
ABSTRACT

WEARS, THOMAS HANNAN. Signature Varieties of Polynomial Functions. (Under
the direction of Dr. Irina Kogan.)

In this thesis we study the equivalence of polynomial functions in m variables over

the field of complex numbers under the equivalence relation generated by the action of

an algebraic subgroup G of GLm (C). The study is carried out using a combination of

techniques from differential and algebraic geometry. We introduce the notion of a G-

signature correspondence which is a map from the space of polynomials in m variables

to the space of algebraic subvarieties of some algebraic variety over C. For an almost

complete G-signature correspondence, two generic polynomial functions are equivalent

under the action of G if and only if their corresponding algebraic subvarieties under the

G-signature correspondence are equal. While the notion of a G-signature correspondence

is completely constructive, its implementation relies on elimination algorithms, which

are known to have high computational complexity. The advantage of using a G-signature

correspondence to address the G-equivalence of polynomials in comparison with other

methods lies in its universality: the same construction applies to polynomials in any

number of variables of any degree.
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Chapter 1

Introduction and Statement of the

Problem

1.1 Introduction

The aim of this thesis is to study the action of an algebraic subgroup G ⊂ GLm(C) on

the set of polynomials in m variables, Pm, induced by a linear change of variables. The

primary problem is to decide when two polynomials are equivalent under the action of

G. This problem has its roots in classical invariant theory and dates back to the mid

19th century and the likes of Cayley [4], Clebsch [5], Gordan [12], Hilbert [14] [15], and

Sylvester [29] [30].

In the 19th century, the primary focus of study centered around the invariants and

covariants of a homogeneous polynomial f in m variables, and, more generally, invariants

of tensor components under a linear change of basis. In classical terminology, an invari-

ant φ is a function that depends only on the coeffecients of f and remains unchanged
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under the action of G, whereas a covariant also depends on the indeterminate variables of

the polynomial. During this time period, the main approach was computational and the

desire was to prove that the ring of invariants for a system of homogeneous polynomials

was finitely generated as a C algebra. However, this approach changed drastically in the

1890’s when Hilbert proved his now celebrated ‘Hilbert Basis Theorem.’ Rejected at the

time for being nonconstructive, Hilbert proved that any finite system of homogeneous

polynomials admitted a ‘Hilbert Basis’1 for its covariants. Hilbert’s history altering re-

sult changed the course of the development of mathematics, as the computational and

constructive approaches fell by the wayside and almost completely out of favor by the

1920’s, and in their place rose subjects and topics such as commutative algebra [1], geo-

metric invariant theory [20], algebraic geometry [6], and representation theory [11]. And

yet, despite the ominous tone in the description of the field, classical invariant theory has

recently undergone something of a modern revival [7], [28] due in large part to advances

in computer science, symbolic computation and computer algebra systems.

Our approach to studying the action of G on Pm blends techniques from differential

and algebraic geometry and finds its inspiration in the recent works of Fels, Hubert,

Kogan, Moreno Maza, and Olver, [2], [9], [10], [18], [19], [17], [23]. In [23] Olver made

the novel observation that for a given f ∈ Pm, one can view the graph of f , Γ(f), as

a hypersurface in Cm+1 and the study of a linear change of variables can be recast as

an equivalence problem for submanifolds of Cm+1. In this formulation, the goal is to

generate a fundamental2 set of differential invariants that can be used to parameterize a

signature set of f , whereby one is (hopefully) able to determine that polynomials f and g

1Meaning that any other covariant can be written as polynomial function of a finite number generators.
2Meaning that any other differential invariant can be expressed locally as a function of the funda-

mental set.
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are equivalent if and only if they have the same signature set. At approximately the same

time, Fels and Olver were developing their equivariant method of moving frames [9], [10]

which extended the applicability of moving frame techniques in addressing equivalence

problems to a wide variety of situations, including that of classical invariant theory and

the equivalence of polynomials under a linear change of variables. In short, the equiv-

ariant method of moving frames provides a pseudo-algorithmic approach to generating

a fundamental set of differential invariants and differential invariant operators for the

action of a Lie group G on a manifold M .

Signatures parametrized by differential invariants have been used in [2], [18], [19], [23]

to great effect to address the equivalence and symmetry of homogeneous polynomials in

two variables and homogeneous polynomials in three variables of degree three. These

works, however, underscore the challenges one would face in applying these methods to

homogeneous polynomials in four or more variables. In the case of polynomials in two

variables, the equivariant method of moving frames leads to a ‘nice’ fundamental set

of rational differential invariants [23], [18], whereas in the case of polynomials in three

variables one obtains a set of local algebraic invariants [18], which is decidedly more dif-

ficult to use in practice. To our knowledge, the computation of differential invariants for

polynomials in more than three variables via the moving frame construction was never

performed. In [3], the authors define signatures for polynomials in two and three vari-

ables based on rational differential invariants obtained by other methods, but the methods

do not have a straightforward generalization to polynomials in more than three variables.

In Chapter 2 of the thesis, we review the basics of the equivariant moving frame con-

struction following for the most part the presentation of [10]. We prove that signatures
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of polynomials parametrized by normal differential invariants characterize equivalence

classes of polynomials on an open (in the metric topology) subset of the set of polynomi-

als. The proof is an adaptation to the case of polynomial functions of established proofs

of more difficult equivalence theorems for generic smooth submanifolds. We illustrate

these results in the case of polynomials in two and three variables.

In Chapter 3 of the thesis, we propose a new signature construction that completely

circumvents explicit computation of invariants. We define a map from the set of polyno-

mials in m variables to a set of subvarieties of an affine space of sufficiently large dimen-

sion. The signature variety of a polynomial can be computed directly from the equations

of the group action via elimination algorithms [6]. This construction is completely al-

gorithmic and can be applied to polynomials in any number of variables, although the

high complexity of the elimination algorithms may prevent explicit computations of sig-

nature varieties. We prove that signature varieties characterize equivalence classes of

polynomials on an open (in the Zariski topology) subset of the set of polynomials. The

construction is illustrated by examples.

1.2 Statement of the Problem

Let Pm denote the set of polynomials inm variables. The set of polynomials inm variables

of degree less than or equal to d will be denoted by Pdm and the set of homogeneous

polynomials in m variables of degree d will be denoted by HPdm. Let GLm(C) denote the

general linear group and let G ⊂ GLm(C) denote an algebraic subgroup. Elements of G

will be represented by m×m matrices over C. The standard action of G on Cm induces
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a linear action of G on Pm defined by

Λ ? f(x) = f(Λ−1 · x) ∀Λ ∈ G, x ∈ Cm (1.1)

Remark 1.2.1. Both Pdm and HPdm are closed under the action of G on Pm and thus

the action of G on Pm can be restricted to either Pdm or HPdm

Definition 1.2.1 (Equivalence). Let f, g ∈ Pm. We say that f and g are G-equivalent

if there exists Λ ∈ G such that Λ ? f = g and we write f ∼=G g or f ∼= g if the group G is

understood.

Example 1.2.2. Let m = 2 and let points of C2 be denoted by x = (x, y). Let f =

x3 + y3, g = 9x3 + 15x2y + 9xy2 + 2y3 ∈ Pm and let Λ =

 1 −1

−1 2

 ∈ GL2(C). Then

Λ ? f = g. We merely calculate

f
(
Λ−1 · x

)
= (2x+ y)3 + (x+ y)3

= 9x3 + 15x2y + 9xy2 + 2y3

= g(x)

Remark 1.2.2. Observe that det(Λ) = 1 and we can also regard f and g as being

SL2 (C)-equivalent.

Definition 1.2.3 (G-Signature Correspondence and G-Signature Variety). A G-signature

correspondence for the action of G on Pm is a map from Pm to the set of algebraic

subvarieties of some algebraic variety C over C, such that if the image of f ∈ Pm under
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this correspondence is denoted by Sf , then

f ∼=G g ⇒ Sf = Sg.

The image of f ∈ Pm under a G-signature correspondence is said to be the G-signature

variety of f determined by the given G-signature correspondence.

Definition 1.2.4 (Complete and Almost Complete Signature Correspondence). We say

that the G-signature correspondence is complete if for all f and g ∈ Pm,

f ∼=G g ⇐⇒ Sf = Sg. (1.2)

A G-signature correspondence is almost complete if there exists d0 such that for all d > d0

there exists a Zariski open subset T dm ⊂ Pdm such that (1.2) holds for all f and g ∈ T dm

Remark 1.2.3. Given a subset F ⊂ Pm which is closed under the action of G (e.g., Pdm

or HPdm), then we can speak of a G-signature correspondence for the action of G on F .

Using a blend of techniques from differential and algebraic geometry, we present a

constructive definition of an almost complete GLm(C)-signature correspondence for Pm

with m arbitrary, and for d ≥ 3 we give a constructive definition of an almost complete

GLm(C)-signature correspondence for HPd3.
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Chapter 2

Moving Frames and Differential

Invariant Signatures

We begin this chapter by first introducing the material for the nth order jet space of

analytic functions f : Cm → C, which will be denoted by Jn (Cm,C). All future con-

structions, including those of a more algebraic nature, will take place on a jet space of

appropriate order. We briefly discuss the prolonged action of a linear algebraic subgroup

G of GLm(C) on Jn (Cm,C) and then review some of the fundamental geometry associ-

ated with Jn (Cm,C) and the prolonged action of G on Jn (Cm,C), including the total

derivative operators and (horizontal) total differential operators, both of which will play

a role in the method of equivariant moving frames. We follow this with a brief review of

local and global differential invariants for the prolonged action of G on Jn (Cm,C), which

will prove useful both in the context of and independently of the equivariant moving

frame method. After a basic discussion of the relevant geometry of Jn (Cm,C), we pro-

vide a brief review and summary of the relevant material from the method of equivariant

moving frame maps. Finally, we provide an analysis of the actions of SL2 (C) on P2 and
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HPd2 as well as a brief analysis of the action of GL3 (C) on HP3
3 and P3 using techniques

based on the equivariant method of moving frames and global differential invariants. The

chapter will conclude with a brief discussion of the problems that one faces when trying

to extend the use of either differential invariants or the method of equivariant moving

frames beyond the cases analyzed in this chapter.

2.1 Jet Spaces and Prolongation

2.1.1 Jet Space and Jets of Functions

Let x =
(
x1, . . . , xm

)
denote the standard coordinate functions on Cm. Let GLm(C)

denote the group of m×m matrices over C with nonzero determinant. Let λ =
(
λij
)
, 1 ≤

i, j ≤ m denote coordinates on Cm2

, which will be used as parameters for the group

GLm(C). For Λ =
(
λij
)
∈ GLm(C), we will use the standing convention that λij denotes

the entry of the matrix Λ in the ith row and jth column and λ̂ij will denote the entry

of the matrix Λ−t that resides in the ith column and the jth row, where Λ−t denotes

the transpose of Λ−1. We will view GLm(C) as an algebraic subvariety of Cm2+1, where

we take coordinates on Cm2+1 to be (λij, s). The ideal defining GLm(C) ⊂ Cm2+1 is(
det(λij)s− 1

)
⊂ C[λij, s], where C[λij, s] denotes the polynomial ring over C in the m2 +1

variables (λij, s). Any algebraic subgroup G ⊂ GLm(C) can be realized as a subvariety

of GLm(C) defined by a radical ideal G ⊂ C[λij, s], where
(
det(λij)s− 1

)
⊂ G. There

are natural (left) actions of G on Cm and on the set of functions f : Cm → C. The

action of G on Cm is given by standard matrix multiplication. For Λ =
(
λij
)
∈ G and
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x =
(
x1, . . . , xm

)
∈ Cm, the action is given by1

Λ · x = X =
(
X1, . . . , Xm

)
=
(
λ1
ix

i, . . . , λmi x
i
)
, 1 ≤ i ≤ m. (2.1)

where X = (X1, . . . Xm) is a second set of coordinates on Cm which we view as being

the target coordinates for the action map. The action of G on Cm is then extended to

an action on functions f : Cm → C as follows. For Λ ∈ G and f : Cm → C, the action of

Λ on f is denoted by Λ ? f , where Λ ? f : Cm → C is defined by either of the following

(equivalent) formulations:

(Λ ? f) (x) = f
(
Λ−1 · x

)
, (2.2)

or

(Λ ? f) (Λ · x) = f (x) . (2.3)

Let Jn (Cm,C) denote the nth order jet space of functions from Cm → C. Coordinates

on Jn (Cm,C) are given by

z(n) = (x, u, uK) =
(
x1, . . . , xm, u, u1, u2, . . . , uK , . . .

)
,

where K ranges over (symmetric) partial derivative multi-indices2 with |K| ≤ n.

1The summation convention will be used throughout.
2We will adopt the convention that an order n partial derivative multi-index depending on m inde-

pendent variables is an n-tuple K = (i1, i2, . . . , in) where 1 ≤ ij ≤ m. Any two such tuples will be
regarded as being equal if they differ only by a permutation of the entries. When listing out coordinates
on Jn (Cm,C) we will always assume that the indices of a fixed order have been ordered lexicographically
with 1 < 2 < . . . < m. When there is no chance for confusion, we will drop both the parentheses and
the commas from our multi-indices.
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Remark 2.1.1. Note that Jn (Cm,C) is thus canonically identified with CN(n,m),where

N(n,m) = m+

(
m+ n

n

)

.

Points in Cm will be denoted by x or X and points in Jn (Cm,C) will be denoted by

z(n) or Z(n).3

Notation 2.1.1. For a smooth function f : Cm → C and a partial derivative multi-

index K = (k1, k2, . . . kl), we will denote the partial derivative of f with respect to the

multi-index K by

fK = fk1k2···kl =
∂|K|f

∂xkl · · · ∂xk2∂xk1
. (2.4)

Definition 2.1.1 (Jet of a Function). The nth jet of a smooth function f : Cm → C is

the function jn f : Cm → Jn (Cm,C) defined by

jn f(x) = (x, f(x), f1(x), f2(x), . . . , fK(x), . . .) , ∀x ∈ Cm, 1 ≤ |K| ≤ n. (2.5)

Example 2.1.2. Let m = n = 2 and set x1 = x and x2 = y. Let f = x3 + 5x2y + 9y3.

Then j2 f : C2 → J2
(
C2,C

)
is

j2 f(x, y) =
(
x, y, x3 + 5x2y + 9y3, 3x2 + 10xy, 5x2 + 27y2, 6x+ 10y, 10x, 54y

)
.

Remark 2.1.2. Note that for any smooth function f : Cm → C,
⋃

x∈Cm

j0 f(x) ⊂ Cm ×C

is the graph of f and that
⋃

x∈Cm

jn f (x) ⊂ Jn (Cm,C) is an m-dimensional submanifold.

3We use capital letters for points that are being viewed as ‘target points’ for psychological reasons.
We regard the points as residing in the same space.
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2.1.2 Prolongation of the G Action

The action of G on Cm can be prolonged (see for instance [22]) to an action of G on

Jn (Cm,C) satisfying

Λ · (jn f (x)) = jn (Λ ? f) (Λ · x) , (2.6)

for all Λ ∈ G and for all f : Cm → C. We will denote the prolonged action of G on

Jn (Cm,C) by α : G × Jn (Cm,C) → Jn (Cm,C). We also introduce a second set of

coordinates Z(n) = (X i, U, UK), |K| ≤ n, for the target coordinates of the action map α.

The action of G on Jn (Cm,C) is given explicitly in coordinates by α
(
λij, z

(n)
)

= Z(n) =

(X i, U, UK), where

Xj = λjix
i, (2.7)

U = u (2.8)

Uj = λ̂ijui (2.9)

Uj1j2 = λ̂i1j1λ̂
i2
j2
ui1i2 (2.10)

...

Uj1j2···jn = λ̂i1j1λ̂
i2
j2
· · · λ̂injnui1i2···in , (2.11)

1 ≤ i, j, . . . ≤ m, |K| ≤ n.

Remark 2.1.3. The components of the action map α : G×Jn (Cm,C)→ Jn (Cm,C) are

given by globally defined polynomial functions in λij and s.

Notation 2.1.2. The orbit of a point z(n) ∈ Jn (Cm,C) under the action of G will be

denoted by Oz(n).

Example 2.1.3. Let m = n = 2. For Λ =
(
λij
)
∈ G and z(2) =

(
x1, x2, u, u1, u2, u11, u12, u22

)
∈
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J2
(
C2,C

)
, the action of G on J2

(
C2,C

)
is given by

Λ · z(2) = Z(2) =
(
X1, X2, U, U1, U2, U11, U12, U22

)
, (2.12)

where

X i = λijx
j

U = u,

Ui = λ̂jiuj,

Uij = λ̂ki λ̂
l
jukl,

with 1 ≤ i, j, k, l ≤ 2.

2.1.3 Basic Geometry of the Prolonged G Action

We will briefly review some of the fundamental geometry and structure associated with

Jn (Cm,C) and with the prolonged action of G on Jn (Cm,C). We refer the reader to [21]

or [22] for a detailed discussion of these topics.

Associated to the jet spaces Jk (Cm,C) and Jn (Cm,C) (assuming that k > n), there

are natural projection πkn : Jk (Cm,C) → Jn (Cm,C) which are equivariant with respect

to the actions of G on Jk (Cm,C) and Jn (Cm,C) . That is, for all Λ ∈ G and for all

z(k) ∈ Jk (Cm,C) we have

πkn
(
Λ · z(k)

)
= Λ · πkn

(
z(k)
)
. (2.13)

Let z(k) ∈ Jk (Cm,C) and z(n) ∈ Jn (Cm,C) be points such that πkn
(
z(k)
)

= z(n). Then the
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orbit Oz(k) for the action of G on Jk (Cm,C) passing through the point z(k) projects onto

the orbit Oz(n) for the action of G on Jn (Cm,C) passing through the point z(n). That

is, πkn (Oz(k)) = Oz(n) whenever πkn
(
z(k)
)

= z(n), or more generally, whenever πkn
(
z(k)
)

and z(n) are equivalent under the action of G on Jn (Cm,C). Thus, the dimension of

the maximal orbits for the action of G on Jk (Cm,C) is nondecreasing as a function of

k. Furthermore, since the dimension of the orbits is bounded by the dimension of the

group, there is a minimal 0 < n0 < ∞ such that the maximal orbit dimension is first

obtained on Jn0 (Cm,C) .

Notation 2.1.3. We will let sn denote the maximum dimension of the orbits for the

action of G on Jn (Cm,C) and we will let max (sn) = max{sn}∞n=1.

For a fixed m, we will denote by J∞ (Cm,C) the inverse limit formed by the finite

jet spaces Jn (Cm,C) and their projection maps πkn : Jk (Cm,C)→ Jn (Cm,C), where we

are assuming k > n.

Definition 2.1.4 (Stable Orbit Dimension). The stable orbit dimension for the action

of G on J∞ (Cm,C) is defined to be max (sn) .

Definition 2.1.5 (Order of Stabilization). The order of stabilization for the action of G

on J∞ (Cm,C) is the minimal n0 such that the stable orbit dimension is obtained.

A result due to Ovsiannikov [25] shows that the action of G on Jn (Cm,C) is locally

free 4 on a dense open subset of Jn (Cm,C) for n sufficiently large. We will state the

theorem for a general manifold M and a general Lie group G.

4The dimension of the orbits is equal to the dimension of the group.
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Theorem 2.1.6. The action of a Lie group G on M is locally effective on subsets if and

only if the prolonged action of G on Jk (M, p) is locally free on a dense open subset for k

sufficiently large.

Remark 2.1.4. It will be proven later (see Theorem 3.7.1) that the prolonged action of

an algebraic subgroup G ⊂ GLm (C) on Jn (Cm,C) is locally free for n ≥ m. This bound

is not sharp, however (see Remark 3.7.2).

Definition 2.1.7 (Regular Jet). A point z(n) ∈ Jn (Cm,C) is said to be a regular jet if

the dimension of the orbit passing through z(n) is of maximal dimension.

The standard total derivative operators on J∞ (Cm,C) are denoted by Di, 1 ≤ i ≤ m,

where Di denotes the total derivative with respect to xi. The total derivative operators

are given in local coordinates z(n) = (x, u, uK) by the formula

Di =
∂

∂xi
+ uK,i

∂

∂uK
, 1 ≤ i ≤ m, (2.14)

where there is summation over all partial derivative multi-indices K. When applying the

total derivative operators to a differential function φ : Jn (Cm,C)→ C, then the summa-

tion in (2.14) can be truncated to a finite sum. Application of a total derivative operator

Di to a differential function φ results in a differential function Diφ : Jn+1 (Cm,C)→ C.

Notation 2.1.4. Let f : Cm → C and let φ : Jn (Cm,C) → C be a function. The

restriction of φ to the n-jet of f will be denoted by either φ[f ] or φ[jn f ] if the order of

the jet space on which the function is being evaluated needs additional emphasis.

Remark 2.1.5. For a function φ : Jn (Cm,C) → C and a function f : Cm → C, φ[f ]
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can be viewed as a function from Cm → C, defined by

φ[f ] (x) = φ (jn f (x)) , ∀x ∈ Cm.

The total derivative operators capture implicit differentiation in the following sense.

If φ : Jn (Cm,C) is a differential function and f : Cm → C, then

(Diφ) [jn+1 f ] =
∂

∂xi
(φ[jn f ]).

The total derivative operators form a basis for the m-dimensional vector space of total

differential operators. Any total differential operator on J∞ (Cm,C) is thus uniquely

expressible as

D = Qi(x, u, uK)Di 1 ≤ i ≤ m, (2.15)

and satisfies

(Dφ) [jn+1 f ] = Qi[jn f ]
∂

∂xi
(φ[jn f ]),

where φ is any differential function and f : Cm → C.

Remark 2.1.6. The prolonged action of G on Jn (Cm,C) (2.7)-(2.11) can be defined

using the total derivative operators. For Λ ∈ G define the total differential operator

Ei = λ̂jiDj, 1 ≤ i, j ≤ m. (2.16)

Then for any partial derivative multi-index K = (k1, . . . , kj), (2.7)-(2.11) are equivalent

to

EKu = UK , (2.17)
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where EKu = Ekj · · · Ek1u.

2.1.4 Differential Invariants

We will now briefly introduce the notion of local and global differential invariants for the

action of G on Jn (Cm,C).

Definition 2.1.8 (Differential Invariants). Let U ⊂ Jn (Cm,C) be an open set. A func-

tion φ : U → C is said to be a local differential invariant if for all z(n) ∈ U there exists

an open neighborhood V ⊂ G about the identity matrix such that for all Λ ∈ V,

φ
(
Λ · z(n)

)
= φ

(
z(n)
)
.

If φ
(
Λ · z(n)

)
= φ

(
z(n)
)

for all z(n) ∈ U and for all Λ ∈ G such that Λ · z(n) ∈ U , then

we say that φ is a global differential invariant on U .

Remark 2.1.7. In the definition of a local differential invariant, note that the open

neighborhood V ⊂ G about the identity may depend on the point z(n) ∈ U .

Remark 2.1.8. A global differential invariant for the action of G on Jn (Cm,C) can be

viewed as a function that is constant on the G-orbits.

Example 2.1.9. Let G = SL2 (C). The function φ : J2
(
C2,C

)
→ C defined by φ

(
z(2)
)

=

u11u22 − u2
12 is a global differential invariant for the action of G on J2

(
C2,C

)
. Let

z(2) =
(
x1, x2, u, u1, u2, u11, u12, u22

)
∈ J2

(
C2,C

)
and let Λ =

(
λij
)
∈ SL2 (C) . We merely
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note that

φ
(
Λ · z(2)

)
= U11U22 − U2

12

=
(
λ̂i1λ̂

j
1uij

)(
λ̂k2λ̂

l
2ukl

)
−
(
λ̂r1λ̂

s
2urs

)2

=
(
λ̂1

1λ̂
2
2 − λ̂2

1λ̂
1
2

)2 (
u11u22 − u2

12

)
= u11u22 − u2

12

= φ
(
z(2)
)
,

as
(
λ̂1

1λ̂
2
2 − λ̂2

1λ̂
1
2

)
= det Λ−t = 1.

Remark 2.1.9. If φ is a differential invariant for the action of G on Jn (Cm,C) and

Λ ∈ G, then Λ ? φ[f ] = φ[Λ ? f ] under the action of G on functions from Cm → C.

Example 2.1.10. Let G = SL2 (C), n = 2, and set x1 = x, x2 = y . Let φ : J2
(
C2,C

)
→

C be the differential invariant φ
(
z(2)
)

= u11u22 − u2
12 as given in Example 2.1.9. Let f ,

g ∈ P3
2 and Λ ∈ SL2 (C) be given by

f = x3 + y3, g = 9x3 + 15x2y + 9xy2 + 2y3, Λ =

 1 −1

−1 2

 .

Then φ[f ] = 36xy and φ[g] = (54 x+ 30 y) (18x+ 12 y) − (30x+ 18 y)2. A straightfor-
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ward calculation along the lines of that in Example 1.2.2 shows

φ[g] (X, Y ) = (54 (x− y) + 30 (−x+ 2y)) (18 (x− y) + 12 (−x+ 2y))

− (30 (x− y) + 18 (−x+ 2y))2

= 36xy

= φ[f ] (x, y) .

Thus, by (2.3), Λ ? φ[f ] = φ[g] = φ[Λ ? f ].

2.2 Group Equivariant Moving Frames

In this section we introduce the notion of a local moving map for the action of G on

J∞ (Cm,C). The notion of a moving frame map has a wider range of applicability and

can be used to address the local equivalence problem for submanifolds of a manifold

M under the action of a Lie group G in far greater generality than presented here (see

[10]). However, we aim to be self-contained and we would like to present proofs for the

algebraically minded reader that are as accessible as possible. In particular, we avoid

(in as much as is possible) any reliance on equivalence of coframes, contact invariant

coframes, contact distributions, etc . . . The proof offered here of Theorem 2.2.13 will

not work in the general smooth setting, although it will carry over to the analytic setting

under some additional hypothesis on transversality.

2.2.1 Definitions and Properties of Moving Frames

Definition 2.2.1 (Local Moving Frame Map). Let z(n) ∈ Jn (Cm,C). A local moving

frame map for the action of G on Jn (Cm,C) about z(n) consists of
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1. an open neighborhood W(n) about z(n) and

2. a smooth map ρ :W(n) ⊂ Jn (Cm,C)→ G that is locally equivariant5:

For all z(n) ∈ W(n), there exists an open neighborhood U ⊂ G about the identity

element such that for all Λ ∈ U , ρ
(
Λ · z(n)

)
= ρ

(
z(n)
)
· Λ−1.

Remark 2.2.1. When the point z(n) ∈ Jn (Cm,C) in Definition 2.2.1 is not important,

then we will say that ρ : W(n) ⊂ Jn (Cm,C) → G is a local moving frame map for the

action of G on Jn (Cm,C).

We recall a proposition that can be found in [10] and [17] that gives necessary and

sufficient conditions for the existence of a local moving frame map.

Proposition 2.2.2. A local moving frame map for the action of G on Jn (Cm,C) exists

about z(n) ∈ Jn (Cm,C) if and only if G acts locally freely at z(n). 6

As a result, a local moving frame for the action of G on Jn (Cm,C) exists about

z(n) ∈ Jn (Cm,C) if and only if z(n) is a regular jet and n is ≥ order of stabilization for

the action of G on J∞ (Cm,C).

Remark 2.2.2. If k > n and ρ : W(n) ⊂ Jn (Cm,C) → G is a local moving frame map

for the action of G on Jn (Cm,C), then ρ can also be used to define a local moving frame

map for the action of G on Jk (Cm,C). Let W(k) = {z(k) ∈ Jk (Cm,C)
∣∣∣πkn (z(k)

)
∈ W} =(

πkn
)−1 (W(n)

)
and define ρ(k) :W(k) ⊂ Jk (Cm,C)→ G by

ρ(k)
(
z(k)
)

= ρ
(
πkn
(
z(k)
))
.

Local equivariance follows immediately from the equivariance of the projection maps.

5We assume that the left action of G on itself is given by right inverse translation.
6Continuity implies that the action will be locally free in a neighborhood of z(n).
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Definition 2.2.3 (Order of a Moving Frame). Let ρ :W(k) ⊂ Jk (Cm,C)→ G be a local

moving frame map for the action of G on Jk (Cm,C). The order of the moving frame

map ρ is the minimum order of the jet space on which it is defined.

Remark 2.2.3. As a result of Remark 2.2.2, a local moving frame map of order n defines

a local moving frame map on all higher order jet spaces. As such, we will denote a local

moving frame map for the action of G on J∞ (Cm,C) by ρ : W(∞) ⊂ J∞ (Cm,C) → G

and the order of the moving frame map will be mentioned when needed.

Definition 2.2.4 (Invariantized Position Map). Let ρ : W(∞) ⊂ J∞ (Cm,C) → G be

an order n local moving frame map for the action of G on J∞ (Cm,C). For k ≥ n, the

invariantized position map of order k associated to the moving frame map ρ is the map

ι(k) :W(k) ⊂ Jk (Cm,C)→ Jk (Cm,C) defined by

ι(k)
(
z(k)
)

= ρ
(
z(k)
)
· z(k). (2.18)

For a moving frame map ρ : W(∞) ⊂ J∞ (Cm,C) → G, the associated invariantized

position map identifies a (local) normal form for the representatives of the G-orbits for

the action of G on Jk (Cm,C). This is reflected in the following proposition.

Proposition 2.2.5. Let ρ : W(∞) ⊂ J∞ (Cm,C)→ G be an order n local moving frame

map for the action of G on J∞ (Cm,C) and let z(k) ∈ W(k) (k ≥ n). Then, for all Λ ∈ G

sufficiently close to the identity,

ι(k)
(
z(k)
)

= ι(k)
(
Λ · z(k)

)
.

Proof. The proof follows immediately from the definitions and, in particular, from the
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local equivariance of the moving frame map ρ. Namely,

ι(k)(Λ · z(k)) = ρ
(
Λ · z(k)

)
·
(
Λ · z(k)

)
= ρ(z(k))Λ−1 ·

(
Λ · z(k)

)
(Local equivariance of ρ)

= ρ(z(k)) · z(k)

= ι(k)(z(k))

2.2.2 Invariantization and Recurrence Formula

We will now briefly outline the process of local invariantization associated with a local

moving frame map ρ :W(∞) ⊂ J∞ (Cm,C)→ G.

Definition 2.2.6 (Invariantization). Let ρ :W(∞) ⊂ J∞ (Cm,C)→ G be a local moving

frame map of order n for the action of G on J∞ (Cm,C) with the associated invariantized

position map ι :W(∞) ⊂ J∞ (Cm,C)→ J∞ (Cm,C). Let φ :W(∞) ⊂ J∞ (Cm,C)→ C be

a smooth differential function of finite order p. The local invariantizion of φ correspond-

ing to the moving frame ρ is defined to be the differential function of order max{n, p}

defined by ι∗ (φ).

Proposition 2.2.7. The local invariantization of a differential function φ as in Defini-

tion 2.2.6 is a local differential invariant.

Proof. Let z(k) ∈ W(k) and assume k ≥ n. Then, for all Λ ∈ G sufficiently close to the
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identify,

ι(k)∗ (φ)
(
Λ · z(k)

)
= φ

(
ι(k)
(
Λ · z(k)

))
= φ

(
ι(k)
(
z(k)
))

( By Proposition 2.2.5)

= ι(k)∗ (φ)
(
z(k)
)
.

Thus, ι(k)∗ (φ) is a local differential invariant.

The process of invariantizing differential functions on J∞ (Cm,C) through the use of

a local moving frame map ρ : W(∞) ⊂ J∞ (Cm,C) → G and its corresponding (local)

invariantized position map offers the following geometric interpretation. Given a func-

tion φ :W(∞) ⊂ J∞ (Cm,C)→ C, the corresponding local invariant ι∗(φ) is obtained by

evaluating φ on the local normal forms (as determined by ρ) of the orbits and spreading

the values along the orbits. Furthermore, if φ : W(∞) ⊂ J∞ (Cm,C) → C is a local

differential invariant, then ι∗(φ) = φ.

A key part of the invariantization process is based on the invarintization of the coor-

dinate functions z(n) = (x, u, uK) on Jn (Cm,C) and the construction of a local frame of

horizontal invariant differential operators.

Definition 2.2.8 (Normalized Invariants). Let ρ : W(∞) ⊂ J∞ (Cm,C) → G be a local

moving frame map for the action of G on J∞ (Cm,C). The local normalized invariants

associated to ρ are the local invariants obtained by invariantizing the local coordinate

functions z(n) = (x, u, uK) .

Notation 2.2.1. The local normalized invariants corresponding to a local moving frame
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map ρ :W(∞) ⊂ J∞ (Cm,C)→ G will be denoted by

I i = ι∗
(
xi
)
, 1 ≤ i ≤ m

I = ι∗ (u) = u,

IK = ι∗ (uK) , 1 ≤ |K|.

Remark 2.2.4. The local normalized invariants associated to a local moving frame map

ρ of order k provide a fundamental set of local differential invariants for the action of G

on Jk (Cm,C) in the sense that all other differential invariants of order k can be expressed

locally as functions of (I i, I, IK).

The next step in the invariantization process is the construction of a local G-invariant,

frame7 of total differential operators. We refer the reader to section 10 of [10] for details.

Proposition 2.2.9 (Invariant Differential Operators). Let Ei = λ̂jiDj, 1 ≤ i, j ≤ m,

denote the prolonged implicit differential operators from (2.16) and let ρ : W(∞) ⊂

J∞ (Cm,C)→ G be a local moving frame of order n. The total differential operators

Di = λ̂ji
(
ρ
(
z(n)
))
Dj, 1 ≤ i, j ≤ m, (2.19)

where λ̂ji
(
ρ
(
z(n)
))

denotes the λ̂ji coordinate function of the moving frame map ρ, form

a local G-invariant frame of total differential operators.

Remark 2.2.5. Informally, given a moving frame map ρ : W(∞) ⊂ J∞ (Cm,C) → G,

obtaining the local invariant differential operators amounts to substitution of the compo-

nent functions from the moving frame map ρ into the group parameters appearing in the

prolonged implicit differential operators (2.16).

7Whereby ‘frame’ in this context we mean m-linearly independent total differential operators.
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The invariant differential operators Di associated to a local moving frame map, ρ,

map local differential invariants to local differential invariants. Namely, if φ : W(k) ⊂

Jk (Cm,C)→ C is a local differential invariant of order k, then applying Di to φ results

in a local differential invariant of order max{n, k + 1}. In particular, we can apply

the invariant differential operators Di, 1 ≤ i ≤ m, to the local normalized differential

invariants IK of order |K|. The fundamental observation due to Fels and Over ([10])

that relates DiIK with the local normalized invariant IK,i and lies at the heart of the

applicability of the equivariant moving frame method to equivalence problems is given

below.

Lemma 2.2.10 (Recurrence Formula). Let ρ :W(∞) ⊂ J∞ (Cm,C)→ G be local moving

frame map of order n for the action of G on J∞ (Cm,C) . For any normalized local

differential invariant Ij or IK,

DiIj = δji +M j
i , 1 ≤ i, j ≤ m,

DiIK = IK,i +MK,i,

where δji denotes the usual Kronecker-delta, and M j
i and MK,i are local differential in-

variants of order n+ 1 and max{|K|, n+ 1}, respectively.

Remark 2.2.6. While the normaliziation process (i.e. invariantizing the local coordinate

functions) and invariant differentiation on J∞ (Cm,C) do not commute (i.e. DiIK 6=

IK,i), the recurrence formula puts a bound on the order of the differential invariant MK,i

which serves as the correction term accounting for the difference between DiIK and IK,i.

The importance of the recurrence formula is that when IK is a normalized local differential

invariant of order |K| ≥ n + 1, the correction term MK,i = DiIK − IK,i is a differential
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invariant of order at most |K| as opposed to being a differential invariant of order |K|+1

as one would naively expect.

2.2.3 Signatures Parametrized by Local Normalized Invariants

In this subsection, given a local moving frame map ρ : W(∞) ⊂ J∞ (Cm,C) → G for

the action of G on Jn (C∞,C), then for f ∈ Pm we introduce the signature map of

f associated to ρ and the corresponding signature set of f . We will then show how

the signature sets can be used to address the issue of determining when f, g ∈ Pm are

G-equivalent.

Definition 2.2.11 (Signature Map - Moving Frame). Let ρ : W(∞) ⊂ J∞ (Cm,C) → G

be a local moving frame map of order n. For k ≥ n and f ∈ Pm, let

U =
{

x ∈ Cm
∣∣∣ jk f (x) ∈ W(k)

}
. The kth order signature map of f associated to the local

moving frame ρ is the map

Skρ [ f ] : U → Jk (Cm,C) , (2.20)

defined by

Skρ [ f ] (x) =
(
I i[f ] (x) , I[f ] (x) , IK [f ] (x)

)
, x ∈ Cm, 1 ≤ i ≤ m, 1 ≤ |K| ≤ k.

(2.21)

Remark 2.2.7. Note that Skρ [ f ] is nothing other than the map obtained by restricting

the order k invariantized position map assoicated with the moving frame map ρ to the

k-jet of f.

Definition 2.2.12 (Signature Set - Moving Frame). Let ρ : W(∞) ⊂ J∞ (Cm,C) → G
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be a local moving frame map of order n and let k ≥ n. The kth order signature set of f

associated to the local moving frame map ρ is the image of Skρ [ f ]. The kth order signature

set of f associated to the local moving frame map ρ will be denoted by ImSkρ [ f ].

Remark 2.2.8. We have the geometric interpretation that Skρ [ f ](x) is the projection of

jk f(x) along the group orbit to the local normal form determined by the moving frame

map ρ.

Theorem 2.2.13. Let ρ : W(∞) ⊂ J∞ (Cm,C) → G be a local moving frame map of

order n for the action of G on J∞ (Cm,C). Let f and g ∈ Pm. If there exist open sets

U, V ⊂ Cm and an integer t ≥ n such that

1. The rank of Stρ[ f ]
∣∣∣
U

is constant on U ,

2. rank Stρ[ f ]
∣∣∣
U

= rank St+1
ρ [ f ]

∣∣∣
U
, and

3. St+1
ρ [ f ] (U) = St+1

ρ [ g ] (V ) 6= ∅

then f and g are equivalent under the action of G.

The proof of the theorem follows from a series of lemmas.

Lemma 2.2.14. Let ρ :W(∞) ⊂ J∞ (Cm,C)→ G be a local moving frame map of order

n and let f ∈ Pm. If there exists an open set U ⊂ Cm and an integer t ≥ n, such that

1. The rank of Stρ[ f ] is constant on U , and

2. rank Stρ[ f ]
∣∣∣
U

= rank St+1
ρ [ f ]

∣∣∣
U

.

Then,
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1. ∀ k ≥ t, rank Skρ [ f ]
∣∣∣
U

= rank Stρ[ f ]
∣∣∣
U

, and

2. ∀x ∈ U , ∃ an open neighborhood Ux ⊂ U about x and r
(

= rank Stρ[ f ]
∣∣∣
U

)
local

normalized differential invariants IK1 , IK2 , . . . , IKr of order ≤ t such that all other

normalized invariants IK can be expressed as functions of IK1 , IK2 , . . . , IKr when

evaluated on the jet of f .

Remark 2.2.9. Note that the local normalized differential invariants IK1 , . . . , IKr ap-

pearing in part 2 of the conclusion of the above lemma may include local normalized

differential invariants Ij. We use IK1 , . . . IKr for notational simplicity.

Proof. Let r = rank Stρ[ f ]
∣∣∣
U

= rank St+1
ρ [ f ]

∣∣∣
U

and let x ∈ U ⊂ Cm be arbitrary. We

will show that the rank of St+2
ρ [ f ]

∣∣∣
U

is also r. Since the rank of Stρ[ f ]
∣∣∣
U

is constant on

U and it is equal to the rank of St+1
ρ [ f ]

∣∣∣
U

, then in a neighborhood of x, we can choose

r normalized local differential invariants IK1 , . . . , IKr of order ≤ t such that any other

differential invariant of order ≤ t+ 1 can be expressed as a function of IK1 , . . . , IKr when

evaluated on the jet of f . In particular, for each normalized local invariant

I i, 1 ≤ i ≤ m

IK , 0 ≤ |K| ≤ t+ 1,

there exists a corresponding smooth function of r variables,

F i
(
y1, . . . , yr

)
, 1 ≤ i ≤ m

FK
(
y1, . . . , yr

)
, 0 ≤ |K| ≤ t+ 1,
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such that in a neighborhood x we have

I i[f ] = F i (IK1 , . . . , IKr) [f ], 1 ≤ i ≤ m, and (2.22)

IK [f ] = FK (IK1 , . . . , IKr) [f ], 0 ≤ |K| ≤ t+ 1. (2.23)

In addition, by the recurrence formula (Lemma 2.2.10) for the invariant differential op-

erators Di, 1 ≤ i ≤ m, we have

DiIj = δji +M j
i 1 ≤ j ≤ m, (2.24)

DiIK = IK,i +MK,i 0 ≤ |K|, (2.25)

where Ij, IK represent the local normalized differential invariants and the correction terms

(M j
i and MK,i) are local differential invariants of order ≤ max {n+ 1, |K|} .

Taking Ij or IK to be any local normalized invariant of order ≤ t and noting that

the right hand sides of (2.24) and (2.25) will be a differential invariant of order at most

t+ 1, then for 1 ≤ i ≤ m, we have (in a neighborhood of x)

DiIj[f ] = Hj
i (IK1 , . . . , IKr) [f ] 1 ≤ j ≤ m, (2.26)

DiIK [f ] = HK,i (IK1 , . . . , IKr) [f ], (0 ≤ |K| ≤ t) (2.27)

where Hj
i

(
y1, . . . , yr

)
and HK,i

(
y1, . . . yr

)
are smooth functions of r variables.

If IK is now taken to be a normalized differential invariant of order t+ 1, then we can
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express the local normalized differential invariants of order t+ 2 as

IK,i = DiIK −MK,i, (|K| = t+ 1) . (2.28)

In a neighborhood of x, for |K| = t+ 1, we thus have,

IK,i[f ] = (DiIK) [f ]−MK,i[f ] ( By (2.28))

(2.29)

= (DiFK (IK1 , . . . , IKr)) [f ]−MK,i[f ] ( By (2.23))

(2.30)

=
r∑
j=1

(
∂FK
∂yj

(IK1 , . . . , IKr)DiIKj

)
[f ]−MK,i[f ] (Chain Rule)

(2.31)

=
r∑
j=1

(
∂FK
∂yj

(IK1 , . . . , IKr)HKj ,i (IK1 , . . . , IKr)

)
[f ]−MK,i[f ] ( By (2.27)) .

(2.32)

Since MK,i is a differential invariant of order at most t+ 1, then IK,i[f ] can be expressed

as function of IK1 [f ], . . . , IKr [f ] in a neighborhood of x. Thus, in a neighborhood of

x all differential invariants of order t + 2 can be expressed as functions of IK1 , . . . , IKr

when evaluated on the jet of f . Since x ∈ U ⊂ Cm was arbitrary, the rank of St+2
ρ [ f ] is

constant of r on U . The result follows.

Lemma 2.2.15. Let f, g ∈ Pm satisfying the conditions of Theorem 2.2.13. Then ∀ k ≥ n

(where n is the order of the moving frame map ρ), there exists x0 ∈ U and x1 ∈ V such

that Skρ [ f ] (x0) = Skρ [ g ] (x1) .
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Proof. If k ≤ t + 1, then note that St+1
ρ [ f ](U) = St+1

ρ [ g ](V ) implies Skρ [ f ](U) =

Skρ [ g ](V ), and thus, there exists x0 ∈ U and x1 ∈ V such that Skρ [ f ](x0) = Skρ [ g ](x1).

We now assume that k > t + 1. The assumption that St+1
ρ [ f ](U) = St+1

ρ [ g ](V ) 6= ∅

implies that ∃x0 ∈ U and ∃x1 ∈ V such that Stρ[ f ](x0) = Stρ[ g ](x1). By hypothesis, both

f and g satisfy the conditions of Lemma 2.2.14. Thus, there exists an open neighborhood

Ux0 ⊂ U about x0 and r normalized differential invariants IfK1
, . . . , IfKr

of order ≤ t such

that all other normalized differential invariants can be written as functions of IfK1
, . . . , IfKr

when restricted to the jet of f . In particular, for the normalized differential invariants

IK of order t+ 1 we have

IK [f ] = Hf
K(IfK1

, . . . IfKr
)[f ], |K| = t+ 1, (2.33)

where the Hf
K(y1, . . . , yr) are smooth functions of r variables. Likewise, for g, there

exists an open neighborhood Vx1 ⊂ V about x1 and r normalized differential invariants

IgK1
, . . . , IgKr

of order ≤ t such that all other normalized differential invariants can be writ-

ten as functions of IgK1
, . . . , IgKr

when restricted to the jet of g. For the local normalized

differential invariants IK of order t+ 1 we have

IK [g] = Hg
K(IgK1

, . . . IgKr
)[g] |K| = t+ 1, (2.34)

where each Hg
K(y1, . . . , yr) is a smooth function of r variables. The assumption that

St+1
ρ [ f ](U) = St+1

ρ [ g ](V ) implies that we can choose the same normalized differential

invariants IK1 , . . . IKr that we will express all other normalized differential invariants in
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terms of. That is,

IfKi
= IgKi

1 ≤ i ≤ r. (2.35)

On account of the assumption that St+1
ρ [ f ](U) = St+1

ρ [ g ](V ), then we can further assume

that for the normalized differential invariants IK of order t+1, the functions Hf
K and Hg

K

in (2.33) and (2.34) are also the same. The result now follows from the calculation (2.29)

- (2.32) appearing in the proof of Lemma 2.2.14. All higher order normalized differential

invariants IK , |K| ≥ t+ 1, will (locally) have the same functional relationships in terms

of IK1 , . . . , IKr when restricted to the jets of f and g respectively. Since

IKi
[f ](x0) = IKi

[g](x1), 1 ≤ i ≤ r, (2.36)

we conclude that for any normalized differential invariant IK , we have

IK [f ](x0) = IK [g](x1). (2.37)

Thus, for all k ≥ n, there exists x0 ∈ U and x1 ∈ V such that Skρ [ f ](x0) = Skρ [ g ](x1).

Lemma 2.2.16. Let ρ :W(∞) ⊂ J∞ (Cm,C)→ G be a local moving frame map of order

n and let f, g ∈ Pdm. If the max{d, n}th order moving frame signature sets of f and g

have a point in common then f and g are G-equivalent.

Proof. For simplicity, we will assume d ≥ n. If d < n, the same argument holds by

considering the nth order signatures and utilizing the properties of the projection maps

πnd : Jn (Cm,C)→ Jd (Cm,C) .

By the hypothesis, there exists x0,x1 ∈ Cm such that Sdρ [ f ] (x0) = Sdρ [ g ] (x1) . By
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definition of the signature map corresponding to the moving frame map ρ, we have

ρ (jd f (x0)) · jd f (x0) = ρ (jd g (x1)) · jd g (x1) , (2.38)

Set Λ = ρ (jd g (x1))−1 ρ (jd f (x1) ) ∈ G. Then

Λ · jd f (x0) = jd g (x1) ,

and by condition (2.6) we have

Λ · jd f (x0) = jd (Λ ? f) (A · x0) = jd g (x1)

Thus, the d jets of Λ ? f and g are identical at x1 ∈ Cm. Since a polynomial of degree d

is completely determined by its d-jet at a point, this implies Λ ? f = g.

The proof of Theorem 2.2.13 follows immediately. If f and g ∈ Pdm satisfy the con-

ditions of Theorem 2.2.13 and d ≥ n, then their signatures of order d have a point in

common. If d < n, then we consider ImSnρ [ f ] and ImSnρ [ g ] instead.

2.3 Constructing Moving Frame Maps

We will now briefly discuss how one obtains a moving frame map in practice. For simplic-

ity, we will work on Jn (Cm,C), where n is ≥ n0, the order of stabilization for the action

of G on J∞ (Cm,C). In accordance with Proposition 2.2.2, this ensures that there exists a

local moving frame map in the neighborhood of any regular jet z(n). As Proposition 2.2.5

shows, any local moving frame map ρ :W(n) ⊂ Jn (Cm,C)→ G defined in a neighborhood
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of a regular jet z(n) determines a local normal form for the orbits. To construct a local

moving frame map in a neighborhood of a regular jet z(n), one begins by first specifying

the local normal forms for the orbits and then one defines ρ : W(n) ⊂ Jn (Cm,C) → G

by the condition that ρ(y(n)) ∈ G is the/a group element which will bring y(n) ∈ W(n) to

its specified local normal form.

Before illustrating how this construction is formally carried out, we first recall the

definition of the infinitesimal generators for the action of a finite dimensional Lie group

G on a smooth manifold M . See [22] for additional details. For simplicity of notation,

for the definition we will use α : G ×M →M to denote the action of G on M .

Notation 2.3.1. For a manifold M and a point m ∈ M , we will denote the tangent

space to M at m by TmM .

Notation 2.3.2. For a vector field V on a manifold M , we will use either V (m) or V |m

to denote the value of V at m.

Definition 2.3.1. Let G be an r-dimensional Lie group acting smoothly on a smooth

manifold M . Let V1, . . . , Vr form a basis for g = TeG, where e denotes the identity

element of G, and let exp(tVi) denote the one-parameter subgroup generated by Vi. The

infinitesimal generators for the action of G on M are the vector fields V̂i on M defined

by

V̂i(m) =
d

dt
(α (exp(tVi),m))

∣∣∣
t=0
, ∀m ∈M, 1 ≤ i ≤ r.

Remark 2.3.1. Note that for all m ∈M , the tangent space to the G-orbit at m is spanned

by V̂i(m), 1 ≤ i ≤ r = dim(G). Specifically, if m ∈ M is fixed, then α (g,m) : G → M
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and the pushforward α∗ (e,m) : TeG → TmM maps the tangent space at e ∈ G to the

tangent space at m ∈M . The image of any basis for TeG will thus span the tangent space

to the G-orbit passing through m.

Notation 2.3.3. When referencing the infinitesimal generators for a given G-action, we

will omit the ‘hat’ from the notation.

We will now introduce the notion of a cross-section as it is applied to the construction

of local moving frame maps. A cross-section will be used to specify the local normal forms

for the G-orbits of the action of G on Jn (Cm,C). We use the definition of a cross-section

from [17] (see pp. 8, Definition 1.5) to the action of G on Jn (Cm,C).

Definition 2.3.2 (Cross-section). An embedded submanifold C(n) ⊂ Jn (Cm,C) is a local

cross-section to the orbits if there is an open set U ⊂ Jn (Cm,C) such that

1. ∀z(n) ∈ U , C(n) intersects O0
z(n) ∩ U at a unique point, where O0 is the connected

component of Oz(n) ∩ U containing z(n),

2. ∀z(n) ∈ C(n) ∩ U , O0
z(n) and C(n) are transversal and of complementary dimensions.

Remark 2.3.2. Note that the second condition in the above definition amounts to re-

quiring that Tz(n)Jn (Cm,C) = Tz(n)C(n) ⊕ Tz(n)Oz(n) .

When the cross-section C(n) ⊂ Jn (Cm,C) is defined locally as the common zero set of

r = dim(G) functions F i : Jn (Cm,C)→ C, 1 ≤ i ≤ r, then the transversality conditions

can be checked as follows. Let F : Jn (Cm,C)→ Cr be the function defined by

F (z(n)) =
(
F 1(z(n)), . . . , F r(z(n))

)
. (2.39)
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Let Vi, 1 ≤ i ≤ r, denote the infinitesimal generators for the action of G on Cm and

denote the corresponding infinitesimal generators for the action of G on Jn (Cm,C) 8 by

pr(n)(Vi), 1 ≤ i ≤ r. The tangent space to the cross-section C(n) at a point z(n) ∈ C(n) is

the kernel of the pushforward F∗ : Tz(n)Jn (Cm,C) → Cr. Since the infinitesimal gener-

ators pr(n)(Vi)|z(n) span Tz(n)Oz(n) , then C(n) will fail to be transversal to Oz(n) at z(n) if

and only if the kernel of F∗ contains a nontrivial element of the span of the infinitesimal

generators pr(n)(Vi)|z(n) , 1 ≤ i ≤ r. This is equivalent to the condition that the r × r

matrix L(i, j) =
(
pr(n)(Vi)(F

j)
)

have nonzero determinant at the point z(n).

Now, assuming that C(n) ⊂ Jn (Cm,C) is a local cross-section to the G orbits defined

locally by the zero-set of a submersion F : Jn (Cm,C)→ Cr, then one uses C(n) to define

a local normal form for the orbits. The local moving frame map associated to the local

normal forms determined by C(n) is defined by the condition that ρ(z(n)) ∈ G satisfy

ρ(z(n)) · z(n) ∈ C(n). To find ρ, one must solve the the normalization equations

F i
(
Z(n)

)
= F i

(
(α
(
λij, z

(n)
))

= 0, 1 ≤ i ≤ r, (2.40)

for the group parameters λij in terms of the the jet variables z(n). While the Implicit

Function Theorem guarantees that one is able to solve for the group parameters λij as a

function of the jet variables z(n), the resulting equations are often nonlinear and difficult

to deal with directly. Furthermore, matters are complicated by the fact that an orbit

may intersect the given cross-section more than once, which means that one will often

be forced to deal with multi-valued functions, branch-cuts, and other like matters.

8Note that the infinitesimal generators for the action of G on Jn (Cm,C) can be obtained directly
from the action of G on Jn (Cm,C) or by prolonging the infinitesimal generators Vi for the action of G
on Cm to the appropriate order. See ([22], Chapter 4) for details.
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2.4 Examples

We will first present a full and thorough investigation of the actions of SL2 (C) on

J∞
(
C2,C

)
and P2. The simplicity of this case results from the fact that the cross-

section introduced below is a global cross-section on a dense open subset of J1
(
C2,C

)
.

Similar results are available in [2], [18], [23] , and [3]. In [2], [18], and [23] the equivalence

of homogenous polynomials in two variables is considered under the action of GL2(C).

Their results are obtained by working with the dehomogenized version of homogeneous

polynomials in two variables and viewing the graph as a curve in the complex projec-

tive plane subject to the appropriate GL2(C) transformations. In [2], [18], and [23], the

authors also used moving frame methods to make a number of interesting observations

pertaining to the symmetery group of a binary form under the action of GL2 (C). The

results in [3] are obtained in a fashion similar to the results described below. However,

the authors bypass the notion of a moving frame and are able to proceed directly to the

invariant differential operators.

The analysis will lead us naturally to the notion of a differential invariant signature

map and a differential invariant signature correspondence. We pursue these notions for

the action of SL2 (C) on HP2, the set of homogeneous polynomials in two variables.

We show that one can determine the SL2 (C)-equiavalence of homogeneous polynomials

in m = 2 variables using a differential invariant signature correspondence determined

by three polynomial differential invariants. Using this as motivation, we then consider

the case of a differential invariant signature correspondence with no knowledge of results

obtained via moving frame analysis and we apply this to the action of GL3(C) on HP3
3,

the set of homogeneous polynomials of degree three in three variables. This is followed
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by illustrating that while one can construct (and solve for!) an appropriate moving frame

map for the action of GL3(C) on J3 (C3,C) and the action of GL3(C) on P3, there are

inherent difficulties that one faces in using such an approach.

2.4.1 Moving Frames Applied to P2

As before, when considering the action of SL2 (C) on J∞
(
C2,C

)
and P2, we will set

x1 = x and x2 = y throughout the section. The action α : SL2 (C) × J2
(
C2,C

)
→

J2
(
C2,C

)
of SL2 (C) on J2

(
C2,C

)
is recorded below in coordinates for reference. Letting

Λ = (λij) ∈ SL2 (C) and z(2) = (x, y, u, u1, u2, u11, u12, u22), the action is given by

X = λ1
1x+ λ1

2y (2.41)

Y = λ2
1x+ λ2

2y (2.42)

U = u (2.43)

U1 = λ̂i1ui = λ̂1
1u1 + λ̂2

1u2 (2.44)

U2 = λ̂i2ui = λ̂1
2u1 + λ̂2

2u2 (2.45)

U11 = λ̂i1λ̂
j
1uij = (λ̂1

1)2u11 + 2λ̂1
1λ̂

2
1u12 + (λ̂2

1)2u22 (2.46)

U12 = λ̂i1λ̂
j
2uij = λ̂1

1λ̂
1
2u11 +

(
λ̂1

1λ̂
2
2 + λ̂2

1λ̂
1
2

)
u12 + λ̂2

1λ̂
2
2u22 (2.47)

U22 = λ̂i1λ̂
j
1uij = (λ̂1

1)2u11 + 2λ̂1
1λ̂

2
1u12 + (λ̂2

1)2u22, (2.48)

where 1 ≤ i, j ≤ 2.

For SL2 (C) we also note that the following conditions hold on the group parameters

λij and λ̂ij:

λ1
1 = λ̂2

2, −λ1
2 = λ̂1

2, −λ2
1 = λ̂2

1, λ1
1 = λ̂2

2 (2.49)
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For Λ ∈ SL2 (C), the prolonged implicit differential operators (2.16) corresponding

to the action of SL2 (C) on J∞
(
C2,C

)
are

E1 = λ2
2D1 − λ2

1D2, (2.50)

and

E2 = −λ1
2D1 + λ1

1D2, (2.51)

where

D1 =
∂

∂x
+ u1

∂

∂u
+ u11

∂

∂u1

+ u12
∂

∂u2

+ . . . ,

D2 =
∂

∂y
+ u2

∂

∂u
+ u12

∂

∂u1

+ u22
∂

∂u2

+ . . .

are the total derivative operators on J∞
(
C2,C

)
. Note that prolonged transformation

formulas for SL2 (C) on J∞
(
C2,C

)
can be obtained by successively applying (2.50) and

(2.51) to u. Specifically, for any partial derivative multi-index K we have

EKu = UK . (2.52)

In addition, the infinitesimal generators for the action of SL2 (C) on C2 are

V1 = x
∂

∂y
, V2 = y

∂

∂x
, V3 = x

∂

∂x
− y ∂

∂y
, (2.53)

and the infinitesimal generators for the action of SL2 (C) on J1
(
C2,C

)
are
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pr(1)(V1) = x
∂

∂y
− u2

∂

∂u1

,

pr(1)(V2) = y
∂

∂x
− u1

∂

∂u2

,

pr(1)(V3) = x
∂

∂x
− y ∂

∂y
− u1

∂

∂u1

+ u2
∂

∂u2

.

The prolonged infinitesimal generators are generically linearly independent on J1
(
C2,C

)
,

meaning that the action of SL2 (C) on J1
(
C2,C

)
is locally free. The stabilization order

for the action of SL2 (C) on J∞
(
C2,C

)
is thus n0 = 1.

Proposition 2.4.1. The submanifold C(1) ⊂ J1
(
C2,C

)
, where

C(1) =
{

z(1) ∈ J1
(
C2,C

) ∣∣∣x = 0, y = 1, u1 = 0, u2 6= 0
}
,

is cross-section to the SL2 (C) orbits on J1
(
C2,C

)
. Furthermore, C(1) intersects each

orbit at most once.

Proof. C(1) is a subset of the zero set of the function F : J1
(
C2,C

)
→ C3 defined by

F (z(1)) = (x, y−1, u1). Denote the component functions of F by F 1 = x, F 2 = y−1, and

F 3 = u1 and let L(i, j) be the 3 × 3 matrix L(i, j) =
(
pr(1)(Vi)(F

j)
)
. The determinant

of L(i, j) at a point z(1) ∈ C(1) is

det(L(i, j))(z(1)) = u2(z(1)),

which is nonzero on C(1). Thus, C(1) intersects the orbits transversally.
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To show that C(1) intersects each orbit at most once is a straightforward calculation.

Let z(1) ∈ C(1) be a point on C(1) and let Λ = (λij) ∈ SL2 (C) be arbitrary. Any another

point on the orbit of z(1) that also belongs to C(1) must satisfy the equations determined

by Λ · z(1) ∈ C1 for some Λ ∈ SL2 (C) . Letting Λ = (λij) ∈ SL2 (C) be arbitrary, then

combining (2.41), (2.44), (2.49) with the fact that z(1) ∈ C(1), the requirement that

Λ · z(1) ∈ C(1) leads to the following system of equations:

X = λ1
2 = 0

Y = λ2
2 = 1

U1 = −λ2
1u1 = 0

det(Λ) = λ1
1λ

2
2 − λ1

2λ
2
1 = 1.

We immediately conclude that Λ = (λij) = Id and thus, the orbit through z(1) intersects

the coordinate cross-section exactly once.

The moving frame map ρ : J1
(
C2,C

)
→ SL2 (C) corresponding to the cross-section

C(1) is then obtained as follows. For z(1) ∈ J1
(
C2,C

)
, ρ(z(1)) ∈ SL2 (C) is the unique

group element that brings z(1) to the cross-section C(1). Letting z(1) ∈ J1
(
C2,C

)
be fixed

but arbitrary and letting ρ(z(1)) = (λij) leads to the normalization equations determined

by the condition ρ(z(1)) · z(1) ∈ C(1). The normalization equations corresponding to the

cross-section C(1) are thus
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X = λ1
1x+ λ1

2y = 0 (2.54)

Y = λ2
1x+ λ2

2y = 1 (2.55)

U1 = λ2
2u1 − λ2

1u2 = 0 (2.56)

det(λij) = λ1
1λ

2
2 − λ1

2λ
2
1 = 1 (2.57)

Solving the normalization equations (2.54) - (2.57) for the group parameters λij yields

the moving frame map ρ : J1
(
C2,C

)
→ SL2 (C).

Proposition 2.4.2. The moving frame map ρ : W(1) ⊂ J1
(
C2,C

)
→ SL2 (C) is given

by

ρ(z(1)) =

 y −x
u1

xu1+y u2

u2
xu1+y u2

 , (2.58)

where the domain of definition is W(1) =
{

z(1) ∈ J1 (C2,C)
∣∣∣xu1 + yu2 6= 0

}
.

Remark 2.4.1. If f 6= 0 ∈ HPd2, then on account of f being a solution to Euler’s Partial

Differential Equation

xu1 + yu2 = du,

the domain of S1
ρ [ f ] will be nonempty. In particular, S1

ρ [ f ] is defined on all of C2/

Var (f), where Var (F ) denotes the variety of f . Further, the only f ∈ Pm for which the

domain of the moving frame signature map S1
ρ [ f ] is empty are solutions of the SL2 (C)

invariant partial differential equation xu1 + yu2 = 0.

Associated to the moving frame map ρ : Jn
(
C2,C

)
→ SL2 (C) and the the cross-

section C(n), the corresponding invariantization of functions (Definition 2.2.6) is given
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by

ι∗ (φ) (z(n)) = φ
(
ρ
(
z(n)
)
· z(n)

)
, (2.59)

where φ : Jn
(
C2,C

)
→ C. The normalized invariants (Definition 2.2.8) on Jn

(
C2,C

)
provides a fundamental set of invariants for the action of SL2 (C) on Jn

(
C2,C

)
. The nor-

malized invariants on J2
(
C2,C

)
corresponding to the moving frame map ρ are recorded

below.

I1 = ι∗(x)(z(n)) = x(ρ(z(n)) · z(n)) = 0 (2.60)

I2 = ι∗(y)(z(n)) = y(ρ(z(n)) · z(n)) = 1 (2.61)

I = ι∗(u)(z(n)) = u(ρ(z(n)) · z(n)) = u (2.62)

I1 = ι∗(u1)(z(n)) = u1(ρ(z(n)) · z(n)) = 0 (2.63)

I2 = ι∗(u2)(z(n)) = u2(ρ(z(n)) · z(n)) = xu1 + yu2 (2.64)

I11 = ι∗ (u11) (zn) = u11

(
ρ
(
z(n)
)
· z(n)

)
=

(u2)2 u11 − 2u1u2 + u22 (u1)2

(xu1 + yu2)2 (2.65)

I12 = ι∗ (u12) (zn) = u12

(
ρ
(
z(n)
)
· z(n)

)
=
xu2u1,1 + (u2y − u1x)u1,2 − u1yu2,2

xu1 + yu2

(2.66)

I22 = ι∗ (u22) (zn) = u22

(
ρ
(
z(n)
)
· z(n)

)
= x2u11 + 2xyu12 + y2u22 (2.67)

The invariant differential operators (Lemma 2.2.9) on J∞
(
C2,C

)
corresponding to

the moving frame map ρ are obtained by substituting the coordinate formula for the

moving frame map (2.58) for the corresponding group parameters in (2.50) and (2.51).

The invariant differential operators are thus

D1 =
u2

xu1 + yu2

D1 −
u1

xu1 + yu2

D2, (2.68)

42



and

D2 = xD1 + yD2. (2.69)

The results outlined in the general case all carry over directly. Additionally, due to

the fact that C(1) is a global cross-section on W(1), there are a number of results that

can be slightly strengthened. First, all results become “if and only if,” and second, the

invariantization of a differential function results in a global differential invariant. The

second fact will lead us to introducing the notion of a differential invariant signature map

and a differential invariant signature set which is independent of both the notion of a

moving frame and a cross-section.

Furthermore, due to the fact that the dimension of a moving frame signature set

of a polynomial in m = 2 variables is at most two, then we are able to conclude that

the SL2 (C) equivalence of polynomials in m = 2 variables is completely decided by the

moving frame signature sets of order three. Specifically, we have, the following.

Theorem 2.4.3. Let f, g ∈ P2. Then f and g are SL2 (C) equivalent if and only if

ImS3
ρ [ f ] = ImS3

ρ [ g ].

2.4.2 Differential Invariant Signature Correspondence

As previously mentioned, the normalized invariants on J3
(
C2,C

)
are global differential

invariants for the action of SL2 (C) on J3
(
C2,C

)
. The list of normalized differential

invariants on J3
(
C2,C

)
is

(
I1, I2, u, I1, I2, I11, I12, I22, I111, I112, I122, I222

)
, (2.70)
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where (I1, I2, u, I1, I2, I11, I12, I22) have been recorded above in (2.60) - (2.67). We will

show that if we fix the degree d and restrict our attention to f, g ∈ HPd2, then the

above result (Theorem 2.4.3) can be sharpened to show that that the list of differential

invariants Ψ = (u, I11, I111), can be used to determine necessary and sufficient conditions

for f and g to be SL2 (C) equivalent.

We will record I111 for the sake of completeness.

I111 =
(u2)3u111 − 3u1(u2)2u112 + 3(u1)2u2u122 − (u1)3u222

(xu1 + yu2)3

The result will follow immediately from Theorem 2.4.3 and the properties of homogenous

functions. In particular, we will rely on the fact that a homogenous function in two

variables of degree d satisfies the partial differential equation xu1 + yu2 = d u.

These notions will prove useful in the analysis of the action of GL3(C) on HP3
3 in

2.4.3, and as such, we will state two definitions and prove a proposition in general before

continuing our analysis of the action of SL2 (C) on HPd2.

Definition 2.4.4 (Differential Invariant Signature Map and Set). Let G be an algebraic

subgroup of GLm(C) and let Φ = (φ1, φ2, . . . , φr) be a list of global differential invariants

for the prolonged action of G on Jn (Cm,C) and let f ∈ Pm The Φ- differential invariant

signature map of f is the map SΦ[ f ] : Cm → Cr defined by

SΦ[ f ](x) = (φ1[f ](x), . . . , φr[f ](x)) . (2.71)

The Φ-differential invariant signature set of f is the image of S(Φ)[ f ] and will be denoted

by ImSΦ[ f ].

As an immediate consequence of the jet space transformation laws (condtion (2.6)),
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we have the following proposition.

Proposition 2.4.5. Let Φ = (φ1, φ2, . . . , φr) be a list of global differential invariants for

the prolonged action of G on Jn (Cm,C) and let f, g ∈ Pm. If f and g are G equivalent,

then ImSΦ[ f ] = ImSΦ[ g ].

Proof. Let Λ ∈ G such that Λ ? f = g and let x ∈ Cm be such that Λ · x belongs to the

domain of definition of SΦ[ g ]. Then,

SΦ[ g ](A · x) = SΦ[ (Λ ? f) ](Λ · x)

= (φ1[(Λ ? f)](Λ · x), . . . , φr[(Λ ? f)] (Λ · x))

= (φ1[f ](x), . . . , φr[f ](x)) (Invariance of φi)

= SΦ[ f ](x)

Definition 2.4.6 (Differential Invariant Signature Correspondence). A list of differential

invariants for the action of G on Jn (Cm,C) determines a complete differential invariant

signature correspondence for the action of G on Pm if ∀f, g ∈ Pm

f ∼=G g ⇐⇒ ImSΦ[ f ] = ImSΦ[ g ]. (2.72)

Example 2.4.7. Let Φ be the list of differential invariants in (2.70). Then, Φ determines

a SL2 (C) differential invariant signature correspondence for the action of SL2 (C) on P2.

Returning to our regularly scheduled programming and our discussion of the action

of SL2 (C) on HPd2, we have the following.
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Proposition 2.4.8. Let f, g ∈ HPd2,and let Ψ be the list of differential invariants Ψ =

(u, I11, I111). Then f and g are equivalent if and only if ImSΨ[ f ] = ImSΨ[ g ].

Proof. (=⇒) By Proposition 2.4.5, if f and g are equivalent then ImSΨ[ f ] = ImSΨ[ g ].

(⇐=) Let Φ be the list of differential invariants given in (2.70). Note that as a result of

Theorem 2.4.3, if ImSΦ[ f ] = ImSΦ[ g ], then f and g are equivalent. We will show that

if ImSΨ[ f ] = ImSΨ[ g ], then ImSΦ[ f ] = ImSΦ[ g ]. This amounts to showing that all

of the differential invariants in Φ can be expressed as (the same) functions of (u, I11, I111)

when restricted to j3 f and j3 g. Let x ∈ C2/Var (f) . Then, by definition,

I11[f ](x) = u11 ◦
(
ρ(3) (j3 f(x)) · j3 f(x)

)
,

and

I111[f ](x) = u111 ◦
(
ρ(3) (j3 f(x)) · j3 f(x)

)
. (2.73)

Let A = ρ(3) (j3 f(x)) ∈ SL2 (C) and set Λ · f = f̄ . Then

ρ(3) (j3 f(x)) · j3 f(x) = j3 f̄(0, 1).

By homogeneity of f (and thus homogeneity of f̄), all derivatives of f̄ at x0 = (0, 1)

involving partial derivatives of order less than or equal to 3 that involve partial differ-

entiation with respect to y can be completely solved for in terms of f̄(0, 1), f̄1(0, 1),
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f̄11(0, 1), and f̄111(0, 1). The general formula (up to partials of order three) are given by

f̄2 =
d f̄ − xf̄1

y

f̄12 =
(d− 1) ¯̄f1 − xf̄11

y

f̄22 =
d(d− 1)f̄ − 2(d− 1)xf̄1 + x2f̄11

y2

f̄112 =
(d− 2)f̄11 − xf̄111

y

f̄122 =
(d− 1)(d− 2)f̄1 − 2(d− 2)xf̄11 + x2f̄111

y2

f̄222 =
d(d− 1)(d− 2)f̄ − 3(d− 1)(d− 2)xf̄1 + 3(d− 2)x2f̄11 − x3f̄111

y3

This gives

I2[f ](x0) = df̄(0, 1) = d f(x0)

I12[f ](x0) = (d− 1)f̄1(0, 1) = (d− 1)I1(x0)

I22[f ](x0) = d(d− 1)f̄(0, 1) = d(d− 1)f(x0)

I112[f ](x0) = (d− 2)f̄11(0, 1) = (d− 2)I11[f ](x0)

I122[f ](x0) = (d− 1)(d− 2)f̄1(0, 1) = (d− 1)(d− 2)I1[f ](x0)

I222[f ](x0) = d(d− 1)(d− 2)f̄(0, 1) = d(d− 1)(d− 2)f(x0).

47



Since x0 ∈ C2/Var(f) is arbitrary, we conclude that

I2[f ] = d u

I12[f ] = (d− 1) I1[f ]

I22[f ] = d(d− 1)u

I112[f ] = (d− 2) I11[f ]

I122[f ] = (d− 1)(d− 2) I1[f ]

I222[f ] = d(d− 1)(d− 2)u.

The same argument also holds for g. Thus, ImSΨ[ f ] = ImSΨ[ g ] ⇐⇒ ImSΦ[ f ] =

ImSΦ[ g ] ⇐⇒ f and g are SL2 (C) equivalent.

Finally, we note that for all d, we can obtain a list of polynomial differential invariants

that determine a differential invariant signature correspondence for the action of G on

HPd2.

Corollary 2.4.9. Let f and g ∈ HPd2. Let Σ = (σ1, σ2, σ3) where

σ1 = u,

σ2 = (u2)2u11 − 2u1u2u12 + (u1)2u22

σ3 = (u2)3u111 − 3u1(u2)2u112 + 3(u1)2u2u122 − (u1)3u222.

Then, ImSΣ[ f ] = ImSΣ[ g ] ⇐⇒ f and g are SL2 (C) equivalent.

Proof. Let H3 =
{

y ∈ C3
∣∣∣y1 6= 0

}
and let Ψ be the list of differential invariants from
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Proposition 2.4.8. Let h ∈ HPd2. Define Θ : H3 → H3 by

Θ(y) =
(
y1, y2

(
d y1

)2
, y3(d y1)3

)
.

Θ defines a diffeomorphism of H3 which carries ImSΨ[ f ] into ImSΣ[ f ]. Since h ∈ HPd2

is arbitrary, the result follows immediately.

As an application of the previous considerations, we will use the list of differential

invariants Σ to compute the Σ-signatures of the monomials x19−iyi, 1 ≤ i ≤ 19. Note that

for an arbirtary f ∈ HP19
2 to be SL2 (C) equivalent to a monomial, f must satisfy one

of the conditions in 2.1. The choice of d = 19 is completely arbitrary and similar results

for arbitrary d are easily obtained. For a given monomial x19−iyi, Σ[x19−iyi] : C2 →

C3, and we will use coordinates
(
s1, s2, s3

)
on the image space C3. Using a straight

forward elimination algorithm, we give the ideal in the polynomial ring C[s1, s2, s3],

which corresponds to the Zariski closure if the image of Σ[x19−iyi]. The ideals of the

Zariski closure of the Σ-signature sets were computed in Maple using a straight forward

elimination algorithm.
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Table 2.1: Implicit Formulas For Σ-signatures of monomials x19−iyi, 1 ≤ i ≤ 19

x19 , y19
(
s2, s3

)
x18y , xy18

(
578

(
s2
)3

+ 171(s3)2s1
)

x17y2 , x2y17
(

450
(
s2
)3

+ 323(s3)2s1
)

x16y3 , x3y16
(

169
(
s2
)3

+ 228(s3)2s1
)

x15y4 , x4y15
(

121
(
s2
)3

+ 285(s3)2s1
)

x14y5 , x5y14
(

162
(
s2
)3

+ 665(s3)2s1
)

x13y6 , x6y13
(

98
(
s2
)3

+ 741(s3)2s1
)

x12y7 , x7y12
(

25
(
s2
)3

+ 399(s3)2s1
)

x11y8 , x8y11
(

9
(
s2
)3

+ 418(s3)2s1
)

x10y9 , x9y10
(

2
(
s2
)3

+ 855(s3)2s1
)
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2.4.3 Ternary Cubics and Differential Invariant Signature Cor-

respondences

We will pursue the notions of a differential invariant signature map and a differential

invariant signature correspondence from Definition 2.4.4 and Definition 2.4.6. In partic-

ular, we focus on HP3
3, homogeneous polynomials of degree three in three variables, or as

they are referred to in the classical literature, ternary cubics. We will take G = GL3 (C)

throughout the section and we will make use of the known classification of non-degenerate

ternary cubics and an elementary elimination algorithm similar to that used in the com-

putations of the Σ-signatures for monomials in HP19
2 in the previous subsection. The

approach presented here is similar to that found in [19], although we bypass the notion

of the moving frame entirely.

Definition 2.4.10. A homogeneous polynomial f ∈ Pdm is said to be degenerate if there

exists Λ ∈ GLm(C) such that Λ ? f is a polynomial in less than m variables.

When m ≤ 4, there is a classical result due to Hesse9 which characterizes degenerate

homogenesous polynomials (see [23]). Recall that the Hessian of a function f in m

variables is given by H[f ] = det (fij), 1 ≤ i, j ≤ m.

Theorem 2.4.11. Let f ∈ Pdm with m ≤ 4. Then f is degenerate if and only if Hess(f)

is identically zero.

We will make use of Hesse’s Theorem in order to provide a differential invariant sig-

nature correspondence for ND =
{
f ∈ P3

3

∣∣∣f is non-degenerate
}
. Observe that ND ⊂

HP3
3 is an invariant subset under the action of GL3(C).

9Hesse originally believed the result to be true for all m.
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First, we recall the classification of G-equivalence classes of HP3
3 as presented in [19].

Theorem 2.4.12. Let f ∈ HP3
3 be irreducible.

1. If f(x, y, z) defines a nonsingular projective variety then f(x, y, z) is GL3(C)-

equivalent to one of the following:

(a) a cubic in a one-parameter family: x3+axz2+z3−y2z, where a 6= 0, a3 6= −27

4
,

(b) x3 + xz2 − y2z, or

(c) x3 + z3 − y2z

2. If f(x, y, z) defines a singular projective variety then it is equivalent to one of the

following:

(a) x3 − y2z, or

(b) x2(x+ z)− y2z.

Remark 2.4.2. If f ∈ HP3
3 is equivalent to x3 + axz2 + z3 − y2z where

1. a = 0, then f is irreducible, defines a singular projective variety and is equivalent

to x2(x+ z)− y2z.

2. a = −27

4
, then f is a reducible cubic and is equivalent to z(x2 +y2 +z2) (See below).

Theorem 2.4.13. Let f ∈ HP3
3 be reducible.

1. If f is a product of quadratic and linear factors then it is equivalent to either

(a) z(x2 + yz), or

(b) z(x2 + y2 + z2).
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2. If f is a product of three linear factors and

(a) the three factors are linearly independent, then f is equivalent to xyz,

(b) the three factors are linearly dependent, but any pair of them is linearly inde-

pendent, then f is equivalent to xy(x+ y),

(c) exactly two of the factors are the same, then f is equivalent to x2y, or

(d) all three factors are the same, then f is equivalent to x3.

Remark 2.4.3. The GL3(C)-equivalence classes of degenerate ternary cubics are repre-

sented by the canonical forms 2.(b), (c), and (d) appearing in Theorem 2.4.13.

We will use a list of differential invariants Σ = (σ1, σ2, σ3, σ4), where three of the

differential invariants in the list are generated from classical tensor algebra or classical

invariant theory methods (see Chapter 9 of [27] or Chapter 12 of [13] for further details).

Let εijk , 1 ≤ i, j, k ≤ 3, be the symbol 10 which takes the value ±1 when (i, j, k)

is a permutation of (1, 2, 3), with the ± depending on the sign of the permutation, and

zero otherwise. We will view εijk as a relative tensor and generate differential invariants

through tensor contraction.

Example 2.4.14. Let 1 ≤ il, jl, kl ≤ 3. Then

εi1i2i3εj1j2j3ui1j1ui2j2ui3j3 (2.74)

is 6H, where H = det(uij) is the Hessian of a function in three variables.

10In classical tensor algebra, the εijk form the components of a relative contravariant tensor. In the
physics literature this is often referred to as the Levi-Civita symbol. Further, this generalizes to m ≥ 3.
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Proposition 2.4.15. Let H = det(uij), 1 ≤ i, j ≤ 3 and let σ2, σ3, σ4 be given by

σ2 =
εi1i2i3εj1j2j3εk1k2k3εl1l2l3ui1j1k1ul1i2j2uk2l2i3uj3k3l3

H2

σ3 =
εi1i2i3εj1j2j3Hi1Hj1ui2j2ui3j3

H3

σ4 =
εi1i2i3εj1j2j3εk1k2k3εl1l2l3Hi1Hj1Hk1ul1i2uj2k2ul2i3uj3k3l3

H5
,

1 ≤ is, js, ks, ls ≤ 3. Then σ2, σ3, σ4 are global differential invariants for the action of

GL3(C) on J3 (C3,C).

Theorem 2.4.16. Let ND =
{
f ∈ P3

3

∣∣∣f is non-degenerate
}
. Let H, σ2, σ3, and σ4 be

given as above and let Σ = (u, σ2, σ3, σ4). Then Σ provides a complete differential invari-

ant signature correspondence for ND.

Proof. For any f ∈ ND, SΣ[ f ] : C3/Var (H[f ]) → C4, where we will take coordinates

(s1, s2, s3, s4) on C4. The ideals corresponding to the Zariski closures of the Σ-signature

sets for the canonical forms of the equivalence classes of non-degenerate ternary cubics

are all distinct. This completes the result.

Remark 2.4.4. The differential invariants and elimination algorithms implemented in

this section were carried out in Maple. A maple file containing the code and the implicit

forms of the signature sets of non-degenerate ternary cubics is (and will be) maintained

at the author’s website. 11

11 At the time of publication the maple file is available at
http://www.longwood.edu/staff/wearsth/thesiscode.html
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2.4.4 Moving Frames Applied to P3

We will now briefly outline the construction of moving frame map for the action ofGL3(C)

on J∞ (C3,C). The main purpose of this will be to illuminate some of the difficulties

that one encounters when trying to carry out a direct implementation of the equivariant

moving frame method to address the GL3(C)-equivalence of polynomials in three vari-

ables. In particular, we will see that while one can solve the normalization equations

corresponding to a particular cross-section, the resulting moving frame map itself will

be of little practical use. The cross-section introduced below below will be generalized

in Section 3.7 to the action of GLm(C) on J∞ (Cm,C) and it will be used again in Sec-

tion 3.7 to study the GL3(C)-equivalence of homogeneous polynomials in three variables.

The action of GL3(C) on J3 (C3,C) is given by equations (2.7) - (2.11), where m =

n = 3. The infinitesimal generators for the action of GL3(C) on C3 are given by

V1 = x1 ∂

∂x1
, V2 = x1 ∂

∂x2
, V3 = x1 ∂

∂x3

V4 = y
∂

∂x1
, V5 = x2 ∂

∂x2
, V6 = x2 ∂

∂x3

V7 = x3 ∂

∂x1
, V8 = x3 ∂

∂x2
, V9 = x3 ∂

∂x3
,

and we will denote the corresponding prolongations of the Vi to J3 (C3,C) will be denoted

by pr(3)(Vi), 1 ≤ i ≤ 9. We will not record the explicit coordinate form of the (ultimately

unnecessary) prolonged infinitesimal generators.

Proposition 2.4.17. The submanifold C(3) ⊂ J3 (C3,C), where

C(3) =
{

z(3) ∈ J3
(
C3,C

) ∣∣∣xi = ui = uii = 0, x3 = uiii = 1, u3u12 6= 0
}
,
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where i = 1, 2, is a local cross-section for the action of GL3(C) on J3 (C3,C).

Proof. Let F : J3 (C3,C)→ C9 be defined by

F (z(3)) =
(
x1, x2, x3 − 1, u1, u2, u11, u22, u111 − 1, u222 − 1

)
,

and denote the component functions of F by F i, 1 ≤ i ≤ 9. The determinant of the 9×9

matrix L(i, j) =
(
pr(3)(Vi)(F

j)
)

at a point z(3) ∈ C(3) is

det(L(i, j))
(
z(3)
)

= 36(u3u12)2,

which is nonzero on account of z(3) ∈ C(3), ensuring that C(3) intersects each GL3(C)-orbit

transversally.

The resulting normalization equations for the moving frame map are thus

X i = λijx
j = 0 (2.75)

X3 = λ3
jx

j = 0 (2.76)

Ui = λ̂jiuj = 0 (2.77)

Uii = λ̂ji λ̂
k
i ujk = 0 (2.78)

Uiii = λ̂ji λ̂
k
i λ̂

l
iujkl = 1, (2.79)

1 ≤ i ≤ 2, 1 ≤ j, k, l ≤ 3. One can solve the normalization equations for the group

parameters λij in terms if the jet coordinates (z, u, uK), and the resulting inverse transpose

Λ−t =
(
λ̂ij

)
is given in coordinates by

56



Λ−t =



−S u3
3√A
−P u3

3√A
S u1+P u2

3√A

−Ru3
3√B
−Su3

3√B
Ru1+S u2

3√B

x1 x2 x3


, (2.80)

where

P = u1,1 u3
2 − 2u1,3 u1 u3 + u3,3 u1

2,

Q = u1,2 u3
2 − u1,3 u2 u3 − u2,3 u1 u3 + u3,3 u1 u2,

R = u2,2 u3
2 − 2u2,3 u2 u3 + u3,3 u2

2,

S = −Q±
√
Q2 − PR,

A =
(
3u2,2,3 u3

2 u2 − 3u2,3,3 u3 u2
2 + u3,3,3 u2

3 − u2,2,2 u33
)
P 3

+
(
−6u2,3,3 u3 u1 u2 + 3u2,2,3 u3

2 u1 − 3u1,2,2 u3
3 + 3u3,3,3 u1 u2

2 + 6u1,2,3 u3
2 u2 − 3u1,3,3 u3 u2

2
)
SP 2

+
(
−3u2,3,3 u3 u1

2 + 3u1,1,3 u3
2 u2 − 6u1,3,3 u3 u1 u2 + 3u3,3,3 u1

2 u2 − 3u1,1,2 u3
3 + 6u1,2,3 u3

2 u1
)
S2P

+
(
−3u1,3,3 u3 u1

2 + u3,3,3 u1
3 − u1,1,1 u33 + 3u1,1,3 u3

2 u1
)
S3,

B =
(
−3u1,3,3 u3 u1

2 + u3,3,3 u1
3 − u1,1,1 u33 + 3u1,1,3 u3

2 u1
)
R3

+
(
−3u2,3,3 u3 u1

2 + 3u1,1,3 u3
2 u2 − 6u1,3,3 u3 u1 u2 + 3u3,3,3 u1

2 u2 − 3u1,1,2 u3
3 + 6u1,2,3 u3

2 u1
)
SR2

+
(
−6u2,3,3 u3 u1 u2 + 3u2,2,3 u3

2 u1 − 3u1,2,2 u3
3 + 3u3,3,3 u1 u2

2 + 6u1,2,3 u3
2 u2 − 3u1,3,3 u3 u2

2
)
S2R

+
(
3u2,2,3 u3

2 u2 − 3u2,3,3 u3 u2
2 + u3,3,3 u2

3 − u2,2,2 u33
)
S3,

and we use the ± in the definition of S to indicate that we can choose either branch of

the square root function. Complications arise because the solutions to the normalization

equations (2.75) - (2.79) are not unique and resulting moving frame map is multi-valued.

Indeed, generic GL3(C)-orbits intersects the cross-section C(3) in 18 places. Thus, even
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after choosing branches of the square and cubic root functions appearing in (2.80) and

obtaining a moving frame map ρ, there is no reason to assumeGL3(C) equivalent points of

J3 (C3,C) will map to the same normal form of the cross-section C(3). Thus, if one restricts

the resulting moving frame map to the jets of polynomial functions, it is not immediately

obvious that equivalent polynomials will have identical moving frame signature sets.

Further, it is not clear (without using a limiting argument) that the resulting moving

frame map is even defined on the cross-section C(3). Lastly, due to the presence of the

algebraic functions in (2.80), one is not able to use methods of algebraic geometry to

determine when the moving frame signature sets parametrized by the local normalized

invariants of two polynomial functions are the same.

2.5 Discussion

Before proceeding to the notion of G-signature varieties, G-signature ideals, and G-

signature correspondences, a few remarks are in order. First, the remarkable success

and efficiency of using the method of equivariant moving frames, differential invariant

signature maps, and differential invariant signature correspondences in order to address

the question of when two polynomials in m = 2 variables are G-equivalent is completely

misleading to what happens when one tries to apply either method to a more general

case. Any practical use of the method of equivariant moving frames results in solving a

system of nonlinear equations and the resulting differential invariants will be local and

be given by algebraic functions, which prevents the use of Groebner basis techniques

for addressing the question of when the corresponding signature sets are equal. Further

complications also arise which will be addressed in the introduction to the next chapter.

58



The case of G = SL2 (C) or G = GL2 (C) presents an overly simplified, albeit pretty,

picture of the applicability of both the equivariant method of moving frames and the no-

tion of a differential invariant signature map and correspondence. Pursuing these notions

with the case m = 3 variables begins to reveal some of the major hurdles that one will be

forced to overcome. For example, the method used to prove that the list of differential

invariants given by Σ in Section 2.4.3 provides a differential invariant signature corre-

spondence on the set of non-degenerate ternary cubics essentially amounts to knowing the

classification of ternary cubics and then being able to educatedly pick the proper differen-

tial invariants. We remark, however, that despite the benign appearance of the differential

invariants appearing in Proposition 2.4.15, they are creatures of a rather monstrous sort.

For example, the numerator of σ4 =
εi1i2i3εj1j2j3εk1k2k3εl1l2l3Hi1Hj1Hk1ul1i2uj2k2ul2i3uj3k3l3

H5

is (before simplification) an expression with approximately 1.7 × 106 terms in the jet

coordinates. After simplification and upon restriction to f ∈ HPd3 the same numerator

will result in a polynomial of degree 13d−30. Furthermore, attempting to generalize this

approach to m > 3 variables causes more problems. For example, if one attempts to ad-

dress the issue of equivalence of polynomials in m = 4 variables using the methods found

in [13] and [27] to generate differential invariants, then one can do no better than using

differential invariants which involve, before simplification, approximately 2 × 108 terms

in the jet variables. For these reasons, we propose the notion of G-signature varieties and

G-signature correspondences to combine the local power of the method of equivariant

moving frames while retaining the effectiveness and global power of algebraic varieties.

59



Chapter 3

G-Signature Varieties and

G-Signature Correspondences

Despite the efficiency of the equivariant moving frame method in settling equivalence

issues for homogeneous polynomials in m = 2 variables, a direct application of moving

frames to address the equivalence of homogeneous polynomials in m = 3 variables faces

rather severe difficulties. First, as previously mentioned, one typically finds a moving

frame map by introducing a cross-section and solving a system of nonlinear equations.

The introduction of a cross-section is arbitrary and one usually aims to introduce a

cross-section that simplifies the corresponding normalization equations. However, the

introduced cross-section does not (in general) have to be reflective of the geometry of the

problem, but only satisfy the appropriate transversality conditions. Second, the moving

frame construction is inherently local and it is often not clear where the results pertaining

to equivalence are applicable. An ‘instructive example’ can be found in [24] (Section 6,

pp. 16-19) where the author uses the equivariant method of moving frames to address

the equivalence of space curves under the action of the Euclidean group. It is well-known
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(see [8]) that under suitable hypothesis on smoothness and nondegeneracy, a space curve

is determined up to congruence by its curvature, κ, and torsion, τ , functions. However,

in [24], after the introduction of a non-traditional local cross-section, the author obtains

similar results which are valid only on the class of space curves satisfying κτ > 1. Thus

a solution of the equivalence problem based on the equivariant moving frame method

is only valid on a certain open subset whose relative “size” is not known a priori. The

advantage of the algebraic signature construction presented here is that it provides us with

a solution of the equivalence problem on a Zariski open subset of the set of polynomials

of sufficiently high degree, and is therefore valid almost everywhere.

In this chapter, we will show that any ideal C(n) belonging to the ring of polynomial

functions in the jet variables Z(n) = (X i, U, UK) gives rise to a G-signature correspondence

between Pm and algebraic subvarieties of C(n) ⊂ Jn (Cm,C), where C(n) = Var
(
C(n)

)
de-

notes the variety of the ideal C(n). For f ∈ Pm, the restriction of the action of G on

Jn (Cm,C) to jn f naturally leads to the notions of a G-signature ideal, a C(n)-signature

set, and a G-signature variety. We will also show that by fixing the degree d, then we can

(trivially) obtain a complete signature correspondence for Pdm. We will then introduce the

notion of a cross-section ideal for the the action of G on Jn (Cm,C). To each cross-section

ideal, there will be a corresponding cross-section variety. The notion of a cross-section

ideal was introduced in [17] where the authors studied rational actions of an algebraic

group G on an affine space Kn. We present a slightly altered definition of a cross-section

ideal in order to put the transversality conditions at the forefront. After introducing a

cross-section ideal, the corresponding cross-section variety will play an analogous role to

that of a cross-section in the moving frame constructions presented above. In particular,

we will use the cross-section variety to determine local normal forms for the action of

G on Jn (Cm,C). However, using the algebraic constructions, should the cross-section
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variety intersect the G orbits more than one time, we do not have to worry about decid-

ing which local normal form we will project a point z(n) ∈ Jn (Cm,C) to. Instead, we

will project to all local normal forms at once. Combining these constructions with the

local techniques from the equivariant moving frame method, then for all d ≥ m, we are

able to produce an almost complete signature correspondence for Pdm at a finite order of

the jet space that is independent of the degree d. For the basics of the algebraic geome-

try and elimination theory that are used, we refer the reader to Chapters 2, 3 and 4 of [6].

3.1 Preliminaries

Notation 3.1.1. We will denote the ring of polynomial functions on Jn (Cm,C) in the

source coordinates by C[x, u, uK ] = C[z(n)] and in the target coordinates by C[X,U, UK ] =

C[Z(n)]. The variety of an ideal C contained in polynomial ring will be denoted by either

Var(C) or C. The radical of an ideal C will be denoted by
√
C.

We will briefly recall the statements and conventions from Section 1.2 and Section 2.1.

The group GLm (C) will be realized as the variety of the ideal
(
det
(
λij
)
s− 1

)
⊂ C[λij, s],

1 ≤ i, j ≤ m. Any algebraic subgroup G of GLm (C) can be realized as a subvariety

of GLm(C) defined by a radical ideal G ⊂ C[λij, s], where
(
det(λij)s− 1

)
⊂ G. Before

proceeding, we recall Definition 3.1.1 and Definition 3.1.2.

Definition 3.1.1 (G-Signature Correspondence and G-Signature Variety). A G-signature

correspondence for the action of G on Pm is a map from Pm to the set of algebraic

subvarieties of some algebraic variety C over C, such that if the image of f ∈ Pm under
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this correspondence is denoted by Sf , then

f ∼=G g ⇒ Sf = Sg.

The image of f ∈ Pm under a G-signature correspondence is said to be the G-signature

variety of f determined by the given G-signature correspondence.

Definition 3.1.2 (Complete and Almost Complete Signature Correspondence). We say

that the G-signature correspondence is complete if for all f and g ∈ Pm,

f ∼=G g ⇐⇒ Sf = Sg. (3.1)

A G-signature correspondence is almost complete if there exists d0 such that for all d > d0

there exists a Zariski open subset T dm ⊂ Pdm such that (3.1) holds for all f and g ∈ T dm

Remark 3.1.1. On account of Pdm being closed under the action of G, then one can also

speak of an almost complete G-signature correspondence for the action of G on Pdm in the

obvious manner.

3.2 The Action Ideals

Definition 3.2.1 (Action Ideal). Let G be an algebraic subgroup of GLm (C) defined by

the ideal G = (γ1, . . . , γt) ⊂ C[λij, s]. The action ideal for the action of G on Jn (Cm,C)
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is the ideal contained in C[λij, s, z
(n), Z(n)] generated by the equations

γl =0

X i − λijxj =0

U − u =0

Uj − λ̂ijui =0

...

Uj1···jk − λ̂
i1
j1
· · · λ̂ikjkui1···ik =0

...

Uj1···jn − λ̂i1j1 · · · λ̂
in
jn
ui1···in =0

where 1 ≤ l ≤ t, 1 ≤ is, js, . . . ≤ m, and 1 ≤ |K| ≤ n.

Remark 3.2.1. Note that the λ̂ij are expressible as polynomials in λij and s, and satisfy

the relations λijλ̂
j
k = δik and λ̂ijλ

j
k = δik.

Remark 3.2.2. Going forward, we will assume that G is a fixed algebraic subgroup of

GLm (C) given as the variety of a radical, unmixed dimensional ideal G = (γ1, . . . , γt) ⊂

C[λij, s].

Notation 3.2.1. The action ideal for the action of G on Jn (Cm,C) will be denoted by

A(n) =
(
G+

(
Z(n) − α

(
λij, z

(n)
)))

. (3.2)

Definition 3.2.2 (Restricted Action Ideal of f). Let f ∈ Pm. The restriction of the G
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action on Jn (Cm,C) to the n-jet of f is given by the restricted action ideal

A(n)[f ] =
(
G+

(
Z(n) − α

(
λij, jn f (x)

)))
⊂ C

[
λij, s, x, Z

(n)
]
. (3.3)

3.3 C(n)-Projection Ideals and G- Signature Varieties

We will now let C(n) ⊂ C[Z(n)] be any ideal and we will introduce C(n) into the action

ideal (3.2) and into the restricted action ideal (3.3). Geometrically, we aim to capture

the notion of projecting along the G orbits of Jn (Cm,C) to Var
(
C(n)

)
= C(n), the variety

of the ideal C(n).

Notation 3.3.1. When needed, we will denote an ideal C(n) ⊂ C[Z(n)] by the ominous

notation C
(n)

Z(n) to place additional emphasis on the fact that we are viewing C(n) as in

ideal in the polynomial ring of the target coordinates of Jn (Cm,C).

Notation 3.3.2. We will denote the variety of an ideal C(n), S(n), etc... ⊂ C[Z(n)] by the

corresponding calligraphic letter C(n), S(n), etc . . . For all other ideals (e.g. A(n)[f ]),

we will explicitly write Var () (e.g. Var
(
A(n)[f ]

)
).

Notation 3.3.3. We will denote sets of points that do not form a variety by C̆(n), S̆(n),

etc . . . Generally, the corresponding calligraphic letter C(n), S(n), etc . . . will denote

the variety corresponding to the algebraic closure.

Definition 3.3.1 (C(n)-Projection Ideals). Let C(n) ⊂ C[Z(n)] be any ideal. The ideal

(A(n) + C(n)) =
(
G+

(
Z(n) − α

(
λij, z

(n)
))

+ C
(n)

Z(n)

)
⊂ C[λij, s, z

(n), Z(n)] (3.4)

is said to be the C(n)-projection ideal for the action of G on Jn (Cm,C).
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For f ∈ Pm, the ideal

(
A(n)[f ] + C(n)

)
=
(
G+

(
Z(n) − α

(
λij, jn f(x)

))
+ C

(n)

Z(n)

)
⊂ C[λij, s, x, Z

(n)] (3.5)

is the C(n)- projection ideal for the action of G on Jn (Cm,C) restricted to f .

Remark 3.3.1. For C(n) ⊂ C[Z(n)] and f ∈ Pm, the varieties of the C(n)-projection

ideal and the C(n)-projection ideal restricted to f are, respectively,

Var
(
A(n) + C(n)

)
=
{(

Λ, z(n),Z(n)
)
∈ G × Jn (Cm,C)× Jn (Cm,C)

∣∣∣Λ · z(n) = Z(n) ∈ C(n)
}
,

(3.6)

and

Var
(
A(n)[f ] + C(n)

)
=
{(

Λ,x,Z(n)
)
∈ G × Cm × Jn (Cm,C)

∣∣∣Λ · (jn f (x)) = Z(n) ∈ C(n)
}
.

(3.7)

Proposition 3.3.2. Let C(n) ⊂ C[Z(n)] be any ideal and let f, g ∈ Pm. If f and g are

G-equivalent, then Var
(
A(n)[f ] + C(n)

)
and Var

(
A(n)[g] + C(n)

)
are isomorphic.

Proof. Let Λ ∈ G such that Λ ? f = g. We will use the group element Λ ∈ G defining

the equivalence between f and g to define an isomorphism between Var
(
A(n)[f ] + C(n)

)
and Var

(
A(n)[g] + C(n)

)
. Letting Λ0 ∈ G be arbitrary, the jet space transformation laws
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imply

Λ0Λ−1 · (jn g (Λ · x)) =

= Λ0Λ−1 · (jn (Λ ? f) (Λ · x)) (By Hypothesis)

= Λ0Λ−1 · (Λ · (jn f (x))) (By (2.6))

= Λ0 · (jn f (x)) .

Setting Λ0·(jn f (x)) = Z(n), then by (3.7) we conclude that
(
Λ0,x,Z

(n)
)
∈ Var

(
A(n)[f ] + C(n)

)
if and only if

(
Λ0Λ−1,Λ · x,Z(n)

)
∈ Var

(
A(n)[g] + C(n)

)
. Thus, the (an) isomorphism

from Var
(
A(n)[f ] + C(n)

)
to Var

(
A(n)[g] + C(n)

)
is given by

(
Λ0,x,Z

(n)
)
7→
(
Λ0Λ−1,Λ · x,Z(n)

)
.

Definition 3.3.3 (C(n)-Signature Set). Let C(n) ⊂ C[Z(n)] be an ideal and let f ∈ Pm.

The C(n)-signature set of f for the action of G on Jn (Cm,C) is

S̆(n)
C [f ] =

{
Z(n) ∈ C(n)

∣∣∣∃Λ ∈ G,x ∈ Cm s.t. Λ · (jn f (x)) = Z(n)
}
,

Remark 3.3.2. Note that the C(n)-signature set of f is the projection of Var
(
A(n)[f ] + C(n)

)
onto Jn (Cm,C).

Proposition 3.3.4. Let C(n) ⊂ C[Z(n)] be an ideal and let f, g ∈ Pm.

If f and g are G-equivalent, then S̆(n)
C [f ] = S̆(n)

C [g].

Proof. The result follows immediately from the isomorphism between the varieties

Var
(
A(n)[f ] + C(n)

)
and Var

(
A(n)[g] + C(n)

)
established in Proposition 3.3.2. Let Λ ∈

G such that Λ ? f = g and note that the isomorphism which maps
(
Λ0,x,Z

(n)
)
∈

Var
(
A(n)[f ] + C(n)

)
to
(
Λ0Λ−1,Λ · x,Z(n)

)
∈ Var

(
A(n)[g] + C(n)

)
is the identity on the
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Jn (Cm,C) component. This proves the claim.

Combining the above considerations with standard elimination theory motivates the

following.

Definition 3.3.5 (G-Signature Ideal). Let C(n) ⊂ C[Z(n)] be any ideal and let f ∈ Pm.

The G-signature ideal of f associated to the ideal C(n) is the elimination ideal

S
(n)
C [f ] = (A(n)[f ] + C(n)) ∩ C[Z(n)]. (3.8)

Definition 3.3.6 (G-Signature Variety). Let C(n) ⊂ C[Z(n)] be any ideal and let f ∈ Pm.

The G-signature variety of f associated to the ideal C(n) is the variety of S
(n)
C [f ]. The

signature variety of f will be denoted S(n)
C [f ].

Remark 3.3.3. Note that for any ideal C(n) ⊂ C[Z(n)] and for any f ∈ Pm, the G-

signature variety, S(n)
C [f ], is the algebraic closure of the C(n)-signature set, S̆(n)

C [f ]. This

is a consequence of the closure theorem in elimination theory ([6], pp. 125).

As an immediate corollary, we have the following.

Corollary 3.3.7. Let C(n) ⊂ C[Z(n)] be an ideal and let f, g ∈ Pm. If f and g are

G-equivalent, then the G-signature varieties S(n)
C [f ] and S(n)

C [g] are equal.

Proof. Proposition 3.3.4 implies that the C(n)-signature sets are equal, i.e.,

S̆(n)
C [f ] = S̆(n)

C [g].

Their Zariski closures S(n)
C [f ] and S(n)

C [g] are also then equal.

Corollary 3.3.8. If C(n) ⊂ C[Z(n)] is any ideal and f, g ∈ Pm are G-equivalent, then√
S

(n)
C [f ] =

√
S

(n)
C [g].
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Remark 3.3.4. Corollary 3.3.7 shows that any ideal C(n) ⊂ C[Z(n)] determines a G-

signature correspondence.

We will now prove a series of relatively simple lemmas which help to illuminate the

geometrical significance of the G-signature variety S(n)
C [f ] for f ∈ Pm. We will also

continue to make use of the C(n)-signature set of f , S̆(n)
C [f ].

Lemma 3.3.9. Let C(n) ⊂ C[Z(n)] be an ideal and let f, g ∈ Pm. If S̆(n)
C [f ] ∩ S̆(n)

C [g] is

nonempty, then ∃y ∈ Cm and Λ0,Λ1 ∈ G such that jn (Λ0 ? f) (y) = jn (Λ1 ? g) (y) .

Proof. Let C(n) ⊂ Jn (Cm,C) be the variety of C(n) and let Z(n) ∈ S̆(n)
C [f ]∩ S̆(n)

C [g] ⊂ C(n)

be a common point on the C(n)-signature sets of f and g. Let πn
(
Z(n)

)
= y ∈ Cm denote

the projection of Z(n) onto Cm. By definition of the C(n)-signature sets of f and g, there

exists x0,x1 ∈ Cm and Λ0,Λ1,∈ G such that

Λ0 · (jn f (x0)) = Λ1 · (jn g (x1)) = Z(n) ∈ C(n). (3.9)

Condition (3.9) implies that

Λ0 · x0 = Λ1 · x1 = y ∈ Cm, (3.10)

and condition (2.6) implies

jn (Λ0 ? f) (Λ0 · x0) = jn (Λ1 ? g) (Λ1 · x1) . (3.11)

Thus,

jn (Λ0 ? f) (y) = jn (Λ1 ? g) (y) . (3.12)
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Definition 3.3.10 (G-Regular). Let C(n) ⊂ C[Z(n)] be an ideal and let f ∈ Pm. We

say that f is G-regular with respect to the ideal C(n) if the G-signature variety S(n)
C [f ] is

nonempty.

Remark 3.3.5. For any ideal C(n) ⊂ C[Z(n)] and any f ∈ Pm note that the G-signature

variety S(n)
C [f ] 6= ∅ ⇐⇒ the C(n)-signature set S̆(n)

C [f ] 6= ∅.

We will now bound the degree d of our polynomials under consideration and show that,

as one might expect, the G-signature varieties corresponding to any ideal C(d) ⊂ C[Z(d)]

completely determine when two G-regular polynomials f, g ∈ Pdm are G-equivalent.

Lemma 3.3.11. Let C(d) ⊂ C[Z(d)] be an ideal and let f, g ∈ Pdm be G-regular with respect

to C(d). Then f and g are G-equivalent if and only if S̆(d)
C [f ] ∩ S̆(d)

C [g] is nonempty.

Proof. By Proposition 3.3.4, if f and g are equivalent then S̆(d)
C [f ] = S̆(d)

C [g]. Since f and

g are assumed to be G-regular, we know that S̆(d)
C [f ] and S̆(d)

C [g] are nonempty and thus,

S̆(d)
C [f ] ∩ S̆(d)

C [g] 6= ∅.

Now, we will assume that the C(d)-signature sets S̆(d)
C [f ] and S̆(d)

C [g] have a point in

common. Lemma 3.3.9 implies that there exists Λ0,Λ1 ∈ G and y ∈ Cm such that

jd (Λ0 ? f) (y) = jd (Λ1 ? g) (y) . (3.13)

Since Λ0?f,Λ1?g ∈ Pdm and their d-jets at y ∈ Cm are equal, then Λ0?f = Λ1?g. Setting

Λ = (Λ1)−1 Λ0, we thus have Λ ? f = g, and we conclude that f and g are equivalent.

Corollary 3.3.12. Let C(d) ⊂ C[Z(d)] be an ideal and let f, g ∈ Pdm be G-regular with

respect to C(d). Then f and g are G-equivalent if and only if S(d)
C [f ] = S(d)

C [g].
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Proof. The result follows immediately from Proposition 3.3.4 and the fact that the G-

signature varieties S(d)
C [f ] and S(d)

C [g] are the Zariski closures of the C(d)-signature sets

S̆(d)
C [f ] and S̆(d)

C [g], respectively.

We will now show that we obtain (trivially) a complete G-signature correspondence

on Pdm by considering the ideal C(d) = (0) ⊂ C[Z(d)].

Proposition 3.3.13. Let C(d) ⊂ C[Z(d)] be the zero ideal. Then ∀f, g ∈ Pdm, f and g

are G-equivalent if and only if S(d)
C [f ] = S(d)

C [g].

Proof. The variety of C(d) is Jd (Cm,C). Therefore, every h ∈ Pm is G-regular with

respect to C(d). The result now follows immediately from Corollary 3.3.12.

Remark 3.3.6. Observe that when one lets C(d) be the zero ideal, then for f ∈ Pm,

S̆(d)
C [f ] can be viewed as the orbit of the submanifold determined by jd f ⊂ Jd (Cm,C).

S̆(d)
C [f ] will then be, generically, (dim(G) + m)- dimensional provided that d is greater

than or equal to the or the order of stabilization for the action of G on J∞ (Cm,C). At

the alternative end of the spectrum, if one lets C(d) = C[Z(d)], then the corresponding

variety C(d) is the empty set, and as a result, for all f ∈ Pm, S̆(d)
C [f ] and S(d)

C [f ] are also

empty and there are no polynomials which are G-regular with respect to C[Z(d)].

3.4 Cross-Section Ideals and Cross-Section Varieties

We will now introduce the notion of a cross-section ideal which will specialize the algebraic

constructions of the previous sections and make them amenable to the local techniques

of the moving frame while still maintaing their global effectiveness. The definition of a

cross-section ideal presented here has been slightly altered from that in [16] and [17] in
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order to put the condition that the corresponding cross-section variety be transversal to

the G orbits at the forefront. Compare with Proposition 3.2 in [16].

Definition 3.4.1 (Cross-Section Ideal). Let sn denote the dimension of the generic orbits

for the action of G on Jn (Cm,C) and let pr(n)(Vi), 1 ≤ i ≤ r = dim(G), denote the

infinitesimal generators for the action for G on Jn (Cm,C). Further, let C(n) ⊂ C
[
Z(n)

]
be a prime ideal of codimension sn which is given by a set of generators (F1, F2, . . . , Ft)

with corresponding variety C(n).

C(n) is said to be a cross-section ideal for the action of G on Jn (Cm,C) if the generic

rank of the r × t matrix L(i, j) =
(
pr(n)(Vi)(Fj)

) ∣∣∣
C(n)

is sn.

Definition 3.4.2 (Cross-Section Variety). Let C(n) ⊂ C
[
Z(n)

]
be a cross-section ideal

for the action of G on Jn (Cm,C) . The cross-section variety defined by the ideal C(n) is

the variety Var
(
C(n)

)
= C(n) ⊂ Jn (Cm,C) .

Definition 3.4.3 (Transversal Point, Transversally Regular). Let C(n) ⊂ C[Z(n)] be a

cross-section ideal for the action of G on Jn (Cm,C) of order n and let C(n) ⊂ Jn (Cm,C)

be the corresponding cross-section variety.

1. A nonsingular point Z(n) ∈ C(n) is said to be a transversal point for the cross-section

ideal C(n) if the cross-section C(n) is transversal to the G- orbit OZ(n) at Z(n).

2. Let f ∈ Pm. We say that f is transversally regular with respect to the cross-section

ideal C(n) if the C(n)-signature set of f , S̆(n)
C [f ], contains a transversal point.

Remark 3.4.1. A non-singular point Z(n) ∈ C(n) is a transversal point for the cross-

section ideal C(n) if and only if TZ(n)OZ(n) ⊕ TZ(n)C(n) = TZ(n)Jn (Cm,C).

Remark 3.4.2. Let pr(n)(Vi) denote the infinitesimal generators for the action of G on

Jn (Cm,C) and assume that C(n) is a cross-section ideal given by a set of generators
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F1, . . . , Ft ∈ C(n)[Z(n)]. Then a nonsingular point Z(n) ∈ C(n) is a transversal point if

and only if the rank of the r × t matrix L(i, j) =
(
pr(n)(Vi)Fj

)
at Z(n) is equal to sn.

Furthermore, the set of all points Z(n) ∈ C(n) which fail to be transversal points lie in a

proper subvariety W(n) ⊂ C(n) whose defining ideal W (n) can be easily described. Let P (n)

denote the ideal generated by the set of all sn × sn minors of the matrix1 L(i, j)(Z(n))

(i.e., P (n) is the ideal defining the condition that the rank of L(i, j)(Z(n)) < sn), then

W (n) = C(n) + P (n) ⊂ C[Z(n)]. (3.14)

As a consequence of the above remark, we immediately have the following.

Corollary 3.4.4. A prime ideal C(n) ⊂ C[Z(n)] whose codimension is equal to the dimen-

sion of the generic G-orbits defines a cross-section ideal for the action of G on Jn (Cm,C)

if and only if
√
W (n) 6= C(n), where W (n) is defined as in (3.14).

We will now prove two propositions which serve to show that for a given cross-section

ideal C(n) ⊂ C[Z(n)], most G-orbits Oz(n) will intersect the cross-section variety C(n)

transversally.

Proposition 3.4.5. Let C(n) be a cross-section ideal for the action of G on Jn (Cm,C)

with corresponding cross-section variety C(n) and let

Π̆(n) =
{
z(n) ∈ Jn (Cm,C)

∣∣Oz(n) ∩ C(n) = ∅
}
. Then Π̆(n) ⊂ Y(n) ⊂ Jn (Cm,C), where

Y(n) is a proper subvariety of Jn (Cm,C).

Proof. Let W(n) ⊂ C(n) be the subvariety of C(n) where the cross-section variety C(n)

fails to intersect the G-obrbits transversally (Remark 3.4.2). Then by the definition of

the cross-section ideal C(n), we have dim(C(n)/W(n)) = dim(Jn (Cm,C)) − sn, where sn

1L(i, j) is being viewed as a map from Jn (Cm,C)→Mr×s, the set of all r × s matrices.

73



denotes the dimension of the generic orbits for the action of G on Jn (Cm,C). Define

Ŭ =
{

z(n) ∈ Jn (Cm,C)
∣∣∣∃Λ ∈ G and Z(n) ∈

(
C(n)/W(n)

)
s.t. Λ · z(n) = Z(n)

}
,

and

V̆ =
{

z(n) ∈ Jn (Cm,C)
∣∣∣∃Λ ∈ G and Z(n) ∈ C(n) s.t.Λ · z(n) = Z(n)

}
.

and observe that Ŭ ⊂ V̆ . Now consider the elimination ideal V =
(
A(n) + C(n)

)
∩C[z(n)],

where
(
A(n) + C(n)

)
is then C(n)-projection ideal (Definition 3.3.1). Note that Var (V ) is

the algebraic closure of V̆ and thus Ŭ ⊂ Var (V ) ⊂ Jn (Cm,C).

On account of C(n) defining a cross-section ideal then Ŭ contains a metric topology

open set and the topological dimension of Ŭ satisfies

dim(Ŭ) = dim
(
C(n)/W(n)

)
+ sn = dim (Jn (Cm,C)) .

Since Jn (Cm,C) is an irreducible variety and on account of the fact that Ŭ ⊂ Var (V )

then we conclude that Var (V ) = Jn (Cm,C). By elimination theory, there is a proper

subvariety Y(n) ⊂ Jn (Cm,C) such that
(
Jn (Cm,C) /

(
Y(n)

))
⊂ V̆ , or equivalently,(

Jn (Cm,C) /V̆
)
⊂ Y(n). Now, merely note that Π̆(n) = Jn (Cm,C) /V̆ .

Proposition 3.4.6. Let C(n) be a cross-section ideal for the action of G on Jn (Cm,C)

and let W(n) denote the subvariety of C(n) containing the non-transversal points of the

cross-section variety (see Remark 3.4.2). Define

Ῠ(n) =
{

z(n) ∈ Jn (Cm,C)
∣∣∣∃Λ ∈ G and Z(n) ∈ W(n) s.t. Λ · z(n) = Z(n)

}
.
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Then Ῠ(n) lies in a proper subvariety Q(n) of Jn (Cm,C) .

Proof. Let W (n) ⊂ C[Z(n)] be the ideal from Remark 3.4.2 that defines the variety W(n)

that contains the non-transversal points for the cross-section ideal C(n). Then consider

the ideal
(
A(n) +W (n)

)
⊂ C[λij, s, z

(n), Z(n)], where A(n) is the action ideal for the action

of G on Jn (Cm,C). The variety of the elimination ideal

Q =
(
A(n) +W (n)

)
∩ C[z(n)] (3.15)

is the Zariski closure of Ῠ(n). We will denote the variety of Q by Var (Q) = Q(n). Note

that dim Ῠ(n) ≤ dim(W(n)) + sn < dim (Jn (Cm,C)), where sn denotes the dimension

of the generic orbits for the action of G on Jn (Cm,C). Thus dim
(
Q(n)

)
≤ dim

(
W(n)

)
.

Therefore, Ῠ(n) lies in a proper subvariety of Jn (Cm,C).

Corollary 3.4.7. Let C(n) ⊂ C[Z(n)] be a cross-section ideal for the action of G on

Jn (Cm,C). The set of all z(n) ∈ Jn (Cm,C) such that the G-orbit Oz(n) fails to intersect

C(n) at a transversal point belongs to a proper subvariety of Jn (Cm,C).

Proof. Let Y(n) ⊂ Jn (Cm,C) denote the variety from Proposition 3.4.5 and let Q(n) ⊂

Jn (Cm,C) denote the variety appearing in Proposition 3.4.6. Then we consider the

variety Q(n) ∪ Y(n) ⊂ Jn (Cm,C). Since both Q(n) and Y(n) are proper subvarieties of

Jn (Cm,C) and Jn (Cm,C) is irreducible, it follows that

dim
(
Q(n) ∪ Y(n)

)
= max

{
dim(Q(n)), dim(Y(n))

}
.

Furthermore, Q(n) ∪ Y(n) contains the set of all z(n) ∈ Jn (Cm,C) such that either

1. Oz(n) ∩ C(n) = ∅, or
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2. Oz(n) ∩ C(n) contains a non-transversal point.

The conclusion follows.

Theorem 3.4.8. Let C(n) ⊂ C[Z(n)] be a cross-section ideal for the action of G on

Jn (Cm,C) with corresponding cross-section variety C(n). Let R(n) ⊂ Jn (Cm,C) be a

subvariety that contains the set of all z(n) ∈ Jn (Cm,C) whose G-orbits Oz(n) do not

contain a point that intersects C(n) transversally and let R(n) ⊂ C[z(n)] be an ideal defining

R(n). Define

B̆dm =
{
f ∈ Pdm

∣∣ jn f (x) ∈ R,∀x ∈ Cm
}
.

Then for all d ≥ n, the set B̆dm lies in a proper subvariety of Pdm.

Remark 3.4.3. Since Pdm is an irreducible variety, any proper subvariety is necessarily

of lower dimension.

Proof. Let f ∈ Pdm (d ≥ n) be an arbitrary polynomial with undetermined coefficients

c = (cK), where we will assume that the standard basis of monomials spanning Pdm has

been ordered in accordance with our ordering on partial derivative multi-indices. The

coefficients c = (cK) thus range over all partial derivative multi-indices with |K| ≤ d.

Let Q ⊂ C[x, c, z(n)] be the ideal

Q =
((
z(n) − jn f(x)

)
+R(n)

)
⊂ C[x, c, z(n)],

and let Y (n) be the elimination ideal Y (n) = Q ∩C[x, c]. The variety of Y (n), Var
(
Y (n)

)
,

is the Zariski closure of the set

Y̆(n) =
{

(x, f) ∈ Cm × Pdm
∣∣∣ jn f(x) ∈ R(n)

}
.
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Let φ1(x, c), . . . , φt(x, c) ∈ C[x, c] be a set of generators for the ideal Y (n) and rewrite

each φi(x, c) as φ̃i ∈ C[c][x]. Now, let Bd
m ⊂ C[c] be the ideal generated by the set the

coefficient functions of the φ̃i. For any f ∈ Pdm, we have (x, f) ∈ Y̆(n) ∀x ∈ Cm if and

only if the coefficients of f , cf = (cK)f , are a zero of the ideal Bd
m. This implies that

B̆dm ⊂ Var
(
Bd
m

)
.

In order to show (for all d ≥ n) that Var
(
Bd
m

)
is a proper subvariety of Pdm, we will

first show that Y̆(n) = Var
(
Y (n)

)
. Since we are working over C, elimination theory im-

plies that Y̆(n) is dense in Var
(
Y (n)

)
in the metric topology of Cm×Pdm. Therefore, for all

(x, f) ∈ Var
(
Y (n)

)
, there exists a sequence (xi, fi) ∈ Y̆(n), i = 1, . . . ,∞, that converges

to (x, f) in the metric topology of Cm×Pdm. Thus, lim
i→∞

jn fi(xi) = jn f(x) in the metric

topology of Jn (Cm,C). Furthermore, note that for all i = 1, . . . ,∞, jn fi(xi) ∈ R(n),

and that R(n) is closed in both the Zariski and metric topologies of Jn (Cm,C). Thus,

lim
i→∞

jn fi(xi) = jn f(x) ∈ R(n) and we conclude that Y̆(n) = Var
(
Y (n)

)
.

We will now show that for d ≥ n, Var
(
Bd
m

)
is a proper subvariety of Pdm. We will do

so by constructing a polynomial f ∈ Pdm that does not belong to the variety Var
(
Bd
m

)
.

Let z(n) ∈ Jn (Cm,C) /R(n) and take πn(z(n)) = x ∈ Cm. Since the n-jet of a polynomial

f of degree n at a point x ∈ Cm uniquely determines the polynomial f , then we can take

f to be the polynomial of degree n determined by jn f(x) = z(n). Thus(x, f) does not

belong to Y̆(n) = Var
(
Y (n)

)
, Thus, for d ≥ n, Var

(
Bd
m

)
⊂ Pdm is a proper subvariety. On

account of Pdm being irreducible, we conclude that Var (B)dn has a lower dimension.
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3.5 Stabilization of G-Signature Varieties

Our primary interest for the action of G on Jn (Cm,C) lies with cross-section ideals

which are of codimension r = dim(G). Recall that a cross-section ideal C(n) can be of

codimension r = dim(G) if and only if the defining polynomials for C(n) are explicitly

dependent on the jet variables of order n0 (where n0 is the order of stabilization for the

action of G on J∞ (Cm,C)) or higher. Furthermore, if C(n) ⊂ C[Z(n)] is a cross-section

ideal for the action of G on Jn (Cm,C) with n ≥ n0, then for all k ≥ n, the extension

ideal of C(n) in C[Z(k)] also serves to define a cross-section ideal for the action of G on

Jk (Cm,C). We will now set notation to account for the fact that a cross-section ideal of

codimension r = dim(G) gives rise to a sequence of cross-section ideals

Notation 3.5.1. If n ≥ n0 and C(n) ⊂ C[Z(n)] is a cross-section ideal for the action of

G on Jn (Cm,C), then for k ≥ n, we will denote the extension ideal of C(n) in C[Z(k)] by

C̃(k) ⊂ C[Z(k)]. We will denote the cross-section variety corresponding to the ideal C̃(k)

by C̃(k) and for f ∈ Pm, we will denote the C̃(k)-signature set of f and the G-signature

variety associated to C̃(k) by the usual S̆(k)
C [f ] and S(k)

C [f ], respectively.

We will now record a simple proposition that will be used in the theorem that follows.

Proposition 3.5.1. Let n0 denote the stabilization order for the action of G on J∞ (Cm,C)

and let C(n) ⊂ C[Z(n)] be a cross-section ideal for the action of G on Jn (Cm,C) with

n ≥ n0. Then, for all k ≥ n, if Z(k) ∈ C̃(k) and πkn
(
Z(k)

)
∈ C(n) is a transversal point

for the cross-section ideal C(n), then Z(k) is also a transversal point for the cross-section

ideal C̃(k).

Theorem 3.5.2. Let C(n) ⊂ C[Z(n)] be a cross-section ideal for the action of G on

Jn (Cm,C) (n ≥ n0) with corresponding cross-section C(n) ⊂ Jn (Cm,C), and let f, g ∈
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Pm.

If f and g are transversally regular with respect to the cross-section ideal C(n) and

there exists k ≥ n such that

1. S(k+1)
C [f ] = S(k+1)

C [g], and

2. dim(S(k)
C [f ]) = dim(S(k+1)

C [f ]),

then f and g are equivalent.

Proof. The second assumption implies that for all t with n ≤ t ≤ k+1, then we also have

S(t)
C [f ] = S(t)

C [g]. Let V(k) = S(k)
C [f ] = S(k)

C [g] and let V(k+1) = S(k+1)
C [f ] = S(k+1)

C [g]. By

hypothesis (and also on account of the fact that the G-signature varieties are the Zariski

closures of the C(n)-signature sets), there exists Z(n) ∈ S̆(n)
C [f ]∩ S̆(n)

C [g] such that Z(n) is a

transversal point with respect to the cross-section ideal C(n). Furthermore, there exists

Z(k) ∈ S̆(k)
C [f ] ∩ S̆(k)

C [g] ⊂ C̃(k) and Z(k+1) ∈ S̆(k+1)
C [f ] ∩ S̆(k+1)

C [g] ⊂ C̃(k+1) such that

1. πk+1
k (Z(k+1)) = Z(k),

2. πkn(Z(k)) = Z(n),

3. Z(k+1) lies in an irreducible component of V(k+1) of maximal dimension, and

4. Z(k) also lies in an irreducible component of V(k) of maximal dimension.

On account of Proposition 3.5.1, Z(k) and Z(k+1) are transversal points with respect to

the cross-section ideals C̃(k) and C̃(k+1), respectively.

By definition of S̆(k+1)
C [f ] and S̆(k+1)

C [g], there exists Λ0,Λ1 ∈ G and x0,x1 ∈ Cm such

that

Λ0 · jk+1 f (x0) = Λ1 · jk+1 g (x1) = Z(k+1) ∈ C̃(k+1). (3.16)
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We now replace f and g with the equivalent polynomials Λ0?f = f̄ and Λ1?g = ḡ and we

will denote the m-dimensional submanifolds of Jk (Cm,C) and Jk+1 (Cm,C) determined

by the jets jk f̄ and jk+1 f̄ by M
(k)

f̄
and M

(k+1)

f̄
, respectively. We can further assume that

Z(k) and Z(k+1) are points such that

1. m− dim
(
TZ(k)M

(k)

f̄
∩ TZ(k)OZ(k)

)
is equal to the dimension of S(k)

C [f̄ ] at Z(k),and

2. m − dim
(
TZ(k+1)M

(k+1)

f̄
∩ TZ(k+1)OZ(k+1)

)
is equal to the dimension of S(k+1)

C [f̄ ] at

Z(k+1),

and likewise for ḡ. This ensures that the jets of f̄ and ḡ are as fully transverse to the

orbits as possible at Z(k) and Z(k+1).

Due to Corollary 3.3.7, the G-signature varieties S(k)
C [f̄ ], S(k+1)

C [f̄ ], S(k)
C [ḡ] and S(k+1)

C [ḡ]

satisfy the same conditions on their signatures as those of f and g, and the hypothesis

of the theorem still apply. Since Z(n) is a transversal point for the cross-section ideal

C(n), there exists a local moving frame map (of order n) in a neighborhood of Z(n)

which corresponds to the local cross-section determined by the cross-section variety C(n).

Furthermore, ∀t ≥ n, the moving frame signature sets of f̄ and ḡ order t will correspond

(locally) with the C̃(t)-signature sets of f̄ and ḡ, and the C̃(t)-signature sets will be locally

parameterized by the signature maps of f̄ and ḡ associated to the local moving frame

map. Theorem 2.2.13 implies f̄ and ḡ are equivalent. Thus, f and g are equivalent.

3.6 Example

We will now illustrate the previous constructions with a simple example. We will take

G = SL2 (C) and we will consider the actions of G on J1 (C2,C), J2 (C2,C) and on P2.
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We will realize SL2 (C) as the variety of the ideal (λ1
1λ

2
2 − λ1

2λ
2
1 − 1) ⊂ C[λij], where we

have eliminated the variable s appearing in the realization of GL2(C) as an affine variety.

Recall from Chapter 2.4.1 that the action of SL2 (C) is locally free on J1 (C2,C). We set

x1 = x and x2 = y and the set the index range for the section to be 1 ≤ i, j ≤ 2.

The action ideal of Definition 3.2.1 for the action of SL2 (C) on J1 (C2,C) is the ideal

A(1) ⊂ C[λij, x, y, u, u1, u2, X, Y, U, U1, U2] generated by the equations

λ1
1λ

2
2 − λ1

2λ
2
1 − 1 = 0 (3.17)

X − λ1
1x− λ1

2y = 0 (3.18)

Y − λ2
1x− λ2

2y = 0 (3.19)

U − u = 0 (3.20)

U1 − λ2
2u1 + λ2

1u2 = 0 (3.21)

U2 + λ1
2u1 − λ1

1u2 = 0, (3.22)

where we have used the fact that λ̂1
1 = λ2

2, λ̂
2
2 = λ1

1, λ̂2
1 = −λ2

1 and λ̂1
2 = −λ1

2 (see equation

(2.49)).

Remark 3.6.1. Due to the simplicity of the relationships between λij and λ̂ij, we will

insert them into the transformation laws without mention.

The action ideal A(2) for the action of SL2 (C) on J2 (C2,C) is obtained by adjoining

the equations

U11 −
(
λ2

2

)2
u11 + 2λ2

2λ
2
1u12 −

(
λ2

1

)2
u22 = 0 (3.23)

U12 + λ2
2λ

1
2u11 −

(
λ2

2λ
1
1 + λ2

1λ
1
2

)
u12 + λ2

1λ
1
1u22 = 0 (3.24)

U22 −
(
λ1

2

)2
u11 + 2λ1

2λ
1
1u12 −

(
λ1

1

)2
u22 = 0 (3.25)
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to the equations (3.17)-(3.22) generating A(1).

The ideal

C(1) =
(
X,U1, Y − 1

)
⊂ C[X, Y, U, U1, U2] (3.26)

defines the variety

C(1) =
{

Z(1) ∈ J1
(
C2,C

) ∣∣∣X = U1 = 0, Y = 1
}
⊂ J1

(
C2,C

)
,

and gives rise to the C(1)-projection ideal (Definition 3.3.1) for the action of SL2 (C) on

J1 (C2,C), (
A(1) + C

(1)

Z(1)

)
⊂ C[λij, z

(1), Z(1)].

The generators for
(
A(1) + C

(1)

Z(1)

)
are obtained by adjoining the equations

X = 0, Y − 1 = 0, U1 = 0, (3.27)

to the equations (3.17) - (3.22) generating the action ideal A(1). Similarly, taking C̃(2) to

be the extension ideal of C(1) in C[Z(2)], then the generators for the C̃(2)-projection ideal

for the action of SL2 (C) on J2 (C2,C) by adjoining the equations (3.23) - (3.25) to the

generators of the C(1)-projection ideal.

We will now let f = x3 + y3 ∈ P2 and we will carry out the construction of the

restricted action ideal from Definition 3.2.2 and the restricted C(1)-projection ideal from

Definition 3.3.1. The two jet of f is

j2 f(x, y) =
(
x, y, x3 + y3, 3x2, 3y2, 6x, 0, 6y

)
,
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and the restricted action ideals A(1)[f ] and A(2)[f ] can be viewed as nothing more

than substitution of the components of j2 f into the J2 (C2,C) source variables z(2) =

(x, y, u, u1, u2, u11, u12, u22) in the equations (3.17) − (3.25) generating the action ideals

A(1) and A(2). The restricted action ideal A(1)[f ] ⊂ C[λij, x, y, Z
(1)] is thus generated by

the equations

λ1
1λ

2
2 − λ1

2λ
2
1 − 1 = 0, (3.28)

X − λ1
1x− λ1

2y = 0, (3.29)

Y − λ2
1x− λ2

2y = 0, (3.30)

U − u = 0, (3.31)

U1 − λ2
2 3x2 + λ2

1 3y2 = 0, (3.32)

U2 + λ1
2 3x2 − λ1

1 3y2 = 0, (3.33)

and the equations generating the restricted action ideal A(2)[f ] ⊂ C[λij, x, y, Z
(2)] are

obtained by adjoining the equations

U11 −
(
λ2

2

)2
6x−

(
λ2

1

)2
6y = 0, (3.34)

U12 + λ2
2λ

1
26x+ λ2

1λ
1
16y = 0, (3.35)

U22 −
(
λ1

2

)2
6x−

(
λ1

1

)2
6y = 0 (3.36)

to the generators (3.28) - (3.33) of A(1)[f ].

The equations generating the C(1) and C̃(2)-projection ideals restricted to f ,
(
A(1)[f ] + C(1)

)
and

(
A(2)[f ] + C̃(2)

)
, are obtained by adjoining the equations (3.27) generating C to the
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generators (3.28) - (3.33) of A(1)[f ], as well as to the generators (3.28) - (3.36) of A(2)[f ]

respectively.

We will now use the SL2 (C)-signature varieties to show how the above construc-

tions can be applied towards the problem of deciding when two elements of P2 are

SL2 (C)-equivalent. We will continue using f = x3 + y3 ∈ P2 and the cross-section

ideal C(1) = (X, Y − 1, U1) ⊂ C[Z(1)]. Let g = 9x3 + 15x2 + 9xy2 + 2y3 ∈ P2 be given as

in Example 2.1.10 and let h = x3 ∈ P2. Observe that f and g are SL2 (C)-equivalent,

but f and h are not SL2 (C)-equivalent.

The one jet of g is

j1 g =
(
x, y, 9x3 + 15x2y + 9xy2 + 2 y3, 27x2 + 30xy + 9 y2, 15x2 + 18xy + 6 y2

)
,

and we will denote the two jet of g by

j2 g = (j1 g, 54x+ 30y, 30x+ 18y, 18x+ 12y) .

The two jet of h is j2 h = (x, y, x3, 3x2, 0, 6x, 0, 0) .
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The equations generating
(
A(1)[g] + C(1)

)
⊂ C[λij, x, y, Z

(1)] are

λ1
1λ

2
2 − λ1

2λ
2
1 − 1 = 0

X − λ1
1x− λ1

2y = 0

Y − λ2
1x− λ2

2y = 0

U − (g(x, y)) = 0

U1 − λ2
2g1(x, y) + λ2

1g2(x, y) = 0

U2 + λ1
2g1(x, y)− λ1

1g2(x, y) = 0

X = 0

Y = 1

U1 = 0

where g(x, y), g1(x, y), g2(x, y) denote the corresponding components of j1 g, and the gen-

erators of
(
A(2)[g] + C̃(2)

)
⊂ C[λij, x, y, Z

(2)] are obtained by adjoining

U11 −
(
λ2

2

)2
g11(x, y) + 2λ2

2λ
2
1g12(x, y)−

(
λ2

1

)2
g22(x, y) = 0

U12 + λ2
2λ

1
2g11(x, y)−

(
λ2

2λ
1
1 + λ2

1λ
1
2

)
g12(x, y) + λ2

1λ
1
1g22(x, y) = 0

U22 −
(
λ1

2

)2
g11(x, y) + 2λ1

2λ
1
1g12(x, y)−

(
λ1

1

)2
g22(x, y) = 0

to the equations generating
(
A(1)[g] + C(1)

)
.
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Similarly, for h = x3, the generators of
(
A(2)[h] + C̃(2)

)
⊂ C[λij, x, y, Z

(2)] are

λ1
1λ

2
2 − λ1

2λ
2
1 − 1 = 0

X − λ1
1x− λ1

2y = 0,

Y − λ2
1x− λ2

2y = 0,

U − x3 = 0,

U1 − λ2
23x2 = 0,

U2 + λ1
23x2 = 0,

X = 0,

Y = 1,

U1 = 0,

U11 −
(
λ2

2

)2
6x = 0,

U12 + λ2
2λ

1
26x = 0,

U22 −
(
λ1

2

)2
6x = 0,

where the generators for
(
A(1)[h] + C(1)

)
⊂ C[λij, x, y, Z

(1)] are obtained in the obvious

manner.

The SL2 (C)-signature ideals (Definition 3.3.5) S
(1)
C [f ], S

(1)
C [g], S

(1)
C [h] ⊂ C[Z(1)] are

generated by the equations

X = 0, Y − 1 = 0, U1 = 0, U2 − 3U = 0

which implies that the SL2 (C)-signature varieties S(1)
C [f ], S(1)

C [g] and S(1)
C [h] are all equal.

At order two, however, we observe the following. The SL2 (C)-signature ideals S
(2)
C [f ], S

(2)
C [g] ⊂
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C[Z(2)] are generated by the equations

X = 0, Y − 1 = 0, U1 = 0, U2 − 3U = 0, U12 = 0, U22 − 6U = 0

As expected, in accordance with Corollary 3.3.7, this implies the SL2 (C)-signature vari-

eties are equal: S(2)
C [f ] = S(2)

C [g]. On the other hand, the SL2 (C)-signature ideal S
(2)
C [h]

is generated by the equations

X = 0, Y − 1 = 0, U1 = 0, U12 = 0,

(U11)2 = 0, U11U = 0, U2 − 3U = 0, U22 − 6U = 0,

and we can see immediately that

S(2)
C [f ] = S(2)

C [g] 6= S(2)
C [h]. (3.37)

Thus, the SL2 (C)-signature varieties S(2)
C [f ], S(2)

C [g] and S(2)
C [h] serve to distinguish the

SL2 (C)-equivalent polynomials f and g from the inequivalent polynomial h.

3.7 GLm(C)-Signature Varieties

In this section we will take G = GLm (C) and we will apply the previous constructions

and results to the action of GLm(C) on J∞ (Cm,C) and the corresponding action of

GLm(C) on Pm. We will introduce a specific cross-section ideal C(m) ⊂ C[Z(m)] for the

action of GLm(C) on Jm (Cm,C), which for all d ≥ m, gives rise to an almost complete

signature correspondence for the action of GLm(C) on Pdm. After carrying this out in

general, we will specialize to the case m = 3 and the actions of GL3(C) on J∞ (C3,C)
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and HP3, the set of homogeneous polynomials in three variables. We will show that the

cross-section ideal C(m) introduced in the case of m variables applied to m = 3 produces,

for all d ≥ 3, an almost complete signature correspondence for the action of GLm(C) on

HPd3.

3.7.1 GLm(C)-Signatures Applied to Pm

Proposition 3.7.1. The prolonged action of GLm(C) is locally free on a dense open

subset of Jm (Cm,C).

Proof. The m2-infinitesimal generators for the action of GLm(C) on Cm are given in local

coordinates by V i
j = xi ∂

∂xj
, 1 ≤ i, j ≤ m. We will denote the corresponding prolonged

infinitesimal generators for the action of GLm(C) on Jm (Cm,C) by pr(m)(V i
j ). We will

order the vector fields pr(m)(V i
j ) by ordering the index pairs (i, j) lexicographically. Using

the established ordering of the coordinate functions z(m) = (x, u, uK) on Jm (Cm,C), we

define an m2 ×
(
m+

(
2m
m

))
matrix L(s, t) as follows. The entry of L in the sth row and

the tth column of the matrix L is defined to be the sth infinitesimal generator pr(m)(V i
j )s

applied to the the tth coordinate function z
(m)
t . Thus, the rows of L correspond to the

coefficient functions of the prolonged infinitesimal generators with respect to the (or-

dered) basis of vector fields
(
∂
∂x
, ∂
∂u
, ∂
∂uK

)
on Jm (Cm,C). As previously remarked (see

Remark 2.3.1) the rank of the matrix L(s, t) at a point z(m) ∈ Jm (Cm,C) denotes the

dimension of Tz(m)Oz(m) , the tangent space to the orbit Oz(m) at z(m).

We will show that there exists an m × m submatrix L̂ of L and a point z(m) ∈

Jm (Cm,C) for which det
(
L̂(z(m))

)
6= 0, combining this with the fact that maximal rank

is a Zariski open condition (see Remark 3.4.2), we will conclude that the dimension of

88



the generic orbits for the action of GLm(C) on Jm (Cm,C) is m.

Define the m×m submatrix L̂ of L to be the matrix whose columns are indexed by

the variables x1, . . . , xm, u[ik], where 1 ≤ i ≤ (m − 1), 1 ≤ k ≤ m, and [ik] denotes the

partial derviative multi-index of length k that represents k partial derivatives all taken

with respect to the ith variable. A direct computation shows that

pr(m)(V i
j )s(x

k) = δkj x
i, 1 ≤ s ≤ m2, 1 ≤ k ≤ m, (3.38)

and

pr(m)(V i
j )s(u[pk]) = δpjkui,[jk−1], 1 ≤ s ≤ m2, 1 ≤ k ≤ m, (3.39)

where δkj and δpj denote the usual Kronecker-delta. We now define a subvariety C(m) ⊂

Jm (Cm,C) by the equations

xi = 0 1 ≤ i ≤ m− 1

xm = 1

u[ik] = 0 1 ≤ i, k ≤ m− 1

u[im] = 1 1 ≤ i ≤ m− 1,

and for z(m) ∈ C(m), a direct computation shows that

det(L̂)
∣∣∣
C(m)

= (m!um)m−1
m−1∏
i=1

∑
σ(k1,...,k̂i,...,km−1)

sign(σ)uσ(k1),iuσ(k2),[i2] · · ·uσ(km−2),[im−1],

(3.40)

where
(
k1, . . . , k̂i, . . . , km−1

)
denotes the partial derivative multi-index of length (m− 2)
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obtained by omitting the ith index. Thus, if z(m) ∈ C(m) and (3.40) is non-zero, then the

dimension of the orbit Oz(m) is m2 and the action of G is locally free on Jm (Cm,C) .

Remark 3.7.1. Note that if G is taken to be an algebraic subgroup of GLm (C), then

Proposition 3.7.1 shows that the prolonged action of GLm(C) is also locally free on

Jm (Cm,C) .

Remark 3.7.2. The above bound is not sharp. The action of GLm(C) can be, and almost

certainly is, locally free on Jn (Cm,C) with n < m. For example, the action of GL3(C) is

locally free on J2 (C3,C). This can be seen by noting that the generic rank of the 9× 13

matrix L(s, t) occurring in the proof of Theorem 3.7.1 that corresponds to the action of

GL3(C) on J2 (C3,C) is 9 = dim(GL3 (C)).

The subvariety C(m) ⊂ Jm (Cm,C) defined in the course of the proof of Proposi-

tion 3.7.1 will play a special role in what follows. C(m) is defined as the variety of the

prime ideal C(m) ⊂ C[Z(m)] generated by the m2 linear equations

xi = 0 1 ≤ i ≤ m− 1 (3.41)

xm = 1 (3.42)

u[ik] = 0 1 ≤ i, k ≤ m− 1 (3.43)

u[im] = 1 1 ≤ i ≤ m− 1, (3.44)

and is thus of codimension m2 in Jm (Cm,C). Furthermore, the determinant of the

m2×m2 matrix L̂(s, t)
∣∣
C(m) is precisely the check (see Definition 3.4.1) required to ensure

that C(m) is generically transversal to the GLm(C)-orbits. Thus, equations (3.41) - (3.44)

define a cross-section ideal C(m) for the action of GLm(C) on Jm (Cm,C) of codimension

m2 = dim (GLm(C)) .
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As a consequence of our prior results, we now have that for all pairs of positive integers

(m, d), there exists an almost complete GLm(C)-signature correspondence on Pdm at the

prolongation order min{m+ 1, d}.

Theorem 3.7.2. If d ≤ m, then by Proposition 3.3.13, the ideal C(d) = (0) ⊂ C[Z(d)]

determines a complete GLm(C)-signature correspondence for the action of GLm(C) on

Pdm.

Remark 3.7.3. If d < m, then no polynomials belonging to Pdm are transversally regular

with respect to the cross-section ideal C(m) defined by equations (3.41)-(3.44). This is

due to the fact that u[im] = 1 on the corresponding cross-section variety C(m).

Theorem 3.7.3. If d > m, there exists a cross-section ideal C(m) ⊂ C[Z(m)] for the

action of GLm(C) on Jm (Cm,C) that determines an almost complete GLm(C)-signature

correspondence for the action of GLm(C) on Pdm.

Proof. We will take C(m) ⊂ C[Z(m)] to be the ideal generated by the equations (3.41)

- (3.44). It has just been shown that C(m) is a cross-section ideal for the action of

GLm(C) on Jm (Cm,C), and by Theorem 3.4.8, the set of polynomials of degree d that

are transversally regular with respect to the cross-section ideal C(m) is Zariski open in

Pdm. Denote by T dm the set of all f ∈ Pdm that are transversally regular with respect to

the cross-section ideal C(m). The GLm(C)-signature varieties of all f ∈ T dm will have

their dimensions repeat by order at least 2m (i.e. dim(S(k)
C [f ]) = dim(S(k+1)

C [f ]) with

m ≤ k ≤ 2m − 1). Furthermore, generic f ∈ T dm will satisfy S(m)
C [f ] = S(m+1)

C [f ]. Thus,

the cross-section ideal C(m) (and its appropriate extension ideals) determines an almost

complete signature correspondence for the action of GLm(C) on Pdm at the (m + 1)th

order of prolongation.
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Remark 3.7.4. The statement of the above theorem is equivalent to the statement that

the cross-section ideal C(m) ⊂ C[Z(m)] determines an almost complete GLm(C)-signature

correspondence for the action of GLm(C) on Pm.

3.7.2 GL3(C)-Signature Varieties Applied to HP3

We will carry out a thorough analysis of the actions of GL3(C) on J∞ (C3,C) and HP3.

The results of this analysis will show that the cross-section ideal C(3) ⊂ C[Z(3)] introduced

in the previous subsection will provide an almost complete signature correspondence for

the action of GL3(C) on HPd3, where d ≥ 3.

We consider the action of GL3(C) on J∞ (C3,C) and we will set x1 = x, x2 = y, x3 = z

in the source coordinates and X1 = X, X2 = Y , X3 = Z in the target coordinates. We

will use the cross-section ideal for the action of GL3 (C) on J3
(
C3,C

)
defined in the

previous subsection by the equations (3.41) - (3.44). The cross-section ideal C(3) ⊂

C[Z(3)] for the action of GL3(C) on J3 (C3,C) is thus generated by the equations

X = 0, Y = 0, Z−1 = 0, U1 = 0, U2 = 0, U11 = 0, U22 = 0, U111−1 = 0, U222−1 = 0.

The corresponding cross-section variety is

C(3) =
{

Z(3) ∈ J3
(
C3,C

) ∣∣∣X = Y = U1 = U2 = U11 = U22 = 0 , Z = U111 = 1 = U222

}
,

(3.45)

and for n ≥ 3, the cross-section variety is

C̃(n) =
{

Z(n) ∈ Jn
(
C3,C

) ∣∣∣πn3 (Z(3)) ∈ C(3)
}
. (3.46)
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On account of Proposition 3.7.1, the action of GL3(C) is locally free on J3
(
C3,C

)
,

and the transversality conditions for the cross-section ideal C are given by (3.40). With

m = 3, the transversality conditions are thusly,

36 (U3U12)2 6= 0. (3.47)

Remark 3.7.5. For the remainder of the section, we will refer to C(3) ⊂ C[Z(3)] as

the cross-section ideal for the the action of GL3(C) on J3 (C3,C) and we will say that

U12U3 6= 0 are the transversality conditions of the cross-section ideal C(3).

We now aim to show that for all positive integers d ≥ 3 there exists a Zariski open

subset T d3 ⊂ HPd3, such that all f ∈ T d3 are transversally regular with respect to the

cross-section ideal C(3). As a consequence, we will see that for all f, g ∈ T d3 ,

f ∼= g ⇐⇒ S(6)
C [f ] = S(6)

C [g].

Since the cross-section ideal C(3) ⊂ C[Z(3)] and the corresponding cross-section variety

C(3) are defined as a common level set of the coordinate functions X, Y, Z, U1, U2, U11, U22,

U111, U222, then we can seek to bring a point z(3) ∈ J3 (C3,C) to C(3) in a succession of

steps. In doing so, we will prove the following theorem.

Theorem 3.7.4. If f 6= 0 ∈ HPd3 with d ≥ 3, then

1. ∃Λ ∈ GL3(C) and x 6= 0 ∈ C3 such that Λ · (j2 f(x)) = j2 (Λ ? f) (Λ · x) satisfies

X = Y = U1 = U2 = U11 = U22 = 0, Z = 1, U3 6= 0

2. ∃Λ ∈ GL3(C) such that Λ ? f has the following properties:
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(a) The coefficient of zd 6= 0.

(b) The coefficients of x1zd−1, y1zd−1, x2zd−2, y2zd−2 are all zero.

We will carry this proof out in a series of lemmas, but first we introduce some termi-

nology.

Definition 3.7.5 (Satisfies the t-jet conditions). For f ∈ P3 and 0 ≤ t ≤ 3, we will say

that f satisfies the t-jet conditions of C(3) at x ∈ C3 if there exists Λ ∈ GL3(C) such that

Λ · jt f(x) ∈ π3
t

(
C(3)
)
.2

Example 3.7.6. Since the action of GL3(C) on C3 − 0 is transitive, then ∀f ∈ P3 and

∀x 6= 0 ∈ C3, f ∈ P3 satisfies the zero-jet conditions (X = 0, Y = 0, Z = 1) of C(3) at

x.

Remark 3.7.6. Observe that if f ∈ P3 satisfies the k-jet conditions of C(3) at x ∈ C3,

then (assuming t ≤ k), f necessarily satisfies the t-jet conditions of C(3) at x.

Warning 3.7.1. In the lemmas that follow, we apply a sequence of transformations to

an arbitrary function f ∈ HP3 and its jets. However, after each transformation, we

continue to denote the function by f .

Lemma 3.7.7. If f 6= 0 ∈ HP3, then ∃x ∈ C3 such that f satisfies the zero-jet condition

of C(3) at x. Furthermore, we can take Λ ∈ GL3 (C) such that U3 (Λ · (j1 f (x))) =

U3 (j1 (Λ ? f) (0, 0, 1)) 6= 0.

Proof. Note that there exists x = (x, y, z) ∈ C3 such that z 6= 0 and x 6∈ Var (f) and

define Λ−t =


1 0 0

0 1 0

x y z

 . The jet space transformation laws imply X = 0, Y = 0, Z = 1,

2Equivalently, we can bring jt f(x) to π3
t (C(3)).

94



and U3 = xu1 + yu2 + zu3. Since f is assumed to be homogeneous (and a solution of

Euler’s PDE: xu1 + yu2 + zu3 = du, where d is the degree of f), we conclude that U3 6= 0

on account of x 6∈ Var (f).

Remark 3.7.7. As a result of Lemma 3.7.7, then going forward, we will assume that

f 6= 0 ∈ HP3 and satisfies f3(0, 0, 1) 6= 0.

Lemma 3.7.8. If f 6= 0 ∈ HP3, then f satisfies the one-jet condition of C(3) at x =

(0, 0, 1) .

Proof. The matrices preserving the zero-jet condition (and the assumed transversality

condition U3 6= 0) of C(3) under the action of GL3(C) on J1 (C3,C) are of the form

Λ−t =


λ̂1

1 λ̂2
1 λ̂3

1

λ̂1
2 λ̂2

2 λ̂3
2

0 0 1

, where det (Λ−t) 6= 0. For f ∈ HP3, taking Λ−t =


1 0 −f1

f3

0 1 −f2
f3

0 0 1

,

where the components are to be evaluated at x = (0, 0, 1), and applying the jet space

transformations shows that f satisfies the 1-jet condtions of C(3) at x = (0, 0, 1) .

Remark 3.7.8. As a result of Lemma 3.7.2, going forward, we will now assume that f 6=

0 ∈ HP3 satisfies the 1-jet conditions of C(3) at x = (0, 0, 1) as well as the transversality

condition f3 (0, 0, 1) 6= 0.

Lemma 3.7.9. If f 6= 0 ∈ HP3, then f satisfies the two-jet conditions of C(3) at x =

(0, 0, 1) .

Proof. The matrices preserving the one-jet condition of C(3) (with the assumed transver-

sality condition U3 6= 0) under the action of GL3(C) on J∞ (C3,C) are of the form

Λ−t =


λ̂1

1 λ̂2
1 0

λ̂1
2 λ̂2

2 0

0 0 1

, where det (Λ−t) 6= 0. If f11(0, 0, 1) = 0 and/or f22(0, 0, 1) = 0, then
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we can take the first and/or second rows of Λ−t to be (1, 0, 0) and/or (0, 1, 0) respectively.

If we assume that f11(0, 0, 1) 6= 0 and f22(0, 0, 1) 6= 0, then we can take

Λ−t =


f12+
√

(f12)2−f11f22
f11

1 0

1
f12+
√

(f12)2−f11f22
f22

0

0 0 1

 , (3.48)

where the components of Λ−t are to be evaluated at x = (0, 0, 1) . Applying the jet space

transformation laws shows that f satisfies the zero-jet, one-jet, and two-jet conditions of

C(3) at x = (0, 0, 1) .

Remark 3.7.9. In (3.48), we can take either of the two roots of
√

(f12)2 − f11f22.

Remark 3.7.10. As a result of the three previous lemmas, we can now assume that

f 6= 0 ∈ HP3 can be given by its jet at x = (0, 0, 1) and that j2 f(0, 0, 1) satisfies

f1 = f2 = f11 = f22 = 0 and f3 6= 0. (3.49)

However, the above analysis does not lead us to any conclusions on f12 and whether or

not f can be assumed to satisfy the transversality condition U12 6= 0 of the cross-section

C(3).

At this point, assuming we are at a transversal point, we merely note that the group

elements Λ ∈ GL3(C) preserving the two-jet conditions of C(3) are of the form

Λ−t =


λ̂1

1 0 0

0 λ̂2
2 0

0 0 1

 or Λ−t =


0 λ̂2

1 0

λ̂1
2 0 0

0 0 1

 . (3.50)
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Note that this immediately implies that if f satisfies the two-jet conditions of C(3)

and the transversality conditions of C(3) at x = (0, 0, 1), then f satisfies the three jet

conditions of C(3) at x = (0, 0, 1) if and only if f111(0, 0, 1) 6= 0 and f222(0, 0, 1) 6= 0. As a

result, in order to be transversally regular with respect to the cross-section ideal C, then

the degree of f must be greater than or equal to three.

For an arbitrary f ∈ HPd≥3
3 we will say that f is in a quasi-normal form if the

coefficients of f with respect to the standard basis 〈xiyjzk〉 of HPd3 satisfy the conditions

of part 2 in Theorem 3.7.4. Observe that if f ∈ HPd3 (d ≥ 3) and f is in a quasi-normal

form such that the coefficients of x3zd−3, y3zd−3, and xyzd−2 are all non-zero, then f is

transversally regular with respect to the cross-section ideal C. Furthermore, if f is in

a quasi-normal form such that some of (or all of) the coefficients of x3zd−3, y3zd−3 and

xyzd−2 are zero, then f may still be transversally regular with respect to the cross-section

ideal C!

As an immediate consequence, we have the following.

Corollary 3.7.10. For all d ≥ 3, the set of all f ∈ HPd3 which are transversally regular

with respect to the cross-section ideal C is Zariski open.

Proof. Let V = 〈xiyjzk〉0≤i,j,k≤d,i+j+k=d denote the standard basis for HPd3, which we will

identify with C(2+d
d ). Denote standard coordinates on C(2+d

d ) by (ti) and assume that V

has been ordered with respect to our convention on partial-derivative multi-indices. Let

W = 〈x1zd−1, y1zd−1, x2zd−2, y2zd−2〉 and note that the quasi-normal forms are contained

in the set spanned by V − W . We will assume that V − W inherits the order on its

basis from that of the ordering on V , and under our identification of V with C(2+d
d ), we

will denote the coordinates on C(2+d
d ) corresponding to V −W by (ti)V−W . An element
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h contained in the set spanned by V −W can be expressed as

h =
∑
V−W

F (i,j,k)xiyjzk.

Then the set of all h ∈ HPd3 which fail to be transversally regular with respect to the cross-

section ideal C belong to the variety of the ideal
(
F (1,1,d−2), F (3,0,d−3), F (0,3,d−3), F (0,0,d)

)
⊂

C[(ti)V−W ], where C[(ti)V−W ] denotes the polynomial ring in the
(

2+d
d

)
− 4 variables

corresponding to the ordered basis V −W.

Corollary 3.7.11. For all d ≥ 3, the cross-section ideal C(3) ⊂ C[Z(3)] for the action of

GL3(C) on J3 (C3,C) determines an almost complete signature correspondence for the

action of GL3(C) on HPd3.

Remark 3.7.11. Alternatively, the cross-section ideal C(3) ⊂ C[Z(3)] determines an

almost complete signature correspondence for the action of GL3(C) on HP3.

Corollary 3.7.12. If f, g ∈ HPd3 with f and g transversally regular with respect to the

cross-section ideal C(3), then f and g are equivalent if and only if S(6)
C [f ] = S(6)

C [g].

Proof. The proof follows from a simple dimension count. We merely note that for all

g ∈ HP3 that are transversally regular with respect to the cross-section ideal C(3),

the conditions of Theorem 3.5.2 are satisfied no later than k = 5, and generically, the

conditions of Theorem 3.5.2 will be satisfied when k = 3.
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