
ABSTRACT

ROBBINS, DANIELLE. Sensitivity Functions for Delay Differential Equation Models. (Under
the direction of H.T. Banks.)

Delay differential equations are useful to model various biological, sociological, and physical

processes in which there are hysteretic or memory effects. Nicholas Minorsky played a great role

in establishing the use of these type of models for physical processes. From his work, physical

processes like ship control systems are modeled using delay differential equations with delayed

damping or delayed restoring force. G.E. Hutchinson also saw the importance of using delay

systems to model ecological models. Hutchinson’s equation, also known as the delay-logistic

equation, is used to model population growth of a species.

For these biological and physical processes modeled using delay differential equations there

are generally associated data sets. This data is used to estimate parameters within the model

to gain the best predictive model for the process. When performing estimation procedures, pa-

rameter identifiability issues may occur resulting in unfavorable estimates. There also may not

be enough data or repeated information in the data which will again produce unfavorable esti-

mates. Sensitivity analysis improves the estimation process as traditional sensitivity functions

can determine which parameters can be estimated and those that should be fixed. Generalized

sensitivity functions will determine which regions in the data help estimate specific parameters.

Thus using both type of sensitivity functions should lead to optimal parameter estimates.

We will derive and compute traditional sensitivity functions for the delay logistic model,

delayed damping and restoring force harmonic oscillator models, as well as a sociological model

for the behavior of alcoholics. We will also prove the existence of a solution for the derived

sensitivity equation with respect to the delay. We will use the computed traditional sensitivity

functions, to compute generalized sensitivity functions and illustrate the effect of a delay on

generalized sensitivity functions (which provide insight on sensitivity of estimated parameters

to data). We compare the numerical approximations of the generalized sensitivity functions

for the delay-logistic equations to the equations without delay. From the traditional sensitivity

functions and generalized sensitivity functions we simulate ideal data sets to obtain optimal

estimates for the delay parameter τ via the inverse problem.
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Chapter 1

Introduction

1.1 History of Delay Differential Equations

Delay differential equations (DDEs) are used to model biological, physical, and sociological

processes, as well as naturally occurring oscillatory systems. Minorsky in 1942 first introduces

the idea of hysterodifferential equations in [38], using these type of equations to model self-

excited oscillatory dynamical systems. He proposes the idea that some natural phenomena

such as self-oscillations may be effected by the previous history of a motion or action, which

describes a retarded dynamical system. A retarded dynamical system is a system that describes

an action that has delayed time dependence [39]. Minorsky explains the importance of these

systems due to their ability to model self-excitation within a control system. These physical

systems are usually classified into systems with retarded damping given by

ẍ(t) +Kẋ(t− τ) + bx(t) = g(t), (1.1)

and those with retarded restoring force described by

ẍ(t) +Kẋ(t) + bx(t− τ) = g(t), (1.2)

where g is some external force. Minorksy used models such as (1.1) and (1.2) to study stabi-

lization systems in ships [38]-[40]. He also defines the difference between ordinary differential

equations (ODEs) and functional differential equations (FDEs) in the following manner. A ODE

is an equation where the solution at the present time predicts the future, while a DDE/FDE

is defined such that the present and future is dependent upon past in some form [40]. A DDE

also has a infinite degree characteristic equation, while the degree of the characteristic equation

for an ODE is finite [40]. The infinite degree of the characteristic equation of a DDE allows for

infinite eigenvalues of the DDE, which promotes different solution behavior such as self-excited
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oscillations in the solution [40]. This property of the DDE makes it very advantageous in mod-

eling physical control systems. Minorsky also gives insight to the necessary use a non-linear

DDE to model a system with self-excited oscillations, as a linear DDE is unable to capture

all of the properties of the self-excitation. This is a result of the unstable conditions on the

harmonic root [40]. Minorsky lays a foundation for modeling oscillatory phenomena in physical

systems. From his research we are introduced to delayed restoring force and delayed damping

DDE models which prove useful for modeling many physical and biological processes.

In 1948 Hutchinson developed a delay differential equation model, known as the delay logistic

equation, to describe the dynamics of a circular causal system [32]. A causal system is a system

where the output depends on the current and/or past input. A circular causal system is any

causal system where changes to one part of the system effects another part of the system at a

different rate so that the system does not go extinct. Parasite host interaction is an example

of an ecological circular causal system since if a parasite can complete its life cycle without

killing the host or drastically altering the growth of the host population, the host population

will continue to exist [34, 32]. The delay in this model can represent various naturally occurring

attributes of the process being modeled like the gestation period in a growing population, or

the life cycle of a parasite. Hutchinson’s equation maybe used to model population growth,

host population growth in the presence of a parasite, and various other biological and physical

processes. From Minorsky and Hutchinson we learn early the importance of using DDE models.

1.2 Previous Works for Parameter Identification Problems and

Sensitivity Analysis in DDE Models

Usually for biological and physical processes modeled there are associated data sets from corre-

sponding experiments. From these data sets and using the mathematical model that describes

the process, we can perform the inverse problem to estimate the parameters within the model.

In order to perform the inverse problem, the problem must be well-posed. The model param-

eters must also be identifiable. In addition to these issues, a solution to the DDE model must

exist.

When dealing with the parameter identifiability issues, traditional sensitivity functions

(TSFs) are computed to give insight as to which parameters in the model solutions are most

sensitive. As a result, a group of parameters may be fixed, which improves the parameter

estimation process. Traditional sensitivity functions are usually derived from the model equa-

tion and will have the same form as the model equation, (i.e., if the mathematical model is a

DDE, the derived sensitivity equation will also be a DDE). For these derived TSF equations,

existence must also be determined. In our efforts, we perform a complete sensitivity analysis

2



for all the parameters including the delay to help with parameter estimation for DDE models.

This analysis will involve computing TSFs and generalized sensitivity functions (GSFs). GSFs

will give insight as to how sensitive the estimate is to the data and determine regions in the

data of high information content. Thus from sensitivity analysis the TSFs will determine which

parameters maybe fixed and the GSFs will determine when and where data should be collected,

therefore improving the parameter estimation process.

A main issue when performing sensitivity analysis for DDE models occurs when deriving

the equation for sensitivity with respect to the delay. For this particular sensitivity equation

proving existence is not straight forward as the solution is dependent on the derivative of

the previous history of the solution to the model, which we will see later is ẋ(t − τ). One

main goal is to reformulate this sensitivity equation such that we can provide the theory to

establish a well-posed problem. We begin by discussing previous work done on DDE parameter

identification problems, followed by a discussion of previous work on sensitivity analysis for

differential equation models. We compare and contrast the ideas presented in these works

with our approach to the problem. We present theoretical and numerical results for multiple

examples.

In the summarized works on parameter identification problems for DDE models, we learn

that issues within parameter estimation leads to use of sensitivity equations to improve the

estimation process. Also the theory presented in these works helps to direct our efforts for

numerical computation of sensitivity functions. Next we present the works chronologically and

summarize the results.

Banks, Burns, and Cliff in 1981 compute parameter identification problems for delay sys-

tems [7]. Their research develops estimation algorithms for the parameters of the delay systems

including estimation of the delay. They observed difficulty when estimating the delay since solu-

tions of DDEs are not always differentiable with respect to the delays, which makes estimation

methods such as least squares and maximum likelihood challenging. Banks, et al., also suggest

the need for formal theory regarding the existence of sensitivity functions with respect to the

delay. They formulate a class of estimation algorithms based on previous general approximation

techniques for delay systems, and consider the following delay system identification problem

ẋ(t) = L(q)xt +B(α)u(t), t ≥ 0, (1.3)

x(0) = η, x0 = φ , (η, φ) ∈ RN × L2(−r, 0;RN ) (1.4)

with output y(t) = C(α)x(t) + D(α)u(t). Here the function x, xt is defined such that xt(θ) =

x(t+ θ). Also given r > 0 exists and is fixed, and Ω ⊂ Rµ is a compact convex set, they define
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a compact convex parameter set Q ⊂ Rµ+ν by Q ≡ Ω×H, where

H = {h = (r1, r2, . . . , rν) ∈ Rν |0 ≤ ri ≤ ri+1, i = 1, . . . , ν − 1}.

Then for any q = (α, h) ∈ Q, L(q) is defined such that

L(q)φ =
ν∑
i=0

Ai(α)φ(−ri) +

∫ 0

−rν
K(α, θ)φ(θ)dθ.

Next, they introduce a more cohesive theoretical foundation for the identification problem of

a delay system. Given the fundamental identification problem for the delay systems is linear,

the problem can be reformulated in an abstract way such that its solution can be defined by a

strongly continuous semigroup of linear operators. Thus equation (1.3)-(1.4) becomes

ż(t) = A(q)z(t) + B(α)u(t), t ≥ 0 (1.5)

z(0) = (η, φ), (1.6)

y(t) = Cz(t) +D(α)u(t). (1.7)

where (η, φ) ∈ Z ≡ RN × L2(−r, 0;RN ), q ∈ Q and the infinitesimal generator A(q) is defined

such that

A(q)(φ(0), φ) = (L(q)φ, φ̇).

Then given t ≥ 0, S(t; q) : Z → Z is defined such that

S(t; q)(η, φ) = (x(t; q), xt(q)),

where S(t; q) is a strongly continuous semigroup. By defining a strongly continuous semigroup,

from which a solution maybe obtained, a well-posed identification problem can be formulated.

Banks et al., then prove approximation theorems, using semigroup theory, for the original

model. As a result of the approximation theory established in their paper, computationally

efficient identification algorithms are established. We will use the abstract formulation with

our example to prove existence of a solution for the derived TSF equations with respect to the

delay. We note that the original DDE may not have an existing solution if the initial history is

not continuous over the time interval. For our DDE problem, the derived sensitivity function

with respect to the delay, not only must the history of the solution, x(t− τ) be continuous, but

the derivative of that history, ẋ(t− τ), must also be defined over the time interval.

From Banks, Burns, and Cliff we learn the importance of reformulating the model in an
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abstract space. Next Brewer presents theory on Frechet derivatives for the solution of a linear

abstract Cauchy problem [19]. The model observed is an autonomous linear abstract Cauchy

problem

ż(t) = A(q)z(t) + u(t), (1.8)

z(0) = z0,

where z ∈ Z, a Banach space with norm || · ||, q ∈ Q, a normed linear space with norm

| · |, and z0 is the initial condition. Brewer sets up criteria such that differentiability of the

solution with respect to a parameter may be established for both linear homogeneous and

linear inhomogeneous equations. The operator in this paper, A(q), that defines the linear

abstract Cauchy problem must be such that the parameter q may appear in unbounded terms.

In previous work by Gibson and Clark [31], the differentiability results for this type of linear

abstract Cauchy problem were obtained when the operator A(q) was represented as a linear

combination of an operator independent of the parameter and a dependent bounded linear

operator, A(q) = A+B(q). Brewer expands the class results in [31] by considering the operator,

A(q), to represent the parameter in an unbounded format. The operator will generate a strongly

continuous semigroup, and using semigroup theory Brewer is able to prove the existence of

Frechet derivatives with respect to the parameters for the initial value problem (1.8). The

solution to this problem via semigroups is S(t; q)z0 when u = 0. As a result of the existence of

the Frechet derivatives, he is able to carefully define sensitivity equations with respect to the

parameters including the delay of the abstract system. Brewer applies his theory to a linear

discrete delay system of the following format

ẋ(t) = a0x(t) +
n∑
k=1

akx(t− pk) + u(t)

to show the application of his result. His theory is formulated on the Banach space R ×
L1(−p∗, 0), but maybe be extended to the Hilbert space Rm × Lν(−p∗, 0) where m, ν ≥ 1. To

use the results from this paper, there must be a general abstract linear autonomous system dif-

ferentiable with respect to the parameter. Since our problem is non-linear and non-autonomous,

Brewer’s results are not readily extendable to our example.

Banks in a later work discusses spline methods for nonlinear delay systems which aides in

performing the parameter identification problem [5]. Results in this paper are reintroduced in

[13] by Banks and Lamm. In both of these papers, approximation theory for a general class

of nonlinear functional differential equations is presented. This theory is proven without using

the Trotter-Katto method and semigroup theory, but rather Grownwall’s inequality and fixed
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point theory which are the methods we use to prove well-posedness for our problem. Banks

considers the following system:

ẋ(t) = f(x(t), xt, x(t− τ1), . . . , x(t− τν)) + g(t), 0 ≤ t ≤ T (1.9)

x0 = φ,

where f : Z × Rnν → Rn, and Z = Rn × L2(−r, 0;Rn). A nonlinear operator A is defined

such that when reformulating (1.9) on Z the solution z(t;φ, g) = (x(t;φ, g), xt(φ, g)) will be a

unique solution. Banks and Lamm [13] extend the definition of the operator A to be dependent

on both the parameter and time, and are able to show existence and uniqueness of a solution

z(t;φ, g) = (x(t;φ, g), xt(φ, g)) in Z. Although we employ the same techniques, Banks assumes

a dissipative condition on the nonlinear operator for a class of functional differential equations

to which our example does not fall. In this paper Banks’ main results show convergence of

the approximating solutions using piecewise linear splines and proves well-posedness for a class

of FDEs; however, the theory presented is not applicable to our class of FDE, which includes

sensitivity equations for the delay parameter. The theory is not readily extendable for our

class of FDEs because the right hand side of the derived sensitivity equation for derivative of

the solution with respect to the delay is driven by the derivative of the history of the original

solution. Thus we need different continuity requirements for our initial function.

In 1989, Brewer, Burns, and Cliff [20] carried out the parameter identification problem for

an abstract Cauchy problem using quasilinearization. The linear abstract Cauchy problem is

defined in (1.8). Given a solution to an abstract Cauchy problem is dependent upon a pa-

rameter, and the Cauchy problem is defined by an unbounded parameter dependent evolution

operator, A(q), their goal was to establish convergence of the gradient-based parameter estima-

tion algorithm. The use of quasilinearization with parameter estimation requires the derivative

of the solution with respect to the parameter to be known (i.e., the gradient must exist). As a

result Brewer, et al., show existence of Frechet derivatives with respect to the parameters, in-

cluding the delay, using semigroup theory as applied to an autonomous linear delay differential

equation. It is assumed that A(q) generates a strongly continuous semigroup S(t, q) on some

Banach space with a norm, X. The Frechet derivative with respect to the delay will exist based

on the theory in this paper if the right hand side of the linear abstract Cauchy problem is not

dependent on the derivative of the previous history of the original solution. In our problem,

the derived sensitivity equation with respect to the delay, is dependent on the derivative of the

previous history of the original solution and is a nonlinear delay differential equation model.

Thus we are not readily able to apply the theory from this paper to our example.

Banks, Banks, and Joyner [10] present a mathematical and statistical framework for per-

forming the inverse problem on differential equations with history. They detail how to perform
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the inverse problem on a DDE system and determine which methods best estimate parame-

ters in the model. The following system of functional differential equations is the example for

which the mathematical and statistical framework is based. The system of equations models

the changes in an insect population due to insecticide and is given by,

dA

dt
(t) =

∫ 5

−7
N(t+ τ)m(τ)dτ − (dA(t) + pA(t))

dN

dt
(t) = b(t)A(t)− (dN (t) + pN (t))N(t)−

∫ −5
−7

N(t+ τ)m(τ)dt (1.10)

A(θ) = φ(θ), N(θ) = ψ(θ), θ ∈ [−7, 0)

A(0) = A0, N(0) = N0.

Here A(t) is the number of adult insects, N(t) is the number of neonate insects, and m is

a probability density kernel with specific assumed properties. To approximate the solution

to this model, they use Banks-Kappel splines since the model may be reformulated into an

abstract evolution equation. We will discuss the Banks-Kappel method in a later section. In

this paper Banks et al., discuss the use and formulation of sensitivity equations with respect to

the parameters and density kernel m but do not present a formal proof on the existence of the

Frechet derivatives that define the sensitivity equations. They do however reference a formal

proof presented in [11], which uses a theoretical framework presented in [16]. From Banks,

Banks, and Joyner we observe the necessity to formulate and compute sensitivity functions

with respect to the delay to aide parameter estimation because in their example, like in many

other DDE models, the delay parameter in particular has the least amount of information given

from the data and research.

Banks, Rehm, and Sutton [18] study inverse problems for nonlinear delays systems. They

give a theoretical framework for the convergence of approximations for nonautonomous nonlin-

ear DDE models. To establish this convergence, they begin by determining if solutions to the

nonautonomous nonlinear DDE exist. To do this they reformulate their model

ẋ(t) = f(t, x(t), xt, x(t− τ1), . . . , x(t− τm), q) + f2(t), 0 ≤ t ≤ T , (1.11)

x0 = φ, (1.12)

where f : [0, T ] × X × Rnm × Q → Rn, X = Rn × L2(−r, 0;Rn), and φ ∈ H1(−r, 0), into the

abstract form
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ż(t) = A(t; q)z(t) + (f2(t), 0) (1.13)

z(0) = ξ = (φ(0), φ),

where A(t; q) : D(A) ⊂ X → X is the nonlinear operator. They then determine if the abstract

form has an existing solution. Banks et al.[18], suggests the existence of the solution can be

established via fixed point theory and Picard iteration arguments. Existence and uniqueness

for the solution of the approximation of (1.13) is established using the approach presented in

[12]. Their main result ensures the convergence of solutions of the approximation to that of the

original model. Banks, Rehm, and Sutton do not observe or formulate sensitivity equations;

however, they do give insight to a theoretical framework for establishing existence and unique-

ness for a DDE model. We use techniques presented here to establish well-posedness for our

derived sensitivity equations with respect to the delay.

Next we describe previous work done on the computational aspects of sensitivity analysis

for delay differential equations (DDEs). To be specific we discuss literature that uses sensitivity

analysis on various DDE models [6, 17, 22] and the theory presented within these references.

As we have previously mentioned, sensitivity analysis improves the parameter identification

for process for DDE systems [5, 7, 13, 20], which use sensitivity functions in the identification

process. From these works we discuss previous theoretical and computational tools and how

there is a lack of proof of well-posedness for derived sensitivity equations with respect to the

delay.

Baker and Rihan [17] show how to formally derive sensitivity equations for delay differential

equation models, as well as the derivation of equations for the sensitivity of parameter estimates

with respect to observations, what we know as GSFs. They consider a general system of delay

differential equations such that p ∈ RL

ẋ(t, p) = f(t, x(t), x(t− τ), p), t ≥ 0, (1.14)

x(t, p) = ψ(t, p), t ≤ 0.

From this general model local sensitivity functions, ∂x
∂pi

, are obtained by solving

∂ẋ(t, p)

∂pi
=

∂

∂pi
f(t, x(t), x(t− τ), p), t ≥ 0, (1.15)

∂x(t, p)

∂pi
= 0.

They derive the sensitivity of the optimum parameter estimate p̂ to perturbations in the data
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ηj by first defining the cost functional φ(p, η)

φ(p, η) =
∑
i

[x(ti, p)− ηi] .2 (1.16)

Next they differentiate the cost functional and obtain

∂

∂pk
φ(p, η) = 2

∑
i

[x(ti, p)− ηi]
∂x(ti, p)

∂pk
. (1.17)

If the cost function (1.16) is minimized a p = p̂ where p̂ ≡ p̂(η), then (1.17) is equal to zero. So

(1.17) becomes

∑
i

[x(ti, p̂)− ηi] sk(ti, p̂(η)) = 0, (1.18)

where sk(ti, p) = ∂x(ti,p)
∂pk

. Both sides are then differentiated with respect to ηi so

N∑
i=1

Lp∑
l=1

[sk(ti, p̂)sl(ti, p̂) + [x(ti, p̂)− η] rlk(ti, p̂)]
∂p̂l
∂ηj

= sk(tj , p̂). (1.19)

Given that x(ti, p̂) is close to the observation ηi, [x(ti, p̂)− η] = 0, (1.19) becomes

N∑
i=1

Lp∑
l=1

[sk(ti, p̂)sl(ti, p̂)]
∂p̂l
ηj
≈ sk(tj , p̂), (1.20)

which can be rewritten as [
N∑
i=1

s(ti, p̂)s
T (ti, p̂)

]
∂p̂

∂ηj
≈ s(tj , p̂). (1.21)

Thus

∂p̂

ηj
≈

[
N∑
i=1

s(ti, p̂)s
T (ti, p̂)

]−1
s(tj , p̂).

Baker and Rihan also show that the sensitivity of the parameter estimates to observations

(what we know as GSFs) maybe obtained by minimizing the previously defined objective func-

tion φ(p) in the following way

∂

∂p
φ(p̂) = 2

N∑
j=1

χT (tj , p̂)[x(tj , p̂)− ηj ] = 0, (1.22)
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where χ(t, p̂) is the sensitivity matrix.

Baker and Rihan also offer an outline of how to numerically compute both TSFs and GSFs

for retarded delay differential equations and neutral delay differential equations. Baker and

Rihan list issues that arise when doing parameter estimation in DDEs which includes difficulty

in establishing existence of the derivative of the solution with respect to the parameters, as

well as difficulty in establishing a well-posed problem for the derived sensitivity equations. The

issues raised by Baker and Rihan are common when dealing with delay differential equations

and we attempt to address and solve these issues within the current text.

Banks and Bortz [6] use sensitivity analysis to show how changes in parameters will effect

the solutions of their delay differential equation model for HIV which has distributed delays.

Their sensitivity equations are formulated from the following model:

ẋ(t) = L(x(t), xt) + f1(x(t)) + f2(t) for 0 ≤ t ≤ tf (1.23)

(x(0), x0) = (φ(0), φ) ∈ R4 × C(−r, 0;R4),

where x(t) = (V,A,C, T ),T which are the states used in the mathematical model for the HIV

model, and L(η, φ) is a vector operator to account for the distributed delay. When deriving the

sensitivity equations they obtain a system of DDEs, which are assumed to be well-posed. In their

discussion of well-posedness for these sensitivity equations they assume the delay distributions

are differentiable and parameterizable by a mean and standard deviation. In this paper they

use theoretical steps presented in [5] to prove existence and uniqueness of the derived sensitivity

equations (i.e., successive approximations, fixed point theory, Lipschitz continuity, etc.). While

they are able to prove well-posedness for their particular class of sensitivity delay differential

equations, their example does not have sufficient smoothness on the initial history functions,

as it is assumed in C(−r, 0;R4), such that the derivative of the history function will be defined

over the time interval. Banks and Bortz also state that existence of the derived sensitivity

function with respect to discrete delays can be established using the same manner of proof as

their example; however, the arguments for this proof will be more tedious. From Banks and

Bortz we gain more insight to the theoretical framework needed to prove a well-posed problem

for derived sensitivity equations.

Banks and Nguyen [16] develop a theoretical framework for sensitivity functions of nonlinear

dynamical systems in a Banach space where the parameters are dependent on a another Banach

space. They observe the sensitivity of functional parameters in the following type of nonlinear

ordinary differential equations
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ẋ(t) = f(t, x(t), µ), t ≥ t0 (1.24)

x(t0) = x0,

where f : R+ × X × M → X and M and X are complex Banach spaces. They establish

well-posedness for (1.24), and existence of Frechet derivatives with respect to the solution x(t)

and parameter(s) µ. As a result, there is a solution to the respective sensitivity equation

ẏ(t) = fx(t, x(t, t0, x0, µ), µ)y(t) + fµ(t, x(t, t0, x0, µ), µ), t ≥ t0 (1.25)

y(t0) = 0,

where y(t) = ∂x(t)
∂µ . To prove existence of (1.25), they use fixed point, successive approximations,

and Gronwall’s inequality theories. Banks and Nguyen apply their theoretical results to the

DDE example for HIV dynamics, however they only display results for the the sensitivity with

respect to the probability distribution for the delay and not a discrete delay which would require

more details in the proof of existence. We follow closely the theoretical arguments within this

paper and extend them for use in the proof of the existence of the Frechet derivative with

respect to the delay for our examples.

Burns, Cliff, and Doughty [22] explain the use of continuous sensitivity equations for DDE

models typical in biosciences, specifically for a model for Chlamydia Trachomatis. Their re-

search focuses on parameter estimation techniques using sensitivity equations for DDE models

specific to the biosciences. Parameter estimation for these typical models involves the inverse

problem which uses sensitivity equations both theoretically and computationally. Burns et al.,

explore the parameter estimation problem for an ODE/PDE model of the cellular dynamics

for Chlamydia Trachomatis which is then transformed into a simple DDE model to aid in the

formulation of the continuous sensitivity functions. The following model describes the cel-

lular changes between the retriculate body (RB) and extracellular elementary body (EB) in

Chlamydia

d

dt
RB(t) = a(t)RB(t), t1 < t < t3, (1.26)

a(t) =

{
α, t1 < t < t2,

α− β((t− t2)/(t3 − t)), t2 < t < t3,
(1.27)

∂

∂t
ρ(t, s) = − ∂

∂s
ρ(t, s), t2 < t < t3, 0 < s < r (1.28)

∂

∂t
ρ(t, 0) = −κρ(t, 0) + β((t− t2)/(t3 − t))RB(t), (1.29)

11



where ρ(t, s) is the number of RB cells that transform to EB cells. This ODE/PDE can then

be transformed to the following DDE

ẋ(t) = A0(q)x(t) +A1x(t− r) +Bv(t; q), 0 < t < T, (1.30)

x(0) = ξ ∈ Rn and x(s) = φ(s) ∈ L2(−r, 0;RN ), −r < s < 0.

Once the ODE/PDE model for Chlamydia Trachomatis is transformed into the simple DDE,

it is then transformed to a Cauchy Problem on the state space Z = RN × L2(−r, 0;RN )

dz(t; q, r)

dt
= A(q, r)z(t; q, r) + Bv(t; q), (1.31)

z(0; q, r) = [ξ, φ0(·)]T ∈ Z (1.32)

where

D(A(q, r)) = {[ξ, φ(·)]T : ξ ∈ RN , φ(·) ∈ H1(−r, 0;RN ), φ(0) = ξ} (1.33)

A(q, r)

[
ξ

φ(·)

]
=

[
A0(q)ξ +A1φ(−r)

φ′(·)

]
, (1.34)

and

B =

[
B

0

]
. (1.35)

Transformation to the Cauchy problem allows for use of specific numerical schemes to simulate

the solution as established in previous literature [7, 12]. From the simple DDE (1.30) for the

model they formulate the following continuous sensitivity equations

∂ẋ(t; q, r)

∂q
= A0(q)

∂x(t; q, r)

∂q
+ [

A0(q)

∂q
]x(t : q, r) +A1

∂x(t− r; q, r)
∂q

+B
∂v(t; q)

∂q
(1.36)

∂ẋ(t; q, r)

∂r
= A0(q)

∂x(t; q, r)

∂r
+A1

∂x(t− r; q, r)
∂r

−A1
∂x(t− r; q, r)

∂t
(1.37)

which have a zero initial condition and initial function. Well-posedness is easily established for

the sensitivity equations for the Chlamydia model with respect to parameters which are not

the delay from semigroup theory for a linear autonomous operator (A0(q) +A1) as discussed in

[7]. They do not attempt to directly establish well-posedness for the sensitivity equation with
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respect to the delay. They only discuss ensuring that the initial past history of the solution to the

original model is defined since it is a forcing term in the definition of this particular sensitivity

equation, as shown in (1.37). Burns et al., give numerical results for estimated parameters

of the Chlamydia model as well as sensitivities using SPLINE approximations coupled with

MATLAB’s ODE 23. Burns et al., also use the Gauss-Newton procedure along with a step-size

selection scheme to minimize the least squares cost functional. From this paper the authors

give insight to numerical schemes for computing sensitivity functions for DDE models as well as

parameter estimation techniques. They also highlight well-posedness issues for the sensitivity

equation with respect to the delay.

From the various works summarized above we are able to obtain a theoretical foundation

to establish existence and uniqueness for our derived sensitivity equations. We are also able to

obtain insight for approximating these derived sensitivity equations. These works gives us the

necessary background to accomplish our main task of determining existence and uniqueness for

the derived sensitivity equation with respect to the delay parameter.
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Chapter 2

Theoretical Framework

2.1 The Basic Model

We begin with the following equation model which may describe a physical, sociological or

biological system:

dx(t)

dt
= G(x(t), x(t− τ), θ), t > 0 (2.1)

x(ξ) =

{
Φ(ξ), −τ ≤ ξ < 0

x0, ξ = 0
(2.2)

η(t) = h(x(t), x(t− τ), θ), t ∈ [0, T ], (2.3)

where x(t) ∈ Rn are vectors of state variables of the system, η(t) ∈ Rm is the vector of

measurable or observable outputs, and θ ∈ Rp is the vector of parameters. It is assumed that

G, and h in (2.1) and (2.3) are sufficiently smooth, in order to carry out the construction of the

generalized sensitivity functions (GSFs). GSFs determine how sensitive the parameter estimate

is to the observations or data.

When solving (2.1), we obtain x = x(t, θ), where t ∈ [0, T ], and

η(t) = f(t, θ), t ∈ [0, T ],

and f is defined as f(t, θ) = h(x(t, θ), x(t− τ, θ), θ), where h = h(x, x̃, θ) and x̃ = x(t− τ). We

then can define the traditional sensitivity functions (TSFs) by

sk(t, θ) =
∂η

∂θk
(t, θ) ∈ RM , k = 1, . . . , p.

To compute the TSFs, η(t) must be smooth with respect to θ which is assumed given the
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assumption that h is sufficiently smooth. We obtain the TSFs from the following equation:

d

dt

∂x(t)

∂θ
=
∂G

∂x

∂x

∂θ
(t) +

∂G

∂x̃

∂x

∂θ
(t− τ) +

∂G

∂θ
(t), (2.4)

where the ∂
∂θ and d

dt operators have been interchanged, due to the continuity assumptions made

on G and x, such that we have a delay differential equation (DDE) for the sensitivity function
∂x
∂θ . This DDE can be solved using MATLAB function dde23. The routine dde23 is an extended

ode23 solver using the method of steps to approximate the solution [43]. The TSFs are used in

the definition for the GSF that will be discussed later.

2.2 Theoretical Foundations

We begin by establishing well-posedness for our model. Assuming that G(x(t), x(t − τ), θ) in

(2.1) is continuous for t ≥ 0, a solution x(t, x0,Φ, τ, θ) for (2.1) satisfies the following integral

equation

x(t, x0,Φ, τ, θ) =


Φ(t), −τ ≤ t < 0;

x0 t = 0;∫ t
0 G(x(s, x0,Φ, τ, θ), x(s− τ, x0,Φ, τ, θ), θ)ds t > 0.

To determine if a solution for the sensitivity equations exist, we must first determine if the

solution for the delay differential equation defined in (2.1), exists, and is unique, and depends

continuously on data using theory described in [16, 33, 34]. To show existence and uniqueness,

we use Lemma 1, where the idea of successive approximations normally used with ordinary

differential equations arguments are applied [16]. We define successive approximations in the

following way for (2.1). Let k = 0, 1, 2, . . ., then

x0(t, x0,Φ, τ, θ) =

{
Φ(t) −τ ≤ t < 0

x0 t ≥ 0.

xk+1(t, x0,Φ, τ, θ) =


Φ(t), −τ ≤ t < 0

x0, t = 0∫ t
0 G(xk(s, x0,Φ, τ, θ), x

k(s− τ, x0,Φ, τ, θ), θ)ds, t > 0.

(2.6)
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Lemma 1 (Existence and Uniqueness of Solutions) LetG : Rn×Rn×Rp → Rn be continuous

and satisfy

|G(x1, x̃1, θ)−G(x2, x̃2, θ)| ≤ C1|x1 − x2|+ C2|x̃1 − x̃2| (2.7)

where Cj > 0 is a constant for j = 1, 2, and assume that Φ ∈ L2(−τ, 0;Rn). Then the suc-

cessive approximations xk converge uniformly for t ∈ [0, T ] to a unique solution of the initial

value problem (2.1) -(2.2) with the solution bounded on [0, T ] and in fact, x ∈ H1(0, T ;Rn).

Moreover, if Φ ∈ H1,∞(−τ, 0;Rn), one has the solution satisfies x ∈ H1,∞(−τ, T ;Rn).

Proof: Let I = [0, T ] where t ∈ I and τ and θ are fixed. We let M > 0 such that

|G(x, x̃, θ)| ≤M for all t ∈ I. Thus

|x1(t, x0,Φ, τ, θ)− x0| ≤Mt for t ≥ 0.

To show that the successive approximations converge let

∆k(t, x0,Φ, τ, θ) = |xk+1(t, x0,Φ, τ, θ)− xk(t, x0,Φ, τ, θ)|.

Then,

∆k(t, x0,Φ, τ, θ) = |
∫ t

0
G(xk(s), xk(s− τ), θ)−G(xk−1(s), xk−1(s− τ), θ)ds|

≤
∫ t

0
|G(xk(s), xk(s− τ), θ)−G(xk−1(s), xk−1(s− τ), θ)|ds

≤
∫ t

0
{C1|xk(s)− xk−1(s)|+ C2|xk(s− τ)− xk−1(s− τ)|}ds, (2.8)

for t > 0. When t < 0, ∆k(t, x0,Φ, τ, θ) = 0, since xk(ξ) = xk−1(ξ) = Φ(ξ), for ξ ≤ 0.

Let ξ = s− τ ; then the second term of (2.8) becomes∫ t

0
C2|xk(s− τ)− xk−1(s− τ)|ds =

∫ t−τ

−τ
C2|xk(ξ)− xk−1(ξ)|dξ.

Then given t ∈ [0, T ], and xk(ξ) = xk−1(ξ) for ξ ≤ 0,∫ t−τ

−τ
C2|xk(ξ)− xk−1(ξ)|dξ ≤

∫ t

0
C2|xk(ξ)− xk−1(ξ)|dξ,
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and thus

∫ t

0
{C1|xk(s)− xk−1(s)|+ C2|xk(s− τ)− xk−1(s− τ)|}ds

=

∫ t

0
{C1|xk(s)− xk−1(s)|+ C2|xk(s)− xk−1(s)|}ds

= (C1 + C2)

∫ t

0
|xk(s)− xk−1(s)|ds.

Let C̃ = (C1 + C2), then

∆k(t, x0,Φ, τ, θ) ≤ C̃
∫ t

0
∆k−1(s, x0,Φ, τ, θ)ds.

We claim that

∆k(t, x0,Φ, τ, θ) ≤
MC̃ktk+1

(k + 1)!
, (2.9)

then for k = 0 and t ∈ I we have

∆0(t, x0,Φ, τ, θ) = |x1(t, x0,Φ, τ, θ)− x0| ≤Mt.

By induction, we have

∆k+1(t, x0,Φ, τ, θ) ≤ C̃

∫ t

0
∆k(s, x0,Φ, τ, θ)ds,

≤ C̃

∫ t

0

MC̃ksk+1

(k + 1)!
ds

≤ MC̃k+1tk+2

(k + 2)!
.

Therefore, we have that the inequality in (2.9) holds for all k and the series for
∑∞

k=0

∆k(t, x0,Φ, τ, θ) is dominated by the power series for MeC̃t

C̃
. Thus using the comparison test,

the series
∑∞

k=0 ∆k(t, x0,Φ, τ, θ) converges uniformly on I. This implies that the series

x0 +
∞∑
k=0

(xk+1(t, x0,Φ, τ, θ)− xk(t, x0,Φ, τ, θ))

17



converges uniformly and absolutely on I, and the partial sum

xn(t, x0,Φ, τ, θ) = x0 +
n−1∑
k=0

(xk+1(t, x0,Φ, τ, θ)− xk(t, x0,Φ, τ, θ))

converges uniformly to a continuous function x on interval I. Due to the existence of x on I,

G(x(t), x(t − τ), θ) exists for t ∈ I. Therefore given that xk(t, x0,Φ, τ, θ) converges uniformly

to x(t, x0,Φ, τ, θ), and x, x̃→ G(x, x̃, θ) is continuous,

xk+1(t, x0,Φ, τ, θ) = x0 +

∫ t

0
G(xk(s, x0,Φ, τ, θ), x

k(s− τ, x0,Φ, τ, θ), θ)ds

becomes in the limit as k →∞

x(t, x0,Φ, τ, θ) = x0 +

∫ t

0
G(x(s, x0,Φ, τ, θ), x(s− τ, x0,Φ, τ, θ), θ)ds.

Therefore x(t, x0,Φ, τ, θ) exists and satisfies (2.1). Moreover, it is easily seen that

x ∈ H1,∞(−τ, 0;Rn) if Φ ∈ H1,∞(−τ, 0;Rn).

To show uniqueness of the solution, we assume there exists two solutions to (2.1), x1(t) =

x1(t, x0,Φ, τ, θ), and x2(t) = x2(t, x0,Φ, τ, θ). We have

|x1(t)− x2(t)| = |
∫ t

0
G(x1(s), x1(s− τ), θ)−G(x2(s), x2(s− τ), θ)ds|

≤
∫ t

0
|G(x1(s), x1(s− τ), θ)−G(x2(s), x2(s− τ), θ)|ds

≤ C̃

∫ t

0
|x1(s)− x2(s)|ds.

Then from Gronwall’s Inequality, it follows that

|x1(t, x0,Φ, τ, θ)− x2(t, x0,Φ, τ, θ)| ≤ 0eC̃t = 0. (2.10)

Thus x1(t, x0,Φ, τ, θ) = x2(t, x0,Φ, τ, θ).

Remark 1 The above arguments can be readily extended to systems where G depends

explicitly on t, i.e., G = G(t, x, x̃, θ). Then one obtains similar results for nonautonomous affine

systems with bounded coefficients for the state and delay terms and bounded perturbations of

nonautonomous linear systems.
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Lemma 2 (Continuous Dependence of Solutions on Parameters) LetG : Rn×Rn×Rp → Rn,

and given θ = θ0 let x(t, x0,Φ, τ, θ) be a solution of

ẋ(t) = G(x(t), x(t− τ), θ0), (2.11)

x(ξ) =

{
Φ(ξ), −τ ≤ ξ < 0

x0, ξ = 0

for t ∈ [0, T ]. Assume that

lim
θ→θ0

G(x, x̃, θ) = G(x, x̃, θ0), (2.12)

uniformly in x, x̃ and for (x1, x̃1, θ), (x2, x̃2, θ) ∈ Rn×Rn×Rp, and assume that (2.7) is satisfied.

Then the Initial Value Problem (IVP) (2.11)-(2.12) has a unique solution x(t, x0,Φ, τ, θ) that

satisfies

lim
θ→θ0

x(t, x0,Φ, τ, θ) = x(t, x0,Φ, τ, θ0), t ∈ [0, T ]. (2.13)

Proof: Existence and uniqueness of a solution on any interval [0, T ] is provided by Lemma 1.

To show continuous dependence of solutions on θ, let t ∈ [0, T ], and x0 ∈ Rn,Φ ∈ L2(−τ, 0;Rn),

τ ∈ R be fixed, we define z(t, θ, θ0) = x(t, θ)− x(t, θ0).

Then,

|z(t, θ, θ0)| = |x(t, θ)− x(t, θ0)|

≤
∫ t

0
|G(x(s, θ), x(s− τ, θ), θ)−G(x(s, θ0), x(s− τ, θ0), θ0)|ds

=

∫ t

0
{|G(x(s, θ), x(s− τ, θ), θ) +G(x(s, θ0), x(s− τ, θ0), θ)

−G(x(s, θ0), x(s− τ, θ0), θ)−G(x(s, θ0), x(s− τ, θ0), θ0)|}ds

≤
∫ t

0
{|G(x(s, θ), x(s− τ, θ), θ)−G(x(s, θ0), x(s− τ, θ0), θ)|

+|G(x(s, θ0), x(s− τ, θ0), θ)−G(x(s, θ0), x(s− τ, θ0), θ0)|}ds

≤
∫ t

0
C̃|x(s, θ)− x(s, θ0)|ds+

∫ t

0
{|G(x(s, θ0), x(s− τ, θ0), θ)

−G(x(s, θ0), x(s− τ, θ0), θ0)|}ds.

Let h(s, θ) = |G(x(t, θ0), x(s − τ, θ0), θ) − G(x(s, θ0), x(s − τ, θ0), θ0)|. Then h(s, θ) → 0

uniformly in s as θ → θ0 from the earlier described assumption in (2.13). Thus

|z(t, θ, θ0)| ≤
∫ T

0
h(s, θ)ds+

∫ t

0
C̃|x(t, θ)− x(t, θ0)|ds, (2.14)
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and with application of Gronwall’s inequality and the limit as θ → θ0 it follows that

lim
θ→θ0

|z(t, θ, θ0)| ≤ lim
θ→θ0

(

∫ T

0
h(s, θ)ds)eC̃t

= 0.

Therefore,

lim
θ→θ0

x(t, x0,Φ, τ, θ) = x(t, x0,Φ, τ, θ0).

Now that we have established existence, uniqueness, and continuous dependence on θ for

the solution to the model described in (2.1), to perform sensitivity analysis and obtain GSFs

(defined in a later section) we must determine if (2.4) has a solution. We want to prove that
∂x(t)
∂θ exists and is given by y(t) that satisfies the system (2.15), (2.16). Let y(t) be the solution

of

ẏ(t) = Gx(x(t), x̃(t), θ)y(t) +Gx̃(x(t), x̃(t), θ)y(t− τ) +Gθ(x(t), x̃(t), θ), t > 0(2.15)

y(t) = 0 −τ ≤ t ≤ 0. (2.16)

To show that the above differential equation has a solution given by the appropriate deriva-

tive, we must prove that certain Frechet derivatives exists. Thus we must show

lim
|h|→0

1

|h|
|G(x, x̃, θ + h)−G(x, x̃, θ)−A(h)| → 0,

where A is the operator of the Frechet derivative of G at θ.

Lemma 3 Mean Value Theorem Let G : Rn × Rn × Rp → Rn and z = (x0,Φ) where Z is

Rn × L2(−τ, 0;Rn).

(i) If Gx(x, x̃, θ) and Gx̃(x, x̃, θ) exists and are continuous for x ∈ Rn, then for x1, x2, x̃1, x̃2

∈ Rn and θ ∈ Rp, t ≥ 0,

G(x1, x̃1, θ)−G(x2, x̃2, θ) =

∫ 1

0
{Gx(sx1 + (1− s)x2, sx̃1 + (1− s)x̃2, θ)(x1 − x2)

+ Gx̃(sx1 + (1− s)x2, sx̃1 + (1− s)x̃2, θ)(x̃1 − x̃2)}ds.
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(ii) If Gθ(x, x̃, θ) exists and is continuous for x ∈ Rn, then for x, x̃ ∈ Rn and θ1, θ2 ∈ Rp, t ≥ 0,

G(x, x̃, θ1)−G(x, x̃, θ2) =

∫ 1

0
Gθ(x, x̃, sθ1 + (1− s)θ2)(θ1 − θ2)ds.

(iii) Suppose x(t, z, τ, θ) is a solution of (2.1), which is continuous in Rn and continuous and

continuously differentiable for z ∈ Z, such that Dzx(t; ·) ∈ L(Z,Rn), thus Dz = ∂
∂z is a

bounded differential operator. Then for z1, z2 ∈ Z, and a fixed τ ∈ R, θ ∈ Rp, for t ∈ [0, T ],

x(t, z1, τ, θ)− x(t, z2, τ, θ) =

∫ 1

0
Dzx(t; sz1 + (1− s)z2)[z1 − z2]ds.

Proof: We consider (i). Let

H1(s) = G(sx1 + (1− s)x2, sx̃1 + (1− s)x̃2, θ), 0 < s ≤ 1

using the chain rule of Frechet derivative, we have

H
′
1(s) = Gx(sx1 + (1− s)x2, sx̃1 + (1− s)x̃2, θ)(x1 − x2)

+ Gx̃(sx1 + (1− s)x2, sx̃1 + (1− s)x̃2, θ)(x̃1 − x̃2).

Then if we integrate H ′1(s) for s ∈ (0, 1], we have H1(1) − H1(0) which is G(x1, x̃1, θ) −
G(x2, x̃2, θ), thus we have (i).

The proof of (ii) and (iii) are similar to the previous proof, thus we omit it.

Theorem 1 Suppose that G(x, x̃, θ) has continuous Frechet derivatives Gθ, Gx, Gx̃ such

that |Gx| ≤ M0,|Gx̃| ≤ M1, and |Gθ| ≤ M2. Then the Frechet derivative y1(t) = ∂x(t)
∂θ ∈ Rn×p

exists and is the unique solution for

ẏ1(t) = Gx(x(t), x(t− τ), θ)y1(t) +Gx̃(x(t), x(t− τ), θ)y1(t− τ) +

Gθ(x(t), x(t− τ), θ), t > 0 (2.17)

y1(0) = 0 −τ ≤ t < 0.

Proof: Using a ready extension of Lemma 1 (see Remark 1), we can easily establish that

(2.17) has a unique solution y1(t). For a fixed τ ∈ R, t ∈ [0, T ], x, x̃ ∈ Rn, let h ∈ Rp, and
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m1(t, θ, h) = x(t, θ + h)− x(t, θ).

m1(t, θ, h) =

∫ t

0
{G(x(s, θ + h), x(s− τ, θ + h), θ + h)−G(x(s, θ), x(s− τ, θ), θ)}ds

=

∫ t

0
{G(x(s, θ + h), x(s− τ, θ + h), θ + h)−G(x(s, θ + h), x(s− τ, θ + h), θ)

+ G(x(s, θ + h), x(s− τ, θ + h), θ)−G(x(s, θ), x(s− τ, θ), θ)}ds. (2.18)

Using Lemma 3, with Frechet differentiability then we can write (2.18) as

m1(t, θ, h) =

∫ t

0
{Gθ(x(s, θ + h), x(s− τ, θ + h), θ)[θ + h− θ] + w1(s, h)

+ Gx(x(s, θ), x(s− τ, θ), θ)[x(s, θ + h)− x(s, θ)] + w2(s,m1(s, θ, h))

+ Gx̃(x(s, θ), x(s− τ, θ), θ)[x(s− τ, θ + h)− x(s− τ, θ)]

+ w2(s,m1(s− τ, θ, h))}ds,

where w1(t, h) → 0 as h → 0, and w2(s,m1(s, θ, h)) → 0 as m1(s, θ, h) → 0. We define

b1(t, h) = w1(t,h)
|h| and b2(t, h) = w2(t,m1(t,θ,h))

|m1(t,θ,h)| so that b1(t, h) → 0, and b2(t, h) → 0 as |h| → 0

and |m1(t, θ, h)| → 0, respectively. Then for the Frechet derivative ∂x(t)
∂θ to exist, as |h| → 0 we

must argue

|m1(t, θ, h)− y1(t)h|
|h|

→ 0,

where y1(t) is defined by (2.17). We argue that

|m1(t, θ, h)− y1(t)h|
|h|

=
1

|h|

∫ t

0
{|Gθ(x(s, θ + h), x(s− τ, θ + h), θ)[h] + w1(s, h)

+Gx(x(s, θ), x(s− τ, θ), θ)[m1(s, θ, h)] + w2(s,m1(s, θ, h))

+Gx̃(x(s, θ), x(s− τ, θ), θ)[m1(s− τ, θ, h)] + w2(s− τ,m1(s− τ, θ, h))

−h[Gx(x(s, θ), x(s− τ, θ), θ)y1(s) +Gx̃(x(s, θ), x(s− τ, θ), θ)y1(s− τ)

+Gθ(x(s, θ), x(s− τ, θ), θ)]}ds.

22



Hence,

|m1(t, θ, h)− y1(t)h|
|h|

≤
∫ T

0

|Gθ(x(s, θ + h), x(s− τ, θ + h), θ)−Gθ(x(s, θ), x(s− τ, θ), θ)||h|
|h|

ds

+

∫ T

0

|Gx(x(s, θ), x(s− τ, θ), θ)||m1(s, θ, h)− y1(s)h|
|h|

ds

+

∫ T

0

|Gx̃(x(s, θ), x(s− τ, θ), θ)||m1(s− τ, θ, h)− y(s− τ)h|
|h|

ds

+

∫ T

0

w1(s, h)

|h|
+

∫ T

0

w2(s,m1(s, θ, h))

|h|
ds

+

∫ T

0

w2(s− τ,m1(s− τ, θ, h))

|h|
ds.

Then

|m1(t, θ, h)− y1(t)h|
|h|

≤
∫ T

0

|Gθ(x(s, θ + h), x(s− τ, θ + h), θ)−Gθ(x(s, θ), x(s− τ, θ), θ)||h|
|h|

ds

+

∫ T

0

M0|m1(s, θ, h)− y1(s)h|
|h|

ds+

∫ T

0

M1|m1(s− τ, θ, h)− y1(s− τ)h|
|h|

ds

+

∫ T

0
b1(s, h)ds+

∫ T

0

w2(s,m1(s, θ, h))

|h|
ds+

∫ T

0

w2(s− τ,m1(s− τ, θ, h))

|h|
ds.

We need to show that w2(t,m1(t,θ,h))
|h| ≤ K w2(t,m1(t,θ,h))

|m1(t,θ,h)| , so we consider

|m1(t, θ, h)| = |
∫ T

0
{Gθ(x(s, θ + h), x(s− τ, θ + h), θ)[h]

+Gx(x(s, θ), x(s− τ, θ), θ)m1(s, θ, h)

+ Gx̃(x(s, θ), x(s− τ, θ), θ)m1(s− τ, θ, h) + w1(s, h)

+ w2(s,m1(s, θ, h)) + w2(s− τ,m1(s− τ, θ, h))ds}|

≤
∫ T

0
M2|h|ds+

∫ T

0
M0|m1(s, θ, h)|ds+

∫ T

0
M1|m1(s− τ, θ, h)|ds

+

∫ T

0
|h|b1(s, h)ds+

∫ T

0
b2(s, h)|m1(s, θ, h)|ds

+

∫ T

0
b2(s− τ, h)|m1(s− τ, θ, h)|ds.
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Let ξ = s− τ , then

∫ T

0
(b2(s− τ) +M1)|m1(s− τ, θ, h)|ds =

∫ T−τ

−τ
(b2(ξ, h) +M1)|m1(ξ, θ, h)|dξ

≤
∫ 0

−τ
(b2(ξ, h) +M1)|m1(ξ, θ, h)|dξ +

∫ T−τ

0
(b2(ξ, h) +M1)|m1(ξ, θ, h)|dξ

≤ 0 +

∫ T−τ

0
(b2(ξ, h) +M1)|m1(ξ, θ, h)|dξ ≤

∫ T

0
(b2(ξ, h) +M1)|m1(ξ, θ, h)|dξ

since for t ∈ [−τ, 0], x(t, θ + h) = x(t, θ), so m1(t, θ, h) = 0. Using the change of variables, we

obtain the following:

|m1(t, θ, h)| ≤
∫ T

0
M2|h|ds+

∫ T

0
M0|m1(s, θ, h)|ds+

∫ T

0
M1|m1(s, θ, h)|ds

+

∫ T

0
b1(s, h)|h|ds+

∫ T

0
b2(s, h)|m1(s, θ, h)|ds+

∫ T

0
b2(s, h)|m1(s, θ, h)|ds

≤
∫ T

0
(M2 + b1(s, h))|h|ds+

∫ T

0
(M0 +M1 + 2b2(s, h))|m1(s, θ, h)|ds

≤ |h|K,

where K = (M2 + b1(s, h))e
∫ t
0 (M0+M1+2b2(s,h))ds when applying Gronwall’s inequality. Thus

w2(t,m1(t, θ, h))

|h|
≤ Kw2(t,m1(t, θ, h))

|m1(t, θ, h)|
.

Then

|m1(t, θ, h)− y1(t)h|
|h|

≤
∫ T

0

|Gθ(x(s, θ + h), x(s− τ, θ + h), θ)−Gθ(x(s, θ), x(s− τ, θ), θ)||h|
|h|

ds

+

∫ T

0

M0|m1(s, θ, h)− y1(s)h|
|h|

ds+

∫ T

0

M1|m1(s− τ, θ, h)− y1(s− τ)h|
|h|

ds

+

∫ T

0
b1(s, h)ds+

∫ T

0
K
w2(s,m1(s, θ, h))

|m1(s, θ, h)|
ds+

∫ T

0
K
w2(s− τ,m1(s− τ, θ, h))

|m1(s− τ, θ, h)|
ds.
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Then using the change of variables as shown earlier, we have that

|m1(t, θ, h)− y1(t)h|
|h|

≤
∫ T

0

|Gθ(x(s, θ + h), x(s− τ, θ + h), θ)−Gθ(x(s, θ), x(s− τ, θ), θ)||h|
|h|

ds

+

∫ T

0

M0|m1(s, θ, h)− y1(s)h|
|h|

ds+

∫ T

0

M1|m1(s, θ, h)− y1(s)h|
|h|

ds

+

∫ T

0
b1(s, h)ds+

∫ T

0
Kb2(s, h)ds+

∫ T

0
Kb2(s, h)ds

≤
∫ T

0

|Gθ(x(s, θ + h), x(s− τ, θ + h), θ)−Gθ(x(s, θ), x(s− τ, θ), θ)||h|
|h|

ds

+

∫ T

0
(M0 +M1)

|m1(s, θ, h)− y1(s)h|
|h|

ds+

∫ T

0
{b1(s, h) + 2Kb2(s, h)}ds.(2.19)

Since x(t, θ) is continuously dependent on θ for t ∈ [0, T ], and Gθ is continuous, using

Lemma 2, we have

lim
|h|→0

|Gθ(x(s, θ + h), x(s− τ, θ + h))−Gθ(x(s, θ), x(s− τ, θ), θ)| = 0.

Thus

|Gθ(x(s, θ + h), x(s− τ, θ + h, θ), θ)−Gθ(x(s, θ), x(s− τ, θ), θ)| ≤ b3(t, h),

where b3(t, h)→ 0 as |h| → 0. Then

|m1(t, θ, h)− y1(t)h|
|h|

≤
∫ T

0
{b1(s, h) + 2Kb2(s, h) + b3(s, h)}ds

+

∫ T

0
(M0 +M1)

|m1(s, θ, h)− y1(s)h|
|h|

ds.

Since as |h| → 0, b1(t, h), b2(t, h), and b3(t, h) → 0, and all functions are bounded, due to

dominated convergence we find K(h)→ 0 as h→ 0 where

K(h) =

∫ T

0
{b1(s, h) + 2Kb2(s, h) + b3(s, h)}ds.

Thus with an application of Gronwall’s inequality we have

lim
|h|→0

|m1(t, θ, h)− y1(t)h|
|h|

≤ lim
|h|→0

{K(h)}e
∫ t
0 (M0+M1)ds

= 0.
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Theorem 2 Suppose the function G(x, x̃, θ) of (2.1) has continuous Frechet derivatives

Gx(x, x̃, θ), Gx̃(x, x̃, θ), with respect to x and x̃, with

|Gx(x, x̃, θ)| ≤M0, |Gx̃(x, x̃, θ)| ≤M1

for some constants Mj > 0 for j = 0, 1. Then the Frechet derivative y2(t) = ∂
∂zx(t, z, θ) exists

with y2(t) ∈ L(Z,Rn) (recall z = (x0,Φ), Z = Rn × L2(−τ, 0;Rn)), and satisfies the equation

ẏ2(t)[h] = Gx(x(t), x(t− τ), θ)y2(t)[h] +Gx̃(x(t), x(t− τ), θ)y2(t− τ)[h], t > 0 (2.20)

y2(ξ) = I − τ ≤ ξ ≤ 0,

where I ∈ L(Z,Rn) is the identity.

Proof: Using Lemma 1, we know that the differential equation (2.20) has a unique solution,

y2(t)[h]. For a fixed τ ∈ R, θ ∈ Rp, and t ∈ [0, T ], let h ∈ Z, and m2(t, z, h) = x(t, z+h)−x(t, z).

m2(t, z, h) =

∫ t

0
{G(x(s, z + h), x(s− τ, z + h), θ)−G(x(s, z), x(s− τ, z), θ)}ds.

With the Frechet differentiability of G with respect to x ∈ Rn and for z ∈ L(Z,Rn), we

have

m2(t, z, h) =

∫ t

0
{Gx(x(s, z), x(s− τ, z), θ)[x(s, z + h)− x(s, z)] + w3(s,m2(s, z, h))

+Gx̃(x(s, z), x(s− τ, z), θ)[x(s− τ, z + h)− x(s− τ, z)] + w3(s,m2(s− τ, z, h))}ds

where
|w3(t,m2(t, z, h))|
|m2(t, z, h)|

→ 0

as |m2(t, z, h)| approaches zero. We define b4(t, h) as follows:

b4(t, h) =
|w3(t,m2(t, z, h))|
|m2(t, z, h)|

,

then b4(t, h)→ 0 uniformly in t as |h| → 0. To show that y2(t) is a solution for (2.20), we must

show that

|m2(t, z, h)− y2(t)[h]|
|h|

→ 0

as |h| → 0, where y2(t) is ∈ L(Z,Rn).
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By definition,

|m2(t, z, h)− y2(t)[h]|
|h|

= |
∫ t

0
{Gx(x(s, z), x(s− τ, z), θ)[x(s, z + h)− x(s, z)] + w3(s,m2(s, z, h))

|h|

+
Gx̃(x(s, z), x(s− τ, z), θ)[x(s− τ, z + h)− x(s− τ, z)] + w3(m2(s− τ, z, h))

|h|

−{Gx(x(s, z), x(s− τ, z), θ)y2(s)[h] +Gx̃(x(s− τ, z), x(s− τ, z), θ)y2(s− τ)[h]}
|h|

}ds|,

then

|m2(t, z, h)− y2(t)[h]|
|h|

≤
∫ t

0
{|Gx(x(s, z), x(s− τ, z), θ)[x(s, z + h)− x(s, z)] + w3(s,m2(s, z, h))

|h|
|

+|Gx̃(x(s, z), x(s− τ, z), θ)[x(s− τ, z + h)− x(s− τ, z)] + w3(s− τ,m2(s− τ, z, h))

|h|
|

−| [Gx(x(s, z), x(s− τ, z), θ)y2(s)[h] +Gx̃(x(s− τ, z), x(s− τ, z), θ)y2(s− τ)[h]]

|h|
|}ds.

We want to show that

|w3(t,m2(t, z, h))|
|h|

≤ K |w3(t,m2(t, z, h))|
|m2(t, z, h)|

for some constant K > 0. Thus we consider

|m2(t, z, h)| = 1

|h|

∫ T

0
|Gx(x(s, z), x(s− τ, z), θ)[x(s, z + h− x(s, z)] + w3(s,m2(s, z, h))

+Gx̃(x(s, z), x(s− τ, z), θ)[x(s− τ, z + h)− x(s− τ, z)] + w3(s,m2(s− τ, z, h))|ds

=
1

|h|

∫ T

0
{|Gx(x(s, z), x(s− τ, z), θ)[x(s, z + h)− x(s, z)] + w3(s− τ,m2(s, z, h))

+Gx̃(x(s, z), x(s− τ, z), θ){
∫ 1

0
Dzx(s− τ, r(z + h) + (1− r)z)[h]dr}

+w3(s− τ,m2(s− τ, z, h))|}ds.

Then given the earlier definition of b4(t, h) we know that |w3(t,m2(t, z, h)| = b4(t, h)|m2(t, z, h)|.
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Thus with the assumptions that |Gx| ≤M0, and |Gx̃| ≤M1, the function |m2(t, z, h)| is bounded

by∫ T

0
M0|m2(s, z, h)|ds+

∫ T

0
b4(s, h)|m2(s, z, h)|ds

+

∫ T

0
M1

∫ 1

0
{Dzx(s, r(z + h) + (1− r)z)[h]dr}ds+

∫ T

0
b4(s− τ, h)|m2(s− τ, z, h)|ds.

We let ξ = s− τ and then we can write the previous as follows:

∫ T

0
M0|m2(s, z, h)|ds+

∫ T

0
b4(s, h)|m2(s, z, h)|ds

+

∫ T

0
M1

∫ 1

0
{Dzx(s, r(z + h) + (1− r)z)[h]dr}ds

+

∫ 0

−τ
b4(ξ, h)|m2(ξ, z, h)|dξ +

∫ T−τ

0
b4(ξ, h)|m2(ξ, z, h)|dξ.

When ξ ∈ [−τ, 0], m2(ξ, z, h) = I − I = 0, thus the function |m2(t, z, h)| is bounded by:

∫ T

0
M0|m2(s, z, h)|ds+

∫ T

0
b4(s, h)|m2(s, z, h)|ds

+

∫ T

0
M1

∫ 1

0
{Dzx(s, r(z + h) + (1− r)z)[h]dr}ds+

∫ T−τ

0
b4(ξ, h)|m2(ξ, z, h)|dξ.

Then since Dz is a bounded operator,
∫ 1
0 Dz x(s, r(z + h) + (1− r)z)[h]dr < h and

|m2(t, z, h)| ≤
∫ T

0
M0|m2(s, z, h)|ds+

∫ T

0
2b4(s, h)|m2(s, z, h)|ds

+

∫ T

0
M1 h ds.

We apply Gronwall’s inequality to obtain

|m2(t, z, h)| ≤ Kh

where K = M1Te
∫ T
0 (M0+2b4(s,h))ds and b4(t, h) → 0 uniformly in t as |h| → 0. Thus it follows

that

|w3(t,m2(t, z, h))|
|h|

≤ K |w3(t,m2(t, z, h))|
|m2(t, z, h)|

,
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therefore

|w3(t,m2(t− τ, z, h))|
|h|

≤ K |w3(t,m2(t− τ, z, h))|
|m2(t, z, h)|

.

Thus we find

|m2(t, z, h)− y2(t)[h]|
|h|

≤
∫ T

0
M0
|m2(s, z, h)− y2(s)[h]|

|h|
ds+

∫ T

0
K
|w3(s,m2(s, z, h))|
|m2(s, z, h)|

ds

+

∫ T

0
M1
|m2(s− τ, z, h)− y2(s− τ)[h]|

|h|
ds+

∫ T

0
K
|w3(s− τ,m2(s− τ, z, h))|

|m2(s− τ, z, h)|
ds

≤
∫ T

0
M0
|m2(s, z, h)− y2(s)[h]|

|h|
ds

+

∫ T

0
{K(b4(s, h) + b4(s− τ, h) +M1

|m2(s− τ, z, h)− y2(s− τ)[h]|
|h|

}ds.

Letting ξ = s− τ in the last two integral terms, we have

|m(t, z, h)− y(t)[h]|
|h|

≤
∫ T

0
M0
|m2(s, z, h)− y2(s)[h]|

|h|
ds+

∫ T

0
K(b4(s, h) + b4(ξ, h)ds

+

∫ 0

−τ
M1
|m2(ξ, z, h)− y2(ξ)[h]|

|h|
dξ +

∫ T−τ

0
M1
|m2(ξ, z, h)− y2(ξ)[h]|

|h|
dξ.

When ξ ∈ [−τ, 0]
|m2(ξ, z, h)− y2(ξ)[h]|

|h|
=
I − I − 0 · h

|h|
,

then

|m2(t, z, h)− y2(t)[h]|
|h|

≤
∫ T

0
(M0 +M1)

|m2(s, z, h)− y2(s)[h]|
|h|

ds+

∫ T

0
2K(b4(s, h))ds.

We apply Gronwall’s inequality and dominated convergence, and taking the limit as |h| → 0,

we conclude

lim
|h|→0

|m2(t, z, h)− y2(t)[h]|
|h|

≤ lim
|h|→0

{(
∫ T

0
2K(b4(s, h)ds)e

∫ t
0 M0+M1ds}

= 0

since b4(s, h)→ 0 as h→ 0.
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Theorem 3 Suppose that G(x, x̃, θ) has continuous Frechet derivatives Gx, Gx̃ such that

|Gx| ≤M0, and |Gx̃| ≤M1 and suppose that the solution x of (2.1)-(2.2) satisfies

x ∈ H1,∞(−τ, T ;Rn), for 0 < τ < r for fixed r > 0. Then the Frechet derivative y3(t) = ∂x(t)
∂τ ∈

Rn exists and is the unique solution for

ẏ3(t) = Gx(x(t), x(t− τ), θ)y3(t) +Gx̃(x(t), x(t− τ), θ)[y3(t− τ)− ẋ(t− τ)]

y3(ν) = 0, −τ ≤ ν ≤ 0. (2.21)

Moreover, ∂x(t)
∂τ is continuous in θ and, if x ∈ C1(−τ, T ;Rn) it is also continuous in τ .

Proof: We first reformulate (2.21) as a Cauchy problem on the state space Z1 = Rn ×
L2(−r, 0;Rn) with the norm |(ξ, φ)|2 = |ξ|2 +

∫ 0
−r |φ(s)|2ds. We may then consider solutions of

the system for τ ′s satisfying −r < −τ < 0.

Let y3(t, τ) be a solution to (2.21) (we temporally suppress notation indicating the depen-

dence of solutions on θ). Then for t > 0 we define y3t(·) ∈ L2(−τ, 0;Rn) by the past history

y3t(s, τ) = y3(t+s, τ), −τ < s < 0. If z1(t, τ) = (y3(t, τ), y3t(·, τ))T , then z1(t, τ) is a solution

to the abstract Cauchy problem

dz1(t)

dt
= A(t, τ)z1(t, τ) (2.22)

z1(0, τ) = (0, 0)T ∈ Z1,

where D(A(t, τ)) = {(ξ, φ(·))T : ξ ∈ Rn, φ(·) ∈ H1(−τ, 0;Rn), φ(0) = ξ}, and

A(t, τ)

[
ξ

φ(·)

]
=

[
Gx(x(t), x(t− τ), θ)ξ +Gx̃(x(t), x(t− τ), θ)[φ(−τ)− ẋ(t− τ)]

φ
′
(·)

]
.

Note that A(t, τ) is a vector affine operator on z1(t) = (y3(t), y3t(·))T . Moreover, we note

that for x ∈ H1,∞(−τ, T ;RN ), we have existence of a unique solution to (2.21) or equivalently,

(2.22). Thus we must argue that ∂x
∂τ exists and also satisfies (2.21) (or (2.22)).

The proof follows the arguments for Theorem 1 with the Gθ term replaced by Gx̃{−ẋ(t−τ)}.
That is, one defines the differences m̃1(t, τ, h) = x(t, τ +h)−x(t, τ) and the difference quotients

|m̃1(t, τ, h)− y3(t, τ)h|
|h|

corresponding to solutions z1 of (2.22). Then arguments exactly like those in the proof of
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Theorem 1 provide the desired results for existence of ∂x(t)
∂τ and that it satisfies (2.21).

We begin by defining the solution to (2.22) with successive approximations for k = 0, 1, 2, . . .,

z01(t; τ, θ) =

{
Φ(t) −τ ≤ t < 0

z10 t ≥ 0.
(2.23)

zk+1
1 (t, x0,Φ, τ, θ) =


Φ(t), −τ ≤ t < 0

z10, t = 0∫ t
0 A(s; τ, θ)zk(s; τ, θ)ds, t > 0.

(2.24)

Existence of the solution occurs when the successive approximations for z1(t; τ, θ) converge

as k →∞.

For t ∈ I = [0, T ], τ ∈ [−r, 0], and a fixed θ,

|z1(t; τ, θ)− z10| = |
∫ t

0
A(s; τ, θ)z01(s; τ, θ)ds|

≤
∫ t

0
|

[
M0 +M1

φ
′
(·)

]
(z01(s; τ, θ))|ds

≤ Q

∫ t

0
|z01(s; τ, θ)|ds

≤ Q

∫ t

0
|Nz|ds

≤ QNzt

for t ≥ 0, whereQ ≥

[
M0 +M1

φ
′
(·)

]
, and z01 is bounded byNz. Thus the first two approximations

for z1(t; τ, θ) converges.

Let ∆k
z(t; τ, θ) = |zk+1

1 (t; τ, θ)− zk1 (t; τ, θ)|, then

∆k
z(t; τ, θ) = |

∫ t

0
A(s; τ, θ)zk+1

1 (s; τ, θ)−A(s; τ, θ)zk1 (s; τ, θ)ds|

≤
∫ t

0
|A(s; τ, θ)(zk1 (s; τ, θ)− zk−11 (s; τ, θ))|ds

≤ Q

∫ t

0
|(zk1 (s; τ, θ)− zk−11 (s; τ, θ))|ds

≤ Q

∫ t

0
∆k−1
z (s; τ, θ)ds.
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We claim that

∆k
z(t; τ, θ) ≤

MzQ
ktk+1

(k + 1)!
, (2.25)

where Mz = QNz. Then for k = 0 and t ∈ I

∆0
z(t; τ, θ) = |z1(t; τ, θ)− z10| ≤Mzt

thus by induction we have

∆k
z(t; τ, θ) ≤ Q

∫ t

0
∆k−1
z (s; τ, θ)ds (2.26)

≤ Q

∫ t

0

MzQ
ksk+1

(k + 1)!
ds (2.27)

≤ MzQ
k+1tk+2

(k + 2)!
. (2.28)

Therefore (2.25) holds for all k, and the series for
∑∞

k=0 ∆k
z(t; τ, θ) is dominated by the power

series for MzeQt

Q . Using the comparison test, the series
∑∞

k=0 ∆k
z(t; τ, θ) converges uniformly on

I. As a result, the series

z10 +
∞∑
k=0

(zk+1
1 (t; τ, θ)− zk1 (t; τ, θ))

converges uniformly and absolutely on I, and the partial sum

z10 +
n−1∑
k=0

(zk+1
1 (t; τ, θ)− zk1 (t; τ, θ))

converges uniformly to a continuous function z1 on interval I. z1 exists on I, and A(t; τ, θ)

exists for t ∈ I, then given that zk1 (t; τ, θ) converges uniformly to z1(t; τ, θ), and t → A(t; τ, θ)

is continuous

zk+1
1 (t; τ, θ) = z10 +

∫ t

0
A(s; τ, θ)zk1 (s; τ, θ)ds

becomes

z1(t; τ, θ) = z10 +

∫ t

0
A(s; τ, θ)z1(s; τ, θ)ds

as k →∞. Thus z1(t; τ, θ) exists and is a solution to (2.22).

32



Next, we assume that z11(t, τ) and z21(t, τ) are both solutions to (2.22). Then

|z11(t, τ)− z21(t, τ)| = |
∫ t

0
A(s, τ)z11(s, τ)−A(s, τ)z21(s, τ)ds|

≤ Q

∫ t

0
|z11(s, τ)− z21(s, τ)|ds

for a constant Q.

We apply Grownwall’s inequality:

|z11(s, τ)− z21(s, τ)| ≤ 0eQt = 0.

Thus z11(s, τ) = z21(s, τ), so z1(s, τ) is the unique solution of (2.22).

To argue that the solution to (2.22) depends continuously on θ, let

h(t; τ, θ, θ0) = z1(t, τ, θ) − z1(t, τ, θ0), where now we need to express explicitly the dependence

of solutions on θ. Then

|h(t; τ, θ, θ0)| = |z1(t, τ, θ)− z1(t, τ, θ0)|

≤
∫ t

0
|A(s, τ, θ)z1(s, τ, θ)−A(s, τ, θ0)z1(s, τ, θ0)|ds

≤
∫ t

0
{|A(s, τ, θ)z1(s, τ, θ)−A(s, τ, θ)z1(s, τ, θ0)|

+|A(s, τ, θ)z1(s, τ, θ0)−A(s, τ, θ0)z1(s, τ, θ0)|}ds
≤

∫ t

0
|A(s, τ, θ)(z1(s, τ, θ)− z1(s, τ, θ0))|ds

+

∫ t

0
|(A(s, τ, θ)−A(s, τ, θ0))z1(s, τ, θ0)|ds

≤ Q

∫ t

0
|z1(s, τ, θ)− z1(s, τ, θ0)|ds+ r(T ; τ, θ), (2.29)

where

r(T ; τ, θ) =

∫ t

0
|A(s, τ, θ)−A(s, τ, θ0)||z1(s, τ, θ0)|ds.

Since A(t; τ, θ) is continuous due to assumptions on G(x(t), x̃(t), θ), so that as θ → θ0

lim
θ→θ0

|r(T ; τ, θ)| = lim
θ→θ0

∫ T

0
|A(s, τ, θ)−A(s, τ, θ0)||z1(s, τ, θ0)|ds = 0.
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If we apply Gronwall’s inequality and take the limit as θ → θ0 in (2.29), then

lim
θ→θ0

|h(t; τ, θ, θ0)| ≤ lim
θ→θ0

|r(T ; τ, θ)|eQt = 0.

Thus, we have

lim
θ→θ0

z1(t, τ, θ) = z1(t, τ, θ0).

Next we argue that the solution to (2.22), depends continuously on the delay τ whenever ẋ is

continuous. Let hτ (t; τ, τ∗, θ) = z1(t, τ, θ)− z1(t, τ∗, θ) for a fixed θ ∈ Rp and fixed τ∗ ∈ [−r, 0].

We have

|hτ (t; τ, τ∗, θ)| = |z1(t, τ, θ)− z1(t, τ∗, θ)|

≤
∫ t

0
|A(s, τ, θ)z1(s, τ, θ)−A(s, τ∗, θ0)z1(s, τ

∗, θ)|ds

≤
∫ t

0
{|A(s, τ, θ)z1(s, τ, θ)−A(s, τ, θ)z1(s, τ

∗, θ)|

+|A(s, τ, θ)z1(s, τ
∗, θ)−A(s, τ∗, θ)z1(s, τ

∗, θ)|}ds
≤

∫ t

0
|A(s, τ, θ)(z1(s, τ, θ)− z1(s, τ∗, θ))|ds

+

∫ t

0
|(A(s, τ, θ)−A(s, τ∗, θ))z1(s, τ

∗, θ)|ds

≤ Q

∫ t

0
|(z1(s, τ, θ)− z1(s, τ∗, θ))|ds

+

∫ t

0
|[A(s, τ, θ)−A(s, τ∗, θ)]z1(s, τ

∗, θ)|ds

≤ Q

∫ t

0
|(z1(s, τ, θ)− z1(s, τ∗, θ))|ds+ rτ (T ; τ, θ), (2.30)

where

rτ (T ; τ, θ) =

∫ T

0
|A(s, τ, θ)−A(s, τ∗, θ)||z1(s, τ∗, θ)|ds.

Since x ∈ C1(−τ, T ;RN ), then as τ → τ∗, |A(t, τ, θ)− A(t, τ∗, θ)| → 0. Moreover, A(t, τ, θ)

is bounded in t, τ . As a result, when τ → τ∗, the limit of |rτ (T ; τ, θ)| is 0. Then if we apply

Gronwall’s inequality and take the limit as τ → τ∗ in (2.30), we find

lim
τ→τ∗

|hτ (t; τ, τ∗, θ)| ≤ lim
τ→τ∗

|rτ (T ; τ, θ)|eQt = 0,
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and thus

lim
τ→τ∗

z1(t, τ, θ) = z1(t, τ
∗, θ).
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Chapter 3

Parameter Estimation and

Sensitivity Functions

3.1 Parameter Estimation

3.1.1 Mathematical and Statistical Models

Before we determine the generalized sensitivity functions of a physical, sociological, or biological

situation we first introduce the details that surround parameter estimation or inverse problems.

Given the dynamical system model we have previously discussed with the observation process

described in (2.1), we assume the observations are discrete such that

η(tj) = h(tj , x(tj), x(t− τ), θ), j = 1, . . . , nd.

In general, the data {ηj} is not exactly η(tj), due to uncertainty within the observations. Thus

we use a statistical model to better model the uncertainty in the data. We consider a statistical

model of the form

Yj = f(tj , q0) + Ej , j = 1, . . . , nd,

where f(tj , q0) = h(tj , x(tj), x(t − τ), θ), q0 = (θ0, τ0, x00), and j = 1, . . . , nd, corresponds

to the solution of the mathematical model described in (2.1), at the jth time of the solution

vector x(t) ∈ Rn, η(t) ∈ Rm and q ∈ Rp+1+n. Note that since x(t) depends on the intial

condition x0 this n vector may also be a “parameter” to be estimated from data. Hence we have

q = (θ, τ, x0) ∈ Rp+1+n. Here q0 represents the true value of the parameters that generates the

observations {Yj}ndj=1[9]. The existence of q0 = (θ0, τ0, x00) is standard in statistical formulation,

and assuming that E[Ej ] = 0, it is implied that (2.1) describes the biological, sociological, or

physical process correctly. Ej are random variables that account for measurement error, and or
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random phenomena that happens such that {ηj} is not exactly η(tj) [9]. We assume that Ej has

an unknown probability distribution with mean zero. The previously described assumptions

on the model and measurement error will help us determine the correct way to estimate q to

represent the true parameter value q0.

As discussed earlier we assume that we have the following observation process

Yj = f(tj , q0) + Ej , (3.1)

where j = 1, . . . , nd, and the Ej are independent identically distributed, such that E(εj) = 0,

and the constant variance is σ20. Realizations of Yj are given by

yj = f(tj , q0) + εj . (3.2)

These realizations are used to obtain q̂, and σ̂2 using ordinary least squares estimation method

since the statistical model assumes constant variance. We define

qOLS(Y ) = qndOLS(Y ) = arg min
q∈Qad

nd∑
j=1

[Yj − f(tj , q)]
2 , (3.3)

where Qad ∈ Rm and m = p+ 1 + n, then

q̂ = arg min
θ∈Qad

nd∑
j=1

[yj − f(tj , q)]
2 , (3.4)

since Ej = Yj − f(tj , q) is a random variable and yj is a realization of Yj . Thus q̂ will be a

realization of qOLS .

3.1.2 Generalized Sensitivity Functions

To compute the generalized sensitivity, based on the mathematical and statistical model defined

in equation (3.1) the following must be known: TSFs (∇f), the Fisher Information Matrix

(FIM) FG, and the variance σ20.

The TSFs gives insight to the relationship between the model and the parameter. When

computing this function, we are able to determine the time intervals where the model is most

affected by the parameter in question. A general definition for the TSF of a model is

d

dt

∂x

∂θ
=
∂G

∂x

∂x

∂θ
(t) +

∂G

∂θ
(t),
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given

dx(t)

dt
= G(x(t), θ), t > 0

x(0) = x0,

η(t) = f(x(t), θ), t ∈ [0, T ],

where x(t) ∈ Rn are vectors of state variables of the system, η(t) ∈ Rm is the vector of

measurable outputs, and θ ∈ Rp is the vector of parameters. G, and f must be differentiable in

order to construct the TSFs, and also must be sufficiently smooth to construct the GSFs that

will be defined later.

The continuous FIM is defined as

FG(T ) =

∫ T

0

1

σ(t)
∇qf(t, q0)∇qf(t, q0)

TdP (t), (3.5)

where q0 is the true parameter value for f(t, q), T is the final time, and P is some measure P

defined on the time interval [8]. We observe that the definition of the measure P can change

the definition of the FIM, and should be chosen such that optimal information can be gained

from the data used to estimate the parameters.

The variance is defined as

σ20 =
1

n− (p+ 1)
E

 nd∑
j=1

[Yj − f(tj , q0), ]

 (3.6)

where n is the number of time points, and Yj represents the observation process described in

equation (3.1). These functions are approximated using the estimate q̂ for q0, which is unknown,

and they must be smooth with respect to some general measure P over the time interval [0, T ].

We use the traditional sensitivity functions, variance and the FIM, to compute the general-

ized sensitivity functions which has the following definition:

gs(t) =

∫ t

0

[
FG(T )−1

1

σ2(s)
∇qf(s, q0)

]
• ∇qf(s, q0)dP (s), t ∈ [0, T ].

When using a discrete measure P (i.e., P =
∑n

i=1 ∆ti), the generalized sensitivity functions are

then approximated with θ̂ as shown below:

gs(tl) =
l∑

k=1

 nd∑
j=1

1

σ2(tj)
∇qf(tj , q̂)∇qf(tj , q̂)

′

−1 × ∇qf(tk, q̂)

σ2(tk)

 • ∇qf(tk, q̂) ,
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where l = 1 . . . nd. A discrete measure is usually appropriate when modeling biological, physi-

ological, and sociological processes because generally data is collected on a specific set of time

points.

3.2 Example: Delay-Logistic Equation

The delay-logistic equation is appropriate when modeling a biological process such as tumor

growth, a single species growth model with time delay, or a biological situation where a parasite’s

life cycle is shorter than the hosts life cycle, thus having a delayed effect on the population size

of the hosts. This model is popularly known in population ecology as Hutchinson’s equation

(1948) [32], or Wright’s equation. Wright used the following formulation of the delay logistic

equation to describe the distribution of prime numbers in 1955 [45],

dx(t)

dt
= rx(t)

[
1− x(t− τ)

K

]
. (3.7)

The delay τ represents biological factors such as pregnancy time, hatching period, and renewal of

food, any factors that influence changes in the population size [26]. The delay-logistic equation

is appropriate for circular causal systems, which are systems where changes in one part of

the system alter other parts in the system but at a different rate [32]. The following is an

ecological example of a circular causal system, cheetahs hunt gazelles, as cheetahs evolve to be

faster, gazelles evolve to be faster to avoid extinction [32]. The delay logistic equation is also

appropriate to model tumor growth since tumor growth occurs when tumor cells proliferate.

Proliferation will occur after the cell cycle, which is a circular causal system, is complete; thus

the delay in equation (3.7) represents the time it takes the cell cycle to finish [29]. Hutchinson’s

equation is also used to model population growth and is appropriate for modeling of population

growth with any mammal species, since gestation must occur to increase the population size.

Thus the τ in equation (3.7) could represent the gestation period for the population modeled

[32]. The delay logistic equation is also ideal when modeling a parasite-host interaction if the

parasite finishes its life cycle in the host without killing the host [34]. In this case τ represents

the lifespan of the parasite. As result of the many uses of the delay logistic equation, we use

this model to gain insight about generalized sensitivities as they pertain to DDEs.

The follow equations represent the traditional sensitivity functions of the delay logistic

equation, and are used to compute the generalized sensitivity functions as previously discussed.
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∂

∂r

dx(t)

dt
= r

[
1− x(t− τ)

K

]
∂x(t)

∂r
− rx(t)

K

∂x(t− τ)

∂r
+ x(t)

[
1− x(t− τ)

K

]
∂

∂K

dx(t)

dt
= r

[
1− x(t− τ)

K

]
∂x(t)

∂K
− rx(t)

K

∂x(t− τ)

∂K
+ rx(t)

[
x(t− τ)

K2

]
∂

∂x0

dx(t)

dt
= r

[
1− x(t− τ)

K

]
∂x(t)

∂x0
− rx(t)

K

∂x(t− τ)

∂x0

Let s1(t) = ∂x(t)
∂r , s2(t) = ∂x(t)

∂K , s3 = ∂x(t)
∂x0

then

∂s1(t)

∂t
= r

[
1− x(t− τ)

K

]
s1(t)−

rx(t)

K
s1(t− τ) + x(t)

[
1− x(t− τ)

K

]
∂s2(t)

∂t
= r

[
1− x(t− τ)

K

]
s2(t)−

rx(t)

K
s2(t− τ) + rx(t)

[
x(t− τ)

K2

]
.

∂s3(t)

∂t
= r

[
1− x(t− τ)

K

]
s3(t)−

rx(t)

K
s3(t− τ).

Then we can solve the previous system of DDEs, after solving for the solution x(t) to the

original model, to obtain the following sensitivity functions:
∂x
∂r
∂x
∂K
∂x
∂x0


and eventually their corresponding GSFs.

3.2.1 Traditional Sensitivity function for the Delay Equation

To obtain the GSF for τ , we must solve the following retarded DDE for the TSF with respect

to τ .

d

dt

∂x

∂τ
=

∂

∂τ

[
rx(t)

[
1− x(t− τ)

K

]]
(3.8)

The above equation is a neutral since when applying the chain rule the right hand side of the

equation will be defined both by state variables and their derivatives on distinct time levels [21].
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Note that the derivatives of the state variables may also be state dependent [21]. A neutral

equation will tend to have more continuity issues in comparison to a retarded DDE. A more

general form of the neutral DDE is as follows:

ẋ(t) = f(t, x(t, θ), x(t− τ, θ), ẋ(t− τ, θ)), t ≥ 0 (3.9)

By decoupling equation (3.8) from the model equation (3.7), and solving the equation by itself,

(3.8) is not a neutral equation because the derivative of ∂x(t−τ)
∂τ with respect to time is not

needed to determine the solution, and ẋ(t− τ) is defined.

To determine the solution numerically, we simplify equation (3.8) by following the rules of

differentiation. Using the product rule on equation (3.8) we obtain the following:

r
∂x(t)

∂τ

[
1− x(t− τ)

K

]
+ rx(t)

∂

∂τ

[
1− x(t− τ)

K

]
.

The second part of the previous sum

rx(t)
∂

∂τ

[
1− x(t− τ)

K

]
,

becomes

rx(t)

[
∂

∂τ
(1)− ∂

∂τ
(
x(t− τ)

K
)

]
.

This simplifies to

−rx(t)

K

[
∂

∂τ
(x(t− τ))

]
.

Next we apply the chain rule to
∂

∂τ
x(t− τ),

and the simplified sum becomes

−rx(t)

K

[
−ẋ(t− τ) +

∂x(t− τ)

∂τ

]
.

The entire equation can then be simplified and rewritten using s4(t) = ∂x(t)
∂τ as follows:

∂s4(t)

∂t
= r

[
1− x(t− τ)

K

]
s4(t)−

rx(t)

K
[s4(t− τ)− ẋ(t− τ)] . (3.10)

We cannot directly solve ∂x(t)
∂τ shown in equation (4.1), since existence is not automatically

guaranteed by the initial past history of the solution x(t). If the initial past history is not

sufficiently smooth then ẋ(t− τ) may not exist on t ∈ [0, τ ]. We apply Theorem 3 to equation

41



(4.1) to ensure existence of a solution for ∂x(t)
∂τ .

We define z(t) = (s4(t), s4t(t)) and transform (4.1) to be

dz(t)

dt
= A(t, τ, θ)z(t) + F (t) (3.11)

where

A(t, τ, θ)

[
ξ

φ(·)

]
=

[
r[1− x(t−τ)

K ]ξ + rx(t)
K [φ(−τ)]

φ
′
(·)

]
,

F (t) =

[
− rx(t)

K ẋ(t− τ)

0

]
,

and z(t) is the assumed solution of the Cauchy problem (4.2), with a zero condition.
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Chapter 4

Approximation of Delay Equations

4.1 Banks-Kappel Spline Approximation

To numerically solve our delay differential equations we must use a numerical method that has

numerical convergence for a DDE model existing in an Hilbert Space, like Rn×L2(−τ, 0). The

Banks-Kappel spline approximation [12] can handle both constant and non-constant initial

functions, for these reasons we use this spline approximation, which we will call the Banks-

Kappel Method. The Banks-Kappel (BK) method is an approximation technique for functional

differential equations (FDEs), and may be applied to linear and non-linear models. For the

BK spline approximation the history of the function (i.e., initial condition φ, or x(t − τ)) is

approximated using splines and then discretized over time. This method is most advantageous

for numerically approximating our dde example models and their corresponding traditional

sensitivity functions since the method is adaptable to both changing initial functions, and the

space to which the solution exists [12].

4.2 Banks-Kappel Splines for Hutchinson’s Equation

Given our first example, the delay logistic equation ẋ = rx[1− x(t−τ)
K ], the traditional sensitivity

function with respect to the delay is defined as follows:

∂s4(t)

∂t
= a(t)s4(t) + b(t)s4(t− τ) + f(t) (4.1)

where a(t) = r
[
1− x(t−τ)

K

]
, b(t) = − rx(t)

K , f(t) = rx(t)ẋ(t−τ)
K , and initially s4(0) = 0, and

s4(t + θ) = s4t(θ) = 0 for t ∈ [−τ, 0]. The solution to (4.1) may not be defined for all t,

given certain initial functions, so to ensure a solution exists we define z(t) = (s4(t), s4t(θ)) and

transform (4.1) to be
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dz(t)

dt
= A(t)z(t) + F (t) (4.2)

z(0) = (s4(0), s40(θ)) = (0, 0)

where F (t) = (f(t), 0). A(t) is defined

A(t)(φ(0), φ) = (G(t, φ), Dφ)

where G(t, φ) = a(t)φ(0) + b(t)φ(−τ), and D(A(t)) = {(φ(0), φ)|φ(0) ∈ R, φ ∈ H1(−τ, 0;R)}.
We let z(t) ∈ Z1 be the unique solution (known to exist uniquely by Theorem 3, of the Cauchy

problem (4.2), where Z1 = R× L2(−τ, 0;R), and D(A(t)) ⊂ Z1 → Z1 .

To approximate (4.2) we use the extension of Banks-Kappel splines [12] with nonautonomous

theory as described in the Banks and Rosen paper [17], since we have time dependent coeffi-

cients. We define ZN1 to be a piecewise linear spline subspace of Z1, and approximate (4.2)

using the following differential equation

dzN (t)

dt
= AN (t)zN (t) + FN (t) (4.3)

zN (0) = PN (z(0), z0) = 0

where AN (t) = PNA(t)PN , FN (t) = PNF (t), and PN : Z1 → ZN1 is the orthogonal projection.

We fix a basis β̂N1 , . . . , β̂
N
k that spans ZN1 such that

βN = (βN1 , . . . , β
N
N )

and

β̂N = (βN (0), βN ),

so the dimension of ZN1 is N + 1. Then zN (t) = β̂NwN (t) where wN (t) is the coordinate vector

of zN with respect to the chosen basis. Our fixed basis for ZN1 corresponds to the partition

ti = −i(τ/N) for i = 0, . . . , N and we define this basis by

β̂N = (βN (0), βN ) where βN = (eN0 , e
N
1 , . . . , e

N
N ).

The basis elements eNj ’s are piecewise linear splines defined by the Kronecker symbol δij , so

eNj (ti) = δij for i, j = 0, 1, . . . , N.
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An equivalent system for (4.2) is represented in the following equation

dwN (t)

dt
= AN (t)wN (t) + fN (t) (4.4)

wN (0) = wN0 ,

where wN (t) and fN (t) are coordinate vectors of length N+1 for zN (t) and FN (t) respectively.

Moreover, zN (t) = β̂NwN (t) and FN (t) = β̂NfN (t). To solve (4.4) we must compute the initial

condition PN (ξ, φ), AN (t) a (N + 1) × (N + 1) matrix representation of AN (t), and fN (t) a

(N + 1)× 1 vector representation of FN (t).

Using the orthogonal projection, PN : Z1 → ZN1 , we can uniquely determine an element,

β̂NαN = PN (ξ, φ), in ZN1 for any element (ξ, φ) ∈ Z1 with the following orthogonality relation-

ship,

PN (ξ, φ)− (ξ, φ) ⊥ ZN1

which is equivalent to

<β̂NαN − (ξ, φ), β̂N>Z1 = 0.

To compute PN (ξ, φ), we solve

QNαN = hN (ξ, φ), (4.5)

where

QN =< β̂N , β̂N >Z1= βN (0)TβN (0) +

∫ 0

−τ
βN (p)TβN (p)dp

is a (N + 1)× (N + 1) matrix defined in the following way

QN =
τ

N



N/τ + 1
3

1
6 0 . . . 0

1
6

2
3

1
6

. . .
...

0
. . .

. . .
. . . 0

... 1
6

2
3

1
6

0 . . . 0 1
6

1
3


and

hN (ξ, φ) =< β̂N , (ξ, φ) >Z1= βN (0)T ξ +

∫ 0

−τ
βN (p)Tφ(p)dp
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is a vector of length (N + 1). When we solve (4.5), we get the coordinate vector αN of length

(N + 1).

Next to compute FN (t) = β̂NfN (t) where fN (t) is a coordinate vector of length (N + 1),

we solve

QNfN (t) = βN (0)f(t)

where f(t) = ( rx(t)ẋ(t−τ)K ).

Finally to determine AN (t) for φ̂N = (φN (0), φN ) ∈ ZN1 , we define αN (t) ∈ R(N + 1), and

γN (t) ∈ R(N + 1) such that

φ̂N = β̂NαN (t) and AN (t)φ̂N (t) = β̂NγN (t).

Then AN (t)φ̂N = PNA(t)φ̂N = PN (G(t, φN ), DφN ), and QNγN (t) = HN (t)αN (t) where

HN (t) = h(G(t, φN ), DφN )

= < β̂N , (G(t, φN ), DφN ) >Z1

= βN (0)TG(t, φN ) +

∫ 0

−τ
βN (p)TD[φN (p)]dp

= βN (0)TG(t, βNαN (t)) +

∫ 0

−τ
βN (p)TD[βN (p)]αN (t)dp

=
(
βN (0)TG(t, βN )

)
αN (t) +

(∫ 0

−τ
βN (p)TD[βN (p)]dp

)
αN (t)

=

(
βN (0)T [a(t)βN (0) + b(t)βN (−τ)] +

∫ 0

−τ
βN (p)TD[βN (p)]dp

)
αN (t)

= (H1(t) +H2)α
N (t)

is a (N + 1)× (N + 1) matrix at time t. H1(t) and H2 are explicitly defined as follows:

H1(t) =



a(t) 0 . . . 0 b(t)

0 0 . . . 0 0
...

...
...

...
...

... . . .
...

...

0 0 . . . 0 0
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and

H2 =



1
2 −1

2 0 . . . 0

1
2 0 −1

2

. . .
...

0
. . .

. . .
. . . 0

... 1
2 0 −1

2

0 . . . 0 1
2 −1

2


.

Then

AN (t) = (QN )−1HN (t),

is a (N + 1)× (N + 1) matrix, and γN (t) is a solution of

QNγN (t) = HN (t)αN (t)

where γN (t) is a vector of length (N + 1) at time t. We use γN (t) to obtain

γN (t) = A(t)αN .

4.3 Pseudocode for Implementation of Method

We want to solve the following differential equation

dαN (t)

dt
= AN (t)αN (t) + fN (t) (4.6)

αN (0) = αN0 ,

where γN (t) = AN (t)αN (t), fN (t) is the coordinate vector for FN (t), and αN (t) is the coordi-

nate vector for zN (t) where

dzN (t)

dt
= AN (t)zN (t) + FN (t)

zN (0) = PN (z(0), z0).

Implementing the following algorithm will compute the traditional sensitivity functions (4.6),

the subroutines will be defined in the Appendix.
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1. Set time vector

2. Calculate the solution for the model using the Banks-Kappel spline, our example will be the

delay logistic equation:
dx(t)

dt
= rx[1− x(t− τ)

K
].

3. Set the number of nodes, (N+1), and then define our nodes such that {θi} = {−τ, . . . , −τN , 0},
so θ0 = 0, and θN = −τ .

4. Compute QN in the subroutine makeQ(N) which returns the matrix QN in echelon form

and is now called QN . This subroutine is discussed in the Appendix.

5. Set initial condition (ξ, φ), and find coordinate vector αN0 = αN (t0). To find the coordinate

vector we solve QNαN = hN (ξ, φ) for αN where ξ = z(0), and φ = z0. Next hN (ξ, φ) will be

computed using subroutine makeh where you pass the initial conditions and return the vector

h. Then in the subroutine backSub we pass QN computed in step 3, and h and return the

coordinate vector αN0 . We will discuss both subroutines in later sections.

6a. We call

solution = ODE45(@RHS, tspan, αN0 ),

where we pass the initial coordinate vector we computed in step four and

RHS = γN (t) + fN (t).

The coordinate vectors γN (t), fN (t), and αN (t) are computed during the use of MATLAB’S

ODE 45 (steps 5b & 5c), a variable step Runge-Kutta Method.
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6b. Compute fN (t) by solving QNfN (t) = (e0(0), e1(0), . . . , eN (0))T ( rx(t)ẋ(t−τ)K ).

QNfN (t) = (e0(0), e1(0), . . . , eN (0))T (
rx(t)ẋ(t− τ)

K
)

=



1

0

0
...

0


(
rx(t)ẋ(t− τ)

K
)

QNfN (t) =



rx(t)ẋ(t−τ)
K

0

0
...

0


.

We would normally use our subroutine backSub to solve for fN (t), however since the vector

(e0(0), e1(0), . . . , eN (0))T f(t)

has only one non-zero entry as shown above, we can directly compute

fN (t) =



rx(t)ẋ(t−τ)
K /a1

0

0
...

0


since a1 is the first entry from QN , the row reduced version of QN . Note that QN(1, 1) =

QN (1, 1). Also to compute ẋ(t − τ) we evaluate the following equation ẋ(t − τ) = rx(t −
τ)
[
1− x(t−2τ)

K .

6c. We next compute HN (t) = H1(t) +H2 in the subroutine makeH where we pass x(t), x(t−
τ), r,K and return H(t). Note in the subroutine H2 will already be defined as it never changes

in time, and
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H1(t) =



r[1− x(t−τ)
K ] 0 . . . 0 − rx(t)

K

0 0 . . . 0 0
...

...
...

...
...

... . . .
...

...

0 0 . . . 0 0


and

H2 =



1
2 −1

2 0 . . . 0

1
2 0 −1

2

. . .
...

0
. . .

. . .
. . . 0

... 1
2 0 −1

2

0 . . . 0 1
2 −1

2


.

Once we compute H(t), we solve QNγN (t) = HN (t)αN (t) by passing QN , the echelon form

of QN , and H(t)αN (t) in the subroutine backSub and we will return the coordinate vector

γN (t), where γN (t) = AN (t)αN (t).

4.4 Numerical Comparison of BK-Splines, DDE23, and Method

of Steps

We compare the Banks-Kappel (BK) spline approximation [12] for N = 8, 16, 32, 64 with MAT-

LAB’s DDE23 [43], using the delay logistic example at delay values of τ = .1, 1, and π
2r . These

values of τ will exhibit different solution behaviors. MATLAB’s DDE23 is an extended ode23

solver using the method of steps to approximate the solution [43]. The Banks-Kappel spline

approximation scheme is based on classical least squares approximations [12]. We later compare

the BK method with the analytical solution obtained using the Method of Steps [34]. The pa-

rameter values used for the delay logistic equation are as follows: x0 = .1, r = .7,K = 17.5 for

t ∈ [0, 50], where the initial function is φ(t) = .1 for the constant case, and φ(t) = sin(2πtτ ) for

the non-constant initial function. We will also use as an initial non-constant function φ(t) = y(t)

which will be defined later.

The delay logistic equation

dx(t)

dt
= rx(t)

[
1− x(t− τ)

K

]
exhibits different behavior based on the value of the delay. For smaller values of τ the solution
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tends to behave similar to that of the non-delay logistic equation; however, if rτ > π/2 the

solution oscillates around the carrying capacity, K [34]. Also if the delay τ is sufficiently large it

will cause the solution to die out rather quickly. Given our parameter values and the values for

τ , the solution will go slightly past the carrying capacity, and then return to the steady state

K for τ = 1, and a oscillatory solution around K will occur at τ = π
2r . Since we do not have

the exact solution over the entire interval t ∈ [0, 50] we compare the BK spline approximation

with MATLAB’s DDE23 method by looking at the convergence of the solutions for different N ,

where the mesh for t is chosen by DDE23, thus the mesh varies for different values of τ . We also

compare BK spline approximation with the exact solution obtained using the Method of Steps,

over the interval t ∈ [0, 2τ ] for a constant initial function, and t ∈ [0, τ ] for a non-constant

initial function.

BK Spline Approximation vs. DDE23 for φ(t) = .1

We compare the solution for the delay logistic equation using the Banks-Kappel spline approx-

imation and MATLAB’s DDE23 for τ = .1, 1, and π
2r , and N = 8, 16, 32, 64 for the constant

initial function φ(t) = .1.
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Figure 4.1: The numerical solution using the constant function φ(t) = .1 for τ = .1.
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Figure 4.2: The numerical solution using the constant function φ(t) = .1 for τ = 1.
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Figure 4.3: The numerical solution using the constant function φ(t) = .1 for τ = π
2r .
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From the figures above we can see that both methods perform well in approximating the

solution to the delay logistic equation with a constant initial function. For the BK method the

solution for N = 8 is comparable to the solution for N = 64 with very little difference. There

is also little difference between the dde23 and the BK method at any value of N .

BK Spline Approximation vs. DDE23 for φ(t) = sin(2πt
τ )

We compare both methods in the same manner as in the last section, except we change the

initial function, φ(t) = sin(2πtτ ).
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Figure 4.4: The initial condition φ(t) = sin(2πtτ ) for t ∈ [−τ, 0],
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Figure 4.5: The numerical solution at τ = .1.
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Figure 4.6: The initial condition φ(t) = sin(2πtτ ) for t ∈ [−τ, 0].
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Figure 4.7: The numerical solution at τ = 1.
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Figure 4.8: The initial condition φ(t) = sin(2πtτ ) for t ∈ [−τ, 0], and the numerical solution at
τ = π

2r .
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Figure 4.9: The initial condition φ(t) = sin(2πtτ ) for t ∈ [−τ, 0], and the numerical solution at
τ = π

2r .

As shown above MATLAB’s dde23 does not perform as well when approximating the so-

lution for the delay logistic equation for a non-constant initial function. For the BK spline

approximation the solution for N = 16 is comparable to N = 64, and the BK method handles

a varying initial condition better than dde23. The matlab routine cannot handle the initial

function of φ(t) = sin(2πtτ ) due to the oscillatory nature of the solution and stiffness of the

system. This behavior is expected and explained further in [43].
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BK Spline Approximation vs. DDE23 for φ(t) = y(t)

We compare both methods in the same manner as in the previous cases, now φ(t) = y(t), where

y(t) =

{
τ + t, −τ ≤ t ≤ −τ2
τ
2 , −−τ2 < t < 0,.
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Figure 4.10: The initial condition φ(t) = y(t) for t ∈ [−τ, 0].
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Figure 4.11: The numerical solution at τ = .1.
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Figure 4.12: The initial condition φ(t) = y(t) for t ∈ [−τ, 0].
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Figure 4.13: The numerical solution at τ = 1.
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Figure 4.14: The initial condition φ(t) = y(t) for t ∈ [−τ, 0].
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Figure 4.15: The numerical solution at τ = π
2r .

Similar behavior occurs for both methods like with the previous non-constant initial condi-

tion. For the BK spline approximation N = 16 and N = 64 have similar solutions, while dde23

handles the initial function differently in comparison.
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BK Method vs. Method of Steps for φ(t) = .1

Using the Method of Steps given a constant initial condition, φ(t) = .1 for t ∈ [−τ, 0], we obtain

the following solution for the first two steps:

for t ∈ [0, τ ]

dx(t)

dt
= rx(t)

[
1− φ(t)

K

]
∫
dx

x
=

∫
r

[
1− .1

K

]
dt

lnx = r

[
1− .1

K

]
t+ C

x(t) = .1er(1−
.1
K
)t,

for t ∈ [τ, 2τ ], B = r(1− .1
K )

dx(t)

dt
= rx(t)

[
1− .1eB(t− τ)

K

]
∫
dx

x
=

∫
r

[
1− .1eB(t− τ)

K

]
dt

lnx = rt− .1

BK
eB(t−τ) + C

x(t) = .1ert−
.1
BK

eB(t−τ)
.

We compare the Method of Steps to the BK method for τ = 2, 4, 8. We choose larger values

values for the delay so that the step intervals in the method of steps are larger.
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Figure 4.16: The numerical solution using the constant function φ(t) = .1 for τ = 2.
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Figure 4.17: The numerical solution using the constant function φ(t) = .1 for τ = 4.
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Figure 4.18: The numerical solution using the constant function φ(t) = .1 for τ = 8.

In figures (4.16−4.18), we observe that as the value of τ increase, N must increase to obtain

numerical convergence.
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BK Method vs. Method of Steps for φ(t) = sin(2πt
τ )

Using the Method of Steps given a initial function, φ(t) = sin(2πtτ ) for t ∈ [−τ, 0], we get the

following solution for the first step:

t ∈ [0, .2]

dx(t)

dt
= rx(t)

[
1− φ(t)

K

]
∫
dx

x
=

∫
r

[
1−

2π(t−tau)
τ

K

]
dt

lnx = rt+
rτ

2K
cos(t− τ) + C

x(t) = .1e−rtert+
rτ
2K

cos(
2π(t−τ)

τ
).
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Figure 4.19: The numerical solution using the constant function φ(t) = sin(2πtτ ) for t ∈ [−τ, 0]
for τ = 2.
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Figure 4.20: The numerical solution using the constant function φ(t) = sin(2πtτ ) for t ∈ [−τ, 0]
for τ = 4.
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Figure 4.21: The numerical solution using the constant function φ(t) = sin(2πtτ ) for t ∈ [−τ, 0]
for τ = 8.
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We observe again that as τ increases N must be increased to obtain numerical convergence.

BK Method vs. Method of Steps for φ(t) = y(t)

The function y(t) is

y(t) =

{
τ + t, −τ ≤ t ≤ −τ2
τ
2 , −−τ2 < t < 0,

then the solution to the delay logistic equation using the Method of Steps on the interval

t ∈ [−τ, −τ2 ] is

x(t) = .1e
rτ2

K ert−
r(t−τ)2

K

and

x(t) = .1er(1−
τ/2
K

)t

on t ∈ (−τ2 , 0].
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Figure 4.22: The numerical solution using the constant function φ(t) = y(t) for τ = 2.
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Figure 4.23: The numerical solution using the constant function φ(t) = y(t) for τ = 4.
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Figure 4.24: The numerical solution using the constant function φ(t) = y(t) for τ = 8.
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For this example we observe similar behavior for numerical convergence when compared to

the previous two cases of the Method of Steps versus the BK spline approximation. However

for the BK spline approximation to converge numerically when y(t) defined previously is the

initial function, N must be larger in comparison to the constant initial function. This happens

because at every τ
2 distance in the interval a jump discontinuity has been propagated through

the solution and should occur again at τ where the interval ends, thus making it harder for the

numerical method to converge.

Summary

For the Delay Logistic example, if the τ is in a range such that the solution does not oscillate

and its solution reaches the steady state of the carrying capacity K, then a minimum of 8

nodes are needed to approximate the solution for a constant initial condition, and N = 16 is

necessary for a non-constant initial condition such as y(t). For oscillatory solutions that occur

when τ = π
2r , a minimum of 32 nodes are necessary to have numerical convergence. We also

observe that MATLAB’s dde23 cannot handle non-constant initial functions, especially initial

functions with periodic behavior. However, the BK spline approximation can handle such types

of initial functions; it just requires more nodes to obtain numerical convergence.
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Chapter 5

Numerical Examples

We numerically compute the TSFs and GSFs for three different examples: Hutchinson’s equa-

tion, the delayed harmonic oscillator, and the behavior alcohol model. We assume we know the

true parameter values θ0, and the delay τ0 for each example. We also assume we have constant

variance, σ20 = .1. We compute the TSFs and GSFs for all examples at the nominal values for

the parameters and delay, θ0 and τ0, respectively.

5.1 Delay Logistic Equation

For Hutchinson’s equation we compute TSFs and GSFs for τ = .1, 1, π2r at the nominal param-

eter values θ0 = K0 = 17.5, r0 = .7, and x00 = .1. We compute Hutchinson’s equation for a

constant initial function φ = .1. We numerically compute the TSFs, GSFs using Banks-Kappel

splines [12] and compare results with sensitivity functions computed in [8] for the non-delay

logistic equation. The results obtained from the non-delay logistic equation as reported in [8]

in Figures 5.1 (a)-(c).

For the non-delay system it is observed in [8] that the model is very sensitive to the initial

condition x0 and r when the solution is growing the quickest as shown in Figure 5.1 (b).

Once the solution reaches the carrying capacity the model becomes sensitive to K. The GSFs

show regions of high information content where the function is increasing and decreasing. The

parameters x0 and r have correlated regions of high information, shown in Figure 5.1 (c), which

again corresponds to the region where the solution is increasing to the carrying capacity (Figure

5.1 (a)). The GSF for K exhibits the ”force-to-one” nature that is described in [8].

69



0 10 20 30 40 500

2

4

6

8

10

12

14

16

18

t

x 
(t)

Logistic Equation

(a): Solution

0 10 20 30 40 50−10

0

10

20

30

40

50

t
ts

 (t
)

TSF of r,K,x0

 

 

r
K
x0

(b): TSF

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

gs
 (t

)

GSF of r,K,x0

 

 

r
K
x0

(c): GSF

Figure 5.1: The numerical solution to the non-delay solution for x0 = .1, r = .7,K = 17.5 in
(a). The numerical solution to the TSFs with respect to r,K, x0 for x0 = .1, r = .7,K = 17.5
for the non-delay solution in (b). The numerical solution to the GSFs with respect to r,K, x0
for x00 = .1, r0 = .7,K0 = 17.5 for the non-delay solution in (c).
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(a): Solution
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(b): TSF
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Figure 5.2: The numerical solution to the solution for φ = .1, x0 = .1, r = .7,K = 17.5 and
τ = .1 in (a). The numerical solution to the TSFs with respect to r,K, x0, τ for x00 = .1, r0 =
.7,K0 = 17.5 and τ0 = .1 in (b). The numerical solution to the GSFs with respect to r,K, x0, τ
for x00 = .1, r0 = .7,K0 = 17.5 and τ0 = .1 in (c).
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(b): TSF
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Figure 5.3: The numerical solution to the solution for φ = .1, x0 = .1, r = .7,K = 17.5 and
τ = 1 in (a). The numerical solution to the TSFs with respect to r,K, x0, τ for x00 = .1, r0 =
.7,K0 = 17.5 and τ0 = 1 in (b). The numerical solution to the GSFs with respect to r,K, x0, τ
for x00 = .1, r0 = .7,K0 = 17.5 and τ0 = 1 in (c).
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(b): TSF
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Figure 5.4: The numerical solution to the solution for φ = .1, x0 = .1, r = .7,K = 17.5 and
τ = π

2r in (a). The numerical solution to the TSFs with respect to r,K, x0, τ for x00 = .1, r0 =
.7,K0 = 17.5 and τ0 = π

2r in (b). The numerical solution to the GSFs with respect to r,K, x0, τ
for x00 = .1, r0 = .7,K0 = 17.5 and τ0 = π

2r in (c).
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When comparing Figures 5.1 (b) and 5.2 (b), there is similar behavior between the tra-

ditional sensitivity functions for r,K, and x0. We observe that the model is most sensitive

to parameters r and x0 in the region where the solution is changing quickly. The model is

sensitive to the parameter K once the solution approaches the carrying capacity. The TSF for

τ displayed in Figure 5.2 (b) shows that the model is sensitive to the delay when the solution

history is large enough to effect the solution at the current time. Although the behavior of

the TSFs when τ = .1 for the delay logistic system is similar to the behavior of the TSFs for

the non-delay system, the same is not true when comparing the GSFs. We observe with the

addition of the GSF with respect to the delay, the GSFs for r and x0 are still correlated in the

same way as the non-delay case, as shown in Figures 5.1 (c) and 5.2 (c); however the shape

of those functions have changed. This is a reasonable outcome because with the addition of

another parameter the FIM becomes larger. Also, the GSF for r is also inversely correlated

with the GSF for τ . We also observe there are no dynamical changes in the GSF of τ from

t ∈ [0, 5] because the history of the solution x(t−τ) is not sufficiently large to affect the solution

x(t) in this region. In both cases the behavior for the GSF of K remains the same as it does

not start to increase until the solution to the logistic/delay logistic equations nears the carrying

capacity K. It is also observed that for the delay logistical model the dynamical regions for the

TSFs and GSFs are the same.

When τ = 1 we observe that the solution goes slightly past the carrying capacity but nears

the carrying capacity in the same time frame as that for the non-delay and τ = .1 solutions.

The TSF dynamics for r and x0 are similar to those for the non-delay system, the model is

sensitive to these parameters where the solution is changing as shown in Figure 5.3 (b). The

only difference in comparing the TSFs is the shape of the curves for x0 and r after t = 10 which

is reasonable since this is where changes in the solution occur. The TSF for K exhibits the

same behavior as observed in the previous example. The GSFs for x0 and r are again inversely

correlated but exhibit comparable behavior to the non-delay system GSFs, as shown in Figure

5.3 (c). For the GSF of τ the region of steepest increase, as shown in Figure 5.3 (c), corresponds

to region where the solution goes slightly past the carrying capacity, and then returns to the

steady state solution. The dynamical regions for the sensitivity functions again are the same.

When τ = π
2r the solution oscillates around the carrying capacity K, Figure 5.4 (a), as

expected from Hutchinson’s previous results [32]. The model is always sensitive to r and x0

when τ = π
2r because the solution oscillates, and each of those parameters effect how the solution

changes, see Figure 5.4 (b). The sensitivity to K is still minimal in comparison to the other

parameters, but the TSF for K still exhibits oscillatory behavior. The model becomes sensitive

to the delay τ once the history of the solution is sufficiently large to affect the solution at the

current time t. The model then remains sensitive to τ over the rest of the time interval, as

shown in Figure 5.4 (b). The GSFs for all parameters are always changing making it difficult to
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decipher the meaning of the mainly monotone functions seen in Figure 5.4 (c). The GSFs also

have multiple regions where steep increases and decreases occur, leading us to infer that the

region of high information content for all parameters would be nearly the entire time interval.

From the three different solution examples for the delay logistic equation we learn that

for τ < τc, where τc is some critical delay value, the TSF and GSF behavior is comparable

to that of the non-delay model first reported in [8]. We also can determine clear regions of

high information content, which can help with parameter estimation. However with oscillatory

solutions it becomes more difficult to distinguish clear regions of high information from the

GSFs and the TSFs which have oscillatory behavior. Overall, the delay is a catalyst in changing

solution dynamics, thus being able to estimate the delay properly will aid proper analysis of

any DDE model.

5.2 Harmonic Oscillators with Delayed Damping

One of earliest practical examples where it was discovered that small delays could have a

profound influence on solution behavior were shown in the efforts modeling ship stabilization

systems and nonlinear oscillations by Nicholas Minorsky [38, 39, 40]. As we earlier summarized

in Chapter 1, Minorsky introduces and uses this idea of hysterodifferential equations to correctly

describe delayed oscillations within a ship’s control system. He also uses these type of models

since the associated eigenvalues with the solutions can give a range of behavior, allowing the

same model to both describe non-oscillatory and oscillatory behavior. For our next example

we compute TSFs and GSFs for the harmonic oscillator with delayed damping and delayed

restoring force.

The following model is the harmonic oscillator with retarded damping

d2y(t)

dt2
+K

dy(t− τ)

dt
+ by(t) = g(t), (5.1)

y(0) = 10,
dy

dt
(0) = 0.

Let x1(t) = y(t), and x2(t) = dy(t)
dt , then we can rewrite equation (5.1) to be

dx1(t)

dt
= x2(t) (5.2)

dx2(t)

dt
= g(t)− bx1(t)−Kx2(t− τ). (5.3)
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5.2.1 Traditional Sensitivity

Let s1(t) = ∂x1(t)
∂K , s2(t) = ∂x1(t)

∂b , s3(t) = ∂x1(t)
∂τ , s4(t) = ∂x2(t)

∂K , s5(t) = ∂x2(t)
∂b , and s6(t) = ∂x2(t)

∂τ ,

then the following system of delay differential equations may be solved at (K0, b0, τ0) to obtain

the traditional sensitivity functions:

ds1(t)

dt
= s4(t)

ds2(t)

dt
= s5(t)

ds3(t)

dt
= s6(t)

ds4(t)

dt
= −bs1(t)−Ks4(t− τ)− x2(t− τ)

ds5(t)

dt
= −bs2(t)−Ks5(t− τ)− x1(t)

ds6(t)

dt
= −bs3(t)−Ks6(t− τ) +Kẋ2(t− τ).

We use Banks Kappel splines to numerically compute the TSFs and GSFs for the model at

the parameter point q0 = (K0, b0, τ0) where the delay τ0 = 1 for t ∈ [0, 50] or t ∈ [0, 25]. We

choose a nominal value for the variance σ2 = .1. To check our numerical solution we observe

the oscillatory solution by setting b = .5, and K = 0 and g(t) = 0. As a result of K = 0 we

observe an oscillatory solution with oscillatory sensitivity functions. We then further observe

the behavior of the sensitivity functions for the following parameter sets, {K = .5, b = 2} with

g(t) = 10, and {K = .5, b = 2} with g(t) = g1(t) where

g1(t) =

{
10, 0 ≤ t < 15

0, otherwise.

We observe in Figure 5.5 (a) the undamped solution to the harmonic oscillator. As a result

of the oscillatory solution, we observe oscillatory TSFs for the parameters K, b and τ as show

in Figure 5.5 (b). Since the TSFs tell how sensitive the model is to the parameter we would

infer that the model is always sensitive to all of the parameters for an oscillatory solution. In

Figure 5.5 (c) there are multiple regions where the GSFs are vastly increasing and decreasing

for K and b, and strictly increasing for τ , thus it would be wise to use all data collected over

the entire time period to estimate the parameters for this type of model solution. We use this

example to compare and contrast the behavior of both the TSFs and GSFs of the Harmonic

Oscillator with delayed damping at different initial parameter points (K0, b0, τ0).

In Figure 5.6 (a) we change the values for K, b, and g(t) such that after some time the
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Figure 5.5: The numerical solution to the Harmonic Oscillator K = 0, b = .5, τ = 1, and
g(t) = 0 in (a). The numerical solution to the TSFs for the model with respect to K, b, τ at
K0 = 0, b0 = .5, τ0 = 1, and g(t) = 0 in (b). The numerical solution to the GSFs for the model
with respect to K, b, τ at K0 = 0, b0 = .5, τ0 = 1, and g(t) = 0 in (c).
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Figure 5.6: The numerical solution to the Harmonic Oscillator K = .5, b = 2, τ = 1, and
g(t) = 10 in (a). The numerical solution to the TSFs for the model with respect to K, b, τ at
K0 = .5, b0 = 2, τ0 = 1, and g(t) = 10 in (b). The numerical solution to the GSFs for the model
with respect to K, b, τ at K0 = .5, b0 = 2, τ0 = 1, and g(t) = 10 in (c).
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Figure 5.7: The numerical solution to the Harmonic Oscillator K = .5, b = 2, τ = 1, and
g = g1 in (a). The numerical solution to the TSFs for the model with respect to K, b, τ at
K0 = .5, b0 = 2, τ0 = 1, and g = g1 in (b). The numerical solution to the GSFs for the model
with respect to K, b, τ at K0 = .5, b0 = 2, τ0 = 1, and g(t) = g1 in (c).
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restoring force will overtake the delayed damping on the solution. As a result of the solution

we observe the model is sensitive to the parameters where the solution begins to oscillate. Thus

the TSFs oscillate on the same interval of the solution as shown in Figure 5.6 (b). The GSFs

for K and b are inversely correlated and all the parameters have regions of high information

content occurring where the solution oscillates. In comparison with the undamped solution, we

observe that inclusion of the delayed damping reduces the sensitivity regions due to changes in

the solution behavior.

When g(t) = g1(t), we observe that the solution oscillates over the entire time only changing

in amplitude after t ≈ 15. The TSFs are now oscillatory and imply the model is sensitive to

all of the parameters. The GSFs have multiple regions of high information content after t ≈ 5.

Thus increasing data collection after t = 5 could possibly aid in the parameter estimation of

K, b and τ . We observe that for oscillatory solutions the sensitivity functions are best used

together to improve data collection and estimation processes for the model.

5.3 Harmonic Oscillator with Delayed Restoring Force

The following model is the delayed harmonic oscillator with retarded damping

d2y(t)

dt2
+K

dy(t)

dt
+ by(t− τ) = g(t), (5.4)

y(0) = 10,
dy

dt
(0) = 0.

Let x1(t) = y(t), and x2(t) = dy(t)
dt , then we can rewrite equation (5.4) to be

dx1(t)

dt
= x2(t) (5.5)

dx2(t)

dt
= g(t)− bx1(t− τ)−Kx2(t). (5.6)

5.3.1 Traditional Sensitivity

Let s1(t) = ∂x1(t)
∂k , s2(t) = ∂x1(t)

∂λ , s3(t) = ∂x1(t)
∂τ , s4(t) = ∂x2(t)

∂k , s5(t) = ∂x2(t)
∂λ , and s6(t) = ∂x2(t)

∂τ ,

then the following system of delay differential equations may be solved at (K0, b0, τ0) to obtain

the traditional sensitivity functions:

80



ds1(t)

dt
= s4(t)

ds2(t)

dt
= s5(t)

ds3(t)

dt
= s6(t)

ds4(t)

dt
= −bs1(t− τ)−Ks4(t)− x2(t)

ds5(t)

dt
= −bs2(t− τ)−Ks5(t)− x1(t− τ)

ds6(t)

dt
= −bs3(t− τ)−Ks6(t) + ẋ1(t− τ)

We use Banks-Kappel splines we numerically compute the TSFs and GSFs for the model at

some initial parameter point q0 = (K0, b0, τ0) with the delay τ0 = 1 for t ∈ [0, 50]. We choose

nominal values for the variance σ2 = .1. To check our numerical solution we use K = 1, b = 0,

and g(t) = 0, this means the solution will have no restoring force and the solution to x2(t) = 0,

making the solution to x1(t) constant. In Figure 5.8 we observe a constant solution. We then

use the parameter values k = 5 and b = .5 with g(t) = 10 and g(t) = g1(t) to observe different

behavior in the sensitivity functions.
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Figure 5.8: The numerical solution to the Harmonic Oscillator with no Restoring Force for
K = 1, b = 0, and g(t) = 0.

When K = 5, b = .5 and g(t) = 10 we observe a increasing non-oscillatory solution. The

corresponding TSFs show that the model is most sensitive to the restoring force parameter

b, shown in Figure 5.9 (b). The model is also sensitive to the other parameters as the TSFs

for these parameters are also changing over the entire interval. The GSFs in Figure 5.9 (c)

show that data collected over the entire interval will help in estimating b and τ . While for the

parameter K collecting more data from t = 0 to t ≈ 20 should improve the parameter estimate.

If g(t) is changed to from 10 to g1(t) the solution changes as shown in Figure 5.10 (a). As

a result, changes in the shape of the TSFs occurs, however the overall sensitivity behavior is

still the same, i.e. the model is most sensitive to b, shown in Figure 5.10 (b). In Figure 5.10 (c)

the GSFs show that the estimates for all parameters are sensitive to the observations for most

of the entire time interval. The GSFs for b, τ are strictly increasing wile K decreases slightly

at the end of the time interval. This outcome suggests that data collected over the entire time

interval will aide in the estimation of each parameter.
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Figure 5.9: The numerical solution to the Harmonic Oscillator with Delayed Restoring Force
when K = 5, b = .5, τ = 1, and g(t) = 10 in (a). The numerical solution to the TSFs for the
model with respect to K, b, τ for K0 = 5, b0 = .5, τ0 = 1, and g(t) = 10 in (b). The numerical
solution to the GSFs for the model with respect to K, b, τ for K0 = 5, b0 = .5, τ0 = 1, and
g(t) = 10 in (c).
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Figure 5.10: The numerical solution to the Harmonic Oscillator with Delayed Restoring Force
when K = 5, b = .5, τ = 1, and g = g1 in (a). The numerical solution to the TSFs for the model
with respect to K, b, τ for K0 = 5, b0 = .5, τ0 = 1, and g = g1 in (b). The numerical solution to
the GSFs for the model with respect to K, b, τ for K0 = 5, b0 = .5, τ0 = 1, and g = g1 in (c).
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5.4 A Behavior Change Model

For the last example, we will compute TSFs and GSFs with respect to the delay for the behavior

change model for problem drinking in individuals. We also determine proper regions to collect

data to obtain the best estimates when performing the inverse problem.

Model

The following model is a simplified version of a model of behavior change in problem drinkers

given in [18]

d

dt
A(t) = −a12χG>G∗G(t) + a13D(t), (5.7)

d

dt
G(t) = a21[A(t− τ)− (1 + c1χW (t))A

∗], (5.8)

d

dt
D(t) = −a32χG>G∗(G(t)−G∗) + ch(t). (5.9)

Here A(t) represents an individual’s drinking rate, G(t) is his or her guilt as a result of

drinking the previous day, and D(t) is an individual’s desire to drink.

Using the alcohol behavior model, the TSFs with respect to the delay τ are

d

dt

∂A(t)

∂τ
= gA(A(t), G(t), D(t))

∂A(t)

∂τ
+ gG(A(t), G(t), D(t))

∂G(t)

∂τ

+gD(A(t), G(t), D(t))
∂D(t)

∂τ
+ gτ (A(t), G(t), D(t)), (5.10)

d

dt

∂G(t)

∂τ
= kA(A(t− τ), G(t), D(t), τ)

∂A(t− τ)

∂τ
+ kG(A(t− τ), G(t), D(t), τ)

∂G(t)

∂τ

+kD(A(t− τ), G(t), D(t), τ)
∂D(t)

∂τ
+ kτ (A(t− τ), G(t), D(t)), (5.11)

d

dt

∂D(t)

∂τ
= mA(A(t), G(t), D(t))

∂A(t)

∂τ
+mG(A(t), G(t), D(t))

∂G(t)

∂τ

+mD(A(t), G(t), D(t))
∂D(t)

∂τ
+mτ (A(t), G(t), D(t)), (5.12)

where g(A(t), G(t), D(t)) = −a12χG>G∗G(t) + a13D(t), k(A(t− τ), G(t), D(t)) = a21[A(t−
τ)− (1 + c1χW (t))A

∗], and m(A(t), G(t), D(t)) = −a32χG>G∗(G(t)−G∗) + ch(t).

We define s1(t) = ∂A(t)
∂τ , s2(t) = ∂G(t)

∂τ , s3(t) = ∂D(t)
∂τ , then equations (5.10)-(5.12) become
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ds1(t)

dt
= −a12χG>G∗s2(t) + a13s3(t), (5.13)

ds2(t)

dt
= a21[s1(t− τ)− Ȧ(t− τ)], (5.14)

ds3(t)

dt
= −a32χG>G∗s2(t). (5.15)

We use the BK spline approximation to numerically compute the solution for the model, and

the TSFs and GSFs for the delay τ = 1 as it relates to A(t), G(t), and D(t) for t ∈ [0, 28]. We

choose a nominal value for the variance σ2 = .1, and the parameter values are a12 = .1, a13 =

2, a21 = .2, c1 = .01, A∗ = 2, a32 = 2, G∗ = .5, c2 = 3.
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Figure 5.11: The numerical solution to the alcohol behavior model when τ = 1.

In Figure 5.12 (a) we observe that an individual’s desire to drink D(t) is initially not as

sensitive to the delay as the TSF remains close to zero from t ∈ [0, 10], thus it would be difficult

to estimate τ using data on this interval for equation (5.9). Although when we observe that

same TSF in Figure 5.12 (b) after t = 10 the TSF is not so close to zero, and hits a steady state

after t = 14, this means that an estimate for τ maybe reasonably obtained for data collected

after t = 10. An individual’s guilt, G(t), as represented by equation (5.8), and his or her

drinking rate A(t) are also sensitive to the delay τ . As a person’s guilt is dependent upon his or

her previous drinking rate, and a change in person’s drinking rate with respect to the delay is
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Figure 5.12: The numerical solution to the TSFs for dA(t)
dτ , dG(t)

dτ , and dD(t)
dτ when τ = 1 in (a).

The numerical solution to the TSFs for dA(t)
dτ , dG(t)

dτ , and dD(t)
dτ for t ∈ [8, 14] when τ = 1 in (b).

The numerical solution to the GSF with respect to τ for A(t), G(t), D(t) when τ = 1 in (c).
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more dependent upon the change in his or her guilt with respect to the delay τ . When looking

at the graph of the TSF dG(t)
dτ in Figures 5.12 (a) and (b), we can deduce that if there is data

collected after t = 10 for the model an estimate for τ can be obtained. After t = 10 the TSF
dG(t)
dτ is no longer close to zero and is changing for the remaining time interval. When observing

the graph of the TSF dA(t)
dτ , we observe that the TSF begins to move away from zero after t = 8,

thus if we use the equation for an individual’s drinking rate to estimate τ , the data should be

collected a little earlier when compared to data collected for an individual’s guilt.

We compute the GSF with respect to τ using the TSFs, and observe that D(t)’s region of

high information content occurs when t ∈ [10, 15]. As described by Thomaseth and Cobelli

[44], high information content occurs in a GSF where the function has a steep increase. A

steep decrease usually occurs due to some correlation and has valuable information in the GSF

also as shown in [8]. Also in Figure 5.12 (c) we observe that between t = 15 and t = 24 the

model is sensitive to the data for A(t), and then G(t)’s region of importance is the remaining

time interval after t = 24. The GSF for A(t) has a region of steep increase that is inversely

correlated to the region of steep decrease of the GSF for G(t). If we combine the information

gained from both the TSFs and GSFs we may obtain time intervals where data can be collected

to improve the estimate for the delay in each of model equations. For example, when doing

parameter estimation for the delay τ using equation (5.9) its best to have data collected on the

region t ∈ [10, 14].

Sensitivity functions are useful in identifying regions of high information content which can

aide in parameter estimation. These functions also give insight to how the model is related

to the parameter (TSFs), and how the model is related to the data (GSFs). The sensitivity

functions with respect to the delay are insured to have dynamical changes if the formulation of

the equation is dependent on the previous history of the sensitivity function, as shown in our

example dG(t)
dτ . TSFs and GSFs when used together improve experimental design giving the

experimentalist the ability to determine where to collect optimal information.
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Chapter 6

Improving the Inverse Problem

6.1 A Generic Inverse Problem

Suppose we have a given data set η̂ = {ηi} that are corresponding observations to the solution

x(ti; θ) of the following equation

dx(t)

dt
= G(x(t), x(t− τ), θ), t > 0 (6.1)

x(ξ) =

{
Φ(ξ), −τ ≤ ξ < 0

x0, ξ = 0.

The model dynamics in (6.1) are parameter, θ, dependent where G in our case represents a

functional differential equation. To estimate θ, we use a least squares approach where the

problem is to minimize the following cost functional

J(θ, η̂) =
∑
i

|x(ti; θ)− ηj |2 (6.2)

over θ ∈ Θ, where Θ ⊂ Rp [9].

We compute the inverse problem for Hutchinson’s Equation to estimate the delay parameter.

We improve this computation by observing the TSFs and GSFs computed in the previous

chapter for this example. Based on the observations of these sensitivity functions at various

values for the delay, we determine regions within the solution data that will aid in the estimation

of the delay τ . We also obtain an appropriate final time T to end data collection for this

particular parameter. Use of these functions allows us to simulate data sets that will give the

most optimal estimate for the delay.
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6.2 Example: Hutchinson’s Equation

Constant variance data sets are simulated using 1%, 5%, and 10% noise, for the delay parameter

when τ = .1, 1, π2r . We create noisy data sets with 30 evenly spaced data points for t ∈ [0, 25].

This type of data sets will be identified as “even” data ets. We also create noisy data sets with

30 points where the mesh is not evenly space, and most of the data points are concentrated

in the region of high information content. An example of this type of data set is as follows:

for t ∈ [0, 5] there will be 5 data points, for t ∈ (5, 15] there will be 20 data points, and for

t ∈ (15, 25] there will 5 data points, where the region of high information content is t ∈ [5, 15].

We identify these data sets as “enhanced” data sets. We also create “enhanced+” noisy data

sets where an additional 5 data points are added to the region of high information content.

When the delay is τ = .1, 1, the region of high information content is t ∈ [5, 15]. While for

τ = π
2r , the region of high information content corresponds with t ∈ [6, T ], where T is the

final time. The parameter values r,K, and x0 are .7, 17.5, and .1 respectively. We perform the

inverse problem to estimate only the delay parameter, τ , with an initial guess of τ∗ = .25 when

the true value is τ0 = .1, and τ∗ = .5 when the true value is τ = 1 or π
2r . We also compute the

associated 95% confidence interval.
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Figure 6.1: An example of a simulated data set with 10% noise and evenly spaced data points
when τ = .1.
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Figure 6.2: An example of a simulated data set with 10% noise and data points concentrated
in the region of high information content for the delay parameter τ when τ = .1.

Table 6.1: Parameter estimates for the delay from the 3 types of simulated data sets (even or
enhanced or enhanced+) at noise levels nl of 1%, 5%, and 10%, Standard Error (SE) estimates,
and 95% Confidence Intervals (CI), when τ = .1.

Data Type nl τ̂ SE CI

even .01 .1023 .0071 (.0884, .1163)

even .05 .1000 .0334 (.0345, .1655)

even .10 .1129 .0861 (-.0558, .2816)

enhanced .01 .1008 .0078 (.0855, .1161)

enhanced .05 .1062 .0380 (.0316, .1807)

enhanced .10 .1103 .0743 (-.0353, .2560)

enhanced+ .10 .1070 .0683 (-.0268, .2409)

In Table (6.1), we observe comparable estimates of the delay from the simulated data sets

with lower amount amounts of noise (i.e., nl = 1%, 5%). The estimate does not appear optimal

in the presence of 10% noise for the evenly space simulated noisy data set. We then simulate

data for the same parameter values using the enhanced mesh by concentrating the data in the

region of high information content as described earlier. We observe a slight improvement in

the estimate of the delay. When the delay is estimated from the simulated enhanced+ data

set and we observe an improvement in the estimate of the delay parameter from τ̂ = .1103 to

τ̂ = .1070.
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Table 6.2: Parameter estimates for the delay from the types of simulated data sets (even or
enhanced or enhanced+) at noise levels, nl, of 1%, 5%, and 10%, Standard Error (SE) estimates,
and 95% Confidence Intervals (CI), when τ = 1.

Data Type nl τ̂ SE CI

even .01 1.0019 .0027 (.9966,1.0071)

even .05 1.0013 .0104 (.9808, 1.0217)

even .10 1.0097 .0195 (.9715, 1.0479)

enhanced .01 1.0003 .0011 (.9981, 1.0025)

enhanced .05 1.0003 .0082 (.9841, 1.0164)

enhanced .10 1.0006 .0167 (.9679, 1.0332)

enhanced+ .10 1.0010 .0174 (.9669, 1.0351)

Table 6.3: Parameter estimates for the delay from the types of simulated data sets (even or
enhanced or enhanced+) at noise levels, nl, of 1%, 5%, and 10%, Standard Error (SE) estimates,
and 95% Confidence Intervals (CI), when τ = pi

2r ≈ 2.244.

Data Type nl τ̂ SE CI

even .01 2.2439 .0001 (2.2437, 2.2442)

even .05 2.2438 .0008 (2.2421, 2.2454)

even .10 2.2435 .0015 (2.2406, 2.2464)

enhanced .01 2.2440 .0002 (2.2436, 2.2445)

enhanced .05 2.2432 .0007 (2.2418, 2.2445)

enhanced .10 2.2446 .0016 (2.2415, 2.2478)

enhanced+ .10 2.2445 .0013 (2.2419, 2.2471)

In Table (6.2), we observe that the enhanced data sets improve the estimate of the delay for

all levels of noise. In Table (6.3), we observe that the enhanced data sets improve the estimate

of the delay when nl = 5%, 10%.

6.3 Summary

Based on the results we see an overall improvement in the estimate for the delay when using

enhanced data based on the region of high information content. We also observe better estimates

when we increase the amount of data within the region of high information content and use

enhanced+ data sets to estimate the delay. As a result, it is advantageous to use sensitivity

functions to help obtain optimal estimates for parameters specifically in our case the delay.
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Chapter 7

Final Remarks

7.1 Research Conclusions

From this research we learn the importance of sensitivity functions for parameter estimation of

delay differential equation (dde) models. We formulate traditional sensitivity equations (TSFs)

of the dde form and prove well-poseness for different classes of ddes. The TSFs for the various

models (delay-logistic, harmonic oscillator, and alcohol behavior model) show that each model

is always sensitive to the delay parameter τ for both oscillatory and non-oscillatory solutions.

From here the TSFs, along with the variance, and Fisher Information Matrix, are used to

compute the generalized sensitivity functions (GSFs). The GSFs give us insight to the regions

within the data that can improve the estimate of the parameters within the model. We have

learned that for different types of solution behaviors this region of importance changes. For

example, oscillatory solutions tend to have larger regions of importance and would encourage

us to suggest that data collection be increased over the entire time interval to improve the

estimate of the model parameters. Non-oscillatory solutions have more distinct regions of high

information content within the data and we can reasonably suggest specific regions in that data

that may improve the parameter estimates for the models.

To show the ability of the sensitvity functions to improve the parameter estimate of the delay,

we simulate three types of noisy data sets (even, enhanced, and enhanced+). Enhanced data

sets has most of its points located in the region of high information content that corresponds

to the delay, (this region is first presented in Chapter 5). We estimate the delay parameter, τ ,

and determine that focusing the data in the region of high information content corresponding

to the delay improves the estimate in the presence of higher amounts of noise. Overall we learn

that sensitivity function behavior is solution dependent and is useful in improving parameter

estimates for delay differential equation models.
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7.2 Future Work

In the future it would be advantageous to use this idea of generalized sensitvity and apply

it to real data sets to possibly improve the experimental process. These functions may be

used to change the observation process and/or observation times of the experiment. For other

future work it would reasonable to explore the correlation of GSF functions for the model

parameters and determine if this correlation affects the region of high information content for

the model parameters. Futher complete sensitvity analysis (traditional and generalized) should

be performed on different types of dde models, such as those with functional delays, in order

to further understand the information that may be gained from generalized sensitivity.
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Appendix A

Numerical Implementation

A.1 Pseudocode Subroutines

makeQ

In this subroutine we will pass N and return QN, where QN is in row echelon form of Q,
i.e. it is in an upper triangular matrix. The function syntax is QN = makeQ(N).

QN = (e0(0), e1(0), . . . , eN (0))T (e0(0), e1(0), . . . , eN (0))

+

∫ 0

−τ
(e0(p), e1(p), . . . , eN (p))T (e0(p), e1(p), . . . , eN (p))dp

=


1 0 . . . 0

0 0 . . . 0
...

...
...

...

0 0 . . . 0



+


∫ 0
−τ e0(p)e0(p)dp

∫ 0
−τ e0(p)e1(p)dp

∫ 0
−τ e0(p)e2(p)dp . . .

∫ 0
−τ e0(p)eN (p)dp∫ 0

−τ e1(p)e0(p)dp
∫ 0
−τ e1(p)e1(p)dp

∫ 0
−τ e1(p)e2(p)dp . . .

∫ 0
−τ e1(p)en(p)dp

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.∫ 0
−τ eN (p)e0(p)dp

∫ 0
−τ eN (p)e1(p)dp . . .

∫ 0
−τ eN (p)eN−1(p)dp

∫ 0
−τ eN (p)eN (p)dp

 .

Thus

QN =



1 0 . . . 0 0

0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...

0 0 . . . 0 0


+
τ

N



1
3

1
6 0 . . . 0

1
6

2
3

1
6

. . .
...

0
. . .

. . .
. . . 0

... 1
6

2
3

1
6

0 . . . 0 1
6

1
3


.
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So to compute the above matrix we define Q1 = zeros(N + 1, N + 1), and Q2 = zeros(N +

1, N + 1). Then we set Q1(1, 1) = 1. Then Q2 = τ
N [diag((1/6) ∗ ones(1, N − 1),−1) +

(diag((2/3) ∗ ones(1, N))) + (diag((1/6) ∗ ones(1, N − 1), 1)]. We then set Q2(1, 1) = τ
N

1
3 , and

Q2(N + 1, N + 1) = τ
N

1
3 , now QN = Q1 + Q2. We row reduce to put QN in upper triangular

form in the following way:

QN = zeros(N + 1, N + 1)

QN(1, :) = QN (1, :)

for i = 2: N+1

QN(i, :) = QN(i− 1, :)(
−Q(i, i− 1)

QN(i− 1, i− 1)
) +Q(i, :).

end

The subroutine will return the matrix QN .

makeh

For this subroutine the syntax will be h = makeh(ξ, φ), then

h(ξ, φ) = (e0(0), e1(0), . . . , eN (0))T ξ +

∫ 0

−τ
(e0(p), e1(p), . . . , eN (p))Tφ(p)dp

=


ξ

0
...

0

+


∫ 0
−τ e0(p)φ(p)dp∫ 0
−τ e1(p)φ(p)dp

...∫ 0
−τ eN (p)φ(p)dp

 .

backSub

For the back substitution subroutine we use the following syntax

x = backSub(A, b)

where Ax = b and the matrix A is in echelon form making it an upper triangular matrix.
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From here the following steps take place:

x = zeros(N, 1)

x(N) = b(N)/A(N,N)

for j=N-1:-1:1

x(j) = (b(j)−A(j, j + 1 : N) ∗ x(j + 1 : N))/A(j, j)

end
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makeH

This subroutine syntax is as follows:

H = makeH(x(t), x(t− τ), r,K,N).

For the subroutine we will only need to define a = r[1 − x(t−τ)
K ], the first entry of the first

column, and b = − rx(t)
K , the first entry of the last column. By passing N we can then define

a matrix H1= zeros(N+1,N+1), then set the H(1, 1) = a, and H(1, end) = b. From here we

define H2=zeros(N+1,N+1), and create the known unchanging tridiagonal matrix by H2 =

[(diag((1/2) ∗ ones(1, N − 1),−1)) + (diag(zeroes(1, N))) + (diag((−1/2) ∗ ones(1, N − 1), 1)].

We then set H2(1, 1) = 1/2, and H2(N + 1, N + 1) = −1/2, now we return H = H1 +H2.

RHS

This function computes the right hand side of (4.6). In this function the coordinate vector γ(t)

is determined at each value, so we use other functions backSub and makeH to determine this

coordinate vector. We also compute fN (t) within the function, as well as x(t) and x(t − τ),

which is needed to compute matrix H(t) and fN (t) for the delay logistic example. The syntax

for RHS is as follows:

dzdt = rhs(t, z, r, k,N,QN, tau, x(t), x(t− τ))

gamma = zeros(N + 1, 1)

H = zeros(N + 1, N + 1)

H = makeH(x(t), x(t− tau), r, k,N)

f = zeros(N + 1, 1)

f(1, 1) =
(rx(t)x(t− τ))/k

QN(1, 1)

gamma = backSub(QN,H ∗ z)

dzdt = gamma+ f
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