
ABSTRACT

CRINER, AMANDA KECK. Nondestructive Evaluation of Porous Materials. (Under
the direction of H. T. Banks.)

We report here on the use of the heat equation to simulate a thermal interrogation

method for detecting damage in a heterogeneous porous material. We first use probability

schemes to randomly generate pores in a sample material; then we simulate flash heating

of the compartment along one of its boundaries. Temperature data along the source and

back boundaries are recorded and then analyzed to distinguish differences between the

undamaged and damaged materials. These results suggest that it is possible to detect

damage of a certain size within a porous medium using thermal interrogation.

We discuss a mathematical model for the flash heat experiment in homogeneous

isotropic media. We then use this model to investigate the use of homogenization tech-

niques in approximating models for interrogation via flash-heating in porous materials.

We represent porous materials as both randomly perforated domains and periodically

perforated domains.

In this effort, we investigate the behavior of a model derived from homogenization

theory as the model solution in parameter estimation procedures for simulated data.

We consider data simulated from a model on a perforated domain with isotropic flow

and data simulated from a model on a homogeneous domain with anisotropic flow. We

consider both ordinary and generalized least squares parameter estimation procedures.

We then use these methodologies along with a method of maps to detect damage

using a hypothesis test. Finally, we consider using the homogenization approximation to

characterize elliptical damage.
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Chapter 1

Intoduction

Nondestructive evaluation (NDE) is a very useful tool that enjoys widespread use in

testing structures, especially as they age beyond their design life. Proper use of NDE

can increase the safety and service life of components in aircraft, spacecraft, automo-

biles, trains, and piping. There are numerous viable NDE methods including ultrasound,

magnetic particle imaging, eddy current, acoustic emission, and radiology to mention a

few [27]. These techniques have been developed in a large number of applications, par-

ticularly for homogeneous metallic materials [10]–[11]. Composite materials are lighter

and stronger than metallic materials so they are increasingly popular in many structures.

Composite materials are made with an acceptable level of porosity. This porosity causes

a certain amount of noise in the interrogation signal of any NDE technique. These mate-

rials are used in many critical structures including aeronautical and aerospace vehicles,

so there is a need to develop and evaluate NDE techniques for these materials [21, 31].

Active thermography is a particularly appropriate technique for materials with sig-

nificant porosity. Active thermography measures the spatial and temporal evolution of

the surface temperature following an input heat flux to detect subsurface anomalies.
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This evolution is a result of heat diffusion in the material. Since heat diffuses around

porosity, rather than strongly interacting with it, thermography is able to detect large

anomalies deep in a porous material. Additional advantages of thermal NDE are that it

is a single sided, noncontacting and a large area technique making in-service evaluation

feasible. It is also possible to embed temperature sensors in the material [28] for contin-

uous structural heath monitoring. We treat here the problem of thermal NDE in porous

materials.

We describe a mathematical model for thermal transport in a two dimensional (2-

D) porous material domain in Chapter 2. Using ideas based on the efforts in [13], we

generate families of porous sample domains through various random geometry schemes.

We also discuss methods for generation of these geometries Section 2.2. We then discuss

briefly the numerical solutions and convergence of the numerical solutions of the model

on such domains in Section 2.3. In Section 2.4 we report on subsequent use of the

random geometry schemes with added damage due to oxidation of increasing sizes to

the sample. For samples with and without damage due to oxidation, we carried out

simulations to compare the resulting temperature profiles in space and time at both the

source and back boundary. These methods are too computationally intensive to use in

the sophisticated parameter estimation routines needed to characterize damage. After

examining the results of these simulations, we go on to use these methods in Chapters 3–5

to generate data.

We then investigate a less computationally intensive model in Chapter 3 which is

derived from the results of homogenization theory. We consider a more general version

of the heat equation, relaxing the assumption of no heat loss on the boundaries and the

assumption that there is no heat loss in the direction orthogonal to the two dimensional

sample. We further discuss the finite element method, which is used to solve all of the
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partial differential equations in this document. We also discuss the procedures used in

homogenization to approximate the flow of heat over a domain with random pores by the

flow of heat over a domain with many periodically placed pores. One passes this periodic

domain to a limit using homogenization theory [16]–[23] to gain a limit partial differential

equation which replaces the periodically perforated domain with a homogeneous domain

that has anisotropic flow which approximates the effect of the porosity. With the results

of homogenization theory developed in Section 3.3 we then summarize and compare the

results of simulations of the flash heat experiment on a randomly perforated domain,

a periodically perforated domain, and a homogeneous domain with the anisotropic flow

derived from homogenization theory in Section 3.4. We also graphically analyze example

simulations in Section 3.4.

Though the results of Chapter 3 are encouraging, the behavior of an approximation

in the forward problem is not necessarily indicative of the behavior of the approximation

in inverse problems. Also, in Chapters 2 and 3, we did not consider random error which

is often associated with experimental data. In Chapter 4 we discuss the results from

performing the inverse problem using the mathematical models developed in Chapters 2

and 3, and parameter estimation procedures discussed and developed in [7], [22] on

simulated data. We consider data simulated with absolute error in Section 4.2 and relative

error in Section 4.3. This first investigation of parameter estimation procedures focuses on

estimating parameters in the partial differential equations. Though this is an important

part of characterizing abnormalities, we must estimate domain parameters (the geometry

of the domain on which the partial differential equation is solved) to characterize damage.

Based on the results of Chapter 4, we go on to estimate parameters which determine

elliptical damages (meant to represent damage due to oxidation) in Chapter 5.

In Chapter 5, we use the methods described in Chapters 2–4 to simulate data. We then
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analyze this data in a damage detection problem using a hypothesis test in Section 5.2.

In Section 5.3, we consider characterizing elliptical damage by estimating the location of

the center of the ellipse and its vertical and horizontal semi-axes lengths.
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Chapter 2

Heat Equation on Porous Domains

2.1 Flash heat experiment on a perforated domain

In this chapter we will model the 2-D problem as a proof of concept. Our 2-D geometries

represent a small slice of a 3-D specimen as a rectangle with elliptical pores, as described

in Section 2.2. We model thermal diffusion as the sample is heated along an edge for a

short time with a laser or flash lamp on the front boundary, which we will refer to as

the source boundary. We record the temperature on both the source boundary and the

boundary opposite the source boundary (referred to as the back boundary) during and

after the heating.

We examine a 2 mm × 1 mm rectangle Ω̂ = {(x, y)|0 ≤ x ≤ L1, 0 ≤ y ≤ L2} =

[0, 2] × [0, 1] with randomly placed pores. Let Ω denote the rectangle minus nr pores,

which are given by Ω1,Ω2, . . .Ωnr . The domain of interest is then Ω̂ = Ω ∪ (∪nr
i=1Ωi).

The exterior boundary of Ω has 4 edges, which we denote by ωj where j=1, . . . , 4; thus

∂Ω̂ = ∪4
j=1ωj. It is assumed that each pore Ωi has a smooth boundary with Ω given by

∂Ωi, as depicted in Figure 2.1.
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Figure 2.1: A typical example of a 2-D specimen

The 2-D heat diffusion equation, which describes heat as it diffuses through a region,

is based on Fourier’s law and is given [14, 24] by

ρ(x, y)cp(x, y)
∂u(t, x, y)

∂t
= ∇ · (k(x, y)∇u(t, x, y)). (2.1)

Here u(t, x, y) is the temperature, ρ(x, y) is the material density of the sample, cp(x, y)

is the specific heat of the material, and k(x, y) is the thermal conductivity. In materials

with particles, rather than pores, the thermal conductivity is typically piecewise defined

as

k(x, y) =


kp, (x, y) ∈ Ωi, i = 1, . . . nr,

km, (x, y) ∈ Ω,

(2.2)

where kp denote the thermal conductivity of the pores and km denote that of the material

as in [13]. In many applications, the assumption that there is zero flux across the pores

or particles is a very good approximation. Throughout this document, we will be making
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this assumption. We will now denote Ωi as perforations and cp, ρ, and k as the material

properties specific heat, density and thermal conductivity of the domain Ω.

We will use finite element solutions which may be derived in several different ways

including Galerkin methods. We will discuss the Galerkin derivation of these methods

in Section 3.2 which are based on a variational or weak formulation. In this section, we

will focus on the physical derivation and motivation for this formulation. These models

have been used in detecting damage in many examples including [11].

Consider test functions φ ∈ H1(Ω), in an integrated form of (2.1) given by

∫
Ω

cpρ
∂u

∂t
φ(x, y)dA =

∫
Ω

φ(x, y)∇ · (k∇u)dA. (2.3)

We use Green’s first identity to obtain

∫
Ω

cpρ
∂u

∂t
φ(x, y)dA

=
4∑
j=1

(
k

∫
ωj

φ(x, y)(∇u · ~n)ds

)
− k

∫
Ω

∇u · ∇(φ(x, y))dA

+k

nR∑
i=1

(∫
∂Ωi

φ(x, y)(∇u · ~n)ds

)
,

(2.4)

where as convention ~n refers to the unit exterior normal. Again using the zero flux

assumptions on the pore boundaries, the term

k

nr∑
i=1

(∫
∂Ωi

φ(x, y)(∇u · ~n)ds

)
= 0.
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Combining the three remaining terms from (2.4), we find

∫
Ω̂

cpρ
∂u

∂t
φ(x, y)dA

=
4∑
j=1

(
k

∫
ωj

φ(x, y)(∇u · ~n)ds

)
−
∫

Ω

k∇u · ∇φ(x, y)dA.
(2.5)

Excluding the source boundary, we assume an insulated rectangle so that ∇u = 0 on

the boundaries ω1, ω2, and ω3. The ω4 or source boundary, which consists of the region

{(x, 0)|0 ≤ x ≤ L1}, acts as a source for an initial period and is subsequentially insulated.

We represent the corresponding boundary condition with the characteristic function

k∇u
∣∣∣
ω4

= S0I[t0,ts](t) =


S0, t ∈ [t0, ts]

0, otherwise.

(2.6)

Thus we have

∫
Ω̂

cpρ
∂u

∂t
φ dA =

∫ L1

0

φ(x, 0)S0I[t0,ts](t) dx−
∫

Ω̂

k∇u · ∇φ dA. (2.7)

This weak formulation is employed in the MatLab Partial Differential Equation Toolbox

(PDE toolbox) to derive the numerical solutions to the system (a finite element method);

we consider this method and its convergence in Section 2.3.

The classical partial differential equation which is equivalent to (2.7) in some cases

8



and which we will use throughout is the given by



cpρ
∂

∂t
u− k∆u = 0 in Ω

k
∂

∂η
u = 0 on ∪nr

i=1 ∂Ωi

k
∂

∂η
u = 0 on ∪3

i=1 ωi

k
∂

∂η
u = S0I0,ts(t) on ω4,

(2.8)

where
∂

∂η
u denotes the external unit normal or ~n · ∇u. The solution u of (2.8) is unique

in H1(Ω).

2.2 Generation of Random Geometries

A major component of the effort reported on here involves generation of domains with

randomly placed pores of different sizes as depicted in Figure 2.1 and Figures 2.3-2.6. We

concentrated our efforts on elliptical shaped pores with semi-major axes in the horizontal

(x) direction. This was motivated by visual inspection of material samples at NASA as

depicted in Figure 2.2.

We model porosity by randomly placing pores in an L1 = 2 mm by L2 = 1 mm

rectangle Ω̂ = [0, 2] × [0, 1] employing ideas developed in [13]. The pores are ellipses to

represent voids in a two-dimensional slice of any piece of porous material. For simplicity

in algorithm development, we began carrying out our simulations with circles (see [4]

and [3] for discussions) but subsequently used ellipses for more realistic representations.

Even though pores coalesce when they intersect physically, we assume that the pores do

not overlap with each other or the boundaries of the rectangular compartment (more
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Figure 2.2: An example of a porous specimen.

irregular shapes in pores could be achieved by allowing overlaps). To do this, in our

algorithms we first generate a pore using one of the probability schemes described below.

The pore is then placed in the compartment if it does not overlap with an existing pore,

and rejected if it does. Another pore is then randomly selected as described below, etc.,

until the desired porosity of the material is achieved. We considered several different

distributions for generating the horizontal and vertical semi axes. We found that the

temperature is not very sensitive to the choice of distribution with the number of pores

and level of porosity that we consider. It is very important to note here that the results

given in [30] are essential in determining wheter or not two ellipses intersect.

To simulate pore-like damages due to oxidation, we first generate one unusually large

ellipse (see Section 2.4 for examples) to represent damage and then place pores using the

algorithm described above. When generating various elliptical damages, the center was

an input. The semi-major axis for damage was taken as an input, and the semi-minor

axis was calculated so as to maintain a constant ratio between the two axes as we chose

damages of different sizes.
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Table 2.1: Parameter values

Heat transfer coefficient S0 3.3× 10−3 J
mm2

Material thermal conductivity k 3.5× 10−3 J
mmK sec

Heat capacity cp 0.75 J
g K

Density ρ 1.6× 10−3 g
mm3

2.3 Numerical Solutions

After generating a particular geometry, we solved the heat equation (2.7) using PDE

Toolbox with the parameters summarized in Table 2.1.

As already noted, three of the compartment’s four sides are insulated and defined by

Neumann boundary conditions where heat flux is zero. The source boundary has a heat

transfer coefficient of 3.3 × 10−3 J

mm2
during flash heating and zero flux later. There is

also zero heat flux on the boundaries between the material and the pores represented as

perforations. PDE Toolbox creates a mesh using the Delaunay triangulation algorithm;

see [25] for details.

We validated the convergence of PDE Toolbox’s numerical solution and sensitivity

to changes in the randomness in the porous domain by taking the supremum norm of

the difference in source boundary temperatures after successive mesh iterations with 30

random geometries for each of the percent porosities 2%, 5% and 10% investigated.

Example results for 2% porosity are given in Table 2.2 (similar tables for examples

with 5% and 10% porosity can be found in [4] and [3]). At 2% porosity, 0.04 K in

precision is gained by quadrupaling the number of mesh points, and tripling the amount

of time to mesh, as seen in Table 2.2. We see similar increases in number of points and
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Table 2.2: The average values (evaluated on 30 random geometries with 2% porosity) of:

absolute error ||ui+1 − ui||∞, relative error
||ui+1 − ui||∞
||ui||∞

, number of mesh points, and

the amount of time to generate the mesh. Note: ui indicates the ith mesh iteration.

Means

Mesh Iteration Absolute Error (K) Relative Error # of Mesh Points Time(s)

1 0.059 7.89× 10−4 7500 42.0

2 0.019 6.70× 10−5 29639 87.1

3 118424 303.9

Standard deviations

1 0.0020 6.74× 10−6 410 4.4

2 0.0008 2.31× 10−4 7535 3.4

3 5676 25.0

computational time to mesh at 5% and 10%, but the precision gained is 0.1 K and 0.2

K, respectively. In all of the reported computations, in this chapter, in [3] and in [4], we

refine the mesh once.

2.4 Simulations

We generated numerous samples with varying levels of porosity including 2%, 5% and

10% and with a single damage of varying size located near the source surface, the back

surface or mid sample. A large number of results for simulations with these geometries

are given in [3].

We present here a sampling of graphical results from [3]. Each group of figures

below depicts a compartment both with and without damage and the corresponding
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Figure 2.3: Sample with 2% porosity, damage centered at (1, 0.2), semi-major axis a = 0.7
mm, semi-minor axis b = 0.0692 mm.

temperature profiles. Observe that the pores surrounding the damage are identical to

those in the undamaged compartment. In every case, we heat the source boundary

for 0.6 seconds (ts = 0.6) and record the temperature a total of 1.3 seconds (including

heating time). Figures 2.3-2.6 present results for samples of varying percent porosity

with damages of various size located in different locations.

We observed several general trends in our temperature profile graphs. First, we

tracked temperatures at the source and back boundaries so as to shed light on possible

sensor placement if options were available. As might be expected, we found that the

absolute value of the difference between damaged and undamaged material is greatest at

the center of the damage due to oxidation. As shown in Figure 2.3, at a damage width

of 1.4 mm due to oxidation, the maximum difference is 1.2 K at the source boundary
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Figure 2.4: Sample with 5% porosity, damage centered at (1, 0.2), semi-major axis a = 0.7
mm, semi-minor axis b = 0.0692 mm.
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Figure 2.5: Sample with 5% porosity, damage centered at (1, 0.8), semi-major axis a = 0.7
mm, semi-minor axis b = 0.0692 mm.
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Figure 2.6: Sample with 10% porosity, damage centered at (1, 0.2), semi-major axis
a = 0.7 mm, semi-minor axis b = 0.0692 mm.

and 0.03 K at the back boundary. In Figure 2.4, when the damage width increases to

1.4 mm, the maximum difference is 1.35 K at the source boundary and 0.08 K at the

back boundary. At 10% porosity, when the size of the damage is increased to a width

of 1.4 mm, we find in Figure 2.6 that maximum temperature difference is 1.4 K at the

source boundary and 0.09 K at the back boundary. These observations demonstrate that

the maximum temperature difference between damaged and undamaged material at the

source boundary is larger than at the back boundary when the damage is placed near

the source boundary. We anticipate that with a sensor that has 0.1 K resolution, placed

on the source boundary, we will be able to detect 1.4 mm damages due to oxidation in

materials with 2, 5, or 10% porosity. With the same sensor placed on the back boundary,

we would not expect to be able to detect these damages in any of the materials.
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The difference between damaged and undamaged material is greatest at the center

of the damage due to oxidation for both the source and back boundary measurements

in most of our computations. The source boundary temperature is always higher with

damage, whereas the back boundary temperature is lower with damage in most of our

computations. When the damage is placed near the source boundary, the absolute value

of the temperature difference resulting from the damage is much greater for the source

boundary than the back boundary. When the damage is placed at the center of the

compartment, the absolute value of the temperature difference is approximately the same

for the source and back boundaries. And lastly, when the damage is placed near the back

boundary, the absolute value of the temperature difference is much greater for the back

boundary than the source boundary. In Figure 2.5, at the same porosity, a damage of

width 1.4 mm near the back boundary gives an equal temperature difference. When

we consider the change in temperature (the maximum difference minus the minimum

difference), however, we are able to determine the location of the damage. When the

damage is centered near the back, the change in temperature is 0.22 K for the back

boundary and only 0.03 K for the source boundary. As depicted in Figure 2.4, when the

damage is centered near the source, the change in temperature at the source is 0.89 K,

and 0.11 K for the back boundary. Thus, by comparing sensors at the back surface with

those at the source surface, one should be able to discern the depth of the damage if it

is of sufficient size.

We also observed two general trends in the temperature vs. time graphs (in results

given in [3] but not depicted here). As the size of the damage due to oxidation grows, it

takes longer for the system to reach thermal equilibrium. The farther away the damage is

from the source boundary, the closer together the source and back boundary temperatures

are for both x = 1 and x = 0.
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This method will be used in subsequent chapters to simulate data. Though these

results are useful in detecting damage without noise, collected data also includes noise

from the measurement procedure. In order to detect damage, in the presence of this type

of noise, there must also be a confidence associated with the prediction of data. Beyond

detecting damage due to oxidation, we would also like to be able to characterize these

kinds of damage. In order to preform both of these tasks, we must preform sophisticated

parameter estimation procedures. These require the use of minimization routines in

which solutions must be computed many times. These solutions take far too long to

use in these procedures. Also, these geometries are not known in the material a priori.

Homogenization theory can approximate the flow of heat in a porous material but does

not require knowledge of the exact pore locations and size. Homogenization also requires

an order of magnitude less time to compute numerical solutions. In the next chapter, we

will consider how well the results of homogenization theory approximate the flow of heat

over porous domains.
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Chapter 3

Homogenization

In this chapter, we consider an approximation derived from homogenization theory for

the flash heat experiment in porous materials. This approach approximates the isotropic

flow of heat around the pores in the perforated rectangle with anisotropic flow in a

homogeneous rectangle. We consider these results for a more general class of flash heat

experiment by relaxing the insulation assumptions of the previous chapter. We first

develop a flash heat experiment with anisotropic flow on a homogeneous rectangle, then

we consider the finite element solutions of these models. After we discuss the solution

methods employed, we discuss the homogenization theory as an approximation of models

similar to those developed in Chapter 2.

3.1 Flash heat experiment with anisotropic flow

We first recall the system (3.1) which corresponds to the physical flash-heat experiment

described in [4]. This experiment assumes that the temperature of the specimen is

within the solid state phase and the boundaries are perfectly insulated [26]. We model
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Figure 3.1: The homogeneous rectangle with boundaries.

the flash-heat experiment on an L2 (length in the y direction) by L1 (length in the x

direction) rectangle during the time interval t ∈ (0, T ) with T < ∞. We refer to the

L1 by L2 rectangle as Ω̂ and the four boundaries ωi, for i ∈ {1, 2, 3, 4}. When referring

to the entire boundary of Ω̂, we use ∂Ω̂ = ∪4
i=1ωi. We take, L2 = 1 mm and L1 = 2

mm. The bottom boundary, ω4 = {(x, y)|y = 0, x ∈ (0, L1)}, is heated with heat flux

S0 = 3.3 × 10−3 W

mm2
from the initial time, t0 = 0, until ts and insulated for t > ts. We

use an indicator function to describe the flash-heating of the boundary,

I[t0,ts](t) =


1 for t ∈ [t0, ts]

0 otherwise.

The other boundaries are insulated throughout the experiment. The boundary locations

are given in Figure 3.1. This experiment can be described by the system
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cpρût − k∆û = 0 in Ω̂× (0, T )

k
∂û

∂η
= S0I[t0,ts](t) on ω4 × (0, T )

k
∂û

∂η
= 0 on

3⋃
i=1

ωi × (0, T )

û(0, ~x) = u0 for all ~x ∈ Ω̂,

(3.1)

with thermal conductivity k = 3.5× 10−3 J/(mm K sec), specific heat cp = 0.75 J/(g K),

material density ρ = 1.6 × 10−3 g/(mm3), and the dependent variable û is temperature

in degrees Kelvin. The values used throughout this chapter are summarized in Table 3.1.

We will now make a few changes to the above system. In the partial differential equation,

∆u may be written more generally as ∇ · (A0∇u), where A0 is the 2× 2 identity matrix

I2 in the present section and Section 3.1. We make this change because subsequently

we will replace the identity with another positive definite matrix, which will be derived

from homogenization theory. Corresponding to this change, we must also change the

boundary conditions, so that the boundary conditions still specify the flux when A0 is

not the identity matrix. Specifically,
∂u

∂η
= ~n · ∇u, where ~n is the exterior unit normal

vector, is replaced with
∂u

∂ηA0

= ~n ·A0∇u. For convenience and without loss of generality,

we will also translate the temperature so that the initial temperature, which we will

take to also be the surrounding temperature, is zero. This corresponds to the change

u = û−u0. We wish to use the thermal diffusivity, α =
k

cpρ
, as a characteristic parameter
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Table 3.1: Parameter values used throughout this document, unless otherwise mentioned.
The 2× 2 matrix, A0 is a positive definite matrix arising from homogenization theory.

Parameter Value Units
[t0, ts] [0, 0.6] s
T 5 s
Sf 2.75 K mm/s
α 2.9167 mm2/s
L1 2 mm
L2 1 mm

I2

[
1 0
0 1

]

so our final system is



ut − α∇ ·
(
A0∇u

)
= 0 in Ω̂× (0, T )

α
∂u

∂ηA0

= SfI[t0,ts](t) on ω4 × (0, T )

α
∂u

∂ηA0

= 0 on
3⋃
i=1

ωi × (0, T )

u(~x, 0) = 0 for all ~x ∈ Ω̂,

(3.2)

where Sf =
S0

cpρ
.

The zero flux boundary conditions of (3.2) correspond to the physical assumption of

a perfectly insulated boundary, which is not reasonable in many cases. We relax this

assumption by replacing the boundary condition with Robin boundary conditions that

correspond to the assumption that Newton cooling occurs on the boundaries. This is

succinctly incorporated into system (3.3), below, by including a −λu term in all of the

boundary conditions. We further relax the assumptions associated with (3.2) by no longer
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assuming that there is no heat flow in the direction orthogonal to the two dimensional

representation of the specimen. The assumption that there is some small amount of heat

loss over the entire specimen is modeled by adding a γu term in the partial differential

equation. These changes yield the partial differential equation,



ut − α∇ ·
(
A0∇u

)
+ γu = 0 in Ω̂× (0, T )

α
∂u

∂ηA0

= SfI[t0,ts](t)− λu on ω4 × (0, T )

α
∂u

∂ηA0

= −λu on ∪3
i=1 ωi × (0, T )

u(~x, 0) = 0.

(3.3)

It is important to recall that u = û− u0 where û is the temperature and u0 is both the

initial temperature and the temperature surrounding the specimen. System (3.3) is a

generalization of (3.2) in that, (3.3) is identical to (3.2) for (γ, λ) = (0, 0).

3.2 Numerical Solutions

We will use the finite element method to numerically solve (3.3). The finite element

method approximates the infinite dimensional solution of a partial differential equation

with a finite dimensional approximation. The domain (Ω̂) is discretized using the Delau-

nay triangulation. The finite dimensional solution is taken from the space of piecewise

two dimensional affine functions, where the solution is affine on each mesh element (see

[25] and [29] for details). Recall the notation ~n = (nx, ny), where n is the unit outward
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normal and
∂u

∂ηA0

= ~n ·
(
A0∇u

)
. The boundary conditions can also be written as

α
∂u

∂ηA0

= α

(
a11

∂u

∂x
+ a12

∂u

∂y

)
= −λu on ω3

α
∂u

∂ηA0

= α

(
−a11

∂u

∂x
− a12

∂u

∂y

)
= −λu on ω1

α
∂u

∂ηA0

= α

(
a21

∂u

∂x
+ a22

∂u

∂y

)
= −λu on ω2

α
∂u

∂ηA0

= ∂α

(
−a21

∂u

∂x
− a22

∂u

∂y

)
= SfI[t0,ts](t)− λu on ω4.

(3.4)

Using Green’s identities, we obtain the weak form

∫
Ω̂

φ(~x)ut d~x + α

∫
Ω̂

φ(~x)∇φ · A0∇u d~x+ γ

∫
Ω̂

φ(~x)u d~x

−
∫
ω4

φ(x, 0)SfI[t0,ts](t) dx+ λ

∫
∂Ω̂

φu ds = 0

or

〈ut, φ〉+ α〈∇φ,A0u〉+ γ〈u, φ〉 −
∫
ω4

φ(x, 0)SfI[t0,ts](t) dx+ λ

∫
∂Ω̂

φu ds = 0

where 〈φ, v〉 =

∫
Ω̂

φ v d~x. Here φ is a member of the space of test functions H1(Ω̂). We

approximate u with uN by

uN(t, ~x) =
N∑
i=1

Ti(t)φi(~x).
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Substituting this expression into the weak form with test functions φi, i ∈ {1, 2, . . . N} in

the space of two dimensional affine functions (we refer the reader to [29] for more details

on these basis elements and the time dependent coefficients Ti(t)), we have

〈
∂

∂t

(
N∑
i=1

Ti(t)φi

)
, φj

〉
+ α

〈
∇φj, A0∇

(
N∑
i=1

Ti(t)φi

)〉
+ γ

〈(
N∑
i=1

Ti(t)φi

)
, φj

〉

−
∫
ω4

φj(x, 0)SfI[t0,ts](t)dx+ λ

∫
∂Ω̂

N∑
i=1

Ti(t)φiφj ds = 0.

(3.5)

We may factor the time dependent coefficients Ti(t) of the basis elements φi(~x) from the

inner product to obtain

N∑
i=1

d

dt
Ti 〈φi, φj〉+ α

N∑
i=1

Ti
〈
∇φj, A0∇φi

〉
+ γ

N∑
i=1

Ti 〈φi, φj〉

−SfI[t0,ts](t)

∫
ω4

φj(x, 0)dx+ λ
N∑
i=1

Ti

∫
∂Ω̂

φiφj ds = 0.

(3.6)

Equation (3.6) must be true for arbitrary j ∈ {1, 2, . . . , N} and the system may be

written as

C
d

dt
~T (t) + (αM + γC + λD) ~T (t) = SfI[t0,ts](t)~f, (3.7)

where C is an N×N positive definite matrix with elements cij = 〈φi, φj〉, M is an N×N

positive definite matrix with elements mij = 〈∇φi, A0∇φj〉, D is an N ×N matrix with

components dij =

∫
∂Ω̂

φiφj ds, ~f is an N -vector with components fi =

∫
ω4

φi(x, 0)dx and

~T is an N column vector. We informally verified our calculations of these arrays in the

case where A0 = I2 by comparing them to the corresponding values used to calculate the

finite element method solution in MATLAB’s PDE toolbox [25].
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3.3 Homogenization

Now that we have considered a model of the flash-heat experiment on a homogeneous

domain, we will model the flash heat experiment on the more complicated perforated

domains developed in Chapter 2. Though these simulations were useful in detecting

damage, they were too computationally intensive for the more sophisticated parameter

estimation procedures needed to characterize damage. Here we will use (3.3) along with

random geometries to model the flash heat experiment in a porous domain and compare

this model to a limit partial differential equation which is derived from homogenization

theory. In this formulation A0 is no longer I2 and the random complicated geometry is

replaced with a less complicated domain with anisotropic flow. We will focus on values

obtained on the source boundary ω4 when we compare the subsequent models.

We will consider the random geometry Ω (depicted in Figure 2.1 in Chapter 2), which

is composed of Ω̂ \ ∪nr
i=1Ωi, where Ωi are randomly placed pores, ∂Ωi is the boundary of

the ith pore and ωi are the same as defined in Section 3.1 and in Chapter 2. We must

now pose our problem on Ω. We will call the dependent variable of this system urand,

where ‘rand’ refers to the random domain. Here it is worthwhile to note that we have

performed the transformations detailed in the beginning of Section 3.1 to all of the partial

differential equations in all subsequent chapters and sections.
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The system corresponding to (3.3) on the random domain Ω is given by



urand
t − α∆urand + γurand = 0 on Ω× (0, T )

α
∂

∂η
urand = 0 on ∪nr

i=1 ∂Ωi × (0, T )

α
∂

∂η
urand = −λurand on ∪3

i=1 ωi × (0, T )

α
∂

∂η
urand = SfI[0,ts](t)− λurand on ω4 × (0, T )

urand(~x, 0) = 0.

(3.8)

We will use (3.8) to simulate data that one might expect from the flash-heat experi-

ment performed on porous specimens. We generate these geometries and solve the partial

differential equations using the methods developed in Chapter 2.

In order to apply homogenization theory to (3.8), we will use geometries with enough

pores to suppose that Ω has a periodic structure (though it may be that the physical

specimens are better modeled with periodic pores as the pores in composite materials

are often the result of sinusoidal manufacturing processes). In other words, we suppose

that the pores (or holes) are periodically distributed with a period ε, where ε is a small

parameter that we let go to zero in the limit. This is the framework of the periodic

homogenization theory which is explained in more detail in [19]. To do so, we introduce a

reference cell (or domain) Y . For our purpose, let us take as Y the original (homogeneous)

rectangle Ω̂. Let B = ∪Ni=1Bi be a set of N open subsets strictly included in Y such that

Bi ∩Bj = ∅ for i 6= j.

Denote by τ(εB) the set of all translated images of εB of the form ε(κ`+B), κ ∈ Z2,

κ` = (κ1`1, κ2`2), so the set τ(εB) represents the periodic pores in R2. Let Bε be the

set of the holes contained in Ω̂. With the above choice of Y , and taking for instance
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ε =
1⌈√
nε

N

⌋ with nε → +∞, no hole from Bε will intersect the boundary ∂Ω̂. Here d·c is

the nearest integer function. We will set

Ωε = Ω̂ \Bε
.

By this construction, the physical domain Ωε is periodically perforated with holes

of size of the same order as the period. We are essentially approximating the random

geometry Ω with the periodic geometry Ωε.

We will use the following notation:

· Y ∗ = Y \B,

· X†, the topological dual space of X

· pV =
|Y ∗|
|Y | , the proportion of the material in the cell Y ,

· |ω| = the Lebesgue measure of any open set ω,

· Mω(ϕ) =
1

|ω|

∫
ω

ϕ(x) dx, the mean value of ϕ on the set ω.

Observe that by construction, pV is also the proportion of the material in Ωε for any

ε > 0 and the percent porosity = (1− pV )× 100%. We are now prepared to consider our
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system on Ωε. Using Ωε to approximate Ω in (3.8), we have



uεt − α∆uε + γuε = 0 in Ωε × (0, T )

α
∂

∂η
uε = 0 on ∂Bε × (0, T )

α
∂

∂η
uε = −λuε on ∪3

i=1 ωi × (0, T )

α
∂

∂η
uε = SfI[0,ts](t)− λuε on ω4 × (0, T )

uε(~x, 0) = 0.

(3.9)

The system (3.9) possesses a unique solution in the Banach space Wε = {v|v ∈

L2(0, T ;H1(Ωε)),
∂v

∂t
∈ L2(0, T ; (H1(Ωε))

†)}. One is then allowed to pass to the limit in

(3.9) to obtain a limit homogenized system (for details, we refer the reader to [18, 19, 23]).

In particular, these references contain proofs that

ũε ⇀ pVU weakly in L2(0, T ;H1(Ω̂)), (3.10)

where U is characterized by the unique solution of the homogenized problem and ũε is

the zero extension of uε from Ωε to the whole domain Ω̂.

The limit system corresponding to (3.9) is given by



pVUt − α∇ ·
(
A0U

)
+ γpVU = 0 in Ω̂× (0, T )

α
∂U

∂ηA0

= −λU on ∪3
i=1 ωi × (0, T )

α
∂U

∂ηA0

= SfI[0,ts](t)− λU on ω4 × (0, T )

U(~x, 0) = 0.

(3.11)
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The homogenized operator A0 has constant coefficients and is expressed in terms of the

following cell problems defining the “corrector” functions χ1 and χ2:



−∆χj = 0 for j = 1, 2 in Y ∗

χj is Y periodic

∂

∂η
(χj − yj) = 0 on ∂Ωi

M∗
Y (χ) = 0.

(3.12)

Then the homogenized matrix A0 = (a0
ij) is defined by

a0
11 = pV −

1

|Y |

∫
Y ∗

∂χ1

∂y1

dy, a0
12 = − 1

|Y |

∫
Y ∗

∂χ2

∂y1

dy,

a0
21 = − 1

|Y |

∫
Y ∗

∂χ1

∂y2

dy, a0
22 = pV −

1

|Y |

∫
Y ∗

∂χ2

∂y2

dy.

(3.13)

It is important to note that ∂Ωi in (3.12) refers to the boundaries of the pores of the

reference cells, depicted in Figure 3.2.

It can be shown that the error estimate (distance between ũε and pVU in the L2(0, T ;H1(Ω̂))-

norm) is of order of
√
ε, which justifies the homogenization procedure if ε is sufficiently

small, or equivalently if the number nε of holes is sufficiently large since nε ∼
1

ε2
. Using

the linear trace operator, γ : H1(Ω̂)→ L2(ω4) and arguments similar to those in [16], we

get the result that γ(ũε) converges weakly in L2(ω4) to γ(U).

Recalling the convergence of ũε to U , we created numerical simulations to compare

U to uε and urand on ω4. We used methods developed in [4] and [30] to generate the

random geometries Ω and Y ∗. We used MATLAB’s PDE toolbox to then solve these

partial differential equations on these domains. One can not directly solve (3.12) with
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Figure 3.2: The reference domain and the limit domain with ε =
1

2
and ε =

1

4
.

MATLAB’s PDE Toolbox, we use the method described on pages 45–46 in [13] to solve

this elliptic system of partial differential equations. To calculate U , we used the finite

element schemes detailed in Section 3.2.

For each simulation, letting N be the number of pores in the reference cell, and nr

the number of pores in the random geometry, we might suppose that the ε corresponding

to the Ωε which approximates Ω is given by

ε =
1⌈√
nr

N

⌋ , (3.14)

with d·c representing the nearest integer function. As we see in (3.14), ε decreases as

N decreases. This leads to a subtlety in choosing N . We would like Y ∗ to capture the

random nature of Ω while still containing a sufficiently small number of pores N to ensure

ε is small. In the simulations presented here, we take N = 2 and use (3.14) above to
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calculate uε.

3.4 Approximation Results

In the previous section we developed (3.8) (with solution urand) to model the flash heat

equation in porous material and (3.9) (with solution uε) to approximate (3.8). Finally,

we introduced homogenization theory to approximate (3.9) with (3.11) (with solution

U). In this section we will present graphical results corresponding to the three systems

and summarize the results of 200 simulations of the three systems. Here, we will use

the parameter values listed in Table 3.1. In each figure urand is the solution of (3.8), uε

is the solution of (3.9) and U is the solution of (3.11). We will consider three different

porosity levels, 10% (or pV = 0.9, depicted in Figure 3.3), 5% (or pV = 0.95, depicted in

Figure 3.4), and 2% (or pV = 0.98, depicted in Figure 3.5). The results presented here are

for (γ, λ) = (0, 10−5) though we carried out calculations for (γ, λ) = (0, 0) (the perfectly

insulated model), (γ, λ) = (0, 6 × 10−3), and (γ, λ) = (10−5, 0), each yielded similar

results (see [6] for details). The random geometries used for the examples are featured

in Figures 3.3–3.5(a), which corresponds to Ω used in (3.8). The approximations of Ω,

Ωε, are presented for each level of porosity in Figures 3.3–3.5(b). Figures 3.3–3.5(c) give

the solutions urand, uε and U at y = 0, t = 0.1 over all values of x on ω4 or the source

boundary. In this case, we see that U seems to capture the ‘average’ behavior of urand

and that of uε. We observe that U overestimates when there are large pores near ω4 and

underestimates when there are not large pores near ω4. In Figures 3.3 with pV = 0.9 we

see that the cluster of pores near ω4 in Figure 3.3(a) corresponds to U underestimating

urand for x greater than 1.25 in Figure 3.3(c). There are pores near ω4 in Figure 3.3(b)

which corresponds to periodic peaks of uε above U in Figure 3.3(c). There are pores near
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ω4 in Ωε in Figure 3.4(b) but they are very small and U overestimates uε in Figure 3.4(c).

As should be expected for these systems, the difference between the three solutions seems

to decrease with porosity. In Figure 3.5(c) it appears that U is a better estimate for urand

and uε at pV = 0.98 than it was for pV = 0.95 depicted in Figure 3.4(c) and pV = 0.9

depicted in Figure 3.3, so we see that U is a better approximation at lower levels of

porosity or higher values of pV .
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Figure 3.3: An example simulation at pV = 0.9, or equivalently 10% porosity (a)
The random geometry Ω; (b) The geometric approximation of Ω assumed in ho-
mogenization theory, Ωε where ε = 0.14; (c) urand(x, 0, t), uε(x, 0, t), and U(x, 0, t)
for t = 0.1 sec on ω4. For a better representation of the behavior of the three
systems over time on the source boundary (ω4), see the corresponding movie at
http://www4.ncsu.edu/˜akcriner/movies/wholerobin9front.zip.
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Figure 3.4: An example simulation at pV = 0.95, or equivalently 5% porosity (a)
The random geometry Ω; (b) The geometric approximation of Ω assumed in ho-
mogenization theory, Ωε where ε = 0.17; (c) urand(x, 0, t), uε(x, 0, t), and U(x, 0, t)
for t = 0.1 sec on ω4. For a better representation of the behavior of the three
systems over time on the source boundary (ω4), see the corresponding movie at
http://www4.ncsu.edu/˜akcriner/movies/wholerobin95front.zip.
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Figure 3.5: An example simulation at pV = 0.98, or equivalently 2% porosity (a)
The random geometry Ω; (b) The geometric approximation of Ω assumed in ho-
mogenization theory, Ωε where ε = 0.17; (c) urand(x, 0, t), uε(x, 0, t), and U(x, 0, t)
for t = 0.1 sec on ω4. For a better representation of the behavior of the three
systems over time on the source boundary (ω4), see the corresponding movie at
http://www4.ncsu.edu/˜akcriner/movies/wholerobin98front.zip.
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Table 3.2: In the first three rows, the last three columns contain the average time to
calculate the respective solution for the 200 simulations. The last three rows contain the
average mesh size over 200 simulations.

Model pV = 0.9 pV = 0.95 pV = 0.98

Mean time urand 45 sec 53 sec 62 sec
uε 22 sec 28 sec 37 sec
U 3.9 sec 4.0 sec 3.7 sec

Mean mesh size urand 7851 8551 9965
uε 5016 5744 7317
U 355 355 355

We carried out 200 simulations at each porosity level (pV = 0.9, 0.95 and 0.98) like

those used to generate Figures 3.3–3.5. For each simulation, we randomly generated the

domain Ω on which we solved (3.8) for urand. We also created a random Ωε, to solve

(3.9) for uε. We used the reference cell used to generate Ωε to solve (3.11) for U . In

Table 3.2 we report the average time to solve each of the systems and the average mesh

size used to discretize the respective domain. It is clear that of the three systems (3.8) is

the most computationally intensive. The limit system (3.11) is the least computationally

intensive; its mesh is an order of magnitude smaller than the meshes for the other two

systems. Also the computing time required to solve for U is five to ten times less than

the time to solve for uε and ten to fifteen times less time to solve for urand. This supports

the use of the limit system (3.11) as a more computationally suitable model than (3.8)

and (3.9).

The limit system (3.11) seems to be a good approximation of (3.8) and (3.9). We

consider the Frobenius norm of the difference between the limit systems on the source

boundary ω4. We will take values at time points tj =
j − 1

20
for j ∈ {1, 2, . . . 101} and

nodes xi =
i− 1

20
for i ∈ {1, 2, . . . 41}. For each simulation, we calculated the Frobenius
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Table 3.3: The first and third row contain the mean Frobenius norm of the difference of
the solutions for the 200 simiulations. The second and fourth row contain the standard
deviation of the Frobenius norm of the difference of the solutions for the 200 simulations.

pV = 0.9 pV = 0.95 pV = 0.98

Mean ‖urand − U‖F 1.21 0.631 0.267
St. Dev. ‖urand − U‖F 0.245 0.109 0.042
Mean ‖uε − U‖F 1.322 0.656 0.267
St. Dev. ‖uε − U‖F 0.258 0.109 0.042

norm of ‖U − urand‖F

‖U − urand‖F =

√√√√ 41∑
i=1

101∑
j=1

(U(xi, 0, tj)− urand(xi, 0, tj))
2, (3.15)

and ‖U−uε‖F . We report the average and standard deviation of these quantities for each

porosity level in Table 3.3. As pV increases, U better approximates both urand and uε.

However, it is not clear that U better approximates either uε or urand which is interesting

to note but would need a more analytical treatment to investigate.

We have selected and analyzed (3.3) which mathematically models the flash-heat ex-

periment with uniformly imperfect insulation leading to small loss on all of the boundary

of the rectangular cross section. The results of homogenization theory are encouraging.

It is also clear that the choice of reference domain, specifically the location of pores in

Ωε in relation to the source boundary ω4 determines the efficacy of U to approximate uε.

Similarly, the location of the pores in Ω in the random domain determine the behavior

of urand in relation to the approximation U . We also observed that U approximates urand

best at the lowest level of porosity, 98% or pV = 0.98.

Based on these encouraging results, we will now use limit system (3.11) developed in
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this chapter as a model to carry out parameter estimation of the parameter set (γ, α, λ).

We will use data simulated with (3.8) with added noise (which often occurs in collected

data) to evaluate the use of solutions of (3.11) as a model to describe data in inverse

problems.
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Chapter 4

Parameter estimation for the heat

equation

4.1 Mathematical Models

Before considering the inverse problem, we will recall the models discussed in Chapters 2–

3 for the forward problem. We again use the randomly perforated domain Ω depicted in

Figure 2.1, and the homogeneous, non perforated domain Ω̂ which is an L1×L2 rectangle

(again we will use L1 = 2 and L2 = 1) shown in Figure 3.1. The nr randomly placed

pores, which are generated using methods described in Chapters 2 and 3 and [30], are

given by Ωi with boundaries ∂Ωi for i = 1, 2 . . . nr. We again assume that these pores do

not intersect with each other nor the boundaries of Ω̂. The four boundaries of Ω̂ which

are also the four exterior boundaries of Ω are denoted ωi for i = 1, 2, 3, 4 (depicted in

Figure 2.1). We continue to refer to ω4 as the source boundary. The perforated domain

Ω is given by Ω̂\ (∪nr
i=1Ωi). Recall the partial differential equation model of the flash heat
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experiment on Ω



urand
t − α∇ ·

(
∇urand

)
+ γurand = 0 in Ω× (0, T )

α
∂urand

∂η
= 0 on ∪nr

i=1 ∂Ωi × (0, T )

α
∂urand

∂η
= −λurand on ∪3

i=1 ωi × (0, T )

α
∂urand

∂η
= SfI[0,ts](t)− λurand on ω4 × (0, T )

urand(0, ~x) = 0,

(4.1)

where α is the thermal diffusivity of the material Ω, γ corresponds to loss in the direction

orthogonal to the domain Ω (the z direction) and λ corresponds to loss on the boundary

of the the rectangle Ω̂. The flash heat input is modeled by the term SfI[0,ts](t) where

I[0,ts](t) =


1, for t ≤ ts

0 for t > ts.

There are many problems associated with using (4.1) as a model when performing the

inverse problem. The computational time associated with solving the forward problem

(4.1) is about two minutes. This is prohibitively long to perform the inverse problem.

Also, for many applications of the forward model, two minutes is far too long a compu-

tational time as well. Beyond the computational intensity associated with solving (4.1),

the random geometry of a porous sample (which we model as Ω) is not known for the

applications that we are concerned with so we can not assume that we know Ω a priori.

In Chapter 3, using the results of homogenization theory (see [5],[15], [19], [17], [20]
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and [18] and the references therein for details), we derived the limit system



pVUt − α∇ ·
(
A0∇U

)
+ γpVU = 0 in Ω̂× (0, T )

α
∂U

∂ηA0

= −λU on ∪3
i=1 ωi × (0, T )

α
∂U

∂ηA0

= SfI[0,ts](t)− λU on ω4 × (0, T )

U(0, ~x) = 0,

(4.2)

where pV is the proportion of Ω̂ occupied by Ω (pV =
area of Ω

area of Ω̂
) and A0 is the 2 × 2

homogenized matrix which we calculate using methods described in Chapter 3 and [13].

We denote
∂U

∂ηA0

= ~n · A0∇U where ~n is the exterior unit normal vector. The action

of A0 is to approximate the isotropic flow through the random domain Ω around the

perforations Ωi with anisotropic flow through the homogeneous rectangle Ω̂. We recall

from Chapter 3 that as nr → ∞, ν(ũrand) → ν(U) weakly in L2(0, T ;L2(ω4)) where

·̃ denotes the zero extension of Ω to all of Ω̂ and ν is the linear trace operator ν :

L2(0, T ;H1(Ω̂)) → L2(0, T ;L2(ω4)). Based on this convergence, we will consider using

U , the solution of (4.2), as a model solution in the ordinary least squares estimation

procedure for simulated data of U with added absolute random error and for simulated

data of urand (the solution of (4.1)) with added absolute random error in Section 4.2. In

Section 4.3, we will consider using U as a model solution in the generalized least squares

estimation procedure for simulated data of U with added relative random error and for

simulated data of urand with added relative random error which is dependent on the value

of urand.
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4.2 Ordinary Least Squares

We will consider a statistical model, which describes data with random error that has zero

mean, is independent and has constant variance. We will then discuss the OLS parameter

estimation procedure in general and finally go on to present results of preforming the OLS

parameter estimation procedure on two different kinds of simulated data in Section 4.2.1.

We will consider the full parameter set θ = (γ, α, λ), and subsets θλ = (γλ, αλ)

(corresponding to the assumption that the boundary loss parameter λ is known) and

θγ = (αγ, λγ) (corresponding to the assumption that the parameter that models loss in

the orthogonal direction γ is known). Now, that we have introduced the three parameter

sets, we will use the notation θ# to mean any of the three parameter sets θ, θλ and θγ

without loss of generality.

Full state observation is rare especially when the set of states is continuous (for our

problem ~x ∈ Ω̂). Often, when one performs thermal nondestructive evaluation, data is

given by the output of an IR camera. To model the resulting pixels, we will consider

Ci(φ) =
1

`

∫ xi+`

xi

φ(s, 0) ds.

So Ci gives the average value of functions along intervals of length ` starting at x = xi

on ω4 (the source boundary). We will suppose the “perfectly resolved” data is given by

Uij(θ
#
0 ) =

1

`

∫ xi+`

xi

U(tj, s, 0; θ#
0 ) ds (4.3)

or Uij(θ
#
0 ) = CiU(tj, ~x; θ#

0 ) where θ#
0 is the “true” parameter value. We will denote m

spatial nodes xi = x1, x2, . . . , xm and n temporal nodes tj = t1, t2, . . . , tn. The statistical

assumptions that underlie the OLS parameter estimation procedure corresponding to this
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observation process is then that data are given by realizations of the random process yij

which is defined as

yij = Uij(θ
#
0 ) + εij, (4.4)

where εij is a random variable that satisfies (4.5) below. The random variable (ran-

dom error) εij is further assumed to have zero mean, be independent and have constant

variance. More precisely, we assume

E(εij) = 0

V ar(εij) = σ2
0

Cov(εij, εkh) = 0 for (i, j) 6= (k, h).

(4.5)

It is important to emphasize that yij is a random variable with realizations yij. The

realization yij would correspond to observed data.

In order to obtain the parameter estimate θ̂#, we must minimize the OLS cost func-

tional

J(θ#) =
m∑
i=1

n∑
j=1

(Uij(θ
#)− yij)2. (4.6)

For each data set yij, the parameter estimate is given by

θ̂# = arg min
θ#∈Θ#

J(θ#) (4.7)

where Θ# is an admissible parameter set. The error estimate is then given by

σ̂2
# =

J(θ̂#)

nm− p (4.8)

where p is the number of parameters so p = 2 for θ̂# = θ̂γ and θ̂# = θ̂λ while p = 3 for
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θ̂# = θ̂.

Data collection nodes can be selected in many sophisticated ways such as by using

SE-optimal design, E-optimal design, D-optimal and c-optimal design methods (see [12]

and references therein). This is not the focus of our current efforts so we will examine

the sensitivity functions to select data collections nodes. For each parameter θ#
k in the

parameter set θ#, the associated sensitivity function (the sensitivity of the model solution

with respect to θ#
k ) V θ#k =

∂U

∂θ#
k

corresponds to the sensitivity of the solution with respect

to the kth parameter. In places where the sensitivity V θ#k is zero, one cannot obtain any

information about the kth parameter. However, one should not exclusively choose nodes

in the regions of the highest sensitivity [8].

We examined the sensitivity functions

V γ(t, xi) =
∂

∂γ

(
1

`

∫ xi+`

xi

U(t, s, 0; (10−3, 2.9167, 0.01)) ds

)
V α(t, xi) =

∂

∂α

(
1

`

∫ xi+`

xi

U(t, s, 0; (10−3, 2.9167, 0.01)) ds

)
V λ(t, xi) =

∂

∂λ

(
1

`

∫ xi+`

xi

U(t, s, 0; (10−3, 2.9167, 0.01)) ds

) (4.9)

for ` = 0.57 and xi = 0, 0.57, 1.14, 1.71 using calculations detailed in Appendix A.1. We

chose the values of xi and ` based on an example pixel width. We chose γ = 10−3,

α = 2.9167 and λ = 0.01 based on physically reasonable values. These are also values

that we will use when we simulate data in Sections 4.2.1 and 4.3.1.

After inspecting V γ, V α and V λ for different values of xi, we noticed little difference

so we arbitrarily chose two sets of spatial nodes xi ∈ {0, 0.57} and xi ∈ {0, 0.57, 1.14}

to consider the effect of sparsity of spatial nodes on the inverse problem. The values

of V γ(t, xi), V
α(t, xi) and V λ(t, xi) vary over time as depicted in Figures 4.1(a) and

(b). The sensitivity with respect to α, V α(t, xi) goes toward zero quickly after the
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(a)

(b)

Figure 4.1: The sensitivity functions of
1

0.57

∫ 0.57

0

U(t, s, 0) ds where U is the solution of

(4.2) with γ = 10−3, α = 2.9167 and λ = 0.01. (a) The sensitivity with respect to α for
time t ∈ [0, 2]. (b) The sensitivity with respect to λ and γ for time t ∈ [0, 300].
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end of flash-heating at ts = 0.6 s in Figure 4.1(a). There is often more measurement

error during flash-heating so we take many times just after the end of flash heating

{0.6 +
1

120
, 0.6 +

2

120
, . . . 0.6 +

7

120
} to gain information about the parameter α. The

sensitivities to γ and λ are depicted in Figure 4.1(b) and go to zero much more slowly

than V α. We take times {20, 40, . . . , 140} to gain information about the parameters γ

and λ. We note that in Figure 4.1(b) the sensitivity with respect to γ is less than the

sensitivity with respect to λ. This suggests that there could be problems estimating γ;

we will further discuss the well-posedness of estimating γ in Section 4.2.1.

Using the sensitivity matrix with entries

χi+m(j−1),k(θ) =
∂

∂θk
Uij(ζ)

∣∣∣∣
ζ=θ

(4.10)

we may calculate the estimated covariance matrix

Σ(θ̂#) = σ̂2
(
χT (θ̂#)χ(θ̂#)

)
(4.11)

and the estimated standard error of the kth parameter

SE(θ̂#
k ) =

√
Σkk(θ̂#). (4.12)

4.2.1 Simulated Ordinary Least Squares Data

We would like to consider data motivated by (4.1) because we suspect that this model

will resemble experimental data. We can not, however, use (4.1) as a model solution in

the OLS cost functional (4.6) because the random geometry Ω in (4.1) is not a priori

knowledge in most thermal nondestructive evaluation applications. Thus we are con-
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cerned with the behavior of Uij(θ) as a model solution in the inverse problem with data

motivated by urand. It is not simple to ensure that the OLS assumptions are satisfied

even in the most straight forward cases because relations between parameters can cause

violations in the OLS assumptions. For instance, the estimation of γ is ill-posed. In the

partial differential equation (4.2), if we make the transformation U = e−γtZ in (4.2) the

partial differential equation becomes



pVZt − α∇ ·
(
A0∇Z

)
= 0 on Ω̂× (0, T )

α
∂Z

∂ηA0

= −λZ on ∪3
i=1 ωi × (0, T )

α
∂Z

∂ηA0

= SfI[0,ts](t)− λZ on ω4 × (0, T )

(4.13)

This means that if we rewrite the cost functional in (4.6) as

J(U(tj, ~xi; θ),Dij) =
m∑
i=1

n∑
j=1

(U(tj, ~xi; θ)−Dij)
2 (4.14)

we can see that the cost functional J(U(tij, ~xi; θ),Dij) in (4.14) where U(tj, ~xi; θ) is the

solution of (4.2) can equivalently be written as

J(U(tj, ~xi; θ,Dij) = J(Z(tj, ~xi; θ), e
γtjDij) (4.15)

where Z(tj, ~xi; θ) is the solution of (4.13). This implies that by including γ any noise

in the data will be amplified. This will also cause model dependence in the error in Dij

which violates the error assumptions (4.5).

Because of the subtlety in verifying the OLS error assumptions (4.5) directly, we will

compare data simulated using the solution of (4.2) with data simulated using the solution
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of (4.1). We simulate data motivated by OLS assumptions and the solution of (4.2) with

the random process

Dij(σ) = Uij(10−3, 2.9167, 0.01) + σβij (4.16)

where βij is a random variable which follows a standard normal distribution or βij ∼

N (0, 12). We consider two sets of spatial nodes xi = 0, 0.57 and xi = 0, 0.57, 1.14.

We simulate data motivated by the OLS error assumptions (4.5) and the solution of

(4.1) with the random process

Drand
ij (σ) = urand

ij + σβij (4.17)

where urand
ij is given by

urand
ij =

1

`

∫ xi+`

xi

urand(tj, s, 0; (10−3, 2.9167, 0.01)) ds, (4.18)

with urand(tj, s, 0; (10−3, 2.9167, 0.01)) the solution of (4.1) with (γ, α, λ) = (10−3, 2.9167, 0.01)

on a randomly perforated geometry Ω.

For realizations of Dij(σ) and Drand
ij (σ) each data set is analyzed using the results of

OLS asymptotic theory for the parameter sets θ = (γ, α, λ), θγ = (α, λ) and θλ = (γ, λ).

So for each data set we perform three inverse problems calculating three parameter

estimates θ̂γ, θ̂λ and θ̂ using (4.7), three error estimates σ̂2
γ, σ̂

2
λ and σ̂2 using (4.8), three

covariance matrix estimates Σ(θ̂γ), Σ(θ̂λ), and Σ(θ̂) using (4.11), and the standard error

for each parameter in the sets θ̂, θ̂λ, and θ̂γ denoted SE(γ̂), SE(α̂), SE(λ̂), SE(γ̂λ), SE(α̂λ),

SE(α̂γ), and SE(λ̂γ) using (4.12).

There are many different ways to consider these parameter estimation and uncertainty

estimation problems. We will consider the difference between the parameter estimate and
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the “true” parameter values γ0 = 10−3, α0 = 2.9167, and λ0 = 0.01 which will give us

insight into the accuracy of the parameter estimate θ̂#
k . We will also consider the ratio of

the estimated standard error to the parameter estimate or SE(θ̂#
k )/θ̂#

k . When this ratio

is large, there is little confidence in the value of the parameter θ̂#
k . For instance, the 95%

confidence interval for m = 3 for γ̂ is given by

95% confidence interval for γ̂ = (γ̂ − 2.02× SE(γ̂), γ̂ + 2.02× SE(γ̂)).

In this example when SE(γ̂)/γ̂ is greater than 0.5, we can not even be confident that the

parameter γ is positive. So the ratio SE(θ̂#
k )/θ̂#

k is related to the uncertainty associated

with the parameter estimate θ̂#
k .

We will now compare the results of ordinary least squares parameter estimation pro-

cedure for realizations of Dij(σ) with the results of ordinary least squares parameter es-

timation procedure for realizations of Drand
ij (σ). In Figures 4.2–4.7, the simulated data is

taken at temporal collection nodes tj = 0.6+
1

120
, 0.6+

2

120
, . . . , 0.6+

7

120
, 20, 40, . . . , 140

and spatial nodes xi = 0, 0.57, 1.14. Figure 4.2(a) depicts the difference α̂#−α0 for each

of five realizations at each level of added noise σ = 0.015, 0.030, . . . , 0.090 for Dij(σ).

The estimates for the three parameter subsets do not seem to vary much. That is, we

see that for each realization the differences α̂ − α0, α̂γ − α0 and α̂λ − α0 are relatively

close. Figure 4.2(b) depicts the difference α̂#−α0 for each of five realizations of Drand
ij (σ)

at each level of noise σ = 0,0.015,. . . , 0.090, we see that the differences α̂# − α0 do not

seem to vary much for each realization either. Also, the results depicted in Figure 4.2(a)

resemble the results depicted in Figure 4.2(b). This suggests that using realizations of

Dij(σ) versus Drand
ij (σ) does not affect the accuracy of the estimates α̂#. In Figures 4.3

(a) and (b), we examine the ratios SE(α̂#)/α̂# for the five realizations of Dij(σ) and
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Drand
ij (σ), respectively. In Figure 4.3(a), we see that the uncertainty associated with the

estimate α̂ is larger than the uncertainty associated with the estimates α̂γ and α̂λ. It

also appears that the ratio SE(α̂#)/α̂# varies linearly with σ. These observations are

valid for the ratios depicted in Figure 4.3(b), as well. The similarities in Figure 4.3(a)

and Figure 4.3(b) suggest that there is not a significant difference in using realizations

Dij(σ) and Drand
ij (σ) regarding the uncertainty associated the OLS parameter estimate

α̂#.

We also considered the parameter λ. Figures 4.4(a) are the differences λ# − λ0

(λ0 = 0.01) for the realizations used in Figures 4.2(a) and 4.3(a). The difference λ̂#−λ0,

unlike these differences for the parameter α, appears to depend on the parameter set. The

magnitude of the difference λ̂− λ0 is much larger than the difference λ̂γ − λ0 indicating

that estimating γ adds inaccuracy to the estimate of λ. In Figure 4.4(b), we have plotted

the difference λ̂# − λ0 for the realizations depicted in Figures 4.2(b) and 4.3(b). In

Figure 4.4(b), we see that the differences λ̂γ − λ0 and λ̂ − λ0 for the realizations of

Drand
ij (σ) resemble these differences for the realizations of Dij(σ) in Figure 4.4(a) so we

suspect that the error associated with the approximation of urand (the solution of (4.1))

with U (the solution of (4.2)) in the model solution does not affect the estimate of λ̂γ

nor λ̂.

In Figure 4.5(a), we see that the ratio SE(λ̂γ)/λ̂γ appears to be linear in σ for the

realizations of Dij(σ). This linear pattern is similar to the linearity in Figure 4.5(c) which

depicts the ratio SE(λ̂γ)/λ̂γ for the realizations of Drand
ij (σ). Also, the ratio SE(λ̂γ)/λ̂γ

is on about the same scale in Figures 4.5(a) and (c). So for λ̂γ, there does not appear to

be a difference in using data generated by (4.16) versus data generated by (4.17) in the

accuracy of the parameter estimate λ̂γ nor the uncertainty associated with the parameter

estimate λ̂γ.
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Figure 4.2: The points denoted with o are the difference α̂γ − α0, the points denoted are
the α̂λ−α0, the points denoted ∗ are the difference α̂−α0 (a) The result of five realizations
of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of
Drand
ij (σ) for values of σ = 0,0.015,. . . , 0.090.
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Figure 4.3: The points denoted with o are the ratio SE(α̂γ)/α̂γ, the points denoted are
the SE(α̂λ)/α̂λ, the points denoted ∗ are the difference SE(α̂)/α̂ (a) The result of five
realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five
realizations of Drand

ij (σ) for values of σ = 0,0.015,. . . , 0.090.
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In order to consider the ratio SE(λ̂)/λ̂, we plotted the logarithm of this quantity

in Figures 4.17(b) (for realizations of Dij(σ) and (d) (for Drand
ij (σ) because in both ex-

amples these quantities vary greatly. The ratio SE(λ̂)/λ̂ in both Figure 4.17(b) and

Figure 4.17(d) appears to grow exponentially with added error σ which is not surprising

based on our observation in (4.15) that γ in the parameter estimation increases the error

in the data.

The estimation of γ is ill-posed for the parameter values, spatial nodes and temporal

nodes in this problem. In Figures 4.6(a) and (b), we see that the difference γ̂ − γ0

(γ0 = 10−3) is very large compared to γ0. This is true for both the realizations of Dij(σ)

in Figure 4.6(a) and the realizations of Drand
ij (σ) in Figure 4.6(b). Though the differences

γ̂λ − γ0 are smaller than γ̂ − γ0 in Figures 4.6(a) and (b), in Figures 4.7(a) and (c) we

see that the uncertainty associated with the estimate γ̂λ is very large. In Figure 4.7(a),

we see that, for the realizations of Dij(σ), the ratios SE(γ̂λ)/γ̂λ do not appear to grow

exponentially with σ but the values of SE(γ̂λ)/γ̂λ are so large that the 95% confidence

interval contains negative values γ̂λ. Thus one cannot conclude with 95% confidence that

γλ is positive. The use of Drand
ij (σ) in the OLS parameter estimation procedure does

appear to affect the uncertainty associated with the parameter estimate γ̂λ as we see in

the exponential growth of SE(γ̂λ)/γ̂λ with σ for realizations of Drand
ij (σ) in Figure 4.7(c).

The ratio SE(γ̂)/γ̂ varies on an exponential scale for both realizations of Dij(σ) and

Drand
ij (σ) in Figures 4.7(b) and (d), respectively.

We also considered data at temporal nodes tj = 0.6 +
1

120
, 0.6 +

2

120
, . . . , 0.6 +

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57 to understand how sparsity of spatial

data affects the inverse problem. For each level of added noise σ = 0.015, 0.030, . . . , 0.090,

we simulated five realizations of Dij(σ) using (4.16). We also simulated five realizations

of Drand
ij (σ) using (4.17) for each level of added noise σ = 0,0.015,. . . , 0.090. For each
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Figure 4.4: The points denoted with o are the difference λ̂γ − λ0, and the points denoted
∗ are the difference λ̂ − λ0 (a) The result of five realizations of Dij(σ) for values of
σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0,0.015,. . . , 0.090.
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Figure 4.5: (a) The ratio SE(λ̂γ)/λ̂γ for five realizations of Dij(σ) for values of σ =

0.015, 0.030, . . . , 0.090 (b) The log of the ratio log SE(λ̂)/λ̂ for five realizations of Dij(σ)

for values of σ = 0.015, 0.030, . . . , 0.090. (c) The ratio SE(λ̂γ)/λ̂γ for five realizations of

Drand
ij (σ) for values of σ = 0,0.015,. . . , 0.090. (d) The log of the ratio log SE(λ̂)/λ̂ for five

realizations of Drand
ij (σ) for values of σ = 0,0.015,0.030,. . . , 0.090.
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Figure 4.6: The points denoted with o are the difference γ̂λ− γ0, and the points denoted
∗ are the difference γ̂ − γ0 (a) The result of five realizations of Dij(σ) for values of
σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0,0.015,. . . , 0.090.
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Figure 4.7: (a) The ratio SE(γ̂λ)/γ̂λ for five realizations of Dij(σ) for values of σ =
0.015, 0.030, . . . , 0.090 (b) The log of the ratio log SE(γ̂)/γ̂ for five realizations of Dij(σ)
for values of σ = 0.015, 0.030, . . . , 0.090. (c) The log of the ratio log(SE(γ̂λ)/γ̂λ) for five
realizations of Drand

ij (σ) for values of σ = 0,0.015,. . . , 0.090. (d) The log of the ratio

log SE(γ̂)/γ̂ for five realizations of Drand
ij (σ) for values of σ = 0, 0.015,0.030,. . .,0.090.
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realization of Drand
ij (σ) a different random geometry Ω is used to solve (4.1) for urand

ij in

(4.18). Results from these simulations are given in Figures 4.8–4.13.

For the realizations of Dij(σ), the differences α̂#−α0 are plotted in Figure 4.8(a) while

these differences for the realizations of Drand
ij (σ) are plotted in Figure 4.8(b). Much like

these quantities in Figures 4.2(a) and (b), for each realization the differences α̂λ−α0, α̂γ−

α0 and α̂−α0 remain relatively close and are on about the same scale as in Figures 4.2(a)

and (b). The ratios SE(α̂#)/α̂# for the realizations of Dij(σ) and Drand
ij (σ) are plotted in

Figures 4.9(a) and (b), respectively. In both figures, it appears that the ratio SE(α̂)/α̂

is larger than the ratios SE(α̂λ)/α̂λ and SE(α̂γ)/α̂γ. It also appears that the relationship

between the ratios SE(α̂#)/α̂# and σ is linear as we observed in Figures 4.3(a) and (b)

as well. This suggests that for the temporal and spatial nodes that we are considering

estimating α is well-posed and there is little difference between using realizations of

Drand
ij (σ) and Dij(σ) in the estimation of the parameter α and the estimation of the

uncertainty associated with α.

In Figures 4.10(a) and (b), we see that the difference λ̂ − λ0 is larger than λ̂γ −

λ0 for the realizations of Dij(σ) and Drand
ij (σ), respectively. Figure 4.10(b) resembles

Figure 4.10(a) which suggests that using realizations of Drand
ij (σ) rather than realizations

of Dij(σ) does not have a large effect on the accuracy of the parameter estimates λ̂#.

The ratios SE(λ̂γ)/λ̂γ appear to be similar for realizations of Dij(σ) (in Figure 4.11(a))

and realizations of Drand
ij (σ) (in Figure 4.11(c)) and seem to vary linearly with σ. The

ratios SE(λ̂)/λ̂ are much larger than the ratios SE(λ̂γ)/λ̂γ, so we plotted log(SE(λ̂)/λ̂)

for the realizations of Dij(σ) in Figure 4.11(b) and for the realizations of Drand
ij (σ) in

Figure 4.11(d). This implies that for realizations of Dij(σ) and Drand
ij (σ) estimating γ

causes a dramatic increase in the uncertainty associated with the parameter estimate λ̂

for spatial nodes xi = 0, 0.57. Note that this effect appears to be similar for realizations
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Figure 4.8: The points denoted with o are the difference α̂γ − α0, the points denoted are
the α̂λ−α0, the points denoted ∗ are the difference α̂−α0 (a) The result of five realizations
of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of
Drand
ij (σ) for values of σ = 0,0.015,. . . , 0.090.
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Figure 4.9: The points denoted with o are the ratio SE(α̂γ)/α̂γ, the points denoted are
the SE(α̂λ)/α̂λ, the points denoted ∗ are the difference SE(α̂)/α̂ (a) The result of five
realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five
realizations of Drand

ij (σ) for values of σ = 0,0.015,. . . , 0.090.
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of Dij(σ) in Figure 4.11(b) as for realizations of Drand
ij (σ) in Figure 4.11(d).

The estimation of the parameter γ appears to be ill-posed for the spatial nodes xi =

0, 0.57, especially when estimating the parameter set (γ, α, λ). The differences γ̂−γ0 are

several orders of magnitude larger than the “true” parameter γ0 = 10−3 in Figure 4.12(a)

(for realizations of Dij(σ)) and in Figure 4.6(b) (for realizations of Drand
ij (σ)).

For the spatial nodes xi = 0, 0.57, the uncertainty associated with the parameter

estimate γ̂# is very large. For all of the examples of SE(γ̂#)/γ̂# in Figures 4.13(a)–(d)

we plotted log (SE(γ̂#)/γ̂#) because the variation of SE(γ̂#)/γ̂# was so large for every

example. Figures 4.13(a) and (c) depict SE(γ̂λ)/γ̂λ for the realizations of Dij(σ) and

Drand
ij (σ), respectively. The ratios SE(γ̂λ)/γ̂λ are on an exponential scale for realizations

of Dij(σ) in Figure 4.13(a) with spatial nodes xi = 0, 0.57 while the ratios SE(γ̂λ)/γ̂λ are

on a linear scale for realizations of Dij(σ) in Figure 4.7(a) which indicates that sparsity of

spatial collection nodes affects the uncertainty associated with the parameter estimates

γ̂#.
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Figure 4.10: The points denoted with o are the difference λ̂γ−λ0, and the points denoted
∗ are the difference λ̂ − λ0 (a) The result of five realizations of Dij(σ) for values of
σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0,0.015,. . . , 0.090.
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Figure 4.11: (a) The ratio SE(λ̂γ)/λ̂γ for five realizations of Dij(σ) for values of σ =

0.015, 0.030, . . . , 0.090 (b) The log of the ratio log SE(λ̂)/λ̂ for five realizations of Dij(σ)

for values of σ = 0.015, 0.030, . . . , 0.090. (c) The ratio SE(λ̂γ)/λ̂γ for five realizations of

Drand
ij (σ) for values of σ = 0,0.015,. . . , 0.090. (d) The log of the ratio log SE(λ̂)/λ̂ for five

realizations of Drand
ij (σ) for values of σ = 0,0.015,0.030,. . . , 0.090.
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Figure 4.12: The points denoted with o are the difference γ̂λ−γ0, and the points denoted
∗ are the difference γ̂ − γ0 (a) The result of five realizations of Dij(σ) for values of
σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0,0.015,. . . , 0.090.

64



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−1

0

1

2

3

4

5

6

7

8

9

σ

lo
g(

S
E

(γ̂
λ
)/

γ̂
λ
)

Log of the ratio SE(γ̂λ)/γ̂λ for xi = 0, 0.57

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

σ

lo
g(

S
E

(γ̂
)/

γ̂
)

Log of the ratio SE(γ̂)/γ̂ for xi = 0, 0.57

(a) (b)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−4

−2

0

2

4

6

8

10

σ

lo
g(

S
E

(γ̂
λ
)/

γ̂
λ
)

Log of the ratio SE(γ̂λ)/γ̂λ for xi = 0, 0.57

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0

1

2

3

4

5

6

7

8

σ

lo
g(

S
E

(γ̂
)/

γ̂
)

Log of the ratio SE(γ̂)/γ̂ for xi = 0, 0.57

(c) (d)

Figure 4.13: (a) The ratio SE(γ̂λ)/γ̂λ for five realizations of Dij(σ) for values of σ =
0.015, 0.030, . . . , 0.090 (b) The log of the ratio log SE(γ̂)/γ̂ for five realizations of Dij(σ)
for values of σ = 0.015, 0.030, . . . , 0.090. (c) The log of the ratio log(SE(γ̂λ)/γ̂λ) for five
realizations of Drand

ij (σ) for values of σ = 0,0.015,. . . , 0.090. (d) The log of the ratio

log SE(γ̂)/γ̂ for five realizations of Drand
ij (σ) for values of σ = 0, 0.015, 0.03, . . ., 0.09.

65



4.3 Generalized Least Squares

The generalized least squares (GLS) parameter estimation procedure (like the OLS pa-

rameter estimation procedure) is based on an underlying statistical model. The error

for GLS is assumed to be relative or proportional to the model value. Observations are

assumed to be realizations of the random process yij given by

yij = Uij(θ
#
0 ) (1 + εij) , (4.19)

where εij is assumed to have constant variance, zero mean, and mutually independent or

E(εij) = 0

V ar(εij) = σ2
0

Cov(εij, εkh) = 0 for (i, j) 6= (k, h).

(4.20)

Note that in (4.19), the error is given by Uij(θ
#
0 )εij so it is proportional to the model

and the variance is proportional to U2
ij(θ

#
0 ). Assuming the statistical model given by

(4.19), the GLS parameter estimation procedure involves the minimization of the cost

functional below

J(θ#) =
m∑
i=1

n∑
j=1

(
Uij(θ

#)− yij
Uij(θ#)

)2

. (4.21)

The GLS parameter estimate is given by

θ̂# = arg min
θ#∈Θ#

J(θ#), (4.22)

where J(θ#) is defined in (4.21). We used the iteratively reweighted least squares method
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as described in [7] and [22] to minimize (4.21). The GLS error estimate σ̂2
# is given by

σ̂2
# =

J(θ̂#)

nm− p, (4.23)

where again J(θ̂#) is defined in (4.21). The nm × nm matrix of weights W (θ#) has

entries

wi+m(j−1),i+m(j−1)(θ
#) =

1

U2
ij(θ

#)
(4.24)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The GLS covariance matrix estimate Σ(θ̂#) is

given below

Σ(θ̂#) = σ̂2
(
χT (θ̂#)W (θ̂#)χ(θ̂#)

)
(4.25)

where χ(θ̂#) is the matrix of sensitivities with entries given in (5.29). The standard error

estimates are again given by the square roots of the diagonal entries of the covariance

matrix

SE(θ̂#
k ) =

√
Σkk(θ̂#). (4.26)

4.3.1 Simulated Generalized Least Squares Data

As in the previous section, we will consider the well-posedness of the GLS parameter

estimation procedure by considering the resulting parameter estimates and uncertainty

estimates for simulated data. We simulate data motivated the GLS error assumptions

in (4.19) and (4.20) using both the solutions of (4.1) urand and solutions of (4.2) U . In

order to consider U the solution of (4.2) as a model solution in the inverse problem, we

will simulate data which is given by realizations of Dij where Dij is given by

Dij(σ) = Uij(10−3, 2.9167, 0.01)
(
1 + σβij

)
(4.27)
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where Uij(10−3, 2.9167, 0.01) is given by (4.3), and βij follows a standard normal dis-

tribution or βij ∼ N (0, 12). Again, as in Section 4.2.1, we consider spatial nodes

xi = 0, 0.57, 1.14 and xi = 0, 0.57 and temporal nodes tj = 0.6+
1

120
, 0.6+

2

120
, . . . , 0.6+

7

120
, 20, 40, . . . , 140. We analyzed five realizations of Dij(σ) for each value of σ =

0.02, 0.05, 0.10.

We also consider data which is generated using solutions of (4.1) and motivated by

the GLS assumptions with realizations of the random process

Drand
ij (σ) = urand

ij (1 + σβij), (4.28)

where urand
ij is defined in (4.18), and βij is a random variable sampled from a standard

normal distribution or βij ∼ N (0, 12). We calculated five realizations of Drand
ij (σ) for

each value of σ = 0, 0.02, 0.05, 0.10.

For both sets of simulations, we calculate the parameter estimates θ̂#, or θ̂λ = (γ̂λ, α̂
λ),

θ̂γ = (α̂γ, λ̂
γ) and θ̂ = (γ̂, α̂, λ̂) as defined in (4.22) by minimizing (4.21). We also

calculate SE(θ̂#) using (4.26).

As in Section 4.3.1, we consider the accuracy of the inverse problem by investigating

θ̂# − θ#
0 and the uncertainty associated with the inverse problem by investigating the

ratios SE(θ̂#)/θ̂#. In Figures 4.14–4.19, we consider these simulations with spatial nodes

xi = 0, 0.57, 1.14. Figure 4.14(a) depicts α̂# − α0 for five realizations of Dij(σ) for each

value of σ = 0.02, 0.05, 0.10. The values of α#−α0 in Figure 4.14(b) for five realizations

of Drand
ij (σ) for each value of σ = 0, 0.02, 0.05, 0.10 appear to be smaller than those in

Figure 4.14(a). This suggests that the GLS parameter estimation procedure predicts α̂#

more accurately for data generated by realizations Dij(σ) than for data generated by

realizations of Drand
ij (σ).
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To consider the uncertainty associated with the parameter estimates α̂# − α0, we

plotted the ratio SE(α̂#)/α̂# in Figure 4.15(a) for realizations of Dij(σ) and in Fig-

ure 4.15(b) for realizations of Drand
ij (σ). The ratios SE(α̂#)/α̂# appear to be linear in σ

for realizations of Dij(σ) and Drand
ij (σ) with similar slopes. It appears that there is little

difference between using realizations of Dij(σ) and realizations of Drand
ij (σ) in the GLS

estimate of the uncertainty associated with the parameter estimate α̂#.

We plotted the differences λ̂# − λ0 for the realizations of Dij(σ) in Figure 4.16(a)

and the realizations of Drand
ij (σ) in Figure 4.16(b). The differences between λ̂γ and λ0 are

very small for both realizations of Dij(σ) in Figure 4.16(a) and realizations of Drand
ij (σ) in

Figure 4.16(b). The difference λ̂−λ0 (depicted in Figure 4.16(a) for realizations of Dij(σ)

and Figure 4.16(b) for realizations of Drand
ij (σ)) has a much larger magnitude than the

magnitude of the difference λ̂γ−λ0. This suggests as in Section 4.2.1 estimating γ detracts

from the accuracy GLS estimate of the parameter λ. This is because, as we observed

in Section 4.2.1, if we make the transformation U = e−γtZ in the partial differential

equation (4.2), we get the same partial differential equation but without the zero order

term pV γU (4.13). Thus, if we write the GLS cost functional as

J(U(tj, ~xi; θ),Dij) =
m∑
i=1

n∑
j=1

(
U(tj, ~xi; θ)−Dij

U(tj, ~xi; θ)

)2

(4.29)

then the cost functional can be written as J(Z(tj, ~xi; θ), e
γtjDij). Estimating γ adds an

extra level of time dependence to the error which would violate the error assumptions

in (4.20). We further see the effect of estimating γ on the uncertainty associated with

the parameter estimate λ̂. In Figure 4.17(a) we plotted the ratio SE(λ̂γ)/λ̂γ versus σ

for realizations of Dij(σ) and the ratio SE(λ̂γ)/λ̂γ versus σ in Figure 4.17(c). The ratios

SE(λ̂γ)/λ̂γ in both of these examples appear to be linearly dependent on σ. When the
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Figure 4.14: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The

points denoted with o are the difference α̂γ −α0, the points denoted are the α̂λ−α0, the
points denoted ∗ are the difference α̂−α0 (a) The result of five realizations of Dij(σ) for
values of σ = 0.02, 0.05, 0.10 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0, 0.02, 0.05, 0.10.
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Figure 4.15: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The

points denoted with o are the ratio SE(α̂γ)/α̂γ, the points denoted are the SE(α̂λ)/α̂λ, the
points denoted ∗ are the difference SE(α̂)/α̂ (a) The result of five realizations of Dij(σ)
for values of σ = 0.02, 0.05, 0.10 (b) The result of five realizations of Drand

ij (σ) for values
of σ = 0, 0.02, 0.05, 0.10.
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full parameter set θ̂ is estimated, we see that the ratio SE(λ̂γ)/λ̂γ varies exponentially

with σ in Figures (b) and (d) in which we plotted log(SE(α̂)/α̂) versus σ for realizations

of Dij(σ) and Drand
ij (σ), respectively.
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Figure 4.16: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The

points denoted with o are the difference λ̂γ−λ0, and the points denoted ∗ are the difference

λ̂ − λ0 (a) The result of five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b)
The result of five realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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Figure 4.17: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. (a) The

ratio SE(λ̂γ)/λ̂γ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The log

of the ratio log SE(λ̂)/λ̂ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10. (c)

The ratio SE(λ̂γ)/λ̂γ for five realizations of Drand
ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.

(d) The log of the ratio log SE(λ̂)/λ̂ for five realizations of Drand
ij (σ) for values of σ =

0, 0.02, 0.05, 0.10.
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We also examined the difference between γ̂# − γ0 in Figures 4.18(a) and (b). In

Figure 4.18(a), we plotted γ̂# − γ0 for realizations of Dij(σ). In Figure 4.18(b), we

plotted γ# − γ0. In both Figure 4.18(a) and (b), |γ̂λ − γ0| is several orders of magnitude

less than |γ̂ − γ0|. Thus by estimating the entire parameter set θ̂, we gain inaccuracy

of our estimate of γ̂. Also, the differences |γ̂ − γ0| are an order of magnitude greater

than the parameter itself γ0 = 10−3. In Figures 4.19(a)–(b), we see that the uncertainty

associated with the parameter estimate γ̂# varies exponentially with σ. Figure 4.19(a)

and (c), we plotted log(SE(γ̂λ)/γ̂λ) for realizations of Dij(σ) and Drand
ij (σ), respectively.

In Figures 4.19(b) and (d), we see that log(SE(γ̂)/γ̂) is larger for realizations of Dij(σ)

(in (b)) than for realizations of Drand
ij (σ) (in (d)) though log(SE(γ̂)/γ̂) (in Figures 4.19(b)

and (d)) appears to be larger than log(SE(γ̂λ)/γ̂λ) (in Figure 4.19(a) and (c)).
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Figure 4.18: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The

points denoted with o are the difference γ̂λ−γ0, and the points denoted ∗ are the difference
γ̂ − γ0 (a) The result of five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b)
The result of five realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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Figure 4.19: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. (a)

The log of the ratio log(SE(γ̂λ)/γ̂λ) for five realizations of Dij(σ) for values of σ =
0.02, 0.05, 0.10 (b) The log of the ratio log (SE(γ̂)/γ̂) for five realizations of Dij(σ) for
values of σ = 0.02, 0.05, 0.10. (c) The log of the ratio log(SE(γ̂λ)/γ̂λ) for five realizations
of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10. (d) The log of the ratio log SE(γ̂)/γ̂ for

five realizations of Drand
ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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We also considered realizations of Dij(σ) (given by (4.27)) and Drand
ij (σ) (given

by (4.28)) for spatial nodes xi = 0, 0.57 and the same temporal nodes tj = 0.6 +

1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140. The results of these realizations are depicted

in Figures 4.20–4.25.

We see that for realizations of Dij(σ) and Drand
ij (σ) the accuracy of the GLS parameter

estimation procedure for the parameter α is similar for the two random processes. We see

this in Figures 4.20(a) and (b) though it does appear that one realization of Drand
ij (0.10)

produced large values of α̂λ, α̂γ, and α̂ in Figure 4.20(b). In Figures 4.21(b), we see this

extreme realization of Drand
ij (0.10) also produced large ratios SE(α̂#)/α̂#. Other than this

extreme realization, the ratios SE(α̂#)/α̂# for realizations of Dij(σ) (in Figure 4.21(a))

and Drand
ij (σ) (in Figure 4.21(b)) appear to have similar linear dependence on σ.

The differences λ̂# − λ0 are depicted in Figures 4.22(a) and (b) for realizations

of Dij(σ) and Drand
ij (σ), respectively. Again, we see similar results for realizations of

Dij(σ) and realizations of Drand
ij (σ). We also note, that as was the case for spatial nodes

xi = 0, 0.57, 1.14 in Figure 4.16(a) and (b), |λ̂ − λ0| is much larger than |λ̂γ − λ0| for

both realizations of Dij(σ) and realizations of Drand
ij (σ). The ratio SE(λ̂γ)/λ̂γ appears to

vary linearly with σ for both realizations of Dij(σ) (in Figure 4.23(a)) and realizations

of Drand
ij (σ) (in Figure 4.23(c)), while the dependence of SE(λ̂)/λ̂ is less clear though it

does vary greatly with σ for both realizations Dij(σ) (log(SE(λ̂)/λ̂) is plotted in Fig-

ure 4.23(b)) and realizations of Drand
ij (σ) (log(SE(λ̂)/λ̂) is plotted in Figure 4.23(d)).
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Figure 4.20: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points

denoted with o are the difference α̂γ − α0, the points denoted are the α̂λ − α0, the
points denoted ∗ are the difference α̂−α0 (a) The result of five realizations of Dij(σ) for
values of σ = 0.02, 0.05, 0.10 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0, 0.02, 0.05, 0.10.
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Figure 4.21: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points

denoted with o are the ratio SE(α̂γ)/α̂γ, the points denoted are the SE(α̂λ)/α̂λ, the
points denoted ∗ are the difference SE(α̂)/α̂ (a) The result of five realizations of Dij(σ)
for values of σ = 0.02, 0.05, 0.10 (b) The result of five realizations of Drand

ij (σ) for values
of σ = 0, 0.02, 0.05, 0.10.
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Figure 4.22: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points

denoted with o are the difference λ̂γ − λ0, and the points denoted ∗ are the difference

λ̂ − λ0 (a) The result of five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b)
The result of five realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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Figure 4.23: The results of realizations of simulated data with temporal nodes tj =

0.6+
1

120
, 0.6+

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. (a) The ratio

SE(λ̂γ)/λ̂γ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The log of

the ratio log SE(λ̂)/λ̂ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10. (c)

The ratio SE(λ̂γ)/λ̂γ for five realizations of Drand
ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.

(d) The log of the ratio log SE(λ̂)/λ̂ for five realizations of Drand
ij (σ) for values of σ =

0, 0.02, 0.05, 0.10.
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The differences γ̂# − γ0 are plotted for realizations of Dij(σ) and Drand
ij (σ) in Fig-

ures 4.24(a) and (b), respectively. In both figures, the values |γ̂ − γ0| are much larger

than the values |γ̂λ − γ0|. This demonstrates that in these cases, estimating the full

parameter set θ̂ contributes to inaccuracy of the paramter estimate of γ. Also, the dif-

ferences |γ̂ − γ0| are several orders of magnitude larger than the “true” parameter value

γ0 = 10−3. The values of the ratios SE(γ̂#)/γ̂# vary a lot with σ in Figures 4.25(a)–(d).

Figure 4.25(a) depicts log (SE(γ̂λ)/γ̂λ) for realizations of Dij(σ) while Drand
ij (σ) depicts

log (SE(γ̂λ)/γ̂λ) for realizations of Drand
ij (σ). In both Figure 4.25(a) and Figure 4.25(c),

the ratio SE(γ̂λ)/γ̂λ appears to depend exponentially on σ, though the value of SE(γ̂λ)/γ̂λ

remains below one for realizations that we considered. In Figures 4.25(b) and (d), we

see that log(SE(γ̂)/γ̂) varies between 1–5 for realizations of Dij(σ) (in (b)) and between

-2–8 for realizations of Drand
ij (σ) (in (d)).
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Figure 4.24: The results of realizations of simulated data with temporal nodes tj =

0.6 +
1

120
, 0.6 +

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points

denoted with o are the difference γ̂λ − γ0, and the points denoted ∗ are the difference
γ̂ − γ0 (a) The result of five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b)
The result of five realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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Figure 4.25: The results of realizations of simulated data with temporal nodes tj =

0.6+
1

120
, 0.6+

2

120
, . . . ,

7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. (a) The ratio

SE(γ̂λ)/γ̂λ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The log
of the ratio log SE(γ̂)/γ̂ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10.
(c) The log of the ratio log(SE(γ̂λ)/γ̂λ) for five realizations of Drand

ij (σ) for values of

σ = 0, 0.02, 0.05, 0.10. (d) The log of the ratio log SE(γ̂)/γ̂ for five realizations of Drand
ij (σ)

for values of σ = 0, 0.02, 0.05, 0.10.
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Chapter 5

Damage Detection and

Characterization

5.1 Mathematical models

In order to discuss our method of detecting damage and results, we must discuss a

few underlying models. First, we will discuss the models that we will use to simulate

data. We developed a method for modeling the flash heat experiment on both damaged

and undamaged porous domains in Chapter 2 which we use to simulate data in this

chapter. We model the undamaged domain by the randomly perforated domain Ω. The

homogeneous, non perforated domain is given by Ω̂ which is an L1 × L2 rectangle (here

we will use L1 = 10 and L2 = 2). The nr randomly placed pores, which are generated

using methods described in Chapter 2, are again denoted Ωi with boundaries ∂Ωi for

i = 1, 2 . . . nr. The undamaged perforated domain Ω is given by Ω̂ \ (∪nr
i=1Ωi). We will

call the damaged porous domain ΩD(q). The damage will be given by the ellipse ED(q) =

{(x, y) :

(
x− xD
hD

)2

+

(
y − yD
vD

)2

< 1} with center (xD, yD), hD is the horizontal semi-
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axis and vD is the vertical semi-axis. The ellipse and damaged domain are parameterized

by q which specifies (xD, yD, hD, vD) though throughout this chapter we will consider yD

to be fixed. We restrict q so that the center of ED(q) is above the back boundary ω2,

and ED(q) intersects the boundary of Ω̂ at two points on ω2. The damaged geometry is

then given by ΩD(q) = Ω \
(
ED(q) ∪ O(q)

)
where O(q) is the set of ellipses in Ω that

intersect ED(q). An example damaged domain is depicted in Figure 5.1. We model the

heat equation on this domain with



∂

∂t
urand
D − α∇ ·

(
∇urand

D

)
= 0 in ΩD × (0, T )

α
∂

∂η
urand
D = 0 on

(
∪nD

r
i=1∂Ωi

)
× (0, T )

α
∂

∂η
urand
D = 0 on

(
ω1 ∪ ωD2 ∪ ω3

)
× (0, T )

α
∂

∂η
urand
D = SfI[0,ts](t) on ω4 × (0, T )

urand(0, ~x) = 0,

(5.1)

where the ∂Ωi for i = 1, 2, . . . nDr are the boundaries of the nDr pores remaining in ΩD(q).

The back boundary of ΩD(q), ωD2 (q) is parametrized by (xD, yD, hD, vD). In order to

define ωD2 (q) more precisely, we introduce the piecewise defined function

r(x; q) =



L2 for 0 ≤ x ≤ xL(q)

yD − vD

√
1−

(
x− xD
hD

)2

for xL(q) < x < xR(q)

L2 for xR(q) ≤ x ≤ L1,

(5.2)
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Figure 5.1: An example geometry ΩD(q) for (xD, yD, hD, vD) = (5, 2.25, 2, 1)

where the left end point xL(q) is given by xL(q) = xD − hD

√
1−

(
yD − L2

vD

)2

and the

right end point is given by xR(q) = xD + hD

√
1−

(
yD − L2

vD

)2

. The damaged back

boundary of ΩD(q) is then given by ωD2 (q) = {(x, y) : 0 ≤ x ≤ L1 and y = r(x; q)}.

We simulate data using the same model of the output of an IR camera as in Sec-

tions 4.2.1 and 4.3.1. We again use pixel length ` = 0.57 and take the simulated data on

the source boundary ω4. We denote

(
urand
D (q)

)
ij

=
1

`

∫ xi+`

xi

urand
D (tj, s, 0; q) ds. (5.3)

To include error associated with the measurement process, we will take data given by

realizations of

Drand
ij (q) =

(
urand
D (q)

)
ij

+ σβij, (5.4)

where the βij are independently identically distributed standard normal random vari-

ables. That is βij ∼ N (0, 12). In this chapter, we focus on σ = 0.015. It is important to

emphasize that Drand
ij (q) is a random variable with realizations Drand

ij (q). The realization

Drand
ij (q) would correspond to observed data. We again take m spatial nodes (which corre-
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spond to pixels) which correspond to the {xi}’s and n temporal nodes which correspond

to the {tj}’s in (5.4).

We will again use a model motivated by homogenization theory as the model solution

in our inverse problems. We will also simulate data from this model as in Chapter 4

to understand the effect of the error associated with the approximation derived from

homogenization theory affects the inverse problem. Methods used in Chapters 3 and 4 and

[13, 17, 20, 16, 15, 23, 19, 2, 18] can be used to establish the convergence of urand
D (t, ~x; q)

to uD(t, ~x; q) where uD(t, ~x; q) is given by



pV
∂

∂t
uD − α∇ · (A0∇uD) = 0 in T × Ω̂D(q)

α
∂

∂ηA0

uD = 0 on T × (ω1 ∪ ω2(q) ∪ ω3)

α
∂

∂ηA0

uD = SfI[0,ts](t) on T × ω4

uD(0, ~x) = 0 for ~x ∈ Ω̂D,

(5.5)

where again α is the thermal diffusivity, pV is the proportion of the material in the

porous domain (here, pV = 0.98), A0 is the anisotropy matrix associated with the results

of homogenization theory from Chapter 3, Sf is the intensity of the heat lamp and I[0,ts](t)

is the heaviside function. The geometry on which the partial differential equation (5.5)

is defined is given by Ω̂D(q) = Ω̂ \ ED(q).

The weak solution of (5.5) is given by

pV

∫
Ω̂D(q)

∂

∂t
uD(t, ~x; q)φ(~x) d~x + α

∫
Ω̂D(q)

∇uD(t, ~x; q) · A0∇φ(~x) d~x

= SfI[0,ts](t)

∫
ω4

γω4(φ(~x)) dξω4 ,

(5.6)
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for all test functions φ ∈ H1(Ω̂D) where γω4 is the trace on ω4 and ξω4 is a parametrization

of ω4. In order to compute a finite element solution of (5.6), for each iteration of q, a

new mesh of Ω̂D(q) must be generated. In order to avoid this difficulty, we make the

coordinate transformation ~x = T (q)◦~z where T (q) is the bijection that maps Ω̂ to Ω̂D(q)

given by

~z =

 z1

z2

 = T (q)(~x) =

 x

r(x; q)

L2

y

 . (5.7)

The weak formulation (5.6) can be written as

pV

∫
Ω̂

∂

∂t
u(t, ~x; q)φ(~x) det (∇T (~x; q)) d~x

−α
∫

Ω̂

∇u(t, ~x; q) · ∇T (~x; q)−1A0
(
∇T (~x; q)†

)−1∇φ(~x) det(∇T (~x; q)) d~x

= SfI[0,ts](t)

∫
ω̂4

γω4(φ) dξω4 , for all φ(~x) ∈ H1(Ω̂),

(5.8)

by making the coordinate transformation ~z = T (~x; q) where † is the transpose. Noting

that

∇T (~x; q) =

 1 0

r′(x; q)

L2

y
r(x; q)

L2

 , (5.9)

and det(∇T (~x; q)) =
r(x; q)

L2

, we may rewrite (5.8) as
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pV
L2

∫
Ω̂

∂

∂t
u(t, ~x; q)φ(~x)r(x; q) d~x − α

∫
Ω̂

∇u(t, ~x; q) ·B(~x; q)∇φ(~x) d~x

= SfI[0,ts](t)

∫
ω4

γω4(φ) dξω4 .

(5.10)

In (5.10), above B(~x; q) is a 2× 2 matrix with entries

b11(~x; q) = a0
11

r(x; q)

L2

b12(~x; q) = −a0
11 y

r′(x; q)

L2

+ a0
12

b21(~x; q) = −a0
11 y

r′(x; q)

L2

+ a0
21

b22(~x; q) = a0
11 y

2 (r′(x; q))2

r(x; q)L2

− r′(x; q)

r(x; q)
y(a0

12 + a0
21) + a0

22

L2

r(x; q)
,

(5.11)

where a0
ij are the entries of A0. Using the finite element approximation ũN(t, ~x; q) =

N∑
j=1

uj(t; q)φj(~x) where φj(~x) is a piecewise affine two dimensional basis element, we may

solve for the time dependent coefficients by solving the ordinary differential equation

pVC(q)
d

dt
~u(t) + αK(q)~u(t) = SfI[0,ts](t)~f, (5.12)

where

Cij(q) =
1

L2

∫
Ω̂

φj(~x)φi(~x)r(x; q) d~x for i, j = 1, 2, . . . N

Kij(q) =

∫
Ω

∇φj(~x) ·B(~x; q)∇φi(~x) d~x for i, j = 1, 2, . . . N

~fi =

∫
ω4

γω4(φi) dξω4 for i = 1, 2, . . . N

~ui(t) = ui(t) for i = 1, 2, . . . N.

(5.13)

As in formulating (urand
D (q))ij in (5.3), we use the average of the solution over intervals
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of length ` (which represents the pixel length) in our model solution. We will use model

solutions given by

Uij(q) =
1

`

∫ xi+`

xi

ũN(tj, x, 0; q) dx (5.14)

where ũN(t, ~x; q) is the finite element solution of (5.12).

We will use Uij(q) as defined in (5.14) as a model solution in our data analyses. In

all of our data analysis, we make the assumption that data are given by realizations of

the random process yij which is defined as

yij = Uij(q0) + εij, (5.15)

where εij is a random variable that satisfies (5.16) below and q0 is the “true” parameter

value. The random variable (random error) εij is further assumed to have zero mean, be

independent and have constant variance. More precisely, we assume

E(εij) = 0

Var(εij) = σ2
0

Cov(εij, εkh) = 0 for (i, j) 6= (k, h).

(5.16)

As in Chapter 4, to check these assumption for Drand
ij , we will also consider data generated

using the finite element solution (5.12). Specifically, we will consider data generated using

Dij(q) = Uij(q) + σβij, (5.17)

where as in (5.4), βij ∼ N (0, 12). The realizations of the random variable Dij(q) are

denoted Dij(q).

We will consider two kinds of statistical procedures. We will consider a data compar-
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ison technique to detect damage through a hypothesis test which is developed in [9]. We

will then use ordinary least squares parameter estimation (as in Chapter 4) to estimate

the parameter set (xD, hD, vD).

5.2 Damage Detection

Both the hypothesis test methodology and OLS parameter estimation involve minimizing

the ordinary least squares cost functional, which we recall from Section 4.2

J(q) =
m∑
i=1

n∑
j=1

(Uij(q)− dataij)
2. (5.18)

The term dataij represents either of the realizations Dij or Drand
ij . Again, we emphasize

that the function of the realization J(q) is a realization of a function of a random variable

J(q) =
m∑
i=1

n∑
j=1

(Uij(q)− dataij)
2. (5.19)

where dataij represents either the random process Dij or the random process Drand
ij .

Damage detection may be considered using a hypothesis test. The case where there

is no damage can be modeled with an ellipse ED with a horizontal semi-axis length of

zero. So when hD = 0, we have that there is no damage in the sample.

We will formulate a hypothesis test using these two cases as our hypotheses. The

null hypothesis (there is no damage) is given by H0 : hD = 0, and the alternative

hypothesis (there is damage) is given by HA : hD 6= 0. We will call the set of parameters

corresponding to the null hypothesis QH = {q : hD = 0, q ∈ Q}. We will consider the

full parameter set q = (xD, hD, vD, α). Using methods described and developed in [7, 9],
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we consider two parameter estimates

q̂ = arg min
q∈QH

J(q), (5.20)

and

q̃ = arg min
q∈Q

J(q), (5.21)

where the parameter estimates are realizations of random variables. The two estimators

are given by

q̂ = arg min
q∈QH

J(q), (5.22)

and

q̃ = arg min
q∈Q

J(q), (5.23)

respectively. The estimates are realizations of the random estimators.

This model comparison methodology uses the test statistic X given by

X = nm

(
J(q̂)− J(q̃)

J(q̃)

)
(5.24)

where nm is the total number of observations (there are n temporal nodes and m spatial

nodes). The random variable X then has realizations X which are given by

X = nm

(
J(q̂)− J(q̃)

J(q̃)

)
, (5.25)

where q̂ is the corresponding realization of q̂ and q̃ is the corresponding realization of q̃.

The results of [9] indicate that ifH0 is true then the distribution of the random variable

X approaches a chi-square distribution with one degree of freedom (denoted χ2(1)) as nm
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Pixel Set xi values

Left 11 Nodes xi = `(i− 1) for i ∈ {1, 2, . . . 11}
Right 11 Nodes xi = `(i− 1) + 6` for i ∈ {1, 2, . . . 11}
Evenly Spaced 11 Nodes xi ∈ {0, 2`, 5`, 6`, 7`, 9`, 10`, 12`, 13`, 15`, 16`}
All 17 Nodes xi = `(i− 1), for i ∈ {1, 2, 3 . . . , 17}

Table 5.1: Pixel sets used throughout this chapter with ` = 0.57

goes to infinity. Suppose we would like to reject our null hypothesis with 95% confidence,

we calculate the corresponding significance level α = 0.05 (note that confidence = (1 −

α)×100%) and the corresponding threshold value τ where the probability P (X > τ) = α.

Using a χ2(1) cumulative distribution function table, for α = 0.05, we find τ = 3.84. Then

for any realization X with X > 3.84, we may reject with at least 95% confidence. The

minimum value α∗ at which the null hypothesis can be rejected for a realization X is

called the p-value, that is

p-value = α∗ = minP (X > X).

The closer a p-value is to zero, the more confidence with which one may reject the null

hypothesis.

We considered simulations using four sets of spatial nodes (corresponding to pixels)

which are listed in Table 5.1. We used these values to generate the data Dij and Drand
ij .

We considered eight different damages. In each example we assumed yD = 2.25 was

considered to be known. We used damages (xD, hD, vD) = (3, 1, 0.5), (xD, hD, vD) =

(5, 1, 0.5), (xD, hD, vD) = (3, 2, 1), (xD, hD, vD) = (5, 2, 1), (xD, hD, vD) = (3, 0.5, 1),

(xD, hD, vD) = (5, 0.5, 1), (xD, hD, vD) = (3, 0.5, 1.5) and (xD, hD, vD) = (5, 0.5, 1.5). In

Tables 5.2-5.9, we summarize the results of this model comparison technique data sets
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Table 5.2: (xD, hD, vD) = (3, 1, 0.5)

Nodes n×m Data J(q̃) J(q̂) X

Left 1012
D 0.433 0.225 9.368× 102

Drand 0.407 0.241 7.018× 102

Right 1012
D 0.305 0.217 4.093× 102

Drand 0.38 0.25 5.309× 102

Even 1012
D 0.399 0.221 8.136× 102

Drand 0.394 0.251 5.802× 102

All 1564
D 0.615 0.336 1.294× 103

Drand 0.604 0.379 9.255× 102

simulated with (5.4) and (5.17) using spatial nodes given in Table 5.1 and temporal nodes

given by tj = 0.6 +
1

120
j for j ∈ {1, 2, . . . 92}.

The threshold value of the statistic τ at which one may reject the null hypothesis with

99.9% confidence is τ = 10.8. If X > 10.8 one may reject the null hypothesis with 99.9%

confidence. The larger X is the more confidence there is in rejecting the null hypothesis.

The values of X that resulted for our calculations were very large, indicating that for the

examples we considered, for both kinds of data, one may reject the null hypothesis of “no

damage” with 100% confidence. For each example that we considered in Tables 5.2–5.9,

the value of the statistic X is several orders of magnitude higher than 10.8. The value

of X varies between 102 and 105 in the simulations that we carried out. This value was

sometimes larger and sometimes smaller for realizations of Drand
ij than for realizations of

Dij but there is no clear pattern. This was true for all of the pixel sets that we considered.
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Table 5.3: (xD, hD, vD) = (3, 2, 1)

Nodes n×m Data J(q̃) J(q̂) X

Left 1012
D 33.4 0.255 1.316× 105

Drand 15 0.351 4.238× 104

Right 1012
D 11.6 0.238 4.848× 104

Drand 9.3 0.357 2.532× 104

Even 1012
D 22.4 0.239 9.393× 104

Drand 17.1 0.496 3.38× 104

All 1564
D 33.6 0.368 1.412× 105

Drand 25.6 0.656 5.952× 104

Table 5.4: (xD, hD, vD) = (5, 1, 0.5)

Nodes n×m Data J(q̃) J(q̂) X

Left 1012
D 0.468 0.225 1.096× 103

Drand 0.535 0.259 1.082× 103

Right 1012
D 0.456 0.214 1.146× 103

Drand 0.589 0.25 1.378× 103

Even 1012
D 0.412 0.223 8.592× 102

Drand 0.495 0.254 9.596× 102

All 1564
D 0.604 0.334 1.259× 103

Drand 0.75 0.386 1.477× 103

Table 5.5: (xD, hD, vD) = (5, 2, 1)

Nodes n×m Data J(q̃) J(q̂) X

Left 1012
D 27.5 0.243 1.135× 105

Drand 19.9 0.297 6.682× 104

Right 1012
D 28.7 0.228 1.265× 105

Drand 21.6 0.293 7.369× 104

Even 1012
D 15.2 0.237 6.404× 104

Drand 16.1 0.335 4.769× 104

All 1564
D 32.1 0.369 1.344× 105

Drand 24.2 0.531 6.98× 104
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Table 5.6: (xD, hD, vD) = (3, 0.5, 1)

Nodes n×m Data J(q̃) J(q̂) X

Left 1012
D 1.1 0.224 3.967× 103

Drand 0.86 0.24 2.619× 103

Right 1012
D 0.535 0.226 1.387× 103

Drand 0.682 0.256 1.683× 103

Even 1012
D 0.827 0.228 2.666× 103

Drand 0.874 0.247 2.567× 103

All 1564
D 1.25 0.354 3.941× 103

Drand 1.37 0.392 3.904× 103

Table 5.7: (xD, hD, vD) = (3, 0.5, 1.5)

Nodes n×m Data J(q̃) J(q̂) X

Left 1012
D 2.34 0.234 9.109× 103

Drand 2.68 0.309 7.773× 103

Right 1012
D 1.24 0.226 4.542× 103

Drand 1.88 0.292 5.515× 103

Even 1012
D 2.31 0.228 9.231× 103

Drand 2.37 0.305 6.867× 103

All 1564
D 2.8 0.353 1.087× 104

Drand 3.59 0.488 9.948× 103

Table 5.8: (xD, hD, vD) = (5, 0.5, 1)

Nodes n×m Data J(q̃) J(q̂) X

Left 1012
D 0.724 0.229 2.193× 103

Drand 1.2 0.298 3.051× 103

Right 1012
D 0.883 0.227 2.917× 103

Drand 1.34 0.263 4.138× 103

Even 1012
D 0.756 0.232 2.28× 103

Drand 1.03 0.262 2.949× 103

All 1564
D 1.15 0.356 3.478× 103

Drand 1.55 0.404 4.434× 103
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Table 5.9: (xD, hD, vD) = (5, 0.5, 1.5)

Nodes n×m Data J(q̃) J(q̂) X

Left 1012
D 2.41 0.222 9.957× 103

Drand 3.15 0.427 6.449× 103

Right 1012
D 1.92 0.229 7.479× 103

Drand 3.12 0.526 4.991× 103

Even 1012
D 1.63 0.226 6.273× 103

Drand 3.6 0.361 9.061× 103

All 1564
D 2.43 0.347 9.368× 103

Drand 5.35 0.541 1.392× 104

5.3 Damage Characterization

Though model comparison can inform the existence of damage, we would also like to

characterize the extent of damage. We will consider the ordinary least squares estimation

procedure in order to characterize damage. Under certain conditions, this procedure can

provide standard error estimates for the parameter estimates. Recall from Section 4.2,

the OLS parameter estimate given by

q̂ = arg min
q∈Q

J(q) (5.26)

where now we consider the parameter set q = (xD, hD, vD) and J is given by (5.18). The

ordinary least squares error variance estimate is then given by

σ̂2 =
J(q̂)

nm− p (5.27)

where p is the number of parameters in the parameter set q, n is the number of temporal

nodes and m is the number of spatial nodes (pixels).
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The covariance matrix estimate is then given by

Σ(q̂) = σ̂2
(
χT (q̂)χ(q̂)

)−1
, (5.28)

where χ(q̂) is the matrix of sensitivities with entries

χi+m(j−1),k(q) =
∂

∂qk
Uij(ζ)

∣∣∣∣
ζ=q

, (5.29)

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and k = 1, 2, . . . p. The details of the calculations of

these sensitivities are given in Appendix A.2. The standard error estimate for the kth

parameter is then given by,

SE(q̂) =
√

Σkk(q̂). (5.30)

We will use a very large number of nodes so for all our parameter sets, the 95% confidence

interval is given by

95%Confidence Interval = (q̂ − 1.96 SE(q̂), q̂ + 1.96 SE(q̂))

and the 99% confidence interval is given by

99%Confidence Interval = (q̂ − 2.58SE (q̂), q̂ + 2.58 SE(q̂)).

This analysis is presented for the same realizations of the random processes Dij and

Drand
ij as were used in the previous section (Section 5.2). Unlike the damage detection,

there are significant differences in the results using realizations of Dij versus realizations of

Drand
ij . All three variables (xD, hD, vD) appear to be well estimated using the realizations

of Dij. However, there are many cases where using realizations of Drand
ij yield values that
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Table 5.10: The estimated geometries for (xD, hD, vD) = (3, 1, 0.5)

Nodes n×m Data σ̂2 (x̂D, ĥD, v̂D) (SE(x̂D),SE(ĥD),SE(v̂D))

Left 1012
D 0.028 (2.9, 0.941, 0.51) (0.086, 0.25, 0.071)
Drand 0.03 (3.84, 0.653, 0.59) (0.073, 0.18, 0.099)

Right 1012
D 0.027 (3.01, 1.01, 0.49) (1.1, 1.4, 0.45)
Drand 0.031 (4.09, 0.626, 0.58) (0.084, 0.2, 0.12)

Even 1012
D 0.028 (2.95, 0.948, 0.5) (0.13, 0.41, 0.1)
Drand 0.031 (3.88, 0.564, 0.64) (0.083, 0.15, 0.12)

All 1564
D 0.024 (2.93, 0.934, 0.51) (0.08, 0.26, 0.07)
Drand 0.027 (3.89, 0.596, 0.62) (0.067, 0.14, 0.1)

are significantly different than the true values. In some of these cases, the standard errors

are large enough that a 99% confidence interval covers these values.

In Table 5.10 which presents the results using (xD, hD, vD) = (3, 1, 0.5), the estimate

(x̂D, ĥD, v̂D) is much closer to the “true” value for the data Dij than that for the data

Drand
ij . For this example using a realization of Drand

ij , for each set of pixels, the values

(ĥD, v̂D) are within the 95% confidence intervals though the estimated values are not

close to the “true” value. The estimates of x̂D for each set of pixels are not only far from

the value xD = 3 but the standard error SE(x̂D) is small enough so that for each pixel

set the 99% confidence interval does not contain the value xD = 3.

We also considered the realizations Dij and Drand
ij for (xD, hD, vD) = (3, 2, 1) (see

Table 5.11). Again for the results of using the realization Dij, the parameter estimates

are close to their “true” value and the standard errors are reasonable for all pixel sets.

For this realization estimation of x̂D using the right pixel set is not close to the value

xD = 3, however, the estimates for x̂D using the other pixel sets are within 0.02 of the

true value. For every set of pixels, the value xD = 3 is covered by the 95% confidence

interval. The right pixel set and the full pixel set (“All”) have values of ĥD close to
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Table 5.11: The estimated geometries for (xD, hD, vD) = (3, 2, 1)

Nodes n×m Data σ̂2 (x̂D, ĥD, v̂D) (SE(x̂D),SE(ĥD),SE(v̂D))

Left 1012
D 0.032 (3.01, 1.99, 1) (0.023, 0.059, 0.015)
Drand 0.048 (3.02, 3.02, 0.76) (0.041, 0.1, 0.012)

Right 1012
D 0.03 (3.02, 2.01, 1) (0.29, 0.41, 0.044)
Drand 0.045 (3.6, 1.71, 0.93) (0.27, 0.48, 0.072)

Even 1012
D 0.03 (3.01, 1.99, 1) (0.027, 0.068, 0.018)
Drand 0.052 (3.02, 2.87, 0.78) (0.044, 0.11, 0.017)

All 1564
D 0.026 (3.01, 1.98, 1) (0.021, 0.054, 0.015)
Drand 0.06 (3.01, 1.94, 0.95) (0.037, 0.1, 0.027)

Table 5.12: The estimated geometries for (xD, hD, vD) = (5, 1, 0.5)

Nodes n×m Data σ̂2 (x̂D, ĥD, v̂D) (SE(x̂D),SE(ĥD),SE(v̂D))

Left 1012
D 0.028 (5.08, 1.04, 0.49) (0.1, 0.47, 0.086)
Drand 0.032 (5.87, 1.12, 0.51) (0.19, 0.65, 0.11)

Right 1012
D 0.027 (4.92, 0.944, 0.51) (0.088, 0.26, 0.071)
Drand 0.031 (5.4, 1.08, 0.51) (0.089, 0.28, 0.067)

Even 1012
D 0.028 (4.95, 0.934, 0.52) (0.12, 0.37, 0.094)
Drand 0.033 (5.5, 1.12, 0.51) (0.11, 0.3, 0.073)

All 1564
D 0.024 (5.05, 1.07, 0.48) (0.092, 0.4, 0.072)
Drand 0.028 (5.64, 1.39, 0.45) (0.12, 0.41, 0.052)

hD = 2 which is covered by their respective 95% confidence intervals. The estimates ĥD

for the left and evenly spaced pixel set are both over estimates which are relatively far

from the value hD = 2 which is not covered by the 95% confidence interval. We see that

the estimate v̂D in this case is close to the value vD = 1 for the full and right pixel sets

while the estimate v̂D is much smaller than vD = 1 for the left and evenly spaced pixel

sets.

The results of the OLS parameter estimation procedure for realizations of Drand
ij with
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Table 5.13: The estimated geometries for (xD, hD, vD) = (5, 2, 1)

Nodes n×m Data σ̂2 (x̂D, ĥD, v̂D) (SE(x̂D),SE(ĥD),SE(v̂D))

Left 1012
D 0.03 (4.99, 2.01, 1) (0.037, 0.098, 0.02)
Drand 0.038 (4.96, 1.99, 0.92) (0.044, 0.12, 0.025)

Right 1012
D 0.029 (5, 2, 1) (0.027, 0.078, 0.018)
Drand 0.035 (5.17, 2.31, 0.86) (0.04, 0.1, 0.017)

Even 1012
D 0.03 (5, 2.02, 1) (0.027, 0.066, 0.017)
Drand 0.041 (5.12, 2.22, 0.87) (0.04, 0.1, 0.02)

All 1564
D 0.026 (4.99, 2.01, 1) (0.022, 0.058, 0.015)
Drand 0.038 (5.1, 2.14, 0.89) (0.031, 0.083, 0.017)

(xD, hD, vD) = (5, 1, 0.5) in Table 5.12 are similar to the results with (xD, hD, vD) =

(3, 1, 0.5). The estimates of (ĥD, v̂D) are close to (hD, vD) = (1, 0.5) and the standard

errors (SE(ĥD), SE(v̂D)) are large enough that (hD, vD) = (1, 0.5) is within two standard

errors of the parameter estimate (ĥD, v̂D) for all sets of pixels that we considered. The

estimate x̂D for the realization Drand
ij is much larger than xD = 5 (though this effect is not

as severe as for xD = 3 in Table 5.10) and the standard errors are small so that for each

set of pixels the value xD = 5 is not covered by the resepective 95% confidence interval.

Using the realization Drand
ij with damage given by (xD, hD, vD) = (5, 2, 1) for each

estimate, for each set of pixels, the estimates are within 0.22 of the “true” parameter

value. Though these estimates are close to the parameter value, many of the standard

error estimates are still so small that the “true” parameter value is not covered by the

99% confidence interval. For each set of pixels, the 99% confidence interval of v̂D does

not cover the value vD = 1.

We also considered ellipses that do not have a vertical semi-axis which is much smaller

than the horizontal semi-axis. In these examples, this ratio was not maintained in the

parameter estimates which were computed using realizations of Drand
ij . In Table 5.14, we
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Table 5.14: The estimated geometries for (xD, hD, vD) = (3, 0.5, 1)

Nodes n×m Data σ̂2 (x̂D, ĥD, v̂D) (SE(x̂D),SE(ĥD),SE(v̂D))

Left 1012
D 0.028 (3.05, 0.512, 0.97) (0.037, 0.015, 0.047)
Drand 0.03 (3.39, 0.987, 0.66) (0.062, 0.16, 0.063)

Right 1012
D 0.028 (2.88, 0.389, 1.2) (0.066, 0.087, 0.51)
Drand 0.032 (2.96, 0.476, 1.1) (0.12, 0.032, 0.38)

Even 1012
D 0.028 (2.99, 0.513, 0.97) (0.047, 0.018, 0.068)
Drand 0.031 (3.35, 0.962, 0.67) (0.082, 0.22, 0.084)

All 1564
D 0.025 (3.05, 0.492, 1) (0.031, 0.014, 0.039)
Drand 0.028 (3.41, 0.954, 0.67) (0.061, 0.14, 0.061)

present the results for (xD, hD, vD) = (3, 0.5, 1). The estimates of (x̂D, ĥD, v̂D) for the

realization Dij are farther from the “true” value than in the previous examples. This

implies that the geometry of these ellipses pose a problem in the parameter estimation

problem. This effect is amplified for the realization Drand
ij . For the pixel sets “Left,”

“Even,” and “All” the parameter estimation procedure produced an ellipse estimate with

horizontal semi-axes longer than vertical semi-axes. Also, in these examples the estimate

of the center x̂D is larger than the value xD = 3. The pixel set “Right” produced an

estimate which was very close to the “true” value with each 95% confidence interval

containing that “true” parameter value. The estimate using the realization of Dij using

the “Right” pixel set is the farthest from the true damage (xD, hD, vD) = (3, 0.5, 1)

while the parameter estimate using the “Right” with realizations of Drand
ij is the closest.

This effect occurs because for data generated without pores, the “Right” pixels are the

farthest from the damage centered at xD = 3, so there is relatively little information in

those pixel sets compared to the other pixel sets. For data generated using realizations

of Drand
ij , the larger the distance from the bottom of the damage to the source boundary

(ω4), the larger the error associated with (urand
D )ij so the “Right” pixel set contains the
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Table 5.15: The estimated geometries for (xD, hD, vD) = (3, 0.5, 1.5)

Nodes n×m Data σ̂2 (x̂D, ĥD, v̂D) (SE(x̂D),SE(ĥD),SE(v̂D))

Left 1012
D 0.029 (2.97, 0.5, 1.5) (3.9× 10−3, 6.8× 10−3, 0.015)
Drand 0.043 (3.14, 1.1, 0.9) (0.039, 0.099, 0.057)

Right 1012
D 0.028 (2.97, 0.469, 1.6) (0.015, 0.012, 0.06)
Drand 0.037 (2.59, 0.546, 1.8) (0.051, 0.045, 0.22)

Even 1012
D 0.029 (2.95, 0.5, 1.5) (5.5× 10−3, 8.3× 10−3, 0.017)
Drand 0.04 (3.19, 1.1, 0.91) (0.06, 0.14, 0.069)

All 1564
D 0.025 (2.97, 0.506, 1.5) (3.6× 10−3, 6.4× 10−3, 0.015)
Drand 0.035 (3.18, 1.14, 0.88) (0.039, 0.1, 0.051)

least amount of error due to the approximation of (urand
D )ij with Uij. We see very similar

results for the damage (xD, hD, vD) = (3, 0.5, 1.5) in Table 5.15.

When a damage with vD > hD is placed in the horizontal center of the 10 by 2

rectangle, all of the pixel sets contain pixels directly below the center of the damage.

Realizations of Dij and Drand
ij both yield relatively small standard errors compared to

the difference between the parameter estimate and the true parameter set. It appears that

in this case, the damage is not as well characterized. In Table 5.17 with (xD, hD, vD) =

(5, 0.5, 1), the parameter estimates for the realization Dij are closer to (5,0.5,1) than those

of the realization Drand
ij . In many of these cases, the 95% confidence interval does not

contain the true parameter value for this realization of Dij. Using the realization Drand
ij

in this example, the parameter estimates with pixel sets “Left” and “Right” maintain

v̂D > ĥD while parameter estimates with pixel sets “Even” and “All” invert this inequality

resulting in v̂D < ĥD. The estimate of x̂D = 6.18 using the “Left” pixel set for the

realization Drand
ij is very far from xD = 5 while the estimates of x̂D for pixel sets “Right,”

“Even” and “All” are within 0.31 of xD = 5. Though these estimates are different from
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Table 5.16: The estimated geometries for (xD, hD, vD) = (5, 0.5, 1)

Nodes n×m Data σ̂2 (x̂D, ĥD, v̂D) (SE(x̂D),SE(ĥD),SE(v̂D))

Left 1012
D 0.029 (4.98, 0.447, 1.1) (0.021, 0.016, 0.036)
Drand 0.038 (6.18, 0.633, 1.1) (0.061, 0.061, 0.07)

Right 1012
D 0.028 (4.98, 0.439, 1.1) (0.023, 0.016, 0.039)
Drand 0.036 (4.87, 0.729, 0.86) (0.051, 0.065, 0.065)

Even 1012
D 0.029 (4.99, 0.47, 1) (0.031, 0.016, 0.051)
Drand 0.034 (5.31, 1.2, 0.62) (0.086, 0.21, 0.061)

All 1564
D 0.025 (4.98, 0.483, 1) (0.027, 0.012, 0.042)
Drand 0.027 (5.29, 3.18, 0.41) (0.13, 0.44, 0.016)

Table 5.17: The estimated geometries for (xD, hD, vD) = (5, 0.5, 1.5)

Nodes n×m Data σ̂2 (x̂D, ĥD, v̂D) (SE(x̂D),SE(ĥD),SE(v̂D))

Left 1012
D 0.028 (5.03, 0.482, 1.6) (2.9× 10−3, 6.4× 10−3, 0.012)
Drand 0.054 (5.92, 0.641, 1.7) (0.014, 6.9× 10−3, 0.039)

Right 1012
D 0.029 (4.97, 0.487, 1.5) (4.7× 10−3, 6.4× 10−3, 0.014)
Drand 0.053 (4.75, 0.834, 1.2) (0.035, 0.032, 0.047)

Even 1012
D 0.028 (5, 0.491, 1.5) (4× 10−3, 7.3× 10−3, 0.017)
Drand 0.045 (5.15, 1.28, 0.84) (0.071, 0.14, 0.053)

All 1564
D 0.025 (5, 0.491, 1.5) (3.2× 10−3, 5.9× 10−3, 0.013)
Drand 0.039 (5.17, 1.42, 0.78) (0.044, 0.12, 0.039)

the “true” parameter value, the standard errors are relatively small, resulting in the

“true” parameter value being many standard errors from the parameter estimate. Again,

for the larger damage (xD, hD, vD) = (5, 0.5, 1.5), we see similar results in Table 5.17.

In summary, this approximation appears to work very well to detect damage while to

characterize damage the homogenization approximation works well in some cases. This

is dependent on shape of the damage (it appears to characterize damage with hD > vD

better than damage with hD < vD) and the choice of pixel set.

106



Chapter 6

Conclusions

In Chapter 2, we considered a model of heat on a porous domain. We developed a

geometry generation algorithm using concepts from [13] and [30]. This was essential to

automate the generation of random geometries. We used this algorithm to examine the

numerical error associated with the finite element method for the heat equation, and to

simulate perforated domains with and without elliptical damage.

After we developed this method of simulating data, we went on to consider an ap-

proximation using the results of homogenization theory in Chapter 3. We considered

both graphical representations and the Frobenius norm of this error. We found that

using the limit system which results from homogenization theory significantly decreases

the computational time for perforated domains with 2, 5 and 10% porosity. The error

associated with using the results of homogenization theory was smaller on average for

lower porosity levels. Also, in the simulations that we performed, the homogenization ap-

proximation was closer in Frobenius norm more often to the solution of the heat equation

on a randomly generated perforated domain than to the solution of the heat equation

on a periodically perforated domain. In these examples, we also found that the error
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associated with using the limit system which results from homogenization theory rather

than the solution of the heat equation on a perforated domain was reasonable in the

forward problem.

We went on to consider the effect of using the model derived from homogenization

theory in statistical estimation procedures. We simulated data using both solutions of

this system and the solution of the heat equation on perforated domains with 98% percent

porosity. We added two kinds of noise. In Section 4.2 we considered the case with absolute

added random noise and in Section 4.3 we considered data with added relative random

noise. We used this simulated data to estimate coefficients in partial differential equation.

We found that estimating α, the thermal diffusivity, is well posed while estimating γ, the

heat loss in the direction orthogonal to the 2-D specimen is ill posed. For the well posed

inverse problems, we found that there was little difference between using data generated

using the solution of the heat equation on the randomly perforated domain than using

the homogenization approximation. This suggests that for well posed parameters in

the inverse problem, the error associated with the homogenization approximation does

not affect the results ordinary least squares estimation procedure nor the results of the

generalized least squares estimation procedure.

Finally, we considered using parameter estimation procedures to detect and char-

acterize damage. We found that these techniques for the damages that we considered

detected damage very well. In these examples, there was no clear difference between us-

ing data generated using the solution of the heat equation on a random domain, and data

generated using the homogenization approximation. In characterizing elliptical damage,

there does appear to be a difference in using data generated using the solution of the heat

equation on a perforated domain rather than using the homogenization approximation

in estimating the center and the size of the elliptical damage. As one would expect, the
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estimates of the center and semi-axes lengths using data generated using the homoge-

nization approximation were always closer to the true value than estimates of the center

and semi-axes lengths using data generated using the solution of the heat equation on a

perforated domain. The accuracy of the estimates of the center x coordinate, horizontal

semi-axis and the vertical semi-axis (xD, hD, vD) varied over the examples using data

generated the solution of the heat equation on the randomly perforated domain. The

examples with hD < vD did not preserve this inequality in the estimates of hD and vD

in most cases while in the examples with hD > vD the inequality was preserved. When

we estimated (xD, hD, vD) using data generated using the solution of the heat equation

on the perforated domain, we noticed significant differences between using different pixel

sets. It appeared that some of the pixel sets were more sensitive to the error associated

with using the homogenization approximation in the inverse problem. It is worthwhile

to note that in most cases the estimated area of the damage was larger in the estimate

than the area of the damage itself. This suggests that this estimation procedure may

not estimate the center or the size correctly but it will not give an estimate that is

smaller. These methods could be used as a first estimate of damage which could be

further resolved using another nondestructive evaluation technique.
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Appendix A

Sensitivities

A.1 Partial Differential Equation Sensitivities

We use the finite element method to numerically solve (4.1) and (4.2). Here, we will

discuss the numerical solution of (4.2) and the sensitivity functions in (4.9); see [4] for

discussion of the numerical solution of (4.1). The finite element method approximates the

infinite dimensional solution of a partial differential equation with a finite dimensional

approximation. The domain (Ω̂) is discretized using the Delaunay triangulation. The

finite dimensional solution is taken from the space of piecewise two dimensional affine

functions, where the solution is affine on each mesh element (see [25], [29] and [5] for

details). Specifically, in [5], we discussed the numerical approximation of U , the solution

of (4.2), given by uN(t, ~x) =
N∑
j=1

Tj(t)φj(~x) where φj(~x) are piecewise affine basis element

and Tj(t) are their time dependent coefficients. The coefficients Tj(t) are found by solving

the ordinary differential equation for ~T (t) with entries Tj(t)

pVM
d

dt
~T (t) + (αK + λD + pV γM) ~T (t) = SfI[t0,ts](t)~f, (A.1)
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where M is an N × N positive definite matrix with elements mij = 〈φi, φj〉, K is an

N ×N positive definite matrix with elements kij = 〈∇φi, A0∇φj〉, D is an N ×N matrix

with components dij =

∫
∂Ω̂

φiφj ds, ~f is an N -vector with components fi =

∫
ω4

φi(x, 0)dx

and ~T is an N column vector. To approximate Uij(θ
#) in (4.3), we explicitly integrate

the approximation uN(tj, ~x) which is piecewise affine on the source boundary ω4 so we

use

Uij(θ
#) ≈ 1

l

∫ xi+`

xi

uN(tj, s, 0; θ#) ds.

Recall that in order to calculate the covariance matrices, we calculate the covariance

matrix

χi+m(j−1),k(θ) =
∂

∂θk
Uij(ζ)

∣∣∣∣
ζ=θ

.

Throughout both the generalized least squares and ordinary least squares parameter

estimation procedures, it is tacitly assumed that we use numerical estimations with rea-

sonable convergence and that the admissible set of parameter is compact and finite di-

mensional (see [9] and [7]). Given these assumptions, in both (4.11) and (4.25), we may

estimate χ with the derivative of the numerical solution itself. Explicitly, we use

χi+m(j−1),k(θ) ≈ χNi+m(j−1),k(θ) =
∂

∂θk

(∫ xi+`

xi

uN(tj, s, 0; ζ) ds

)∣∣∣∣
ζ=θ

. (A.2)

Noting that the spatial nodes xi and the interval width ` are parameter independent,

we may move the derivative under the integral and replace uN with its definition

∂

∂θk

(∫ xi+`

xi

uN(tj, s, 0; ζ) ds

)∣∣∣∣
ζ=θ

=

∫ xi+`

xi

∂

∂θk

N∑
j=1

Tj(t; ζ)φj(s, 0)

∣∣∣∣∣
ζ=θ

ds

Now, recalling that the basis elements φj are independent of θ and only Tj(t; θ) are
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dependent on θ = (γ, α, λ) in (A.1), we have

∫ xi+`

xi

∂

∂θk

N∑
j=1

Tj(t; ζ)φj(s, 0)

∣∣∣∣∣
ζ=θ

ds =

∫ xi+`

xi

N∑
j=1

φj(s, 0)

(
∂

∂θk
Tj(t; ζ)

)∣∣∣∣
ζ=θ

ds.

We need to solve for
∂

∂γ
Tj(t; ζ),

∂

∂α
Tj(t; ζ), and

∂

∂λ
Tj(t; ζ). First, in order to cal-

culate
∂

∂γ
Tj(t; θ), we differentiate (A.1) with respect to γ. Let ~T γ(t) denote

∂

∂γ
~T (t),

and recall that M , K, D, ~f are independent of γ. By the chain rule,
∂

∂γ
(pV γM ~T (t)) =

pV γM ~T γ(t) + pVM ~T (t), so differentiating (A.1) yields

pVM
d

dt
~T γ(t) + (αK + λD + pV γM)~T γ(t) + pVM ~T (t) = ~0N×1. (A.3)

In (A.3) above, M , K and D are as defined in (A.1), and ~0N×1 is the N × 1 vector of

zeros. The ordinary differential equation (A.3) has a term that involves ~T (t), so (A.3)

and (A.1) must be solved simultaneously. Similarly, we take the derivative of (A.1) with

respect to α to obtain

pVM
d

dt
~Tα(t) + (αK + λD + pV γM)~Tα(t) +K~T (t) = ~0N×1, (A.4)

which must also be solved with (A.1). Finally, we take the derivative of (A.1) with

respect to λ to find the system of ordinary differential equations for ~T λ below

pVM
d

dt
~T λ(t) + (αK + λD + pV γM)~T λ(t) +D~T (t) = ~0N×1, (A.5)

which also must be solved simultaneously with (A.1).
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A.2 Damage Sensitivities

Recall from Section 5.1 the model of anisotropic heat flow through a damaged domain

below,



pV
∂uD

∂t
− α∇ · (A0∇uD) = 0 in T × Ω̂D(q)

α
∂uD

∂ηA0

= 0 on T × (ω1 ∪ ω2(q) ∪ ω3)

α
∂uD

∂ηA0

= SfI[0,ts](t) on T × ω4

uD(0, ~x) = 0 for ~x ∈ Ω̂D.

(A.6)

As in previous chapters α is the thermal diffusivity, pV is the proportion of the material

in the porous domain (here, pV = 0.9), A0 is the anisotropy matrix associated with the

results of homogenization theory, Sf is the intensity of the heat lamp and I[0,ts](t) is

the heaviside function. The geometry on which the partial differential equation (A.6) is

defined is given by Ω̂D(q) = Ω̂\ED(q) where as before Ω̂ = {(x, y) : 0 ≤ x ≤ L1, and 0 ≤

y ≤ L2} and the elliptical damage with center (xD, yD), horizontal semi-axis hD and

vertical semi-axis vD is given by ED(q) = {(x, y) :

(
x− xD
hD

)2

+

(
y − yD
vD

)2

< 1}. The

boundaries ω1, ω3, ω4 are the left, right and bottom boundaries of Ω̂, respectively. The

back boundary of Ω̂D, ωD2 (q) is parametrized by (xD, yD, hD, vD) with yD = 2.25 fixed.

The piecewise function r is given by

r(x; q) =



L2 for 0 ≤ x ≤ xL(q)

yD − vD

√
1−

(
x− xD
hD

)2

for xL(q) < x < xR(q)

L2 for xR(q) ≤ x ≤ L1,

(A.7)
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where the left end point xL(q) is given by xL(q) = xD − hD

√
1−

(
yD − L2

vD

)2

and the

right end point is given by xR(q) = xD + hD

√
1−

(
yD − L2

vD

)2

. The damaged back

boundary of Ω̂D(q) is then given by ωD2 (q) = {(x, y) : 0 ≤ x ≤ L1 and y = r(x; q)}. In

Section 5.1, we derived the weak formulation of (A.6) using the method of maps from

[11] given by

pV
L2

∫
Ω̂

∂

∂t
u(t, ~x; q)φ(~x)r(x; q) d~x − α

∫
Ω̂

∇u(t, ~x; q) ·B(~x; q)∇φ(~x) d~x

= SfI[0,ts](t)

∫
ω4

γω4(φ) dξω4 .

(A.8)

where B(~x; q) is a 2×2 matrix with entries

b11(~x; q) = a0
11

r(x; q)

L2

b12(~x; q) = −a0
11 y

r′(x; q)

L2

+ a0
12

b21(~x; q) = −a0
11 y

r′(x; q)

L2

+ a0
21

b22(~x; q) = a0
11 y

2 (r′(x; q))2

r(x; q)L2

− r′(x; q)

r(x; q)
y(a0

12 + a0
21) + a0

22

L2

r(x; q)
.

The finite element solution of (A.8) is given by solution of

pVC(q)
d

dt
~u(t) + αK(q)~u(t) = SfI[0,ts](t)~f, (A.9)
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where

Cij(q) =
1

L2

∫
Ω̂

φj(~x)φi(~x)r(x; q) d~x for i, j = 1, 2, . . . N

Kij(q) =

∫
Ω

∇φj(~x) ·B(~x; q)∇φi(~x) d~x for i, j = 1, 2, . . . N

~fi =

∫
ω4

γω4(φi) dξω4 for i = 1, 2, . . . N

~ui(t) = ui(t) for i = 1, 2, . . . N.

(A.10)

In order to calculate the sensitivities, we take the derivative of the weak formulation

(A.11) with respect to q. Let’s consider the first term of the right hand side

∂

∂q

(∫
Ω̂

pV
L2

∂

∂t
u(t, ~x; q)φ(~x)r(x; q)− α∇u(t, ~x; q) ·B(~x; q)∇φ(~x) d~x

)

=
∂

∂q

(
SfI[0,ts](t)

∫
ω4

γω4(φ) dξω4

)
,

(A.11)

where q = (xD, hD, vD). Noting that the term on the left hand side do not depend on q,

we have that the left hand side is zero.
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In order to calculate the first term, we must find

∂

∂q

∫
Ω̂

∂

∂t
u(t, ~x; q)φ(~x)

r(x; q)

L2

d~x =

∫ L2

0

∂

∂q

(∫ L1

0

∂

∂t
u(t, ~x; q)φ(~x)

r(x; q)

L2

dx

)
dy

=

∫ L2

0

(
∂

∂q

(∫ xL(q)

0

∂

∂t
u(t, ~x; q)φ(~x) dx

)
+

∂

∂q

(∫ xR(q)

xL(q)

∂

∂t
u(t, ~x; q)φ(~x)

r(x; q)

L2

dx

)

+
∂

∂q

(∫ L1

xR(q)

∂

∂t
u(t, ~x; q)φ(~x) dx

))
dy.

Now, using Leibniz rule to differentiate the integrals with parameter dependent end points

(see [1]),

=

∫ L2

0

(
∂

∂q
(xL(q))

∂

∂t
u(t, xL(q), y; q)φ(xL(q), y) +

∫ xL(q)

0

∂

∂q

(
∂

∂t
u(t, ~x; q)φ(~x)

)
dx

+
∂

∂q
(xR(q))

∂

∂t
u(t, xR(q), y; q)φ(xR(q), y)

r(xR(q); q)

L2

− ∂

∂q
(xL(q))

∂

∂t
u(t, xL(q), y; q)φ(xL(q), y)

r(xL(q); q)

L2

+

∫ xR(q)

xL(q)

∂

∂q

(
∂

∂t
u(t, ~x; q)φ(~x)

r(x; q)

L2

)
dx

− ∂

∂q
(xR(q))

∂

∂t
u(t, xR(q), y; q)φ(xR(q), y) +

∫ L1

xR(q)

∂

∂q

(
∂

∂t
u(t, ~x; q)φ(~x)

)
dx

)
dy,

noting that
∂

∂t
u(t, ~x; q) and r(x; q) are continuous in x so the end point terms cancel each
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other out and denoting
∂

∂q
u = vq, we obtain

∫ L2

0

(∫ xL(q)

0

∂

∂t
vq(t, ~x; q)φ(~x) dx+

∫ xR(q)

xL(q)

∂

∂t
vq(t, ~x; q)φ(~x)

r(x; q)

L2

dx

+
1

L2

∫ xR(q)

xL(q)

∂

∂t
u(t, ~x; q)φ(~x)

∂

∂q
(r(x; q)) dx+

∫ L1

xR(q)

∂

∂t
vq(t, ~x; q)φ(~x) dx

)
dy

=

∫ L2

0

∫ L1

0

∂

∂t
vq(t, ~x; q)φ(~x)

r(x; q)

L2

dx dy

+
1

L2

∫ L2

0

∫ xR(q)

xL(q)

∂

∂t
u(t, ~x; q)φ(~x)

∂

∂q
(r(x; q)) dx dy.

In order to calculate the second term of the left hand side, we must calculate

∂

∂q

(∫
Ω̂

∇u(t, ~x; q) ·B(~x; q)∇φ(~x) d~x

)
.

In the previous calculation, the integrand was continuous. Several terms of B(~x; q) are

not continuous, so we will define B(~x; q) in the piecewise fashion

B(~x; q) =


BL(~x; q) for 0 ≤ y ≤ L2, 0 ≤ x < xL(q)

BC(~x; q) for 0 ≤ y ≤ L2, xL(q) ≤ x < xR(q)

BR(~x; q) for 0 ≤ y ≤ L2, xR(q) ≤ x ≤ L1.

(A.12)
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Here we should note that BL(~x; q) = BR(~x; q) = A0. Using this notation we obtain

∂

∂q

∫
Ω̂

∇u(t, ~x; q) ·B(~x; q)∇φ(~x) d~x

=

∫ L2

0

∂xL(q)

∂q
∇u(t, xL(q), y; q) ·BL(xL(q), y; q)∇φ(xL(q), y) dy

−
∫ L2

0

∂xL(q)

∂q
∇u(t, xL(q), y; q) ·BC(xL(q), y; q)∇φ(xL(q), y) dy

+

∫ L2

0

∂xR(q)

∂q
∇u(t, xR(q), y; q) ·BC(xR(q), y; q)∇φ(xR(q), y) dy

−
∫ L2

0

∂xR(q)

∂q
∇u(t, xR(q), y; q) ·BR(xR(q), y; q)∇φ(xR(q), y) dy

+

∫ L2

0

∫ xL(q)

0

∂

∂q
(∇u(t, ~x; q) ·BL(~x; q)∇φ(~x)) dx

+

∫ L2

0

∫ xR(q)

xL(q)

∂

∂q
(∇u(t, ~x; q) ·BC(~x; q)∇φ(~x)) dx dy

+

∫ L2

0

∫ L1

xR(q)

∂

∂q
(∇u(t, ~x; q) ·BR(~x; q)∇φ(~x)) dx dy
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=

∫ L2

0

∂xL(q)

∂q
∇u(t, xL(q), y; q) ·

(
A0 −BC(xL(q), y; q)

)
∇φ(xL(q), y) dy

+

∫ L2

0

∂xR(q)

∂q
∇u(t, xR(q), y; q) ·

(
BC(xR(q), y; q)− A0

)
∇φ(xL(q), y) dy

+

∫ L2

0

(∫ xL(q)

0

∇vq(t, ~x; q) · A0∇φ(~x) dx+

∫ xR(q)

xL(q)

∇vq(t, ~x; q) ·BC(~x; q)∇φ(~x) dx

)
dy

+

∫ L2

0

(∫ xR(q)

xL(q)

∇u(t, ~x; q)
∂

∂q
(BC(~x; q))∇φ(~x) dx+

∫ L1

xR(q)

∇vq(t, ~x; q) · A0∇φ(~x) dx

)
dy

=

∫ L2

0

∂xL(q)

∂q
∇u(t, xL(q), y; q) ·

(
A0 −BC(xL(q), y; q)

)
∇φ(xL(q), y) dy

+

∫ L2

0

∂xR(q)

∂q
∇u(t, xR(q), y; q) ·

(
BC(xR(q), y; q)− A0

)
∇φ(xL(q), y) dy

+

∫ L2

0

∫ L1

0

∇vq(t, ~x; q) ·B(~x; q)∇φ(~x) dx dy

+

∫ L2

0

∫ xR(q)

xL(q)

∇u(t, ~x; q)
∂

∂q
(BC(~x; q))∇φ(~x) dx dy
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Combining the terms we obtain the weak formulation

pV

(∫
Ω̂

∂

∂t
vq(t, ~x; q)φ(~x)

r(x; q)

L2

d~x+
1

L2

∫ L2

0

∫ xR(q)

xL(q)

∂

∂t
u(t, ~x; q)φ(~x)

∂

∂q
(r(x; q)) dx dy

)

+α

(∫ L2

0

∂xL(q)

∂q
∇u(t, xL(q), y; q) ·

(
A0 −BC(xL(q), y; q)

)
∇φ(xL(q), y) dy

+

∫ L2

0

∂xR(q)

∂q
∇u(t, xR(q), y; q) ·

(
BC(xR(q), y; q)− A0

)
∇φ(xL(q), y) dy

+

∫
Ω̂

∇vq(t, ~x; q) ·B(~x; q)∇φ(~x) d~x+

∫ L2

0

∫ xR(q)

xL(q)

∇u(t, ~x; q)
∂

∂q
(BC(~x; q))∇φ(~x) dx dy

)

= 0.

Similar to our derivation of (A.9), we take (ṽq)N =
N∑
j=1

vqj (t)φj(~x) to derive the system

of ordinary differential equations

C(q)
d

dt
~vq(t) + αK(q)~vq(t) + pVCq(q)

d

dt
~u(t) + αAq(q)~u = ~0, (A.13)

where C(q), K(q), ~u(t) are defined as in (A.10). The matrices Cq(q), Aq(q), ~v
q(t) and ~0

are defined by
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[Cq(q)]ij =
1

L2

∫ L2

0

∫ xR(q)

xL(q)

φj(~x)φi(~x)
∂

∂q
(r(x; q)) dx dy for i, j = 1, 2, . . . N

[Aq(q)]ij =

∫ L2

0

∂xL(q)

∂q
∇φj(xL(q), y) ·

(
A0 −BC(xL(q), y)

)
∇φi(xL(q), y) dy

+

∫ L2

0

∂xR(q)

∂q
∇φj(xR(q), y) ·

(
BC(xR(q), y)− A0

)
∇φi(xR(q), y) dy

+

∫ L2

0

∫ xR(q)

xL(q)

∇φj(~x) ·
(
∂

∂q
(B(~x; q))∇φi(~x)

)
dx dy for i, j = 1, 2, . . . N

[~vq(t)]j = vqj (t) for i, j = 1, 2, . . . N

[~0]i = 0 for i = 1, 2, . . . N.

In order to solve ~vq(t) in (A.13), one must first solve (5.12) for ~u(t) and obtain
d

dt
~u(t) by

calculating

d

dt
~u(t) =

1

pV
C(q)−1

(
SfI[0,ts](t)~f − αK(q)~u(t)

)
.

In Chapter 5 use model solutions given by

Uij(q) =
1

`

∫ xi+`

xi

ũN(tj, x, 0; q) dx (A.14)

where ũN(t, ~x; q) is the finite element solution of (5.12). The sensivities of Uij(q), which

we will denote V q
ij(q) are then given by
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V q
ij(q) =

∂Uij(q)

∂q
=

∂

∂q

(
1

`

∫ xi+`

xi

ũN(tj, x, 0; q) dx

)
=

1

`

∫ xi+`

xi

∂

∂q

(
ũN(tj, x, 0; q)

)
dx

=
1

`

∫ xi+`

xi

(ṽq)N dx.
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