ABSTRACT

PHADKE, MADHURA N. Combining Ensembles for Effective Data Visualization. (Under the direction of Christopher G. Healey.)

Dataset ensembles are collections of related datasets, often generated by repeatedly executing a simulation model with slightly different initial parameters. Ensembles are used extensively by scientists and mathematicians for their research. In order to draw inferences from these ensembles, scientists need to compare data within and across ensemble member datasets. The size, multi-attribute nature, and spatio-temporal properties of ensemble data makes this a challenging problem, however. We propose two techniques that are designed to support ensemble member comparisons. The techniques make use of glyphs to visualize each ensemble member, and to control the visibility of different members. We test the basic design of our techniques by visualizing simulated ensemble data containing known data patterns and relationships between ensemble members. We then apply our techniques to real-world scientific data from experiments and simulations in high energy physics. Results are positive, suggesting our approach can be used to visualize and compare data between ensemble members.
Combining Ensembles for Effective Data Visualization

by

Madhura N. Phadke

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Master of Science

Computer Science

Raleigh, North Carolina

2011

APPROVED BY:

______________________________ ______________________________
Robert St. Amant Ben Watson

Christopher G. Healey
Chair of Advisory Committee
DEDICATION

To my parents.
BIOGRAPHY

Madhura N. Phadke was born on 18th May, 1985 in Bangalore, India. She received a Bachelor of Technology degree in Information Technology form National Institute of Technology, Karnataka, India, after which she worked for two years at Microsoft, India Development Center. She is currently enrolled as a master’s student in Computer Science at North Carolina State University. She plans to pursue a career as a test developer with Microsoft, WA.
ACKNOWLEDGEMENTS

I am grateful to all the people who motivated and helped me in my thesis. I would like to thank my advisor, Dr. Christopher G. Healey, for his astute guidance and motivation. He has guided me throughout my thesis and provided professional advice on my work. I would also like to thank my committee members, Dr Robert St. Amant and Dr. Ben Watson, for spending their time reading my work.

I would like to express my gratitude to Dr. Russell M. Taylor II at University of North Carolina, Chapel Hill, for providing me constant support, feedback and guidance. Many thanks goes to Femi, Dr. Xunlei Wu and Jon for inspiring me and giving me valuable feedback.

I have received much support and inspiration from my peers in the Knowledge Discovery Lab. I would like to particularly thank Lifford for his help and feedback on my thesis. Many thanks goes to Joe, Srinath and Thomas for helping me in various stages of my thesis. The uncountable hours in KDL will always be missed.

I would like to thank my mother for supporting my dreams and aspirations, and my father for motivating me to pursue a master’s degree. I could not have achieved much without the support and faith of my sister, Raghav and my friends. I am indebted to NC State for giving me the opportunity to gain invaluable experience and knowledge. I am also thankful to all my friends in KDL and at NC State who have encouraged me and believed in my capabilities.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2 Data Ensembles</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Ensemble Data</td>
<td>6</td>
</tr>
<tr>
<td>2.2 RHIC data ensemble</td>
<td>8</td>
</tr>
<tr>
<td>Chapter 3 Visualization</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Introduction to Visualization</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Perceptual Visualization</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Visual Attention</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Preattentive Processing</td>
<td>17</td>
</tr>
<tr>
<td>3.5 Color</td>
<td>21</td>
</tr>
<tr>
<td>3.6 Texture</td>
<td>22</td>
</tr>
<tr>
<td>3.7 Glyphs</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 4 Related Work</td>
<td>24</td>
</tr>
<tr>
<td>4.1 Multidimensional Data Visualization</td>
<td>24</td>
</tr>
<tr>
<td>4.2 Direct Volume Rendering</td>
<td>25</td>
</tr>
<tr>
<td>4.3 Glyph Based Representation</td>
<td>27</td>
</tr>
<tr>
<td>4.4 Data Driven Glyphs</td>
<td>30</td>
</tr>
<tr>
<td>4.5 Surface Glyphs</td>
<td>31</td>
</tr>
<tr>
<td>4.6 Perception-based visualization</td>
<td>33</td>
</tr>
<tr>
<td>4.7 Ensemble Data Visualization</td>
<td>35</td>
</tr>
<tr>
<td>Chapter 5 Design</td>
<td>38</td>
</tr>
<tr>
<td>5.1 Visualizing One Ensemble Member</td>
<td>38</td>
</tr>
<tr>
<td>5.2 Visualizing Multiple Ensemble Members</td>
<td>39</td>
</tr>
<tr>
<td>Chapter 6 Implementation</td>
<td>44</td>
</tr>
<tr>
<td>6.1 ParaView</td>
<td>44</td>
</tr>
<tr>
<td>6.2 Visualization ToolKit (VTK)</td>
<td>45</td>
</tr>
<tr>
<td>6.3 Sampling</td>
<td>46</td>
</tr>
<tr>
<td>6.4 Sinusoidal Scale Factor Variation Technique</td>
<td>48</td>
</tr>
<tr>
<td>6.5 Sequential Opacity Variation Technique</td>
<td>48</td>
</tr>
</tbody>
</table>
Chapter 7 Application

7.1 Examples .. 50
 7.1.1 Case 1: Same Shape, Differing Attribute Values 51
 7.1.2 Case 2: Dissimilar Shape, Similar Attribute Values 56
 7.1.3 Case 3: Four Members, Varying Shape and Attribute Values ... 56

7.2 Application .. 62
 7.2.1 Sinusoidal scale variation on RHIC ensemble 64
 7.2.2 Sequential opacity variation on RHIC ensemble 64

Chapter 8 Conclusion .. 70

References ... 73
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Combination of visual features</td>
<td>43</td>
</tr>
<tr>
<td>6.1</td>
<td>Sampling the ensemble by utilizing the overlap</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.1 Visualization has been used over centuries to display data. A rose plot of the causes of deaths in the army is an example of early attempts at visualization. 12

Figure 3.3 Top: (i) hue is preattentive- red circle is rapidly detected in a sea of blue circles. Middle: (ii) curvature is preattentive- red circle is easily detected in a sea of red squares. Bottom: (iii) visual interference of curvature and hue- the red circle cannot be easily identified in a sea of red squares, blue squares, blue circles 19

Figure 3.4 The visualization is an example of the combined use of hue and brightness in displaying information. Hue, in gray scale, represents latitude of landfall, and orientation represents ocean currents. We see that the two preattentive features can be processed in parallel and do not interfere with each other. 20

Figure 3.5 Interference of hue and shape: The boundary formed by different hues of red and blue (image on left) is rapidly identified, but the boundary defined by shapes of circles and squares in the presence of varying hues (image on right) is not detected slower. 21

Figure 3.6 Left: The two circles of larger size (radius) are easily identified. Right: The lines which are slightly angled are easily identified from the vertical lines . 22

Figure 4.1 Annotated illustration of a foot with the current selection highlighted in green. The figure shows an application of direct volume rendering to create textbook-like illustrations, by using an algorithm that resolves intersection and overlap of labels. 26

Figure 4.2 Glyphs used in tensor field visualizations. \(\sigma_a, \sigma_b, \sigma_c \) are the major, intermediate and minor principal stresses. The three glyphs (a) Haber glyphs. (b) Reynolds glyph. (c) HWY shear glyph. The glyphs shown here represent the stress value with x, y and z stress components \(\sigma_x, \sigma_y, \sigma_z = (100, 200, 50) \). [16]. 28

Figure 4.3 SDDS visualization of MRI and MRS data of the brain. The lesion is shown in gray in the background. Metabolites cholin and creatin are represented using yellow and orange spheres. An inverse relationship between the metabolites is evident . 29
Figure 4.4 Cardiac wall motion and activity shown using surface glyphs. (a) PET/CT data represented using DVR, with thickness modulated to show regions of low PET activity (b) X-ray simulation of PET/CT data with a combination of saturation, lightness and opacity to highlight regions of low PET activity. The presence of a lesion in the left ventricle is made evident using this technique.

Figure 4.5 Surface glyph visualization for temperature, precipitation and pressure data for hurricane Isabel. We see that at the eye of the hurricane, temperature if the highest, pressure is low and precipitation is high. Also, while temperature and pressure vary with increasing distance from the eye, precipitation does not vary uniformly with increasing distance from the eye.

Figure 4.6 **Pexel based representation to track conditions of typhoon Amber when it strikes Taiwan in 1997.** (windspeed, pressure, precipitation) represented using (height, pexel density, color). (a) Normal weather conditions (b) August 27, 1997: typhoon Amber strikes Taiwan (c) typhoon Amber strikes Taiwan, causing rainfall (d) and (e) Same data as (b) and (c) with (windspeed, pressure, precipitation) represented using (pexel regularity, height, density). Change in lower or higher windspeeds is easier to identify in (b) and (c).

Figure 4.7 Spaghetti plots constructed from isocontours of each ensemble member are shown. (a:Left) When the ensemble members are in agreement, the contours form coherent bundles. (b:Right) When ensemble members disagree, outliers diverge from main bundle.

Figure 5.1 The image represents an ensemble of an apple, banana and a pear rendered in one image. The apple is rendered using sphere glyphs, banana is rendered using tetrahedron glyphs and cubes are used to render the pear. Individually the outline of the fruits can be identified, however shape outline is lost when shown in the same image.

Figure 5.2 Sinusoidal function to control visibility: Variation of scale factor with time for each volume, for an ensemble of 4 datasets \([E_i, i=1\text{ to } 4]\). Each volume is shown by a separate colored lines.

Figure 5.3 Pairwise sequential function to control visibility: Variation of opacity with time for each volume, for an ensemble of 4 datasets \([E_i, i=1\text{ to } 4]\). Each volume is shown by separately colored lines.
Figure 6.1 An illustration of sampling technique for a 3-member ensemble, the volumes of each member are shown via different colors. The gray part is the common sub-volume. 47

Figure 6.2 The color map used to represent attribute value, blue signifies the minimum value in the ensemble, and red implies the maximum value. 48

Figure 7.1 Strip of screenshots taken from a visualization using sinusoidal scale factor variation of two apples having different attributes. The graph below indicates the positions along the time axis to which the frames correspond. The two members are represented using red and blue spheres respectively, the size of spheres indicates the attribute value at that point. 52

Figure 7.2 Strip of screenshots taken from a visualization using sequential opacity variation of two apple volumes having different attributes. The graph below indicates the positions along the time axis to which the frames correspond. The two apple volumes are represented using tetrahedrons and cubes. A color scheme ranging from blue (=2, lowest) to red (=5, highest) is used to represent attribute value. 53

Figure 7.3 Strip of screenshots taken from a video showing sinusoidal scale factor variation of apple and pear volumes having different attributes. The pear is represented by red spheres and the apple is represented by blue spheres, the size of spheres indicates the attribute value at that point. We see that the pear and apple have same attribute values in the common region, and higher attribute values in other regions. 54

Figure 7.4 Strip of screenshots taken from a video showing sequential opacity variation of apple and pear volumes having different attributes. The graph below indicates the positions along the time axis to which the frames correspond. The pear is represented using tetrahedrons and apple is shown using cubes. A color scheme ranging from blue to red is used to represent attribute value. We see that the pear and apple have same attribute value in the common region, and higher attribute values in other regions. 55

Figure 7.5 Selected frames from visualization of ensembles of four members using sinusoidal scale variation technique. The graph indicates the position on the time axis that corresponds to the frames. F1 and F2 show members with similar attribute values, which are different from those of the green sphere member. 57
Figure 7.6 Continuation of frames from visualization of four ensembles using sinusoidal scale variation technique. The graph indicates the position on the time axis that corresponds to the frames. F5 and F6: blue spheres shrink, spots of yellow are seen, indicating different shape of the two members. F7: yellow spheres are seen clearly amidst shrinking blue spheres. F8: yellow spheres shrink and green sphere member is seen.

Figure 7.7 Selected frames displayed from the sequential opacity variation visualization of an ensemble of four members. The graph indicates the position on the time axis that corresponds to the frames. We are able to make attribute value and shape comparison between the members shown in frames F1, F2, F3 and F4.

Figure 7.8 Continuation of the visualization showing frames F5 to F8. F5: Octahedron member is visible. F6: Octahedron member becomes less opaque and cube glyphs of the next member are seen, attribute differences between the two ensembles are evident. F7: Cube member is seen clearly. F8: The cubes glyphs become semi-transparent and spheres get more clear, leading to the effect of rounded cubes. Attribute comparisons are more evident.

Figure 7.9 A view of the volume of the ensemble members, and below, a cross sectional view that shows the distribution of temperature values of the members, labelled (a)-(d) from left to right. (a) is represented using green spheres (b) using yellow spheres, (c) using red spheres and (d) using blue spheres in the sinusoidal scale variation technique. In the sequential opacity variation technique, (a) is shown using tetrahedron glyphs, (b) using cube glyphs, (c) using sphere glyphs and (d) using octahedron glyphs.

Figure 7.10 Sinusoidal scale variation technique on the RHIC ensemble data. The image contains frames F1 to F4, taken at different times in the visibility cycle, as shown by the graph below.

Figure 7.11 Sinusoidal scale variation technique on the RHIC ensemble data. The sinusoid functions of each ensemble member are shown in the graph below using the same color as that of the ensemble member. As the visualization moves from F1 to F8 (previous image contains F1 to F4), we notice changes in volume shape and changes in temperature values between different members.
Figure 7.12 Visualization of the RHIC ensemble using sequential opacity variation technique. Selected frames F1 to F4 are shown in the image. The graph shows the position on the time axis corresponding to the frames. We notice the difference in volumetric shape between ensemble members shown using octahedron glyphs and tetrahedron glyphs. Temperature differences are noticed by comparing color. The red tetrahedron seen in the left of F2 shows that ensemble 2 has higher values of temperature in that region as compared to F1, which has orange crosses.

Figure 7.13 Visualization of the RHIC ensemble using sequential opacity variation technique. Selected frames F5 to F8 are shown in the image. The graph shows the position on the time axis corresponding to the frames. As the visualization moves to ensemble members shown using cube and sphere glyphs, we notice the shape gets narrow in the middle. Also, temperature differences in the right region of the frames is noticed by comparing the spread of red-orange colored glyphs.
Chapter 1

Introduction

Recent advances in storage, network bandwidth and processor speeds has led to increased use of computers in numerous domains. For example, meteorologists are using computer visualization to predict weather patterns, and medical analysts are using medical imagery to diagnose tumours. Scientists in many fields are increasingly adopting simulations for their research. Simulations are computer programs that model the real system under study with the aim of making observations about the environment. Scientists find simulations useful as they can be repeated and data collection is independent of sensor locations [40].

Simulation studies often produce results in the form of ensemble data: a collection of datasets representing independent runs of a simulation model, each with slightly different initial parameters and execution conditions [27]. Ensemble data is often large, occupying several gigabytes. In order to derive useful information from ensembles, scientists need a means of analysing this data. Visualization is one such approach to data analysis.

Visualization can be explained as a graphical representation of data or concepts. Vision plays an important role in understanding data, as it provides the highest bandwidth...
channel between a human and the computer [38]. Visualization harnesses this channel to help users quickly grasp information, a task that would otherwise take a considerable amount of time. It involves effective representation of data, presentation of data to viewers, and interaction between the viewer and the visualization. Visualization techniques make use of advances in computer graphics and display hardware to present data to the viewer in an easily comprehensible form.

Statistical and data mining techniques are also used to aid in data analysis. Statistics can be defined as the science that deals with the collection, classification, analysis, and interpretation of numerical facts or data, and that, by use of mathematical theories of probability, imposes order and regularity on aggregates of more or less disparate elements. Data mining is the process of exploration and analysis of large quantities of data in order to discover meaningful patterns and rules. Both these approaches are very useful in performing data summarizations. In addition to providing an overview, visualization helps the user to better understand the data by displaying information in the real world context of the data. Some statistical and data mining techniques require predefined queries. Visualization can help in formulating these queries, by providing a means of exploring the data. Visualization users can get a ‘bird’s-eye’ view of the data and zoom into specific regions that they find interesting. Thus, visualization complements statistical and data analysis, in some cases assisting in prior investigation of data while in some others, as a means of understanding results. It is advantageous to use visualizations due to the following reasons:

- It is possible to display large amounts of data in a way that is easily understood by the viewer.
- Visualization highlights unknown properties of data that are not expected by the
viewers. This is particularly helpful in the initial stages of data analysis when formulating theories about the data.

- In a well designed visualization, missing data becomes visually apparent. This helps in detecting errors or shortcomings in data collection.

- Visualization enables viewing of both global and local features of the data. Visualizations offer means of zooming in and out of the data, allowing interactive selection of a subset of data.

The aim of this thesis is to provide visualization techniques suited for analysis of ensemble data. Creating an effective visualization is challenging due to the nature of the data itself: ensemble data have quantitative aspects, for example the value of temperature over a volume, and qualitative aspects like the shape of the volume. Both these aspects provide essential information that helps in better understanding the ensemble. Ensemble data has multiple attributes for each data element. Also, the number of member datasets in an ensemble can range from a handful to hundreds. Hence, the visualization needs to be carefully designed to present the necessary information without cluttering the display.

We are collaborating with a group of colleagues in mathematics, high-energy physics, astrophysics, and meteorology to study the problem of ensemble visualization in real-world domains. Based on extensive discussions with our colleagues, and on studying their existing work-flows, we identified the following needs for our ensemble visualizations:

1. **Attribute value comparison** - the ability to compare individual values and their spatial distributions across both space and time.

2. **Shape comparison** - the ability to compare the surface contours of volumetric data, and to locate interior holes where they exist.
3. **Dataset comparison** - the ability to compare n datasets belonging to a common ensemble.

4. **Outlier detection** - the ability to highlight individual values or regions of values that are considerably higher or lower than the norm.

To address these needs, we designed and implemented two prototype ensemble visualization tools, both of which order n datasets in an ensemble, then combine subsets of the datasets and present them as an animated visualization. Based on preliminary research, we make use of the visual properties of color and texture to display attribute values and enable comparison amongst ensemble members.

With our techniques, we make the following contributions:

- The techniques are targeted at facilitating the viewer to make comparisons in the context of the spatial coordinates of the ensemble data, thereby adding meaning to the comparison results. This may be useful in formulating new hypotheses or validating previously made hypotheses.

- The design of our techniques proposes the use of visibility control as a solution to the problem of multiple volume display in the same spatial region. We incorporate visibility control by varying visual features like opacity and scale factor. Two mechanisms, sinusoid and sequential variation, are applied to vary the above mentioned features.

The remainder of the thesis is structured as follows. We first review background work on the general problems of volumetric and multivariate data visualization, with a specific focus on how these techniques might apply to visualizing ensembles. We also discuss existing ensemble visualization techniques. Next, we present our ensemble visualization
approaches and document implementation details. These are shown using synthetic ensembles of fruits. We then apply the techniques to a real ensemble of hydro flow in a supernova. Finally, we conclude by summarizing the strengths and limitations of our approaches.
Chapter 2

Data Ensembles

2.1 Ensemble Data

Ensemble data is a collection of datasets, referred to as members, representing simulations of real world phenomena that differ from each other by one or more initial parameters. A simulation is an imitation of the operation of a real world process or system over time [3]. It is useful in analysing the behaviour of the system under study by subjecting it to different environmental conditions. Scientists prefer simulations to laboratory experiments because simulations can be repeated any number of times and the data collection does not depend on the location of sensors [40]. Also, certain studies like research on galaxy formation need to record and collect data over billions of years. Simulations facilitate such a collection over a shorter period of time.

By studying simulation data and comparing it with experiments on the real world system, scientists hope to answer questions pertaining to the nature and behaviour of the system. Some of these questions are:

- What are the environmental conditions under which the simulation comes closest
to the real world system?

- What is the relationship between the various attributes of the system?
- How do certain initial parameters affect the behaviour of the system?
- Does the simulation behave unexpectedly under extreme conditions?

The ensemble data obtained from multiple simulation runs is enormous and consists of slightly varying member datasets. Special tools are required to analyse and make meaningful abstractions from the data. However, analysing data that spans over several gigabytes is not an easy task. Apart from size, there are many other properties of ensemble data that make its analysis challenging:

- **Multivariate** - Each ensemble member has multiple attributes. For example, the high energy physics ensemble consists of nine parameters in addition to spatial coordinates.

- **Spatially positioned** - Each sampled point has spatial coordinates that extend to two or three dimensions to represent its location.

- **Time varying** - Simulations study an evolution of a system over time, and so the data recorded varies across time.

- **Redundant** - Though the quantity of data is large, only a small fraction of the data may be of consequence to the scientists. Since ensemble members represent the same system, much of the recorded data may be similar and thus, redundant.
2.2 RHIC data ensemble

Physicists at Michigan State University (MSU) are working on building a physical model of the behaviour of quark-gluon plasma (QGP). Quarks and gluons are elementary particles that constitute protons and neutrons. Plasma is a state of matter that exists at extremely high temperature and/or density. It consists of freely moving charged particles. Two types of models are used to simulate the behaviour of QGP: a relativistic fluid dynamics approach during equilibrium and hydrodynamic expansion stages, and a microscopic transport theory approach during the pre-equilibrium and hadronic phases. Models developed using these approaches are used for physics research. Experimental data is also available from the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) where particle collisions are recorded. We visualized ensemble data generated from simulations based on a hybrid approach of relativistic fluid dynamics and microscopic transport theory.

The ensemble we use is described as follows. Dataset D_i is a multidimensional dataset consisting of n sample points, or data elements, $s_j, 0 < j \leq n$. Each data element s_j has values for m attributes, represented as $s_j = \{a_{j,1}, a_{j,2}, \ldots, a_{j,m}\}, m > 1$. The set $E = \{D_1, D_2, \ldots, D_p\}, p > 1$ is an ensemble of p members, each D_i having the same set of attributes. Attributes can be of any type:

- **Nominal** - discrete data items differentiated by names, like apple or pear.
- **Ordinal** - data items with a natural ordering, like NBA rankings.
- **Interval** - ordinal data where the intervals between values can be compared, like temperature in degrees Celsius.
- **Ratio** - interval data with a natural zero point, or values that are orders of mag-
nitude of a continuous value versus a unit magnitude, for example pressure in millibars.

The ensemble data is similar to a collection of multidimensional datasets, and hence it may seem that multidimensional data visualization techniques can be adopted to support ensemble data. However, in order to develop a visualization that best highlights the salient features of ensemble data, a more suitable approach might be to develop a new visualization method that supports the properties of ensembles rather than changing an existing visualization to be applicable to ensembles. We simplify this task by first addressing the problem of visualizing a data attribute across the ensemble, and then applying the solution to multiple attributes. By doing so, we aim to compare attributes across the different ensemble members and understand their spatial distribution across each member. Despite addressing such a simple subtask, visualization is still challenging because:

- It may seem that ensemble data visualization of one data attribute can be made similar to multidimensional data visualization, by considering each ensemble member to be a different attribute. However, many multidimensional data visualization techniques require values for all the attributes to be available for every data point. Ensemble members may not cover the same spatial extent, and hence there will be spatial locations at which some ensemble members do not have an attribute value.

- Since the ensemble members represent the same real world phenomenon recorded under different environmental conditions, the volume occupied by each ensemble member will overlap to a large extent. Hence it is required that the resulting visualization handles this overlap and displays information without significant on-screen clutter.
In the next chapter we discuss the concepts behind the visualization tools that are aimed at solving these challenges.
Chapter 3

Visualization

3.1 Introduction to Visualization

Visualization has been used to represent information for many centuries. Maps displaying geographical information were commonly used for exploration and military purposes. In a report on hospital improvements submitted to the British government in 1858, Florence Nightingale used a data plot to display the number of deaths in the hospital. In the data plot (Figure 3.1), the area under the curve showed the number of deaths in a particular month and the angle subtended by that curve showed the number of days in that month [35]. Though visualization is not a new concept, it has gained considerable importance in the past few decades due to the extensive use of computers. Advanced computing technologies have made large data collection and data processing possible. In order to understand the raw data and the results of complex data processing, visualization has been proposed as a suitable approach. Complicated medical visualizations and Doppler radar maps are now common. Initially an aid to science, visualization is now being considered as a scientific field itself. Visualization borrows from other sci-
Figure 3.1: Visualization has been used over centuries to display data. A rose plot of the causes of deaths in the army is an example of early attempts at visualization.

ences: cognition, computer graphics, data analysis and mathematical modelling being prime amongst them [10], [38]. There is much research on formalizing the process of visualization, providing a common framework for implementing researched techniques, and improving the measurement and validation of techniques [28], [32], [34]. Morse and Wehrend and Lohse et. al. have also provided classifications of visualizations in order to separate artistic notions and implementation details from the meaning of a visualization [39], [12], [24]. These efforts are aimed at understanding the differences in information visualization and other forms of graphical communication. Understanding differences gives more insight into why certain visualizations are successful, helping to pave the way for new approaches in visualization. However, visualization is not a hard science [22]. It uses scientific processes and metrics as well as artistic notions like design, aesthetics and illustration [32]. We explain the science behind the techniques that are proposed in this thesis. The artistic notions of visualizations are not covered.
Though many visualization techniques are applicable across different domains, a prime factor that governs the visualization technique used is the presence or absence of spatial coordinates associated with the data. Spatial coordinates or a coordinate reference system is a means of determining the location of a sample point with respect to a common point, called the Origin. Real world systems use a three dimensional coordinate system to assign positional references. Spatial coordinates in raw data refer to the coordinates assigned in the real world, before the data is rendered on the screen. If real world data does not have the need for spatial coordinates, the onus of choosing an effective spatial layout lies on the scientist or the visualization designer. It is for this reason that visualization can be broadly classified into two types: scientific visualization and information visualization [2]. Scientific visualization is frequently considered to focus on the visual display of spatial data associated with scientific processes such as wind patterns over terrain. Information visualization examines developing visual metaphors for non-spatial data such as the exploration of social networking databases.

This thesis primarily solves the problem of visualizing ensemble data in scientific visualization. Many techniques have been developed to visualize scientific data and a number of research initiatives have benefited from them [36]. Taylor lists examples of scientific visualizations that have proven useful and provides insights into why those techniques were successful. He points out that viewing data in its natural spatial extent can provide better understanding. An example of this is volume rendering used to visualize donor lung transplants. The visualization aids in planning the surgery, as to where to cut the bronchial tubes and blood vessels so as to avoid damage to the neighbouring lung. Researchers from Princeton and Rutgers visualized the results of the simulation of plasma turbulence inside a fusion generator. The visualization showed a gradual change in the radial structure and helped them develop a simple theoretical model explaining the under-
lying physics. Holographic displays and stereo-volume visualization that control lighting and view direction via movement of the head and hands aid visual perception. This was found useful for the visualization of medical images as three dimensional holograms that can be overlaid on the patient’s actual anatomy. Combining the display of multiple related datasets can provide an improved understanding of inter-dataset relationships. This was observed via the visualization of multiple parameters of measured flow past an air foil. A layered visualization where colour, ellipses and arrows were superimposed provided a basis for posing new questions regarding out-of-air flow.

Though visualizing data has many advantages, creating a useful visualization is challenging. Raw numeric data needs to be preprocessed and transformed in order to create an effective visualization. The process of visualizing data can be treated as a pipeline, where raw data goes through various stages to transform it into a meaningful graphical representation. The four stages of the visualization pipeline are listed below:

- **Data collection and storage** - experiments and simulations are used to obtain data in a machine readable form.

- **Data preprocessing** - data is reduced to contain only relevant details and is transformed into a form that makes the next steps in the pipeline simple.

- **Display hardware and graphics** - rendering techniques and appropriate hardware are developed and used for displaying the end result.

- **Interaction mechanisms** - various human computer interaction mechanisms are utilized to allow users to navigate across the data and manipulate it if required.

At every stage in the visualization pipeline, appropriate techniques are needed to ensure that the resulting visualization projects the information in a form that the viewer
understands. This involves using suitable preprocessing techniques, data collection methods, visualization algorithms, rendering techniques and interaction mechanisms. Each of these decisions play a crucial role in ensuring effectiveness of the resulting visualization.

3.2 Perceptual Visualization

Perceptual visualization can be thought of as a visualization technique that harnesses the human visual system to convey information effectively. It deals with developing a mapping function that assigns the attributes of scientific data to one or more visual features. To generate an effective visualization, we need mappings that presents the data in a form that can be rapidly and accurately processed by the human visual system. Certain visualization techniques are more effective than others, as they produce visualizations that allow for data to be comprehended easily. To identify what makes those techniques effective we need to understand which visual feature to data attribute mappings are effective. A study of perceptual guidelines and psychophysics aids in this understanding.

3.3 Visual Attention

Any visual environment is overloaded with complex visual cues. To handle this overload, the human brain uses a variety of attention mechanisms to serve two purposes: a) to select relevant information and ignore interfering information, and b) to control visual attention to enhance the selected information [9].

When viewing an image, the eyes use an approach that allows them to extract detailed information from regions in the image. The eyes alternate between maintaining focus at a region and grasping information—called a fixation—and rapidly moving to focus in
Figure 3.2: Examples of preattentive visual features
another region in the image—called a saccade [19]. These two activities are repeated, the change in focus making the whole process highly dynamic. The point of focus during saccades is highly influenced by various mechanisms that determine which regions or objects are selected for detailed analysis. Visual attention refers to these mechanisms.

Visual attention can be understood in terms of two underlying approaches. One approach is when attention is under control and driven by an objective, i.e., goal driven attention. Also known as the top-down approach, it is a viewer driven attempt to answer questions or verify hypotheses by scanning an image or searching for details in the image. For example, when we want to count the number of blue circles in Figure 3.3(i), we search for all blue circles, ignoring the presence of the red circle. The second approach is when a visual stimulus automatically draws attention to itself. This is also known as stimulus driven attention, and it involves an inherent measurement of how different the stimulus is from its neighbours. It is a combination of these two approaches that determines which visual cues are selected for detailed analysis.

3.4 Preattentive Processing

A means of perceiving visual information in which certain visual features are processed rapidly and spatially in parallel, is referred to as preattentive processing [17], [37]. It was initially thought that preattentive features are detected before applying attention and hence the name. It is now understood that attention plays an important role even in this early stage of vision.

Preattentive features include hue, size, intensity, curvature, lighting and orientation. Figure 3.2 gives a more comprehensive list of features known to be preattentive [17]. These features can be used to represent different information:
- **Individual objects** - Preattentive features can be used to locate individual objects based on their visual appearance.

- **Boundary** - Viewers can quickly detect boundaries between sets of objects with common visual properties.

- **Values** - Viewers can estimate the number of data elements with a particular visual property.

- **Comparison** - Viewers can compare values, for example, using color to represent temperature allows the viewer to judge whether one object is warmer or colder than another.

It may seem that the list of preattentive features can be used to visualize multidimensional data by assigning a feature to each attribute of the data. However, such an assignment may not create effective visualizations. Studies were conducted that involved identification of a target item in a sea of distractor items. The target item was made up of a conjunction of two features, where one of the features was used in each distractor. Searching for a red circle in a sea of red squares, blue circles, or red squares and blue circles (Figure 3.3) illustrates this experiment. Figure 3.3(i) shows that hue is preattentive (red circle in a sea of blue circles), and 3.3(ii) shows that curvature is preattentive (red circle in a sea of red squares). However, when the two are combined as in Figure 3.3(iii), detection of the red circle is slow. The viewer must scan through the display searching for the red circle. This shows that assigning visual features in an ad-hoc fashion may interfere with the rapid processing of features that are preattentive in isolation.

The tools discussed in this thesis make use of certain visual features to encode different information. In the following sections, we briefly discuss two features, color and texture,
Figure 3.3: Top: (i) hue is preattentive- red circle is rapidly detected in a sea of blue circles. Middle: (ii) curvature is preattentive- red circle is easily detected in a sea of red squares. Bottom: (iii) visual interference of curvature and hue- the red circle cannot be easily identified in a sea of red squares, blue squares, blue circles
Figure 3.4: The visualization is an example of the combined use of hue and brightness in displaying information. Hue, in gray scale, represents latitude of landfall, and orientation represents ocean currents. We see that the two preattentive features can be processed in parallel and do not interfere with each other.
that are used in our visualization techniques.

3.5 Color

Color can be explained as the way our brain interprets electromagnetic radiation from wavelengths within the visible spectrum. The different wavelengths are seen as different colors. The ability of the eye to distinguish between these wavelengths is due to the presence of cells in the retina of the eye that are sensitive to brightness, called rods, and cells that are sensitive to short, medium and long wavelengths of light, called cones.

From the viewpoint of color perception, we can describe light in terms of:

- **Hue** - The perception of the dominant wavelength of the light received by the eye. Hue represents the “color” we perceive, for example, blue, purple, pink, orange, green and yellow.
• **Saturation** - The perception of the purity of the hue. A fully saturated hue contains no white light. An unsaturated hue appears as a shade of gray.

• **Brightness** - Brightness, often referred to as luminance, is our perception of the intensity of light.

Varying the three quantities produces many different colors. The human eye is capable of distinguishing between millions of colors. With constant luminance and full saturation, the human eye is still able to distinguish between more than a hundred different hues. The tools we describe in this thesis make use of different hues to identify between different ensemble members.

![Figure 3.6](image)

Figure 3.6: Left: The two circles of larger size (radius) are easily identified. Right: The lines which are slightly angled are easily identified from the vertical lines.

3.6 Texture

Similar to color, texture can also be decomposed into lower level perceptual properties. Treisman’s studies revealed that these lower level visual elements can be preattentively
detected [37]. Figure 3.6 shows that the two circles of larger size can be identified preattentively, and the region of slightly tilted lines can be immediately detected. The visualization tools discussed in this thesis make use of these texture elements to encode ensemble information.

3.7 Glyphs

Glyphs are a mechanism of combining color and texture properties in order to provide a better means of data representation. A glyph is an individual graphical element which is composed of visual features like roundness, orientation, size, opacity and color. Each of these properties are capable of encoding information.

The tools discussed in this thesis make use of three-dimensional glyphs that are spatially positioned to represent the volume of the ensemble. In doing so, we take advantage of past and ongoing research in visualization techniques. The next chapter provides a brief discussion on the relevant visualization techniques that have influenced our research.
Chapter 4

Related Work

In this chapter, we discuss some important past and ongoing research in visualization that has influenced the development of the ensemble visualization tools discussed in this thesis. We start by reviewing visualization efforts for multidimensional data. We also discuss perceptual visualization techniques and explain the salient features that make them successful. Finally, we look at some ensemble visualization techniques that have found various uses in prediction and handling uncertainty.

4.1 Multidimensional Data Visualization

Multidimensional data visualization involves displaying multiple attributes simultaneously on a two-dimensional display by making use of visual features and interaction techniques. By displaying a large amount of information within a single screen, multidimensional data visualization aids in the understanding of the distribution of attributes across data. It also reveals the relationships within attributes which may not be clear when viewing each attribute in separate images.
Many tools have been developed to produce scientific visualizations for multidimensional data. Vis-5d [20] and SimEnvVis [26] are examples of such tools. Vis5d, an open source visualization software, provides an interactive visualization of 5-dimensional earth data. The multiple attributes can be depicted by various graphical elements including iso-level contour surfaces, trajectory lines and topographical maps [20]. SimEnvVis provides a library of comparative visualization techniques to evaluate simulation data [26]. These tools leave the choice of visualization techniques and the design of the visualization to the user. The onus of selecting the right technique and generating an effective attribute-visual element mapping is left to the user.

Ensemble data is generally multivariate, and many ensemble data visualization techniques are influenced by work in volume-based, glyph based and perceptual visualizations [13], [27]. We describe some of these techniques in the following sections.

4.2 Direct Volume Rendering

Volume rendering has been used to study data in many fields including climate study, surgical procedures and radiology. A common technique used to visualize volumetric data is Direct Volume Rendering (DVR). It uses volumetric pixels, or voxels, to represent data. A voxel is a basic volume element which represents a value in a regular tessellation of three dimensional space. DVR uses mapping functions called transfer functions, that map every voxel value to visual properties like opacity and color.

Research on transfer functions has led to its successful use in solving many scientific problems. Statistical transfer functions, that represent statistical properties like mean and standard deviation, have been useful in detection of brain tumours [15]. In order to represent different materials, texture-based transfer functions have been developed that
allow the viewer to distinguish between skin and fiber in medical visualizations [6]. Bruckner and Groller have used transfer functions to improve illustrations of surgical or radiological procedures, and have provided a way of effectively visualizing inter-penetrating objects [5]. Rezk-salama and Kolb have introduced opacity peeling as a solution to overcome the occlusion of interior data points [29]. The technique successfully shows deeper structures of the brain by displaying layered images of MRI data.

Figure 4.1: **Annotated illustration of a foot with the current selection highlighted in green.** The figure shows an application of direct volume rendering to create textbook-like illustrations, by using an algorithm that resolves intersection and overlap of labels.
Basic DVR visualizes a single volume. In order to visualize multiple volumes simultaneously, DVR has been extended to multi volume rendering by applying data intermixing, an intermixing of value or voxel features between different volumes to support visualization of multiple volumes. Intermixing can be used in many ways, for example, surface to surface intermixing, where geometric datasets are merged and rendered, and voxel to voxel intermixing, where voxel data is merged and rendered [7]. Multi volume rendering techniques that use data intermixing have been developed to enable volume comparison [5]. Figure 4.1 shows an illustration of the foot. The anatomical details are labelled using a simple algorithm that resolves overlap and intersection of lines between annotations and anchor points [5].

4.3 Glyph Based Representation

Glyphs have been used to represent data in scientific and information visualizations. The visual properties of glyphs such as color, size, and orientation can be made dependent on dataset attributes to produce effective visualizations [18]. Glyphs have been used in various forms: as packed groups of glyphs that form patterns and as individual elements each representing a specific data point.

Glyphs were introduced into continuous field visualization by using independently moving and interacting elements [23]. Kerlick used graphical icons referred to as ‘boids’, or bird-oid objects, which utilized particle traces and a moving frame of vectors to display scalar, vector and tensor fields over finite volumes. A prototype of the technique was developed that allowed the user to select a point in the visualization.

Glyphs have been increasingly used in tensor field visualizations. Tensor fields are generalized form of scalar and vector quantities assigned to a spatial location. Numerous
Figure 4.2: Glyphs used in tensor field visualizations. \(\sigma_a, \sigma_b, \sigma_c \) are the major, intermediate and minor principal stresses. The three glyphs (a) Haber glyphs, (b) Reynolds glyph, (c) HWY shear glyph. The glyphs shown here represent the stress value with \(x, y \) and \(z \) stress components \(\sigma_x, \sigma_y, \sigma_z = (100, 200, 50) \). [16].

Studies in physical sciences and engineering, especially in computing stress and strain on materials, use tensor fields. Variations in glyph shapes have been proposed to display stress and strain in materials, examples of which include the Haber glyph, the Reynolds glyph and the HWY shear glyph [14], [25], [16]. Haber constructed a glyph with a cylindrical shaft through an elliptical disk to represent tensor data. The geometry of the glyph was designed to clearly reveal the directions and magnitudes of principal stresses. The Haber glyph was successful in visualizing the elastodynamic crack propagation in brittle materials [14]. The Reynolds glyph is a solid model glyph with a surface consisting of points whose distance from the origin is proportional to the magnitude of normal stress in that direction [25]. A stress vector can be split into a normal and a shear stress component. The HWY glyph is similar to the Reynolds glyph, but represents the shear stress component. The HWY glyph successfully visualized complex multidimensional
stress-strain relationships for simulated soil models [16]. The three glyphs are shown in Figure 4.2.

Delmarcelle and Hesselink [11] introduced the concept of hyperstreamlines to effectively visualize tensor fields. Hyperstreamlines are continuous geometric structures, extracted from tensor fields, whose cross section geometry characterizes the tensors they visualize. Hyperstreamlines are an extension of glyphs in the sense that glyphs give an instantaneous view of the tensor data, while hyperstreamlines display an evolution of the tensor data.

Figure 4.3: SDDS visualization of MRI and MRS data of the brain. The lesion is shown in gray in the background. Metabolites cholin and creatin are represented using yellow and orange spheres. An inverse relationship between the metabolites is evident.
4.4 Data Driven Glyphs

Bokinsky developed a technique called Data Driven Spots for visualizing multidimensional data that is spatially organised in two dimensions. She displayed different colored layers of two-dimensional Gaussian bumps to represent the various data attributes. Hue identifies the attribute and saturation represents the value of the attribute at the bumps’ spatial locations [4]. User studies showed that performance of data driven spots was better than comparing side by side images of single attribute visualizations. Scaled data driven spheres (SDDS) [13] extended Bokinsky’s idea to three dimensional data, by using spheres instead of spots. Multi-colored spheres of various sizes are used to visualize data. Color represents the attribute and size represents a value of the attribute. Feng et. al. used spheres because it is easy to interpret these simple glyphs at a wide range of scales. This technique was very effective in helping radiologists better identify tumors from MRI (Magnetic Resonance Imaging) and MRS (Magnetic Resonance Spectroscopy) scans used in brain tumor detection. The MRI scan yields anatomical tissue data while the MRS scan offers a volume of metabolite spectrum. The metabolites provide an indication of the extent of the tumor, and hence radiologists analyse both data to understand relationships between metabolites and anatomical features. Figure 4.3 displays an SDDS visualization of a visible lesion (shown in gray in the background). Concentrations of metabolites choline and creatin are shown using yellow and orange spheres, respectively. An inverse relationship between creatin and cholin metabolites is apparent by looking at the visualization.

This technique gives best results for data that has high values of at most one attribute at any spatial location. A location having high values of multiple attributes would have more than one sphere appearing at that location. This would lead to occlusion issues,
with multiple different colored spheres rendered at same point.

Figure 4.4: Cardiac wall motion and activity shown using surface glyphs. (a) PET/CT data represented using DVR, with thickness modulated to show regions of low PET activity (b) X-ray simulation of PET/CT data with a combination of saturation, lightness and opacity to highlight regions of low PET activity. The presence of a lesion in the left ventricle is made evident using this technique.

4.5 Surface Glyphs

Visualizing multiple volumes simultaneously suffers primarily from the problem of occlusion. Techniques such as blending the volumes makes quantification of attribute values more difficult. Ropinsky et. al. have extended glyph based visualization to cater to multi-modal volumetric data, where data is integrated from different sources [30]. Superquadrics have an advantage over cuboid and ellipsoid glyphs in that many data at-
Figure 4.5: Surface glyph visualization for temperature, precipitation and pressure data for hurricane Isabel. We see that at the eye of the hurricane, temperature if the highest, pressure is low and precipitation is high. Also, while temperature and pressure vary with increasing distance from the eye, precipitation does not vary uniformly with increasing distance from the eye.
tributes can be represented unambiguously. Glyph properties of roundness, the degree of sharpness in glyph edges, and size are mapped to attribute values using appropriate mapping functions. A glyph placement strategy is used to place glyphs on a visible isosurface, a surface that represents sample points of a constant value across the volume. The glyph placement strategy ensures that glyphs appear well distributed when projected to the viewplane.

This technique has been successfully used to visualize data from Computed Tomography (CT) and Position Emission Tomography (PET). Cardiac wall motion and activity is visualized using supertorus glyphs, and metabolic activity is mapped to glyph thickness (Figure 4.4(a)) and saturation, lightness and opacity (Figure 4.4(b)). Figure 4.5 shows a visualization of pressure, temperature and precipitation for the hurricane Isabel, with the three attributes mapped onto color, thickness and roundness of supertorus glyphs.

4.6 Perception-based visualization

Researchers have applied knowledge of preattentive processing and perceptual guidelines to create easily comprehensible images. Healey and Enns used perceptual textures to visualize multidimensional datasets. Data elements or sample points are placed on a three dimensional height field. Data elements are represented using pexels, or perceptual texture elements. The attribute values for a data element are mapped to the visual appearance of the pexel. Neighboring pexels form texture patterns that can draw the viewer’s attention when exploring. The use of pexels makes many tasks like target searches and boundary detection between spatial groups of common attribute values, preattentively processed. Figure 4.6 displays the use of pexels in tracking windspeed, pressure and precipitation when typhoon Amber struck Taiwan, in south east Asia, in
Figure 4.6: **Pexel based representation to track conditions of typhoon Amber when it strikes Taiwan in 1997.** (windspeed, pressure, precipitation) represented using (height, pexel density, color). (a) Normal weather conditions (b) August 27, 1997: typhoon Amber strikes Taiwan (c) typhoon Amber strikes Taiwan, causing rainfall (d) and (e) Same data as (b) and (c) with (windspeed, pressure, precipitation) represented using (pexel regularity, height, density). Change in lower or higher windspeeds is easier to identify in (b) and (c)
Figure 4.7: Spaghetti plots constructed from isocontours of each ensemble member are shown. (a:Left) When the ensemble members are in agreement, the contours form coherent bundles. (b:Right) When ensemble members disagree, outliers diverge from main bundle.

Huber and Healey performed experimental studies on the application of perceptual properties of motion to visualize data [21]. Perceptual properties of motion include flicker, direction and velocity. Studies were performed to understand the usefulness of these properties in representing motion. The results of these studies were used in creating visualizations for supernova collapse simulations, and also for visualization of meteorological data that does not have an inherent motion context, for example pressure and temperature gradients and high precipitation regions.

4.7 Ensemble Data Visualization

There have been many efforts in visualizing ensemble data. Wilson et. al. have discussed the nature of ensemble data and the challenges it poses [40]. They have proposed tools
to visualize uncertainty in ensembles, and draw attention to interesting phenomena the ensembles reveal. The tools aim to answer questions pertaining to the occurrence of certain conditions, probability of occurrence of events, and conditions that lead to some event of interest. Visualization techniques such as motion, multiple linked views and animation of data evolution over time are used to reveal new findings about the system under study.

Scientists at Sandia National Laboratories, Lawrence Livermore National Laboratories and University of Utah have developed a framework for ensemble data visualization, called ensemble-Vis [27]. The framework provides a means of visualizing uncertainty in ensemble data and provides methods for analysing data points of interest to the viewer. Different ways of displaying data are proposed, like summary views which display selected information to the viewer while maintaining a sense of context, and trend charts to display the range of values of attributes at each time step. The framework also incorporates spaghetti plots into its visualization. Spaghetti plots are lines depicting isocontours for a specific value of a variable for the chosen time-step. Each ensemble member has a different colored line. When the members are similar, bundles of different colored lines are seen. Figure 4.7 displays this result. The scientists have incorporated the framework into a lightweight and advanced visualization library called ViSUS [27]. This library is combined into the suite of Climate and Data Analysis Tools (CDAT) which is used by climate researchers. ViSUS has specialized features, such a projection into a model of the Earth and visualizations enhanced with geo-spatial information, that are required by climate researchers.

Noodles [31], a tool developed to visualize uncertainty in weather ensembles, also uses a combination of techniques including spaghetti plots, uncertainty ribbons, glyphs and color maps. The tools helped meteorologists studying the 1993 'superstorm' identify
regions of high uncertainty, interactively select attributes for investigation and observe
evolution of the storm across time.

The available tools for ensemble visualization are a collection of techniques each tar-
geted at uncovering an aspect of information, spread over multiple views. The viewer
gains insight into ensemble data by looking at multiple views, each view aimed at an-
swering an individual question that the viewer poses. Research discussed in this thesis
attempts to provide an integrated visualization that spans one view, and highlights unex-
pected aspects of ensembles. We use concepts derived from glyph based and perception
based visualizations for solving specific problems of ensemble visualizations. The next
chapter discusses a design that is aimed at overcoming these challenges by using concepts
from previous works.
Chapter 5

Design

We discuss the design of the ensemble visualization techniques presented in this thesis by splitting the problem of visualizing ensembles into two sub-problems and solving each of them:

- Visualizing one ensemble member.

- Visualizing all ensemble members.

5.1 Visualizing One Ensemble Member

We use a glyph based approach to visualize a single ensemble member. Each data point in the member is represented using a glyph, and attribute values of the data point are represented by varying glyph properties like color and size. However, an ensemble member contains a large number of data points, and rendering all of these as glyphs in a limited screen space can cause occlusion. Overlapping data points can hide the visual properties of individual glyphs as well as interior holes or regions of differing attribute
values. When visualizing multiple ensemble members simultaneously, occlusion becomes an even more critical problem.

In order to reduce occlusion when visualizing one ensemble member, we use sampling techniques to select a set of its data points that adequately represents the member. The selection is rendered in the visualization, and the unselected data points are hidden. The choice of sampling technique is motivated by the properties of the data that are of interest. We use cluster-based sampling to maintain the spatial distribution of sample points that highlight volumetric properties of the ensemble member.

5.2 Visualizing Multiple Ensemble Members

Extending the above principle of visualizing one member to all the members of the ensemble concurrently would result in significant on-screen clutter. The differently shaped, sized and colored glyphs would magnify the occlusion issue as shown in Figure 5.1. The problem of visualizing an ensemble is essentially twofold:

- To identify individual members.
- To minimize occlusion.

We use a visual property of the glyphs to solve the first problem. Ensemble membership is represented using either color or shape, that is, a glyph’s color identifies its parent member, or a glyph’s shape identifies its parent member. For example, in Figure 5.1 shape is used to represent ensemble membership: spheres for the first member (apple), tetrahedrons for the second member (banana), and cubes for the third member (pear). When the three members are visualized together, the glyphs’ shapes show which member they belong to (Figure 5.1, top image).
Figure 5.1: The image represents an ensemble of an apple, banana and a pear rendered in one image. The apple is rendered using sphere glyphs, banana is rendered using tetrahedron glyphs and cubes are used to render the pear. Individually the outline of the fruits can be identified, however shape outline is lost when shown in the same image.

As a solution to the second problem, our proposed design displays only some of the ensemble at any given time. We create an animation that visualizes a subset of ensemble members in succession, with the subset changing gradually over time. By doing so, we exploit the capabilities of working memory to perform inherent comparisons. Working memory is a concept in psychology that refers to the ability of the mind to hold
information required for tasks such as reasoning and comprehension. The capacity of working memory is limited, and hence the brain is only able to retain details when attention is localized.

We control which subset of the ensemble members is displayed using a visibility feature, either size or opacity, that causes glyphs to appear and disappear.

![Figure 5.2: Sinusoidal function to control visibility: Variation of scale factor with time for each volume, for an ensemble of 4 datasets \(\{E_i, i=1 \text{ to } 4\} \). Each volume is shown by a separate colored lines.](image)

Every ensemble member is assigned a visibility cycle. During this cycle, the value of the visibility feature varies, gradually increasing to a maximum and then decreasing to its minimum value. Each ensemble member uses the same visibility cycle, but translates it
to be out of phase from the other members. This ensures that the glyphs of one member are visible in a pattern that is different from the other. By setting the visibility feature to a minimum for much of the total time range, we produce a visualization where only a subset of the ensemble members are visible at any given time.

Figure 5.3: Pairwise sequential function to control visibility: Variation of opacity with time for each volume, for an ensemble of 4 datasets [Ei, i=1 to 4]. Each volume is shown by separately colored lines.

We tested two types of cycles: a cycle defined by a sinusoid method, and a cycle defined by a sequential variation method. The cycle driven by a sinusoid method is shown in Figure 5.2. The sinusoid function ensures that at any given time, one or more ensemble members are completely hidden, and the other members are seen with varying
degrees of visibility.

The sequential variation method ensures that exactly two ensemble members are visible on the screen at any given time. It varies the visibility features of pairs of ensemble members, such that the visibility of one of the members gradually decreases as the visibility of the next increases. Figure 5.3 shows the variation of the visibility feature over time for a sequential variation function. Each ensemble member’s cycle is shown with a different color.

Providing solutions to the two problems is still insufficient to visualize the ensemble because certain combinations of solutions are inadequate. For example, using a sinusoid visibility cycle with opacity as the visibility feature will lead to multiple overlapping ‘ghosts’ of semi-transparent glyphs. To address this, we selected two combinations of solutions that were feasible as shown in Table 5.1.

Table 5.1: Combination of visual features

<table>
<thead>
<tr>
<th>attribute value</th>
<th>ensemble member association</th>
<th>visibility</th>
<th>visibility cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>color</td>
<td>scale factor</td>
<td>sinusoid</td>
</tr>
<tr>
<td>color</td>
<td>shape</td>
<td>opacity</td>
<td>pairwise sequential</td>
</tr>
</tbody>
</table>

The first solution was an attempt to extend the SDDS technique to visualize ensembles. Although we use size both to represent attribute value and as a visibility feature, our intuition was that the varying size would reduce occlusion as member glyphs would occupy less space. The second solution provides a mapping of visual features such that our visual feature encodes exactly one property of the data.
Chapter 6

Implementation

We implemented our techniques using ParaView, an open source scientific visualization system. ParaView is built on top of the Visualization ToolKit (VTK). In this chapter we highlight the VTK objects and the salient features of ParaView that were used in our implementation.

6.1 ParaView

ParaView is an open source, multi-platform data analysis and visualization application [1]. It provides the user with a set of graphical tools and an interface that allows the user to quickly build visualizations. ParaView has support for interactive data exploration and supports extensions through code. The ability to handle large datasets using distributed memory and computing resources makes it a useful application. ParaView can be run on supercomputers for analysis of large datasets as well as on laptops for smaller data. ParaView is being developed primarily by Kitware and a set of national laboratories, including Sandia National Laboratory and Los Alamos National Laboratory.
ParaView is designed to allow components to be reused to provide implementations for specific domain problems. It is based on the Visualization ToolKit (VTK), which provides data processing and rendering capabilities. The user interface is written using Qt, a cross-platform UI library. ParaView has support for Python programming with a built-in Python shell that exposes VTK and ParaView objects and algorithms.

6.2 Visualization ToolKit (VTK)

VTK is an open source software system used for 3D computer graphics, image processing and visualization. It consists of a C++ class library and several interpreted interface layers including Tcl/Tk, Java and Python. VTK provides implementations of many visualization algorithms and advanced modelling techniques, including texturing methods, volume rendering, contouring, mesh smoothing, data subset selection and extraction, and clustering [34], [33].

VTK is object oriented, and follows a general architecture that consists of a pipeline of data [33]. The pipeline extends from the data source to the visualization image, and can consist of:

- **Sources** - initial input data from files or generated by VTK.
- **Filters** - components that modify the data, transforming the data as it moves through the pipeline.
- **Mappers** - components that ‘map’ the data onto objects that can be rendered by the rendering engine.
- **Actors** - components that provide control of appearance properties of the objects to be rendered.
• **Renderers and Windows** - windows or view ports to which the objects are rendered.

• **User Interface and Controls** - components which are used for additional settings and better data exploration.

We use Python code to create a pipeline of VTK and ParaView objects. The pipeline uses a reader to read the ensemble and filters to perform the sampling. Actor classes are utilized to create the animation. We ran the code in the Python shell of ParaView in order to use the in built interaction controls. The implementation of each technique is discussed in detail in the subsequent sections.

6.3 Sampling

Because members of the ensemble have data pertaining to the same scientific event, they are likely to contain data that has a large spatial overlap. We take advantage of this overlap for comparing attributes. All the members have an attribute value at data points in the overlap, and so comparison between ensembles is straightforward for these data points. Hence, we sample each member such that the overlap has the same set of sampled points. We consider the volume formed by the data points of each ensemble member, and divide the volume into a common (overlapping) sub-volume and a unique sub-volume. The common sub-volume consists of data points in the overlapping region with common spatial locations across all members. The remaining data points of each member form its unique sub-volume. Figure 6.1 graphically explains this idea. The approach is explained in the algorithm at Table 6.1. We extract the common sub-volume by asking VTK to perform an intersection operation between data points of all the ensemble members. The
Figure 6.1: An illustration of sampling technique for a 3-member ensemble, the volumes of each member are shown via different colors. The gray part is the common sub-volume

Table 6.1: Sampling the ensemble by utilizing the overlap

C: empty set of spatial coordinates.
For each ensemble member M,
\[C \cap M \rightarrow C \]
Sample C \rightarrow C'. C' contains the sampled common sub-volume.
For each member M,
\[C' \cap M \rightarrow X, \text{ the common data points with attribute values from the member.} \]
\[M - C \rightarrow Y, \text{ the unique data points.} \]
Sample Y \rightarrow Y'.
\[X + Y' \rightarrow M', \text{ the sampled member.} \]

common and the unique sub-volumes are sampled for each member, and the resulting set of sampled points are joined to form a complete sample set for that member.
6.4 Sinusoidal Scale Factor Variation Technique

We implement the sinusoidal scale factor variation mechanism by running a ParaView script that loads the sampled data points of each ensemble member and generates an animation that incorporates the visibility cycle. Glyphs for each member are assigned a unique color. Each member’s data points are represented as spheres of that color. The maximum size of each sphere is proportional to the attribute value of its data point. The maximum size is sealed by the member’s visibility function: a scale factor of 0 is used when the visibility function is minimum, and a factor of 1 is used when the visibility function is maximum. In this way the size of the sphere ranges from 0 (hidden) to a size representing the data point’s attribute value.

6.5 Sequential Opacity Variation Technique

We implement sequential opacity variation technique using the sampling algorithm described in Section 6.3. One object in the Paraview pipeline is created for each ensemble member, to render that member’s sampled points as glyphs. A divergent color map is used to assign colors to the glyphs based on the attribute value. Figure 6.2 shows the color map. The opacity of a member’s glyphs varies over time by defining a sequential

Figure 6.2: The color map used to represent attribute value, blue signifies the minimum value in the ensemble, and red implies the maximum value.
animation in ParaView. We use a sine curve to provide a smooth transition between minimum and maximum opacity. The linear part of the sequential variation that was shown in Figure 5.3 is achieved by maintaining zero value for opacity for that object.
Chapter 7

Application

7.1 Examples

We first examine the techniques described in the previous chapter by applying them to simulated ensemble data. The ensemble members are a collection of data elements, each consisting of spatial coordinates and a simulated scalar attribute. We used fruit volumes to generate the ensembles due to their easily recognizable shape. The following sections showcase the techniques with three sample scenarios that simulate a real world case. They are:

- Case 1: Ensemble with members having the same shape and differing attribute values.
- Case 2: Ensemble with members having the same attribute values and differing shape.
- Case 3: Ensemble with members differing in attribute and/or shape.
The first two cases have two members in the ensemble, to best explain the techniques. The third case uses an ensemble of four members, two of which have the same attribute values and volumetric shape, one of which differs in shape and one of which differs in attribute values.

7.1.1 Case 1: Same Shape, Differing Attribute Values

In order to show the effectiveness of the tools for attribute comparison, we created an ensemble of two members with similar shape and dissimilar attributes. We used two apple volumes that have varying attribute values. One apple volume has higher attribute values in the upper-left region, and the other has higher values in the lower-right region. Visualization using sinusoidal scale variation shows the two volumes using red spheres for the first apple and blue spheres for the second (Figure 7.1). We notice the differences in attribute values in each of the members shown as red and blue spheres of different sizes. We can also observe regions in the member volumes of similar attribute values across both members, shown as a region of space with similarly-sized red and blue spheres.

Sequential opacity variation results in an animation with glyphs that are colored differently appearing at the same spatial locations (Figure 7.2). This enables attribute comparison, eg. the center of the volume shows blue tetrahedrons and cubes implying an area in both volumes with similar attribute values. The full overlap of tetrahedron and cube glyphs indicate that there is no variation in the overall shape and extent of the two members.
Figure 7.1: Strip of screenshots taken from a visualization using sinusoidal scale factor variation of two apples having different attributes. The graph below indicates the positions along the time axis to which the frames correspond. The two members are represented using red and blue spheres respectively, the size of spheres indicates the attribute value at that point.
Figure 7.2: Strip of screenshots taken form a visualization using sequential opacity variation of two apple volumes having different attributes. The graph below indicates the positions along the time axis to which the frames correspond. The two apple volumes are represented using tetrahedrons and cubes. A color scheme ranging from blue (=2, lowest) to red (=5, highest) is used to represent attribute value.
Figure 7.3: Strip of screenshots taken from a video showing sinusoidal scale factor variation of apple and pear volumes having different attributes. The pear is represented by red spheres and the apple is represented by blue spheres, the size of spheres indicates the attribute value at that point. We see that the pear and apple have same attribute values in the common region, and higher attribute values in other regions.
Figure 7.4: Strip of screenshots taken from a video showing sequential opacity variation of apple and pear volumes having different attributes. The graph below indicates the positions along the time axis to which the frames correspond. The pear is represented using tetrahedrons and apple is shown using cubes. A color scheme ranging from blue to red is used to represent attribute value. We see that the pear and apple have same attribute value in the common region, and higher attribute values in other regions.
7.1.2 Case 2: Dissimilar Shape, Similar Attribute Values

We use the ensemble of two members with varying shape and similar attribute values to show effectiveness of the techniques in identifying shape differences. The members, a pear and an apple, have the same attribute values at spatial positions that are common to both, and have higher attribute values at the unique regions.

Both sinusoidal scale variation and sequential opacity variation use the same sampling technique, and hence, have similar shape identification results. The gradual appearance of glyphs that were not present in the preceding member aids in understanding the volume differences between the members. Selected frames of the animation are displayed in Figures 7.3 and 7.4.

7.1.3 Case 3: Four Members, Varying Shape and Attribute Values

Having seen the effectiveness of the techniques with two ensemble members, we now visualize an ensemble of four members. We use an ensemble of three apples and a pear. Of the three apples, the first apple, represented using green spheres, has a uniform attribute value distribution. The second and third apples, shown using red and blue spheres, have the same distribution of attribute values, but different from the first apple. The pear is shown using yellow spheres. It has the same distribution of attribute values where it overlaps with the second and third apples and is different elsewhere.

The sequence of frames in Figures 7.5 and 7.6 show the ensemble visualized using the sinusoidal scale variation technique. Some of the features of the ensemble that were highlighted by the visualization are discussed below:

- The equal sized green spheres in frame F1 shows that the green apple has equal
Figure 7.5: Selected frames from visualization of ensembles of four members using sinusoidal scale variation technique. The graph indicates the position on the time axis that corresponds to the frames. F1 and F2 show members with similar attribute values, which are different from those of the green sphere member.
Figure 7.6: Continuation of frames from visualization of four ensembles using sinusoidal scale variation technique. The graph indicates the position on the time axis that corresponds to the frames. F5 and F6: blue spheres shrink, spots of yellow are seen, indicating different shape of the two members. F7: yellow spheres are seen clearly amidst shrinking blue spheres. F8: yellow spheres shrink and green sphere member is seen.
attribute values throughout the volume.

- In F2, as green spheres shrink, only some of the red spheres are visible. Since we know that the green and red spheres both represent two apples, we can guess that the remaining red spheres are hidden, suggesting that in this region, attribute values of green apple are larger than that of the red apple. The size of the red spheres in Frame F3 proves this guess to be true.

- Red spheres shrink in size and blue spheres gradually grow as we transition from Frame F3 to Frame F4. In the two frames, we notice that the red apple and blue apple have the same attribute value distribution. The attribute values are smaller in the lower region and larger in the upper region of both the apples.

- The presence of small yellow spheres surrounding the blue apple spheres in Frames F5 and F6 confirms that the yellow pear has a different shape than the blue apple.

- Frame F7 is taken at the peak of the pear’s visibility cycle with blue spheres in their shrinking phase. The size of yellow spheres and blue spheres in Frame F7 are the same in the interior region, indicating that the attribute values of the pear are similar to that of the blue apple.

Figures 7.7 and 7.8 show the opacity variation technique, with a subset of frames from the animation. The attribute values are visualized using a color map ranging from blue (lowest value) to red (highest value). We use the ensemble that was used in the discussion of the sinusoid opacity variation technique. The first apple is represented using tetrahedrons, the second and third apples are shown using spheres and cubes respectively, and the pear is represented using octahedrons. We made the following observations:
Figure 7.7: Selected frames displayed from the sequential opacity variation visualization of an ensemble of four members. The graph indicates the position on the time axis that corresponds to the frames. We are able to make attribute value and shape comparison between the members shown in frames F1, F2, F3 and F4.
Figure 7.8: Continuation of the visualization showing frames F5 to F8. F5: Octahedron member is visible. F6: Octahedron member becomes less opaque and cube glyphs of the next member are seen, attribute differences between the two ensembles are evident. F7: Cube member is seen clearly. F8: The cubes glyphs become semi-transparent and spheres get more clear, leading to the effect of rounded cubes. Attribute comparisons are more evident.
• The semi-transparent spheres that overlap with tetrahedrons in frame F3 allow for attribute value comparisons. We can compare the color of spheres and tetrahedrons at common data points.

• We can observe the attribute value distribution across the volume of each member when they are at their peak opacity. For example, we are able to identify the red and white spheres in Frame F4, and similarly red and white cubes in Frame F6.

• The presence of rounded cubes seen in Frame F5 is due to an overlap of spheres and cubes of the two apple members at the same locations. The consistent color in each of the rounded cubes highlights the same attribute values of the two apple members.

• The absence of solitary spheres or cubes indicates the similarity in shape of the two apple members in Frame F5. The presence of isolated octahedrons at the top and bottom regions in Frame F7 highlights the shape difference in apple and pear members.

• Semi-transparent glyphs overlapping each other make it difficult to determine what the individual colors of the glyphs are. We notice this effect in Frame F8.

7.2 Application

We used our two approaches on data obtained from research scientists in high energy physics. The data collected from RHIC simulations was used to create ensembles with constant values of certain simulation parameters. We applied our technique to one of these ensembles. The volumes and vertical cross sections of four ensemble members
are shown in Figure 7.9, with temperature represented on a color scale. The members have a different volumetric shape. The cross section shows that while temperature looks uniform in the volume image, it actually varies across the interior of the volume. In order to understand the variation of temperature across the volume, and to compare it with the other members, we apply the sinusoidal scale and sequential opacity variation techniques and discuss the results.
7.2.1 Sinusoidal scale variation on RHIC ensemble

Figures 7.10 and 7.11 show captured frames from the visualization of the RHIC ensemble using the sinusoidal scale variation technique. We use size to visualize the temperature attribute of the ensemble. A high temperature value at a data point corresponds to a large sphere at that spatial position and a low temperature value corresponds to a small sphere. We make the following observations from the visualization:

- The green member and yellow member have similar volumetric shape, as is observed from Frames F1, F2 and F3. The absence of yellow spheres in the upper region of the volume in Frame F2 shows that either there are no data points of the yellow member in that region, or the data points in that region have negligible temperature value.

- The large red spheres in Frame F4 and F5 indicate high temperature values, and the spread of large red spheres in the right region in Frame F4 gives an idea of the temperature distribution for the red member.

- Red and blue members seem to have a shape that is distinctly different from the other members. This is highlighted by the appearance of small green spheres in regions where red and blue spheres are absent (Frame F6).

7.2.2 Sequential opacity variation on RHIC ensemble

Visualization using the sequential opacity variation technique is shown in Figures 7.12 and 7.13. The temperature attribute of the ensemble is visualized using a color scale that ranges from blue for low values, to red for high values. Data points from the four ensemble members shown in Figure 7.9 are visualized as tetrahedrons, cubes, spheres and
Figure 7.10: Sinusoidal scale variation technique on the RHIC ensemble data. The image contains frames F1 to F4, taken at different times in the visibility cycle, as shown by the graph below.
Figure 7.11: Sinusoidal scale variation technique on the RHIC ensemble data. The sinusoid functions of each ensemble member are shown in the graph below using the same color as that of the ensemble member. As the visualization moves from F1 to F8 (previous image contains F1 to F4), we notice changes in volume shape and changes in temperature values between different members.
octahedrons respectively. The visualization highlights characteristics of the ensemble, some of which are discussed below:

- The red tetrahedron seen in the left region of Frames F1 and F2 highlights a small region of high temperature value. The slightly red tetrahedrons show high temperature values in the middle region from the left to the right of the volume.

- Throughout the top region of Frame F3, the semi-transparent tetrahedrons and lack of cubes make the shape difference between the two members evident. A similar shape difference is also noticed between the sphere member and the cube member in F5 where the middle region narrows for the sphere member. The narrowed middle region is not present in the octahedron member, as seen in Frame F7.

- The light red spheres are confined to the interior of member, as is indicated in Frame F5. A similar observation is made from light red and red octahedrons in Frames F7 and F8.
Figure 7.12: Visualization of the RHIC ensemble using sequential opacity variation technique. Selected frames F1 to F4 are shown in the image. The graph shows the position on the time axis corresponding to the frames. We notice the difference in volumetric shape between ensemble members shown using octahedron glyphs and tetrahedron glyphs. Temperature differences are noticed by comparing color. The red tetrahedron seen in the left of F2 shows that ensemble 2 has higher values of temperature in that region as compared to F1, which has orange crosses.
Figure 7.13: Visualization of the RHIC ensemble using sequential opacity variation technique. Selected frames F5 to F8 are shown in the image. The graph shows the position on the time axis corresponding to the frames. As the visualization moves to ensemble members shown using cube and sphere glyphs, we notice the shape gets narrow in the middle. Also, temperature differences in the right region of the frames is noticed by comparing the spread of red-orange colored glyphs.
Chapter 8

Conclusion

Our extension of SDDS with the sinusoidal scale variation technique provided support for outlier detection. Spheres that are considerably larger (or smaller) were easily identifiable. Sinusoidal scale variation had some advantages:

- The SDDS means of representing data was useful in understanding the data distribution across the volume of an ensemble member. By observing the spread of large spheres in the member volumes, we were able to compare attribute value distribution of the members.

- When varying the scale factor of spheres sized according to the attribute values, the size is multiplied with the scale factor. Thus, spheres representing higher attribute values grow faster than others, and are more prominent. The technique exploited this effect to increase priority on displaying attribute values.

However, there were some problems with this technique, some of which are listed below:

- Spheres of one member were found to be hidden by spheres of another member, if they had smaller attribute values in the common sub-volume. The viewer often can-
not detect hidden spheres, since they would be visible only once the other spheres began shrinking. Thus attribute value comparisons between these two ensembles is difficult.

- Estimating attribute values becomes tricky due to size being used for both attribute value representation and as a visibility feature. For instance, we were not be able to identify if the small spheres of an ensemble member were due to small attribute values or because the spheres were shrinking to reduce their visibility.

- Since the ensemble members grow to a size proportional to their attribute values and then shrink, the viewer needs to judge when the member shown is at its maximum size, in order to gauge the attribute value.

The sequential opacity variation technique used colored glyphs to show the attribute value distribution across the member volumes.

- The overlap between glyphs in the common sub-volume enables for attribute value comparisons. The semi transparent glyphs overcome overlap and color comparisons can be made.

- By displaying only two members at a time and hiding the other member glyphs, we reduce significant clutter.

We saw some shortcomings of the sequential opacity variation technique:

- The absence of a glyph in a region is due to the region not being occupied by the member volume. Thus, this technique aids in shape comparisons to an extent. Unfortunately, although members with similar to significantly different shapes can be identified, the exact regions of difference cannot be sketched out.
• An overlap of two semi-transparent colors may make it difficult to determine what
the individual colors are.

We also noticed a few disadvantages that were common to both the techniques:

• The effectiveness of both the techniques drastically reduced for visualizing ensem-
bles with five members and higher. Since ensembles are known to have thousands
of members, the techniques would prove insufficient.

• The visualizations show the members in pairs in sequence, so not all pairs are
compared.
REFERENCES

