31 (Ubuntu) using Maple 14 and/or Matlab R2010a.
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f̃ [2] = 0.96296934167 + 0.03362313909 x + 0.04424079327 y − 2.04016980557 xy +

0.96947082410 x2 − 0.05285479322 y2 + 0.02771991571 x3 + 0.04799115499 xy2 +

0.03647342555 x2y + 0.06314600078 y3 − 0.02516916045 x4 − 0.03311718223 x3y +

0.95642493674 x2y2 − 0.05733537729 xy3 − 0.07544098031 y4. �

Example 15 We consider the overdetermined system

f [1](x, y) = x2 + y2 − 1, f [2](x, y) = x2 − y2 − 1, f [3](x) = x2 − 2.

Using Theorem 4 we obtain

N {f [1],f [2],f [3]}
2 (α, β) =

(α2 + β2 − 1)
2

1 + α2 + β2 + α4 + β4 + α2β2
+

(α2 − β2 − 1)
2

1 + α2 + β2 + α4 + β4 + α2β2

+
(α2 − 2)

2

1 + α2 + β2 + α4 + β4 + α2β2

Running Minimize on N {f [1],f [2],f [3]}
2 (α, β) we obtain

ρ2(f
[1], f [2], f [3]) = 0.151159953434232108

with

(α, β) = (1.19718389644442, 0.3153893315661)

and

f̃ [1] = −1.11240274409999995− 0.134566755152683015α

−0.0354506263278943912 β− 0.0424409189517329297αβ

+0.838898847836248018α2+ 0.988819250656115645 β2

f̃ [2] = −1.07042663899999990− 0.0843136380915045502α

−0.0222118105986570287 β− 0.0265916219552682041αβ

+0.899061070290003483α2− 1.00700536809929386 β2

f̃ [3] = −1.88041678439999993+ 0.143163100001361149α

+0.0377152704346088233 β+ 0.0451521144070290079αβ

+1.17139255777836793α2+ 0.0118949939351104834 β2. �

This section has been adapted from [13].
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Chapter 4

Infinity Norm and One Norm

4.1 Nearest Polynomial with a Real Root

In this chapter we further explore finding the nearest polynomial or system of polynomials

with the weighted infinity norm and one norm as the distance measure. Furthermore, we

consider the problem of linear constraints on the coefficients of the polynomial.

As mentioned in Section 2.2, Stetter proved the following theorem.

Theorem 5 (see Theorem 1) Let the vector of possible term values of f and f̃ be given

by ~f , ~̃f ∈ Cn respectively. Let the given root be denoted by α = [α1, . . . , αn] ∈ Cn. Let

τ = [1, α1, . . . , αn, . . . , α
i1
1 · · ·αin

n , . . .], the term vector evaluated at the root. Let ‖ . . . ‖ be

the given norm and ‖ . . . ‖∗ the associated dual norm. The nearest polynomial with a real

root, i.e. f̃(α) = τT
~̃
f = 0 requires

‖~f − ~̃
f ‖∗ ≥ |f(α)|

‖τ‖ .

Theorem 1 shows that Theorem 2 can be extended to any ℓp-norm. We extend the

results from Theorem 1 to the weighted ℓ1 and ℓ∞-norms. We prove Hölder’s inequality

for weighted ℓ1, ℓ2 and ℓ∞-norms, which allows us to then follow the same proof as in

[38] for Theorem 1. We further give an explicit formula for ~̃f .

Theorem 6 Let u, v ∈ Cn and weights wi. Then |vTu| ≤ ‖u‖∞,w‖v‖1,1/w, where 1/w is

the vector of reciprocals of entries of w.
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Proof. Looking at |vTu|:
|vTu| =

∣∣∣
∑

i

viui

∣∣∣ =
∣∣∣
∑

i

wivi
1

wi

ui

∣∣∣ ≤ (max
j

wj |vj|)
∑

i

1

wi

|ui| = ‖v‖∞,w‖u‖1,1/w. �

Corollary 1 Let u, v ∈ Cn, and let wi be the weights. Then

|vTu| ≤ ‖u‖1,w‖v‖∞,1/w.

Proof. Looking at |vTu|:
|vTu| =

∣∣∣
∑

i

viui

∣∣∣ =
∣∣∣
∑

i

1

wi
viwiui

∣∣∣ ≤ (max
j

1

wj
|vj |)

∑

i

wi|ui| = ‖v‖∞,1/w‖u‖1,w. �

Theorem 7 Let u, v ∈ Cn and let wi be the weights. Then |vTu| ≤ ‖u‖2,w‖v‖2,1/w.

Proof of Theorem 7. Let ûi =
√
wiui, v̂i =

vi√
wi

. Using the Cauchy-Schwartz inequality,

we have:

|vTu| = |v̂T û| ≤
(∑

i

(
√
wiui)

2
)1/2(∑

i

(
vi√
wi

)2
)1/2

.

Therefore, |vTu| ≤ ‖u‖2,w‖v‖2,1/w. �

Now that we have proven Hölder’s inequality for the weighted ℓ1, ℓ2 and ℓ∞-norms, we

can follow the proof of Theorem 1 to extend Theorem 2 to the weighted ℓ1 and ℓ∞-norms.

Theorem 7 would also yield an alternative proof of Theorem 2.

Theorem 8 For τ , f , and f̃ as described in Theorem 1, and for v = [1, sgn(τi), . . .],

where v ∈ Rκ, κ is the dimension of f and sgn(τi) =





1 for τi > 0

0 for τi = 0

−1 for τi < 0

, with the

distance measure being the weighted ℓ∞-norm (with weights wi) then

N [f ]
∞,w(α) =

|f(α)|
‖τ‖1,1/w

(4.1)

and
~̃f = ~f − f(α)

‖τ‖1,1/w
D−1

w v.

Proof of Theorem 8. From [38] and Theorem 6 we know that

|f(α)| = |( ~̃f − ~f )T τ | ≤ ‖ ~̃f − ~f ‖∞,w‖τ‖1,1/w.
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Therefore,
|f(α)|
‖τ‖1,1/w

≤ ‖~f − ~̃f ‖∞,w. For all j construct ( ~̃f )j such that

f(α)

‖τ‖1,1/w
= wj(~f − ~̃

f )j.

From this we get that wj(
~̃f )j = wj(~f )j −

f(α)

‖τ‖1,1/w
. Therefore,

~̃
f = ~f − f(α)

‖τ‖1,1/w
D−1

w v,

which yields equality in the above inequality. This gives

f̃(α) = τT ~f − f(α)

‖τ‖1,1/w
τTD−1

w v = 0.

Thus the constraint that f̃(α) = 0 is satisfied. �

In the same way we obtain the following theorem.

Theorem 9 For τ , f , f̃ , and sgn(τi) as described in Theorem 8 with weighted ℓ1-norm

and weights wi ≥ 0 we have

N [f ]
1,w(α) =

|f(α)|
‖τ‖∞,1/w

and

~̃
f i =





~f i for i 6= imax

~f i − sgn(τi)
f(α)

‖τ‖∞,1/w

1

wi
for i = imax

where imax = argmax
i

{ |τi|
wi

}
.

Proof. From [38] and Theorem 6 we know that

|f(α)| = |( ~̃f − ~f )T τ | ≤ ‖ ~̃f − ~f ‖1,w‖τ‖∞,1/w.

Therefore,
|f(α)|

‖τ‖∞,1/w

≤ ‖~f − ~̃f ‖1,w. (4.2)
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Let

~̃
f i =





~f i for i 6= imax

~f i − sgn(τi)
f(α)

‖τ‖∞,1/w

1

wi

for i = imax

where imax = argmax
i

{ |τi|
wi

}
. This gives equality in inequality 4.2. Substituting into the

above inequality, the inequality becomes

|f(α)|
‖τ‖∞,1/w

≤ ‖~f − ~̃f ‖1,w

= 0 + |wimax(
~f imax − ~f imax + sgn(τimax)

f(α)

‖τ‖∞,1/w

1

wimax

)|

=
|f(α)|

‖τ‖∞,1/w

.

We also need to check that 0 = f̃(α).

0 = f̃(α) = τT ~f − sgn(τimax)
f(α)

‖τ‖∞,1/w

1

wimax

τimax .

Therefore, f̃(α) = 0. �

4.1.1 Coefficient Constraints with a Given Root

Next, we consider finding the nearest polynomial with equality constraints on the coef-

ficients. For the ℓ∞ and ℓ1-norms, we cannot follow the same method as in Section 2.6.

In order to compute the nearest polynomial with real coefficients using the ℓ∞-norm as

the distance measure, one reformulates the problem as a linear program [10]. For a given

polynomial, f of dimension κ, we want to minimize

max
0≤k≤κ

|~f k − ~̃f k|

with constraints
~̃
f T τ = 0 and

~̃
f i =

~̃
f j . This is equivalent to solving the linear program
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Minimize w

subject to
~̃
f T τ = 0,
~̃f i =

~̃f j ,

~f k − ~̃
f k ≤ w, k = 0, 1, . . . κ

−(~f k − ~̃
f k) ≤ w, k = 0, 1, . . . κ

(4.3)

Similarly, for the ℓ1 - norm we want to minimize

κ∑

k=1

|~f k − ~̃f k|.

We obtain the linear program:

Minimize

κ∑

k=1

(d+k + d−k )

subject to
~̃
f T τ = 0,
~̃f i =

~̃f j,

d+k − d−k = ~f k − ~̃f k, k = 0, 1, . . . , κ

d+i ≥ 0, k = 0, 1, . . . κ

d−i ≥ 0, k = 0, 1, . . . κ

(4.4)

For several linear constraints on the coefficients of f̃ , we can embed the constraints

into a matrix H and the problem becomes

N [f ;H]
∞,w (α) = inf

f̃∈R[x1,...,xn]
‖f − f̃‖∞,w

s. t. f̃(α) = 0, H
~̃
f = p,

deg(f̃) ≤ deg(f).





(4.5)

Note that we can impose inequality constraints on the coefficients of f̃ in the same

way.

Example 16 We want to find the nearest polynomial, f̃ = f̃2,0x
2 + f̃0,2y

2 + f̃1,1xy +

f̃1,0x + f̃0,1y + f̃0,0 in ℓ∞-norm distance to the polynomial f(x, y) = 4x2 + 2y2 + 5x + 3

with coefficient constraint f̃0,0 = f̃2,0 and given root (α, β) = (0, 0). The linear program

in 4.3 becomes
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Minimize w

subject to
~̃
f T τ = 0,

f̃0,0 = f̃2,0,

fk − f̃k ≤ w, k = (0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)

−(fk − f̃k) ≤ w, k = (0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)

Running LPSolve in Maple 14 we obtain

N f
∞(0, 0) = 4, f̃ = 1.0718y2 + 4xy + x+ 4y.

The distance to the nearest polynomial in ℓ∞-norm without constraints is N f
∞(0, 0) = 3.

One can deform the constant coefficient to 0 to obtain this result, however the polynomial

f̃ is not unique. Also, N f
2 (0, 0) = 3. If we consider a different root, (α, β) = (1, 1), then

N f
∞(1, 1) = 2.5, f̃ = 1.5− 2.5y + 2.5x− 2.5xy − 0.5y2 + 1.5x2

and if the linear constraint is removed then

N f
2 (1, 1) = 98/3, and f̃ = 2/3− 7/3y + 8/3x− 7/3xy − 1/3y2 + 5/3x2

and

N f
∞(1, 1) = 2.333 and f̃ = 2/3− 7/3y + 8/3x− 7/3xy − 1/3y2 + 5/3x2. �

Example 17 Next, we consider a polynomial where the nearest polynomial in ℓ∞-norm

is different from the nearest polynomial in ℓ2- norm. We consider the bivariate polynomial

f(x, y) = 3x2 + y2 + 2 with the constraint f̃2,0 = f̃0,0 and root (α, β) = (1, 1).

Minimize w

subject to ~̃f T τ = 0,
~̃
f 0,0 =

~̃
f 2,0,

fk − f̃k ≤ w, k = (0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)

−(fk − f̃k) ≤ w, k = (0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)

Using Theorem 2, the distance to the nearest polynomial in ℓ2-norm is

N f
2 (1, 1) = 26/4 = 6.5
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and

f̃ [ℓ2] = 3/2x2 − xy − x− y + 3/2.

Then, the distance in ℓ∞-norm between f and f̃ is ‖~f − ~̃f [ℓ2]‖∞ = 1.5. However, if we

calculate Nf
∞(1, 1) by running LPSolve in Maple 14 on the above linear program, we

obtain

N f
∞(1, 1) = 7/6

and

f̃ [ℓ∞] = 11/6− 7/6y − 7/6x− 7/6xy − 1/6y2 + 11/6x2

for the infinity norm. Notice that

N f
∞(1, 1) = 7/6 < 3/2 = ‖~f − ~̃

f [ℓ2]‖∞ at (1, 1).

Similarly, for the root (α, β) = (0, 0) and constraint v2,0 = v0,0 we obtain:

N f
∞(0, 0) = 3 and f̃ = 3y + 3x+ 3xy

and

N f
2 (0, 0) = 13 and f̃ = y2.

If we want to find the nearest polynomial to f without any coefficient constraints, then

we use Theorem 2 and obtain

Nf
2 (0, 0) = 4 and f̃ = 3x2 + y2.

This example will be continued on page 45. �

4.1.2 Nearest Polynomial with an Arbitrary Root

We have explored how to find the nearest polynomial to a given polynomial f with a

given root α. Namely, we can use the formulas in Theorem 8 or Theorem 9 or we can

use the linear programs described above (see 4.3 and 4.4). In the unconstrained case,

we have a formula in Theorem 8 and 9, which we can minimize over the root α. In the

constrained case, we do not have a formula, so we construct a grid and sample at every

point on the grid. We consider several examples below.
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4.1.3 Nearest Polynomial without Constraints and an Arbi-

trary Root

First, we consider finding ρ∞(f) when there are no constraints on the coefficients of

f̃ . To solve this problem we consider minimizing
|f(α, β)|
‖τ‖1

(see Theorem 8) in the four

quadrants: α ≥ 0, β ≥ 0; α ≥ 0, β ≤ 0; α ≤ 0, β ≥ 0; α ≤ 0, β ≤ 0. We make the

substitution α = u2 and β = v2, which increases the degree of the problem, but allows

us to drop the absolute value of the denominator. Since there are no absolute values in

the expression in the Euclidean norm case, this substitution is not necessary.

Example 18 We consider the polynomial in Example 17 but without coefficient con-

straints on f̃ . The polynomial f = 3x2 + y2 + 2 has the property that f ≥ 0 for all

x, y ∈ R. The value of the polynomial is invariant depending on which quadrant we are

in. Therefore, we only need to consider the case α ≥ 0 and β ≥ 0 and therefore do not

need to make the substitution α = u2 and β = v2. Using Minimize in Maple 14, for

Example 17 we obtain

ρ∞(f) = 0.7639320225, α = 0.61803383, and β = 2.618033705.

and

f̃ = 1.236− 0.764 x− 0.764 y − 0.764 xy + 2.236 x2 + 0.236 y2

This example will be continued on page 43. �

Example 19 We consider the polynomial in Example 16 but without a constraint on

the coefficients of f̃ . Since the polynomial f = 4x2 + 2y2 + 5x+ 3 is symmetric in y, we

compute the minimum for the two quadrants, α ≤ 0 and β ≥ 0, and α ≥ 0 and β ≥ 0.

For α ≥ 0 and β ≥ 0 we obtain ρ∞(f) = 1.56949912595693952 and for α ≤ 0 and β ≥ 0

we get ρ∞(f) = 0.563757167. Taking the minimum of the two solutions we achieve the

value ρ∞(f) = 0.563757167. We obtain this solution using Minimize in Maple 14 and

substituting α ≤ 0 and β ≥ 0 into our polynomial f . The solution is

ρ∞(f) = 0.563757167, α = −0.8391797248 and β = 0.3609594177.

and

f̃ = 2.436 + 5.564 x− 0.564 y + 0.564 xy + 3.436 x2 + 1.436 y2. �
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Example 20 Given f = x2 + y2 + 1, what is the nearest polynomial? In Theorem 8 we

have a formula for finding the nearest polynomial in ℓ∞-norm for a given root. We now

follow the procedure described above and minimize Equation (4.1). The solution is

ρ∞(f) = 0.5 and (α, β) = (1, 1).

This gives us that

f̃ = 0.5− 0.5x− 0.5y − 0.5xy + 0.5x2 + 0.5y2. �

Example 21 Consider the polynomial f = (x−y)2+(x+2y)2+1 = 2x2+2xy+5y2+1.

We want to find the nearest polynomial f̃ in ℓ∞-norm. We use Equation (4.1) and

compute the minimum of
|f(α, β)|
‖τ‖1

in the 2 cases:

Case 1: α ≥ 0 , β ≥ 0

minN f
∞(α, β) = 0.837722339831620699

Case 2: and α ≤ 0 , β ≥ 0

minN f
∞(α, β) = 0.713254935043394989.

So ρ∞(f) = 0.713254935043394989 and (α, β) = (−0.5475652821, 0.2564812120)

f̃ = 0.2867 + 0.7133 x− 0.7133 y + 2.7133 x y + 1.2867 x2 + 4.2867 y2. �

Example 22 Given the polynomial f = 1 − 2xy + x2y2 + x2 = (1 − xy)2 + x2 (see

Example 5), find the nearest polynomial with root (α, β) = (ǫ, 1/ǫ). We have that

Nf
∞(α, β) =

|(1− αβ)2 + α2|∑4
i+j=0 |αiβj |

.

Then

Nf
∞(ǫ, 1/ǫ) =

ǫ6

3 ǫ4 + 2 ǫ3 + 2 ǫ2 + ǫ+ 1 + 2 ǫ5 + 2 ǫ6 + ǫ7 + ǫ8
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and the nearest polynomial to f with (α, β) = (ǫ, 1/ǫ) as a root is

f̃(x, y) =
3 ǫ4 + 2 ǫ3 + 2 ǫ2 + ǫ+ 1 + 2 ǫ5 + ǫ6 + ǫ7 + ǫ8 − ǫ6y − ǫ6y2 − ǫ6y3 − ǫ6y4 − ǫ6x

δ

+
(−6 ǫ4 − 4 ǫ3 − 4 ǫ2 − 2 ǫ− 2− 4 ǫ5 − 5 ǫ6 − 2 ǫ7 − 2 ǫ8)xy − ǫ6xy2 − ǫ6xy3

δ

+
(3 ǫ4 + 2 ǫ3 + 2 ǫ2 + ǫ+ 1 + 2 ǫ5 + ǫ6 + ǫ7 + ǫ8) x2 − ǫ6x2y

δ

+
(3 ǫ4 + 2 ǫ3 + 2 ǫ2 + ǫ+ 1 + 2 ǫ5 + ǫ6 + ǫ7 + ǫ8) x2y2 − ǫ6x3 − ǫ6x3y − ǫ6x4

δ

f̃(ǫ, 1/ǫ) =
−2 ǫ4 − ǫ3 + (3 ǫ4 + 2 ǫ3 + 2 ǫ2 + ǫ+ 1 + 2 ǫ5 + ǫ6 + ǫ7 + ǫ8) ǫ2

δ

+
−ǫ2 − 2 ǫ5 − 3 ǫ6 − 2 ǫ7 − ǫ8 − ǫ9 − ǫ10

δ
,

where

δ = 3 ǫ4 + 2 ǫ3 + 2 ǫ2 + ǫ+ 1 + 2 ǫ5 + 2 ǫ6 + ǫ7 + ǫ8.

For ǫ = 1/10,

N f
∞(1/10, 10) = 100/112232211. �

Remark 10 The distance to the nearest polynomial in ℓ∞ -norm is zero if and only if

the distance to the nearest polynomial in ℓ2 -norm is zero. i.e.

0 = ρ∞(f) = inf
α

|f(α)|
‖τ‖1

⇔ inf
α

f(α)2

‖τ‖2
= ρ2(f) = 0.

This can be seen using the fact that ‖v‖∞ ≤ ‖v‖2 ≤ √
n‖v‖∞. Note that in the same

way, ρ1(f) = 0 if and only if ρ2(f) = 0.

Example 23 In this example we consider the nearest polynomial f̃ [∞], f̃ [2] and f̃ [1] to

f = 3x2 + y2 + 2 in ℓ∞, ℓ2, and ℓ1 -norms respectively. We also compute ‖f − f̃ [·]‖∞,

‖f − f̃ [·]‖22, and ‖f − f̃ [·]‖1 for each f̃ .
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Table 4.1: Norm Comparison Table

f = 2 + 3x2 + y2 ‖f − f̃ [·]‖∞ ‖f − f̃ [·]‖22 ‖f − f̃ [·]‖1
f̃ [ℓ∞] = 1.236− 0.764 x− 0.764 y

−0.764 xy + 2.236 x2 + 0.236 y2 0.764 3.502 4.584

f̃ [ℓ2] = 1.999− 0.001 y + 3.0 x2

−0.00000099 y2 1.000001 1.000003 1.001

f̃ [ℓ1] = 2 + 3x2 − 0.000002y2 1.000002 1.000004 1.000002

The last line would have all entries of 1.000002 if it was ‖f − f̃ [·]‖2 instead of the

squared distance ‖f−f̃ [·]‖22. It is already known that ‖f−f̃ [·]‖∞ ≤ ‖f−f̃ [·]‖2 ≤ ‖f−f̃ [·]‖1.
We also know that the diagonal entries are the minimum for each column. What is

interesting is comparing the other two entries in each column.

Notice that the optimum for f̃ [ℓ1] is f̃ [ℓ1] = 2 + 3 x2 − ǫ y2 = 0. Rewriting the

equation, we have 3 x2 = ǫ y2 − 2. This gives us that y =

√
2

ǫ
. Thus, ‖f − f̃ [ℓ1]‖1 = 1,

‖f − f̃ [ℓ1]‖∞ = 1, and there is no real root. This is another example of when the infimum

is not attainable.

Table 4.2: Norm Comparison Table With Corresponding Roots

f = 2 + 3x2 + y2 Root = (α, β)

f̃ [ℓ∞] = 1.236− 0.764 x− 0.764 y

−0.764 xy + 2.236 x2 + 0.236 y2 (0.618, 2.618)

f̃ [ℓ2] = 1.999− 0.001 y + 3.0 x2

−0.00000099 y2 (0, 1000)

f̃ [ℓ1] = 2 + 3x2 − 0.000002y2 (0, 1000)

In Table 4.2 the nearest polynomial to f = 2+3x2+ y2 is given for ℓ∞, ℓ2 and ℓ1 -norms
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and the corresponding root. �

4.1.4 Coefficient Constraints with an Arbitrary Root

We have seen how to find the nearest polynomial with an arbitrary root using the coeffi-

cient vector infinity norm distance measure if there are no constraints. Now we consider

the case of when there are coefficient constraints on f̃ . We cannot follow the same method

as we did for the Euclidean norm. When our distance measure is the Euclidean norm

then the distance measure is differentiable. For the ℓ1 and ℓ∞-norm this is not the case,

since we have absolute values in the formulas we are trying to minimize. Therefore, we

cannot use the KKT conditions as with the Euclidean norm. Unlike in the unconstrained

case, we do not know a norm expression to minimize for the constrained case. Therefore,

we cannot minimize over the four quadrants for the root like we did in the unconstrained

case. Instead, we lay a fine grid for the root and run the linear program described in

4.3 at each grid point. In the following examples we have polynomials of two variables,

α and β. We use the grid −100 ≤ α ≤ 100 and −100 ≤ β ≤ 100 in steps of 0.1 and

obtain (αmin,1, βmin,1), the root that corresponds to ρ̂∞(f) on the grid. We want an extra

decimal place in the solution for the root, so we search in steps of 0.01 in our refined grid.

We refine the grid around the solution and search in a 4×4 grid around (αmin,1, βmin,1) in

steps of 0.01 to obtain (αmin,2, βmin,2). The number of times the solution has been refined

is given as the second coordinate of the subscript of the root.

Example 24 Example 17 continued. For f(x) = 3x2 + y2 + 2 with the constraint

f̃2,0 = f̃0,0 we compute

Minimize w

subject to ~̃f T τ = 0,

f̃0,0 = f̃2,0,

fk − f̃k ≤ w, k = (0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)

−(fk − f̃k) ≤ w, k = (0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)

(4.6)

at the roots −100 ≤ α ≤ 100 and −100 ≤ β ≤ 100 in increments of 0.1.

We obtain the minimum αmin,1 = −1.0, βmin,1 = −4.4, ρ̂∞,1(f) = 0.813863928112965.

The maximum value on the grid is max ρ̂∞,1(f) = 3 at (αmax,1, βmax,1) = (0, 0). The
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average value is avg(ρ∞(f)) = 1.481924505. The average time for one iteration is 0.02

seconds and the total time to run all of the linear programs was 9612.940 seconds1.

Next, we can further refine the grid around the solution (αmin,1, βmin,1) = (−1.0.−4.4)

in order to obtain an extra decimal place in accuracy in the solution. We compute the

minimum on the grid −3 ≤ α ≤ 1 and −6 ≤ β ≤ −2 in steps of 0.01. Our refined root

(αmin,2, βmin,2) is (−1.00,−4.37) which gives us

ρ̂∞,2(f) = 0.813859369781010.

The distance to the nearest polynomial with a real root has improved by

ρ̂∞,1(f)− ρ̂∞,2(f) = 0.0000045583.

So by obtaining an extra decimal place in accuracy in the root, we get an improvement in

ρ̂∞(f) of 0.00000456. Running the linear program 4.6 for (α, β) = (−1,−4.37) we obtain

f̃(x, y) = 2.186140630 + 0.813859369781010 x+ 0.813859369781010 y

−0.813859369781009 xy+ 2.18614063021899 x2 + 0.186140630218991 y2.

The maximum value on our refined grid was

max ρ̂∞(f) = 1.36

at the root (αmax,2, βmax,2) = (−3,−2).

The average value for ρ∞(f) on the grid −3 ≤ α ≤ 1 and −6 ≤ β ≤ −2 was

avg(ρ∞(f)) = 0.8881288462.

We don’t use the bisection method when computing the minimum on the refined grid

because we don’t know how the values for ρ∞(f) will change. The average time for one

linear program to run was about 0.217 seconds and the total time to compute all of the

linear programs for the refined grid was 346.971 seconds. �
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4.2 Systems

As in Chapter 3, we now consider the problem of finding the nearest system to an

inconsistent one. Applying Theorem 8 to each individual f [j] yields the following.

Theorem 10 Let f [1], . . . , f [k] ∈ R[x1, . . . , xn], with di = deg(f [i]) and wj the weight

vector for the j-th polynomial. The distance to the nearest system with a common root

α ∈ Rn in ℓ∞-norm is

N {f [1],...,f [k]}
∞,wjmax

(α) = max
1≤j≤k

|f [j](α)|
‖τ‖1,1/wj

, (4.7)

where jmax = argmax
j

{ |f [j](α)|
‖τ‖1,1/wj

}

Proof. For each f [j], 1 ≤ j ≤ k we have that

N [f [j]]
∞,wj

(α) =
|f [j](α)|
‖τ‖1,1/wj

.

We want to find what the maximum change is in a single coefficient. So we take the

maximum over all polynomials. Therefore, N {f [1],...,f [k]}
∞,wjmax

(α) = max
1≤j≤k

|f [j](α)|
‖τ‖1,1/wj

. �

Remark 11 We cannot have a system of equations that has an equation with weight

vector w = [∞, . . . ,∞]. For this reason, we cannot formulate root constraints as a

system of equations. For example, for the root (α, β) if we want to impose the constraint

g(α, β) = 2α2 − 3β2 + 1 = 0, then we would also have the corresponding weight vector

w = [∞, . . . ,∞] for g. Now we are dividing by zero in Equation (4.7) in Theorem 10.

For the same reason we cannot formulate root constraints as a system of equations in the

ℓ1 or ℓp -norms.

We can impose linear constraints on the coefficients of a system of polynomials. These

constraints can be coupled, where the constraint applies to the coefficients of multiple

polynomials, or uncoupled, where the constraint is on the coefficients of just one of the

polynomials. The distance to the nearest system with k equations, a common root α,

and linear coefficient constraints of the form H[
~̃
f [1], . . . ,

~̃
f [k]]T = b is defined as
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N [f [1],...,f [k];H]
∞ (α) = max

1≤j≤k

|f [j](α)|
‖τ‖1

s. t. f̃ [i](α) = 0, i = 1, . . . , k

H[ ~̃f [1], . . . , ~̃f [k]]T = b

f [i] ∈ R[x1, . . . , xn], i = 1, . . . , k

deg(f̃ [i]) ≤ deg(f [i]), i = 1, . . . , k.





(4.8)
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Chapter 5

Exact Sums-of-Squares Distance

Certificates

5.1 History

In Hilbert’s famous 1900 lecture, Hilbert posed the problem: For any f ∈ R[x1, . . . , xn],

is it true that f � 0 on Rn implies that f is a sum-of-squares of rational functions?

In 1927, Emil Artin solved this problem. His theorem states:

Theorem 11 Given a polynomial f ∈ Q[X1, . . . , Xn] then the following statements are

equivalent:

1. f � 0

2. There exist ui, vj ∈ Q[X1, . . . , Xn] : f(X1, . . . , Xn) =

m∑

i=1

u2
i

m∑

j=1

v2j

3. There exist rational W [1] � 0,W [2] � 0 such that f =
mT

d W [1] md

mT
e W [2] me

,

with md(X1, . . . , Xn) and me(X1, . . . , Xn) term vectors
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5.2 Motzkin

Artin proved that if f � 0, then f can be written as a sum-of-squares of rational functions.

Is it true that f � 0 on Rn implies that f is a sum-of-squares? In 1967, T. S. Motzkin

discovered a polynomial that cannot be written as a sum-of-squares (without introducing

a denominator as Artin proved). Recall that the arithmetic mean (average of n numbers)

is
|x1|+ |x2|+ · · ·+ |xn|

n
and the geometric mean is n

√
|x1| · |x2| · · · |xn|. From the AGM

inequality,

the geometric mean ≤ arithmetic mean.

Multiplying this by 3 and rewriting the inequality we have

3(arithmetic mean)− 3(geometric mean) ≥ 0.

For the monomials x4y2, x2y4, z6 this equation becomes the Motzkin polynomial

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2

We will show that a modified Motzkin polynomial M̃ = M(x, y, z)+z6 = x4y2+x2y4+

2z6 − 3x2y2z2 cannot be written as a sum of squares in R[x, y, z]. Later in Example 27

we will prove, using a sum-of-squares, certificate that M̃(x, y, 1) � 0.

Theorem 12 For M̃ = M(x, y, z) + z6 = x4y2 + x2y4 + 2z6 − 3x2y2z2 then M̃ ≥ 0 and

M̃ is not a sum of squares in R[x, y, z].

Proof of Theorem 12. Clearly M̃ ≥ 0 since M(x, y, z) ≥ 0. Following the proof from [32],

if M̃ were a sum-of-squares, then M̃ =
∑

k

h2
k(x, y, z) for some polynomials hk ∈ R[x, y, z].

Writing out M̃ as a ternary sextic using all potential monomials, we have:
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0x6 + 0x5 + 1x4y2 + 0x3y3 + 1x2y4 + 0x5 + 0y6

+0x5z + 0x4yz + 0x3y3z + 0x2y3z + 0xy4z + 0y5z

+0x4z2 + 0x3yz2 − 3x2y2z2 + 0xy3z2 + 0y4z2

+0x3z3 + 0x2yz3 + 0xy2z3

+0x2z4 + 0xyz4 + 0y2z4

+0xz5 + 0yz5

+2z6.

Using the same geometric scheme we write out hk(x, y, z).

Akx
3 +Bkx

2y + Ckxy
2 +Dky

3

+Ekx
2z + Fkxyz +Gky

2z

+Hkxz
2 + Ikyz

2

+Jkz
3.

Since the coefficient of x6 in M̃ is 0, the corresponding coefficient in
∑

k h
2
k,

∑
k A

2
k, also

equals 0. Thus Ak = 0 for all k. Next, we look at the coefficient of x4z2 in
∑

k h
2
k, we

have that
∑

k E
2
k + 2AkHk. Since Ak = 0 and the coefficient of x4z2 in M̃ is 0, it follows

that Ek = 0 for all k. Continuing down the xz edge, we see that the coefficient of x2z4 in

M̃ is 0, so
∑

k 2EkJk +H2
k = 0. Since Ek = 0, then Hk = 0. A similar argument applied

to the coefficients of y6, y4z2 and y2z4, shows that Dk = Gk = Ik = 0. We now have

that x4y2 + x2y4 + 2z6 − 3x2y2z2 =
∑

k (Bkx
2y + Ckxy

2 + Fkxyz + Jkz
3)2. Looking at

the coefficient of the x2y2z2 term in M̃ , we have −3 =
∑

k F
2
k . Contradiction. �

Remark 12 Notice that the polynomial M̃ in Theorem 12 is just the homogenization

of M(x, y) + 1 = 2− 3x2y2 + x2y4 + x4y2.

Remark 13 Notice that the polynomial M̃ + g(x), where deg(g(x)) < deg(M̃) is also

not a sum-of-squares since the highest degree has to be a sum-of-squares in order for the

polynomial to be a sum-of-squares.

51



Remark 14 The polynomial f(x1, . . . , xn) ∈ R[x1, . . . , xn] is homogeneous and a sum-

of-squares if and only if f(x1, . . . , xn−1, 1) is a sum-of-squares.

5.3 Lower Bound Certificates

The minimization of the rational function N [f ]
2,w =

f(α)2

g(α)
where g = τTD−1

w τ defined in

Equation (2.2) can be reformulated as maximizing r such that f(α)2 − rg(α) is non-

negative. We compute a lower bound of inf
α∈Rn

N [f ]
2,w(α) by solving the SOS program

[15, 28, 19, 20]:

r∗ := sup
r∈R,W

r

s. t. f(X)2−rg(X) = md(X)T W md(X)

W � 0, W T = W





(5.1)

where md(X) is the column vector of all terms in X1, . . ., Xn up to degree d. The

dimension of md(X) is
(
n+d
d

)
.

The SOS program (5.1) can be solved efficiently by algorithms in GloptiPoly [9],

SOSTOOLS [31], YALMIP [26] and SeDuMi [39]. One can use GloptiPoly as described

in [9] to extract the solutions α which achieve the global minimum. However, since we are

running fixed precision SDP solvers in Matlab, we can only obtain a numerical positive

semidefinite matrix W and a floating point number r∗ which satisfy approximately

f(X)2 − r∗g(X) ≈ md(X)T ·W ·md(X), W v 0. (5.2)

So r∗ is a lower bound of infα∈Rn N [f ]
2,w(α) approximately. Since it is a fixed precision SDP

solver it is subject to numerical error.

We convert the imprecise SOS to an exact SOS certificate with exact rational scalars

and polynomials. The lower bound r̃ ≤ r∗ is certified if r̃ and W̃ hold the following

conditions exactly:

f(X)2 − r̃g(X) = md(X)T · W̃ ·md(X), W̃ � 0. (5.3)

We can use Artin’s theorem of sum-of-squares and semidefinite programming (see,

e.g., [29, 19, 20]) to certify the computed minimum. This is different from a validated
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numerical algorithm, since we do not insist on the accuracy of the SDP solution.

The method is described in Figure 5.1, where the affine linear hyperplane, L, is

L = {A | AT = A, f(X) = m(X)T ·A ·m(X) = SOS .

WNewton

Newton iterationWSDP Wadjust

symmetric positive semidefinite matrices
W̃

L hard

orthogonal exact projection

Leasy

recover an integer or rational matrix

W̃

Figure 5.1: Rationalizing a Sum-of-Squares

The numeric semidefinite matrix obtained from solvesos in Matlab satisfying Equa-

tion (5.2) is represented by WSDP . We compute the rank of WSDP . If WSDP is rank

deficient then this may be caused by extra monomials in the SOS decomposition, so we

delete the rows and columns of WSDP with small elements (remove the monomials which

should not appear in the SOS). More reasons for why WSDP may be rank deficient are

discussed in [20]. According to [19] sometimes WSDP is too coarse to allow successful

projection to W̃ using Maple 14’s exact linear algebra. Therefore, the WSDP is refined

by rank-preserving Gauss-Newton iteration to WNEWTON . After we have refined WSDP

to WNEWTON such that

‖f(X)− r∗g(X)−md(X)T ·WNEWTON ·md(X)‖ < τ,

where τ is the given tolerance, we approximate r∗ by a nearby rational number r̃ ≤ r∗.

Next, if WNEWTON is of full rank (easy case), then we convert WNEWTON to a rational

matrix and perform an exact orthogonal projection, using least squares, to the rational
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matrix W̃ on the hyperplane Leasy. If WNEWTON is not of full rank or is near to a singular

matrix (hard case), then we use rational vector recovery to compute W̃ . If W̃ is positive

semidefinite we have our solution to Equation (5.3). If W̃ is not positive semidefinite, we

can try a smaller value for r̃ or increase the precision of the Newton iterations and then

repeat the previous computation. [19, 20]

We have done so for

min
(α,β)

N2 = 1

of Equation (2.12) of Example 8 and the rational lower bound

Ñ 2 = 64597306998078108/100000000000000000

of the real algebraic optimum of Equation (3.3) of Example 14.

This section has been adapted from [13].

5.4 Examples

Example 25 ([41]) Given a polynomial

f = x2y2 + x2 − xy + y4 − y2 + 1 = (xy − 1/2)2 + (y2 − 1/2)2 + x2 + 1/2

decide the minimum perturbation such that the perturbed polynomial has a real root.

If we allow dense perturbations, after running solvesos in Matlab, we get the lower

bound

Ñ 2 = 2.453484553428391600× 10−15.

This is caused by the assumption that we can perturb f by any monomial term with

degree bounded by 4. As illustrated in Example 6, we see that f has a radius of positive

semidefiniteness that is 0. Hence, it would be more interesting to consider a weighted

norm for this polynomial. For instance, if we only allow terms which appear in f to be

perturbed, then the lower bound computed by solvesos in Matlab is

Ñ 2 = 0.2469160193369205900.
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After applying the certification algorithm in [19, 20], we obtain the certified lower bound

Ñ 2 = 24691601933692029/100000000000000000.

This means that f is positive since f(0, 0) = 1 > 0. �

Example 26 Consider the Robinson polynomial

g(x, y) = 1 + x6 − x4 − y2 − x4y2 − x2 − y4 − x2y4 + y6 + 3 x2y2.

According to [3] g(x, y) + β(x6 + y6 + z6) is a sum-of-squares if and only if β ≥ 1/8.

Therefore, we consider f(x, y) = g(x, y) + 1
10
(x6 + y6 + z6). We have that

f(x, y) =
11

10
+

11

10
x6 − x4 − y2 − x4y2 − x2 − y4 − x2y4 +

11

10
y6 + 3 x2y2.

We allow only perturbations in the coefficients of f . The lower bound computed by

solvesos in Matlab is

N2 = 0.008999999999993343200.

After applying the certification algorithm in [19, 20], we obtain the certified lower bound

Ñ 2 = 899999999999334317/100000000000000000000.

We have that

f(x, y)2 − Ñ 2(1 + x4 + x4y4 + x4y8 + y4 + x8 + y8 + x8y4 + x12 + y12) = SOS.

The sum-of-squares is a sum of 28 polynomial squares. �

Example 27 (see [27]) Consider the polynomial

f(x, y) = 2− 3x2y2 + x2y4 + x4y2 = M(x, y) + 1.

Notice that f is the result of adding one to the Motzkin polynomial. It is well-known that

f is positive semidefinite but not an SOS, as seen in [27]. In fact f ≥ 1 for all x, y ∈ R.

First, we consider using a dense perturbation to obtain a lower bound for N2. We use

Matlab to compute the approximate lower bound of N2 and obtain 0 as the minimum,
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which is easily proven by considering f(x, y)− ǫx5. Hence, we consider a weighted norm.

We use infinite weights on the terms that have zero coefficients in f . Thus, we only allow

the terms which appear in f to be perturbed (sparse deformation). The lower bound

computed by solvesos in Matlab is

Ñ 2 = 0.1285480262594671800.

After applying the certification algorithm in [19, 20], we obtain the certified lower bound

Ñ 2 = 12854802625942833/100000000000000000.

We have computed an exact rational certificate (as in Equation (5.3))

f(x, y)2 − 12854802625942833/100000000000000000× (1 + x4y8 + x8y4 + x4y4) = SOS.

This is a sum-of-squares of 10 polynomial squares. This means that the non-zero coef-

ficients of f need to be perturbed (by at least 0.128 in ℓ2-norm squared) for f to have

a real root. Since f(0, 0) = 2, we have proven that f(x, y) > 0 for all real x, y via a

polynomial sum-of-squares certificate. �

Example 28 Similar to Example 27 we consider the polynomial

f(x, y) = x4y2 + x2y4 + 1− 2x2y2.

Notice that f(x, y) is similar to the inhomogeneous Motzkin polynomial except that the

coefficient of the x2y2 term is −2 instead of −3. We consider a sparse perturbation to

obtain the lower bound for N2. We follow the algorithm described above and compute

an approximate lower bound for N2 using solvesos in Matlab and obtain 0.25 as the

minimum. After applying the certification algorithm in [19, 20] we obtain the certified

lower bound

Ñ 2 = 12499999999997733/50000000000000000.

We have computed an exact rational certificate that

f(x, y)2 − 12499999999997733/50000000000000000× (1 + y8x4 + y4x8 + y4x4)

56



is a sum-of-squares (10 polynomial squares). The sums-of-squares is

f(x, y)2 − 12499999999997733
50000000000000000

(1 + y8x4 + y4x8 + y4x4) =
50000000000000000
193572598687033141

(
193572598687033141
50000000000000000

− 20264790255252805093
3000000000000000000

x2y2

+257054793517541488391
150000000000000000000

x2y4 + 515134358033083171231
300000000000000000000

x4y2
)2

+1219507371728308788300000000000000000000
538286774925237776369510195686169642029

(
538286774925237776369510195686169642029
1219507371728308788300000000000000000000

x2y2

− 289075435710117381270205408634305494277
1742153388183298269000000000000000000000

x2y4 − 563947636415309810152290915551583871937
3484306776366596538000000000000000000000

x4y2
)2

+10092877029848208306928316169115680788043750000000000000000000
509757872747132365690124695205465293642370941129281099380729(
509757872747132365690124695205465293642370941129281099380729

10092877029848208306928316169115680788043750000000000000000000
x2y4

− 679677164824074688032395613522453427922095957917373516759599
13457169373130944409237754892154241050725000000000000000000000

x4y2
)2

+ 269291686084117286470844299844523905472546400431968191771723990335383
1223418894593117677656299268493116704741690258710274638513749600000000000000000000

x8y4

+75000000000000000000
42945206482458511609

(
42945206482458511609
75000000000000000000

xy2 − 18603262817549652237
43750000000000000000

x3y2
)2

+ 946718361624764130953148817
63129453529214012065230000000000000000000

x6y4

+150000000000000000000
84865641966916828769

(
84865641966916828769
150000000000000000000

x2y − 58820174232832129311
140000000000000000000

x2y3
)2

+ 37357609989079608434186766607
2495049873827354765808600000000000000000000

x4y6

+1500000000000000000
2264790255252805093

(
2264790255252805093
1500000000000000000

xy − 582840982436420682041
700000000000000000000

x3y3
)2

+ 59418914101946391613553086871
6658483350443246973420000000000000000000000

x6y6

This means that the non-zero coefficients of f need to be perturbed (by at least 0.25

in ℓ2-norm squared) in order for f to have a real root. �

This section has been adapted from [13].

5.5 Future Work

We conjecture that such polynomial sums-of-squares always exist. More precisely, if for

a real polynomial f(x1, . . . , xn) there exists a vector w of positive and infinite weights

(excluding an infinite weight for the constant coefficient) such that ρ2,w(f) > 0 then in

(5.1) r∗ > 0. We have seen that ρ2,w(f) easily is no larger than 0, provided f has a

projective root at infinity, and the condition ρ2,w(f) > 0 makes f and w quite special.

Remark 15 Note that if ρ2(f) = 0 then we have f(α, β)2 − 0 = SOS .

Remark 16 We have considered the case f(α)− ρ̂t(α)2 is a sum-of-squares, where t(α)
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is a single term of the τ -vector. Consider the polynomial

f = (x2 + y2 − 2xy + 4)2 = ((x− y)2 + 4)2.

We subtract ǫ2, where ǫ > 0 and obtain the sum-of-squares

(x2 + y2 − 2xy + 4)2 − ǫ2 = (x− y)4 + 8(x− y)2 + 16− ǫ2.

Notice that f is a sum-of-squares, so this is a trivial example. Can this be proven for

polynomials which are not sums-of-squares?

Remark 17 Consider Example 5 with f(x, y) = 1−2xy+x2y2+x2. We can choose any

weighted norm for τ where τ is reduced to one monomial (a single term support), call it τi

and then ρ2(f) = 0. Take the root (
√
ǫ, 1/

√
ǫ) and the polynomial f̃(x, y) = f(x, y)− ǫ

τi
τi.

Then we have that

f̃(
√
ǫ, 1/

√
ǫ) = f(

√
ǫ, 1/

√
ǫ)− ǫ

τi
τi = 0.

The distance between f and f̃ is ǫ. So as ǫ → 0 then ‖~f − ~̃f ‖2 → 0. Notice that this

is true for any polynomial g where inf
α
g(α) = 0 can get arbitrarily close to 0 as long as

the root does not cause τi to be 0. If the root was (0, 0) instead of (
√
ǫ, 1/

√
ǫ), then we

would be dividing by 0 in f̃ . Therefore the root must not cause τi to be 0.
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Chapter 6

Approximate GCD

6.1 Background

The problem of finding the nearest polynomial with a real root to a given polynomial, can

be extended to systems and reformulated as finding the nearest system with a non-trivial

greatest common divisor. In this chapter we consider finding the approximate GCD of

several univariate polynomials.

The problem can be formulated as a minimization problem as follows [23]:

The input for the problem is s univariate polynomials, namely f [1], . . . , f [s] ∈ C[x] with

deg(f [1]) = m1, . . . , deg(f
[s]) = ms. For a positive integer k with k ≤ min(m1, . . . , ms), we

wish to compute ∆f [1], . . . ,∆f [s] ∈ C[x] such that deg(∆f [1]) ≤ m1, . . .deg(∆f [s]) ≤ ms,

deg(GCD(f [1]+∆f [1], f [s]+∆f [s])) ≥ k and such that ‖∆f [1]‖22+. . . ‖∆f [s]‖22 is minimized.

In [40], the authors use Bezout matrices to compute an approximate GCD of several

univariate polynomials. We extend some of their results to Sylvester matrices, namely we

generalize the univariate resultant to several polynomials. In [7] they prove for several

univariate polynomials the degree of the GCD in terms of the rank of the companion

matrix.

6.2 Univariate multi-polynomial Sylvester matrices

We introduce the convolution matrix C[l,m](f), which for the coefficient vector ~u of a

polynomial u(x) of degree ≤ l produces the coefficient vector of (u(x) · f(x)) mod xm+1
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as C[l,m](f) · ~u. If m = deg(f) + l, we can write C[l](f) [21, 22]. For instance,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(a2x

2 + a1x+ a0) · (b2x2 + b1x+ b0) mod x6 =

C[2,5](a2x
2 + a1x+ a0) ·



b2

b1

b0


 =




0 0 0

a2 0 0

a1 a2 0

a0 a1 a2

0 a0 a1

0 0 a0




·



b2

b1

b0


 .

The matrix has dimensions (m+ 1)× (l + 1).

Theorem 13 Let f1, . . . , fs ∈ K[x] \ K, where K is a field, s ≥ 2, and let di = deg(fi)

for 1 ≤ i ≤ s. Suppose d1 ≥ d2 ≥ · · · ≥ ds. Let δ = d1 + ds − 1 and let

S =
[
C[ds−1,δ](f1) C[ds−1,δ](f2) . . . C[ds−1,δ](fs−1) C[d1−1,δ](fs)

]
∈ K

(δ+1)×(d1+(s−1)ds)

Then rank(S) = δ + 1− deg(GCD1≤i≤s(fi)).

Note that for s = 2, the matrix S is the classical Sylvester matrix for two polynomials.

Theorem 13 is stated in [35, Section 5.2] for the somewhat larger matrix

S =
[
C[k−d1,k](f1) C[k−d2,k](f2) . . . C[k−ds,k](fs)

]
∈ K

(k+1)×ν

where k = d1 + ds and ν = s(d1 + ds + 1)− d1 − · · · − ds.

Proof. Let g = GCD1≤i≤s(fi). Then there exist polynomials ui ∈ K[x] such that
∑s

i=1 uifi = g and therefore for any h(x) = xj with j ≥ 0 we have
∑s

i=1(hui)fi = hg.

We can replace

(hui)fi = (hui − qifs︸ ︷︷ ︸
ûi

)fi + (qifi)fs where deg(ûi) < ds for all 1 ≤ i ≤ s− 1,

where qi are polynomial quotients. Suppose now that deg(h) = j ≤ δ− deg(g). We have

(hus + q1f1 + · · ·+ qs−1fs−1︸ ︷︷ ︸
ûs

)fs = hg − û1f1 − û2f2 − · · · − ûs−1fs−1,

60



where the degree of the right polynomial is ≤ δ. Therefore deg(ûs) ≤ δ−ds. We consider

the ansatz

v1(x)f1(x) + · · ·+ vs(x)fs(x) = xjg(x),

deg(vi) ≤ ds − 1 for 1 ≤ i ≤ s− 1, deg(vs) ≤ d1 − 1, j ≤ δ − deg(g),

}
(6.1)

where the coefficients of all vi are the unknowns and the rows correspond to the coefficients

of the powers x0, x, . . ., xδ. The coefficient matrix for the left side of (6.1) is S, and by the

above considerations, all right side coefficient vectors are in the range of S. Furthermore,

the coefficient vectors of xjg(x) are linearly independent, hence the dimension of the

column space of S is at least δ − deg(g) + 1. But no other linearly independent vector

can be in the column space, since all corresponding polynomials are multiples of g, so

the dimension cannot be more. �

Theorem 14 The deg(GCD1≤i≤s(fi)) ≥ k if and only if δ + 2 − k rows are linearly

dependent in S.

Proof. Let S be as defined in Theorem 13. Let deg(GCD1≤i≤s(fi)) = γ ≥ k. Let E be the

reduced column echelon form of S. From Theorem 13, we know that rank(S) = δ+1−γ.

Therefore, there are exactly δ + 1 − γ pivots in E. First, we want to show that all of

the pivot elements of E will be in the first δ + 1 − γ rows. Suppose this is not the

case, that there exists a pivot element in the δ + 1 + j − γ row, where j is a positive

integer. Since the last nonzero column of E gives the coefficients of GCD1≤i≤s(fi), then

deg(GCD1≤i≤s(fi)) < γ, which is a contradiction. Therefore, all of the pivot elements

of E are in the first δ + 1 − γ rows. Since there are δ + 1 rows in E with the last γ

rows containing no pivots, then δ+2− γ rows are linearly dependent. Since k ≤ γ, then

δ + 2− γ ≤ δ + 2− k. Therefore δ + 2− k rows are linearly dependent in S.

To see the converse, let δ + 2 − k rows be linearly dependent in S. Since the last

nonzero column of E gives the coefficients of GCD1≤i≤s(fi), then deg(GCD1≤i≤s(fi)) must

be greater than the remaining number of rows. So,

deg
(
GCD
1≤i≤s

(fi)
)
> δ + 1− (δ + 2− k) > k − 1.

Therefore, deg(GCD1≤i≤s(fi)) ≥ k. �
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Chapter 7

Conclusion

We present a new approach to the old problem of least squares fitting. When finding

the nearest consistent system to an inconsistent one (or the nearest system with a non-

trivial GCD), we use optimization techniques, such as semidefinite programming and

linear programming in symbolic computation, as opposed to exact Gröbner basis methods

(see Example 14). How beneficial semidefinite programming and linear programming in

symbolic computation would be for our problem was not initially realized. Semidefinite

programming allows for more efficient computations.

While conducting research, we were further surprised that the formulas in [38] allow

the use of linear and non-linear optimization. This is very fortunate, since it allows us

to optimize the distance to the nearest polynomial with a real root in infinity or one

norm with given coefficient constraints. We are now able to optimize a non-differentiable

function with constraints.

When I first began research in hybrid symbolic-numeric computation, I did not foresee

how fertile the use of optimization in symbolic computation would be in both problem

applications and in the creation of new problems. In searching for a research topic for

my PhD thesis, it was very important to me that my PhD research area have many real-

world applications. We did not expect all of the applications that currently exist. For

example, there is an application in biochemical systems [12]. Furthermore, this research

area is fertile in the creation of new problems. New problems or questions are constantly

arising and being studied around the world. As mentioned in Section 5.5, I hope to

continue contributing to the area of numerical optimization in symbolic computation in

the future.
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