
ABSTRACT

DWIEL, BRANDON H. FPGA Modeling of Diverse Superscalar Processors. (Under the
direction of Dr. Eric Rotenberg.)

There is increasing interest in using Field Programmable Gate Arrays (FPGAs) as

platforms for computer architecture simulation. A wide range of FPGA-based modeling

approaches have proliferated in recent years, as recently documented in the FPGA

Architecture Model Execution (FAME) taxonomy. As multi-core and many-core have

been the key drivers of FAME technologies, the emphasis of model development has been

in the “uncore” (caches, cache coherence, interconnection networks, etc.). Hence, there is

a lack of FPGA models of complex superscalar cores.

We frame the problem as follows. The ideal superscalar processor model should

combine (1) the configurability of a software model (i.e., ability to vary superscalar

parameters such as fetch, issue, and retire widths, depths of pipeline stages, queue

sizes, etc.), (2) the cycle-accuracy of a register-transfer-level (RTL) model, and (3) the

simulation speed of FAME. Researchers have demonstrated mapping RTL models of fixed

commercial designs to FPGAs. The FPGA models are cycle-accurate and fast, but key

superscalar dimensions (e.g., pipeline stage widths) are not configurable like software

models. Approaches that synthesize software simulators to FPGAs provide a path toward

fast simulation of arbitrary superscalar configurations but the cycle-accuracy is limited

by the software simulator.

This thesis describes FPGA-Sim, a configurable and FPGA-synthesizable simulator

that models the RTL designs of diverse out-of-order superscalar processors. FPGA-Sim is

(1) configurable like a software model in major superscalar dimensions, (2) cycle-accurate,

and (3) orders-of-magnitude faster than a C++ simulator.
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CHAPTER

1

Introduction

There is increasing interest in using Field Programmable Gate Arrays (FPGAs) as plat-

forms for computer architecture simulation. Interest is driven by the need to simulate

multi-core architectures, the need for longer running benchmarks to evaluate these archi-

tectures at scale, and new capability to map large architectures to single-FPGA systems

due to greater FPGA capacity and the perfecting of design multiplexing techniques. A

wide range of FPGA-based modeling approaches have proliferated in recent years, as

recently documented in the thorough FPGA Architecture Model Execution (FAME)

taxonomy [1] . As multi-core and many-core have been the key drivers of FAME tech-

nologies, the emphasis of model development has been in the “uncore” (caches, cache

coherence, interconnection networks, etc.). Hence, there is a lack of FPGA models of

complex superscalar cores.

In this thesis, we frame the following challenge (and opportunity): The ideal superscalar

processor model would combine (1) the configurability of a software model (i.e., ability

to vary superscalar parameters such as fetch, issue, and retire widths, depths of pipeline

stages, queue sizes, etc.), (2) the cycle-accuracy of a register-transfer-level (RTL) model,

and (3) the simulation speed of FAME. Researchers have demonstrated mapping RTL

models of fixed commercial designs to FPGAs [2, 3, 4] . The FPGA models are cycle-

accurate and fast, but key superscalar dimensions (e.g., pipeline stage widths) are not

configurable like software models. Other approaches, that synthesize software cycle-level

simulators to FPGAs, suggest a path toward fast simulation of arbitrary superscalar

configurations. Cycle-accuracy is limited by the software simulator, however.

1



This thesis describes FPGA-Sim, a configurable and FPGA-synthesizable simulator

that models the RTL designs of diverse out-of-order superscalar processors. FPGA-Sim is

(1) configurable like a software model in major superscalar dimensions, (2) cycle-accurate,

and (3) orders-of-magnitude faster than a C++ simulator. There are two major aspects to

this modeling effort. The first is creating the configurable RTL model of the superscalar

processor. The second is automatically mapping any one of its configurations to an FPGA.

1.1 Configurable RTL Model

We leveraged the FabScalar tool-set [5] to develop the configurable RTL model. Our

approach was to use FabScalar to generate the widest and deepest superscalar processor

in its repertoire – a superset core. We then inserted Verilog preprocessor macros within

each canonical pipeline stage to be able to narrow it to a desired width and collapse it to

the desired degree of sub-pipelining. So the RTL model is statically configurable: the

footprint of the core is that of the chosen configuration, not the superset core, and there

is no extra synthesized logic or configuration bits for this configurability.

1.2 Automatic and Efficient FPGA Mapping

We faced many of the same challenges presented in past work, most notably, mapping

multi-ported RAMs to the FPGA’s dual-ported RAMs [6, 7, 8]. A RAM with R read

ports and 1 write port can be implemented with R dual-ported RAMs (replication).

Furthermore, W write ports can be implemented by further replicating each of these

read-replicas: each read-replica now consists of W dual-ported RAMs instead of just 1

RAM, and control bits associated with each row keep track of which of the W RAMs has

the latest-written value for that row. In our context, the complexity of mapping memories

to RAMs is increased by three factors:

� Wide superscalar processors require not just multi-ported RAMs, but very highly

ported ones (e.g., 12-ported register files, rename map tables, etc.) and very many

of them throughout the pipeline. The resource requirement skyrockets as a result,

and for wide configurations there are not enough.

� Superscalar processors have several highly ported CAMs as well (e.g., issue queue

wakeup CAM). A typical FPGA does not have native CAMs.
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� Our FPGA model must support arbitrary superscalar widths, hence, an arbitrary

number of ports for each modeled RAM or CAM structure.

The first issue is addressed by using fewer RAMs than required and taking multiple

FPGA cycles to complete all the reads and writes that would occur within a single

processor cycle [6,7,8]. For the second issue, a CAM can be modeled with a RAM indexed

by the value being searched for [9]. An entry in the RAM contains a bit vector indicating

which entries in the modeled CAM match the value (i.e., the bit vector is the match

vector produced by the modeled CAM). Writing to the CAM involves setting a bit in one

bit vector (the bit vector associated with the new value) and clearing a bit in another bit

vector (the bit vector associated with the replaced value). The latter requires a second

RAM that mirrors the contents of the modeled CAM, to know which value is being

replaced. Finally, to support arbitrary superscalar widths, and at the same time provide

flexibility in trading off space (resource utilization) and time (extra FPGA cycles), we

developed an extensive library of RAM and CAM Verilog modules. All modules provide

an abstraction of Y rows, X bits per row, R read ports, and W write ports. The library

provides multiple variants for each {R,W} combination (Y and X are parameterized). Each

variant makes a specific trade-off between resource utilization and FPGA cycles. One

variant may use the most resources and fewest FPGA cycles, another variant may use

the fewest resources and most FPGA cycles, and there are variants in between these two

extremes.

1.3 Outline

The rest of this thesis is organized as follows. Chapter 2 discusses the relevant related work

to this thesis. Chapter 3 elaborates on the first aspect of this modeling effort: creating

the configurable RTL model. Chapter 4 elaborates on the second aspect: automatically

and efficiently mapping arbitrary superscalar configurations to a single FPGA. Chapter 5

provides an overview of the FPGA-Sim framework including the modules necessary for

hardware simulation. Chapter 6 presents our methodology for demonstrating this work.

Chapter 7 presents the experiments performed on five processor configurations. The

experiments show that FPGA-Sim is orders-of-magnitude faster than C++ and RTL

simulations and cycle-accurate with respect to the RTL modeled. Chapter 8 summarizes

this thesis and gives areas of future work.
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CHAPTER

2

Related Work

FPGA modeling of computer architectures has emerged as a promising alternative to

software simulators for accelerating performance modeling. Several FPGA-accelerated

simulators have been developed that exploit the inherent parallelism of multi-core systems

to explore the performance of these systems quickly. The RAMP Gold project [1, 8] uses

FPGAs for full-system simulation of large multiprocessor and many-core systems. The

focus of the project is primarily modeling caches, cache coherence, and the interconnection

network; therefore, simple in-order cores are used. ProtoFlex [10] applies FPGAs to model

the functional execution of multiprocessor systems with up to 1000 nodes. The emphasis

of our work is accelerating the simulation of complex superscalar processors and modeling

the precise timings of instruction interactions. Because our work focuses primarily on

complex processors and RAMP Gold and ProtoFlex focus on the complex interactions

between processors, these works complement each other.

FAST [6, 11] proposes a general strategy for accelerating software simulators. The

software simulator is divided into functional-only and timing-only models. The former runs

on the CPU and the latter is synthesized to an FPGA. This distribution of effort is powerful

because it matches the complexity of each model with the strengths of each platform (i.e.,

full-system simulation of complex instruction sets is better suited for the software model

and timing model simulation benefits greatly from FPGA-accelerated systems). New

complexity, modeling limitations (accuracy), and performance limitations are introduced

due to coordination between the two models. Nevertheless, FAST offers a rich set of

modeling tradeoffs. Our approach is in a different regime of FPGA modeling, that relies
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on the availability of RTL for diverse cores in a canonical superscalar template–a hardware-

only and hardware-literal approach. Running untethered to a software model avoids the

complexity of coordinating between different systems but requires more functionality to

be implemented in hardware.

A-ports [7] discusses an approach to efficiently synthesize multi-ported memory struc-

tures on FPGAs by taking multiple FPGA cycles before advancing the modeled cycle.

We leveraged this concept but, to the best of our knowledge, implemented it in a novel

way that allows the ratio of FPGA-to-model cycles to be both static and dynamic.

A second approach to synthesize multi-ported memory structures was discussed

in [2, 3, 4], that replicates dual-ported FPGA memories to mimic multi-ported memories.

By using FPGA primative memories, highly-ported memories consume far fewer resources

than using flip-flops. We combined this and the previous approach to construct a library

of memories with different numbers of ports that are configurable in their depth and

width and resources (more FPGA cycles results in fewer resources).

Other efforts to model performance using FPGAs include Pellauer et al.’s [12] HAsim

simulator that divides the simulator into separate functional and timing partitions that

interact to form a complete simulator. This approach is similar to the FAST methodology

except that both the functional and timing models are implemented on an FPGA. They

do this closely coupling the functional and timing models. The functional model provides

the data necessary for the timing model to execute each instruction by running a few

instructions ahead. HAsim still relies on a software model for rare events such as system

calls which is different than our work. Additionally, FPGA-Sim uses only a timing model

that performs the tasks of both the HAsim functional and timing models.

Tan et al. propose FAME [1], a comprehensive taxonomy of FPGA modeling techniques

along a number of key dimensions. FAME provides a useful framework for discussing the

expanding body of work in this area. FAME categorizes FPGA-accelerated simulators into

four levels based on three defining implementation characteristics. The first characteristic

is whether the model is directly mapped to an FPGA or has decoupled FPGA and model

clocks. Decoupling the clocks allows for a more efficient mapping to an FPGA at the cost

of additional logic for managing timing information. The second characteristic classifies

simulators as being either full RTL or abstract models. Full RTL models are beneficial if

the RTL is available and can be mapped to an FPGA and abstract simulators allow the

model to be based off of a high-level description of the design. The third characteristic
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separates simulators based on if the simulator is single-threaded or multi-threaded. This

is different than the model being single- or multi-threaded in that threads refer to model

instances and multi-threaded simulators map multiple instances to a single physical FPGA

model.

The four levels of FAME are Direct, Decoupled, Abstract and Multi-threaded. Direct

FAME simulators are directly mapped, full RTL, single-threaded simulators. Decoupled

FAME characterizes simulators that are decoupled, full RTL and single-threaded. Abstract

FAME simulators include decoupled, abstract, single-threaded models and Multi-threaded

FAME includes decoupled, abstract, multi-threaded simulators. FPGA-Sim falls into the

Decoupled FAME level because it uses a decoupled clock, uses a full RTL model and

maps a single model instance to a physical FPGA model.

There is significant precedent for mapping commercial superscalar processors to

FPGAs, achieving fast and cycle-accurate simulation [2,3,4]. Each model is for a fixed

microarchitecture. While varying some parameters may be straightforward (e.g., structure

sizes), others may require significant manual effort (e.g., pipeline stage widths). The goal

of our work is to automate FPGA modeling of diverse superscalar cores, including along

fundamental dimensions such as width and depth.

Veloce [13] is a product offered by the company Mentor Graphics that provides a

debugging and emulation platform. While these products aim at faster simulation for

design and verification, they are only the platform to run a design on. FPGA-Sim provides

multiple processor configurations that can be run on many platforms, including Veloce.
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CHAPTER

3

Configurable RTL Model

Like software simulators, FPGA-Sim must model superscalar processors of arbitrary

configuration to provide flexibility to the user. Our approach was to use FabScalar [5] to

generate the widest and deepest superscalar processor in its repertoire–a superset core.

We then inserted Verilog preprocessor macros within each canonical pipeline stage to be

able to narrow it to a desired width and collapse it to the desired degree of pipelining.

Because the Verilog preprocessor is used, the RTL model is statically configurable: the

footprint of the core is that of the chosen configuration, not the superset core, and there is

no extra synthesized logic or configuration bits for this configurability. The preprocessor

strips away excess superscalar ways in the front-end pipeline stages, execution lanes in

the back-end, etc.

This chapter is organized as follows. Section 3.1 gives a brief background on FabScalar.

Section 3.2 describes implementation techniques to transform the FabScalar-generated

processors into a statically configurable processor.

3.1 FabScalar Background

We used FabScalar [5] to develop the configurable RTL model of the superscalar processor.

The FabScalar tool generates synthesizable RTL of arbitrary cores within a canonical

superscalar template. The template is shown in Figure 3.1. To generate a core of a

desired configuration, the core generator selects a design for each canonical pipeline stage

from a Canonical Pipeline Stage Library (CPSL). The CPSL contains multiple designs for

7



each canonical pipeline stage that differ in their complexity and degree of sub-pipelining.

The complexity of a canonical stage depends on its superscalar width and the sizes of

stage-specific structures (RAMs and CAMs). A canonical stage is nominally unpipelined,

but it may be pipelined deeper to achieve a higher clock frequency or to accommodate

increased complexity in the stage for the same frequency.

8



Figure 3.1: Canonical superscalar template
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3.2 Statically Configurable Processor

Each of the core configurations that FPGA-Sim models is reproducible without the FPGA-

Sim modifications by using the core generator distributed with FabScalar. However, unlike

FabScalar, FPGA-Sim relies on a single universal core, which is a superset of all FabScalar

cores, as the core generator. The user specifies the parameters of the desired core in a

global parameter file and the synthesis tool strips away the unneeded logic. This was

achieved by generating the deepest and widest core using FabScalar and then inserting

Verilog 2001 preprocessor macros around code to be removed and rewriting simple logic

blocks using for loops. An example of how the preprocessor macros (`ifdef and `endif)

are used is shown in Figure 3.2. Note that only a portion of the IssueQueue port

declaration is shown for space reasons. The preprocessor macros are used in the port

declarations to remove the extra inputs and outputs. To specify the dispatch width of the

processor, the user must set DISPATCH WIDTH to the desired width and define the macros

DISPATCH TWO WIDE up to and including the desired width. More information about the

global parameters file can be found in Appendix A.

The other standard Verilog construct used for making the core configurable is the

for-loop. For-loops used naively in Verilog have the possibility of generating errors or

inefficient logic from synthesis. It is safe to use a for-loop to perform the same operation

over each element in an array (Figure 3.3). In this example, for-loops are used to

concatenate multiple signals into enough signals for the RSR and payload. The user

defines ISSUE WIDTH in the global parameters file and the correct number of RSR tags

and payload packets are created by synthesis. The alternative is to completely unroll

the loops and use preprocessor macros similar to the previous example. However, this

approach adds many lines of code, making the file hard to read and prone to errors caused

by misspellings.

The benefit of these two approaches is that they both are part of Verilog 2001 and are

widely supported by EDA tools. One limitation of Verilog 2001 is that the preprocessor

does not support arguments. This feature was introduced in SystemVerilog (Verilog 2005)

but is not supported in the EDA tools used in this thesis (Xilinx ISE 10.1). To provide

the same functionality, FPGA-Sim includes a Perl script for generating RAM module

names that are dependent on user-specified variables. The RAM modules use parameters

to control the width and depth but the number of ports cannot be parameterized using

Verilog 2001. To distinguish the RAM modules, they follow the naming convention of

10



module IssueQueue (
input c lk ,
input r e s e t ,

input v s t a l l i ,

/* The number o f d i s pa t ch Packets and AL IDs i s dependent
* on DISPATCH WIDTH
*/

input [ `DISPATCH IQ PACKET SIZE−1:0 ] d i spatchPacket0 i ,
input [ `SIZE ACTIVELIST LOG−1:0 ] in s t0ALid i ,

` i fdef DISPATCH TWO WIDE
input [ `DISPATCH IQ PACKET SIZE−1:0 ] d i spatchPacket1 i ,
input [ `SIZE ACTIVELIST LOG−1:0 ] in s t1ALid i ,

`endif

` i fdef DISPATCH THREE WIDE
input [ `DISPATCH IQ PACKET SIZE−1:0 ] d i spatchPacket2 i ,
input [ `SIZE ACTIVELIST LOG−1:0 ] in s t2ALid i ,

`endif

` i fdef DISPATCH FOUR WIDE
input [ `DISPATCH IQ PACKET SIZE−1:0 ] d i spatchPacket3 i ,
input [ `SIZE ACTIVELIST LOG−1:0 ] in s t3ALid i ,

`endif

` i fdef DISPATCH FIVE WIDE
input [ `DISPATCH IQ PACKET SIZE−1:0 ] d i spatchPacket4 i ,
input [ `SIZE ACTIVELIST LOG−1:0 ] in s t4ALid i ,

`endif

` i fdef DISPATCH SIX WIDE
input [ `DISPATCH IQ PACKET SIZE−1:0 ] d i spatchPacket5 i ,
input [ `SIZE ACTIVELIST LOG−1:0 ] in s t5ALid i ,

`endif

` i fdef DISPATCH SEVEN WIDE
input [ `DISPATCH IQ PACKET SIZE−1:0 ] d i spatchPacket6 i ,
input [ `SIZE ACTIVELIST LOG−1:0 ] in s t6ALid i ,

`endif

` i fdef DISPATCH EIGHT WIDE
input [ `DISPATCH IQ PACKET SIZE−1:0 ] d i spatchPacket7 i ,
input [ `SIZE ACTIVELIST LOG−1:0 ] in s t7ALid i ,

`endif

Figure 3.2: An example of adding configurability with preprocessor macros
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always @ (* )
begin

r s rTag t [ 0 ] = r s r0Tag i ;

/* Create one RSR tag f o r each i s s u e lane */
for ( i = 1 ; i < `ISSUE WIDTH; i = i + 1)
begin

r s rTag t [ i ] = { rsrTag [ i ] , r srTagVal id [ i ] } ;
end

/* Create one pay load packe t and v a l i d s i g n a l f o r each i s s u e lane */
for ( i = 0 ; i < `ISSUE WIDTH; i = i + 1)
begin

payloadPacket [ i ] = {payloadGrantedEntry t [ i ] , pay load t [ i ] } ;
payloadVal id [ i ] = s e l e c tVa l i d [ i ] ;

end
end

Figure 3.3: An example of adding configurability with for loops

SRAM M RN W where M and N are the number of read and write ports, respectively. The

number of ports is different for each RAM, as discussed previously, and is either dependent

on the width of a pipeline stage or is constant. Before synthesis begins, the user executes

the Perl script and specifies the fetch width, dispatch width and issue width as arguments.

The script replaces the module names with the name appropriate for the configuration.

The script is described in more detail in Appendix A.
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CHAPTER

4

Efficient FPGA Mapping

The biggest challenge with synthesizing an out-of-order superscalar processor to an

FPGA is efficiently mapping its wide data paths and many multi-ported RAM and CAM

structures to FPGA resources. An FPGA is comprised of large dual-ported SRAMs called

Block RAMs, special function units such as for digital signal processing, and configurable

logic blocks (CLB) which are further broken into slices. Figure 4.1 shows a CLB with two

slices, each having an input and output for communicating to slices within neighboring

CLBs, and access to a switch matrix for global communication. CLBs populate the

majority of the FPGA and are arranged in a grid, as shown in Figure 4.2. Slices can

communicate directly with the slice above and below through a 1-bit uni-directional path.

All other communication must pass through one or more switch matrices. Communication

within a slice is fastest but slows down as more hops are needed to reach the slice within

another CLB. Figure 4.3 shows the number of hops that it takes to communicate between

CLBs for a Virtex-4 and Virtex-5 FPGA. Virtex-5 provides a significant improvement to

the number of CLBs within two and three hops but logic should be contained within a

slice or one hop away for improved performance.

Slices contain mostly look-up tables (LUTs) and storage elements, the two most

abundant FPGA resources. A Xilinx Virtex-5 slice contains four 64x2-bit LUTs and

four single-bit registers or latches. In addition, some slices contain resources to support

forming multiple LUTs into RAMs, called distributed RAMs, and creating a 32-bit shift

register from one LUT. These slices are called SLICEM (Figure 4.4) and the others are

called SLICEL (Figure 4.5). These two figures show the LUTs on the left and the flip-flops
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Figure 4.1: CLB Diagram with two slices connected to a switch matrix and connections
for adjacent CLBs [14]

Figure 4.2: Vertical communication between CLBs [14]
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Figure 4.3: FPGA interconnect and the number of hops for Virtex-4 and Virtex-5 [15]

on the right. The LUTs in a SLICEM have the option to be configured as a DPRAM64/32,

SPRAM64/32, SRL32, SRL16, LUT, RAM or ROM and have extra inputs for writing compared

to the LUTs in a SLICEL that can only be configured as a LUT or ROM. A LUT can

be configured as any six-input two-output logic function or two five-input one-output

logic functions if the two functions share common inputs. As many as four LUTs can be

combined within a slice to generate logic functions with up to eight inputs. If more than

eight inputs are required, LUTs from multiple CLBs are used by communicating through

the switch matrix. Therefore, logic functions requiring more than eight inputs must span

multiple CLBs and suffer with lower performance. With a 32-bit data path, arithmetic

functions alone have 64 inputs.

Memories on a Virtex-5 FPGA are limited to single-, dual-, or quad-ported distributed

RAMs, or large (18 Kb or 36 Kb) dual-ported SRAM structures in specific locations,

called Block RAMs. Table 4.1 shows the combinations of distributed RAMs that can

be formed by using one SLICEM and the number of LUTs required by each.Each port

can be used for either reading (R), writing (W) or reading and writing (R/W). The

port configuration can be either single-ported (S) with one R/W port, dual-ported (D)

with two R/W ports, quad-ported (Q) with three R ports and one W port, or simple

dual-ported (SDP) with one R port and one W port. The width and depth of the RAM

can be increased by using the resources of multiple SLICEM slices. Synthesis tools will

map any memory with a combination of ports not listed to flip-flops instead of the more

efficient distributed or block RAMs. Table 4.2 shows the resource utilization of a 4R2W

(4 read ports, 2 write ports) 32x32-bit register file for a dual-issue superscalar processor,
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Figure 4.4: SLICEM Diagram [14]
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Figure 4.5: SLICEL Diagram [14]
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Table 4.1: Distributed RAM configurations

Size Ports LUTs

32 x 1 S 1
32 x 1 D 2
32 x 2 Q 4
32 x 6 SDP 4
64 x 1 S 1
64 x 1 D 2
64 x 1 Q 4
64 x 3 SDP 4
128 x 1 S 2
128 x 1 D 4
246 x 1 S 4

Table 4.2: Resource utilization of a 32x32-bit register file with four read and two write
ports

Coding Style LUTs Flip-Flops Occupied Slices

Dist. RAM 373 32 94
Flip-Flops 1,882 1,024 472
Difference 5x 32x 5x

when we code the register file for distributed RAMs or use naive coding and leave it

up to synthesis. The distributed RAM implementation uses eight 32x32-bit dual-ported

RAMs to provide the necessary four read ports and two write ports. (As explained

earlier: 4R1W requires four read-replicas, and making these 2W requires two replicas for

each read-replica, yielding 4x2 = 8 replicas total.) A total of 180 LUTs are used with

each dual-ported RAM consuming roughly 23 LUTs. The näıve implementation lets the

synthesis tool decide how to implement the same register file. The entire register file is

placed into 1,024 flip-flops and uses multiplexers for both reading from and writing to

rows. Because a slice contains only four flip-flops, the register file occupies more than five

times the number of slices.
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Table 4.3: Memory structures in the superscalar processor and whether explicitly coded
for Distributed RAM (d RAM), Block RAM (b RAM), or left up to synthesis

Structure Read Ports Write Ports d / b RAM

L1 Instruction Cache (2 banks) 1/bank 1/bank b RAM
Branch Target Buffer (F banks) 1/bank 1/bank b RAM
Branch Predictor (2 banks) 2/bank 1/bank b RAM
Fetch Queue D F d RAM
Rename Map Table 2D D d RAM
Free List D R d RAM
Architectural Map Table R R d RAM
Active List (ROB) R D d RAM
Memory Dependence Predictor D 1 b RAM
Issue Queue Wakeup CAM X D d RAM
Issue Queue Payload RAM X D d RAM
Physical Register File 2X X d RAM
Load Queue CAM M M Left up to synth
Store Queue CAM M M Left up to synth
L1 Data Cache M 1 b RAM

Out-of-order superscalar processors use a large variety of multi-ported RAMs. Table 4.3

shows the major RAM and CAM structures and the number of ports as a function of

fetch width (F), dispatch width (D), issue width (X, the number of execution lanes), the

number of load/store execution lanes (M), and retire width (R).

Managing the resources used by each superscalar structure in an efficient manner is

a key necessity if larger and wider processors are to fit on a single FPGA. As a stark

example, we found that näıvely synthesizing a 2-way superscalar processor with 64 physical

registers and a 16-entry issue queue runs out of resources on the Virtex-5 FPGA used in

this work. A potential work-around is to partition the design and synthesize it across

multiple FPGAs. This approach incurs the design effort of RTL partitioning and extends

simulation time (either by decreasing the FPGA frequency or adding FPGA stall cycles)

due to frequent off-chip communication among partitioned modules. Moreover, it leads to

inefficient utilization of individual FPGAs.
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4.1 Clock Decoupling

Decoupling the modeled processor clock from the FPGA clock is vital to both fitting

large processors on an FPGA and for mapping complex operations to the general-purpose

structures of FPGAs. During each model cycle, multiple FPGA cycles may elapse.

The model cycle advances only after all operations for the model cycle have completed,

allowing complex operations to be performed efficiently over multiple FPGA cycles but

completed entirely within one model cycle. The number of FPGA cycles needed to

complete one model cycle is defined as the FPGA-to-model cycle ratio (FMR). Two prior

implementations are 1) defining a static FMR for all simulated cycles which minimizes

cycle time at the cost of an increased cycle count and 2) dynamically determining the

FMR for each simulated cycle which minimizes the cycle count but hurts cycle time.

FPGA-Sim introduces a new approach by defining a static FMR for events that occur in

every model cycle and allowing infrequent events to delay the model clock even further

when necessary.

Explicitly defining a static FMR [16] requires no global management to advance the

model cycle because each stage knows exactly when the next model cycle begins by using a

counter. The logic is placed locally within a module, eliminating the extra communication

between modules that hurts cycle time and the time to perform place-and-route. Large

designs benefit from this. However, because every operation must complete within the

specified number of FPGA cycles, the FMR must be set to handle the worst case. As

the difference between the FMR and the average number of cycles actually needed for

the model cycle to complete increases, the performance of the simulator degrades due to

more useless FPGA cycles.

Dynamically adjusting the FMR based on the events of a given model cycle minimizes

the number of useless FPGA cycles and decreases the total number of FPGA cycles

needed to complete the simulation. A centralized controller advances the model cycle

once all stages have reported completion of the current cycle. Advancement to the next

model cycle happens after the minimum number of FPGA cycles needed to complete

the model cycle. Long latency events affect only the model cycles in which they occur

instead of delaying every model cycle. This is ideal for an off-chip access to DRAM or

a 32-cycle integer division operation which are infrequent. The problem becomes the

routing between all of the stages and the centralized controller, increasing cycle time

by up to 39% and place-and-route time 20-fold [17]. Complex out-of-order superscalar
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processors exacerbate the problem because deep pipelines increase the number of registers

to stall, each of the numerous memories needs routing to the controller, and high resource

utilization complicates the routing.

FPGA-Sim combines both methods together: a minimum FMR (MFMR) is specified

and only the long-latency modules are routed to the controller. Since the memories are

accessed every cycle and the number of cycles they require is low, they are designed

to complete within the MFMR and do not signal the controller to stall. Each memory

minimizes the resources used (to as low as one RAM) for the given MFMR by using time

multiplexing and RAM replication when there are insufficient cycles. Since there are

many memories across all stages, the total amount of resources used by the design can be

substantially lowered by raising the MFMR, allowing large processors to fit on a single

FPGA.

To allow long latency events to still complete within one model cycle, a centralized

controller stalls the model clock when one of these events has not completed within the

MFMR cycles. Only the modules which can have a long latency event have the routing to

request the additional time from the controller. In the current implementation, there are

three such modules: instruction cache, data cache and the complex instruction arithmetic

logic unit (ALU).

4.2 Modeling a Multi-Ported RAM

In general, FabScalar RAMs do not synthesize efficiently to the FPGA. They are synthe-

sized to flip-flops, due to having many ports. Therefore, a library of FPGA-aware RAMs

was designed to replace FabScalar RAMs. This is important for maintaining the close

relationship between FPGA-Sim and FabScalar RTL. The synthesis tool substitutes the

FabScalar RAMs with the equivalent FPGA-Sim RAMs without any logic changes made to

the pipeline. Each FPGA-Sim RAM, whether using distributed or Block RAMs, provides

the correct number of logical ports through RAM replication and time multiplexing. Thus,

the number of RAMs used is dependent on three variables: the number of logical read

ports, the number of logical write ports and the MFMR.

The first technique to add ports is to use multiple dual-ported RAMs to emulate a

multi-ported RAM. Figure 4.6a shows a 2 read (R) and 1 write (W) RAM using two

dual-ported distributed RAMs. The two logical read ports map to separate distributed

RAMs and the logical write port goes to both so that they receive the same data. Each
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read port has a dedicated distributed RAM to access that copy of the data. The cost of

each read port is one additional distributed RAM, thus the cost of an M read, 1 write

RAM is M distributed RAMs.

Write ports use a similar technique except that the distributed RAMs contain different

data and the RAM with the correct value must be maintained. Figure 4.6b shows a 1 read,

2 write RAM including the additional logic required. The wiring to the distributed RAM

ports follows the same concept as before, the two logical write ports map to separate

RAMs and the logical read port maps to both. When performing a read, two different

values are read, the valid value being from the logical write port that last wrote to

the address. To manage which value is the most recent for each entry, a vector called

ram select vector stores an ID of the last logical write port that updated each entry.

The ID, wr ID, is written to the entry in the ram select vector that has the same

address as the entry in the distributed RAM being written. A read operation uses the ID

to determine which value to get from the multiplexer. The ram select vector introduces

complexity: the vector itself is a 1 read, 2 write RAM. However, the width is reduced to

log2(# of write ports), reducing the number of flip-flops and multiplexers when the RAM

width is large. A 1 read, N write RAM uses N dual-ported RAMs and the additional

logic for the ram select vector, which is based on N and the depth of the RAM.

These two techniques work orthogonal to each other and are used together to increase

both the number of read and write ports. As a general rule, M xN dual-ported RAMs are

needed for an M read, W write RAM (Figure 4.7). This can be reduced by using time

multiplexing which maps multiple logical ports to fewer physical ports over multiple cycles.

Figure 4.8a contains a diagram of a 2R 2W RAM implemented with one dual-ported RAM

using two cycles, i.e., MFMR is two. The timing diagram is shown in Figure 4.8b. The

signal vstall is the active low clock enable used to stall the pipeline, i.e., the model clock

advances to the next cycle at the rising edge of clock if vstall is low. Each physical port

supports both a read and write operation. During the first cycle, the state machine routes

rd addr0 to port0 addr and rd addr1 to port1 addr. At the rising edge of clock, the

data read from each port is latched into a dedicated register and is available to the model.

The state machine changes the select signals of the multiplexers in cycle two to allow the

writes to happen. When the MFMR is large enough that the memory is implemented

with one dual-ported RAM, ram select vector is removed to reduce resources further.

However, as the MFMR is increased and more logical ports are mapped to a physical port,
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(a): Adding read ports (b): Adding write ports

Figure 4.6: Using multiple dual-ported RAMs to implement: (a) two read ports and (b)
two write ports
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the number of inputs to the multiplexer increases, potentially degrading performance

more than an additional RAM would.

Figure 4.7: Implementing a 2R 2W RAM with RAM replication

Multiplexing the ports reduces the resources used but also improves the FPGA cycle

time by placing registers immediately after the read ports of memory structures. FabScalar

is designed to use memories with asynchronous read ports, i.e., the data is available in

the same cycle that the address is provided. However, time multiplexing requires the

data to be latched into registers in order to preserve the data for the entire model cycle.

Without the registers, the physical ports could not be shared with multiple logical ports

without changing the data read in each FPGA cycle. The added benefit is that timing
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(a): Block diagram

clock
vstall

Port0
addr rd addr0 wr addr0

data in wr data0

wr en
data out rd data0

Port1
addr rd addr1 wr addr1

data in wr data1

wr en
data out rd data1

(b): Timing diagram

Figure 4.8: Implementing a 2R 2W RAM with time multiplexing

paths through memories end at the read port, shortening the logic path.

Since time multiplexing pipelines the reads and writes over multiple FPGA cycles, the

situation where the data read from one memory structure is used for calculating an input

of another memory structure must be handled correctly. Figure 4.9 shows an example

in the commit stage where three RAMs are sequentially accessed in one cycle. When

an instruction is committed, AL head ptr0 is used to read log dest0 (blue) from the

head of the Active List (AL) and log dest0 becomes the address into the Architectural

Map Table (AMT). In the same cycle, phys dest0 (red) is read from the AMT and, at

the end of the cycle, is written into the Free List (FL). The timing diagram is shown in

Figure 4.10a. The problem that time multiplexing introduces is that log dest0 is no

longer available in cycle 1 and reaches the AMT in cycle 2 at the earliest. The AMT

needs to be aware of this and wait until cycle 2 to begin reading. The timing diagram for

the FPGA with an MFMR of four is shown in Figure 4.10b. In cycle 1, AL head ptr0

is used to read log dest0 from the AL. Normally, the AMT would read phys dest0 in

the same cycle but since log dest0 is a stale value, the reading is delayed a cycle. At

the beginning of cycle 2 log dest0 is valid and phys dest0 is read from the AMT. In

cycle 3, phys dest0 becomes available and is written to the FL at the next rising edge
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of clock. The FL can use cycles 1 and 2 for reading since the read addresses are not

dependent on a RAM. A minimum of three cycles is needed to complete this example,

thus the MFMR is limited to three or greater.

Figure 4.9: Logic path through multiple RAMs

The pervasiveness of multi-ported memories in a superscalar processor means that

memories consume a large percentage of the total design. This percentage is reduced

by increasing the MFMR because each memory module is designed to use the minimum

resources for the possible MFMR values. The MFMR is used as a parameter to specify

which design to synthesize. Setting the MFMR high enables large processors to fit on a

single FPGA and setting it low increases the simulation speed when smaller processors

are modeled.
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clock
Active List
read addr0 AL head ptr0

read data0 log dest0

read addr1 AL head ptr1

read data1 log dest1

Arch. Map Table
read addr0 log dest0

read data0 phys dest0

read addr1 log dest1

read data1 phys dest1

Free List
write addr0 FL tail ptr0

write data0 phys dest0

write en0
write addr1 FL tail ptr1

write data1 phys dest1

write en1

(a): FabScalar

clock
vstall

Active List
read addr0 AL head ptr0 AL head ptr1

read data0 log dest0 log dest1

Arch. Map Table
read addr0 log dest0 log dest1

read data0 phys dest0 phys dest1

Free List
write addr0 FL tail ptr0 FL tail ptr1

write data0 phys dest0 phys dest1

write en0

(b): FPGA-Sim

Figure 4.10: Timing diagrams of the AL, AMT and FL

27



4.3 Modeling a Multi-Ported CAM

Modeling CAMs presents a new challenge beyond just adding more ports because there is

no native CAM structure to replicate. Performing a serial search over multiple cycles is

a simple approach, but negatively impacts simulation speed when the contents must be

fully searched. The CAMs used in the issue stage search for all matching entries to wake

up the consumer instructions. With an issue queue size of 32, each model cycle would

need 32 FPGA cycles to perform a serial search. Instead, CAMs are modeled with RAMs

that store the match-vectors for the data values [9].

The example in Figure 4.11 demonstrates the operations of a conventional CAM (left)

and one modeled on an FPGA (right). The left side contains a conventional CAM with

eight entries, each two bits wide. The FPGA implementation requires two structures, a

RAM with the same dimensions and contents of the CAM (Value-RAM) and a second

RAM with transposed dimensions of the CAM (Vector-RAM) (i.e., the width is equal

to the depth of the CAM and the depth is 2width). The Vector-RAM is addressed with

the match or write data and it contains bit-vectors of the matching entries for all data

values. The initial state is shown in Figure 4.11a. A match operation for the data value 3

(Figure 4.11b) requires a comparison of each entry in the conventional CAM with the

value 3 and the output bit of the entry (match line) is set to a zero if the two values

are not equal or a one if they are equal. The FPGA implementation uses the value 3

to look up the match-vector in the vector-RAM. Both sides take one cycle to produce

the match-vector. The bit cells of a conventional CAM are different than those a RAM,

allowing a comparison with all entries in parallel. On the FPGA, the match-vector is

updated by the write operation, shifting the complexity to the write operation to improve

the time taken to match. The writing of the value 0 to entry 2 is shown for both designs in

Figure 4.11c. The conventional CAM overwrites the previous value at entry 2 with 0 and

future matches will compare with 0 at that entry instead of 3. To achieve the same effect

on the FPGA, the match-vectors for both 3 and 0 are updated. The value-RAM provides

the previous value (3) at entry 2 and is then updated with 0. Bit 2 of the match-vectors

for the previous value (3) and new value (0) are set to 0 and 1, respectively. Updating

a single bit of the match-vectors is simple because distributed RAMs are comprised of

multiple 1- and 2-bit LUTs, each having a separate write enable signal.

It was discussed previously that the number of match and write ports that the CAMs

in the issue stage require is dependent on the issue width and dispatch width. Using

28



(a): Initial state

(b): Matching value ’3’

(c): Writing value ’0’ at address ’2’

Figure 4.11: CAM operations of a conventional CAM and one modeled on an FPGA
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the modeled CAM described above, multiple ports are attained through replication and

time multiplexing in a similar fashion as RAMs. The distinction is with the write ports

since the match-vector contains one bit for each entry, and each entry can be updated by

any logical write port. Determining which value is the most recent needs to be done for

each bit instead of the whole value. The diagram of a 1 match (M) 2W CAM and the

additional logic needed for adding write ports is shown in Figure 4.12. The logic for the

second write port is not shown but it is identical to the logic for the first write port. A

write requires one cycle for each of the two writes to Vector RAM 0, one write to set a bit

in the new value’s match-vector and one to clear a bit in the old value’s match-vector. The

new value’s match-vector is accessed during the write cycle when write data0 is selected

as the address of Vector RAM 0. This vector has the bit corresponding to write addr0

set to reflect that this bit will match when searching for write data0. The previous

value’s match-vector is accessed in the clear cycle when previous data0 is selected. This

vector is the match-vector for the data previously written to write addr0 and needs

the bit corresponding to write addr0 cleared. In the first cycle (write cycle), the new

value’s match-vector is updated while previous data0 is read from Value RAM 0. Before

updating the previous value’s match-vector in the second cycle (clear cycle), previous -

data0 is compared with write data0. If there is a match then the bit is not cleared since

the new match-vector is the same as the previous match-vector: clearing the bit would

undo the setting of the bit. Still in cycle 2, Value RAM 0 is updated with write data0.

A vector called mask vector records the last logical write port that updated each entry,

similar to the ram select vector. When performing a match, the mask vector provides

a bit-mask for each physical write port (mask vector 0 for write port 0) that is bit-wise

ANDed with the match-vector from Vector RAM 0, clearing all bits except those last set

by write port 0. The masked match-vectors from all Vector-RAMs are then bit-wise ORed

to produce match vector0.
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Figure 4.12: Multi-ported CAM modeled on an FPGA
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CHAPTER

5

Simulating on an FPGA

This chapter describes the additional modules required to simulate the core on an

FPGA. These modules are a substitute for the tasks that a software simulator relies on

the operating system for (e.g., communication, memory accesses). Figure 5.1 contains

a diagram of the FPGA-Sim framework. The SD Controller (Section 5.1) loads the

architectural register and memory state from an SD card at the beginning of the simulation.

It interacts with the DRAM interface to load the memory state into DRAM and the

pipeline to initialize the physical register file and PC. The DRAM Controller (Section 5.2)

provides access to the system DRAM through the DRAM interface. The DRAM interface

is the arbiter of requests sent to DRAM from the SD, instruction cache and data cache

controllers. The instruction and data cache controllers (Section 5.3) manage on-chip

caches composed of Block RAMs to reduce the number of requests sent to DRAM. Time

multiplexing is handled by the Time Controller and it interacts with the two cache

controllers and the pipeline. Performance counters are managed by the Stats module.

Counters can be added to record simulator performance (e.g., the number of elapsed

FPGA cycles) or to record model performance (e.g., the number of branch mispredictions).

The statistics are sent to the host through a UART interface. The Trace Generator creates

traces of committed instructions and sends them to either the host or the Checker Core.

The traces are compared by the Checker Core (Section 5.4) which is a simple in-order

core that runs the same workload as the model. Modules specific to FPGA-Sim were

developed by the author but modules that work with an industry standard (e.g., UART

Controller) were obtained from a third party. Table 5.1 lists the modules and where they
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were obtained from.

Figure 5.1: FPGA-Sim Framework
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Table 5.1: FPGA-Sim Framework Sources

Module Source

Instruction Cache Controller Author
Data Cache Controller Author
Time Controller Author
DRAM Interface Author
SD Controller OpenCores [18]
DRAM Controller Xilinx MIG [19]
Statistics Controller Author
Trace Generator Author
UART Controller OpenCores [20]
Checker Core Author

5.1 SD Card Controller

A software simulator initializes the architectural register and memory state of the simulated

benchmark to kick-off execution, either from the first instruction of the benchmark or

from some checkpoint at mid-execution. FPGA-Sim must similarly kick-off simulation on

the FPGA. Programming the FPGA with a bitfile containing the initial architectural

register and memory state would require more storage on the FPGA than is currently

available and the bitfile would be tied to a single benchmark. Instead, the SD Controller

reads the necessary data to initialize the architectural register and memory state from

an SD Card prior to starting the simulation. This enables execution to start not only

at the beginning of the benchmark, but also from some arbitrary point: any arbitrary

region of the benchmark can be simulated by initializing the architectural state with a

checkpoint from a previous execution. Controlling the start and stop points of execution

allows the fast simulation of characteristic workloads by only executing the regions that

represent the characteristic.

The checkpoint containing the program counter (PC), architectural register file contents

and memory state is loaded using a state machine after the memory controller has

initialized. The SD Card controller reads 512-byte blocks of data at a time, starting with

the PC and register file contents. The controller has special access to the PC in the

fetch stage and the physical register file in the register read stage for initializing the data.

Together, the PC and register file are only 140 bytes (4 and 136, respectively), 372 bytes

34



are padded at the end to create a 512-byte block.

5.2 DRAM

Running large workloads on the FPGA requires a memory system larger than the storage

an FPGA can provide. The system used in this work provides two channels of DDR2

SDRAM and the capacity of each channel is 2 GB. To avoid virtual-to-physical memory

address translation, the virtual addresses are used as the physical addresses. Address

translation is not required for single-threaded single-programmed workloads and the PISA

ISA specifies a 31-bit address space, or 2 GB, which fits within a single channel.

FPGA-Sim accesses the DRAM through a memory controller synthesized to the FPGA.

The memory controller was generated using Xilinx Memory Interface Generator (MIG)

v2.2 and requires the interface to operate at 133 MHz or higher. To run FPGA-Sim with a

slower clock, the memory controller was modified to use FIFOs that were already present

to synchronize between FPGA-Sim’s clock and a 133 MHz clock. The user accesses

the memory by issuing a 3-bit command, 31-bit address and, optionally, the 256-bits

of data for a write. For read and write operations, the data is divided into two 128-bit

values. Three FIFOs store the address/command, write data and read data to support

multiple outstanding requests. Block diagrams of the read and write interface are shown in

Figure 5.2 and Figure 5.3, respectively. For both the read data FIFO and write data FIFO,

the controller instantiates two FIFO36 72s to achieve the 128-bit data width required.

The additional signals indicating the FIFOs are almost full (afull) and app wdf mask data

are not used by FPGA-Sim because the request FIFOs are large enough to buffer the

maximum number of requests generated in a model cycle. The model cycle does not

advance until the requests have completed.

The DRAM width is 64-bits and is accessed by the controller sequentially with a burst

length (BL) of four. I.e., four 64-bit words starting with a four-word-aligned address

is accessed whenever there is a command issued from the FIFOs. Thus, the minimum

amount of data accessed is 256 bits. The timing diagrams for the read and write operations

are shown in Figure 5.4 and Figure 5.5, respectively. In each figure, two operations are

requested with only one address for each operation, the controller generates the additional

three to complete the burst. The 3-bit command for reading is 001 and 000 for writing.

The latency between issuing a read and when the data is returned is shown and the

latencies for multiple requests can overlap.
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Figure 5.2: User interface for reading from DRAM [19]

Figure 5.3: User interface for writing to DRAM [19]
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clock
app af wren
app af addr A0 A4

app af cmd 001 001

rd data valid
rd data fifo out D1D0 D3D2 D5D4 D7D6

Read Latency

Figure 5.4: Timing diagram of two reads to DRAM (BL = 4) [19]

clock
app af wren
app af addr A0 A4

app af cmd 000 000

app wdf wren
app wdf data D1D0 D3D2 D5D4 D7D6

Figure 5.5: Timing diagram of two writes to DRAM (BL = 4) [19]

The app af addr is for the addresses and is used for both read and write operations.

Thus, only one request may be issued to the memory controller per cycle. The DRAM

Interface serializes the requests from the SD, instruction cache and data cache controllers.

5.3 Caches

The model cores expect all memory accesses to complete in the same cycle that they are

issued, i.e., perfect caches are modeled. FPGA-Sim provides this by stalling the model

clock until the requests have completed. The performance of the simulator (not model) is

improved with a 32 KB instruction cache and 32 KB data cache so that not every request

is sent to the memory controller and DRAM.

Both caches are direct mapped. They are implemented using multiple 36 Kb dual-

ported Block RAMs accessed in parallel. The cache block size for both caches is 32 bytes,

the size of one access to the memory controller. Cache hits have a two FPGA-cycle latency

and the latency of misses depends on the time to access the DRAM.
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5.3.1 Instruction Cache

The Block RAMs in the instruction cache are configured in simple dual port (SDP) mode

which limits the ports to one read and one write but provides an increased width of 64 bits

from 32 bits. Four such Block RAMs are aggregated to construct one instruction cache

bank. Four are used to get a width of one cache block (4x64 bits = 256 bits = 32 bytes).

The instruction cache is comprised of two such banks, interleaved: the first bank contains

blocks with even-addresses and the second bank contains blocks with odd-addresses. Each

bank has 512 cache blocks. The 2-way interleaved instruction cache enables fetching up

to 8 instructions at a time.

5.3.2 Data Cache

The data cache uses regular dual-ported Block RAMs with two read/write ports and a

width of 32 bits. Accessing one cache block requires an array of eight 36 Kb Block RAMs.

The data cache has two read ports and two write ports to support a processor load (R),

processor store (W), writeback (R) and linefill (W), concurrently. The cache array is

replicated to meet the higher port demand of the data cache.

5.4 Checker Core

Implementing new micro-architectural ideas introduces the chance of adding bugs to the

design. To speed up the verification and debugging process, an optional checker core runs

in parallel with the model core on a separate FPGA and detects bugs in the output of the

model core. The checker core is a 5-stage in-order core and performs the same function as

the functional simulator when simulating in software. The PCs and results of committing

instructions are pushed into a FIFO in program order. The model core sends this trace to

the checker core over a bus that connects the two FPGAs. The checker core provides the

“golden reference” based on the instructions it commits and compares the instructions from

both cores. The checker core signals to the host computer the instruction count, actual

values and expected values of the offending instruction when a mismatch is detected. The

checker core has been verified by comparing its committed instruction trace with that

from the FabScalar functional simulator.

Typically, more information than what is provided by the checker core is needed to
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determine the cause and location of a bug. Replacing debugging tools is not the goal of

the checker core. Rather, the goal is to verify that the model core is working correctly

in the common case and to provide a starting point for debugging. For workloads that

run for millions of instructions and take hours to simulate in software, locating the first

incorrect committed value is a significant advantage.
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CHAPTER

6

Methodology

6.1 Core Configurations

Five different processor configurations that test each of the three major superscalar

dimensions were synthesized to a single FPGA. The configurations, their MFMR values

and their cycle times are shown in Table 6.1. Core-1 was selected as an “average” core

that a user may decide is a good starting point for exploring conceived implementations.

Core-2 aims to stress the back-end and resource utilization by issuing up to six instructions

per cycle. We test Core-3 as a shallow, narrow core with smaller structure sizes. Core-4

tests the superscalar depth with a three-deep issue stage and four-deep register read

stage. Finally, Core-5 stresses the front-end width along with the back-end width. The

MFMR range begins with the lowest value that allowed the design to both fit on a single

FPGA and finish synthesis in a reasonable amount of time. We stopped increasing the

MFMR once all memories were using the minimum resources. A highly-detailed C++

simulator was compared against FPGA-Sim. The C++ simulator provides many of the

same configurable parameters and the closest cores were used for the comparisons. The

only significant difference was that the C++ simulator did not have a memory dependence

predictor so all loads were issued speculatively.

The branch predictor is bi-modal with 64 K entries and the branch target buffer

(BTB) contains 4 K entries. The back-end contains four types of functional units: simple,

complex, control and memory. For issue widths greater than four, additional simple units

are added to fill the width. In this case, cascaded select logic is used to issue multiple
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Table 6.1: Core configurations

Parameter Core-1 Core-2 Core-3 Core-4 Core-5

Fetch Width 4 4 2 4 5
Dispatch Width 4 4 2 4 5
Issue Width 4 6 4 4 5
Active List 128 128 64 128 128
Physical Register File 96 128 64 96 128
Issue Queue 32 32 16 32 32
Load/Store Queue 32 32 16 32 32
Fetch-to-Execute Depth 9 9 9 13 9
Branch Predictor 128 Kb 128 Kb 128 Kb 128 Kb 128 Kb
Branch Target Buffer 120 Kb 120 Kb 120 Kb 120 Kb 120 Kb
Mem. Dependence Pred. 20 Kb 0 20 Kb 0 0
Instruction Cache perfect perfect perfect perfect perfect
Data Cache perfect perfect perfect perfect perfect
MFMR 3-9 3-11 3-9 3-9 5-11
Cycle Time 20 ns 20 ns 20 ns 20 ns 20 ns

instructions of the same type. Load instructions execute speculatively with respect to prior

unknown store addresses. If a store detects a prematurely executed load, the offending

load initiates recovery when it reaches the head of the active list.

6.2 Experimental Setup

We performed all of the experiments on a BEE3 FPGA system with four Xilinx Virtex-5

LX155T FPGAs. Each FPGA has a single channel of 2 GB DDR2 DRAM, an SD

Card reader, a UART port for communicating with the host and a 72-bit ring bus for

communicating between the target core and checker core. The ring bus runs at 200 MHz,

the DRAM runs at 133 MHz and the system clock runs at 50 MHz. FPGA-Sim can run

on any FPGA system that has similar peripherals; the only platform-specific module is

the memory controller. The five cores were synthesized for each MFMR value using Xilinx

ISE 10.1. The workload consists of six 100 million instruction SimPoints [21] from the

SPEC CPU2000INT benchmark suite. The SimPoints provide regions that are free of

floating-point instructions and system calls; currently FPGA-Sim does not support these

types of instructions.
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CHAPTER

7

Results

This chapter presents the experimental results gathered for FPGA-Sim and the two

software simulators. The results show that FPGA-Sim is, in fact, faster than and more

accurate than the C++ simulator. Additionally, FPGA-Sim is many orders of magnitude

faster than RTL simulations and just as accurate.

7.1 Resource Utilization

One challenge that has held back the simulation of out-of-order superscalar processors

on FPGAs is the mapping to a single FPGA. With memories being so pervasive, large

processors that would normally require multiple FPGAs can fit on a single FPGA by

increasing the MFMR. Figure 7.1 and Figure 7.2 show the LUTs and flip-flops used

for each of the five cores. Utilization is shown on the left vertical axis and absolute

numbers of LUTs or flip-flops on the right. The maximum capacity on the FPGA of

both LUTs and flip-flops is 97,280. The horizontal axis indicates the MFMR values

used. Higher MFMR values reduce the resources used by the memories. These numbers

represent the resources used by all modules required for running FPGA-Sim, excluding

the checker core. Core-4 shows the largest improvement, with 17,511 (39%) fewer LUTs

when switching from an MFMR of 3 to 9. Flip-flops also show a noticeable improvement

with a maximum reduction of 6,089 (26%), again in Core-4. Flip-flops are used by the

memories for storing the data output and also as the ram select vector. When the

MFMR is increased so that all write ports of a memory are multiplexed to the same
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RAM, the ram select vector becomes unnecessary and causes a decrease in the number

of flip-flops. Both Core-1 and Core-4 have four-wide fetch, dispatch, issue and commit

stages. The difference is that Core-1 has a load violation predictor and Core-4 has a

three-deep issue stage compared to two-deep and a four-deep register read stage compared

to one-deep. These differences cause Core-4 to use 5,501 (8%) more LUTs and 2,581

(10%) more flip-flops when MFMR is 3. The resource utilization of Core-5 shows that

the front-end width has a greater impact than the issue width. Core-5 uses more resources

than Core-2 for all values of MFMR except 11, despite having a narrower issue width.

Core-3 uses the least resources by a large margin with nearly 30,000 (46%) fewer LUTs

and 6,251 (23%) fewer flip-flops than the next smallest core, Core-1. Core-3 benefits from

not only having a front-end half as wide as Core-1 but nearly every memory is half of the

size as well. The small memories already use few resources and increasing the MFMR

provides minimal benefit.

Figure 7.1: LUT utilization

The wider cores have a knee in the curve of LUTs at MFMR 7. As highly-ported

memories perform more time multiplexing, the number of logical ports that must be

multiplexed to a single physical port increases, requiring more inputs to the multiplexors
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Figure 7.2: Flip-Flop utilization

that act against the benefits of using fewer structures. Because of this effect, setting the

MFMR to an arbitrarily large value will not always provide the smallest design. For the

designs studied here, increasing the MFMR beyond seven shows little improvement.

Increasing the MFMR is a powerful optimization that can reduce designs enough

to fit onto an FPGA or to downgrade to a smaller FPGA, obviating the need to put

effort into partitioning the design across multiple FPGAs and avoiding the associated

communication. Figure 7.3 and Figure 7.4 show the same data, but also show the LUT

and flip-flop capacities of various Xilinx FPGAs, respectively. The FPGAs listed are part

of Xilinx’s Virtex-5, Virtex-6 and Virtex-7 family of FPGAs and their per unit prices1 at

the time of this writing are shown with the model number, when available. The LUT and

flip-flop capacities were calculated by multiplying the number of slices by the number of

LUT and flip-flops per slice, respectively. The figures show how FPGAs have followed

Moore’s Law to make simulations of complex out-of-order superscalar processors on a

single FPGA a practical endeavor. The maximum number of LUTs and flip-flops was

used by Core-4 with an MFMR of 3 (62,070 LUTs and 29,904 flip-flops). Table 7.1 shows

the percentages that this core would require if using a different FPGA. On the largest

1The prices were taken from www.avnet.com on October 26, 2011. For each model, the lowest priced
unit was used.
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FPGA available (Virtex-7 2000T), Core-4 would use up just over 5% of the LUTs and

just over 1% of the flip-flops. With the remarkable capacities of FPGAs available today,

larger and more complex cores can be simulated by using minimal effort to manage the

resource usages.

Figure 7.3: Estimated LUT utilization on various FPGAs
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Figure 7.4: Estimated flip-flop utilization on various FPGAs

Table 7.1: Capacities of various FPGAs and the estimated utilization of Core-4

LUTs Flip-Flops

FPGA Capacity Utilization Capacity Utilization

Virtex-5 XC5VLX155 97,280 63.8% 97,280 30.7%
Virtex-5 XC5VLX330 207,360 29.9% 207,360 14.4%
Virtex-6 XC6VLX130 80,000 77.6% 160,000 18.7%
Virtex-6 XC6VLX760 474,240 13.1% 948,480 3.2%
Virtex-7 XC7V585T 364,200 17% 728,400 4.1%
Virtex-7 XC7V2000T 1,221,600 5.1% 2,443,200 1.2%
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Table 7.2: Block RAM usage and Synthesis Times

Block RAMs Synthesis Time

Core Total Utilization Min. Max. Avg.

Core-1 44 21% 2h 29m 5h 28m 4h 12m
Core-2 43 20% 4h 08m 7h 32m 5h 53m
Core-3 44 21% 1h 10m 1h 32m 1h 18m
Core-4 43 20% 3h 37m 6h 58m 4h 47m
Core-5 45 21% 4h 10m 5h 13m 4h 40m

7.2 Speed against C++, RTL

Fast simulations are important for being able to make informed design decisions based on

many iterations. In fact, one of the main goals of FPGA-Sim is to provide fast simulations

when even a C++ simulator is not fast enough. We measured the speed of FPGA-Sim as

the number of model cycles simulated per second, and compared against a C++ timing

simulator that models the same FabScalar-produced processors and RTL simulations of

the same FabScalar core. The MFMR is five for all FPGA-Sim cores. Although cores

one through four successfully run when MFMR is as low as three, Core-5 fails to meet the

same timing constraint when MFMR is less than five. So, these results are pessimistic for

cores one through four. Figure 7.5 shows the model cycles per second using a logarithmic

scale on the vertical axis and the workloads simulated on the horizontal axis with the

harmonic mean for all workloads on the far right. RTL simulations perform the worst

because of the great detail being simulated. Moreover, the parallelism of event-based

simulations is too fine-grained to exploit effectively. C++ achieves almost two orders

of magnitude more model cycles per second than RTL. Both are software simulators

but the advantage that C++ has is the abstraction used when modeling the core. The

improvement gained by going from the RTL simulator to FPGA-Sim is between three

and four orders of magnitude.

An interesting note is that all cores simulate at nearly the same rate with FPGA-Sim

for a given workload. There is variability only when looking across the workloads because

the FMR is dependent on the MFMR and long latency events (complex arithmetic, cache

misses). The MFMR is constant across the cores and long latency events are primarily

dependent on the workload. On the other hand, both of the software simulators perform
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better when simulating Core-3, the smallest core.

Figure 7.5: Simulated model cycles per second

The model cycles per second of FPGA-Sim was compared against C++ to show

that there is a significant performance increase when using an FPGA as a simulation

platform, even when compared to a lower-fidelity representation of the core. The speedup

of FPGA-Sim over the C++ simulator (Figure 7.6) ranges between 37x for Core-3 running

parser.5211 and 154x for Core-5 running bzip.4060. As before, the cycles per second

were measured when executing with MFMR equal to five. Core-2 consistently has the

highest speedup over all of the workloads except bzip.4060 because the C++ (and RTL)
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simulator must do more work per cycle with this core and for large cores in general. For

the same reason, the speedup of cores one and three are the lowest because they are the

smallest cores. The average speedups for each of the workloads are shown in the figure

and listed in Table 7.3 for clarity. The workload with the highest average speeup for all

of the cores is bzip.4060 with an average of 121x while the lowest is parser.5211 with

an average of 47x. Overall, FPGA-Sim performs 87x better, on average, than the C++

simulator for all of the cores and workloads.

Figure 7.6: Speedup of FPGA-Sim over C++

Figure 7.7 shows the effective clock frequency as the MFMR is increased. The effective

clock frequency is calculated by dividing the FPGA clock frequency by the FMR of the

simulation. The plots are arranged by workload to highlight the point that the performance

is largely dependent on the workload, not the core being simulated. Bzip.4060 performs

the best, reaching a peak effective frequency of 15.1 MHz with cores three and four.

Parser.5211 performs the worst, only getting as high as 5.8 Mhz with Core-4. Workloads

that perform well with low MFMRs have the largest performance degradation as the

MFMR is increased. This is because they are not frequently stalling for long-latency

events. For example, the effective frequency of bzip.4060 running on Core-2 is reduced by
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Table 7.3: Average speedup over C++

Workload Average Speedup

bzip.4060 121x
gap.16190 76x
gzip.5030 103x
mcf.3673 96x
parser.5211 47x
vortex.5877 80x
All 87x

45% when the MFMR is doubled from 3 to 6, 47% between 4 and 8, and 48% between 5

and 10. The frequency is reduced by nearly half each time the number of FPGA cycles

afforded to memories is doubled. Workloads with many stalls for long-latency events

perform worse than other workloads when the MFMR is low, but are not affected to the

same extent by raising the MFMR. The effective frequency for Core-4 running parser.5211

is reduced only by 18% when the MFMR is doubled from 3 to 6, 22% between 4 and 8,

and 25% between 5 and 10. Increasing the MFMR from 3 to 11 lowers the frequency

by 69% and 37% for bzip.4060 and parser.5211, respectively, on Core-4. An interesting

exception is the relatively wide range of frequencies for gzip.5030 when the MFMR is

3. Core-3 runs at 13 MHz and Core-2 runs at 10.8 Mhz. The difference is because of

mispredicted branches causing pollution in the instruction cache. Core-3 resolves branches

quicker because it has a smaller instruction window so the number of incorrect instructions

fetched is fewer. Although the cause is micro-architectural differences, the caches are part

of the simulator.
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Figure 7.7: The effective frequencies

51



7.3 Accuracy

Three separate avenues are taken to verify the correctness of FPGA-Sim: matching the

instructions per cycle (IPC) with the RTL simulation, matching on the checker core, and

comparing the instruction trace with a software functional simulator. Producing the same

IPC as the RTL simulation of the model core helps to verify the timing of the modeled

core since a bug in the design will likely increase of decrease the cycle count. Figure 7.8

shows the IPCs for the different cores and workloads. The C++ simulator was configured

as close to the RTL cores as the simulator allowed; however, there were still some large

differences. FPGA-Sim matches the IPCs of the RTL cores exactly for 29 out of the 30

core+workload combinations and within 1% for the last combination. FPGA-Sim can be

reliably used for any performance or sensitivity studies. The one workload that does not

match (Core-1, vortex.5877 ) is currently being resolved. The C++ simulator performs

well for some cases but is overall unreliable. Its IPCs match the RTL within 5% for 9

combinations. Its IPCs are off by more than 10% for 15 combinations, however.

Simulating with the checker core running in parallel provides additional assurance

that each committed instruction is correct. This method is the fastest of the three since

the work is done entirely on FPGAs and the only communication with the host is if

and when there is an error. The third and most definitive step to verifying that the

simulation is correct is to capture the instruction trace of the model core and compare

it with the trace generated from the functional simulator used by FabScalar to ensure

correctness. The PC and result of each committed instruction is sent to the host through

a UART connection. The speed of host communication severely delays the simulation,

making this method unreasonable for typical use. Table 7.4 lists the cores verified and

the number in parentheses next to the core name is the MFMR value that was used.

FPGA-Sim traces match exactly with the FabScalar functional simulator. Simulation was

terminated arbitrarily at the instruction counts shown, due to time constraints; again,

host communication is unreasonably slow.
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Figure 7.8: IPCs of FPGA-Sim, RTL and C++

Table 7.4: Number of instructions verified

Workload Core-1 (6) Core-2 (9) Core-3 (9) Core-4 (9) Core-5 (9)

bzip.4060 19,017,398 14,174,876 10,616,918 17,365,606 13,413,091
gap.16190 10,626,418 28,392,187 13,136,862 10,711,432 24,679,765
gzip.5030 18,810,483 15,485,820 13,826,438 19,967,558 13,508,432
mcf.3673 11,700,649 34,271,783 35,679,441 35,661,629 10,367,709
parser.5211 25,000,549 23,702,156 11,396,448 22,145,545 19,883,183
vortex.5877 22,241,639 19,066,336 10,111,174 19,240,150 10,049,283
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7.4 Analysis of FPGA cycles

Two factors determine the number of model cycles that FPGA-Sim simulates per second:

the MFMR and the additional number of stall cycles caused by long-latency events. The

maximum performance is limited by the chosen MFMR since each model cycle must

use at least that many FPGA cycles. The long-latency events reduce the performance

further depending on how many cycles they took to complete. A higher FPGA cycle

count can be offset by reducing the cycle time; a possibility in the cases where increasing

the MFMR reduces resource utilization. However, determining the minimum cycle time

for each design would require multiple synthesis attempts and would be a hurdle to our

goal of quickly simulating diverse cores. Figure 7.9, Figure 7.10, Figure 7.11, Figure 7.12,

Figure 7.13 and Figure 7.14 show a breakdown of the contribution to FPGA cycles

from the long-latency events for bzip.4060, gap.16190, gzip.5030, mcf.3673, parser.5211

and vortex.5877, respectively. These are all cycles beyond the MFMR that delayed the

simulation from advancing to the next model cycle. The events are: a multiplication

instruction (6 cycles), a division/modulus instruction (32 cycles), a cache hit (3 cycles),

a cache miss (22 cycles on average to access DRAM) or stalling for the checker core to

catch up. When multiple events happen simultaneously, the single counter increased is,

in descending priority: I-Cache, D-Cache, complex unit, checker core. I-Cache was given

priority over D-Cache because requests from the I-Cache are serviced before the D-Cache

requests. Only the breakdown for cores two and three are shown. The cycles attributed

to the MFMR are not shown because they comprise the majority and always increase

linearly as the MFMR is increased. Since these are omitted and only cycles that stall

beyond the MFMR are counted, the number of cycles shown decreases as the MFMR

increases even though the total number of cycles increases. Each workload exhibits a

different mix of events. Bzip.4060 is dominated by misses in the data cache. In fact,

the cycles spent handling data cache misses is between 98.7% and 99.9% for both cores.

Compared to Core-2, Core-3 has far fewer cycles caused by the instruction cache , hence

far fewer total cycles, for gzip.5030. It was discussed previously that Core-3 had fewer

instruction cache misses caused by pollution from mispredicted branches. The plots for

vortex.5877 show that Core-3 has 17% fewer cycles for all events and a larger percentage

of complex cycles.
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Figure 7.9: Breakdown of contributors to the FMR for bzip.4060

Figure 7.10: Breakdown of contributors to the FMR for gap.16190

Figure 7.11: Breakdown of contributors to the FMR for gzip.5030
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Figure 7.12: Breakdown of contributors to the FMR for mcf.3673

Figure 7.13: Breakdown of contributors to the FMR for parser.5211

Figure 7.14: Breakdown of contributors to the FMR for vortex.5877
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CHAPTER

8

Summary and Future Work

This work explored an exciting trend that is gaining traction in the computer architecture

community, which is to use FPGAs as cost-effective hardware-accelerated simulators. The

continued scaling of FPGA capacities has brought them into the spotlight as a worthy

alternative to the flexible, well-understood, yet, somewhat inaccurate and slow method of

using software simulators for architecture research. This work presented FPGA-Sim, a

configurable and FPGA-synthesizable simulator that models the RTL designs of diverse

out-of-order superscalar processors. This thesis demonstrates that, although following

this trend requires more initial effort, it has been completed by one graduate student.

The challenges facing newcomers were addressed and techniques for overcoming them

were presented. Among the challenges is mapping the highly-ported RAMs and CAMs

found in out-of-order superscalar processors efficiently by using the generic look-up tables

(LUTs) and other FPGA primitives. Implementations were presented and examined for

using dual-ported RAMs to emulate a memory structure with far more ports. The methods

were: RAM replication and time multiplexing. By adopting these implementations, future

effort can be focused in other areas that advance FPGA-based simulation.

Hardware implementations were also presented for software-leveraged tasks. Decou-

pling the FPGA and model clocks provides the same necessary flexibility of software

simulators and a new technique that allows both a static and dynamic number of FPGA

cycles to complete one model cycle was presented. Operations typically inefficient or

impossible for an FPGA are easily performed in a single cycle by virtualizing time for the

modeled core.
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The work was compared against the two common types of simulators to quantify

the benefits of an FPGA-accelerated simulator. FPGA-Sim outperformed both the RTL

simulator and a highly-detailed C++ simulator by up to 7,014x and 154x, respectively,

when comparing the simulated model cycles per second. Furthermore, the IPCs reported

by the C++ simulator differed by as much as 40% from the core being modeled whereas

FPGA-Sim was 100% accurate for all but 1 simulation, and even that was 99% accurate.

To demonstrate that the capacity of FPGAs is no longer an insurmountable hurdle for

simulating complex designs, the resource utilization of all cores, both large and small,

were compared with the capacities of FPGAs available today and in the near future. The

largest core fell under 3% utilization of a future-announced FPGA.

FPGA-Sim is a ready-to-use simulator currently being used for fast RTL simulations.

Extending the usefulness is one ongoing goal for this work and includes adding support

for floating-point instructions and system calls. With these two features, simulating

longer and more diverse workloads will benefit from the flexibility, speed and accuracy of

FPGA-Sim.
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APPENDIX

A

Configuring a Core

Steps to configure the various pipeline widths, depths and structure sizes before synthesis

or simulation.

1. In the top level source directory, edit FabScalarParam.v as follows:

� Set STALL CYCLES to the desired MFMR minus 1. E.g., to have an MFMR of

5, set STALL CYCLES to 4.

� Set FETCH WIDTH and FETCH WIDTH LOG appropriately.

� Comment/uncomment FETCH TWO WIDE, FETCH THREE WIDE, etc., up to and

including the value set for FETCH WIDTH. E.g., if FETCH WIDTH was set to

4, FETCH TWO WIDE, FETCH THREE WIDE and FETCH FOUR WIDE should be un-

commented and FETCH FIVE WIDE through FETCH EIGHT WIDE should be com-

mented.

� Repeat for the dispatch and issue widths (the commit width must remain at

4).

� Uncomment RR TWO DEEP for a register read depth of 2, RR TWO DEEP and

RR THREE DEEP for 3, etc.

� Uncomment ISSUE THREE DEEP for an issue depth of 3. ISSUE TWO DEEP must

remain uncommented.

� Set the sizes of the structures in the “Structure Sizes” section.
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� Comment/uncomment ENABLE LD VIOLATION PRED to disable/enable the load

violation predictor.

2. Run fpgaify.pl to change the RAM module names that depend on the width of a

pipeline stage. The required arguments are:

� -fw <fetch width>

� -dw <dispatch width>

� -iw <issue width>
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