
ABSTRACT

THOMPSON, WILLIAM CLAYTON. Partial Differential Equation Modeling of Flow Cytometry Data
from CFSE-based Proliferation Assays. (Under the direction of H.T. Banks.)

The mammalian immune system is comprised of a complex network of cells which interact with each
other as well as with external stimuli, and an immune response is characterized by the rapid proliferation
(via division) of lymphocytes following exposure to some stimulating agent. Flow cytometric analysis of
a proliferating cell population is a powerful and popular tool for the study of cell division and division-
linked changes in cell behavior, as it permits the quick assessment of the phenotypic properties of a
culture of proliferating cells. In particular, the development of the intracellular dye carboxyfluorescein
succinimidyl ester (CFSE) [82] for the fluorescent labeling of cells has led to the need for quantitative
models of division dynamics.

Some key features of a mathematical description of an immune response are an estimate of the
number of responding cells and the manner in which those cells divide, differentiate, and die. Numerous
mathematical treatments of CFSE flow cytometry data have been proposed to describe an immune
response [38, 40, 51, 57, 62, 71], and each is motivated by the desire to relate the estimated numbers of
cells in the population to average rates of division and death. Alternatively, the investigations of [75, 77]
contain a structured partial differential equation (PDE) model (with CFSE fluorescence intensity as the
structure variable) which can be fit directly to flow cytometry data.

After reviewing the data collection process and describing previous mathematical work, we focus
on the application of such structured PDE models to CFSE histogram data. Several extensions and
modifications of previous models are discussed and suggestions are presented to improve the agreement
between model solutions and experimental data as well as to improve the physiological understanding
of the model parameters. Next, the resulting structured PDE model is generalized into a system of
PDE models representing the compartmentalization of the population of cells in terms of the number of
divisions undergone since the beginning of the experiment. Mathematical aspects of this compartmental
model are discussed, and the model is fit to a data set. It is shown that the compartmental model
permits the quantification of cell counts in terms of the number of divisions undergone, so that key
biological parameters such as population doubling time and precursor viability can be determined.

Finally, statistical models for the observed variability/noise in CFSE histogram data are discussed
with implications for uncertainty quantification. It is revealed that several commonly held assumptions
regarding the data collection procedure are not accurately reflected in the actual data. Using several
additional data sets, experimental, intra-individual, and inter-individual variability in CFSE histogram
data is qualitatively analyzed. The data collection procedure is then reexamined and a new statistical
model of the data is hypothesized.

The models presented produce meaningful quantitative descriptions of the behavior of a dynamic
population of cells and are sufficiently general to describe a wide array of proliferative behavior. Several
generalizations of these models are also discussed with an eye toward experimental application. This
work constitutes a significant first step toward the meaningful analysis of an immune response, and could
provide a useful complement in experimental or diagnostic studies of the immune system.
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Chapter 1

Mathematical Modeling of Flow

Cytometry Data

1.1 Motivation

A quantitative understanding of cell division dynamics is of fundamental importance in numerous ap-
plications, from cancer and infectious disease diagnosis and treatment to immunosuppression therapies
for transplant patients. These applications depend upon the accurate characterization of the rates at
which cells divide, differentiate, and die and, of equal importance, how changing intra- and extracellular
conditions affect these rates. In particular, the human immune response is a complex process in which
the behavior of individual cells in the lymphatic system is altered by a multitude of intra- and extracel-
lular signals. Thus, meaningful quantification of lymphocyte dynamics associated with clonal expansion
during an immunoassay constitutes a significant step toward understanding the complex underlying pro-
cesses of the biological system. The problem of studying these complex processes is two-fold. First,
there is a need for an experimental procedure which can quickly and accurately provide division-related
information in a population of dividing lymphocytes. Second, there is a need for mathematical models
which can describe the data obtained from such a procedure. Thus the quantitative analysis of cell
division is an important problem at the intersection of biology and mathematics.

Unlike many other cell types, the inherent mobility in vivo and nonadherence in vitro of lymphocytes
makes the accurate determination of lineage very challenging [80] (although new techniques have been
developed for this purpose [58]). In the absence of such data, one can look instead at the total number of
divisions a cell has undergone since activation and how cells in different generations differ in phenotype
(regardless of exact lineage). In the past two decades, a number of different techniques have been
used for the study of cell growth and division [89, 104]. Early techniques, such as tritiated thymidine
( 3H-Tdr) or bromodeoxyuridine (BrdU) uptake, while providing information regarding the fraction of
dividing cells, are dependent upon cellular activation and do not provide information regarding how many
divisions cells have undergone [82]. Other techniques, such as dimethylthiaxol (MTT), are sensitive to
the activation state of the cells being labeled [28]. Experiments have also considered DNA content [24],

1



telomere length, and T-cell Receptor Excision Circles [30]. Lipophilic dyes which are incorporated into
cellular membranes, such as PHK26, have been used successfully for the study of cell division history,
although the uneven partitioning of the dye during mitosis can result in subsequent generations which
are hard to distinguish [89, 104].

Since it was first described in 1994 [82], serial dilution of the intracellular fluorescent dye carboxyflu-
orescein succinimidyl ester (CFSE) for use in proliferation assays has become an essential tool for the
determination of cellular division histories. CFSE is introduced into a culture of cells as carboxyfluores-
cein diacetate succinimidyl ester (CFDA-SE) which freely diffuses across the cell membrane and inside
the cells. The acetate groups are then removed by intracellular esterases, producing highly fluorescent,
membrane impermeant CFSE [89, 92]. CFSE is nonradioactive and stably incorporated (so that measur-
able concentrations remain within a viable cell for several weeks in vivo); it provides quick, bright, and
approximately uniform labeling of all cells in a population (regardless of cell type or activation) [82, 104]
and generally does not adversely affect the functioning of the intracellular machinery [78, 81, 82]. With a
peak absorption at 491nm and a peak emission at 517nm, CFSE is compatible with standard fluorescein
cytometry setups [89, 92]. Using a flow cytometer, the fluorescence intensity (a surrogate for CFSE con-
tent) of individual cells can be measured quickly and efficiently. Because the CFSE content of a cell is
divided approximately in half at mitosis, the number of divisions a cell has undergone can be determined
by comparing the measured fluorescence intensity of a cell to the measured fluorescence intensity of an
undivided cell [80, 82, 89, 92, 104, 107]. When individual cell fluorescence intensity measurements for
all cells in a given population are binned into a histogram, each generation of cells appears as a “peak”
in the histogram data.

The compatibility of CFSE with other dyes renders possible the simultaneous measurement of division
history and many other quantities, such as surface marker expression, cytokine content, and gene expres-
sion [80, 82, 104]. Most commonly, the proliferative characteristics of a cell population are measured in
terms of the number of cells having undergone a specified number of divisions, plus any division-linked
changes which are observed. The research presented here focuses primarily on the determination of
cell proliferation and death rates (in terms of the number of divisions undergone) from flow cytometry
histogram data for a population of lymphocytes, postponing any considerations of cell differentiation
or division-linked changes. It should be emphasized, however, that the mathematical and experimental
frameworks presented here apply more generally. In fact, the simultaneous measurement of multiple
division-dependent properties combined with the applicability of the experimental technique to a wide
variety of cell types has potentially profound applications in oncology (cancer metastasis and differen-
tiation from normal cells), virology (latent viruses, HIV), and immunology (allergens, tissue grafting),
either in the context of an interpretive framework, as a diagnostic tool, or even as part of a control
mechanism (see, e.g. [27, 54, 57, 66, 67]).

Such uses for CFSE-based proliferation assays are premised upon an underlying model which can be
used to establish a meaningful quantitative comparison of data sets in different experimental and biolog-
ical conditions. Given the many desirable features of CFSE for cellular labeling and its near ubiquity in
proliferation assay experiments, the research presented here focuses exclusively on flow cytometry data
in which the cells have been labeled with CFSE–no distinction will be made between ‘flow cytometry
data’ and ‘flow cytometry data from CFSE labeling’. It should be noted that the mathematical analysis
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presented here is sufficiently general to apply to any intracellular (or even lipophilic) fluorescent label
for which the fluorochromes are divided approximately evenly upon mitosis. A survey of alternative
techniques can be found in [89, 104]. Some additional techniques have also been considered in the
introduction of [28].

The research presented here also focuses exclusively on data sets collected with CD4+ and CD8+
lymphocytes, as these are two important subsets of cells involved in an immune response. Yet it should
be emphasized that the mathematical models considered are not specific to these cell types. Provided
the cells are uniformly labeled with CFSE (which depends upon the distribution of certain types of
intracellular proteins within the cells [84]) and that the intracellular proteins to which CFSE binds are
partitioned approximately evenly upon mitosis, the models presented should apply.

In the remainder of this chapter, the mathematically relevant aspects of the data collection procedure
are summarized and a data set is presented which will be the basis for the subsequent mathematical
modeling efforts. Previous mathematical work is then reviewed. In Chapter 2, a structured partial
differential equation model is presented which can be used to accurately fit CFSE flow cytometry data.
Such a model is original in that is applied directly for CFSE histogram data (as opposed to numbers
of cells having undergone a specified number of divisions, which must be approximated from histogram
data by some analysis of the data), is physiologically motivated, and fits the data with unprecedented
accuracy. This model is then generalized in Chapter 3 and biologically meaningful descriptors of the
cell population are presented. Finally, statistical properties of flow cytometry histogram data sets are
examined in Chapter 4. Generalizations of the model, applications, and future work are surveyed in
Chapter 5.

1.2 Flow Cytometry Data from CFSE-Based Assays

Numerous protocols for the application of CFSE-based proliferation assays are available, and these
protocols can be tailored to the specific goals of the experimenter [80, 82, 92, 107]. An original data set
from a study of CD4+ lymphocytes is shown in Figure 1.1. This data set is the result of an in vitro
proliferation assay with human blood mononuclear cells (PBMCs) isolated from a healthy blood donor.
Approximately 5× 106 to 5× 107 cells were stained with 5µM CFDA-SE which is membrane permeable
and taken into the cells by free diffusion. After initial labeling, the cell culture was washed to eliminate
any excess CFSE. It is assumed that unbound CFSE in culture during the experiment, either left over
from the initial labeling or resulting from apoptotic cells, is negligible. The population of cells was then
stimulated to divide with a saturating quantity (in this experiment, 2.5 µg/mL) of phytohaemagglutinin
(PHA). The time at which PHA is introduced to the cell culture is considered t = 0 hours. The cells
were plated in 24 well plates at 1× 106 cells/mL RPMI-1640/10% FCS nutrient medium. Beginning at
day 3, every 24 hours one third of the medium was exchanged with fresh medium to ensure sustained
cell nutrition.

At each sample time, cells from a single well are harvested and transferred to Trucount tubes con-
taining 51466 calibration beads. (The use of separate wells prevents the disruption of the proliferating
cell populations. It is tacitly assumed that each well plate contains an identical population of cells at
all times.) Cells were then stained with fluorescently labeled anti-CD4 antibodies. This staining makes
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it possible to distinguish the CD4+ cells from other cells in the PBMC culture and does not disrupt the
measurement of fluorescence intensity resulting from intracellular CFSE. These cells are then analyzed
by a flow cytometer. A flow cytometer uses laser light to measure various properties of an individual
cell. As cells are forced one at a time through the measurement apparatus, attributes such as size,
granularity, CFSE content, and surface marker expression are recorded. A flow cytometer is capable of
measuring thousands of cells in a single second, so any changes to the measured population during the
measurement process are negligible.

Because of physical limitations, a flow cytometer will measure only a fraction of the total contents
of a particular well. For this reason the Trucount tubes contain the known number of calibration beads
which can be easily detected in the flow cytometry output. By counting the number of beads measured
by the flow cytometer and comparing this number to the total number of beads originally in the culture,
one can scale up the number of counted cells (in the flow cytometer output) to obtain an estimate of
the total number of cells in the well plate at the measurement time. Thus we assume that the sample of
cells analyzed by the flow cytometer is representative of the population, and that the scaling accurately
reflects the actual number of cells. It should also be noted that the PBMC culture measured by a flow
cytometer contains a large number of cells (e.g., B-cells, monocytes, CD8+ T-cells) which are not of
interest for the current study. These cells can be ‘gated out’ by the experimenter based upon known
properties (size, granularity, surface marker expression, etc.) so that they are excluded from analysis. It
is assumed that our data set contains only CD4+ cells, and that all CD4+ cells in the population are
represented in the data. While this report focuses exclusively on human CD4+ lymphocytes cultured in
vitro, CFSE-based assays have been used successfully in mice (both in vivo and in vitro) and on a wide
variety of cell types, including other T lymphocytes, B lymphocytes, NK cells, bacteria, fibroblasts,
hematopoietic stem cells, and smooth muscle cells [80, 89, 92, 105]. More information regarding the
CFSE protocol in general can be found in [80, 82, 92, 104, 107].

Qualitatively, the flow cytometer returns a measure of the fluorescence intensity (FI) of a given
cell, owing primarily to the presence of CFSE within the cell. In order to obtain this measurement,
the flow cytometer uses hydrodynamic focusing to push cells one at a time through a beam of laser
light. This light is absorbed and then emitted again by the CFSE molecules within a cell. This emitted
light is filtered and then quantified by a photometer. It is known that measured CFSE FI has a varies
approximately linearly with the concentration of CFSE used in the staining process [80, Fig. 3]. Because
measured CFSE FI does not change as cells become activated and swell [80, Fig. 6] it is expected that
CFSE FI is correlated with the mass of CFSE within a cell. While most of the measured FI of a given
cell is the result of CFSE, all cells have a small but measurable autofluorescence intensity (AutoFI) as
a result of the spectral properties of naturally occuring intracellular molecules. As will be shown in
Chapter 3, AutoFI is a subtle but important issue which must be addressed in a mathematical model.

While measurements have been made for each individual cell, the population of cells is most commonly
represented in a series of histograms which present the number of cells analyzed by the flow cytometer
having measured CFSE FI in a given range. The data is stored as a set of ordered pairs (zjk, n

j
k),

k = 1, . . . ,K(j) which corresponds to the number of cells njk counted into the bin with left boundary zjk
at time tj . The notation is meant to emphasize the possibility that the histogram bins need not share
a common fixed width, nor need they be the same at each measurement time. It is this histogram data
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Figure 1.1: Top: A collection of histograms for CFSE flow cytometry data from [20, 21, 77]. Each
histogram corresponds to a collection of cells measured at the same time. Thus the data (for which a
mathematical model is sought) contains the numbers of cells counted into each histogram bin at each
measurement time. Bottom: Total computed label content
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[21]. The increase at t = 72 hours violates commonly held assumptions regarding the data collection
procedure.
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for which we seek a mathematical model. In general, it is possible to choose the bins for the histograms
as one wishes. But the current data set (graphically displayed in Figure 1.1) was already reported as
histogram data in [77] when we began efforts on it [21]. While this may have implications for a statistical
error model (see Section 4.5), it is of little consequence for the moment.

Because CFSE FI divides approximately in half with each subsequent division (at least for the first
few generations–see Section 2.1) it is most convenient to use a logarithmic scale for CFSE FI. The
initial uptake of CFSE is relatively uniform across the population of cells being studied so that the
initial distribution of cells appears as a unimodal ‘peak’ on a histogram. When cells divide, the mass of
CFSE within each daughter cell is approximately half that of the original parent cell. The corresponding
decrease in measured CFSE FI results in the emergence of a second ‘peak’ in the data. As cells continue
to divide, the initially unimodal histogram data becomes multimodal, with each mode representing a
distinct generation of cells. Over time, all cells (even in the absence of division) slowly drift to the left,
reflecting a loss of label. An effective mathematical model must adequately describe both the emergence
of these distinct peaks as well as the slow decay of the label.

While the results in [21, 77] were generated by fitting to the data from all five measurement times
(t = 24, 48, 72, 96, and 120 hours), the current study will not make use of the data at t = 72 hours.
Because CFSE is added to the cell culture at the beginning of the experiment but not afterward, the
total mass of CFSE FI in culture cannot increase over the course of the experiment. (While the separate
measurements in time are obtained from distinct samples of cells in separate wells, the assumption that
the histograms sufficiently represent a single population is standard.) Because fluorescence intensity
is approximately proportional to the mass of CFSE within a cell, the sum of all cells in a population,
weighted by measured FI, provides an indication of the mass of CFSE within the measured population.
We have found that this ‘total label content’ is greater at t = 72 hours than at the previous time point
(see Figure 1.1), indicating a net increase in the mass of CFSE between t = 48 hours and t = 72 hours.
It should be emphasized that such an anomaly in CFSE data sets is not the result of any correctable
errors in the experimental process and has been noticed elsewhere [38, 62]. As will be shown in Chapter
4, this feature is explained by a more complete statistical model of the data which accounts for the
manner in which a sample of cells is measured as a surrogate for the entire population of cells. At the
moment, it is assumed that this anomaly is the result of measurement or scaling error or some unknown
and unmodeled biological event and thus the t = 72 hours data point will not be included in the present
investigation.

The data set we will use to calibrate the compartmental model is shown in Figure 1.2, with mea-
surements taken at t = 24, 48, 96, and 120 hours. (Data from t = 0 hours is used to form an initial
condition for the mathematical model.) There is a small cohort of cells with high CFSE FI (log FI ≥ 3)
visible in the data at t = 24 and 48 hours. These cohorts are believed to be cell duplets (cells which
are clumped together) or otherwise anomalous cells which were not gated out of the population data.
Such cells are are unmodeled, and their presence in the data will have some effect on the parameter
estimation procedure to be discussed. However, the effect of these cells is small and it is not believed
that similar features will be observed in additional data sets. Thus the failure of the model to fit these
cells is generally ignored except where a comment is necessary.
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Figure 1.2: A collection of histograms for CFSE flow cytometry data. Each histogram corresponds to a
collection of cells measured at the same time. Thus the data (for which a mathematical model is sought)
contains the numbers of cells counted into each histogram bin at each measurement time. From [20, 21].

1.3 Survey of Mathematical Models of CFSE Data

Because the flow cytometer provides measurements of individual cells within a sample, the mathemat-
ical analysis of lymphocyte activation and division can be performed on a wide range of scales, from
the molecular level (antigen presentation and recognition) to the population level. However, because
individual cells (or their progeny) are not followed over the course of the experiment, the measurement
process is in effect an aggregate sampling, and population level modeling seems more appropriate. The
primary motivation behind population level modeling is that, while the behavior of individual cells may
be highly variable as a result of sensitivity to any number of random intracellular and/or environmental
factors, the immune response as a whole (to be understood as the aggregate behavior of all cells in the
population) is regular and predictable [99].

Early experimental techniques, such as 3H-Tdr or BrdU labeling, were limited to the consideration of
the proportion of dividing cells in a population. From such data, it is possible to obtain basic information
regarding the proliferative capacity of a sample of cells. However, such descriptive and semi-quantitative
methods are generally restricted to populations of cells which divide synchronously [104, 107]. Yet
asynchronous division is a well-known feature of an immune response [51]. A more quantitative analysis
is possible if the peaks in the histogram data (see Figure 1.1) are analyzed in some way to determine
the numbers of cells in each generation. This can be done most simply by interval gating (see, e.g.,
[87]), where the FI or log FI axis is partitioned into intervals which approximately correspond to distinct
generations of cells. More accurately, the CFSE data can be fit (typically in a least-squares sense) with
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gaussian or log-normal curves, with the area under each curve used to determine the numbers of cells in
each generation [80, 92].

Mathematical models of CFSE data have focused almost exclusively on fitting such numbers in an
attempt to examine how various experimental conditions alter an immune response. The literature
on the mathematical modeling of CFSE data falls into two broad classes. First, there are ‘cellular
calculus’ models [51] which aim to describe the net effects of experimental changes on the observed
population behavior without regard for the exact cellular and/or molecular mechanisms responsible for
those changes. The second class of models attempt to motivate behavioral changes as direct consequences
of mechanisms within the cell cycle. It can be shown that these two classes of models are derivable from
different assumptions regarding the nature of variability in the population of cells (although neither class
of model is strictly dependent upon those assumptions). The first class of models can be derived from
the assumption that variability is inherent in the individual cells themselves, while the second class can
be derived from the assumption that variability arises from stochastic environmental interactions for
otherwise identical cells [73].

One of the earliest cellular calculus models for asynchronously dividing cell populations (from which
the phrase ‘cellular calculus’ is taken) is the work of Gett and Hodgkin [51]. Using cell numbers de-
termined by fitting CFSE histogram data with a series of log-normal curves, they computed the total
numbers of cells in each generation over the course of several days and tracked how these numbers
changed over time. It was shown that, after one division, normalized precursor frequency (see below)
as a function of the number of divisions undergone could be well-fit by a gaussian curve. Thus it was
hypothesized that the primary source of asynchrony within the population was a normally distributed
time-to-first-division. The mean of the gaussian curve, which reflected the average number of divisions
undergone for proliferating cells, was seen to increase linearly with time and the rate of increase pro-
vided a measure of the average proliferation rate. The authors go on to compute parameters such as
mean division rate and mean time to first division, and to see how these parameters change in various
stimulation conditions.

While the method of Gett and Hodgkin is nonintuitive, it can be shown [39] that the parameters
estimated follow directly from an ordinary differential equation (ODE) model of cell division. Let Ni(t)
be the total number of cells having completed i divisions at time t. Let α be the (exponential) rate at
which cells divide, and let β be the (exponential) rate at which cells die. R.J. de Boer et al. begin by
considering the ODE model of Revy et al.,

dN0

dt
=− (α+ β)N0(t)

dni
dt

=− (α+ β)Ni + 2αNi−1(t).

It follows that the solution for each generation of cells is

N0(t) =N0(0)e−(α+β)t

Ni(t) =
(2αt)i

i!
N0(t).
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A precursor is a cell originally (at t = 0) in the population under study which gives rise to some additional
number of cells via mitosis. Let Pi(t) be the total number of precursors for the cells in generation i at
time t. It follows that Pi(t) = Ni(t)/2i (allowing for fractional precursors). Thus we have

P0(t) =N0(t)

Pi(t) =
(αt)i

i!
N0(t).

The total number of precursors at time t is

P (t) =
∑
i

Pi(t) = N0(0)e−(α+β)t

(∑
i

(αt)i

i!

)
= N0(0)e−βt.

Finally, the normalized precursor frequency for generation i is

Pi(t)
P (t)

=
(αt)i

i!
e−αt,

which is a Poisson process with mean αt [39]. The method of Gett and Hodgkin [51] uses a plot of the
Poisson process Pi(t)/P (t) versus i, which will appear normal for sufficiently large t [38]; as noted above,
the mean of this distribution increases linearly with rate α so that the rate of proliferation can be easily
determined. The Gett and Hodgkin model has been generalized by de Boer et al. to include an initial
transient as well as death rates which change with division number [39].

A major strength of the Gett and Hodgkin model is the manner in which intuitive, biologically
meaningful parameters can be determined almost directly from graphical representations of the data and
with very little sophisticated mathematics. However, since its initial publication, several shortcomings
of the model have been addressed. As shown above, the Gett and Hodgkin model is consistent with a
simple ODE model for cell division. ODE models can be interpreted as ‘random birth-death’ models [50]
in which all cells have a fixed probability of dividing or dying which does not depend upon the division
history of the cells (specifically, on the time since last division). This amounts to a tacit assumption
of a time to divide or die which is exponentially distributed without any imposition of a minimum cell
cycle time [39]. ODE models have been used successfully in some situations [2, 93, 103], and may be
particularly useful (given their simplicity) for data in which the generation peaks of the histogram data
are poorly resolved [2]. But in general, the exponential distribution of division times can cause too
much asynchrony in the computed distribution of cells among generations so that the mean time to first
division cannot be accurately estimated [39, 50, 91]. Several analyses have found that a minimum cell
cycle time is an essential feature for the accurate analysis of CFSE data [39, 50, 91], as models lacking
this feature are generally limited to describing the mean number of divisions undergone [38, 39] for cells
which divide slowly [50]. Experimental data typically exhibits a delay between activation and the onset
of proliferation which cannot be modeled in an ODE framework [34]. A more detailed treatment of the
assumptions, uses, and limitations of ODE models can be found in [34].

A revision of the Gett and Hodgkin model by Deenick et al. [40] addresses several features observed
in flow cytometry data sets which could not be explained previously. In the revised model, a progressor
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fraction is used to account for the subset of the initial population of cells which will not divide. A death
rate for divided cells is incorporated into the estimation procedure and a fixed cell cycle duration ∆ is
also imposed. As in the Gett and Hodgkin model, it is assumed that the only source of asynchrony in
the proliferating population is the time taken to enter the first division. Then the Deenick et al. model
can be written [38] as an ODE-algebraic equation system,

dN1(t)
dt

=R(t)−R(t−∆)e−β∆ − βN1(t)

Ni(t) =
(
2e−β∆

)i−1
N1(t− (i− 1)∆),

where R(t) is the density of cells which divide at time t and β is defined as before. The undivided cells
are described by

N0(t) = N0(0)−
∫ t

0

R(t)dt.

A derivation can be found in [38].
Both the Gett and Hodgkin model and the Deenick et al. model are intuitive and establish parameters

which are readily identifiable from data sets. Using these models, changes in parameters resulting
from changing experimental conditions can be used to describe in exact terms how stimulatory and
costimulatory conditions directly affect proliferative capacity. However, several studies have highlighted
difficulties in the interpretations of the parameters estimated from the underlying models. For instance,
a generalization of the Deenick et al. model has also been considered in which the rate of death changes
with each division number [38]. There, it was shown that the effects of increased cell cycle time or
increased death with division number are essentially indistinguishable. It can also be shown that the
rate of linear increase of the mean division number (and hence, the estimated average cell cycle time) in
the Gett and Hodgkin model depends upon the mathematization of cell death within the cell cycle, so that
the procedure for determining biologically meaningful quantities is not robust to a model misspecification
of cell death within the cell cycle [39, 50, 91].

In the past decade, researchers have shifted away from simple ‘cellular calculus’ models and toward
mathematical models which more accurately reflect the biological mechanisms responsible for cell divi-
sion. In many cases, these mathematical formalisms of cell cycle dynamics begin with the Smith-Martin
[98] model of the cell cycle, which was originally proposed to account for an observed variability in
cell cycle times. In the Smith-Martin model, the cell cycle is divided into a stochastic A state and
a deterministic B state (corresponding approximately to the G1 and S-G2-M phases of the cell cycle,
respectively). Cells may remain in the A state for an indefinite period of time, but exit with some fixed
probability and enter the B state. The B state has a fixed duration, after which cells divide and return
to the A state [98].

An early mathematization of the Smith-Martin model for application to CFSE-based flow cytometry
data was considered by Nordon et al [87]. A model is presented in terms of precursor numbers (without
regard for the expansion of total cell number with each division) and a set of biologically meaningful
parameters are proposed which can be easily determined from histogram data (cf. Gett and Hodgkin
[51]). A complete Smith-Martin model (accounting for total cell numbers rather than just precursor
numbers) can be derived from a coupled set of equations [28, 91]. As in traditional ODE models, the
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constant rate of transition from the A state to the B state is modeled with a linear ordinary differential
equation and reflects an exponential distribution for the transition time. Meanwhile, the fixed duration
of the B state can be modeled with an age-structured partial differential equation. Let Ai(t) represent the
total number of cells having completed i divisions at time t and currently in the ‘A’ state (approximately
the G1 phase of the cell cycle). Let bi(t, s) be the age-structured density (number per unit age) of cells
having completed i divisions at time t and having spent time s in the ‘B’ state. Then the coupled system
is

dAi(t)
dt

=2bi−1(t,∆)− (α− βA)Ai(t)

∂bi
∂t

+
∂bi
∂s

=− βBbi(t, s) 0 ≤ s ≤ ∆

bi(t, 0) =αAn(t),

where ∆ is the (fixed) duration of the B phase of the cycle, α is the rate of transition from the A state to
the B state, and βA and βB are the (constant) probabilities of death in the two states. By convention,
b−1(t, s) = 0 for all t, s. Trivially, we have the solution

bi(t, s) = αe−βBsAi(t− s), i ≥ 0,

and thus the total number of cells in the A state can be solved inductively on the number of divisions
undergone,

dAi(t)
dt

= −(α+ βA)Ai(t) + 2αe−βB∆Ai−1(t−∆), i ≥ 0.

(Again, it is assumed Ai−1(t) = 0 for all t.) Then the total number of cells having undergone i divisions
is Ni(t) = Ai(t) +Bi(t) where

Bi(t) =
∫ ∆

0

bi(t, s)ds = α

∫ ∆

0

e−βBsAi(t− s)ds.

Alternatively, the cells in the B state can be computed [49] as

dBi(t)
dt

= αAi(t)− αe−βB∆Ai(t−∆)− βBBi(t).

Interestingly, it can be shown that the ODE model of Revy et al [93] (acknowledged above as consis-
tent with the model of Gett and Hodgkin [51]) is obtained in the limit as ∆→ 0, provided βA = βB = β.
However, under the alternative assumption that βA = 0 while βB 6= 0, a different ODE model is ob-
tained and the parameters estimated by the graphical method of [51] will not accurately reflect the
actual underlying dynamics [91]. The Deenick et al. model is equivalent to a Smith Martin model with
no A state. The age-structured PDE then has the new boundary condition bi(t, s) = 2bi−1(t,∆). An
alternative to differential equations formulations of the Smith-Martin model has also been considered
using agent-based modeling [36].

The Smith-Martin model has been shown to much more accurately describe cell counts obtained
from CFSE data when compared to ODE models. This is most likely the result of the minimum cell
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cycle time created by the delay in the Smith-Martin model [39]. In a simulation study, de Boer et
al. show that many of the observed features which prompted the creation of the Gett-Hodgkin model
[51] can be reproduced with a Smith-Martin model. Based upon the observation that the first division
after activation typically takes much longer than subsequent divisions, the authors go on the propose
a generalization of the Smith-Martin model to allow for heterogeneous (with respect to the number of
divisions undergone) transition rates and cell cycle times. The resulting model is

dA0(t)
dt

=− (α0 + β0)A0(t)

dA1(t)
dt

=− (α+ βA)A1(t) + 2α0A0(t−∆0)e−βB∆0

dAi(t)
dt

=− (α+ βA)Ai(t) + 2αAi−1(t−∆)eβB∆.

As before, the total number of cells in each generation is Ni(t) = Ai(t) +Bi(t) where

B0(t) =α0

∫ ∆0

0

A0(t− s)e−βBsds

Bi(t) =α
∫ ∆

0

Ai(t− s)e−βBsds.

Such a heterogeneous model has been found to more accurately describe observed population dynamics
when compared to a model in which transition rates and cycle times do not change after the first division
[73]. As a further generalization, the exponential probability distribution for transition from the A state
can be replaced with an arbitrary probability distribution [38]. For instance, Lee and Perelson test
log-normal and gamma distributions for the probability of transition out of the A state, and find that
a delayed gamma distribution can be derived from assumptions regarding a two-step activation process
[72]. They go on to consider a ‘generalized heterogeneous Smith-Martin model’ which incorporates a
progressor fraction to account for cells which do not divide, and cell cycle lengths which increase with
division number [72]. The Smith-Martin model has also been generalized to allow for division-linked
differentiation and the inheritance of division times [86].

Pilyugin et al. [91] draw parallels between the Smith-Martin model above and renewal equations used
in demographic modeling. They then propose a number of invariant parameters and illustrate graphical
techniques for estimating these parameters. Additional methods of parameter estimation for the Smith-
Martin model are surveyed in [50]. Both direct (least squares) fitting of the model output to cell count
data as well as indirect/graphical methods for parameter estimation suffer from a lack of identifiability
in some of the parameters to be estimated. In particular, one cannot uniquely determine the rates of
death, βA and βB in the two phases of the cell cycle without additional information or assumptions,
particularly when the heterogeneous Smith-Martin model is used [50]. Similarly, Lee and Perelson find
that the effects of a linear increase of cell cycle length with division number cannot be distinguished
(using only cell count data) from the effects of an increasing death rate with division number [72].

Given the random nature of the mechanisms of cell division and death highlighted thus far, many
recent models have placed an increasing emphasis on probabilistic structures to describe rates of division
and death within a population. Using observations obtained from several experiments, Hawkins et al.
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[57] showed that cell behavior is consistent with the hypothesis that the cellular controls of division and
death operate independently of one another. It was hypothesized that the fate of a single cell could be
described by two random variables: a time to divide and a time to die. With each division, daughter
cells would be governed by a realization of the two parameters, with no inheritance of division or death
times from the previous generation; the fate of each cell is determined by the smaller of the two random
variable realizations. It follows that the expected number of cells having undergone a specified number
of divisions at a given time can be determined from the probability distributions from which the times to
divide and die and drawn, as well as the initial number of cells in the population. Assuming a log normal
time to division and/or death, Hawkins et al. propose simple equations which accurately describe cell
numbers obtained from CFSE data [57] and which outperform the classical Smith-Martin model [34, 57].

In simplest terms, the cyton model computes the number of cells having undergone i divisions at
time t as

Ni(t) = 2iN0

(∫ t

0

Ri(τ)dτ −
∫ t

0

Di(τ)dτ −
∫ t

0

Ri+1(τ)dτ
)
,

where R(t) is the probability of recruitment into the ith division at time t, and Di(t) is the probability of
death for cells having undergone i divisions at time t. Thus, the total number of cells having undergone
a specified number of divisions at a given time depends upon the form of the functions {Ri(t)} and
{Di(t)}. Lee and Perelson show that, using the appropriate functions {Ri(t)} and {Di(t)}, the cyton
model is equivalent to the generalized heterogeneous Smith-Martin model [71]. Thus the cyton model
can be considered as a generalization of the existing Smith-Martin models.

In fact, the cyton model itself is a specific case of stochastic branching process models [62, 99]. Much
like the cyton model, the behavior of cells in a branching process is described by the probabilities with
which cells divide and die. An early discrete time branching process model for CFSE-based proliferation
assays was considered by Yates et al. [109], with a particular interest in how a population of cells which
arise in a branching process (so that cells with a common progenitor are mutually dependent) could be
fit to data in a statistically rigorous manner. Hyrien and Zand [61] propose an age-dependent Bellman-
Harris branching process and demonstrate the consistency of several parameter estimators, provided
cells evolve independently of one another and cell death is negligible in the population. In a later paper,
Hyrien et al. [62] propose that the cyton model amounts to a specific subset of branching process models
they term ‘competing risk’ models. Using arguments from the theory of branching processes, they show
that the cyton model tacitly assumes that a cell’s ‘decision’ to divide or die is concurrent with the event
itself. Meanwhile, general branching process models do not require such an assumption and were found
to more accurately fit data for CD8+ cells. More recently, branching process arguments have been used
to generalize Smith-Martin-type models to account for multiple cell types and the inheritance of dynamic
parameters.

The determination of cell counts from such probabilistic models is effectively equivalent to considering
the expectation of the probability structures. Higher order moments, such as the variance, can then be
computed to provide some indication of the accuracy of parameter estimates obtained from using such
models. Subramanian et al. use arguments from the theory of branching processes to compute variances
for a generalization of the cyton model [99]. They find that, provided there is limited correlation between
individual cells in the population, the variance of the cyton model around the mean is small and the
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parameters of the cyton model can be reasonably estimated. Unfortunately, recent evidence suggests
that correlation is nonneglgible between certain sets of cells [58]. Duffy et al. use branching process
arguments to generalize the cyton model to include correlations between certain subsets of cells. In
the simplest case, it is assumed that sibling cells share a common time to divide. The authors proceed
to consider common division and death times for cousin and 2nd cousin cells, and finally to common
parameters for all cells in a given generation which share a common precursor. It has been shown that as
the magnitude of the correlation between cells increases, the variance of the population around the mean
also increases. The mean dynamics, however, are generally unchanged for sufficiently large populations
of cells [62, 106].

1.4 Structured Population Models

Each of the models discussed thus far has been used effectively to provide various measures of the
proliferative capacity of a population of cells. In general, these models are based upon estimation from the
cell numbers computed by the deconvolution of CFSE histogram data with normal or log normal curves.
Such approaches are straightforward and easy to implement, and the resulting cell numbers provide an
accurate description of the distribution of cells in the population. However, the imposition of particular
shapes for the generational structure of CFSE histogram data (during the deconvolution process) can
introduce biased insight into the generation structure of the cells, and hence into the resulting division
and death rates. Alternatively, we propose that there is information to be learned not only from modeling
the total numbers of cells, but also from the direct modeling of the complete experimental process. This
is a more fundamental level of analysis of the kinetics of cell turnover which we believe to provide a
more accurate assessment of the biological processes occurring in the population. Given such a goal, the
common use of histograms to represent CFSE flow cytometry proliferation assay data makes structured
population models a natural framework in which to work. Significant literature exists on the subject
of structured population models, going back at least as far as the Sinko-Streifer [97] model for general
populations or the Bell-Anderson [26] model for volume-structured cell populations. More recently,
“physiologically-structured” population models [85] have been developed for cell populations structured
by age [1, 25, 43, 53], cyclin content [25], and size [44, 53, 54, 90] as well as DNA-content [24].

The measurement of CFSE FI by a flow cytometer makes measured fluorescence intensity a natural
structure variable for a structured population model. While not a physiological variable, the notion that
such a structure might be used to accurately model cytometry data by accounting for the natural dilution
of label was proposed at least as early as the year 2000 for BrdU-based assays [29]. To our knowledge,
Luzyanina, et al. [77] proposed the first model to explicitly employ fluorescence intensity as a structure
variable in a partial differential equation (PDE) framework. There it was shown that such a model can
be effectively used for the tracking of a proliferating lymphocyte population stained with CFSE, and that
such a model is as effective as compartmental ODE models for estimating the numbers of cells having
undergone a specified number of divisions. More recent work [7, 21, 75] has consistently demonstrated
that the label-structured PDE framework can accurately model the observed histogram data from a
CFSE-based proliferation assay. The key idea behind the use of FI as a structure variable is that, because
CFSE FI decreases upon division, fluorescence intensity can be used as a surrogate for division number.
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Thus the conclusions obtained with previous models [38, 57, 58, 71, 72, 73] regarding the necessity
of division-dependent rates of proliferation and death can be assessed. We believe that the primary
benefit of using such a model lies in its ability to treat the measured FI data directly, thus accounting
for the intracellular dynamics of label dilution while simultaneously estimating proliferation and death
dynamics at the population level. Moreover, this method relies less on distinct peak separations in the
CFSE histogram data (see Section 3.6.1), a potential advantage when working with heterogeneous cell
populations.

While these models are indeed effective, the parameter estimates which resulted from fitting these
models to an available data set seemed to suggest that label was being created during the process of cell
division, a known impossibility [21]. In the next chapter, we revisit the work presented in [21] and [77]
and resolve two key problems addressed there. First, we explain the apparent creation of label during
cell division. It is shown that this apparent physiological impossibility is actually readily explained and
removed from the models by the inclusion of cellular autofluorescence. Second, by examining data from
cells which were stained with CFSE but not stimulated to divide, we find that a minor modification of
the exponential decay first proposed in [77] can provide a superior fit to the data. These two revisions
(autofluorescence and biphasic label decay) provide important insights into the mathematical analysis of
turnover kinetics for cells stained with CFSE and measured via flow cytometry. Their accurate modeling
is vital to the meaningful estimation of population proliferation and death rates in a manner which is
unbiased and mechanistically sound. Significantly, this new model is still sufficiently general to apply to
a wide range of cell types and stimulation conditions.

In Chapter 3, this label structured model is revised further and used to compute the numbers of cells
having proceeded through a fixed number of generations. It is shown that these cell numbers can in turn
be used to calculate simple, biologically relevant parameters which can be used to quickly summarize
an immune response for the experimental conditions under consideration. Thus, it should be possible to
quantify the effects of extracellular conditions such as stimulation strength and duration on proliferative
behavior (e.g., [40, 51]). Statistical aspects of the flow cytometry data are considered in Chapter 4
with implications for the quantification of uncertainty when model parameters are estimated from data.
Generalizations, applications, and future modeling efforts are considered briefly in Chapter 5.
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Chapter 2

A Label-Structured Partial

Differential Equation Model

2.1 Summary of Initial Structured Model

We begin this chapter with an overview of the modeling results for the initial structured population model
[21, 77]. A structured PDE model for the dynamics of the life and death process of a population of cells
labeled with CFSE was initially proposed in [77] as a variation of a Bell-Anderson [26] or Sinko-Streifer
[97] population model. Let x denote the CFSE FI (in units of intensity, UI) of a cell and let n(t, x)
be the label-structured population density (cells/UI) of cells with FI x at time t. Then the population
density for x ∈ [xmin, xmax] and t > 0 is governed by a hyperbolic partial differential equation

∂n

∂t
(t, x) +

∂[v(x)n(t, x)]
∂x

=− (α(x) + β(x))n(t, x) (2.1)

+χ[xmin,xmax/γ]2γα(γx)n(t, γx),

where α(x) is the cell proliferation rate (hr−1) and β(x) is the cell death rate (hr−1). The term v(x)
represents the natural label loss rate (UI/hr) as cells naturally lose FI over time even in the absence
of division (due to catabolic activity [78]). The parameter γ is the label dilution factor, representing
the ratio of FI of a mother cell to FI of a daughter cell. Thus the second term on the left represents
the velocity of decay of the CFSE FI while the last term on the right represents rate of production of
new cells due to cell division. A derivation of this model following the mass conservation principles of
Sinko-Streifer [97] or Bell-Anderson [26] can be found in the Appendix of [21]. As noted in Chapter 1,
the dependence of the functions α and β on the structure variable z is to be understood as a surrogate
for the division dependence of the proliferation and death rates (that is, it is not believed that CFSE FI
is a causative factor in changing the rates).

Because flow cytometry data is typically represented in a logarithmic scale, it is convenient to make
the change of variables z = log10 x. The resulting model when v(x) = −cx (which was assumed in
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[21, 77]) and ñ(t, z) ≡ n(t, 10z) is

∂ñ

∂t
(t, z) +

∂[ṽ(z)ñ(t, z)]
∂z

=− (α̃(z) + β̃(z))ñ(t, z) (2.2)

+χ[zmin,zmax−log10 γ]2γα̃(z + log10 γ)ñ(t, z + log10 γ),

where ṽ(z) = −c̃ = −c/ln10, and α̃andβ̃ are the appropriately defined effective cell proliferation and
death rates, respectively. The initial and boundary conditions for the model are

ñ(0, z) = Φ̃(z)

ñ(t, zmax) = 0.

In subsequent discussions, the tildes on the parameters α, β, c, v and the states n in (2.2) will be
dropped. Some key tacit assumptions of this model are:

(i) Division numbers are strongly correlated with FI;

(ii) FI is proportional to total CFSE mass;

(iii) Total CFSE is divided equally among daughter cells with each division;

(iv) The rate of label loss v(z), the proliferation rate α(z), and the death rate β(z) do not depend on
time.

Given assumptions (i) - (iii), assumption (iv) is equivalent to stating that birth, death, and label loss
rates depend only on division number and thus that these rates can be determined as functions of
label intensity z. In an effort to improve the model (2.2), the validity of these assumptions must
be investigated and some assumptions modified in their interpretation and implementation to produce
significantly improved model agreement with the data. To this end, the CFSE data described in Chapter
1 was used in order to estimate the functions α(z), β(z) (which were parameterized as piecewise linear
functions) as well as the parameters c and γ in an Ordinary Least Squares (OLS) framework. A detailed
discussion of the inverse problem procedure can be found in [21]. Such a discussion is omitted here
(although Section 2.2.5 is similar). Instead, a brief summary of the results obtained in [21] is provided
in order to motivate the improvements to the model (2.2) discussed in the remainder of this chapter.

The OLS best-fit solution using the original model (2.2) is shown in comparison to the data in Figure
2.1. It is clear that this model is insufficient to describe the dynamics observed in the data set used to
calibrate the model. However, by allowing the proliferation rate to be explicitly time dependent (that
is, α = α(t, z) rather than α = α(z)), the model could be much more accurately fit to the data. Using
statistical tests for model refinements based upon the residual-sum-of-squares (RSS) [10, 11, 16, 22, and
references therein] it was shown that the improved accuracy was more than justified by the increase in
parameters required to parameterize α as a function of time as well as measured FI.

Because one of the primary goals of the mathematical modeling of flow cytometry data is the deter-
mination of the manner in which proliferation and death rates change with division number, additional
model improvements were hypothesized and tested. In particular, it was found that the dependence of
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Figure 2.1: OLS best-fit solution of the original PDE model (2.2) in comparison to the data at t = 24,
48, 96, and 120 hours; from [21].

the death rate function β on measured FI z (and hence, on division number) must be maintained in order
to accurately fit the data. (That is, a single, constant death rate does not provide a satisfactory fit of
the data.) It was also shown that a ‘translated coordinate’ s = z+ ct, by correcting for the slow natural
decrease of CFSE FI over time, was more strongly correlated with division number than the original
structure variable z. As such, the functions α(t, s) and β(s) provided an estimate of the proliferation
and death rates, respectively, which more accurately indicated division-linked changes in those rates.

With these improvements, the original model (2.2) could be rewritten as

∂n(t, z)
∂t

+
∂[−cn(t, z)]

∂z
= −(α(t, z + ct) + β(z + ct))n(t, z) (2.3)

+χ[zmin,zmax−log γ]2γα(t, z + ct+ log γ)n(t, z + log γ).

The OLS best-fit estimate for this model is shown in comparison to the data in Figure 2.2. It is clear that
the improved model very closely fits the data. Yet there are multiple issues which must be explained.
For instance, the ‘translated coordinate’, while heuristically motivated (see [21]) is not intuitive and
needs mathematical explanation. It turns out that this improvement can be explained in the language of
mechanics as a consequence of a change to a moving coordinate system (Section 2.2.5). This change in
coordinate system will depend upon the manner in which CFSE FI is naturally lost from the measured
population of cells. While the current model assumes an exponential rate of decay (dx/dt = −cx), a
more accurate model of label loss can be determined by analyzing additional data sets (Section 2.2.3)
to show that the rate of exponential decrease itself decreases in time.
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Figure 2.2: OLS best-fit solution of the improved PDE model (2.3) in comparison to the data at t = 24,
48, 96, and 120 hours; from [21].

Most importantly, there is a physiological impossibility in the model (2.3) which must be addressed.
The parameter γ is used in [21] to represent an unknown process responsible for determining the CFSE
FI of two daughter cells given the CFSE FI of a mother cell, without regard for what that process might
be (see also [77] where the parameter γ was first introduced). Mathematically, it follows from the form
of Equation (2.3) that the parameter γ determines the peak-to-peak separation between subsequent
generations of cells (i.e., each generation has a CFSE FI approximately log10 γ less than the previous
generation in the log FI coordinate z). Given the definition of γ as the ratio of CFSE FI of a mother cell
to that of a daughter cell as well as the assumption that CFSE FI is a mass-like quantity, it is expected
that γ ≥ 2, with γ > 2 if label is lost during the process of cell division. However, the best fit parameter
from [21] was γ∗ = 1.5169, implying the creation of label at division. Similar results were also obtained
in [77]. Indeed, forward simulations of the above model demonstrate that γ = 2 is significantly too large
to fit the given data set, regardless of the values assigned to other parameters. Some work is required to
make the model (2.3) more physically relevant by explaining the mechanism underlying the parameter
γ and, in doing so, resolving an apparent physical impossibility.

2.2 Model Revisions and Improvements

Presented now are several significant revisions and clarifications of the model (2.3). First is the replace-
ment of the parameter γ with an actual physiological mechanism responsible for the dilution of CFSE FI
when a cell divides. A derivation of the PDE model is then presented which includes this mechanism, as
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well as unspecific functions v(t, x), α(t, x), and β(t, x) for the label loss rate, proliferation rate, and death
rate, respectively. Using two additional data sets, it is shown that the label loss rate is best described
by a Gompertz decay function. Finally, in keeping with the goal of examining the division dependence
of the proliferation and death rates, possible parameterizations of these two functions are discussed at
length and a mathematical motivation of the ‘translated coordinate’ is presented.

2.2.1 Physiological Interpretation of γ

As stated above, it follows from the assumptions of the model that γ < 2 is a physical impossibility.
Meanwhile, γ ≥ 2 results in significantly too much peak-to-peak separation in the model solution when
compared to the data. One possible solution conjectured in [21] to explain this discrepancy was that
the measurement of CFSE FI may be indicative of the concentration of CFSE, rather than its mass.
The observations, then, would represent an effective integration over the various cell volumes present in
the data. While mathematically appealing, this explanation does not appear to be the case. Physically,
one expects that measured CFSE FI would depend on the number of CFSE molecules within the cell,
and hence on the mass of CFSE. Indeed, when cells stained with CFSE are introduced to a stimulating
agent, the cells quickly increase in size (thus decreasing the CFSE concentration), but the measured
CFSE FI is essentially unchanged [82, Fig. 6].

We propose here an alternative solution to this apparent γ-related dilemma. While it is often stated
that the subsequent peaks in the CFSE histogram data are evenly spaced [80], close observation reveals
that this is not actually the case. Although the peaks corresponding to low division numbers (Generations
0, 1, 2, 3) are approximately evenly spaced, peaks corresponding to larger division numbers are closer
and closer together [82, Fig. 1]. In other words, the parameter γ appears to change with division number.

These observations can be collectively explained by the consideration of cellular autofluorescence
and its effects on the measurement process. As discussed in Chapter 1, the flow cytometer measurement
process uses light as a surrogate for CFSE content. However, not all light incident upon the photodetector
is the result of emission from CFSE molecules. All cells, even those unstained with CFSE, have a natural
brightness and will give off small but detectable amounts of light. We assume here that this feature, the
cellular autofluorescence does not change as cells divide and does not decay slowly like CFSE fluorescence.
It may vary with time for other reasons [3], but we ignore this in our initial treatment.

Let Xi be the total measured FI of a single cell, measured when that cell has undergone i divisions.
(The use of the capital letter is meant to distinguish this discrete quantity from the continuous state
variable to be used in the revised model derived below.) Under the assumption that cellular autoflu-
orescence intensity (AutoFI) and CFSE FI are additive [64], the total fluorescence intensity of a cell
is

Xi = XCFSE
i +XAuto. (2.4)

Because AutoFI does not change as a cell divides, it follows that this cell with intensity Xi will generate
two cells in the next generation, each of which has total FI

Xi+1 = XCFSE
i /2 +XAuto. (2.5)
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Contrary to previous interpretations of the parameter γ, one can see from Equation (2.5) that it is
actually expected that the ratio of total FI of a mother cell to that of a daughter cell is expected to be
less than 2. Moreover, provided XCFSE

i >> XAuto, this ratio is approximately equal to two. With each
division, XCFSE

i decreases and the ratio decreases; as XAuto accounts for a larger and larger percentage of
the total measured FI, the ratio decreases quicker and quicker until XCFSE

i ≈ 0 and the ratio of mother-
to-daughter intensities is approximately 1. Thus it appears that cellular autofluorescence is sufficient to
account for the observed relationships between subsequent division peaks in the data. Indeed, this is
shown to be the case in Section 2.4.

We remark that the phenomenon of autofluorescence when using fluorescent dyes to study biological
materials is not particularly new. In fact, the role of AutoFI described above was acknowledged specifi-
cally for CFSE data sets as early as 1996 [59], and a formula corresponding to (2.5) above appears in [80].
However, autofluorescence has not been used in previous PDE formulations [21, 75, 77] to describe the
dilution of CFSE by division. Thus the incorporation of AutoFI into the mathematical model presented
below is an important revision to the physiological basis of the PDE model.

2.2.2 Revised Model Derivation

At this point, we pause momentarily in order to revise the PDE model derivation from the Appendix
of [21]. We do so to provide a general framework with which to build additional improvements to the
model and inverse problem procedure. As before, the derivation follows the mass-balance principles of
the Bell-Anderson [26] and Sinko-Streifer [97] models.

Let n(t, x) be the structured population density (cells/UI) of a population of cells labeled with CFSE,
where t is time (in hours) and the structure variable x is the fluorescence intensity of a cell. Then

N(t) =
∫ x1

x0

n(t, x)dx. (2.6)

represents the total number of cells with fluorescence intensity in (x0, x1) at time t. Here x0 and x1

are arbitrary. Let ∆x(t, x,∆t) be the average increase of FI of cells with initial intensity x during the
interval (t, t + ∆t) and assume that ∆t is chosen such that |∆x| << x1 − x0 (so that the number of
cells which move into the region via division and subsequently divide, die, or drift out of the region
is negligible). It should be noted that ∆x will be non-positive (as cells cannot increase in FI). Thus
subtraction by ∆x actually results in a larger value. While counterintuitive, this definition is maintained
in order to harmonize with other structured population models.

Consider the change in N(t) during the time interval (t, t+ ∆t), i.e., the quantity N(t+ ∆t)−N(t).
Five possible contributions will be considered:

(i.) Cells with intensity in the interval [x1, x1 −∆x(t, x1,∆t)], losing FI according to ∆x:

∫ x1−∆x(t,x1,∆t)

x1

n(t, x)dx.
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(ii.) Cells with intensity in the interval [x0, x0 −∆x(t, x0,∆t)], losing FI according to ∆x:

∫ x0−∆x(t,x0,∆t)

x0

n(t, x)dx.

(iii.) Cells which would have contributed to N(t+ ∆t) had they not died:

∫ t+∆t

t

∫ x1−∆x(t,x1,t+∆t−τ)

x0−∆x(t,x0,t+∆t−τ)

β(τ, x)n(τ, x)dxdτ.

(iv.) The disappearance of cells from the region due to proliferation:

∫ t+∆t

t

∫ x1−∆x(t,x1,t+∆t−τ)

x0−∆x(t,x0,t+∆t−τ)

α(τ, x)n(τ, x)dxdτ.

(v.) The gain of daughter cells (two of them) in the region as a result of proliferation in the parent
region:

χ[xa,x∗]2
∫ t+∆t

t

∫ 2(x1−∆x(t,x1,t+∆t−τ))−xa

2(x0−∆x(t,x0,t+∆t−τ))−xa
α(τ, x)n(τ, x)dxdτ,

where x∗ = xmax/2 + xa and xa is the natural autofluorescence of unstained cells.

We remark that α and β are the rates of cell proliferation and death, respectively, with units hr−1.
It follows that the difference N(t + ∆t) − N(t) is the sum of the components (i.) and (v.) less the
contributions of components (ii.) - (iv.). Following the standard procedure of dividing by ∆t and letting
∆t→ 0, we obtain dN

dt on the left side of the equation. We now treat the right side of the equation term
by term.

For the first term on the right side, if n(t, x) is continuous in t and x (a reasonable assumption), the
mean value theorem (MVT) implies that there exists a θ ∈ [x1, x1 −∆x(t, x1,∆t)] such that

∫ x1−∆x(t,x1,∆t)

x1

n(t, x)dx = −∆x(t, x1,∆t)n(t, θ).

Assuming ∆x is continuous in ∆t (that is, there is no instantaneous label loss) and varies smoothly,

lim
∆t→0

−∆x(t, x1,∆t)
∆t

n(t, θ) = −v(t, x1)n(t, x1). (2.7)

where we have defined dx
dt = v(t, x), the instantaneous rate of FI change of cells with intensity x and

time t. Applying the same argument for the second term,

−
∫ x0−∆x(t,x0,∆t)

x0

n(t, x)dx = v(t, x0)n(t, x0). (2.8)
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In the consideration of the third term, define

uβ(τ) =
∫ x1−∆x(t,x1,t+∆t−τ)

x0−∆x(t,x0,t+∆t−τ)

β(τ, x)n(τ, x)dx.

Then if ∆x(t, x,∆t) and β(τ, x)n(t, x) are continuous functions of their variables, so is uβ(τ) and by the
MVT, there exists a θ′ ∈ [t, t+ ∆t] such that

1
∆t

∫ t+∆t

t

uβ(τ)dτ = uβ(θ′).

Thus it follows that
lim

∆t→0
uβ(θ′) = uβ(t) =

∫ x1

x0

β(t, x)n(t, x)dx, (2.9)

assuming ∆x(t, x, 0) = 0 for all t, x (which follows from the previous assertion regarding the smoothness
of ∆x in ∆t). Using a similar argument for the fourth term,

lim
∆t→0

uα(θ′) = uα(t) =
∫ x1

x0

α(t, x)n(t, x)dx, (2.10)

where uα(τ) has the obvious definition. For the final term, the same argument along with the change of
variables ξ = (x+ xa)/2 results in

χ[xa,x∗]2 lim
∆t→0

uα̃(θ′) = χ[xa,x∗]4
∫ x1

x0

α(t, 2x− xa)n(t, 2x− xa)dx. (2.11)

Altogether, we can assemble (2.7) - (2.11) to obtain

dN

dt
= −v(t, x1)n(t, x1) + v(t, x0)n(t, x0)−

∫ x1

x0

β(t, x)n(t, x)dx

−
∫ x1

x0

α(t, x)n(t, x)dx+ χ[xa,x∗]4
∫ x1

x0

α(t, 2x− xa)n(t, 2x− xa)dx.

On the left side, differentiating N(t) =
∫ x1

x0
n(t, x)dx with respect to t results in

dN

dt
=
∫ x1

x0

∂n(t, x)
∂t

dx.

Finally, by applying the Fundamental Theorem of Calculus to the first two terms on the right side,
simplifying and rearranging,∫ x1

x0

∂n(t, x)
∂t

+
∫ x1

x0

∂(v(t, x)n(t, x))
∂x

=

−
∫ x1

x0

(α(t, x) + β(t, x))n(t, x) + χ[xa,x∗]4
∫ x1

x0

α(t, 2x− xa)n(t, 2x− xa).
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Equivalently (because x0 and x1 were arbitrary),

∂n(t, x)
∂t

+
∂[v(t, x)n(t, x)]

∂x
= (2.12)

− (α(t, x) + β(t, x))n(t, x) + χ[xa,x∗]4α(t, 2x− xa)n(t, 2x− xa).

At the right boundary (x = xmax), we expect that there are no cells which can drift (via label loss)
into the computational domain. At the left boundary, a zero flux condition is imposed to prevent cells
from drifting to CFSE FI values less than the AutoFI of unlabeled cells. Thus the boundary conditions
are

n(t, xmax) = 0 (2.13)

v(t, xa)n(t, xa) = 0. (2.14)

In general (see Equation 2.19) the label loss function will satisfy v(t, xa) = 0 for all t, and hence the left
boundary condition will be trivially satisfied. Finally, we assume we are given some initial condition

n(0, x) = Φ(x), (2.15)

which is the initial distribution of cells as a function of FI.
We remark that the above derivation is not very different from that already presented in [21]. The

key differences are the notational change in permitting the dependence of the proliferation and death
rates (α and β) and the label loss rate (v) on both time t and measured FI x. In addition to accounting
for the presence of cellular AutoFI, this model also explicitly incorporates the even division of CFSE
between daughter cells.

2.2.3 Gompertz Decay of Label

Given the model (2.12), we now turn our attention to the label loss rate v(t, x). Because the mathematical
model estimates cell proliferation and death rates in terms of the CFSE FI structure variable (as a
surrogate for division number), the manner in which CFSE naturally decays directly affects the cell
turnover parameter estimates. (This is particularly true when using the ‘translated variable’; see Section
2.2.5). Thus, our understanding of the underlying biology (in the form of cell proliferation and death rate
estimates) is closely tied to the accurate modeling of label decay. In order to provide parameter estimates
which are unbiased, it is of vital importance that the label loss rate v(t, x) accurately reproduces the
natural decrease in CFSE FI observed in the data. Previous authors have also highlighted an accurate
model of label decay as a necessary factor in describing CFSE data sets [61, 64].

It was hypothesized in [77] that an exponential rate of loss is sufficient to model the label loss observed
in the data, and this assumption was incorporated into Equation (2.1). In order to test this assumption,
a PBMC culture was taken from two donors and stained with CFSE following the standard procedure.
However, these cells were not stimulated to divide. Because only viable cells are included when the
cytometry data is gated, any decrease in mean FI in the population must be the result of natural CFSE
FI decay. Over the course of 160 hours, cells from each donor were measured at 24 distinct time points

24



in triplicate and the mean total FI of each sample was recorded. The data can be found in Table 2.1
and is shown graphically in Figure 2.3.

We would like to determine what functional forms might be used in order to quantify the label loss
observed in the data. Following the assumptions of [21, 77], we begin with a model of label loss that
decays exponentially to the autofluorescence of unlabeled cells,

x1(t) = (x(0)− xa)e−ct + xa. (2.16)

However, it appears from the data (particularly for Donor 1) that the rate of exponential decay of label
may itself decrease as a function of time. This can be modeled by the Gompertz decay process [69, pg.
12]

x2(t) = (x(0)− xa)exp
(
− c
k

(
1− e−kt

))
+ xa. (2.17)

The loss rate function, of vital importance to the PDE formulation (2.12), is v(t, x) = dx
dt . Thus the

equations (2.16) - (2.17) correspond to the loss rate functions

v1(x) = −c(x− xa), (2.18)

and
v2(t, x) = −c(x− xa)e−kt, (2.19)

respectively. We remark that (2.17) is a generalization of (2.16), the latter being the limiting value (as
k → 0) of the former. Thus, it would be ideal to fit both models to the data and use statistical tests
to determine if the model refinement is warranted. However, it is not possible to uniquely identify the
parameter xa in either of the two models using an ordinary least squares procedure with only the data
from Table 2.1. On the other hand, the parameter xa appears in other parts of the model (2.12), and
it seems possible to conclude that this parameter would be readily identifiable once incorporated into
(2.12) with the full proliferation assay data.

In order to at least begin to compare these two models, we set the parameter xa to the physiologically
reasonable value of 50 in both models. (Values reported in the literature ranged from 10 to 100 [79,
Figure 1], [82, Figure 2] and [92, Figure 3].) An ordinary least squares (OLS) procedure is then used
to fit the remaining parameters (c and x(0) for the exponential model, c, k and x(0) for the Gompertz
model) for data from both donors. The results for the exponential model are shown in Figure 2.4 and the
results for the Gompertz model are shown in Figure 2.5. Based upon the lines of best fit in comparison
with the data, it seems clear that the Gompertz decay model more accurately describes the available
data. This is confirmed by the comparison of cost given in Table 2.2.

A few additional comments are in order. First, we remark that, while the parameter x(0) is included
in the models (2.16) and (2.17) used to fit the CFSE label loss data sets from Table 2.1, it is actually the
loss rate function (either (2.18) or (2.19)) that will be included in the PDE model (2.12) and thus this
parameter will not actually require estimation in the full PDE model. Also, when using CFSE-labeled
cells for a proliferation assay, there is at minimum an additional hour of preparation time (so that
the cells can be stimulated to divide) between CFSE labeling and the first measurement time. Thus we
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Table 2.1: Mean CFSE FI for unstimulated cells rounded to the nearest integer. Data collected from
Donor 1 and Donor 2. Several outliers are noticeable in data from Donor 2 and have been marked with
an asterisk. All data is given in arbitrary units of intensity (UI).

Time (hours) Donor 1 Donor 2
0.00 44311 43272 45369 40878 41593 41993
2.00 33782 37720 36961 36755 32585 25705∗

4.00 29331 30043 29634 30818 28565 27144
6.00 29235 28526 31283 26498 27666 26354
8.00 25899 27229 29839 25856 18404∗ 25060
10.00 26651 27691 27406 24846 25336 –
12.50 29471 27610 27852 24172 25506 26290
19.25 27201 27254 24718 30272∗ 26922 26937
21.25 27062 23601 25342 27436 27646 29527
23.25 20758 24967 24640 25680 26474 26482
25.25 26585 23512 23400 25947 26711 26379
27.25 23356 24882 22898 26040 25551 28393
29.25 23660 21729 24288 23975 22490 23471
31.50 22768 20914 21268 21153 21244 21759
33.25 23897 24198 24758 25337 24053 24749
50.25 22623 23504 24696 26138 25672 27361
54.75 21910 21120 21986 25777 24564 26069
59.25 21877 26290 23829 21932 21302 27558∗

77.25 22099 24160 21420 25769 24108 26511
85.75 20731 21827 22108 26604 26293 26306
98.75 21468 20993 21220 22869 21760 22579
123.75 18836 18887 18313 20369 20533 21003
131.25 20132 20119 20799 20908 22234 26666∗

150.75 22199 19822 – 26542 23417 –
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Figure 2.3: Mean CFSE FI data for unstimulated cells from donor 1 (left) and donor 2 (right).
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Figure 2.4: Results of fitting the exponential model (2.16) to the mean CFSE data in Table 2.1. For
both Donor 1 (top) and Donor 2 (bottom), we see from both the fit to the data (left) and the residual
plot (right) that the model is not capable of accurately replicating the observed data (when xa is set to
50 UI).
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Figure 2.5: Results of fitting the Gompertz model (2.17) to the mean CFSE data in Table 2.1. The fit of
the model to the data is much improved (when compared to the exponential fit in Figure 2.4) for both
donors (when xa is set to 50 UI).

27



Table 2.2: OLS cost values for fitting the exponential (2.16) and Gompertz (2.17) models to the mean
CFSE FI data for unstimulated cells from two donors (Table 2.1). While model comparison tests are
not applicable because of a lack of parameter identifiability, there is a clear reduction in cost when using
the Gompertz model, as well as a clear improvement in the model fit (compare Figures 2.4 and 2.5).

Model Donor 1 Donor 2
Exponential 1.176515× 109 1.073325× 109

Gompertz 2.853192× 108 4.285324× 108

would expect slightly different parameter estimates when either of these models is used with proliferation
assay data. Moreover, because this additional hour of preparation time occurs during the first hour after
staining, the rapid decay observed in both data sets for 0 ≤ t ≤ 5 may be partially removed from the
data. In fact, the estimation of the label loss function (either exponential or Gompertz) is highly sensitive
to the length of time separating initial labeling from stimulation. In some experiments, this sensitivity
is minimized by separating these two events by a full 24 hours [84]. Because of these considerations, it is
unclear exactly how much improvement to expect (in additional data sets) from using (2.19) as opposed
to (2.18) in (2.12), and the magnitude of the improvement will probably depend upon the (unknown)
length of time between staining and stimulation.

We also remark that the primary reason for the failure of the exponential model is the location of
the equilibrium point in the data (as compared to that predicted by the model). We see from Equation
(2.16) that the exponential model predicts x→ xa as t→∞. However, it is known that CFSE stained
cells retain detectable fluorescence for up to several weeks in vivo [82]. The exponential model cannot
accurately account for both the rapid decline in CFSE FI during the first few hours of staining and the
slow decline once the label has been stably incorporated. (We can, for the current data sets, allow xa

to attain values of approximately 2.2 × 104; in this case the exponential model fits the data at least as
well as the Gompertz model. However, this is not a physiologically reasonable value of xa.)

Physiologically , it is known that after the conversion of CFDA-SE to CFSE by intracellular esterases,
CFSE can still exit the cell at a slow rate (compared to free diffusion). However, the succinimidyl group
of CFSE reacts covalently with amines attached to intracellular proteins. While some of the resulting
conjugates are short-lived (either because they exit the cell or are rapidly degraded) other conjugates
are stably incorporated inside the cell and remain so for an extended period of time. These stable
conjugates are decreased further only by the natural turnover of the intracellular proteins to which they
are bound [89]. These processes combine to produce the commonly observed “biphasic decay” of CFSE
FI over time [84, 104]. In other words, it seems necessary for the rate of CFSE FI (exponential) decay
to decrease in time. This is precisely the feature of the Gompertz decay model [69].

2.2.4 Model Change of Variables

Before proceeding to a consideration of possible parameterizations of the proliferation and death rate
functions α and β, we pause briefly to consider a change of variables which will aid in the calculation
of numerical solutions. While the model (2.12) (with v(t, x) given by (2.19)) and its associated initial
and boundary conditions suitably describe the dynamics for a CFSE-labeled population of dividing
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lymphocytes, the model is not conducive to finite difference methods for numerical solutions. The CFL
condition for stability requires

∆t <
∆x

max |v(t, x)|
=

∆x
max c(x− xa)

. (2.20)

Because xmax >> xa, the computational domain is quite large, and max(x− xa) ∼ 104. Moreover, this
large domain must have a relatively fine mesh, as features of the solution become less distinguishable
with increasing division number. We see that, given c ∼ 0.1 and ∆x ∼ 0.1, it would take upward of
105 time steps to compute the solution out to t = 120 hours, and this must be done for 105 points on
the structure variable grid. The resulting computations can take in excess of several hours running in
MATLAB on a desktop machine.

Rather than attempt these expensive computations, we seek a change of variables that will lead to
a faster numerical solution. The most immediate choice is to use the change of variables z = log10 x,
as the data is given in this coordinate. While this change of variables was effective in [21, 77], it is less
effective here because of the different form of the label loss rate function v(t, x). Instead, we use the
change of variables y = log10(x− xa). Then x = 10y + xa and

dy

dx
=

1
(x− xa) ln(10)

.

Let ñ(t, y) = 10y ln(10)n(t, x(y)) = 10y ln(10)n(t, 10y + xa). We remark that the factor 10y ln(10) arises
from the chain rule in the integral form of (2.12) and is needed to conserve the total label in the
population. With this change of variables the new PDE model is

∂ñ

∂t
− ce−kt ∂

∂y

[
ñ(t, y)
ln 10

]
= −(α̃(t, y) + β̃(t, y)− ce−kt)ñ(t, y) (2.21)

+ χ(−∞,y∗]2α̃(t, y + log10 2)ñ(t, y + log10 2),

where α̃(t, y) = α(t, x(y)), β̃(t, y) = β(t, x(y)) and y∗ = ymax − log10 2. The new initial condition is
Φ̃(y) = 10y ln(10)Φ(t, 10y + xa). The right boundary condition follows immediately from (2.13) while
the left boundary has been removed to y = −∞. We remark that the CFL condition for the PDE (2.21)
is

∆t <
∆y ln 10
ce−kt

which is significantly easier to satisfy. The change of variables y = log10(x−xa) is a parameter-dependent
change of variables, technically requiring a ‘re-gridding’ of the solution each time the parameters (specifi-
cally xa) are changed in an optimization routine for the inverse problem. Because we use a time-stepping
finite-difference method to compute the forward solution for a given set of parameters, this requirement
does not constitute a great computational setback. In fact, observation of (2.21) reveals that the pa-
rameter xa does not appear directly in the equation to be solved, only in the change of variables that
gives rise to the equation.

In the remainder of this chapter, the tildes over the functions α, β, n and Φ will be ignored. As
has already been noted, the dependence of the functions α and β on the structure variable (either x or
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y) is intended only as a surrogate for the dependence of the proliferation and death rates, respectively,
on division number (see Section 2.4). As such, the distinction between α(t, x) and α̃(t, y) (or β(x) and
β̃(y)) is of minimal importance–the derivation of the ‘translated variable’ below applies equally as well
to one as the other.

2.2.5 Parameterizations of α and β

We next turn our attention to the parameterizations of the functions α(t, x) and β(t, x). Because our
goal is the estimation of lymphocyte division and death rates from data, we use finite-dimensional ap-
proximations of the function spaces containing α and β so that the problem is computationally tractable
and theoretically sound [16, 17]. Previous work has established that division-linked changes in prolifer-
ation and death rates are an important aspect of an accurate mathematical model [21, 72, 76, 77]. One
of the primary motivating assumptions behind the use of a PDE model for fitting CFSE data is that
the dilution of CFSE dye by division allows for the structure variable (in this case, y) to be used as a
surrogate for division number [21, 75, 77]. Thus division-dependent changes in proliferation and death
rates are encapsulated in the structure dependence of the functions α and β.

While a straightforward implementation of structure dependence for α and β has proven effective,
the fact that the measured FI of a cell slowly decreases in time as a result of label loss indicates that
one should take care in accounting for the correlation between division number and structure variable.
As discussed at greater length in [7, 21], this label loss causes such correlation to lessen significantly.
Alternatively, one might consider the total FI that would have been measured for a cell, if that cell did
not experience any label loss. The key argument is to identify a cell not by its current state y, but
rather by the state it would have in the event it did not undergo label loss. We begin by demonstrating
that such a ‘translated coordinate’ is mathematically equivalent to deriving a model in terms of an ideal
label which does not decay and then changing one’s frame of reference to a moving coordinate system in
which the label does appear to decay (i.e., the one relative to which the data is actually taken). After
this derivation, several possible parameterizations are considered for the proliferation and death rate
functions α and β.

The ‘translated variable’ as a change of coordinate systems

Consider a population of cells labeled with a (hypothetical) fluorescent dye which does not decay as the
cells grow, divide, and die. Let s be the measured FI (in units of intensity, UI, as before) of such cells
and let n(t, s) be the structured population density (cells/UI) of cells with FI s at time t. Then for a
given FI s, the population density is governed by a rate equation which can be written as

dn

dt
(t, s) =− (α(t, s) + β(t, s))n(t, s) + χ[sa,s∗]4α(t, 2s− sa)n(t, 2s− sa), (2.22)

where s∗ and sa are defined as in Section 2.2.2. A derivation of this equation follows immediately from
the mass-conservation principles of [26, 97] and Section 2.2.2 above. One can now make the change of
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variables s̃ = log10(s− sa) as in Section 2.2.4 to obtain

d

dt

[
10s̃ log(10)n(t, s̃)

]
=− (α̃(t, s̃) + β̃(t, s̃))

(
10s̃ log(10)n(t, s̃)

)
+χ(−∞,s̃∗]2α̃(t, s̃+ log10 2)

(
10s̃ log(10)n(t, s̃+ log10 2)

)
. (2.23)

Typically, when making a change of variables in differential form, one would simply divide through by
the quantity 10s̃ log(10), which is always nonzero. However, because we will be making a time-dependent
change of coordinates below, this induces a time dependence in the variable s̃ (when viewed from the new
frame of reference). As such, misleading results can be obtained if the factors 10s̃ log(10) are eliminated
from the above equation.

While Equation (2.23) would be adequate in the situation for which total FI remains constant (unless
diluted by division or removed by cell death) it has already been acknowledged that CFSE (along
with essentially all other intracellular dyes) naturally degrades and/or is turned over until FI is no
longer discernible from background autofluorescence. Thus it is of interest to introduce a natural label
loss velocity v to account for the changing label intensity. That is, the reported intensity coordinate
system is actually changing in time (i.e., a moving coordinate system with velocity v). We therefore
introduce a change of coordinates involving this velocity to decouple the degradation process from the
cell division/proliferation/death processes. Moreover, since the data is recorded relative to this changing
structure variable, it is useful to view the proliferation and death rates relative to this new coordinate
system.

Although not common in the biological sciences, it is altogether common in the physical sciences
and engineering to consider velocities (i.e., rates of change) relative to different coordinate or reference
frames. For example, in the mechanics and motion of continua (elasticity and fluids) and deformable
bodies [14, 47, 48, 83, 88], it is frequent to encounter velocities relative to a fixed coordinate system (in
a Lagrangian formulation) or relative to a moving coordinate system (in an Eulerian formulation). One
description for motion is made in terms of the material or fixed referential coordinates, and is called
a material description or the Lagrangian description. In this formulation, an observer standing in the
fixed referential frame observes the changes in the position and physical properties as the material body
moves in space as time progresses. This formulation focuses on individual particles as they move through
space and time. The other description for motion is made in terms of the spatial or current coordinates,
called a spatial description or Eulerian description. The coordinate system is relative to a moving point
in the body and hence is a moving coordinate system.

Motivated by the above discussions, let y be defined by the degradation velocity v as

dy

dt
= v(t, y)

and assume
y(0) = s̃.

(That is, we assume that the observed intensity variable is initially equal to the ‘true’ FI in the absence
of any FI decay.) For the remainder of the discussion presented here, v(t, y) is taken to be the Gompertz
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decay rate from Section 2.2.3. Thus we have the time-dependent change of coordinates

y = s̃− c

k log(10)
(1− e−kt).

Applying this change of coordinates to the left side of Equation (2.23),

d

dt

[
10s̃ log(10)n(t, s̃)

]
=

d

dt

[
10y+ c

k log(10) (1−e−kt) log(10)n(t, y +
c

k log(10)
)
]

=
d

dt

[
10y+ c

k log(10) (1−e−kt) log(10)
]
n(t, y +

c

k log(10)
)

+
dn

dt

[
10y+ c

k log(10) (1−e−kt) log(10)
]

= 10y+ c
k log(10) (1−e−kt) log(10)

−ce−kt

n
(t, y +

c

k log(10)
)

+
(
∂n

∂t
− ce−kt ∂n

∂y

)[
10y+ c

k log(10) (1−e−kt) log(10)
]
.

Plugging into Equation (2.23) and defining

ñ(t, y) = 10(y+ c
k log(10) (1−e−kt)) log(10) · n

(
t, y +

c

k log(10)
(1− e−kt)

)
,

we have

∂ñ

∂t
− ce−kt ∂ñ

∂y
=− (α̃(t, s̃) + β̃(t, s̃)− ce−kt)ñ(t, y) (2.24)

+χ(−∞,ỹ∗(t)]2α̃(t, s̃+ log10 2)ñ(t, s̃+ log10 2). (2.25)

As before, we can eliminate the tildes for notational convenience. This demonstrates that the parame-
terization of the proliferation and death rates in terms of the ‘translated coordinate’ s is mathematically
justified as a change of coordinates to a reference frame in which the measured FI of cells slowly decreases
in time. It is worth noting that, from the y reference frame at time t, the coordinate s̃ is the point of
intersection of the y-axis with the characteristic line passing through (t, y). The analysis can be made
more general by assuming an unspecified change of variables y = s+ ν(t, y). Provided the conditions of
a global implicit function theorem [94] hold (so that it is possible to write y = µ(t, s̃) for some function
µ) then it is possible to obtain a general form of (2.25) [7].

The motivation for such a coordinate is the fact that, by accounting for the natural decrease of FI
of the intracellular label, the quantity s(t, y) is more strongly correlated with division number than the
quantity y. Thus, the use of this ‘translated coordinate’ for the parameterization of α and β should
provide a more accurate model of the observed data when compared to the simple implementation of
spatial dependence. While this was found to be the case in [21] that analysis was done with an exponential
label loss function. It remains to be shown that parameterization of the proliferation and death rates in
terms of the translated coordinate s is advantageous when using the new model (2.21) and the Gompertz
label loss function (2.19). To this end, four different parameterizations of the proliferation rate α and
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two different parameterizations of the death rate function β are considered. In Section 2.4, results will
be reported which demonstrate the effects of these different parameterizations on the effectiveness of the
model.

First, we consider the simple case that α = α(y). Given a fixed set of nodes {yk}, we assume

α = α(y) =
Kα∑
k=1

akl
(α)
k (y), (2.26)

where lαk (y) are piecewise linear spline functions satisfying

lαk (yj) =

{
1, j = k

0, j 6= k
.

It is assumed that α(0) = α(3.5) = 0. This assumption does not have a significant impact on the model
as the nodes {yk} are chosen so that the proliferation rate can be varied as necessary at all values of the
state variable where cells appear in the data. It does, however, add some measure of regularity to the
computed proliferation rate function.

Alternatively, as discussed above, it may prove more accurate to use the translated coordinate s in
order to represent the proliferation rate of cells with a particular division number. Given a fixed set of
nodes {sk}, we assume

α = α(s) = α(s(t, y)) =
Kα∑
k=1

akl
(α)
k (s), (2.27)

where the functions lαk (s) are defined as above. Again, it is assumed that α(0) = α(3.5) = 0.
We also consider the possibility that the proliferation rate depends explicitly on time. Indeed, we

see in the data in Figure 1.1 that there is no proliferation at least during the first 24 hours of the assay.
However, by t = 48 hours, it is clear that the population has begun to divide. Thus the assumption
of time dependence seems appropriate. As above, we can still consider the proliferation rate either in
terms of the state variable y or in terms of the translated coordinate s, in addition to its dependence on
time. Given a set of nodes {yk} as above and a set of time nodes {tm}, we parameterize

α = α(t, y) =
Kα∑
k=1

M∑
m=1

akml
(α)
k (y)l(t)m (t), (2.28)

where we now assume that the splines l(α)
k (y) and l(t)m (t) are piecewise linear in their respective variables.

Again, we ensure some regularity in the inverse problem by requiring α(t, 0) = α(t, 3.5) = 0. It is also
assumed that α(t, y) = 0 for all t ≤ 24 hours.

Finally, we consider the case that α is parameterized in time as well as the translated coordinate s.
Given nodes {tm} as above and nodes {sk} in the translated variable, the proliferation rate function is
then

α = α(t, s) = α(t, s(t, y)) =
Kα∑
k=1

M∑
m=1

akml
(α)
k (s)l(t)m (t), (2.29)
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where we again assume the splines l(α)
k (y) and l

(t)
m (t) are piecewise linear. As before, it is assumed

α(t, 0) = α(t, 3.5) = 0 and α(t, s) = 0 for all t ≤ 24 hours.
Results from [21, 75, 77] indicate that the death rate function need not be quite as complex as the

proliferation rate function. After the first few generations, the death rate of cells seems to be roughly
constant. There is little reason to suspect that the death rate function depends on time and we do not
consider it here. As before, we consider using the state variable y and the translated coordinate s to
parameterize the death rate function. Given nodes {yk} (which may be distinct from the nodes used in
the estimation of the proliferation rate α), we have

β = β(y) =
Kβ∑
k=1

bkl
(β)
k (y). (2.30)

We assume β(y) = b1 for all y ∈ [0, y1] and β(y) = bKβ for all y ∈ [yKβ , 3.5]. Alternatively, using the
translated coordinate, we have nodes {sk} and

β = β(s) = β(s(t, y)) =
Kβ∑
k=1

bkl
(β)
k (s) (2.31)

with the assumptions β(s) = b1 for all s ∈ [0, s1] and β(s) = bKβ for all s ∈ [sKβ , 3.5].

2.3 Parameter Estimation Procedure

Given the new model (2.21) and an appropriate parameterization of the proliferation and death rates,
it is now possible to establish a framework for estimating the parameters of the model from a data set.
However, as discussed in Section 1.2, the cytometry histograms show the numbers of cells counted into a
given set of bins corresponding to particular ranges of log CFSE FI values in the z = log10 x coordinate
while the model is a structured density in the variable y = log10(x − xa). Thus it is first necessary to
determine a reasonable approximation of the smooth initial condition function Φ̃(y) using data from Day
0 (t = 0 hours). Next, an observation operator must be constructed which relates the model solution to
the remaining histogram data (t = 24, 48, 96, and 120 hours).

2.3.1 Initial Condition Construction

Recall from Chapter 1 that, at time tj , the data is stored as a set of ordered pairs (zjk, n
j
k), k = 1, . . . ,K(j)

which correspond to the number of cells njk counted into the bin with left boundary zjk. To construct
the initial condition, a smooth line is drawn through the data at t = 0, and ordered pairs representing
the line can then be determined using DataThief [101]. These smoothed histogram curves are scaled
upward into a smooth initial condition density Φ̂(z) so that the total label content is the same for the
smooth density as for the original histogram data. The results are depicted in Figure 2.6. Finally,
given the initial condition Φ̂(z), the initial condition function for ñ(t, y) is computed by noting that

34



0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

18x 10
4 Smooth IC, Logarithmic Coordinate (z)

z [Log UI]

n(
0,

z)
 [C

ou
nt

s]

 

 

Data
Smooth Approximation

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

9x 10
7 IC from Label Conservation

z [Log UI]

n(
0,

z)
 [C

el
ls

/L
og

 U
I]

Figure 2.6: Left: Smoothed histogram data at t = 0 in the z coordinate. Right: Density function Φ̂(z)
computed from the smoothed histogram data.

y = log10(10z − xa) and using the label-preserving identity

Φ̂(z) =
10z

10z − xa
Φ̃(y(z)). (2.32)

This, then, provides an initial condition for (2.21).

2.3.2 Observation Operator

While the procedure above provides a means of determining a smooth initial condition density Φ̃(y)
from the smoothed histogram data, the comparison of the model, a density defined in terms of y, to the
data, a histogram in terms of z, represents the opposite problem. In order to make this comparison, we
need to perform two steps. First, we must transform the structured density ñ(t, y) into a function of z.
This is done analogously to the transformation (2.32) above. Second, we must transform this structured
density into histogram numbers. To do this, we note that at time tj , the total number of cells with FI
between zjk and zj+1

k is

I[n̂](tj , z
j
k) ≡

∫ zj+1
k

zjk

n̂(tj , z)dz ≈

[
n̂(tj , z

j+1
k ) + n̂(tj , z

j+1
k )

2

](
zj+1
k − zjk

)
, (2.33)

where the trapezoid rule has been used to approximate the integral. In general, we find that this is an
effective method of obtaining histogram counts from the smooth density model solution. Implications
of the trapezoidal approximation on the inverse problem are considered at greater length in Chapter
3. However, the varying sizes of the bins used to record the available data set poses somewhat of a
problem. While the bins are generally regularly spaced, there are a few bins randomly placed in the
data which are either much larger or much smaller than the neighboring bins. As a result, the histogram
data I[n̂](ti, zj) computed from the smooth densities exhibits large jumps up or down at these points.
This is strictly the result of the irregular bin sizes present in the data set and not the model solution
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itself. These jumps are problematic for the OLS procedure discussed below and as such these bins are
removed from the data set. We emphasize again that, in future data sets, the bins can be set as needed,
rather than being fixed in advance.

2.3.3 Numerical Method

While (2.21) is defined on an infinite domain, all cells in the population maintain FI sufficiently greater
than xa, so that it is acceptable to solve (2.21) only on the domain y ∈ [0, ymax]. In practice, we set
ymax independent of the parameter xa and thus solve the equation (2.21) on the same computational
domain regardless of the parameters (i.e., those passed in by the nonlinear optimization solver). Once
the solution n(t, y) is computed, it is possible to use (2.32) again to change variables back to n̂(t, z) for
comparison to the data.

For the current data set, we use 512 evenly spaced nodes in the interval y ∈ [0, 3.5]. The forward
solution is computed using a publicly available hyperbolic PDE solver written by L. Shampine which
implements the Lax-Wendroff scheme.

2.3.4 Ordinary Least Squares Framework

Given the appropriate parameterizations of α and β, we now have a complete set of parameters θ =
(xa, c, k, {a}, {b}) which define the model solutions. Thus in the analysis below we think of the param-
eterized model ñ(t, y; θ) satisfying (2.21) given parameter θ. We now turn our attention to an inverse
problem procedure which seeks to determine the parameters best describing the available data.

Following standard inverse problem procedure for ordinary least squares (OLS) [22, 35, 37], we assume
that the data nkj represent an observation of the model solution evaluated at the true parameter θ0 with
the addition of some amount of noise. Thus, we can consider the data as a random variable

N j
k = I[n̂](tj , z

j
k; θ0) + Ekj , (2.34)

where {Ekj} are random variables with E[Ekj ] = 0 and V ar(Ekj) = σ2. We remark that the assumption
of constant variance for the error terms is standard for OLS formulations of inverse problems. One can
examine the accuracy of such an assumption ex post facto through the use of residual-based statistical
tests [8, 22, 96]. In [21], such an analysis revealed that the actual error variance was neither constant nor
proportional to the square of the model solution (a ‘relative error model’). For the moment, we remark
that the OLS assumption of constant variance, while possibly not exactly correct and hence not adequate
for use in asymptotic parameter distributional analysis, is sufficient to provide a basis for computational
parameter estimation, which will demonstrate the ability of the current model to fit the available data
set. Given our uncertainty regarding the exact nature of the observed error process, we postpone a more
detailed analysis of uncertainty in the estimated parameters (standard errors, confidence intervals, etc.)
[8] for future work. Further analysis and characterization of the experimental measurement error with
implications for the least squares framework can be found in Chapters 4 and 5.
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Table 2.3: Summary of parameters θ = (xa, c, k, {a}, {b}) which define the model solution, with minimum
values, maximum values, and units. Forward simulations of the model demonstrate the reasonableness
of the bounds provided.

Parameter Minimum Maximum Units
ai 0 1 hr−1

bi 0 1 hr−1

xa 0 100 UI
c 0 0.1 UI/hr
k 0 0.005 hr−1

Given the statistical model (2.34), we can write the data as realizations

njk = I[n̂](tj , z
j
k; θ0) + εkj (2.35)

of the random variables (2.34). The goal of the OLS procedure is the determination of the parameter
θ which minimizes the sum of squared residuals. Given the random variables N j

k from (2.34), the OLS
estimator is

θOLS = arg min
θ∈Θ

J∑
j=1

K(j)∑
k=1

(I[n̂](tj , z
j
k; θ)−Nk

j )2 = arg min J(θ), (2.36)

where Θ is a set of admissible parameters for the model (see Table 2.3). As the data njk are realizations
of the random variables N j

k , it follows that the OLS estimate

θ̂OLS = arg min
θ∈Θ

J∑
j=1

K(j)∑
k=1

(I[n̂](tj , z
j
k; θ)− njk)2 = arg min J(θ), (2.37)

is a realization of the OLS estimator θOLS. This optimization was carried out with the MATLAB
constrained optimization routine fmincon, which implements the BFGS algorithm at each step to solve
a quadratic subproblem. Because such routines can become trapped in local minima, several initial
iterates were tried for each optimization.

2.4 Results

The primary uncertainty in the inverse problem procedure is the choice of nodes {yk} or {sk} for the
estimation of the proliferation and death rates. We have no a priori information as to how many nodes
should be used nor any information regarding where those nodes should be placed. To illustrate this
point, in Figure 2.7 we depict the estimated proliferation and death rate functions given three different
choices of nodes {yk}. First, seven nodes were evenly spaced in the interval [1.125, 2.925]. Next the
number of nodes was increased to 13 so that the separation between nodes was halved (and so that the
increase in parameters is a refinement to the model). This procedure was repeated and the estimation
was performed a third time with 25 nodes. Intuitively, each refinement must provide a more accurate fit
of the model to the data, as the total OLS cost cannot increase as the number of parameters is increased.
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Table 2.4: Average proliferation rates (in units 1/hr) in terms of numbers of divisions undergone, com-
puted from Figure 2.7. Using Figure 1.1, approximate ranges (in the coordinate z) corresponding to
particular division numbers are determined. These are then used to compute the corresponding ranges in
the variable y using the estimated level of cellular autofluorescence. In spite of the differences in the num-
bers of nodes used in the parameterization of the proliferation rate function α(y), average proliferation
values are estimated consistently for each generation.

Division Number z-axis Range 7 Nodes 13 Nodes 25 Nodes
6 [0.00, 1.05] 0.0016 0.0015 0.0016
5 [1.05, 1.30] 0.0043 0.0050 0.0052
4 [1.30, 1.60] 0.0094 0.0103 0.0108
3 [1.60, 1.90] 0.0166 0.0174 0.0206
2 [1.90, 2.25] 0.0325 0.0308 0.0314
1 [2.25, 2.55] 0.0284 0.0198 0.0266
0 [2.55, 3.50] 0.0047 0.0097 0.0072

However, we also see in Figure 2.7 that as the number of nodes increases, the estimated proliferation rate
function becomes less regular. Conversely, we see that some measure of regularity can be imposed on the
function α(y) by choosing the proper set of nodes with which to estimate it (a so-called ‘regularization
by discretization’ [15, 16]). While we do have available residual-sum-of-squares based statistical tests
[8, 10, 22] to quantify the improvement in the model with each refinement, we choose to balance this
additional information with a desire to estimate a semi-regular function α.

It is worth remarking further that the increasingly complex structure of the function α(y) (as the
number of nodes is increased) is only a relic of the estimation procedure and has nothing to do with any
meaningful information regarding the population of cells being studied. In order to verify this, in Table
2.4 we present, for each parameterization of the function α(y) discussed in the previous paragraph,
the average value of the estimated proliferation rate in terms of the numbers of divisions the cells
have undergone. To compute these values, Figure 1.1 is used to determine approximate ranges (in the
coordinate z) corresponding to each generation of cells. By changing these ranges from the variable z
to y (in which the estimation of the proliferation rate function was performed), the average value of
the proliferation rate function can be determined in each range. As seen in Table 2.4, the estimates are
reasonably consistent regardless of the number of nodes used in the estimation.

Given the above discussion, we choose 13 nodes for the estimation of the proliferation rate function
α(y) and 5 nodes for the estimation of the death rate function β(y) in an effort maximize the flexibility
of the estimation while also maintaining some regularity in the estimated functions. The OLS best-fit
solution is shown in Figure 2.8. The optimal proliferation and death rate functions are shown graphically
in the center panels of Figure 2.7, with numerical values provided in Tables 2.5 and 2.6. The total
OLS cost for the estimation is J(θ̂OLS) = 1.7270 × 1012, with xa = 8.2316, c = 5.6169 × 10−3, and
k = 1.1203× 10−8.

We observe that, while the OLS best-fit solution for time-independent proliferation is accurate for
t = 96 and 120 hours, the model predicts far too many cells with high generation number at t = 24 and
48 hours. This seems to be a manifestation of the absence of a delay (in the form of time dependence)
between the time cells are stimulated and the time at which those stimulated cells divide. Thus, in
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Figure 2.7: Left: Estimated proliferation rate function α(y) for three difference choices of nodes. Top:
7 nodes evenly spaced in [1.125,2.925]. Middle: 13 nodes evenly spaced in [1.125,2.925]. Bottom: 25
nodes evenly spaced in [1.125,2.925]. Note that, while the overall shape of α(y) remains largely the same,
the middle figure seems to provide the most information while remaining some semblance of regularity.
These functions can be used to determine the average rate of proliferation in terms of the number of
divisions undergone (Table 2.4). Right: the corresponding estimated death rate function β(y), estimated
using 5 fixed nodes in each case.
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Figure 2.8: OLS best-fit solution with α = α(y) (13 nodes), β = β(y) (5 nodes). 21 total parameters in
the model, total cost J(θ̂OLS) = 1.7270 × 1012. While the model clearly is not accurate in allowing far
too many cells with large division number too early in time, the locations of the division peaks along
the horizontal axis are quite accurate, in support of the role of autofluorescence as well as the Gompertz
decay of label.

Table 2.5: Results for the OLS estimation of α(y) with 13 nodes. This estimated proliferation rate
function is shown graphically in the left-center panel of Figure 2.7. Average rate of division in terms of
division number is computed in Table 2.4.

y
(α)
k ak

1.1250 0.0073
1.2750 0.0123
1.4250 0.0097
1.5750 0.0196
1.7250 0.0136
1.8750 0.0262
2.0250 0.0353
2.1750 0.0301
2.3250 0.0247
2.4750 0.0137
2.6250 0.0084
2.7750 0.0034
2.9250 0.0199
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Table 2.6: Results for the OLS estimation of β(y) with 5 nodes when α = α(y) is estimated with 13
nodes. This estimated death rate function is shown graphically in the right-center panel of Figure 2.7.

y
(β)
k bk

2.0000 0.0000
2.5000 0.0000
2.7500 0.0278
3.0000 0.0017
3.2500 0.0051

addition to the arguments of Section 2.2.5, we have a mathematical rationale for the incorporation of time
dependence into the proliferation rate. While the model does not accurately count the numbers of cells in
the earlier time points, we do remark that the Gompertz label loss model and the incorporation of cellular
AutoFI do accurately predict the location (along the horizontal axis) of the subsequent generations of
cells in culture. Thus, it appears safe to conclude that the parameter γ from [21, 77] has been effectively
removed from any modeling needs.

Given this discussion, we next consider the possibility that the proliferation rate function α(t, y) may
depend on time as well as on the structure variable y (see Section 2.2.5) in order to better estimate the
numbers of cells in each generation at a given time. We would like to make use of model refinement
techniques in order to quantify the resulting improvement in the fit of the model to data while also
accounting for the increased complexity of the model. Thus, we use the same 13 nodes as above for the
structural discretization of α. For the time discretization, nodes {tm} = [48, 60, 72, 96, 120] are used. The
death rate function β(y) is estimated exactly as before. This parameterization results in a model with 73
parameters. After calibration to the data, the resulting cost is J(θ̂OLS) = 3.1302×1011 with xa = 6.2698,
c = 4.8123× 10−3, and k = 9.8091× 10−8; the fit of the model to the data is shown in Figure 2.9. It is
clear from the figure that the improvement in fitting the model to the data is quite significant. Moreover,
because the inclusion of time-dependence is a refinement of the time-independent model, residual-sum-
of-squares-based statistical tests exist to quantify whether the increase in complexity of the model (from
21 to 73 parameters) is justified by the resulting reduction in cost. Using the method described in [22,
Ch. 3], we find that the time-independent model can be rejected in favor of time-dependent proliferation
with very high (> 99.999%) confidence.

Thus we see that, once the proliferation rate is allowed to vary as a function of time, the model very
closely mimics the data in terms of the numbers of cells in each generation at a given time. Moreover,
we again point out that the physiological explanation for the dilution of FI by division, as well as the
Gompertz model for natural FI decay do an excellent job of predicting the locations (along the horizontal
axis) of each generation of cells. Still, we continue further to consider one more potential improvement
to the model. Following the analysis of [21] and the discussion of Section 2.2.5, we consider parameter-
izing the proliferation and death rate functions in terms of the ‘translated coordinate’ s. As discussed
previously, it is expected that this coordinate correlates much more closely with division number than
the coordinates z or y. As such, estimation of the proliferation and death rates in terms of this quantity
should provide a more meaningful (and less biased) estimate when these functions are analyzed in terms
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Figure 2.9: OLS best-fit solution with α = α(t, y), β = β(y). 73 total parameters in the model, total
cost J(θ̂OLS) = 3.1302× 1011.

of division number (in the manner of Table 2.4). It is worth noting that the parameterization of the
functions α and β in terms of s is not a model refinement (compared to parameterization in terms of
y) so that simple model refinement-based statistical tests are not applicable. While additional (e.g.
information-theoretic) tests could be used, we forgo that analysis here in the interest of brevity. How-
ever, as will be shown, parameterization in terms of s does in fact provide a more meaningful correlation
between the estimated cell turnover rates and division number (in additional to providing a slightly
lower cost!), which justifies its use.

The nodes used from the proliferation and death rate functions, as well as the estimated rates at
those nodes, are given in Tables 2.7 and 2.8, respectively, and the functions are shown graphically in
Figures 2.10 and 2.11. As before, 73 parameters arise in this parameterization of the model. The total
cost is J(θ̂OLS) = 3.0901× 1011, with xa = 6.4053, c = 5.5246× 10−3, and k = 5.0323× 10−4; the fit of
the model to the data is shown in Figure 2.12.

Visually, the fit of this model (using s for the structure discretization of the proliferation and death
rates) is comparable to the previous model (using y), and the cost is slightly lower. The significant
advantage in using s, as noted above, is that the translated coordinate s is more strongly correlated
with division number. To see this, the data from Figure 1.1 are shown in the translated coordinate in
Figure 2.13. While there is still some overlap among the generations of cells in the histogram data,
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Table 2.7: Results for the OLS estimation of α(t, s). This estimated proliferation rate function is shown
graphically in Figure 2.10. Average rate of division in terms of division number is computed in Table
2.14.

tk

s
(α)
k 48 60 72 96 120

1.1875 0.0713 0.1404 0.0000 0.0000 0.0167
1.3375 0.2028 0.0522 0.0001 0.0000 0.0175
1.4875 0.6036 0.0303 0.0376 0.0009 0.0281
1.6375 0.2896 0.0138 0.0004 0.0075 0.0251
1.7875 0.0618 0.0001 0.0000 0.0409 0.0220
1.9375 0.0091 0.0345 0.0020 0.0119 0.0220
2.0875 0.0837 0.0002 0.0400 0.0326 0.0391
2.2375 0.0018 0.1956 0.0083 0.0001 0.0231
2.3875 0.0050 0.0059 0.0962 0.0394 0.0463
2.5375 0.0000 0.1949 0.0128 0.0050 0.0000
2.6875 0.0155 0.1101 0.1528 0.0422 0.0239
2.8375 0.0351 0.0446 0.0000 0.0000 0.0000
2.9875 0.0346 0.0000 0.0012 0.1317 0.0092
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Figure 2.10: OLS best-fit proliferation rate function α(s, t).
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Table 2.8: Results for the OLS estimation of β(s) when α = α(t, s). This estimated death rate function
is shown graphically in Figure 2.11

s
(β)
k bk

2.0000 0.0054
2.5000 0.0000
2.7500 0.0238
3.0000 0.0061
3.2500 0.0000
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Figure 2.11: OLS best-fit death rate function β(s) when the proliferation rate is assumed to depend on
both s and t.
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Figure 2.12: OLS best-fit solution with α = α(t, s), β = β(s). 73 total parameters in the model, total
cost J(θ̂OLS) = 3.0901× 1011.
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Figure 2.13: Data for t = 24, 48, 96, 120, respectively, plotted in the translated coordinate s. Observe
that the peaks corresponding to distinct division numbers closely align.

the translated coordinate provides an axis on which cells do not drift as they slowly lose CFSE FI.
Particularly when compared to Figure 1.1, we see that it is much easier to assign distinct regions of the s
axis to particular division numbers when compared to using the z (and thus y) axis. Moreover, because
cells do not drift to the left on the s axis, regions assigned to particular division numbers remain valid
for all time.

Given the near-alignment of the generations of cells in the translated coordinate s, a similar analysis
to that presented in Table 2.4 can be performed. By determining intervals (in the s coordinate) cor-
responding to particular division numbers, the average rate of proliferation for cells having undergone
a specified number of divisions can be computed. Because we now have a proliferation rate which de-
pends explicitly on time, we compute the average proliferation rate (in terms of the number of divisions
undergone) and display this information as a function of time (rather than averaging in time as well)
in Figure 2.14, thus preserving what we believe to be an important feature of the population of cells
(that the proliferation rates change in time). When estimating the time-dependent proliferation rate, it
should be noted that, for high division number, the rate estimated for early times must be interpreted
with caution: the rate is ultimately meaningless until cells have emerged in the population which divide
at that rate. One potential solution to this caveat is to use a more complex (e.g. non-rectangular) grid
for the estimation of α(t, s).
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Figure 2.14: Average proliferation rate as a function of time for each generation of cells.
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2.5 Discussion and Remarks

In this chapter, we began with the label-structured PDE model (2.2) from [21] and [77] and have pre-
sented significant modifications and clarifications. Of primary importance is that the parameter γ, used
previously to heuristically explain the dilution of CFSE resulting from cell division, has been replaced by
a physiologically-based mechanism which accounts for cellular autofluorescence. Also important is the
use of the Gompertz decay process to explain the natural decay of CFSE observed in the data. We have
seen that these two improvements in the model are fully capable of fitting a CFSE data set. Using the
data set from [21, 77], we have shown that the incorporation of autofluorescence and Gompertz decay of
label provide a mathematical model with firm physiological underpinnings which can accurately describe
CFSE histogram data directly. Moreover, these revisions provide clarity to the model because they can
be understood in terms of physiologically relevant and easily observable features of the data.

In support of the results of [21], parameterization of the proliferation and death rates α and β in
terms of the translated or moving variable s provides an improvement to the OLS fit of the model to the
data. Beyond this minor improvement, the introduction of this variable was motivated by the fact that,
when all data is placed in the coordinate s (Figure 2.13), the peaks corresponding to distinct division
numbers align much more closely than when presented in terms of the measurement variable z (Figure
1.1). As such, the estimation of the proliferation and death rate functions more directly relates the
dependence of division and death rates on division number. While the exact shape of the estimated
proliferation and death rate functions may change with various choices of nodes (Figure 2.7), we have
seen that, for reasonable parameterization, the average proliferation rates (for each division number) are
consistently estimated (Table 2.4) and the dependence of these rates on time can be explored (Figure
2.14). Thus, it is believed that the translated coordinate s permits the estimated functions α and β

to be easily related to intuitive measures of a lymphocyte response such as mean division time, mean
doubling time, etc. Such information provides a nearly complete quantitative picture of a dynamic T
cell responsiveness and thereby may be helpful for mechanistic studies of immune control. Because of
the nonparametric manner in which the proliferation and death rates are estimated, this model is able
to encapsulate a wide variety of proliferative responses as various types of cells are subjected to a variety
of experimental conditions and then measured.

The parameters of the revised model (2.21) are estimated in an ordinary least squares framework from
a time-series of CFSE histograms. Because the data used in this report was already in histogram form
when it was received, the irregular size of certain bins caused some computational difficulty. This problem
should not be present in future data sets, when the histogram bin spacing can be directly controlled to
remove these difficulties. As the ultimate goal of any model of the immune response is the comparison of
changing intra- and extracellular conditions on proliferative behavior [51, 55], uncertainty quantification
in the form of confidence intervals are necessary to facilitate such a comparison. Asymptotic theory for
sum-of-squares-based estimators and model comparison tests [8, 10, 35, 96] exist, but rely upon a correct
underlying statistical model for the data. As acknowledged in Section 2.3.4, the use of an ordinary least
squares framework is premised upon the assumption that the ‘noise’ in the data has constant variance.
A detailed analysis of the residuals is postponed until after the development of a compartmental model
in Chapter 3, and implications for the quantification of uncertainty in the parameter estimates are
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discussed in Chapters 4 and 5. It should be noted that while the determination of an accurate statistical
model is of vital importance for the unbiased estimation of standard errors and confidence intervals for
the estimated model parameters [22], a slight misspecification of the error model does not invalidate the
ability of the model to accurately fit the data.

In addressing these issues, particular attention will need to be paid to the mechanism responsible for
the apparently spurious measurement at t = 72 hours. As was shown in Section 1.2, the total quantity
of CFSE FI in the cell culture is measured to increase from t = 48 hours to t = 72 hours, a physical
impossibility. For that reason, the data collected at t = 72 hours is completely omitted from the current
analysis. The inability of the current model to describe this behavior is not directly a shortcoming
of the model itself (as any method, e.g., deconvolution with a series of gaussian curves, would suffer
from a similarly biased result) but rather represents an incomplete understanding of the nature of the
observation process. Indeed, it is an asset of the current model, derived from conservation principles,
that such a feature has even been noticed. In Chapter 4, it is shown that variability in the measurement
procedure (specifically, in the numbers of counted beads used to scale the sampled population) is most
likely responsible for the apparent violation of the conservation law. In Chapter 5, a new statistical
model/observation process is considered which might resolve this discrepancy.

The mathematical model presented here is more complex than many of the existing frameworks
for understanding cell turnover kinetics. While the number of parameters will vary depending upon
the manner in which nodes for the estimation of the proliferation and death rate functions α and β

are chosen, the best-fit results presented in this report were obtained with 73 parameters. Optimization
times range from 1 to 8 hours, depending upon the accuracy of the initial iterate and the error tolerances
selected for the optimization routine. In spite of this additional complexity, the current model accurately
predicts CFSE-based proliferation dynamics and does so by directly addressing histogram data from the
assay. By avoiding the need for any deconvolution techniques to extract cell numbers (per generation)
from the histograms, some potential bias and/or error is avoided. Additionally, by directly addressing
quantities such as autofluorescence and the natural decay of label, their effects on the observed behavior
of the population can be quantified.

The one major limitation of the new model is its inability to accurately determine the numbers of
cells having undergone a specified number of divisions at a given time. In general, the number of cells
having measured FI in a given range [z1, z2] is∫ z2

z1

n(t, x)dx

where n(t, x) is determined from the model solution ñ(t, y) using the inverse of the change of coordinates
discussed in Section 2.2.4. However, it is clear Figure 2.13 that consecutive generations of cells in the
data (adjacent peaks in the histograms) share too much overlap for such a computation to be accurate.
One could use a more complex deconvolution technique, but it was exactly such techniques that the
current efforts were undertaken to avoid. In the next chapter, it is shown that a simple reformulation of
the current PDE model can be used to obtain a compartmental model which not only fits the data at
least as well as the current PDE model, but also can be used to obtain accurate cell counts.
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Chapter 3

A Compartmental Model to

Compute Numbers of Cells

3.1 Motivation

In the previous chapter, results from [20, 21, 75, 77] were revised and extended to form a physically
and biologically motivated structured partial differential equation population model which could be fit
accurately and directly to flow cytometry data. As discussed there, this is a significant step in establishing
a mathematical framework for the quantitative description of an immune response which does not rely
upon a deconvolution of the data into numbers of cells per generation (contra [38, 39, 40, 50, 51]). The
revised PDE model is a fragmentation equation which relates the structured population density n(t, x)
to the rates of proliferation α(t, x) and death β(t, x),

∂n(t, x)
∂t

−ce−kt ∂[(x− xa)n(t, x)]
∂x

= −(α(t, x)+β(t, x))n(t, x)+χ[xa,x∗]4α(t, 2x−xa)n(t, 2x−xa), (3.1)

where the structure variable x is the fluorescence intensity (in arbitrary units of intensity, UI) of the
cells resulting from a quantity of CFSE within those cells. Thus we refer to this as a label structured
population model (as opposed to age or size structure, etc. [85]). The loss of FI in time as a result of the
natural decay of the intracellular proteins to which the fluorescent CFSE conjugates bind is approximated
with a Gompertz decay process [69] with parameters c and k, which was shown to accurately describe
the biphasic decay [84, 89, 104] of CFSE FI observed in data sets. The parameter xa represents the
natural autofluorescence intensity of cells in the absence of CFSE.

The goal of such a mathematical model is to provide biologists with simple yet intuitive and mean-
ingful parameters with which a population of cells can be described. In particular, information such as
average rates of division and cell viability are essential to the analysis of the effects of changing exper-
imental conditions on proliferative behavior. The motivation for the use of FI as a structure variable
is that the serial dilution of CFSE by cell division creates a correlation between measured FI and the
number of divisions a cell has undergone. This motivating assumption is accurate to a degree, as one
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Figure 3.1: Overlap between subsequent peaks in a CFSE histogram data set. While it is easy to
distinguish the various peaks in the data, the overlap between peaks results in some systematic error
when attempting to identify a region of the horizontal axis with a specific division number. While the
slow drift to the left over time (as a result of intracellular turnover of CFSE) can be accounted for using a
‘translated coordinate’ (Chapter 2), it is unclear how the overlap between subsequent generations of cells
affects the estimated proliferation and death rates. Regardless, this overlap also prevents the accurate
determination of cell numbers.

can clearly discern the distinct generations of cells in the data set depicted in Figure 3.1. However, the
peaks corresponding to particular generations of cells overlap slightly and drift to the left in time (as a
result of CFSE turnover), thus weakening the correlation between the state variable and division num-
ber. It was shown in Chapter 2 that the proliferation and death rates can be parameterized with respect
to a ‘translated variable’ which accounts for the loss of measured FI in time, and that this translated
variable is more strongly correlated with division number than the original structure variable x. Thus
it is possible to estimate proliferation and death rate functions α̃(t, s) and ˜β(t, s) which can be used to
compute average division rates in terms of the number of divisions undergone (see, e.g., Figure 2.14 in
Chapter 2).

Still, the overlap between distinct peaks in the data remains problematic. Deconvolution techniques
(such as fitting peaks with normal or lognormal curves) impose particular forms on the experimental data
which may bias the computed number of cells in each generation. While the model (3.1) is advantageous
in being able to estimate average proliferation and death rates without any deconvolution of the data
into cell numbers, it cannot be used to accurately assess the number of cells in a particular generation.
This information could be approximated by integrating the structured density n(t, x) over a region
[x1, x2] (corresponding approximately to the location of a given peak in the histogram data), but this
approximation is limited by the extent to which distinct generations of cells in the histogram data
overlap. It is also not clear how much error may be introduced into the estimated proliferation and
death rates by this overlap of distinct generations.
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Fortunately, a very simple reformulation of (3.1) permits both the accurate quantification of total
cells per division number and the accurate estimation of proliferation and death rates in terms of division
number. Rather than modeling the population with a single differential equation, one can model each
generation of cells with a single equation,

∂ni
∂t

+
∂[v(t, x)ni(t, x)]

∂x
= −(αi(t) + βi(t))ni(t, x) +Ri(t, x),

with the generations linked through the division mechanism Ri(t, x) as a source term (see the next
section). This is a common technique in existing ordinary and delay differential equations models for
dividing cells (see [38, 39, 34]). Because each generation of cells is assigned to a particular compartment
(indexed by i) with unique proliferation and death rates, it is not necessary to estimate these rates in
terms of the structure variable x, so that peak overlap and label decay no longer affect the accuracy of
the estimated rates. This is in contrast to previous work [20, 21] in which considerable space is devoted to
answering the question of how to parameterize the structural dependence of the proliferation and death
rates. As an added advantage, the number of parameters necessary for the parameterizations of the
proliferation and death rates is reduced (because there is no longer a need to parameterize the functions
αi and βi in terms of the structure variable). Furthermore, the existence of multiple compartments
makes it possible to accurately determine cell numbers in terms of divisions undergone, even though the
computed densities (for the distinct compartments) will still overlap when placed simultaneously on the
x axis. Because this model does not rely upon any assumptions as to the shape (normal, lognormal,
etc.) of the generation peaks (instead starting from an initial condition and fitting directly to the CFSE
histogram data) systematic bias should be avoided just as when using the fragmentation equation (3.1).

In this chapter, we begin with a careful derivation of the compartmental model. The solution to this
model is then presented and computational aspects are discussed. Next we formulate an inverse problem
for the estimation of the AutoFI and Gompertz parameters, as well as the proliferation and death rate
functions αi(t) and βi(t). As in the previous chapter, multiple parameterizations of the proliferation
and death rate functions are considered with the goal of determining how these rates depend on both
division number and on time. After presenting results which demonstrate the enhanced capabilities
of the compartmental model, the statistical properties of the flow cytometry data are considered and
ramifications for the quantification of uncertainty in the estimated parameters are discussed.

3.2 Derivation of the Compartmental Model

The derivation of the compartmental model follows immediately from the derivation of the fragmentation
model (3.1) presented in Chapter 2, which is itself a variation of the structured population models of
Bell-Anderson [26] and Sinko-Streifer [97]. Let ni(t, x), 0 ≤ i ≤ imax be the label structured population
density of a population of cells stained with CFSE and having undergone i divisions. The structure
variable x is the fluorescence intensity (FI) of a cell (in arbitrary units of intensity, UI) satisfying x ≥ xa
where xa is the natural autofluorescence intensity (AutoFI) of cells; t is time (in hours). While it is
known that AutoFI increases significantly when cells become activated, this increase is not believed
to be significant for the current modeling effort (as AutoFI contributes minimally to the measured FI
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of a labeled but unactivated cell). Thus, the parameter xa should be understood to describe AutoFI
for activated cells. It is known that FI scales linearly with the concentration of CFSE used to label a
population of cells, and that this measurement does not change significantly when cells increase in size
[80]. Thus we assume FI is a mass-like quantity.

For the derivation, we use the structured density to define the total number of cells with fluorescence
intensity in an arbitrary region [x0, x1] at time t having undergone i divisions:

Ni(t) =
∫ x1

x0

ni(t, x)dx.

As in [20], let ∆x(t, x,∆t) be the average increase of FI of cells with initial intensity x during the
interval (t, t + ∆t) and assume that ∆t is chosen such that |∆x| << x1 − x0 (so that the number of
cells which move into the region via division and subsequently divide, die, or drift out of the region
is negligible). This involves the tacit assumption that all cells, regardless of the number of divisions
undergone, lose label in an identical manner which depends only on time and FI. Because cells are
observed to only decrease in FI as a result of the natural decay of the fluorescent label (most likely
resulting from the metabolism-related turnover of the intracellular proteins to which the dye is bound),
it should be noted that ∆x will be non-positive. Thus subtraction by ∆x actually results in a larger
value. While counterintuitive, this definition is maintained in order to harmonize with other structured
population models.

We now consider the quantity Ni(t + ∆t) − Ni(t), the change in Ni(t) during the time interval
(t, t+ ∆t). We consider the following five possible contributions:

(i.) Cells with intensity in the interval [x1, x1 −∆x(t, x1,∆t)], losing FI according to ∆x:

∫ x1−∆x(t,x1,∆t)

x1

ni(t, x)dx.

(ii.) Cells with intensity in the interval [x0, x0 −∆x(t, x0,∆t)], losing FI according to ∆x:

∫ x0−∆x(t,x0,∆t)

x0

ni(t, x)dx.

(iii.) Cells which would have contributed to Ni(t+ ∆t) had they not died:

∫ t+∆t

t

∫ x1−∆x(t,x1,t+∆t+τ)

x0−∆x(t,x0,t+∆t+τ)

βi(τ)ni(τ, x)dxdτ.

(iv.) The disappearance of cells from the region due to proliferation:

∫ t+∆t

t

∫ x1−∆x(t,x1,t+∆t+τ)

x0−∆x(t,x0,t+∆t+τ)

αi(τ)ni(τ, x)dxdτ.
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(v.) The gain of two daughter cells in the region as a result of proliferation in the parent generation:

2
∫ t+∆t

t

∫ 2(x1+∆x(t,x0,t+∆t+τ))−xa

2(x0−∆x(t,x0,t+∆t+τ))−xa
αi−1(τ)ni−1(τ, x)dxdτ.

This term is justified in greater detail in [20].

It should be noted that component (v.) will not appear for the undivided generation (i = 0). The most
significant change distinguishing this new model from previous modeling attempts is that the proliferation
and death rates (both in units hr−1) for cells having undergone i divisions, αi and βi, respectively, are
now assumed to be independent of the structure variable x. Previous efforts [20, 21, 75, 77] used the
dependence of the functions α and β (which in those documents described proliferation and death rates
for the entire population of cells, regardless of the number of divisions undergone) on the structure
variable in order to account for the dependence of those rates on division number, which is believed to
be necessary [38, 39, 72, 76]. Because the compartmental model explicitly identifies the generation of
cells being described by a particular rate function, this dependence is no longer necessary. We continue
to permit the dependence of the proliferation and death rates on time, as determining the necessity of
doing so is a major goal of this research.

Given these contributions, it follows that

Ni(t+ ∆t)−Ni(t) =
∫ x1−∆x(t,x1,∆t)

x1

ni(t, x)dx−
∫ x0−∆x(t,x0,∆t)

x0

ni(t, x)dx

−
∫ t+∆t

t

∫ x1−∆x(t,x1,t+∆t+τ)

x0−∆x(t,x0,t+∆t+τ)

βi(τ)ni(τ, x)dxdτ

−
∫ t+∆t

t

∫ x1−∆x(t,x1,t+∆t+τ)

x0−∆x(t,x0,t+∆t+τ)

αi(τ)ni(τ, x)dxdτ

+ 2
∫ t+∆t

t

∫ 2(x1+∆x(t,x0,t+∆t+τ))−xa

2(x0−∆x(t,x0,t+∆t+τ))−xa
αi−1(τ)ni−1(τ, x)dxdτ. (3.2)

Following the standard procedure of dividing by ∆t and letting ∆t→ 0, we obtain dNi
dt on the left side

of (3.2). We now treat the right side of the equation term by term. For the first term on the right side,
if ni(t, x) is continuous in t and x (a reasonable assumption), the mean value theorem (MVT) implies
that there exists a θ ∈ [x1, x1 −∆x(t, x1,∆t)] such that

∫ x1−∆x(t,x1,∆t)

x1

ni(t, x)dx = −∆x(t, x1,∆t)ni(t, θ).

Assuming ∆x is continuous in ∆t (that is, there is no instantaneous label loss) and varies smoothly, we
can write

lim
∆t→0

−∆x(t, x1,∆t)
∆t

ni(t, θ)dθ = −v(t, x1)ni(t, x1). (3.3)

where we have defined dx
dt = v(t, x), the instantaneous rate of FI change of cells with intensity x and
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time t (units UI/hr). Applying the same arguments to the second term,

−
∫ x0−∆x(t,x0,∆t)

x0

ni(t, x)dx = v(t, x0)ni(t, x0). (3.4)

In the consideration of the third term of (3.2), define

uβi(τ) =
∫ x1−∆x(t,x1,t+∆t+τ)

x0−∆x(t,x0,t+∆t+τ)

βi(τ)ni(τ, x)dx.

Then if ∆x(t, x,∆t) and βi(τ)n(t, x) are continuous functions of their variables, so is uβi(τ) and by the
MVT, there exists a θ′ ∈ [t, t+ ∆t] such that

1
∆t

∫ t+∆t

t

uβi(τ)dτ = uβi(θ
′).

Thus it follows that
lim

∆t→0
uβi(θ

′) = uβi(t) =
∫ x1

x0

βi(t)ni(t, x)dx, (3.5)

assuming ∆x(t, x, 0) = 0 for all t and x (which follows from the previous assertion regarding the smooth-
ness of ∆x in ∆t). Using a similar argument for the fourth term of (3.2),

lim
∆t→0

uαi(θ
′) = uαi(t) =

∫ x1

x0

αi(t)ni(t, x)dx, (3.6)

where uαi(τ) has the obvious definition. Finally, for the last term of (3.2), the same argument along
with the change of variables ξ = (x+ xa)/2 results in

2 lim
∆t→0

uα̃i−1(θ′) = 4
∫ x1

x0

αi−1(t)ni(t, 2x− xa)dx. (3.7)

Altogether, we can assemble (3.3) - (3.7) to rewrite Equation (3.2)

dNi
dt

=− v(t, x1)ni(t, x1) + v(t, x0)ni(t, x0)−
∫ x1

x0

βi(t)ni(t, x)dx

−
∫ x1

x0

αi(t)ni(t, x)dx+ 4
∫ x1

x0

αi−1(t)ni−1(t, 2x− xa)dx. (3.8)

On the left side of this equation, by the definition of Ni(t),

dNi
dt

=
∫ x1

x0

∂ni(t, x)
∂t

dx.

Finally, by applying the Fundamental Theorem of Calculus to the first two terms on the right side of
Equation (3.8)

−v(t, x1)ni(t, x1) + v(t, x0)ni(t, x0) = −
∫ x1

x0

∂(v(t, x)ni(t, x)
∂x

.
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Thus, simplifying and rearranging (3.8),∫ x1

x0

∂ni(t, x)
∂t

+
∫ x1

x0

∂(v(t, x)ni(t, x)
∂x

=

−
∫ x1

x0

(αi(t) + βi(t))ni(t, x) + 4
∫ x1

x0

αi−1(t)ni−1(t, 2x− xa).

Equivalently, because x0 and x1 are arbitrary,

∂ni(t, x)
∂t

+
∂[v(t, x)ni(t, x)]

∂x
=

−(αi(t) + βi(t))ni(t, x) + 4αi−1(t)ni−1(t, 2x− xa). (3.9)

Thus it follows that the total population of all cells is modeled by the system of PDEs

∂n0

∂t
+
∂[v(t, x)n0(t, x)]

∂x
=− (α0(t) + β0(t))n0(t, x)

∂n1

∂t
+
∂[v(t, x)n1(t, x)]

∂x
=− (α1(t) + β1(t))n1(t, x) +R1(t, x)

...

∂nimax

∂t
+
∂[v(t, x)nimax(t, x)]

∂x
=− βimax(t)nimax(t, x) +Rimax(t, x) (3.10)

where Ri(t, x) = 4αi−1(t)ni−1(t, 2x− xa) for 1 ≤ i ≤ imax. Note the assumption that αimax = 0. While
there is no mathematical limit to the number of generations which can be computed, experimental data
generally exhibits fewer than 10 divisions. In an inverse problem setting (see Section 3.4), the parameter
imax can be easily fixed in advance by simply counting the number of generations which appear in the
data. Because it is then known that there are no cells with generation number imax + 1, there must be
no proliferation in generation imax, and the model can be simplified by setting αimax = 0. Of course, the
process of determining imax could be automated via model refinement statistical tests, but that seems
unnecessary given the ease with which the parameter can be identified from data.

There is an additional mathematical justification for setting αimax = 0. The total quantity of CFSE
FI in the population is

M(t) =
∫ ∞
xa

x

(
imax∑
i=0

ni(t, x)

)
dx.

Using the definition of M(t) and the system of equations (3.10), we can show that

dM

dt
=
∫ ∞
xa

v(t, x)

(
imax∑
i=0

ni(t, x)

)
−
∫ ∞
xa

x

(
imax∑
i=0

βi(t)ni(t, x)

)

+ xa

∫ ∞
xa

(
imax∑
i=0

αi(t)ni(t, x)

)
−
∫ ∞
xa

x (αimax(t)nimax(t, x)) .

While the first three terms on the right side of this equation are physically relevant and expected (loss
of FI by Gompertz decay, loss of FI by death, and the additive role of AutoFI, respectively) the final
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term is not experimentally valid because cells do not recognize a maximum division number after which
they must leave the measured population. The requirement that αimax = 0 eliminates this term.

The initial condition must be prescribed for each i,

ni(0, x) = Φi(x). (3.11)

It will generally (but not necessarily always) be true that Φi(x) = 0 for i ≥ 1 (that is, all cells in the
population are undivided at t = 0). These initial condition curves are determined from data taken at
t = 0 (see Section 3.3.1). The left (x = xa) boundary conditions are the no-flux boundary conditions

v(t, xa)ni(t, xa) = 0 (3.12)

for all 0 ≤ i ≤ imax. Because the problem is defined on the semi-infinite domain x ≥ xa, these conditions
are sufficient to compute a solution. (This is in contrast to previous work in Chapter 2 and elsewhere
[20, 21, 75, 77] in which a zero-recruitment boundary condition, n(t, xmax) = 0, is imposed at the
right boundary of the computational domain. Under appropriate conditions, these two formulations are
equivalent, as discussed in the next section.)

3.3 Model Solution

For many decay velocities v(t, x) of interest, the system of equations (3.10) can be solved analytically
using the method of characteristics. As discussed previously, we assume that the rate at which cells
naturally lose FI is described by the same function, v(t, x), for all cells regardless of division number. As
such, the characteristic lines are the same for each generation of cells. Furthermore, it will be assumed
that this rate of FI loss is adequately described by a Gompertz decay process [69], which has been shown
[20] to effectively describe the biphasic decay [84, 89, 104] characteristic of proliferation assay data when
the intracellular label is CFSE (see Chapter 2). Thus we have

v(t, x) = −c(x− xa)e−kt (3.13)

where c > 0 and k > 0 (both with units 1/hr) are parameters to be determined. In effect, this function
describes cellular FI which decreases exponentially (with initial rate c) to the level of cellular AutoFI,
while the exponential rate itself decreases (exponentially) with rate k. The assumption of Gompertz
decay of cellular FI has the additional benefit of trivially satisfying the left boundary condition (3.12)
for all i, provided ni(t, xa) is finite (so that the flux at the boundary is well-defined).
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Incorporating the Gompertz decay process, the system (3.10) can be rewritten

∂n0

∂t
− ce−kt(x− xa)

∂n0

∂x
=− (α0(t) + β0(t)− ce−kt)n0(t, x)

∂n1

∂t
− ce−kt(x− xa)

∂n1

∂x
=− (α1(t) + β1(t)− ce−kt)n1(t, x) +R1(t, x)

...

∂nimax

∂t
− ce−kt(x− xa)

∂nimax

∂x
=− (βimax(t)− ce−kt)nimax(t, x) +Rimax(t, x). (3.14)

The characteristic lines (for all i) are described by

dx

dt
= v(t, x) = −c(x− xa)e−kt, (3.15)

and hence the characteristic line emanating from the point (0, s) in the tx-plane is

x(t; s) = xa + (s− xa)exp
[
− c
k

(
1− e−kt

)]
, (3.16)

where s ≥ xa parameterizes the line along which the initial condition is prescribed.
Define

fi(t) = αi(t) + βi(t)− ce−kt.

For undivided cells (i = 0), the solution along a characteristic line emanating from a point (0, s) in the
tx-plane is given by

∂n0

∂t
= −f0(t)n0(t, x(t; s))

with n0(0, x(0; s)) = n0(0, s) = Φ0(s). Thus the solution along characteristic lines is

n0(t, x(t; s)) = Φ0(s)exp
(
−
∫ t

0

f0(τ)dτ
)
. (3.17)

As written above, the system of equations (3.14) is defined on the semi-infinite domain x ≥ xa. In
general, the initial condition function Φ0(x), can be determined from data (see Section 3.4) only on
some finite segment [xa, xmax] of the domain. However, there is no loss of generality in extending the
initial condition curve by assuming Φ0(x) = 0 if x > xmax. This is in contrast to the previous chapter
(and other label structured models [20, 21, 75, 77]) in which a PDE was defined only on the finite interval
[xa, xmax] and a zero-recruitment boundary was imposed. In fact, the two formulations are equivalent
provided Φ(xmax) = 0 (in the former models; Φi(xmax) = 0 for all i in the compartmental model) and
v(t, x) < 0. As the semi-infinite formulation is notationally simpler and easy to implement, we use it
here.

The solutions for i ≥ 1 along the same characteristic lines (3.16) are described by

∂ni
∂t

= −fi(t)ni(t, x(t; s)) +Ri(t, x(t; s)) (3.18)
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Figure 3.2: Characteristic lines given by Equations (3.15)-(3.16) when c = 1 × 10−2 and k = 2 × 10−2

(left) and in the limiting case when k = 0 (right). Notice that distinct characteristic lines will remain
separated by some positive distance for all time in the former case, while in the latter case the lines
asymptotically converge to x = xa. The broken line along the bottom of both graphics is the line along
which the initial condition data is given. It is clear that this initial condition curve is nowhere tangent
to a characteristic line, hence the local existence of a unique solution.

with ni(0, x(0; s)) = Φi(s) and the solutions are

ni(t, x(t; s)) = Φi(s)exp
(
−
∫ t

0

fi(τ)dτ
)

+
∫ t

0

Ri(τ, x(τ ; s))exp
(
−
∫ t

τ

fi(ξ)dξ
)
dτ. (3.19)

It is worth noting that the solution by the method of characteristics involves the construction of
an integral surface in the coordinates t and s. The change of coordinates from t and x to t and s has
Jacobian

J =

∣∣∣∣∣ ∂t
∂t

∂t
∂s

∂x
∂t

∂x
∂s

∣∣∣∣∣ = exp
(
− c
k

(
1− e−kt

))
,

which is nonsingular along the initial condition curve (t = 0). Hence we are guaranteed (by the con-
struction above) that a unique solution exists at least locally near the initial condition curve. Note that
in the limit as k → 0+, the Jacobian is Jk↓0 = e−ct, which becomes singular asymptotically in time
(reflecting the asymptotic convergence of the characteristic lines). In such a case, one might observe
solutions which grow without bound. This is only of minimal concern, however, as the total label loss
resulting from decay is small over the duration of a typical experiment. Possible characteristics lines (for
k > 0 and k = 0) are shown graphically in Figure 3.2.

For the remainder of this document, it will be assumed that all cells are undivided at t = 0, so
that Φi(x) = 0 for i ≥ 1. This condition is satisfied by essentially all experimental data. Thus, the
only nontrivial initial condition for the PDE system (3.14) is Φ0(x). As this model is motivated by an
attempt to fit and explain experimental data, this smooth initial condition must be constructed from
data taken at the beginning of the experiment. Our process for doing so is described below, followed by
the numerical algorithm for computing the solutions (3.17) and (3.19).
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3.3.1 Initial Condition Construction

Just as in the previous chapter, we use experimental data (which is noisy histogram data in the loga-
rithmic coordinate z = log10(x)) collected at t = 0 hours in order to determine Φ0(x). The data consist
of ordered pairs (z0

k, n
0
k), which denote the number of cells n0

k counted into the histogram bin (subject
to measurement error) with its left boundary at z0

k when t = 0 (see Section 1.2 for more details). In
order to obtain a smooth initial condition function from the noisy data (z0

k, n
0
k), a smooth line is drawn

through the original histogram data which is taken to represent the ‘true’ cell counts in the absence
of noise. The numerical values are recovered from the smooth line using DataThief [101] to form the
‘noiseless’ counts (z0

k, n̂
0
k), which are then easily transferred from the logarithmic coordinate resulting in

new ordered pairs (x0
k, n̂

0
k) (because the n̂0

k are approximate numbers of counted cells as opposed to a
structured density, the values do not need to be rescaled when changing from z to x).

Finally, we must use these ‘noiseless’ cell counts in the x coordinate in order to determine the
structured density initial condition Φ0(x) for (3.17). To do so, we first define the function

ϕ(x) =
∑
k

n̂0
klk(x),

where lk(x) are piecewise linear functions satisfying

lj(x0
k) =

{
1, j = k

0, j 6= k
.

Thus the function ϕ(x) is a piecewise linear function such that ϕ(x0
k) = n̂0

k. Next, we compute the total
measured FI in the population at t = 0 using the original noisy data,

FIdata =
∑
k

x0
kn

0
k.

Similarly, the total FI in the smooth data function ϕ(x) is

FIsmooth =
∫
xϕ(x)dx,

where the integral is approximated using the composite trapezoidal rule. The initial condition function
is then constructed as

Φ0(x) =
FIdata
FIsmooth

ϕ(x).

The results of this technique are shown in Figure 3.3. This method ensures that the total measured
FI in the initial condition curve is equal to the total measured FI in the original noisy data. Because
the mathematical model (3.9) is derived from conservation principles (considering FI as a mass-like
quantity), this provides a useful comparison between the data and the model, as well as a method to
assess the accuracy of the numerical simulations. It is worth noting that such a complex procedure is
unnecessary in the event the histogram bins are evenly spaced (in the logarithmic coordinate z). In such
an event, a smooth density function (in z) can be computed from the smooth cell counts (z0

k, n̂
0
k) simply
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Figure 3.3: Left: Smooth curve drawn through the experimental data taken at t = 0 hours. Right:
Initial condition function Φ0(x) computed from the smooth line using the algorithm of Section 3.3.1.

by dividing the counts by the bin spacing. The function Φ0(x) can then be computed as a simple change
of variables from z to x. However, this method of computation may result in discontinuous jumps in
the computed density if there are abrupt changes in the sizes of adjacent histogram bins. Moreover,
total measured FI for the initial condition curve will not necessarily be equal to the total FI in the noisy
data (although the two values should still be close) if such a method were to be used. Thus, we find the
rescaling method above to be preferable.

3.3.2 Numerical Solution

Given the initial condition function Φ0(x) as computed above, it now remains to numerically compute the
solutions (3.17) and (3.19) for n0(t, x) and ni(t, x), 1 ≤ i ≤ imax, respectively. In the structure variable,
the solutions are computed on a fixed (i.e., one that does not change with division number) mesh {x(k)},
1 ≤ k ≤ Nx (these should be distinguished from the xjk = 10z

j
k used to describe the data). While it is

not strictly necessary for each compartment to be computed on the same grid, there seems to be little
advantage in varying the structure variable mesh with division number. Because the major features (the
‘peaks’) of the structured density solution shrink by approximately a factor of two with each division, it
is advantageous to choose the points {x(k)} so that they are logarithmically spaced (that is, so that the
collection {log10(x(k))} is evenly spaced). This ensures an increasing density of nodes as x decreases, and
hence as the major features of the solution become more condensed. The uneven spacing of the nodes
for the structural variable does not cause any numerical difficulties as the algorithm presented below
requires only interpolation (i.e., no finite-difference derivatives) in the structural dimension. Because
the model presented in this report uses distinct compartments for each generation of cells, and because
each generation of cells remains in a relatively small region in the structure variable (see [20, 21, 75, 77],
which were motivated by this fact), it is certainly true that the use of a single structural mesh for all
compartments results in some unnecessary storage and computations. However, the value of Nx has
only a small effect on computational time (see below) so that this is of little concern.

In time, the solutions are computed on a fixed, evenly spaced mesh {t(m)}, with spacing ht. Unlike
time-stepping finite difference methods (such as the Lax-Wendroff method used in [20, 21, 77] and
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Chapter 2) which require storage of the solution at only the most recent time steps, the method of
characteristics solution (3.19) requires an integration along characteristic lines over the history of the
solution (see Equation (3.21) below). This integration is computed via the trapezoidal rule, using
quadrature nodes which correspond to the time mesh {t(m)}. While this method of computing the
solution is storage-intensive, the requirements are not unreasonable, even when running in MATLAB on
a 32-bit desktop machine.

It is obvious from Equations (3.17) and (3.19) that the system (3.9) can be solved inductively on i.
For time t(m) and FI x(k), we find from Equation (3.16)

s(t(m), x(k)) = (x(k) − xa)exp
( c
k

(
1− e−kt

(m)
))

+ xa. (3.20)

The solution n0(t, x) (Equation (3.17)) is then computed by multiplying the values of Φ0(s) by the scalar

exp

(
−
∫ t(m)

0

f0(τ)dτ

)
= exp

(
−
∫ t(m)

0

(
α0(τ) + β0(τ)− ce−kτ

)
dτ

)
.

For all parameterizations of the functions αi(t) and βi(t) considered in this report, the integral above
can be computed exactly.

As noted above, it is assumed Φi(x) = 0 for i ≥ 1. Thus the solutions ni(t, x) can be rewritten

ni(t, x) =
∫ t

0

Gi(τ ; t, x)dτ (3.21)

where

Gi(τ ; t, x) = 4αi−1(τ)ni−1(τ, 2x(τ, s)− xa)exp
(
−
∫ t

τ

fi(ξ)dξ
)
.

As above, the scalar 4αi−1(τ)exp
(
−
∫ t
τ
fi(ξ)dξ

)
is computed exactly. The values of the function

ni−1(t, x), though already computed, will only be available at discrete points (t(m), x(k)) and thus (3.21)
must be computed via quadrature. Because every solution ni(t, x) is computed on the same, evenly
spaced time mesh, a simple solution is to use this same time mesh (with the trapezoidal rule) in order
to approximate the integral. Thus, given a point (t(l), x(k)), l ≤ m, we must first determine s according
to (3.20). This is then used to compute

x̃(l) = 2x(t(l), s)− xa,

for 0 ≤ l ≤ m, where x(t, s) is given in Equation (3.16). Thus we have

Gi(t(l); t(m), x(k)) = 4αi−1(t(l))ni−1(t(l), x̃(l))exp

(
−
∫ t(m)

t(l)
fi(ξ)dξ

)
,
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with the values of ni−1(t(l), x̃(l)) determined by linear interpolation. Finally, from (3.21),

ni(t, x) =
∫ t

0

Gi(τ ; t)dτ ≈

=ht ·
m−1∑
l=1

Gi(t(l); t(m), x(k)) +
ht
2

(
Gi(t(0); t(m), x(k)) +Gi(t(m); t(m), x(k))

)
. (3.22)

We now consider how the computed solution changes as the mesh parameters Nx and ht are changed.
As a test case, nominal parameters (for xa, c, k, αi(t) and βi(t)) were used to compute a solution at
t = 120 hours using various combinations of values for Nx and ht. The results are shown in comparison
in Figure 3.4. For convenience, the solutions ni(t, x) have been summed together and graphed in terms
of the log FI (z = log10(x)) coordinate.

As noted above, the algorithm does not require any quadrature or finite differences in the structural
component. At most, it is necessary to use interpolation (linear interpolation seems sufficient) in order to
compute the function Gi above in the likely event x̃(l) 6∈ {x(k)}. Thus, one would expect approximately
second-order accuracy in Nx. In fact, we find (computationally) this expectation is exceeded. The
explanation lies in the iterative manner in which the solution is computed. Consider computing n1(t, x)
(Equation (3.21)), provided n0(t, x) is already computed. On one hand, because this computation will
require (linear) interpolation, we would expect the resulting error to depend upon the mesh-spacing of
n0(t, x). However, n0(t, x) is computed from the initial condition function Φ0(x) which is defined (see
Section 3.3.1) as a piecewise linear function. It follows that, as Nx approaches the number of points used
in defining Φ0(x), the error will no longer decrease (because a piecewise linear function is being used
to approximate a more coarsely defined piecewise linear function). In this report, the function Φ0(x) is
defined with 806 points. Thus, it is no surprise that we find little difference in the solutions computed
with Nx = 512 and Nx = 1024.

The use of the trapezoidal rule with step size ht to approximate the integral in (3.21) results in a
numerical solution which is second order in ht. Also, we see that, at each time step t(m) (0 ≤ m ≤
T/ht, for a solution computed on t ∈ [0, T ]), Equation (3.22) requires m computations of the function
Gi(τ ; t, x). Thus we expect the computational time to scale as O(1/h2

t ). Table 3.1 summarizes the
average computational time for various combinations of Nx and ht. As expected, computational time
approximately quadruples as ht is halved. As the algorithm in the previous section has been fully
vectorized, Nx has only a minimal effect on computational time.

When fitting the compartmental model to data in an inverse problem setting, we must balance the
need for an accurate solution with the desire to quickly evaluate the model (given a set of parameters).
As such, in the results presented in Section 3.5, we use Nx = 512 with ht = 0.5 hours.

3.4 Inverse Problem Formulation

We now consider the inverse problem of calibrating the model (3.14) to a particular data set. As stated
in Chapter 1, the data consist of ordered pairs (zjk, n

j
k), indicating the total (i.e., after scaling to account

for the fraction of cells actually measured) number of cells njk counted into the histogram bins with left
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Figure 3.4: Left: Effect of changing the number of structure variable nodes Nx with the time increment
fixed at ht = 0.5 hours. The computed solutions are similar for all values of Nx shown (top). Zooming
in (bottom), we find that there is only a small difference (less than 2% max) in the computed solutions
for Nx ≥ 256 with solutions for Nx = 512 and Nx = 1024 virtually indistinguishable. Right: Effect
of changing the time increment ht with the number of structural variable nodes fixed at Nx = 512.
While the difference between the solution computed for ht = 2 and ht = 1 is large, there is a much
smaller difference (approximately 1% max) between ht = 0.5 and ht = 0.25, as expected. Note that the
proximity of the ht = 2 solutions to the ht = 0.25 solution is mere coincidence and does not hold more
generally.

Table 3.1: Effects of ht and Nx on computational time. Computational times are shown in seconds, with
ht specified in hours. As expected, computational time is quadratic in ht. Meanwhile, Nx has a much
smaller effect on computational time.

Nx \ ht 2.00 1.00 0.50 0.25
128 2.1 7.5 29.8 120.0
256 2.3 8.9 35.6 150.7
512 2.7 10.9 44.8 199.7
1024 3.9 16.8 69.7 297.9
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Figure 3.5: CFSE data set for the compartmental model.

boundary at zjk (in the log FI coordinate) at time tj . The notation is meant to emphasize the possibility
that the histogram bins need not share a common fixed width, nor need they be the same at each
measurement time. The data set we will use to calibrate the compartmental model is shown in Figure
3.5, with measurements taken at t = 24, 48, 96, and 120 hours. We proceed in a similar manner to
Chapter 2, establishing a mathematical basis for comparing the numerical solution of the compartmental
model to this data.

Let ni(t, x) be the solution of the compartmental model for cells having undergone i divisions. Then
the total population of cells is

n(t, x) =
imax∑
i=0

ni(t, x).

Because this model solution is computed in the linear FI coordinate x while the data is given in the
logarithmic FI coordinate z = log10(x), we define

ñ(t, z) = 10z ln(10)n(t, x(z)) = 10z ln(10)n(t, 10z). (3.23)

The function ñ(t, z) is the structured population density in terms of the new structure variable z. The
factor 10z ln(10) arises from the chain rule in the integral formulation of the model (see Section 3.2) and
is needed to conserve the quantity of label after the change of variables. Finally, we need to convert this
structured density into cell counts for comparison with the data. Thus we define

I[ñ](tj , z
j
k) ≡

∫ zj+1
k

zjk

ñ(tj , z)dz,
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which is the observation operator for the compartmental model. In practice, because the transformed
model solution ñ(t, z) is computed only at discrete points (tj , z

j
k), we must approximate this observation

operator,

I[ñ](tj , z
j
k) ≈ IA[ñ](tj , z

j
k) =

[
ñ(tj , z

j+1
k ) + n̂(tj , z

j+1
k )

2

](
zj+1
k − zjk

)
. (3.24)

3.4.1 Ordinary Least Squares

Given an initial condition as constructed in Section 3.3.1, the solution n(t, x) (and hence, ñ(t, z)) is
completely determined by the parameters xa (AutoFI), c and k (Gompertz decay), as well as the pro-
liferation rates {αi(t)} and the death rates {βi(t)}. Let θ = {xa, c, k, {αi(t)}, {βi(t)}} ⊂ Θ, where Θ is
some set of admissible values for θ. (While it will be necessary to make some simplifying assumptions
on Θ in order to make the inverse problem computationally tractable, we postpone that discussion for
the moment and proceed with a general overview of the inverse problem procedure.) Thus we may write
the model as n(t, x; θ). The goal of the inverse problem is to determine some value of the parameter θ
which minimizes the distance (in an appropriate sense) between the cell counts determined by the model
solution, I[ñ](tj , z

j
k), and the histogram data. For this report, we choose least squares as the method

of estimation. Following standard inverse problem procedure [22, 35, 37, 96], we define the random
variables

N j
k = I[ñ](tj , z

j
k; θ0) + Ekj , (3.25)

where Ekj are independent random variables satisfying E[Ekj ] = 0 representing measurement error and/or
‘noise’ in the data. The parameter θ0 is the ‘true’ parameter (given the model) which is assumed to
exist and to describe the data. The data, then, represent a single realization of these random variables,

njk = I[ñ](tj , z
j
k; θ0) + εkj .

The assumption that the data are generated from the specified model, given a nominal truth parameter,
is common in inverse problem formulations [8, 22]. While θ0 is generally unknown, we can define the
estimator

θWLS = arg min
θ∈Θ

∑
k,j

R2
kj

wkj
= arg min

θ∈Θ

∑
k,j

1
wkj

(
I[ñ](tj , z

j
k; θ)−N j

k

)2
, (3.26)

which minimizes the weighted sum (with weights w−1
kj ) of squared residuals Rkj . Because the N j

k are
random variables, so are the Rkj and, hence, so is θWLS . Using the data, we may obtain the estimate

θ̂WLS(njk) = arg min
θ∈Θ

∑
k,j

r2
kj

wkj
= arg min

θ∈Θ

∑
k,j

1
wkj

(
I[ñ](tj , z

j
k; θ)− njk

)2
.

In theory, the weights w−1
kj should be chosen to reflect the variance of the random variables N j

k .
In fact, the accurate, unbiased estimation of standard errors as well as confidence intervals around
parameter estimates is premised upon an accurate statistical model (hence accurate weights) for the
error terms Ekj . In practice, however, such a statistical model is rarely (if ever) known a priori, and
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some additional assumptions must be made. For this report, we assume a constant variance (CV) error
model, V ar(Ekj) = σ2

0 for all k and j. In this case, wkj = 1 for all k and j and (3.26) becomes an
ordinary least squares (OLS) problem,

θOLS = arg min
θ∈Θ

J(θ|N j
k) =

∑
k,j

R2
kj = arg min

θ∈Θ

∑
k,j

(
I[ñ](tj , z

j
k; θ)−N j

k

)2
, (3.27)

with corresponding estimate
θ̂OLS(njk) = arg min

θ∈Θ
J(θ|njk).

The function J(θ|njk) is the OLS cost of the model, given the data, and is often written simply as J(θ).
The expanded notation is meant to emphasize the dependence of the estimate on the particular data set
used to fit the model.

It should be noted that, rather than consider constant variance errors in an OLS framework, one
could alternatively consider a statistical model with constant coefficient of variation (CCV), V ar(Ekj) =
σ2

0(I[ñ](tj , z
j
k; θ0))2. Then wkj = (I[ñ](tj , z

j
k; θGLS))2 and (3.26) becomes the generalized least squares

(GLS) problem defined implicitly by

θGLS = arg min
θ∈Θ

∑
k,j

R2
kj

(I[ñ](tj , z
j
k; θGLS))2

= arg min
θ∈Θ

∑
k,j

(
I[ñ](tj , z

j
k; θ)−N j

k

)2
(I[ñ](tj , z

j
k; θGLS))2

, (3.28)

with corresponding estimate θ̂GLS(njk). As noted above, the results presented in Section 3.5 will focus
on parameter estimation in an OLS framework. A more thorough discussion of the reliability of the
assumptions for the statistical error model in the inverse problem is postponed until Chapter 4. For
the moment, we focus on the applicability of the compartmental model to a particular data set–that
is, how well the compartmental model fits the data. Of course, the measure of fit is assessed in an
OLS framework, which may be slightly different than a GLS or more general WLS framework. The
misspecification of the error model is known to result in biased standard errors (and hence confidence
intervals), and thus no such work is carried out here. In spite of this drawback, a slight misspecification
of the exact error model should have only minimal effect on the estimated best-fit parameters (see, e.g.,
the computational example of Section 3.4.2 of [22]), and thus we proceed with the OLS estimation of θ0.

3.4.2 Parameterizations of Proliferation and Death Rates

We have already defined the parameter θ = {xa, c, k, {αi(t)}, {βi(t)}} ⊂ Θ which describes a given
model solution. The parameters xa, c, and k are all elements of R (although see below, where we
consider a probability distribution over the parameter xa) and thus pose no problem for the estimation
procedure. However, the proliferation and death rates αi(t) and βi(t), 0 ≤ i ≤ imax are contained in
some (infinite-dimensional) function space. Mathematically, the solutions (3.17) and (3.19) require only
αi(t), βi(t) ∈ L2(0, T ) in order for the solution to be well-defined. Because it can reasonably be assumed
that these functions are bounded, this condition is naturally met. However, as currently written, (3.27)
contains a minimization over an infinite-dimensional space Θ. In order to make the estimation problem
suitable to computation, additional assumptions and/or approximations are necessary.
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The primary motivation for using a label-structured PDE model to analyze histogram data from
CFSE-based proliferation assays was an attempt to use measured FI as a surrogate for division number
and hence to investigate how the proliferation and death rates for a population of cells change with
division number. In earlier efforts [20, 21, 75, 77], this was accomplished by allowing the proliferation
and death rates to depend explicitly on the state variable (x or z). For the compartmental model
formulated in this report, the number of divisions undergone is accounted for directly, so that it is no
longer necessary to have the αi and βi dependent upon the structure variable (following the assumption
that the interference of CFSE with the intracellular machinery is negligible). Additionally, it was found in
[20, 21] that explicit time-dependence of the rate of cell proliferation is a significant feature of an accurate
label structured PDE model. We would like to continue this investigation using the new compartmental
model. Thus, as we consider possible parameterizations of the proliferation and death rate functions,
we do so with an eye toward determining the heterogeneity of the rates (that is, how they vary with
division number), as well as the possible time-dependence of the proliferation rates.

We begin with the death rate functions βi(t). It has long been observed that a significant proportion
of undivided cells die in the first few days in culture, and that this cell death occurs independent of
cellular activation [51]. Beyond these observations, we would like to explore how the death rate of cells
changes with division number. Thus we consider the following possible parameterizations for the death
rate functions βi(t):

B1 βi(t) = 0 for all i and for all t;

B2 βi(t) = β for all i and for all t;

B3 β0(t) = β0, βi(t) = 0 for i ≥ 1;

B4 β0(t) = β0, βi(t) = β for i ≥ 1;

B5 βi(t) = βi for each i.

The possibility B1 is included as a baseline for comparison, as a means of concluding the necessity
of a death term in the mathematical model. As noted above, it is expected that a model which lacks
a mechanism to describe cell death will predict far to many cells in the population (compared to the
experimental observations) [40, 51]. Parameterization B2 assumes a constant death rate in the popu-
lation for all cells regardless of division number. Gett and Hodgkin have shown that parameterization
B3, in which undivided cells die but all cells which proceed through the first division will remain in the
population indefinitely, can be accurately used to predict the number of cells in the population up to
approximately 90 hours. More generally, one might consider that cells which have divided at least once
may die, but at a rate which is possibly different from the rate for undivided cells. This parameteri-
zation (B4) has also been successfully used to model proliferation assay data [38, 39, 40]. Finally, we
consider the possibility that the death rate is completely heterogenous with respect to division number
(parameterization B5, [38, 49, 60, 71]).

While the model is derived in sufficiently general terms to include time-dependent death rate func-
tions, we do not consider any such parameterizations in this report. It is certainly possible that, for
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particular cell lines and under particular culture conditions, feedback mechanisms such as activation-
induced cell death may in fact be time-dependent [51]. For a (hypothetical) population of cells which
divides almost synchronously, such time-dependence would be identical to division-number-dependence
(i.e., a mechanism which does not appear until, say, 90 hours could be equivalently modeled as a mech-
anism which does not appear until 3 divisions have been completed). Thus it seems reasonable to
conclude that, to some extent, the necessity of time-dependent death rates in the mathematical model
will depend on the degree of synchronicity observed in the experimental data. At the very least, past
experience [20, 21] as well as the results presented here (Section 3.5) seem to indicate little need for such
time-dependence, at least for the current data set.

Unlike for the death rate functions, past experience [20, 21] does indicate a potential need for explicit
time-dependence of the proliferation rate functions αi(t). (The fact that time dependence for cell death
rates seems to be sufficiently modeled with only division dependence while a similar result does not hold
for the proliferation rates may be explained if the time-dependence of the proliferation rates occurs on
a scale faster than the average time a cell takes between subsequent divisions.) Thus we consider the
following possible parameterizations for the proliferation rate functions:

A1 α0(t) = α0; αi(t) = α for all i;

A2 αi(t) = αi for all t;

A3 α0(t) = α0χ[t>t∗]; αi(t) = α for all i;

A4 α0(t) = α0χ[t>t∗]; αi(t) = αi;

A5 piecewise linear functions of time (see below).

Previous authors [40, 51, 57] have emphasized a special importance for the time required for a cell
to complete its first division. In case A1, it is assumed that undivided cells divide at a rate which
may be different than the rate for divided cells, but that neither of these two rates depends on time
[39]. Alternatively, we consider the more general case A2 where each generation of cells divides with
its own (time-independent) rate [72]. We also consider a simple time-dependent mechanism in which
there is a delay before cells begin to divide. A quick glance at the data (Figure 3.1) reveals that no
division occurs in the population for at least the first 24 hours. Such a delay can be easily incorporated
into the model with a step function at some specified time t∗. Previous models [39] have found such
a transient in the undivided population to be a significant feature of an accurate mathematical model.
The proliferation rates for subsequent generations may (A4) or may not (A3) vary with the number of
divisions undergone.

Finally, following the example of [20], we consider using piecewise linear splines to incorporate time-
dependence into the proliferation rates. Given a fixed set of nodes {t(q)αi }, we have

αi(t) =
∑
q

a
(q)
i l

(q)
i (t),

where l(q)i (t(p)αi ) = 1 if p = q and is zero if p 6= q. Table 3.2 shows the nodes {t(q)αi } used for the estimation
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Table 3.2: Chosen nodes for the estimation of piecewise linear proliferation rates. Bold font indicates
a node for which the proliferation rate was set to zero rather than estimated. For each generation, the
proliferation rate is assumed to be zero outside the set of nodes shown. Thus the proliferation rate is
estimated at three nodes for each division number.

Generation (i) {t(q)αi }
0 24,48,60,72,96
1 48,60,84,108,120
2 48,60,84,108,120
3 60,72,96,120
4 60,72,96,120
5 60,72,96,120
6 60,72,96,120

of the proliferation rate functions. These nodes have been chosen based upon careful consideration of
the data in Figure 3.1 as well as past experience.

Regardless of which parameterization of the proliferation and death rates is used, it should be noted
that the current model formulation features proliferation and death rates which are essentially Malthusian
in nature (see Section 3.2). That is, the rates at which cells in a particular generation divide and
die is assumed to be proportional to the total number of cells in that generation (with ‘constants’
of proportionality αi(t) and βi for proliferation and death, respectively). Alternatively, a model can
easily be derived with limiting proliferation and death rates (e.g., logistic rates, Gompertz rates, etc.).
Malthusian rates have been used with some success in previous models and should be accurate for any
population of cells which divides rapidly enough. Biologically speaking, a cell must proceed through
several necessary activities (growth, DNA replication, microtubule formation, etc.) between any two
divisions, and this must induce some minimum cell cycle time. Tools such as delay differential equations
or stochastic processes have been used to mathematize the cell cycle (see, e.g., [38, 39, 42, 50, 57, 61,
62, 71, 87, 99, 109]) and have resulted in several successful models. We find the current model with its
Malthusian rates to be simple and intuitive while also fully capable of accurately fitting the data (Section
3.5). However, it is imperative that the parameters estimated when fitting the model to a particular
data set be interpreted in the context of the form of the model being used.

3.4.3 Probabilistically Distributed AutoFI

Up to this point, the derivation and solution of the compartmental model have been shown under the
assumption that the natural brightness of cells in the absence of any CFSE molecules, the autofluo-
rescence intensity or AutoFI, can be modeled with sufficient accuracy by a single scalar parameter xa.
However, it is known that the AutoFI of a single cell changes as the cell becomes activated, and that
AutoFI varies from cell to cell in the population, even among activated cells.

The AutoFI of cells can be measured directly by setting aside a portion of cells from the PBMC culture
which are not labeled with CFSE (but which receive an otherwise identical treatment). The results of
such a measurement are shown in Figure 3.6 for two donors, each at two different measurement times.
(These data sets were taken independently of the data set shown in Figure 3.1, which is used to calibrate
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Figure 3.6: Experimentally determined AutoFI distributions with OLS best-fit scaled lognormal curves.
Data was taken from two different donors and measured after 24 (left) and 144 (right) hours. We see
that a lognormal distribution for AutoFI is quite accurate by t = 144 hours (right). Such an assumption
is less accurate at t = 24 hours, when a significant portion of cells in the population remain unactivated.

the model. Because FI measurements are not absolute–they depend on the calibration and gain settings
of the flow cytometer at the time of the experiment–the data shown in Figure 3.6 are intended only to
examine the shape of the AutoFI distribution in the population, not its absolute magnitude.) As time
progresses, the distribution of AutoFI in the data from both donors increases slightly in mean and is
increasingly skewed to the right. These features are also found in additional data sets for 24 < t < 144
(results unpublished) and appear to be the result of some unmodeled biological processes. The most
likely explanation is the known increase in AutoFI as cells become activated [80, Fig. 6]. After a
sufficient amount of time, essentially all cells in the culture have either become activated or have died.

Following the discussion at the beginning of Section 3.2, we may consider only AutoFI for activated
cells. While we have thus far assumed that this AutoFI can be sufficiently modeled with a single
parameter, Figure 3.6 indicates that we might need to consider a probability distribution over the
parameter xa. Let n(t, x;xa) represent the structured population density of a cohort or subpopulation
of cells all of which share the same AutoFI parameter xa, subject to (3.14). Assume further that this
parameter xa is distributed in the total population of cells with some probability distribution P . Then
it follows that the total population is described by

η(t, x) = E[n(t, x;xa)|P ] =
∫ xmaxa

xmina

n(t, x;xa)dP (xa). (3.29)
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It is now clear that the structured density η(t, x) for the total population of cells will depend upon the
probability measure P . Figure 3.6 depicts the experimental AutoFI data for each donor and measurement
time fitted (ordinary least squares) with a scaled lognormal curve. While such an assumption may
possibly be of limited validity early in the experiment (probably as a result of the activation process, as
discussed above), most cells are undivided at such times and hence the contribution of AutoFI to the
total FI of those cells is minimal. Thus we assume that P is reasonably well-described by a lognormal
distribution. Hence

dP

dxa
= p(xa) =

1
xaσ
√

2π
exp

(
− (log xa − µ)2

2σ2

)
,

where

µ = log(E[xa])− 1
2

log
(

1 +
V ar(xa)
E[xa]2

)
σ2 = log

(
1 +

V ar(xa)
E[xa]2

)
.

Under such a parametric assumption, the population density η(t, x) is uniquely described by the two
parameters E[xa] and STD[xa] =

√
V ar(xa) (in addition to the parameters θ discussed so far in this

section).
The integral in Equation (3.29) can be easily computed via the midpoint rule. Let {xma } be a set of

evenly spaced points with spacing ∆xa. Then

η(t, x) ≈
M∑
m=1

n(t, x;xma )p(xma )∆xa. (3.30)

As written, Equation (3.30) requires the computation of M forward solutions in order to approximate the
total population density. However, this computationally intensive approach can be avoided by a change
of variables. Define y = log10(x − xa) and n̂(t, y) = 10y log(10)n(t, x(y)) = 10y log(10)n(t, 10y + xa).
Then the system (3.14) becomes

∂n̂0

∂t
− ce−kt

log 10
∂n̂0

∂y
=− (α0(t) + β0(t)− ce−kt)n̂0(t, x)

∂n̂1

∂t
− ce−kt

log 10
∂n̂1

∂y
=− (α1(t) + β1(t)− ce−kt)n̂1(t, x) + 2α0(t)n̂0(t, y + log10 2)

...

∂n̂imax

∂t
− ce−kt

log 10
∂n̂imax

∂y
=− (βimax(t)− ce−kt)n̂imax(t, x) + 2αimax−1(t)n̂imax−1(t, y + log10 2). (3.31)

It is plainly observed that the parameter xa no longer appears in the system of equations for the
compartmental model in the structure variable y, while the new initial condition,

Φ̂0(y) = 10y log(10)Φ0(10y + xa), (3.32)

will now depend on xa. However, provided the initial uptake of CFSE in the experimental procedure
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Figure 3.7: Left: A hypothetical lognormal AutoFI distribution with E[xa] = 12 and V ar(xa) = 4.
Right: Initial conditions (in the structure variable y) computed for the mean value of xa (solid line) as
well as two for two extreme values of xa. One can see that the value of the parameter xa has very little
effect on the initial condition Φ̂0(y).

results in cells with measured FI significantly greater than their AutoFI (which is always the case for
useful experimental data), Φ0(x) = 0 unless x >> xa (and hence, unless 10y >> xa). As such, the
dependence of the initial condition on the parameter xa can be safely ignored. This fact is demonstrated
with an example in Figure 3.7. In general, it is expected that CFSE-labeled cells are approximately
100-1000 times brighter than unlabeled cells (see, e.g., [80, 92, 107]; as mentioned previously, the actual
measured FI values depend on machine calibration, and hence will vary from experiment to experiment).
Given the initial condition data (Figure 3.3) for our particular data set of interest, it is reasonable to
assume E[xa] ∼ 10. In Figure 3.7, a sample lognormal distribution with E[xa] = 12 and STD[xa] = 4
is depicted on the left. (These values for the mean and standard deviation can be taken as maximum,
worst-case bounds. It is expected that the mean value of xa is no more than 12, with standard deviation
less than 4.) We can assess the effect of the parameter xa on Φ̂0(y) by computing Φ̂0(y) for extreme
values of xa (that is, values in the far-left and far-right tails of the density function). The resulting
functions (as well as a third function, showing Φ̂0(y) when xa = E[xa]) are shown on the right of Figure
3.7.

It is clear from Figure 3.7 that the initial condition function (for y as a structure variable) changes
only minimally for any reasonable values of xa. (Moreover, the original initial condition Φ0(x) was
already approximate, having been computed from data in Section 3.3.1.) Thus, computationally, when
computing the structured population density according to (3.29), we compute only a single initial con-
dition from Equation (3.32) using xa = E[xa]. The system (3.31) can then be solved to obtain n̂(t, y)
(which does not depend on xa at all). Next, for each value of xa in (3.30), one can compute

n(t, x;xa) =
n̂(t, y(x))

log(10)(x− xa)
=
n̂(t, log10(x− xa)
log(10)(x− xa)

,

in order to determine the population structured density η(t, x). It should be noted that, while the change
of variables from x to y eliminates the parameter xa from the system of PDEs, and we have shown that
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Figure 3.8: Effect of the number of nodes M used to approximate the total population density η(t, x) in
Equation (3.30). Using M = 100 seems more than sufficient.

the effect of xa on the initial condition Φ̂0(y) is negligible, it is not true that the parameter xa can be
ignored entirely. The negligible effect of xa on the initial condition is the result of the brightness of
CFSE-labeled cells at the beginning of the experiment. However, as time progresses, CFSE intensity is
lost as cells divide and CFSE degrades, so that AutoFI constitutes a larger percentage of the measured
FI. In other words, while it is reasonable to assume n(0, x) = Φ0(x) = 0 unless x >> xa, this assumption
does not hold more generally for n(t, x) (t > 0).

Finally, when using Equation (3.30) to approximate the total population density, one must make
sure the parameter M is large enough to provide sufficient accuracy. In Figure 3.8, a sample density
is computed at t = 120 hours using three different values of M . Given the discussion, above, there
is essentially no difference in computational time as M changes. While the solution is not accurately
captured for M = 10, there is no measurable difference between the solutions for M = 100 and M = 1000.
Henceforth, if it is assumed that AutoFI is distributed in the population of cells, the total population
η(t, x) will be computed via Equation (3.30) with M = 100.

3.4.4 Remarks on the Inverse Problem

At this point, we have considered numerous different parameterizations for the proliferation rate functions
αi(t) (A1-A5), the death rates βi (B1-B5). Each of these parameterizations results in a distinct set
of parameters which will need to be estimated from the data. We also have the additional label loss
parameters c and k, as well as the AutoFI parameter which can be considered either as a fixed constant
xa or as a lognormal probability distribution with mean E[xa] and standard deviation STD[xa].
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Table 3.3: Summary of possible parameterizations for the compartmental model, with the set θ ∈ Rp of
parameters describing the model in each case.

Model Parameters p Model Parameters p
A1B1 θ = {xa, c, k, α0, α} 5 A1B1dist θ = {E[xa], STD[xa], c, k, α0, α} 6
A1B2 θ = {xa, c, k, α0, α, β} 6 A1B2dist θ = {E[xa], STD[xa], c, k, α0, α, β} 7
A1B3 θ = {xa, c, k, α0, α, β0} 6 A1B3dist θ = {E[xa], STD[xa], c, k, α0, α, β0} 7
A1B4 θ = {xa, c, k, α0, α, β0, β} 7 A1B4dist θ = {E[xa], STD[xa], c, k, α0, α, β0, β} 8
A1B5 θ = {xa, c, k, α0, α, {βi}} 12 A1B5dist θ = {E[xa], STD[xa], c, k, α0, α, {βi}} 13
A2B1 θ = {xa, c, k, {αi}} 9 A2B1dist θ = {E[xa], STD[xa], c, k, {αi}} 10
A2B2 θ = {xa, c, k, {αi}, β} 10 A2B2dist θ = {E[xa], STD[xa], c, k, {αi}, β} 11
A2B3 θ = {xa, c, k, {αi}, β0} 10 A2B3dist θ = {E[xa], STD[xa], c, k, {αi}, β0} 11
A2B4 θ = {xa, c, k, {αi}, β0, β} 11 A2B4dist θ = {E[xa], STD[xa], c, k, {αi}, β0, β} 12
A2B5 θ = {xa, c, k, {αi}, {βi}} 16 A2B5dist θ = {E[xa], STD[xa], c, k, {αi}, {βi}} 17
A3B1 θ = {xa, c, k, α0, t∗, α} 6 A3B1dist θ = {E[xa], STD[xa], c, k, α0, t∗, α} 7
A3B2 θ = {xa, c, k, α0, t∗, α, β} 7 A3B2dist θ = {E[xa], STD[xa], c, k, α0, t∗, α, β} 8
A3B3 θ = {xa, c, k, α0, t∗, α, β0} 7 A3B3dist θ = {E[xa], STD[xa], c, k, α0, t∗, α, β0} 8
A3B4 θ = {xa, c, k, α0, t∗, α, β0, β} 8 A3B4dist θ = {E[xa], STD[xa], c, k, α0, t∗, α, β0, β} 9
A3B5 θ = {xa, c, k, α0, t∗, α, {βi}} 13 A3B5dist θ = {E[xa], STD[xa], c, k, α0, t∗, α, {βi}} 14
A4B1 θ = {xa, c, k, α0, t∗, {α}} 10 A4B1dist θ = {E[xa], STD[xa], c, k, α0, t∗, {α}} 11
A4B2 θ = {xa, c, k, α0, t∗, {α}, β} 11 A4B2dist θ = {E[xa], STD[xa], c, k, α0, t∗, {α}, β} 12
A4B3 θ = {xa, c, k, α0, t∗, {α}, β0} 11 A4B3dist θ = {E[xa], STD[xa], c, k, α0, t∗, {α}, β0} 12
A4B4 θ = {xa, c, k, α0, t∗, {α}, β0, β} 12 A4B4dist θ = {E[xa], STD[xa], c, k, α0, t∗, {α}, β0, β} 13
A4B5 θ = {xa, c, k, α0, t∗, {α}, {βi}} 17 A4B5dist θ = {E[xa], STD[xa], c, k, α0, t∗, {α}, {βi}} 18

A5B1 θ = {xa, c, k, {a(p)
i }} 21 A5B1dist θ = {E[xa], STD[xa], c, k, {a(p)

i }} 22

A5B2 θ = {xa, c, k, {a(p)
i }, β} 22 A5B2dist θ = {E[xa], STD[xa], c, k, {a(p)

i }, β} 23

A5B3 θ = {xa, c, k, {a(p)
i }, β0} 22 A5B3dist θ = {E[xa], STD[xa], c, k, {a(p)

i }, β0} 23

A5B4 θ = {xa, c, k, {a(p)
i }, β0, β} 23 A5B4dist θ = {E[xa], STD[xa], c, k, {a(p)

i }, β0, β} 24

A5B5 θ = {xa, c, k, {a(p)
i }, {βi}} 28 A5B5dist θ = {E[xa], STD[xa], c, k, {a(p)

i }, {βi}} 29

In the remainder of this report, we will refer to the model solution simply as n(t, x; θ) where θ ⊂ Rp

is a set of parameters which describes the model. (This includes the case that xa is described by
a probability measure, where η(t, x) was used in the previous exposition.) This is done to simplify
notation, and it will always be clear from context which parameterization is being used. Obviously, the
value of p will vary depending upon the parameterization. The various possibilities are summarized in
Table 3.3.

We now return to the OLS formulation (3.27) of the inverse problem,

θOLS = arg min
θ∈Θ

∑
k,j

R2
kj = arg min

θ∈Θ

∑
k,j

(
I[ñ](tj , z

j
k; θ)−N j

k

)2
,

where now Θ is a closed bounded subset of Rp. Using the data {njk} as realizations of the random
variables {N j

k}, we would like to compute the estimate

θ̂OLS(njk) = arg min
θ∈Θ

J(θ|njk) = arg min
θ∈Θ

∑
k,j

(
I[ñ](tj , z

j
k; θ)− njk

)2
. (3.33)

However, we have only an approximate numerical solution with which to compare the data. Thus we
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Table 3.4: Summary of bound-constraints for the OLS parameter estimation problem (3.34). The
parameters {αi}, {a(p)

i }, and {βi} must be positive. The feasibility of the remaining bounds has been
determined computationally.

Parameter Minimum Maximum
xa 1 20

E[xa] 5 12
STD[xa] 0 4

c 1× 10−4 1× 10−2

k 0 1× 10−3

{αi} or {a(p)
i } 0 1

{βi} 0 1

actually compute the approximate estimate

θ̂OLS(ht, Nx,M ;njk) = arg min
θ∈Θ

JA(θ|njk) = arg min
θ∈Θ

∑
k,j

(
IA[ñ](tj , z

j
k; θ)− njk

)2
, (3.34)

where we have now explicitly emphasized the dependence of the parameter estimate on the computational
accuracy of the numerical solution. The continuous dependence of the model solution ñ(t, z; θ) on the
parameter θ (regardless of which particular parameterization is used) follows easily from the method
of characteristics solution of Section 3.3. Numerical convergence with respect to ht, Nx, and M follow
directly from well-known results regarding the trapezoidal rule for quadrature, linear interpolation of
a smooth function, and the midpoint rule for quadrature, respectively. As such, it can be shown (see,
e.g., the arguments of [16, Ch. 3] that the approximate estimates θ̂OLS(ht, Nx,M ;njk) will converge to
some θ̂∗OLS which minimizes (3.33) as Nx,M → ∞, and ht → 0. It should be noted that the possible
nonuniqueness of the minimizer θ̂∗OLS is a common issue in inverse problems. We forgo techniques such as
Tikhonov regularization in this report, choosing to focus instead on the accuracy of the best fit models
n(t, z; θ̂OLS) in fitting a particular data set, regardless of uniqueness (although these issues must be
dealt with in order to establish standard errors, confidence intervals, etc.). For the remainder of this
report, we will not distinguish between θ̂OLS , θ̂∗OLS , or θ̂OLS(ht, Nx,M ;njk). It should also be noted that
this best-fit parameter, which is itself an estimate of the random variable θOLS , will be data-realization
dependent. However, for a good model and a sufficiently large data set, θ̂OLS is an unbiased estimator
of θOLS [22, 37, 96].

The optimization (3.34) has been implemented in MATLAB using the fmincon function, which is a
variation of the BFGS-active set algorithm for bound-constrained parameters. The parameter constraints
are summarized in Table 3.4.

3.4.5 Information Theoretic Model Selection

Each possible parameterization presented thus far gives rise to a distinct mathematical model which
can be fit to a data set in the prescribed manner. Based upon the results for each model, we would
like to determine which parameterization is most appropriate and use those results to draw conclusions
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regarding division-linked and/or longitudinal changes in the behavior of the cell culture. In order to
do this, we must establish some formal mechanism which permits the objective comparison of different
models.

One common approach is hypothesis testing for model refinements [8, 10]. However, such methods
are only useful for pairwise comparisons, and are better suited for comparison against an experimental
control [31]. Moreover, such methods do not apply unless one of the two models in the comparison
is contained within the other model (for instance, our parameterization B4 contains B3 as a special
case). While several parameterizations discussed in this document are indeed contained within other
parameterizations, this is not universally the case (e.g., there is no containment between B2 and B3).

A more general approach, based upon the premises of information theory, is found in the Akaike
Information Criterion (AIC). Briefly, for models with independent, homoscedastic, normally distributed
errors, it can be shown that

AIC = m log

(
J(θ̂OLS)

m

)
+ 2p, (3.35)

where m is the total number of data points, is an approximately unbiased estimate of the “expected
relative Kullback-Leibler distance” (information loss) when a model is used to describe a data set [31].
Given a set of R models, the AIC can be computed for each model; we seek the model which results in
the smallest AIC value. It should be emphasized that the AIC is only an estimate of information loss,
and this estimate depends on the particular data set being used. (When comparing different models
with the AIC, the same data set must be used to fit each model.) As discussed in Section 3.4.1, we
cannot ascertain a priori that the measurement errors are normally distributed with constant variance.
However, the use of an OLS framework already constitutes an assumption of homoscedasticity. The
assumption of normality does not seem to be a significantly greater burden, and we proceed with the
AIC in spite of these issues. As will be shown in Section 3.5, there is a very clear preference among
the models when ranked by the AIC. As such, we do not expect our results to change significantly for
a different error model. Similarly, the derivation of the AIC assumes that any model which is fit to
the data is sufficiently accurate so that the assumption E[N j

k ] = n(tj , xj ; θ̂OLS) is valid. While this
assumption may break down for the least accurate of the models tested in this report (see Section 3.5),
it is a standard assumption in the OLS framework (3.27), provided the estimate θ̂OLS is sufficiently close
to θ0 for each particular model. The AIC is motivated at slightly greater length in Chapter 5.

There is an element of parsimony in the AIC, as a model which fits the data poorly (high J(θ̂OLS))
or which contains a large number of parameters (high p) will have a comparatively larger AIC. Yet,
rather than using the AIC to determine a single ‘best’ model, additional theory is available. If AICmin
is the smallest computed AIC value, then we can define the AIC differences

∆r = AICr −AICmin, (3.36)

for 1 ≤ r ≤ R, where AICr is the AIC value computed when model r is fit to the data. Finally, we can
compute the Akaike weights

wr =
exp

(−∆r

2

)∑
r exp

(−∆r

2

) . (3.37)

77



Table 3.5: Summary of results for the various models considered in this report. The AIC-selected best
model, parameterization A5B5 with lognormally distributed AutoFI, not only has the lowest cost, the
OLS cost of this model is so much smaller (compared to the other models tested) that its AIC value is
significantly lower than for any other model. The Akaike weights are not shown, as the weight assigned
to model A5B5dist must be greater than 1− 50exp(−43/2) > 1− 1× 10−7.

Model JA(θ̂OLS) AICr ∆r Rank Model JA(θ̂OLS) AICr ∆r Rank

A1B1 48.9309×1011 89459 11850 50 A1B1dist 44.5493×1011 89059 11450 45
A1B2 48.5765×1011 89430 11821 49 A1B2dist 26.0134×1011 86753 9144 31
A1B3 46.0968×1011 89205 11596 48 A1B3dist 18.9754×1011 85400 7791 26
A1B4 46.0439×1011 89202 11593 47 A1B4dist 18.9754×1011 85402 7793 27
A1B5 35.5868×1011 88107 10498 40 A1B5dist 17.9868×1011 85183 7574 24

A2B1 30.8384×1011 87487 9878 37 A2B1dist 42.3075×1011 88845 11236 43
A2B2 30.4566×1011 87436 9827 36 A2B2dist 21.2095×1011 85886 8277 29
A2B3 28.6677×1011 87176 9567 33 A2B3dist 14.8563×1011 84359 6750 16
A2B4 28.6677×1011 87178 9569 34 A2B4dist 14.8562×1011 84361 6752 17
A2B5 28.6677×1011 87188 9579 35 A2B5dist 14.8562×1011 84371 6762 18

A3B1 45.4019×1011 89140 11531 46 A3B1dist 42.9086×1011 88900 11291 44
A3B2 37.3875×1011 88309 10700 42 A3B2dist 11.9759×1011 83428 5819 11
A3B3 34.8434×1011 88007 10398 38 A3B3dist 13.5090×1011 83945 6336 12
A3B4 34.8376×1011 88008 10399 39 A3B4dist 10.5215×1011 82875 5266 10
A3B5 18.7334×1011 85357 7748 25 A3B5dist 6.9142×1011 81084 3475 8

A4B1 25.3453×1011 86648 9039 30 A4B1dist 36.6830×1011 88236 10627 41
A4B2 16.8159×1011 84890 7281 22 A4B2dist 5.5690×1011 80152 2543 7
A4B3 17.1422×1011 84973 7364 23 A4B3dist 8.3562×1011 81893 4284 9
A4B4 16.6846×1011 84859 7250 21 A4B4dist 5.0699×1011 79752 2143 6
A4B5 16.4652×1011 84812 7203 20 A4B5dist 4.5712×1011 79318 1709 5

A5B1 19.6228×1011 85572 7963 28 A5B1dist 27.3143×1011 86993 9384 32
A5B2 15.0638×1011 84440 6831 19 A5B2dist 3.5086×1011 78193 584 4
A5B3 14.6710×1011 84327 6718 13 A5B3dist 3.2607×1011 77879 270 3
A5B4 14.6740×1011 84330 6721 14 A5B4dist 3.0918×1011 77653 43 2
A5B5 14.6727×1011 84339 6730 15 A5B5dist 3.0535×1011 77609 0 1

It can be shown (either by likelihood ratio tests or in a Bayesian framework, see [31]) that the AIC
weight wr can be interpreted as the probability that model r is the best model to describe the data
(given the set of R possible models). Thus, after each model from Table 3.3 is fit to a data set, we
can compute the Akaike weights for the set of candidate models and use these to assess the necessity
of various mathematical features (e.g., division dependence of cell death rates) in describing the data.
A complete derivation of the AIC and Akaike weights, as well as numerous examples and exhaustive
references, can be found in [31].

3.5 Results and Discussion

The model calibration results for each possible parameterization of the compartmental model considered
in this report are summarized in Table 3.5. The approximate OLS costs JA(θ̂OLS) are shown for each
parameterization, as well as the computed AIC values and AIC differences. The models are also ranked
in terms of their relative information theoretic loss.
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Figure 3.9: Best-fit solution IA[ñ](t, z; θ̂OLS) for parameterization A5B5dist. Total cost JA(θ̂OLS) =
3.0535× 1011.

The AIC selected model is parameterization A5B5 with lognormally distributed AutoFI (henceforth,
A5B5dist) with a cost JA(θ̂OLS) = 3.0535 × 1011. This parameterization resulted in a model with not
only the smallest AIC value, but also the lowest cost (meaning that the decrease in cost more than
offset the additional parameters). The optimal solution for parameterization A5B5dist is depicted in
comparison to the data in Figure 3.9. The estimated piecewise linear proliferation rates can be found in
Figure 3.10, and the estimated death rates are summarized in Table 3.6. For the AutoFI distribution,
the best-fit lognormal distribution has mean E[xa] = 8.739 UI and STD[xa] = 3.534 UI. The estimated
Gompertz label decay parameters are c = 5.641× 10−3 and k = 1× 10−9.

As can clearly be seen in Figure 3.9, the compartmental model (with suitable parameterization) is
capable of accurately describing the particular data set used for model calibration in this report. The
most notable shortcoming of the model occurs at t = 24 hours, where a distinct cohort of cells with high
CFSE FI can be seen in the data and is not modeled accurately. As discussed in the introduction, this
cohort is believed to be either cell duplets or some other anomalous cell types which were not properly
gated out of the measured cell data, and such cells should not be an issue in future data sets. It also
appears that neither of the two generations in the model solution at t = 48 hours contains enough cells
(when compared to the data at that time). This may also be partly explained as a systematic error
resulting from the presence of cell duplets in the data. It is also possible that small errors associated
with the manner in which counted beads (see Section 1.2) are used to determine the total population
size.
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Figure 3.10: OLS best-fit piecewise linear proliferation rate functions for each division number. Red
circles indicate nodes which were estimated in the inverse problem.
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Table 3.6: Estimated death rates βi in terms of the number i of divisions undergone.
Divisions Death Rate (1/hr)

0 0.0165
1 0.0000
2 0.0000
3 0.0000
4 0.0012
5 0.0544
6 0.1572

One of the primary goals of considering various parameterizations for the proliferation and death
rates (Section 3.4) was to investigate the dependence of these rates on division number and on time.
The best-fit parameterization A5B5dist features a proliferation rate which depends both on time and
division number, as well as a death rate which depends on division number. Additionally, the AutoFI
parameter xa is lognormally distributed, which was not considered in previous efforts [20]. Given the
overwhelming weight assigned to the parameterization A5B5dist in the information theoretic framework,
it is tempting to conclude that each of these features is necessary in accurately modeling the data.
Because the data set contains 4289 points, even a small difference in OLS cost (compare, for example,
parameterizations A5B5dist and A5B4dist) results in significantly different AIC values. However, the
AIC (3.35) is derived under the assumptions of independent, homoscedastic, normally distributed errors.
If these assumptions break down, particularly if the 4289 points are not independent, then the magnitude
of the AIC differences may be misleadingly large.

In spite of these potential setbacks, there are still several useful conclusions which can be safely drawn.
As expected, the worst parameterizations (in terms of both OLS cost and AIC rank) are those which
do not permit cell death in the population (B1). Parameterizations which feature probabilistically
distributed AutoFI are more accurate than parameterizations which use a constant parameter xa to
describe AutoFI. Among the models which use a constant parameter xa to describe AutoFI, the most
parsimonious model (that is, the AIC selected model) is parameterization A5B4. (Parameterizations
A5B4 and A5B5 differ minimally in cost, but A5B4 has fewer parameters.) The best-fit solution for
this model is shown in comparison to the data in Figure 3.11. We find that a model which fails to
account for variability in AutoFI in the population of cells does not adequately describe the increasing
heterogeneity of the population of cells as division number increases. This is particularly noteworthy for
cells having undergone 4 or more divisions, where AutoFI constitutes a comparatively larger fraction
of the measured FI of the cells. Such an observation has important experimental ramifications for the
design of intracellular dyes. While it has long been known that a population of cells must obtain a high
level of FI (relative to their AutoFI) during the initial staining process in order for the experimenter to
resolve multiple rounds of division in the population [80, 92], we now see that the variability of AutoFI
in the population of cells also has an effect on the peak-to-peak resolution of the data. While AutoFI
is a property of the cells being measured (it arises from intracellular molecules which emit light in the
frequency bands used to detect the intracellular dye), focus may possibly be directed toward the design
of dyes with spectral properties that minimally overlap with common intracellular molecules.
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Figure 3.11: Among the models which do not use a lognormal distribution to describe AutoFI, the AIC
selected model is parameterization A5B4. When comparing the best-fit solution to the data, it is clear
that a model lacking an AutoFI distribution will result in peaks which are too distinct when compared
to the data.

As in previous work [20, 21], we find that time dependence is a significant feature of the proliferation
rates, given the model formulation (3.14). Significantly, we find that the population of cells cannot be
accurately modeled by considering only a delay in the time to first division. For instance, the calibrated
model using parameterization A4B5dist (which is the AIC selected model among those which does not
feature completely time dependent proliferation) is shown in Figure 3.12. This parameterization does not
permit any proliferation until t ≥ t∗, thus enforcing a delay before any division occurs in the population.
Even with this feature, subsequent divisions of cells emerge too quickly in the model solution. Thus more
complex time-dependence (parameterization A5) appears to be necessary, as the resulting decrease in
cost outweighs the additional parameters.

The compartmental model was motivated by a desire to compute quantities such as cell numbers
from the best-fit model solution. As discussed in Chapter 1, previous methods for obtaining cell num-
bers relied on some form of deconvolution of the histogram data, typically via fitting by a series of
normal or lognormal curves. While the compartmental model is more mathematically involved and re-
quires considerably more time for fitting to data (a few minutes to a few hours, depending upon the
parameterization used and the accuracy of the initial parameter guess for the BFGS algorithm), it does
not require any assumption as to the shape of the distribution of cells within a single generation. Given
a calibrated model solution n(t, x; θ̂OLS), one can compute the total number of cells

Ni(t) =
∫ ∞
xa

ni(t, x; θ̂OLS) (3.38)
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Figure 3.12: Best-fit model solution with parameterization A4B5dist, the AIC selected model among
the subset of models which does not feature completely time-dependent proliferation. While this pa-
rameterization includes a delay before the first division is reached, this is still insufficient to describe the
data as cells proceed through subsequent rounds of division too quickly. The discontinuity in the model
solution at t = 48 hours is a result of a sudden change in the size of the histogram bins on which the
data is specified.

for each generation. It may also be of experimental interest to consider the number of precursors in
the population. Because each cell division results in the formation of two daughter cells from a single
mother cell, one must renormalize (by a factor of 2) the total number of cells in each generation in
order to accurately analyze the proportion of cells proceeding through a specified number of divisions.
Precursors, then, are cells in the original population (that is, at t = 0 hours) which eventually give rise
to other cells with higher division numbers at later times. The number of precursors is

Pi(t) =
Ni(t)

2i
=

1
2i

∫ ∞
xa

ni(t, x; θ̂OLS). (3.39)

Given that precursors represent numbers of cells in the original population, it follows that the total
number of precursors

P (t) =
imax∑
i=0

Pi(t)

cannot increase in time (but may decrease as a result of cell death). Cell numbers and precursor numbers
have been computed from the best-fit model solution (parameterization A5B5dist) and are shown in
Figure 3.13 for undivided cells (N0(t), P0(t)) and divided cells (

∑imax
i=1 Ni(t),

∑imax
i=1 Pi(t)) as well as total

cells. It follows that such curves could easily be used to determine such parameters as approximate
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Figure 3.13: Total cell counts (left) and total precursors (right) in terms of undivided cells, divided
cells, and total cells. The values are computed from the best-fit model solution n(t, x; θ̂OLS) with
parameterization A5B5dist. Numerical values at data collection times are summarized in Tables 3.7 and
3.8. The slight increase (less than 0.3%) in the total number of precursors between t ≈ 60 hours and
t ≈ 90 hours is within the range of numerical error for the computed solution.

doubling time for the population, or the fraction of cells which do not divide. These parameters may be
of particular importance in accounting for changes in behavior as experimental conditions (e.g., strength
of stimulation) or in a diagnostic setting.

3.6 Discussion

In this chapter, a label structured system of PDEs for a population of dividing cells, indexed by the
number of generations undergone, is derived and fit to data. Under the appropriate assumptions for
the label loss rate, autofluorescence parameter, proliferation rates, and death rates, such a model can
accurately fit an experimental data set (Figure 3.9). Because each generation of cells is mathematically
described by a separate structured density function, the proliferation and death rates can be estimated
directly in terms of division number, and there is no need for any parameterization of these rates in
the structure variable. This is in contrast to the previous fragmentation model (3.1) from Chapter
2. The AIC-selected best-fit compartmental model contains 29 parameters and results in a best-fit
OLS cost of JA(θ̂OLS) = 3.0535× 1011 while the best-fit fragmentation model contained 73 parameters
and resulted in a cost of 3.0901 × 1011. Thus the compartmental model appears quite superior to the
previous fragmentation model, as it contains fewer parameters and has a lower OLS cost. Additionally,
the compartmental model can be used to compute cell numbers in terms of the number of divisions
undergone. Certainly it may be possible to decrease the number of parameters in the fragmentation
model by changing the placement of the nodes used for the estimation of the proliferation and death
rate functions. Yet even if the total number of parameters could be decreased significantly without
increasing the OLS cost of the fragmentation model, it still could not be used directly to compute cell
numbers.
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Table 3.7: Total numbers of cells in terms of division number. For each time and generation, the total
number of cells has been computed from the OLS best-fit model solution (top), from a deconvolution
of the data using normal curves (middle) and from a deconvolution of the data using lognormal curves
(bottom). While the numbers computed from normal and lognormal curves are generally close together,
there are clear differences between the values computed from the deconvolution methods and those
obtained with the compartmental model. The most striking example occurs for t = 120 hours for cells
having undergone 6 divisions. It is interesting to note that the division peaks in the histogram data are
not well-resolved for such cells, making the accurate determination of cell numbers difficult.

Divisions Undergone

Time (hrs) 0 1 2 3 4 5 6 Total

11339892 0 0 0 0 0 0 11339892
24 9211571 0 0 0 0 0 0 9211571

9254681 0 0 0 0 0 0 9254681

5881557 6555814 0 0 0 0 0 12437372
48 6298359 5473128 0 0 0 0 0 11771487

6294945 5434570 0 0 0 0 0 11729515

1906065 2478042 8092563 20976431 18520420 7588997 0 59562519
96 1970401 3284000 11019352 18184100 18307586 5252346 0 58017785

2364520 3940800 10467773 17773515 18846649 5406993 0 58800249

1476266 1978930 5605926 17086869 25529315 25986246 14337080 92000632
120 1969773 2969295 7881600 21017600 26272000 24958400 4597599 89666268

2195762 3435673 7722653 17150087 26755781 29950079 5517118 92727154

3.6.1 Comparison to Deconvolution Techniques

Given the applicability of the compartmental model (once calibrated) to computing the numbers of cells
having undergone a specified number of divisions, a relevant comparison can be drawn between the
results of a label structured PDE model and the commonly used deconvolution techniques. In Table
3.7, the number of cells in each generation is computed at each measurement time. For each time and
generation, the top number is computed from Equation (3.38). The middle number is computed by first
fitting the function

ψ(zjk) =
imax∑
i=0

ψi(zk; si, µi, σi)

to the data at a given time, where ψi(zk; ki, µi, σi) is a normal density function with mean µi and
standard deviation σi, scaled by a factor si. The method of fitting is ordinary least squares. Then
the total number of cells having undergone i divisions is

∑
k ψi(zk; si, µi, σi). The final number in each

block of Table 3.7 is computed in an analogous manner, but with lognormal rather than normal density
functions.

Unsurprisingly, the two deconvolution techniques (fitting with a series of normal or lognormal curves)
provide estimates of cell numbers which are fairly consistent. However, these estimates occasionally differ
from estimates obtained from the compartmental model. Of particular note is the difference for cells
having undergone 6 divisions at t = 120 hours. It should be noted that this generation of cells is quite
hard to distinguish in this particular histogram data set. Such poorly resolved generations of cells can
be quite problematic for the deconvolution techniques, as the unique estimation of parameters (for the
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Table 3.8: Total precursors in terms of divisions number. For each time and generation, the total number
of precursors has been computed from the OLS best-fit model solution (top), from a deconvolution of
the data using normal curves (middle) and from a deconvolution of the data using lognormal curves
(bottom). As in Table 3.7 we find general agreement between the values computed from deconvolution
techniques, which are slightly different than those computed from the compartmental model. Under the
assumptions of the experiment, the total number of precursors should not increase.

Divisions Undergone

Time (hrs) 0 1 2 3 4 5 6 Total

11339892 0 0 0 0 0 0 11339892
24 9211571 0 0 0 0 0 0 9211571

9254681 0 0 0 0 0 0 9254681

5881557 3277907 0 0 0 0 0 9159465
48 6298359 2736564 0 0 0 0 0 9034923

6294945 2717285 0 0 0 0 0 9012230

1906065 1239021 2023141 2622054 1157526 237156 0 9184963
96 1970401 1642000 2754838 2273013 1144224 164136 0 9948612

2364520 1970400 2616943 2221689 1177916 168969 0 10520436

1476266 989465 1401482 2135859 1595582 812070 224017 8634740
120 1969773 1484648 1970400 2627200 1642000 779950 71837 10545808

2195762 1717837 1930663 2143761 1672236 935940 86205 10682405

normal or lognormal curves) requires that distinct generations of cells be plainly visible. It appears
to be a major advantage of the compartmental model to be able to fit data (and hence compute cell
numbers) even when the histogram data features generations of cells which are less than ideally resolved.
Of course, it is not possible to say from these results which technique (if either) is providing the correct
number of cells. Yet, because the compartmental model is derived from a conservation law, and this
conservation law must hold regardless of the parameters input into the model, cells cannot enter or leave
the population except as permitted by the form of the model and the given parameters. Meanwhile, the
deconvolution techniques do not arise from any conservation law, and the computed cell numbers in each
generation may increase or decrease freely, unrestrained by any balance law. It seems then, that the
compartmental model should have a major advantage in computing cell numbers, owing to its ‘memory’
of the number of cells determined at previous time points (even when the generations of cells are poorly
resolved in the data).

This is particularly noteworthy in Table 3.8, where the number of precursors for each generation of
cells is computed. As in Table 3.7, each block of Table 3.8 contains the results computed from the com-
partmental model, deconvolution with normal curves, and deconvolution with lognormal curves. Observe
the significant increase (more than 10%) in the total number of precursors as computed by deconvolution
between t = 48 and t = 96 hours. As discussed above, the total number of precursors cannot increase
in a population of cells. While the number of precursors computed from the compartmental model also
increases, it does so by a very small amount (less than 0.3%) consistent with the error in the numerical
solver. Of course, it has already been noted that some data sets do in fact exhibit increases in the total
number of precursors–a discrepancy arising from the inaccuracy of the assumption that each well plate
contains an identical population of cells. On one hand, the deconvolution techniques would seem to have
an advantage, as they are not constrained by any conservation law. However, this has an interesting

86



implication. Because the deconvolution techniques do not link the population estimates from one data
collection time to the next, there is a potential bias associated with such methods as a result of sample-
to-sample variability in the experimental data. It should be noted that sample-to-sample variability is
also problematic for the compartmental model solution. If the samples used to obtain the experimental
data are not sufficiently similar, the conservation law (which follows from the assumption that each
sample is identical) used to derive the model may not hold. In such a case, the compartmental model
would be systematically in error (when compared to the data), as the calibrated model itself would still
follow the assumed conservation law. Following the discussion above, we believe that a more accurate
statistical model, which will necessarily include a careful consideration of the method of sampling/data
collection, will resolve any discrepancy with the compartmental model. Some preliminary work on this
subject is surveyed in the next two chapters.

3.6.2 Concluding Remarks

It is interesting to note that using the compartmental model we have found variability in AutoFI to
be an essential feature of an accurate mathematical model. Yet the fragmentation model assumes
only a constant value of AutoFI without significant sacrifice in accurately fitting the data (compare,
e.g., Figures 2.12 and 3.11). The explanation for this unusual observation is the manner in which the
proliferation rate is parameterized as a function of the structure variable (or the ‘translated variable’)
in the fragmentation model. The large number of nodes used for the structural dependence of that
proliferation rate (13 nodes) allows for significant variability in the proliferation rate, even among cells
which are sufficiently close in the structural coordinate. Because the Gompertz decay function for label
decay assumes that the rate of FI loss is directly proportional to the quantity of FI, a group of cells
which divides immediately and then pauses will lose less label than a group of cells which waits for some
time and then divides. In other words, the variability of the proliferation rate induces a variability in
the label loss rate. As a consequence of this observation, it would be interesting to compare the effects
of probabilistically distributed AutoFI with the effects of probabilistically distributed label loss rates in
the compartmental model.

The major advantage of the compartmental model over previous efforts is the ability to compute
cell numbers directly from the model solution (Figure 3.13). Because the compartmental model can be
used to estimate the numbers of cells (or precursors) having undergone a specified number of divisions,
biologically meaningful parameters can be assessed directly in terms of division number. For instance, the
total number of precursors in the population, as a fraction of the original number, provides a meaningful
estimation of cell viability. The total number of cells in the population can be used to estimate the
population doubling time. As more complex experiments are conducted, the compartmental model could
be easily generalized to account for division-linked changes (surface marker expression/differentiation,
genetic mutations, etc.). Such features should be useful when comparing results from different data sets,
such as when attempting to quantify the effects of a given chemical reagent, or distinguishing between
diseased and healthy cells. Additional generalizations are discussed at greater length in Chapter 5.

Of course, the meaningful comparison of parameter estimates between multiple data sets and exper-
imental conditions relies upon quantification of the levels of uncertainty in the estimated parameters.
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This quantification, typically in the form of confidence bounds, is premised upon the accurate speci-
fication of the statistical model (3.25) which links the model to the data. In this chapter, the model
was fit to the data in an ordinary least squares sense, with the tacit assumption that the error random
variables Ekj have mean zero and constant variance. However, as will be shown in the next chapter,
this assumption is not an accurate description of the data. While the misspecification of the statistical
error model does not invalidate the ability of the compartmental model to (qualitatively) fit the available
CFSE data set, it does prevent the meaningful quantification of uncertainty in the parameter estimates.

In an effort to form a more reliable statistical model, in the next chapter we begin an analysis of
the OLS residuals after the AIC-selected best-fit model (parameterization A5B5dist) is fit to the data
(Figure 3.9). This is followed by a qualitative analysis of several additional data sets which were recently
collected for the purposes of analyzing variability in the data collection procedure. These analyses are
then used to suggest potential improvements to the statistical model.
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Chapter 4

The Statistical Model and Data

Variability

4.1 Motivation and Goals

At this point, a mathematical model (3.14) has been derived which can be fit accurately and directly to
a CFSE data set. Using this model, it is possible to examine several biologically relevant measures of
a proliferative response, such as rates of cell division and death, cell viability, and population doubling
time. It is hoped that such a model will provide a quantitative framework for the comparison of data sets
arising from cells in various biological and experimental conditions. However, before such a framework
can be established, there is a need for meaningful confidence intervals to quantify the certainty with
which individual parameters are estimated. This, in turn, relies upon an accurate statistical model for
the CFSE histogram data.

Recall from Section 3.4.1 the assumption that the data is accurately described by the statistical
model

N j
k = I[ñ](tj , z

j
k; θ0) + Ekj , (4.1)

where Ekj are independent random variables satisfying E[Ekj ] = 0. Then the best-fit parameter estimate
is

θ̂WLS(njk) = arg min
θ∈Θ

∑
k,j

r2
kj

wkj
= arg min

θ∈Θ

∑
k,j

1
wkj

(
I[ñ](tj , z

j
k; θ)− njk

)2
, (4.2)

where the residuals rkj are realizations of the error random variables Ekj . In theory, the weights wkj are
chosen to account for the variance of the Ekj following the assumptions of the statistical model. Thus,
the statistical model has direct implications for the estimated best-fit parameter, given the data.

Two possible variance models were considered in Chapter 3. First, a constant variance (CV) statistical
model was considered, in which case V ar(Ekj) = σ2

0 and wkj = 1 for all k and j. This results in the
Ordinary Least Squares (OLS) framework (3.27). Second, a constant coefficient of variance (CCV)
statistical model was considered, in which V ar(Ekj) = σ2

0(I[ñ](tj , z
j
k; θ0))2 and wkj = (I[ñ](tj , z

j
k; θ0))−2.

This results in the Generalized Least Squares (GLS) framework (3.28). In the absence of any a priori
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knowledge regarding the correct form of the statistical model, the computationally simpler OLS model
was used in Chapter 3 for the inverse problem.

In addition to the implications for confidence interval calculation discussed above, an accurate statis-
tical model has implications for the weights wkj in the inverse problem formulation (4.1). Additionally,
the computation of the AIC values (Section 3.4.5) for modeling ranking and selection is premised upon
modeling errors which are independent and normally distributed with constant variance. There is signifi-
cant value, then, in ascertaining the properties of the error random variables and assessing the reliability
of the assumptions made in the inverse problem procedure. In this chapter, the residuals rkj which arise
after the AIC selected best-fit model parameterization (A5B5dist; see Section 3.4.2) are examined in an
effort to assess the reliability of the statistical model. As in [21], it is found that neither a CV nor a
CCV assumption accurately describes the given data set. Moreover, it is found that the error random
variables are not independent (given the current statistical model).

There are two potential causes for such observations. First, there is the possibility that the mathe-
matical model does not accurately reflect the dynamics observed in the data. Second, it is possible that
the statistical model (4.1) does not appropriately link the mathematical model with the data. In an
effort to determine which is the case, several additional data sets have been collected so that variability
in the experimental process could be assessed. It is shown (thankfully, perhaps) that the inaccuracy of
the statistical model is the result of the failure of the statistical model to accurately incorporate sources
of uncertainty which naturally arise in the experimental protocol of Chapter 1.

4.2 Analysis of Residuals

As discussed above, the residuals rkj which result from fitting the model (here, the compartmental model
from Chapter 3 with parameterization A5B5dist) to the data are realizations of the random variables Ekj .
As such, the reliability of the statistical error model can assessed by plotting the residuals rkj and the
modified residuals rkj/I[ñ](tj , z

j
k; θ0) in terms of the model values I[ñ](tj , z

j
k; θ0). (In practice, of course,

one must insert an estimate θ̂OLS or θ̂GLS in the place of the unknown θ0 and use the approximate
integral operator IA[ñ].) If a CV error model is sufficient to explain the noise in the data, then the
residuals rkj will be randomly distributed when plotted against the model values, while the variance of
the modified residuals will decrease as the magnitude of the model increases. Alternatively, if a CCV
model is sufficient to explain the noise in the data, then the modified residuals rkj/IA[ñ](tj , z

j
k; θ0) will

be randomly distributed, while the original residuals will grow with the magnitude of the model. These
observations are summarized in a hypothetical example in Figure 4.1. See [8, 22] for additional details
and further examples. More details regarding the choice of statistical error and its effects on the inverse
problem can be found in [8, 22, 37, 96].

Figure 4.2 shows the residuals and the modified residuals plotted in terms of the computed model
values for the AIC-selected best-fit model parameterization A5B5dist. (Technically speaking, one should
plot the modified residuals rkj/IA[ñ](tj , z

j
k; θGLS). However, the computation of the parameter estimate

θGLS is quite expensive, and the model values IA[ñ](tj , z
j
k; θGLS) would change minimally.) When the

residuals are plotted in terms of the value of the observed model solution there is a clear increase in the
variance of the residuals as the size of the model increases, providing an indication that the assumption
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Figure 4.1: Top: Hypothetical residuals (left) and modified residuals (right) for constant variance (CV)
data when plotted in terms of the model value. Bottom: Hypothetical residuals (left) and modified
residuals (right) for constant coefficient of variation (CCV) data when plotted in terms of the model
value. When the correct statistical model is used (top-left and bottom-right), the residuals (or modified
residuals) appear randomly distributed. The fan-like structures in the top-right and bottom-left panels
are characteristic of such residual plots when the statistical model for the measurement errors has been
misspecified.

of CV errors may be incorrect. However, the residuals also lack the fan-like structure typical of CCV
errors (Figure 4.1). When the modified residuals are plotted in terms of the magnitude of the observed
model solution, the pattern is distinctly nonrandom. Thus, it appears that the true statistical model
for the errors may lie somewhere between the CV model (OLS estimation) and the CCV model (GLS
estimation), perhaps slightly closer to the CV model.

The assumption that the error random variables at each of the data points are independent may
also be problematic. For instance, when the residual plots are separated in terms of measurement times
(Figure 4.3) additional structure is noticeable in the residual plots when compared to Figure 4.2. The
independence of the error random variables can be investigated with a scatterplot of the residuals rkj
(which are considered as realizations of those random variables) in terms of the previous residual rk(j−1).
If the error random variables were truly independent, then such a scatterplot would have no discernable
structure. However, we see in Figure 4.4 that this is not the case, as there is a clear positive correlation
between the sets of residuals.

There are two possibilities which may explain the positive correlation between the two sets of resid-
uals. First, it is possible that neighboring data points are not independent. Because the data used to
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Figure 4.2: Residuals (left) and modified residuals (right) for the OLS best-fit model solution. Because
neither graphic exhibits constant variance, the assumptions of CV error and CCV error must both be
wrong. While the misspecification of the error term does not invalidate the ability of the compartmental
model to fit the data, we cannot determine the statistical properties (e.g., confidence intervals) of the
parameter estimates.
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Figure 4.3: Residuals (left) and modified residuals (right) for the OLS best-fit model solution, shown
separately for each measurement time. There is some additional structure which is evident in these
residual plots which is not evident when the residuals for all measurement times are shown together
(Figure 4.2). This has implications for the statistical model of the data.
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Figure 4.4: The assumption of independent errors for each observation can be checked by plotting the
residuals rkj against the offset residuals rk(j−1). If the errors were independent, there would be no
discernable structure in such a graphic. However, we observe a clear positive correlation.

calibrate the model is histogram data, it is possible that the number of cells counted into adjacent bins
(and hence, the error terms) might be linked by the location of the boundary separating the adjacent
bins. In general, this might be demonstrated by investigating how the noise in the data changes as
the bins used to generate the histogram data changes. Unfortunately, the data set used in this report
was received with the bins already fixed. Still, these effects deserve careful consideration and must be
addressed in future work. Some research has also indicated that cells which descend from a common
precursor may share certain traits and/or behaviors [58, 106]. It is unclear how such correlation might
impact either the error terms or the mathematical model itself, though this is considered briefly in
Chapter 5.

A second possibility is that the model, though close to the data (see, e.g., Figure 3.9) does not satisfy
the tacit assumption E[N j

k ] = I[ñ](tj , z
j
k; θ0) (or, equivalently, E[Ekj ] = 0). Given the convergence

properties of the numerical solution discussed in Chapter 3, it seems unlikely that the failure of this
assumption could be caused by any computational errors or approximations. A more likely explanation
is the discrepancy between the assumptions regarding the collected data and the actual experimental
reality. As discussed in Section 1.2, the 5 samples of data collected (4 used for fitting the model plus
one for the initial condition) are actually 5 separate samples taken from the same donor. While each
sample receives an identical treatment, the assumption that all five samples are identical for all time
may be inaccurate. Moreover, only a fraction of each sample is measured, and a scaling factor (which
may also be subject to error) is used to adjust the resulting cell counts. Meanwhile, the model is derived
under the assumption that each histogram represents a complete census of the cells in the population,

93



and that the same population (i.e., cells arising from the same set of precursors) is measured each time.
In order to correct for such a discrepancy between the assumptions of the mathematical model and the
experimental reality, a more rigorous, detailed observation operator may be needed which accounts for
the experimental sampling method, with its attendant sources of error. This may also help to resolve
the slight negative bias of the residuals observed in Figure 4.2.

Given these two possibilities, it is unavoidable that the natural variability in the experimental protocol
must be assessed. Rather than continue to use a single data set to investigate the two possibilities above
(and risk ‘overfitting’ the data [31]), several additional data sets have been collected for these purposes.

4.3 Data Variability

As discussed above, the work presented thus far on modeling CFSE/flow cytometry data has been based
upon several assumptions. It is tacitly assumed that at each measurement time, the histogram data (to
which the mathematical model is fit) is representative of a total census of the cell population. That is, it
is assumed that the sample of cells measured from each well is representative of the population of cells
in the well, and that the sampled fraction of cells can be accurately estimated using counted beads. It
is also assumed that the same population of cells (i.e., cells arising from the same set of precursors) is
used at each measurement time. While experimental protocol necessitates the use of cells from separate
well plates at each measurement time, it was hoped that the populations of cells in the individual well
plates were sufficiently alike so that this assumption would be mathematically reasonable.

However, it has already been acknowledged in Chapter 1 that certain data sets appear to violate
these assumptions. For example, the data collected at t = 72 hours in the present data set could not
be used because the increase in the number of cells from the previous measurement was physically
impossible (given the assumptions on the data). It should be emphasized that this failure is not unique
to the current mathematical efforts as all analyses of CFSE data (e.g., the precursor-cohort method,
the cyton model, etc.–see Chapter 1 for extensive references) are at least tacitly premised upon the
assumption that CFSE histogram data represents a census of a single cell population. It should also be
emphasized that the violation of the assumptions on the data is not the result of an experimental failure.
Rather, there is a natural experimental variability to be expected when a sample of the population is
measured as a means of approximating the behavior of the total population. Previous authors have noted
the importance of considering experimental variability in CFSE data sets [109]. Because one significant
goal of the mathematical modeling of flow cytometry data is the use of parameter estimates to compare
various experimental and biological conditions, there is also a need to examine how the data varies
between two nominally healthy individuals, as well as how the data varies from sample to sample within
the same donor. That is, the intra- and inter-individual variability in CFSE data sets must be considered
in addition to the variability in the experimental procedure.

In order to address these issues, multiple data sets have been collected for the purpose of quantifying
variability in flow cytometry data. In order to assess inter-individual variability between two healthy
donors, cells were collected from two donors (Donor 1 and Donor 2). A fraction of cells from each donor
was set aside (in order to measure the AutoFI properties of the cells) while the remaining cells were
labeled with CFSE. For both CFSE+ and CFSE− cells, half of the cells were stimulated with PHA
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while the other half of the cells were not stimulated. Cells were placed into individual well plates at a
density of approximately 0.5×106 cells per well. In order to assess experimental variability, cells labeled
with CFSE were measured in triplicate on days 1, 3, and 5. Thus, for each donor, there were 3 wells
for CFSE−PHA− cells, 3 wells for CFSE−PHA+ cells, 9 wells for CFSE+PHA− cells, and 9 wells for
CFSE+PHA+ cells. At each measurement time, flow cytometry data was collected on

• unstimulated AutoFI (CFSE−PHA−; one well per day),

• stimulated AutoFI (CFSE−PHA+; one well per day),

• unstimulated, labeled cells (CFSE+PHA−, three wells per day),

• stimulated, labeled cells (CFSE+PHA+, three wells per day).

Gating procedures were used to isolate the CD4+ cells, which were stored for the analysis presented
here. In order to address intra-individual variability, this entire experiment was repeated 17 days later
(henceforth, we refer to the two experiments as Trial 1 and Trial 2) with the same two donors. It is hoped
that a qualitative analysis of these data sets can be used as a basis for modifying the statistical model
which relates the data to the mathematical model. Once accomplished, the appropriate incorporation of
experimental uncertainty into the statistical model will permit a more meaningful (and more accurate)
estimation of parameters without the need for assumptions (on the experimental data) which are of
limited validity. The analysis of AutoFI is postponed until the next chapter.

4.3.1 Experimental and Donor Variability

As has been previously noted, the original data set used in this research exhibited the ‘precursor cohort
problem’, in which the total number of precursors (the cells originally in the population which give rise
to all other cells after division) or the total quantity of CFSE FI (see Figure 1.1) increases from one
measurement time to the next. If it were safe to assume that each measurement can be treated as if it
were a census of the same population of cells, then such an increase in the total number of precursors
would not be possible, as it violates the conservation law upon which the mathematical model is premised.
However, it is known that only a fraction of cells in a given well are counted by the flow cytometer,
and that a different well is used for each measurement time. Data collected from such samples does not
pose a theoretical problem in itself, provided a known fraction of the total population is sampled, and
that the sampled cells are representative of the total population. The fraction of cells measured out of
each well is estimated by placing a known number of beads (in the data sets for this document, 51175)
into each well. These beads have well-known fluorescence properties and can be counted in the flow
cytometry data. The estimated total number of cells in a well is determined by scaling the number of
measured cells by the ratio of total beads to counted beads. More than likely, the number of measured
cells or the number of counted beads (or both) is subject to some measurement error. It is also likely
that the number of cells placed into distinct wells may vary as well. Thus, it seems that the precursor
cohort problem might be explained by natural variability in the experimental procedure.

In order to investigate these sources of error, Tables 4.1 and 4.2 show the numbers of measured cells,
counted beads, and estimated total number of cells for the CFSE labeled unstimulated cells from Donors
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Table 4.1: Summary of event counts for Donor 1 without stimulation. In two separate experiments
occurring 17 days apart, triplicate samples of cells were measured on days 1, 3, and 5. The number of
cell events measured by the cytometer, the number of bead events measured by the cytometer, and the
resulting estimated total cell population are shown for each measurement. Data sets in which total cell
numbers increase between two subsequent measurement times are highlighted in yellow. For instance,
in Trial 1, the total number of cells in the first sample increases from 301159 to 375386 between days 3
and 5.

Trial 1 Trial 2
Cell Events Bead Events Total Cells Cell Events Bead Events Total Cells

19906 2116 481422 20136 2525 408103
Day 1 19485 2330 427959 20307 2869 362221

19844 2360 430304 20501 2305 455158
21062 3579 301159 21105 2322 465137

Day 3 21372 2571 425403 21390 2364 463043
20860 2715 393190 21353 2429 449872
22006 3000 375386 22515 2986 385869

Day 5 21667 3069 361293 22848 3201 365275
21520 3109 354225 23827 4079 298933

Table 4.2: Summary of event counts for Donor 2 without stimulation. As in Table 4.1, in two separate
experiments, triplicate samples of cells were measured on days 1, 3, and 5. The number of cell events
measured by the cytometer, the number of bead events measured by the cytometer, and the resulting
estimated total cell population are shown for each measurement. Data sets in which total cell numbers
increase between two subsequent measurement times are highlighted in yellow.

Trial 1 Trial 2
Cell Events Bead Events Total Cells Cell Events Bead Events Total Cells

22498 2015 571382 18451 2392 394745
Day 1 22992 1913 615063 17892 2024 452383

22756 1990 585195 17787 2474 367926
24040 2157 570351 20120 2367 434998

Day 3 24006 2278 539292 20338 2458 423433
24088 2352 524109 20677 2490 424958
25050 3367 380735 23398 2659 450317

Day 5 24921 3500 364381 23199 3159 375818
25186 3048 422865 22797 2715 429700
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Table 4.3: Summary of the estimated total cell numbers (hence total precursor numbers) for the CFSE
labeled unstimulated cells. Of the 12 data sets collected, 5 (highlighted in yellow) exhibit an increase in
the total number of precursors from one day to the next.

Data Set Day 1 Day 3 Day 5
Donor 1 Trial 1 Sample 1 481422 301159 375386
Donor 1 Trial 1 Sample 2 427959 425403 361293
Donor 1 Trial 1 Sample 3 430304 393190 354225
Donor 1 Trial 2 Sample 1 408103 465137 385869
Donor 1 Trial 2 Sample 2 362221 463043 365275
Donor 1 Trial 2 Sample 3 455158 449872 298933
Donor 2 Trial 1 Sample 1 571382 570351 380735
Donor 2 Trial 1 Sample 2 615063 539292 364381
Donor 2 Trial 1 Sample 3 585195 524109 422865
Donor 2 Trial 2 Sample 1 394745 434998 450317
Donor 2 Trial 2 Sample 2 452383 423433 375818
Donor 2 Trial 2 Sample 3 367926 424958 429700

1 and 2, respectively (note that each measurement was made in triplicate). Because these cells are not
stimulated, the cells will not divide and the total number of cells in the population is equal to the total
number of precursors in the population. Thus, one can examine the precursor cohort problem directly
without any need to fit the data or use a deconvolution technique in order to determine the number of
cells in each generation. If one were to make the common assumption that the cells in each well are
identical, then the estimated total number of cells cannot increase from one day to the next (though the
number may decrease as a result of cell death). For Donor 1, one of the triplicate data sets from Trial
1 features estimated total cell numbers which increase. In Trial 2, two of the three triplicate data sets
have this precursor cohort problem. The problematic samples are highlighted in yellow.

Thus, between two donors and two trials, a total of 12 time-series data sets were obtained for
unstimulated cells. In 5 of those 12 data sets, the precursor cohort problem appears. These twelve
data sets, given in detail in Tables 4.1 - 4.2, are summarized in Table 4.3. It should be emphasized that
because these cells were not stimulated to divide, there is no deconvolution or fitting of the data involved
in determining the number of precursors; the increase in precursors from one day to the next must be
experimental and not mathematical. It should also be emphasized that this is not an experimental error
and almost certainly cannot be avoided. There is a natural variability in the experimental data as a
result of the necessary steps required to analyze a population of cells based upon measurements obtained
from only a sample of those cells. It is of interest, however, to understand the potential causes of such
variability so that they can be addressed mathematically or statistically.

There are three potential sources of variability underlying the precursor cohort problem. First, it is
possible that the number of counted beads is subject to error. This may be the case if some particles
and/or cells in the culture have fluorescence properties similar to that of the beads. Then, when the
gates are set to isolate and count the measured beads, the resulting number will be biased upward. The
magnitude of such bias will depend upon the number of such cells/particles. Alternatively, if the spectral
properties of the beads are not sufficiently similar (or are subject to significant measurement error) the
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Table 4.4: Summary of event counts for Donor 1 for a population stimulated with PHA. In two separate
experiments occurring 17 days apart, triplicate samples of cells were measured on days 1, 3, and 5. The
number of cell events measured by the cytometer, the number of bead events measured by the cytometer,
and the resulting estimated total cell population are shown for each measurement. Unlike in Table 4.1,
these cells are dividing and thus the observed increases in the total number of cells is expected.

Trial 1 Trial 2
Cell Events Bead Events Total Cells Cell Events Bead Events Total Cells

20799 3984 267166 20175 4953 208451
Day 1 20487 3855 271964 19872 4104 247795

20914 3731 286860 20322 4027 258251
18465 3155 299508 17798 2602 350043

Day 3 18546 3340 284159 17394 2537 350862
19547 4396 227552 17315 2855 310366
13722 1003 700123 14255 1051 694100

Day 5 13539 1079 642130 15436 905 872859
13654 1204 580352 15665 1056 759144

Table 4.5: Summary of event counts for Donor 2 for a population stimulated with PHA. As in Table 4.4,
in two separate experiments occurring 17 days apart, triplicate samples of cells were measured on days
1, 3, and 5. The number of cell events measured by the cytometer, the number of bead events measured
by the cytometer, and the resulting estimated total cell population are shown for each measurement.

Trial 1 Trial 2
Cell Events Bead Events Total Cells Cell Events Bead Events Total Cells

24923 3617 352622 19438 3813 260881
Day 1 24885 2778 458420 19588 3790 264490

24793 3321 382048 19847 3528 287888
19698 2132 472817 14101 3434 210139

Day 3 19577 2400 417439 13291 2964 229476
19619 2648 379155 14077 2576 279655
15375 1051 748635 10961 1213 462431

Day 5 14908 1051 725896 11014 1193 472457
14803 938 807616 10850 1250 444199
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beads will appear spread out in a scatterplot. In that case, the number of beads gated and counted will
be biased downward because some beads which were present in the data were excluded by the gates.

A second possibility is that the number of cell events counted in the cytometry data may be subject
to error. Because the measured culture contains a wide variety of cells, various properties of the cells of
interest (here, CD4+ cells) must be used (e.g., size, granularity, CD4 expression) in order to isolate those
cells. However, each gate is a potential source of error. The magnitude and direction of those errors will
depend upon variability in the fluorescence properties of the cells of interest as well as on the proximity
of other cells (in a scatterplot) to the regions containing the cells of interest. Similarly, because cell
duplets must be removed from the data, this may be a source of systematic error in the computed cell
numbers. For instance, if there are a large number of CD4+ cells clumped together at the beginning of
the experiment, these cells will be removed from the data. Then, if cells tend to unclump during the
course of the experiment, fewer cells will be removed, leading to an apparent increase in the number of
cells in the population. The third possibility is variability in the number of cells initially placed into
the individual wells. If different wells were to receive different numbers of cells at the beginning of the
experiment, one would naturally expect some variability in the number of precursors computed from the
data!

Given these three potential sources of experimental variability, we return to the data in Tables 4.1
and 4.2. Notice that the number of cell events, though different for the two donors and the two trials, is
very similar for each set of triplicate measurements. (The number of measured cell events for Donor 1
Trial 2 Day 5 has a relative difference of less than 6% among the triplicate samples, and all remaining
measurements feature differences of less than 3%.) This would seem to indicate that the variability in
the numbers of counted cells is small. The number of counted beads, however, can vary much more
significantly (as much as 33% relative difference for Donor 1 Trial 1 Day 3). Thus it is the variation
in the numbers of counted beads which seems to be more responsible for the observed precursor cohort
problems. Because we do not have any means (using only the current data sets) to analyze fluctuations in
the numbers of cells initially placed into each well, these conclusions must be taken with some skepticism.
For instance, we must leave open the possibility that the numbers of cell events and bead events are
quite accurate, so that it is the actual true number of cells in each well which is variable. In order to
determine which of the three possibilities is the most accurate account of the experimental variability,
more information regarding the data preprocessing steps (the gating procedures) is needed, and this
analysis is ongoing.

Of course, data collected for unstimulated cells is quite static. Because our primary focus is on
modeling dynamic populations which are activated and dividing, we would like to see if the observations
noted above hold true for PHA-stimulated cells as well. In Tables 4.4 and 4.5, the counted cells, beads,
and computed total cells are shown for Donors 1 and 2 for cells stimulated with PHA. Note that, for
PHA-stimulated cells, proliferation will occur so that increases in total cell count are permissible. Just
as for unstimulated cells, the data in Tables 4.4 and 4.5 exhibit consistent numbers of cell events in the
triplicate data sets, with more variability in the numbers of counted beads.

Regardless of the exact causes, it seems safe to conclude that natural experimental variability is
responsible for observed fluctuations in the total numbers of cells estimated to be in the measured
population. Beyond this variability, there is great interest in quantifying intra-individual variability–
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Figure 4.5: Data from Donor 1, cells unstimulated. Left: Trial 1 data, collected in triplicate, on days 1,
3, and 5. Right: Trial 2 data, taken 17 days after the conclusion of the previous experiment. The cell
counts for these data sets can be found in Table 4.1.
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Figure 4.6: Data from Donor 2, cells unstimulated. Left: Trial 1 data, collected in triplicate, on days
1, 3, and 5. Right: Trial 2 data, taken 17 days after the conclusion of the previous experiment. The
cell counts for these data sets can be found in Table 4.2. While the total number of cells is occasionally
variable, the overall shape of the histogram data is consistent across the triplicate samples and from one
trial to the next.
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Figure 4.7: Data from Donor 1, cells stimulated with PHA. Left: Trial 1 data, collected in triplicate,
on days 1, 3, and 5. Right: Trial 2 data, taken 17 days after the conclusion of the previous experiment.
The cell counts for these data sets can be found in Table 4.4. With the exception of the data from Trial
1 Day 3, the overall shape of the histogram data is consistent across the triplicate samples and from one
trial to the next. The cause of the unexpectedly small number of undivided cells in the histogram data
for Trial 1 Day 3 Sample 3 is unknown–it may be biological or experimental.
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Figure 4.8: Data from Donor 2, cells stimulated with PHA. Left: Trial 1 data, collected in triplicate,
on days 1, 3, and 5. Right: Trial 2 data, taken 17 days after the conclusion of the previous experiment.
The cell counts for these data sets can be found in Table 4.5. With the exception of the data from Trial
2 Day 5, the overall shape of the histogram data is consistent across the triplicate samples and from one
trial to the next. The cause of the additional generation of cells in the histogram data for Trial 2 Day 5
Sample 3 is unknown–it may be biological or experimental.
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that is, how much variability is there in the behavior of cells, even when those cells were taken from the
same donor. In order to do so, we look at the CFSE histogram data formed from the cells measured for
each donor. Because each measurement is made in triplicate, and because two separate experiments were
conducted 17 days apart, we can analyze differences in cell behavior in order to understand variability
within a single individual. We make the reasonable assumption that cells which behave in a sufficiently
similar manner will result in CFSE histograms which are similar in overall shape. It should be noted that
the CFSE histograms are computed from flow cytometry data which we have already acknowledged to
be subject to experimental variability. However, as this variability affects the numbers of cells estimated
to be in the population, and not the actual behavior of those cells, it follows that histograms which are
similar in shape (but possibly not in size) are indicative of similar populations of cells.

We begin with the histogram data for the unstimulated cells (summarized in Tables 4.1 and 4.2).
Figures 4.5 and 4.6 show the histogram data for the unstimulated cells from Donors 1 and 2, respectively.
We see in these figures that, aside from the sample-to-sample variability in the total number of cells
(which we know from the previous subsection to be problematic), the data are quite similar from one
trial to the next, and from sample to sample within the same trial and donor. Of course, these cells have
not been stimulated and it is of little surprise that such static populations result in similar histograms.

Thus, we turn our attention to the PHA-stimulated cells which were summarized in Tables 4.4 and
4.5. Figures 4.7 and 4.8 depict the data sets for Donors 1 and 2 for these cells. When ignoring differences
in total computed cell numbers we see that even these dynamic data sets are generally consistent across
triplicate samples for a donor. For instance, the relative sizes of each of the peaks (hence the approximate
percentage of cells in each generation) is consistent across the various samples measured at each day.
The only exceptions are the data sets for Donor 1 Trial 1 Day 3 (Figure 4.7) and Donor 2 Trial 2 Day
5 (Figure 4.8), in which one of the triplicate measurements is noticeably different from the other two.
For Donor 1 Trial 1 Day 3, there are far fewer undivided cells in the Sample 3 data than would be
expected given the other two samples. For Donor 2 Trial 2 Day 5, one additional generation of cells
is clearly visible in the data from Sample 3 when compared to the other two samples. It is unclear
what may be the cause of these two instances of intra-individual variability. It is possible that subtle
experimental differences in the populations of cells used for the triplicate samples (e.g., variations in
nutrient concentration, strength of stimulation, exact time of measurement, etc.) can account for these
variations. It is also possible that elements of the measurement process (e.g., a subset of cells gated in
or out of the population) could be responsible.

There are some noticeable differences in Figures 4.7 and 4.8 between the measured populations of
cells in Trial 1 compared to those in Trial 2 (compare the left and right columns of graphics). While
there are generally the same numbers of generations of cells visible on a given day, the distribution of
cells among different division numbers is different between the two trials. These differences are probably
explained by subtle variations in the measurement process between the two sets of data. Data for Trial
1 was collected 22.5, 69.5, and 115.5 hours after stimulation. Data for Trial 2 was collected 20, 69,
and 118 hours after stimulation. These slight differences in timing seem sufficient to explain the subtle
differences in the distribution of cells among generations between Trial 1 and Trial 2.

While there does appear to be some intra-individual variability in CFSE histogram data, this vari-
ability appears to be less frequent and smaller in magnitude than the experimental variability associated
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with the total number of cells in the population. Given the similarity of the triplicate samples obtained
for each donor, as well as the similarity of the data between Trial 1 and Trial 2 for each donor, it seems
reasonable to conclude that, for a given mathematical model (e.g., the compartmental model in Chapter
3) the parameters of that model can be consistently estimated for a given healthy individual. Future
work may be directed toward fitting the mathematical model to each triplicate data set (for each donor
and trial) and examining differences in the estimated parameters. As noted at the beginning of this
document, however, we must first identify an accurate statistical model which links the mathematical
model to the data (see Section 4.5). Second, we must determine the degree to which parameters in the
mathematical model can be uniquely estimated, which will almost certainly depend upon the times at
which measurements are taken.

Given the results so far established concerning levels of experimental and intra-individual variability,
we next consider how CFSE histogram data differs between the two healthy donors. One of the ultimate
goals of modeling CFSE histogram data is to use mathematical parameters estimated from a data set to
distinguish between diseased and healthy cells. As such, we must establish how much variation can be
expected between data sets for two different but nominally healthy donors. As noted above, differences
in the actual mathematical parameters (when a model is fit to multiple data sets) will depend upon
both an accurate statistical model as well as issues of uniqueness in the inverse problem solution. These
discussions are postponed for the moment. We can, however, examine the overall shapes of the histograms
obtained from measurements of cells from the two donors. If the cells from the two donors behave in
sufficiently similar manners, then the histograms should have similar shapes. In Figure 4.9, histogram
data for unstimulated cells from the two donors on day 1 are shown in comparison to one another. (It
follows from Figures 4.5 and 4.6 that the histograms for days 3 and 5 are nearly identical to those for day
1, so we do not show these.) As above, there is some experimental variability in the total number of cells
estimated to be in each population. But because the current mathematical model (from either Chapter
2 or Chapter 3) is linear, variations in total cell numbers between donors are irrelevant. (Differences in
total cell numbers do still matter from one day to the next within the same donor.) It is plainly observed
that cells from Donor 1 were more brightly labeled with CFSE than cells from Donor 2 during Trial 1.
This difference is also inconsequential as the initial distribution of CFSE is set independently for each
data set when the compartmental model is calibrated to data. The shape of the CFSE distributions, as
well as the rate at which CFSE FI decreases, is approximately the same for both donors once differences
in total cell numbers and initial labeling intensity are accounted for.

As before, there is little information contained in the data sets for unstimulated cells. We are
primarily interested in quantifying differences in dynamic behavior between the two donors. Thus, the
CFSE histograms for the PHA-stimulated cells from the two donors are shown in comparison for each day
in Figures 4.10 - 4.12. Again, we observe the expected sample-to-sample and donor-to-donor variation
in the total number of cells in the population. As in the unstimulated case (Figure 4.9), cells for Donor
1 obtained a brighter initial staining than cells for Donor 2 during Trial 1. However, after accounting for
these differences, the overall shape of the data sets (e.g., the proportion of cells in each generation) is
relatively consistent for the two donors. This provides some hope that it may be possible to establish a
narrow set of parameters (in the mathematical model) which can reliably fit data from healthy donors.
In addition to the immediate advantage of reducing the computational time associated with fitting a

105



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2x 10
4 Trial1 Day1 Sample1 Unstimulated

FI

S
ca

le
d 

C
el

l C
ou

nt
s

 

 

Donor 1
Donor 2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

2000

4000

6000

8000

10000

12000

14000
Trial2 Day1 Sample1 Unstimulated

FI

S
ca

le
d 

C
el

l C
ou

nt
s

 

 

Donor 1
Donor 2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5x 10
4 Trial1 Day1 Sample2 Unstimulated

FI

S
ca

le
d 

C
el

l C
ou

nt
s

 

 

Donor 1
Donor 2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

2000

4000

6000

8000

10000

12000

14000
Trial2 Day1 Sample2 Unstimulated

FI

S
ca

le
d 

C
el

l C
ou

nt
s

 

 

Donor 1
Donor 2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2x 10
4 Trial1 Day1 Sample3 Unstimulated

FI

S
ca

le
d 

C
el

l C
ou

nt
s

 

 

Donor 1
Donor 2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Trial2 Day1 Sample3 Unstimulated

FI

S
ca

le
d 

C
el

l C
ou

nt
s

 

 

Donor 1
Donor 2

Figure 4.9: Inter-individual variability among unstimulated cells at day 1. Left: Trial 1. Right: Trial
2. Data for days 3 and 5 is sufficiently similar for unstimulated cells and thus is not shown. Cells
from Donor 1 received a brighter initial labeling of CFSE than cells from Donor 2 during Trial 1. This
difference will not affect the parameters associated with the dynamic behavior (e.g., proliferation and
death) of the cells.
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Figure 4.10: Inter-individual variability among cells stimulated with PHA at day 1. Left: Trial 1. Right:
Trial 2. Again we find the cells from Donor 1 received a brighter initial staining than the cells from
Donor 1 during Trial 1. The overall shape of the histograms (up to scaling and initial CFSE FI) is
consistent for each trial and sample, which is an strong indication of consistent cell behavior.
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Figure 4.11: Inter-individual variability among cells stimulated with PHA at day 3. Left: Trial 1. Right:
Trial 2. Again we find the cells from Donor 1 received a brighter initial staining than the cells from
Donor 1 during Trial 1. The overall shape of the histograms (up to scaling and initial CFSE FI) is
consistent for each trial and sample, which is an strong indication of consistent cell behavior.
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Figure 4.12: Inter-individual variability among cells stimulated with PHA at day 5. Left: Trial 1. Right:
Trial 2.
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given model to a data set, this may also provide a useful distinguishing feature to separate data from
healthy and diseased donors. At the moment, such a claim is purely speculative–it will need to be
verified by actually fitting a model (ideally, the compartmental model) to each data set and examining
the degree to which the parameters of the model can be consistently and uniquely estimated. This will,
in turn, almost certainly depend upon the times at which the data is taken. This work is a significant
future goal.

4.4 Histogram Bins and Measurement Noise

So far, we have focused exclusively on experimental variability and intra- and inter-individual variability
in CFSE histogram data. It has been deduced that the largest contributor to variability in CFSE
histogram data is variability in the numbers of cells estimated to be in the population. Once unimportant
differences (e.g., the exact time at which a measurement was taken, the total number of cells originally
in placed in a well, etc.) in experimental setup are accounted for, the CFSE histogram data appears
to be consistent for each donor from Trial 1 to Trial 2. Meanwhile, little attention has been paid to
the actual statistical error model which accounts for the ‘noise’ in the histograms. From Figure 4.10 to
Figure 4.12, notice that the level of noise in the data increases on each day. This would seem at first
to indicate a time-dependence in the level of noise in the experimental data. However, for unstimulated
cells (see Figures 4.5 and 4.6) the noise observed in the histogram data does not increase with time.
We observe in Tables 4.4 and 4.5 that the number of PHA-stimulated cells actually measured by the
flow cytometer (the number of cell events) decreases each day the cells are measured. Meanwhile, the
number of beads counted decreases as well. In other words, a smaller sample (of the total population)
is measured and then scaled up by a larger factor to form the population data. It is no surprise then,
that the level of noise in the histogram data increases.

It is of interest to consider the effects of the histogram bins on the noise in the data. Thus far in
this chapter, every histogram has been generated with 512 evenly spaced bins. (For the CFSE+ cells,
the bins are evenly spaced in the logarithmic scale. In Figure 4.13 three different numbers of bins (256,
512, and 1024) are used to form histograms for data collected from Donor 1 Trial 1 Day 5 (the data
collected from Donor 2 is sufficiently similar; the effects of the histogram bins on noise in the data are
the same for data from Trial 2 as well as days 1 and 3). For both donors and for all three measurements
in the triplicate data sets, the level of noise (relative to the size of the histogram data) increases as
the number of bins increases. This is as expected–when fewer bins are used, the bins themselves are
larger and effectively smooth out the data. Given this observation, some work might be directed toward
determining an optimal number of bins in which to place the flow cytometry data. If too few bins are
used, significant features of the measured population may be overlooked. But if too many bins are used,
the data will become too noisy to be accurately fit to the data.

The level of noise in the data can be reduced by averaging over the triplicate samples (weighted by
the total number of cells estimated to be in the population for each sample). Averaged data for day
5 (both donors, both trials) can be found in Figure 4.14, where 512 bins have been used to construct
the histograms. While there is less error in the averaged data than in any single one of the triplicate
data sets (compare Figure 4.14 with the middle row of Figure 4.13), it is not clear that the decrease
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Figure 4.13: Effects of different numbers of bins on noise in the histogram data for Donor 1, Trial 1,
day 5. Bins are evenly spaced in the logarithmic coordinate. Top: 256 bins. Middle: 512 bins. Bottom:
1024 bins. The effects are consistent for the triplicate data sets.
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Figure 4.14: Averages of triplicate data for Donor 1 (top) and Donor 2 (bottom) on day 5. Left: Trial
1. Right: Trial 2.

in noise is sufficient to justify the technique. Rather than average across data sets, a similar effect
could be obtained by taking only one measurement but measuring three times more cells. This seems
advantageous, as it would have the same noise-reducing effect as averaging, but presumably with less
risk of altering or biasing the results by combining multiple data sets.

We conclude this analysis by noting that the actual biophysical behavior of the populations of cells
(as understood in terms of rates of division and death) seems very consistent from sample to sample
within the same donor, and even from donor to donor among the two donors measured here. The
primary source of variability between multiple data sets appears to be experimental (e.g., initial staining
intensity, total number of cells initially placed in culture, etc.). For the actual dynamic parameters,
the intra- and inter-individual variability seem quite small for healthy donors. This is encouraging,
as it should allow for the set of admissible parameters (in the mathematical model) to be narrowed
significantly, leading to faster optimization times. Moreover, if unhealthy donors (i.e., diseased donors)
are described by parameters outside of this admissible range, this could provide a tool for distinguishing
diseased from healthy cells. For the moment, this is purely speculation, and definitive proof relies upon
the model being validated against additional data sets, as well as some additional mathematical work to
demonstrate the uniqueness of the estimated parameters, etc. Still, these observations provide hope that
the compartmental model can be combined with an accurate statistical model to establish biologically
meaningful parameters as well as confidence bounds on those parameters.
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4.5 Derivation of a Possible Statistical Error Model

Given the consistency of the flow cytometry data from the two donors, the most significant source
of variability between different data sets appears to be experimental, involving the number of beads
measured, number of cells counted, etc. This variability seems to be an inherent part of the data
collection procedure and thus must be incorporated into the statistical model that links the mathematical
model to the data. Recall the PDE model from Chapter 3:

∂n0

∂t
− ce−kt(x− xa)

∂n0

∂x
=− (α0(t) + β0(t)− ce−kt)n0(t, x) (4.3)

∂n1

∂t
− ce−kt(x− xa)

∂n1

∂x
=− (α1(t) + β1(t)− ce−kt)n1(t, x) +R1(t, x) (4.4)

... (4.5)

∂nimax

∂t
− ce−kt(x− xa)

∂nimax

∂x
=− (βimax(t)− ce−kt)nimax(t, x) +Rimax(t, x). (4.6)

Here, ni(t, x) is the label-structured population density for cells of interest (e.g., CD4 cells) at time t with
measured fluorescence intensity (FI) x having undergone i divisions. The parameters c and k describe
the rate at which CFSE FI naturally decreases within a cell, and the parameter xa is the natural AutoFI
of cells. It follows that the structured population density for the total population is

n(t, x) =
∑
i

ni(t, x). (4.7)

Finally, because CFSE histogram data is typically presented on a logarithmic scale, we can define the
log FI variable z = log10(x) and the new structured population density

ñ(t, z) = 10z ln(10)n(t, 10z). (4.8)

In order to derive an error model for the histogram data, we first make the common assumption
that the structured population density ñ(t, z) perfectly describes the population of cells. (Technically,
this population density depends upon a set of parameters which must be estimated from the data; for
simplicity we have suppressed this dependence. We are assuming that the model, once calibrated to
data, represents ‘truth’.) Then the total number of cells of interest in the population is

N(t) =
∫ ∞
xa

ñ(t, z)dz. (4.9)

Let tj be the time at which a measurement is made. Previously, it has been assumed that such a
measurement (after scaling by the bead ratio) represented a complete census of all relevant cells in the
population. However, in the actual experimental procedure, we actually measure some number Sj of the
cells. We can define the function

pj(z) =
ñ(tj , z)
N(tj)

. (4.10)

It follows that p(z) is a probability density function. Thus, the sample of Sj cells (of interest) is taken
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(without replacement) from the total population of N(tj) cells; the FI of the sampled cells is subject to
the sampling density p(z). (As addressed previously, and as should be carefully noted again here, there
are numerous steps required to separate the cells of interest, e.g., CD4+ cells, from the actual culture
of cells passing through the cytometer. References to the total number of cells N(t), and the number of
sampled cells Sj are understood to refer only to the specific cells of interest in the experiment. For the
moment, we make the additional assumption that these two numbers are exact and are not subject to
any errors–systematic, experimental, or otherwise–caused by gating, etc. These assumptions may need
to be generalized, but we focus on the more simple case for the moment.) Let B be the total number of
beads (51175 for the current data sets) which are used to quantify the fraction of the population of cells
which is measured. Let bj be the ‘true’ number of beads passing through the cytometer. (By this, we
mean the exact number of beads which would pass through the cytometer if the measured culture were
perfectly homogeneous, etc.). It follows that

Sj =
bj
B
N(tj). (4.11)

Now consider the kth histogram bin [zk, zk+1). The number of cells in the whole population which
are contained in this bin is given by

I[ñ](tj , zk) =
∫ zk+1

zk

ñ(tj , z)dz. (4.12)

Let M j
k be a random variable representing the number of cells counted into the kth bin. (Note that M j

k

is a different random variable than the N j
k used to describe the data in Chapter 3. M j

k is the number
of cells counted into a given bin out of the cells actually passing through the flow cytometer.) Because
the measurement process represents a sampling without replacement, it follows that M j

k is described by
a hypergeometric distribution,

M j
k ∼ HypG(N(tj), I[ñ](tj , zk), Sj). (4.13)

Assume

• N(tj) >> Sj

• I[ñ(tj , zk)] >> SjI[ñ](tj ,zk)
N(tj)

• 0 < ε ≤ I[ñ(tj ,zk)]
N(tj)

≤ 1− ε < 1.

Then it can be shown [45] that M j
k

distbn−−−−→ M̃ j
k where

M̃ j
k ∼ N

(
SjI[ñ](tj , zk)

N(tj)
,
SjI[ñ](tj , zk)

N(tj)

(
1− I[ñ](tj , zk)

N(tj)

))
= N

(
bj
B

N(tj)I[ñ](tj , zk)
N(tj)

,
bj
B

N(tj)I[ñ](tj , zk)
N(tj)

(
1− I[ñ](tj , zk)

N(tj)

))
≈ N

(
bj
B
I[ñ](tj , zk),

bj
B
I[ñ](tj , zk)

)
. (4.14)
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Table 4.6: Summary of notation for the statistical model.
Notation Description
n(t, x) Original label structured density
ñ(t, z) Log-transformed label structured density
N(t) Total number of cells in the population at time t
pj(z) Probability density function from which cells are sampled
Sj Number of cells sampled at time tj
B Total number of beads originally placed into each well
bj ‘True’ number of beads counted by the cytometer at time tj

I[ñ](tj , zk) ‘True’ number of cells from the total population belonging in the kth histogram bin
at time tj

M j
k Random variable representing the number of cells counted into the kth histogram

bin at time tj
b̂j Actual number of beads counted by the flow cytometer (a realization of bj)
N j
k Random variable resulting when M j

k is scaled by the ratio B/b̂j
njk The actual data, a realization of Nk

j

λj Random variable representing the bead count error ratio bj/b̂j

The final approximation is valid provided I[ñ](tj , zk) << N(tj), which is a perfectly reasonable assump-
tion. It can easily be shown that the first two assumptions above are satisfied if bj/B << 1. We see
from Tables 4.1 - 4.5 that bj/B < 0.08 generally speaking, so that this assumption seems reasonable.
It is somewhat paradoxical that the condition bj/B << 1 implies only a very small sample of the total
population is measured. The final assumption above bounds the probability that a cell belongs to a
particular bin away from zero and one (although this assumption is not strictly necessary in some cases
[70]). In practice, this assumption is only violated when I[ñ(tj , zk)] ≈ 0.

Finally, when the measurements are actually taken, a certain number of beads b̂j are actually counted.
We would certainly hope that b̂j ≈ bj ; however, we can think of b̂j as a realization of some random variable
(which may or may not be an unbiased estimator of bj , per the discussions elsewhere in this document).
Following the notation of Chapter 3, the histogram data (to which the compartmental model is actually
fit) is the random variable

N j
k =

B

b̂j
M j
k (4.15)

Thus,

N j
k ∼ N

(
B

b̂j

bj
B
I[ñ](tj , zk),

B2

b̂2j

bj
B
I[ñ](tj , zk)

)

= N

(
λjI[ñ](tj , zk), λj

B

b̂j
I[ñ](tj , zk)

)
, (4.16)

where we have defined λj = bj/b̂j .
This form for the statistical model of the data, in addition to having the advantage of the mathe-

matical derivation presented in this section, also seems to explain several observations regarding CFSE
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data, both in this chapter and in Chapter 3. First, it was assumed in Chapter 3 (and the assumption is
common to other mathematical treatments of CFSE data as well) that

E[N j
k ] = I[ñ](tj , zk). (4.17)

However, from Equation (4.16), we have E[N j
k ] = E[λj ]I[ñ](tj , zk). Unless λj = 1 for all j, then these two

formulations are not equivalent. For a fixed j, if λj 6= 1, it follows that the model will be systematically
in error when compared to the data. This may explain the nonrandom structured observed in Figure
4.3, as well as the positive correlation in Figure 4.4. As is seen in Tables 4.1 - 4.5 of this document, the
values of b̂j (and hence λj) can vary significantly (by as much as 40%) over the triplicate measurements.
This may partially explain the sudden ‘appearance’ of additional cells in the data set. In other words,
this new statistical model likely is capable of explaining the precursor cohort problem.

At the beginning of this chapter, residual plots were used to demonstrate that neither an Ordinary
Least Squares (OLS) nor Generalized Least Squares (GLS) formulation for the error variance provides
the appropriate randomness of the residuals. As discussed there, the OLS framework amounts to a
tacit assumption that V arOLS(N j

k) = σ2
0 while the GLS case assumes V arGLS(N j

k) = σ2
0(I[ñ](tj , zk))2.

However, we can now see from Equation (4.16) that neither of these formulations contains the appropriate
power of I. Let us assume (for simplicity) that λj = 1 for all j in Equation (4.16). Then we may rewrite
the new statistical model (compare (3.27)) as

N j
k = I[ñ](tj , zk)

(
1 +

Ejk√
I[ñ](tj , zk)

)
, (4.18)

where Ejk ∼ N (0, σ2
j ). We use σj to represent the quantity B/b̂j as well as any other (unmodeled)

contributions to the variance which may depend on the data collection time tj but nothing else. As
before, let the data nkj be realizations of the random variables N j

k . It follows that the modified residuals

rjk√
I[ñ](tj , zk)

=
I[ñ](tj , zk)− njk√

I[ñ](tj , zk)
(4.19)

should be randomly distributed with mean zero and constant (for fixed tj) variance. Notably, Nordon et
al. [86] find heuristically a similar variance model for cell numbers. In order to test this assertion, both
the residuals and modified residuals are shown in terms of the value of the model in Figure 4.15. While
there are still several issues with this statistical model (for instance, the nonrandom structures observable
in the residual plots, and the negative bias of the residuals when the model is small), the modified
residuals (with the new statistical model) have generally constant variance for each measurement time.
The nonrandom structures seem likely to be explained by the failure of the current mathematical and
statistical model to account for the parameters λj in (4.16). Some difficulty also arises at t = 24 and 48
hours because of the small cohort of cell duplets which was not gated out of the population. (As noted
in Chapter 1, such a cohort is not expected to be a problem in future data sets.)

The negative skew of the residuals for small model values can also be explained. Consider, for
instance, the graphic for t = 96 hours in Figure 3.9, in the region z ≥ 3. The model predicts few (if
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Figure 4.15: Left: Residuals rjk plotted against the histogram model values I[ñ](tj , zk). Right: Modified
residuals rjk√

I[ñ](tj ,zk)
plotted against the same model values. In spite of the nonrandom patterns (most

likely caused by the presence of cell duplets in the data) visible in the residual plots, the modified
residuals appear to have a more constant variance.
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any) cells in this region. While this prediction is accurate, we see that there is some noise in the data in
this region. Because a histogram contains count data, these values must be positive, thus increasing the
likelihood that the residual will be negative (because the value of the data exceeds that of the model).
We can also see this from Equation (4.16). As I[ñ](tj , zk)→ 0, the assumption of normality must break
down as the random variables N j

k cannot attain negative values. This reflects a breakdown of one of the
assumptions (0 < I[ñ(tj ,zk)]

N(tj)
< 1) made in obtaining the new error model. This problem (and possible

solutions) are considered briefly in Section 5.1.
The new statistical model seems to provide a significant improvement in relating the mathematical

model from Chapter 3 to flow cytometry histogram data. When the sampling process used in collecting
the data is explicitly accounted for, additional sets of previously unmodeled parameters {λj} and {b̂}
arise which can be used to explain both the apparent violation of a conservation law in some data sets as
well as the observed variance in the error random variables. Some significant work is needed to examine
how these additional parameters might be estimated (or, more specifically, to examine how the estimation
of these parameters might affect the unique estimation of other parameters in the mathematical model).
Once established, the new statistical model and the accompanying parameter estimation procedure will
provide an important framework for the meaningful analysis of experimental data.
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Chapter 5

Conclusions and Future Work

5.1 Implications of the New Statistical Model for Parameter

Estimation

The error model derived at the end of the previous chapter seems promising in resolving several currently
unexplained issues which have been noticed in flow cytometry data sets. First, by explicitly incorporating
the effects of the scaling factor used in obtaining estimated population data from a sample of cells, the
new error model (4.16) is capable of explaining the ‘precursor cohort problem’ and the apparent ‘creation’
of CFSE FI over the course of the experiment. Second, the new error model appears to accurately predict
the variance of the ‘noise’ in the histogram cell counts. This analysis (Figure 4.15) must be taken with
some skepticism, as the residuals used in the demonstration arise from a model which did not use any
λj parameters to account for scaling of the data. The presence of cell duplets in the histogram data
(particularly at t = 24 and 48 hours) also causes the accuracy of the compartmental model to break down
slightly. These two features combine to result in residuals with nonrandom structure. Thankfully, in
the newest CFSE data sets, it seems that the gating procedures used to collect the data have effectively
eliminated any issues with cell duplets in the population; the new statistical model should resolve any
additional discrepancies between the model and the data. Thus most (if not all) of the issues with
nonrandom residuals highlighted in the previous chapter will not arise in future work.

It was observed in Figures 4.7 and 4.8 that the level of noise in the data seemed to increase as the
ratio of beads counted to total beads decreased. This dependence appears directly in Equation (4.16).
It is interesting to note that, while the level of noise expected in the data will decrease as b̂j/B increases,
the assumption of normality is premised upon the assumption b̂j/B << 1. Thus it may be possible to
establish a desirable range of values for the number of counted beads in order to obtain optimal (in some
sense) data from the experimental procedure.

At the moment, it is unclear how the new statistical model might be used most advantageously for
the estimation of model parameters. Naively, one could use (4.16) to write

N j
k = λjI[ñ](tj , zk) + Ekj
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where now the Ekj are random variables satisfying E[Ekj ] = 0 and V ar(Ekj) = λj
B
b̂j
I[ñ](tj , zk). Thus, in

addition to the model parameters θ (see Table 3.3), the parameters λj and b̂j must be estimated as well.
However, it seems almost certain that the addition of these new parameters will cause a troubling lack of
identifiability when the model is fit to the data. For instance, in the absence of cell division, a decrease
in total cell number from t1 to t2 is modeled identically by cell death (the parameters βi) and by the
scaling factors in the absence of any cell death (provided λ2 < λ1). As such, some additional work will
be required to characterize the parameters λj and b̂j and their dependence on the measurement time tj .
As more information is obtained regarding these parameters, it may be possible to establish a suitable
framework in which they can be reliably and uniquely estimated.

An additional possibility for an inverse problem formulation with the new statistical model is like-
lihood estimation. Following the analysis of Section 4.5, Equation (4.16) provides an exact form (a
normal distribution) for the likelihood of the cell count for a particular bin, rather than specifying only
the mean and variance (as in a least squares framework). In the light of this additional information, it
may possibly be advantageous to use the maximum likelihood principle for the estimation of a best-fit
parameter vector. As in the least squares case, the estimation of the parameters λj and b̂j may still be
problematic. It may be possible (or even preferable) to use hierarchical modeling [37] to account for the
hypothetical distributions from which the parameters λj and b̂j are sampled. Again, more information
regarding these parameters will need to be obtained from the experimental protocol before any such
techniques can be reasonably used.

Regardless of the inverse problem framework chosen, some additional work is still needed to address
the skew-negative residuals observed for small model values in Figure 4.15. This feature was partly
explained in Section 4.5 by the breakdown of the assumptions required to obtain a normal distribution
for the new error model. This may possibly be fixed in a likelihood framework by the direct use of the
hypergeometric distribution to model the likelihood of a given cell count. However, because the data is
count data and cannot obtain negative values, the residuals (model - data) must necessarily be negative
when the model solution is at or near zero. It may be possible to fix this skew-negative problem by
deliberately ignoring certain data points [18]. That is, if I[ñ](tj , zk) is below some threshold value, then
the data point (zjk, n

j
k) is dismissed as meaningless noise and is not considered in the target (least squares

cost or likelihood) function. Some additional work and analysis would be necessary to justify such an
assertion and to test its effects on the parameter estimation procedure.

5.2 Generalizations of the Statistical Model

The statistical model (4.16) was derived by considering a single histogram bin at a single time. The
resulting statistical model (4.18) arises from repeating this derivation for each histogram bin at each
measurement time. However, in this derivation, the dependence of the cell counts (and thus the prob-
abilities) on additional factors has been completely ignored. The model values I[ñ](tj , zk) will depend
strongly on the set of bins [zk, zk+1) used for the histogram data. It was shown in Figure 4.13 that the
level of noise in the data (relative to the magnitude of the data) increases as the number of bins increases.
Conversely, as fewer bins are used, the data is effectively ‘smoothed out’ or averaged and some smaller
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features of the population data may be lost. Thus there seems to be some optimal number of bins to use
to represent the histogram data. On one hand, this possibility could be assessed by trial and error on
the number of histogram bins. Alternatively, the statistical model might be analyzed and/or generalized
to explicitly incorporate the dependence of the statistical model on the number of histogram bins, and
more importantly, the dependence of parameter confidence intervals on the number of histogram bins.

There are several additional generalizations to consider. In the derivation of the new statistical
model, it was tacitly assumed that the Sj cells sampled from the population of N(tj) cells are taken
completely at random. In reality, the gating procedures needed to identify cells of interest from other
elements of the PBMC culture will result in sources of error which may be nonrandom in some way (e.g.,
by selecting cells with certain characteristics). The use of histograms to represent a measured population
of CFSE-labeled cells is mathematically convenient, but overlooks a large number of complex steps which
are required to identify the cells which are to be studied. Even simple flow cytometer setups measure
multiple properties of cells (such as size, granularity, and surface marker expression) in addition to CFSE
FI which are then used to distinguish among different cell types to be studied. When gates are set to
include (or exclude) a certain group of cells, this amounts to censoring the data (in a higher-dimensional
data space); this data is then projected down to a single dimension (CFSE FI) and binned into the
histograms which are used for model calibration. Ideally, the cells of interest in the PBMC culture can
be easily identified and separated by the gating process. It is possible however, that some regions (in
the higher dimensional data space) are harder to separate than others. This differential censoring of the
data would then have effects of the statistical model. Significant additional work (with additional data
sets) will be needed to examine the possibility of such effects.

Finally, the new statistical model (4.18) makes the simplifying assumption that the numbers of cells
counted into each distinct histogram bin represents an independent (from the other bins) process. This
is not true; if Sj cells are measured at time tj , then we must have the identity

∑
kM

j
k = Sj . Thus

the random variables representing the numbers of cells N j
k = B

b̂j
M j
k in the total population counted into

distinct bins are not independent. At each measurement time, it may be possible to ignore the mutual
dependence of the random variables M j

k provided there is a significantly large number of bins, but this
is not certain. Assuming the data points are not independent, the inverse problem framework (almost
certainly in a likelihood setting) must be modified to account for correlation between the data points,
and the accurate estimation of the covariance matrix will be necessary in order to establish confidence
bounds on parameters.

Finally, it is assumed that the CFSE FI of each cell is measured perfectly. Yet it seems reasonable to
assume that the measurement process is subject to some error. For a given cell, if z is the ‘true’ log FI,
we actually measure Z = z+ ε, where ε is a random variable representing measurement error. Assuming
ε is described by some probability distribution P , we would then define the new integral operator

Ĩ[ñ](tj , zk) =
∫ ∞
−∞

(∫ zk+1−ε

zk−ε
ñ(tj , ζ)dζ

)
dP (ε).

The task would then lie in identifying the probability distribution describing the machine measurement
error, and this new definition of I[ñ] would be incorporated into the derivation in Section 4.5. Alter-
natively, one might consider deriving an population model similar to the ones presented in Chapters 2
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and 3, but derived explicitly in terms of the mass of CFSE within the cells. In order to relate such an
equation to the CFSE FI data, a constitutive relationship (e.g., an affine relationship FI = K(mass) +
AutoFI) could be imposed relating the mass of CFSE to the measured fluorescence intensity. Following
the analysis of Section 3.4.3, one could then consider a probability distribution on the autofluorescence
parameter. Measurement error could also be incorporated by placing a probability distribution on the
parameter K. It is unclear if such hierarchical modeling would have any advantages over the current
modeling efforts.

5.3 Implications of the Statistical Model for Model Comparison

It has already been acknowledged that the possibility that the error terms are not independent (along
with the fact that they are not homoscedastic, and possibly not normally distributed) prevents the
unbiased computation of standard errors or confidence bounds for the estimated parameters [8, 22].
Perhaps just as significantly, the use of Akaike’s Information Criterion in Chapter 3 to compare various
parameterizations of the compartmental model was premised upon the assumptions of independent,
homoscedastic, normally distributed data. As such, the AIC values reported in Table 3.5 must be taken
with extreme caution, as the failure of the data to meet the necessary assumptions raises the possibility
that two different models with similar OLS costs (e.g., parameterizations A5B4dist and A5B5dist) may
be closer together (in the sense of the information theoretic relative Kullback-Leibler distance [31]) than
Table 3.5 indicates.

In actual fact, the AIC is derived in a likelihood framework. Let lkj(ξ|θ) be the likelihood (typically
defined as a probability density function) of observing a particular value ξ at time tj and bin zjk. Then
the total likelihood of a given parameter θ is

L(θ|{njk}) =
∏
j,k

lkj(n
j
k|θ)

Of course, this likelihood depends upon the choice of model parameterization. This dependency is
understood but generally ignored for the present discussion. Let θ̂MLE be the maximum likelihood
estimate of θ (that is, the value of θ that maximizes L) and assume logL(θ) is twice continuously
differentiable. Then the AIC is defined [31] as

AIC = −2 logL(θ̂MLE |{njk}) + 2p, (5.1)

provided the mathematical model is an accurate description of the observed data and a sufficiently large
data sample has been collected [31, Ch. 7]. Unlike the AIC given in 3.4.5 for the least squares framework,
Equation (5.1) is an accurate asymptotic estimate of information loss (provided the stated assumptions
hold) regardless of the statistical properties of the model errors. As was noted in Section 3.4.5, Equation
(3.35) is premised upon normally distributed errors with constant variance σ2

0 . In that case,

lkj({njk}|θ) =
1√

2πσ0

exp

(
−

(I[ñ](tj , z
j
k)− njk)2

2σ2
0

)
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and

logL(θ̂MLE |{njk}) = log

( 1√
2πσ̂MLE

)
exp

− 1
2σ̂2

MLE

∑
j,k

r2
kj


=− m

2
log(2π)− m

2
log

(
J(θ̂OLS)

m

)
− m

2
,

where m is the total number of data points. The latter equality relies upon the facts that θ̂OLS = θ̂MLE

and σ̂2
MLE = J(θ̂OLS)/m for normally distributed, homoscedastic errors. We observe that the first and

last terms above do not depend in any way upon the model parameterization. Because the AIC is mea-
sured on an interval scale (that is, the absolute magnitude of the AIC does not matter, only differences
between AIC values) and the first and last terms are the same for all possible parameterizations, these
terms can be ignored. Plugging the middle term into (5.1), we obtain the AIC for ordinary least squares
(3.35). Thus we see that (5.1) is a more general form of (3.35) and can be used regardless of the exact
form of the statistical model (provided one is willing to work in a likelihood setting). This may be
particularly advantageous as it would not be necessary to approximate the hypergeometric statistical
model by a normal distribution (see Section 4.5), although the large numbers involved may cause combi-
natorial problems. Alternatively, approximation by a normal distribution (albeit one with nonconstant
variance) leaves hope that a similar analysis to that presented above may relate the AIC to a weighted
least squares cost.

As noted above, it is not immediately clear whether there it is advantageous to work in a likelihood
or least squares framework. What is clear is that a statistical model which assumes normally distributed,
constant variance errors does not accurately model the statistical properties of the observed data. As
such, the use of the AIC (3.35) may provide misleading results. In some cases, this is not expected to
change the results of Chapter 3. For instance, it seems perfectly reasonable to conclude the necessity
of time and division dependent proliferation as well as variable AutoFI, given the differences in OLS
cost (Table 3.5). Beyond these features, however, several models (e.g., parameterizations A5B3dist,
A5B4dist, and A5B5dist) have quite similar costs. Thus it appears necessary to revisit these possible
parameterizations of the compartmental model an improved statistical model.

5.4 Generalizations of the Mathematical Model

Apart from issues involving the statistical model relating the mathematical model to the data, it has
been shown that the compartmental model of Chapter 3 accurately reproduces the behavior of a PHA-
stimulated population of CD4+ cells as represented in histogram data from a flow cytometry assay. This
model accounts for the natural rate of CFSE FI decay resulting from turnover of the intracellular label
as well as the autofluorescence of cells in the absence of any fluorescent labeling. Simple linear models
are used to describe the rates of cell division and death.

At the moment, only a single CFSE data set has been examined and used to estimate the parameters
of the mathematical model(s). It is believed that the compartmental model is quite general and should
apply to a wide range of data sets from various experimental setups. Work is ongoing to collect additional
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data sets to demonstrate such a wide applicability of the model. As additional data sets become available,
several additional features may need to be considered at greater length. In this section, we consider some
of these features which appear most immediate.

5.4.1 Generalizations of the Autofluorescence Parameter

Ultimately, it is hoped that the compartmental model can be generalized to account for multiple cell
types both in vivo and in vitro. While the cells studied in this report were cultured in a saturating
quantity of the stimulating agent PHA, cells in vivo (or even cells in vitro in a different experimental
setup) will not experience such a strong, constant stimulation. As such, the possibility exists that some
cells may return to a quiescent state during the proliferation assay. As discussed briefly in Section 2.2.1,
it is known that the autofluorescence of a cell changes depending upon its state of activation. Using
the additional data sets surveyed in Chapter 4, we investigate the intra-individual and inter-individual
variability of cellular AutoFI and the manner in which it changes during activation.

It should be noted that because we are only interested in the shape of the AutoFI distribution (and
not the absolute number of measured cells) no beads are used in the AutoFI samples to determine the
total number of cells. The histogram data is normalized by the total number of measured cells to provide
an indication of the shape of the AutoFI probability distribution. Only one sample of cells is measured
for each trial, time, and donor (as opposed to the triplicate samples discussed in Chapter 4). All AutoFI
figures are plotted in a linear scale rather than the logarithmic scale.

In order to assess the intra-individual variability of AutoFI measurements, we can examine differences
in the measured AutoFI distributions for each donor and for each day between Trial 1 and Trial 2. These
distributions are shown in Figures 5.1 and 5.2 for Donors 1 and 2, respectively. While we do find some
consistency, there are subtle differences in the AutoFI distributions between the two trials. It seems
unlikely that AutoFI (which is caused by the fluorescence properties of naturally occurring intracellular
molecules) would change between the two trials as a result of any biological changes to the cells. These
differences could be explained, however, by slight differences in cultural conditions or machine calibration
between the two trials. This explanation is strengthened by the graphics in Figures 5.3 and 5.4. In these
figures, the AutoFI distributions for the two donors are compared directly (unstimulated cells in Figure
5.3 and PHA-stimulated cells in Figure 5.4). We find that the distributions for the two donors are nearly
identical. Thus, we must rule out biological and/or cultural variability as the cause of the discrepancies
in Figures 5.1 and 5.2. This is also mathematically reassuring–all cells of a given type (and for a given
machine calibration) have similar AutoFI properties, and this holds true for activated cells as well as
unactivated cells.

Following the analysis above, we have the unusual (and apparently paradoxical) consequence that
inter-individual variability is essentially negligible while intra-individual is not. We emphasize that this
seems to be explained by variations in machine calibration from one day to the next. This would explain
why the measured AutoFI distributions are slightly different from Trial 1 to Trial 2 for a single donor
(but measured 17 days apart), while the data collected from two different donors (but measured in quick
succession) are quite similar. This argument is further supported by a careful look at the measured
AutoFI distributions for unstimulated cells. Because these cells never become activated, there should
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Figure 5.1: Data from Donor 1, showing intra-individual variability of AutoFI. Left: unstimulated cells.
Right: cells stimulated with PHA. The changes between the two trials seem most likely to be the result
of changes in machine calibration.
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Figure 5.2: Data from Donor 2, showing intra-individual variability of AutoFI. Left: unstimulated cells.
Right: cells stimulated with PHA. The changes between the two trials seem most likely to be the result
of changes in machine calibration.
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Figure 5.3: Inter-individual variability in AutoFI for unstimulated cells. Left: Trial 1. Right: Trial 2.
Because the measurements were made in quick succession, there are no changes in machine calibration
and inter-individual variability appears minimal.
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Figure 5.4: Inter-individual variability in AutoFI for cells stimulated with PHA. Left: Trial 1. Right:
Trial 2. Because the measurements were made in quick succession, there are no changes in machine
calibration and inter-individual variability appears minimal.
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Mean Standard Deviation
Data Set Unstimulated PHA-stimulated Unstimulated PHA-stimulated

Donor 1 Trial 1 Day 1 158.8729 139.5412 85.0167 82.3563
Donor 1 Trial 1 Day 3 199.4937 360.1652 96.8405 171.3622
Donor 1 Trial 1 Day 5 135.8948 314.5112 80.9387 141.9094
Donor 1 Trial 2 Day 1 129.6475 113.1297 73.7424 67.0125
Donor 1 Trial 2 Day 3 148.6522 366.5360 78.9271 148.9193
Donor 1 Trial 2 Day 5 175.0076 293.7099 92.0280 152.3741
Donor 2 Trial 1 Day 1 146.4155 137.4489 78.8734 77.1717
Donor 2 Trial 1 Day 3 182.9860 382.0809 93.1277 223.2650
Donor 2 Trial 1 Day 5 135.6401 317.2973 75.0909 152.5117
Donor 2 Trial 2 Day 1 122.0944 112.5239 69.9592 65.1638
Donor 2 Trial 2 Day 3 144.6255 369.9625 75.7685 164.6580
Donor 2 Trial 2 Day 5 147.5109 284.5370 85.5669 199.7716

Table 5.1: Summary of means and standard deviations for measured AutoFI distributions. Variability in
the AutoFI distribution for unstimulated cells provides an estimate of the inherent variability of the ex-
perimental AutoFI measurements. While nonnegligble, this variability is small compared to the changes
in AutoFI resulting from activation (compare unstimulated and PHA-stimulated AutoFI distributions).

be no major changes to their AutoFI properties. (This is in contrast to stimulated cells, as cells are
known to increase in AutoFI when they become activated.) Yet, in Figure 5.3, the measured AutoFI
distributions change slightly from day to day. For Trial 1, the distributions for days 1 and 5 are nearly
identical, while the two distributions on day 3 have a larger mean and variance. For Trial 2, the mean
and standard deviation increase each day. Because the day-to-day changes in AutoFI are different for
the two different trials, these differences are more likely to be the result of machine calibration than
actual biological changes.

The mean and standard deviation of each measured AutoFI distribution have been computed and
these values are summarized in Table 5.1. Because the AutoFI distribution for unstimulated cells is not
expected to change, the magnitude of variability associated with day-to-day changes in machine calibra-
tion (which are inherent in the experimental procedure) can be assessed by looking at the properties of
the AutoFI distributions for unstimulated cells. We emphasize that such day-to-day variability is small
in comparison to the changes in AutoFI associated with cell activation. In the current mathematical
model, we have assumed that AutoFI can be accurately modeled either by its mean or possibly by a
lognormal probability distribution (Chapters 3 and 4), but in both cases it is assumed that changes to
AutoFI as a result of activation are negligible. Thus, if a more complex AutoFI mechanism is going to
be considered for the mathematical model, it seems logical that activation-induced changes should be
considered before any experimental variability. Future mathematical work (using either additional data
sets or simulated data) will need to examine the effects of changing AutoFI on the model solution and
determine whether or not such changes can be accurately identified in an inverse problem setting.

As noted in Chapter 2, activation-linked changes to AutoFI are believed to be negligible for the cur-
rent experimental setup (because they only occur for undivided cells, and those cells have a fluorescence
intensity due to CFSE which is significantly greater than their AutoFI). The reliability of this assump-
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tion could be investigated mathematically if the compartmental for undivided cells were split into two
compartments, based upon the state of activation of the cells. Each new compartmental would have its
own AutoFI parameter (or distribution). Alternatively, it is possible to consider an AutoFI distribu-
tion which depends continuously on time (e.g., lognormal with mean E[xa](t) and standard deviation
STD(xa)(t)). Such time dependence is capable of incorporating the measurement-to-measurement vari-
ation in the AutoFI distributions, although this is likely to be highly data-set dependent and it is not
clear if there is any need to consider such a feature in the model.

The best-fit parameterization of the compartmental model uses a lognormal density function to
account for the variability of AutoFI in the population of cells. Alternatively, we could consider a
nonparametric estimation of the probability distribution of AutoFI. Significant theory exists for such
an estimation problem [4, 9, 12, 23], and it would be preferable to estimate the AutoFI distribution
without imposing a particular functional form. Moreover, because the AutoFI distribution is directly
observable, we have the possibility of comparing a nonparametric estimation of the distribution directly
to the experimentally determined distribution. Such nonparametric estimation could be extended to
encapsulate time-dependent behavior as well.

5.4.2 Generalizations of Proliferation and Death Rates

Following the results of [20, 21], we have used Malthusian rates for both proliferation (with time-
dependent rates αi(t)) and death (with rates βi). As discussed in Section 3.4, such an assumption
is reasonable provided the turnover of cells (resulting either from division or death) occurs at a suffi-
ciently rapid pace. Given the physiological constraints placed on rapidly dividing cells (e.g., rates of
growth and DNA replication), one would expect some sort of minimum cell cycle time. It is unclear if
the necessity of time dependence in the Malthusian rates αi is an artifact of such a feature. To test this
hypothesis, several generalizations of the proliferation and death rate terms are immediately available.

First, one might consider the addition of a second structure variable (say, volume) which could be
used to enforce a minimum cell cycle time by requiring that cells progress from some size V to 2V
before dividing, at which point two cells of size V are produced. However, in the absence of additional
observations, it is unclear what parameters (e.g., average rate of growth, or the parameter V ) might be
estimable from CFSE histogram data. Video microscopy measurements by Hawkins et al. [58] indicate
that average cell size may be division dependent, and this may add some additional complexity to
the inclusion of volume structure. Biologically, it is expected that apoptosis occurs only at particular
checkpoints in the cell cycle (particularly if external ‘kill signals’ are absent) so that a generalization to
volume structure (or any other surrogate for cell cycle position or physiological age) may permit a more
accurate description of cell death. Still, it is unclear what information might be estimated from only
CFSE histogram data. It is possible that the forward scatter (FSC) of laser light may possibly be used
as an observable surrogate for cell size, and some additional work will be necessary to investigate this
possibility.

A second possibility to generalize the rates of proliferation and death would be to consider rate-
limiting (e.g., logistic, Gompertz) models for proliferation and death. Some biological mechanisms have
been proposed which may lead to density-dependent rates of cell death [33], and a Gompertz model for
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cell growth has been used to account for quiescence in the context of a size-structured population model
[54]. Of course, generalizations to nonlinear division and death must be considered in the context of the
improvement they provide in fitting a given model to CFSE data sets. Given the accuracy of the simple
linear models (albeit with time-dependent rates of proliferation), such generalizations seem unnecessary
at the moment.

Given that the compartmental model (Chapter 3) can be used to compute numbers of cells per
generation directly, some comparison has already been made between the results obtained with this
model and the cell numbers computed from deconvolution techniques (Tables 3.7 and 3.8). It remains
to compare the parameter estimates and model fits obtained with the compartmental model with those
obtained from previous models (Smith-Martin, cyton, etc.). In fact, it maybe possible to incorporate
into the compartmental model the mathematical forms used to describe proliferation and death in these
models. Recall from Chapter 3 that the method of characteristics provides a solution (Equations 3.17
and 3.19) of the form

ni(t, x(t; s)) = F (Division,Death) (5.2)

where x(t; s) is the characteristic line emanating from the point (0, s) in the tx-plane. Clearly, the left side
of Equation (5.2) is independent of any mathematization of cell proliferation and death. In Chapter 3,
the form of the hypothetical function F is determined from the PDE formulation of the compartmental
model (3.10) and the accompanying assumptions regarding the Malthusian rates of proliferation and
death. Alternative, one could consider using (5.2) or its differential form (i.e., (3.18)) as a starting
point, defining the right side of the equation in accordance with the assumptions of the Smith-Martin or
cyton models, or their generalizations [42, 57, 71, 86, 106]. While previous authors have derived these
models specifically in terms of total cell numbers, (5.2) could be related back to previous work by simple
integration. The primary advantage in using (5.2) would be in the direct comparison of the model to
histogram data, rather than from computed cell numbers. Further study could reveal the extent (if any)
to which such a direct comparison improves the unique identification of parameters in previous models,
although this will first rely on an accurate statistical model.

In this context, it is clear that several alternative possibilities exist for a mathematical description
of proliferation and death rates. Thus it is clear that the interpretation of the proliferation and death
parameters must be made with careful regard to the form of the model. Given the form of the model
solution (Equations 3.17 and 3.19) for the compartmental model, it is plainly observed that linear changes
in parameters for proliferation and death rates cause an exponential response in the computed solution
[51, 40]. As such, the sensitivity of the model to these parameters, as well as the degree to which
their estimation is unique, must be carefully considered when interpreting estimated parameters. The
uniqueness of the estimated functions αi(t) will depend on how the nodes for the linear splines are chosen
in relation to the times at which data is taken. In some models, it has been shown that the effects of a
linear increase of cell cycle time with division number cannot be distinguished from the effects of a linear
increase in the death rate with division number [72]. If this is the case, then the biological interpretation
of some parameters may be suspect.

Ideally, the values of αi(t) and βi can be related back to more physical/experimental parameters
such as the type and strength of stimulation, which may in turn require the mathematization of certain
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molecular pathways within individual cells. Recent work has indicated that the mechanisms responsible
for cell proliferation and death may be mutually dependent upon a common molecular pathway [41,
100]. As more data becomes available, we hope to examine how the estimated parameters change
under various experimental conditions, with an eye toward additional constitutive relationships linking
molecular and/or subcellular functions to population dynamics [32]. In this context, it seems necessary
to consider the extent to which these functions and/or pathways are inherited. Evidence suggests that
closely related cells exhibit strong correlation in times to divide and some correlation in times to die,
and that this correlation tends to decrease with the number of divisions undergone [58]. Cells with a
common precursor may also share a common division destiny [58], which can be altered by stimulation
conditions [102]. While computed cell numbers are relatively unaffected provided correlation is limited to
cells having undergone the same number of divisions [42, 58, 62], correlation between subsequent division
of cells can alter the dynamics predicted by a mathematical model [106]. For large populations, this
effect seems negligible, but may play an important role in vivo where only a small number of responding
cells can trigger an immune response [106]. As noted in the Chapter 1, cyton models and branching
process models have been formulated to account for various levels of correlation, and these models may
be incorporated into the compartmental model framework as described above. Alternatively, it may
be possible (given any reasonable, identifiable parameterizations of cell division and death) to place
probability distributions on these parameters (e.g., on the functions αi(t) and βi(t)) [6, 9, 12] in the
manner described in Section 3.4.3.

5.4.3 Generalizations to Applications

In the research presented here, primary focus has been placed on the determination from data of bio-
logically meaningful parameters which in some way describe the behavior of populations of cells, and
by extension, can be used to describe the magnitude or efficacy of an immune response. Given addi-
tional data sets, the models presented to describe cell proliferation might be generalized to account for
other division-dependent properties commonly observed in populations of cells. For instance, one might
consider the emergence of differentiated subsets of cells as a population of cells responds to stimulation
and divides [55, 86, 95]. Several authors have considered the role of quiescence in cellular populations
[1, 53, 54], which may have implications for therapy/treatments [67]. The emergence of daughter cells
might possibly be coupled with rates of mutation [65, 68, 108], which could have implications for drug
resistance [66] or the emergence of tumors and their interaction with the environment [27]. Certainly,
such work will depend upon additional experimental results and a mathematical and statistical model
which can accurately and uniquely describe the dynamics of dividing cell populations, but such neces-
sities do not appear unreasonable given the current modeling efforts. Given the general form and wide
applicability of the model, it might be reasonably be used in a diagnostic setting [46] (e.g., to distinguish
between healthy and diseased or abnormal cells based upon estimated proliferation rates).
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5.5 Concluding Remarks

The compartmental model is the latest in a series of structured PDE models which can be fit directly
to histogram representations of flow cytometry data. Once calibrated, the compartmental model can
be used to quickly and accurately estimate the numbers of cells having undergone a certain number of
divisions. This information can be used to determine biologically relevant parameters which will help
to meaningfully compare cells from different donors and experiments. While the use of cell numbers
per generation is not new, the direct modeling of histogram data reduces any need for deconvolution
techniques which may introduce unnecessary bias into the computed cell numbers. Moreover, because
the model is based upon conservation principles, it should be possible to fit histogram data even when the
‘peaks’ in the data (representing distinct generations of cells) are not well-resolved. This is a significant
advantage over deconvolution techniques. The actual number of generations which can be accurately
modeled (that is, the maximum value of imax) will depend upon the uniformity of the initial uptake of
intracellular dye as well as the magnitude of the resulting CFSE FI relative to cellular AutoFI.

We are actively working to collect additional data sets with which to demonstrate the widespread
applicability of this model, as well as to use this model in a systematic fashion to analyze how the
estimated parameters vary under changing experimental and biological conditions. Most immediately,
this will require the development of an accurate statistical model for the data. The generalization of the
model to multiple cell types is immediate, although an accurate quantification of any interaction terms
will require some careful thought and experimentation.

As more information becomes available regarding the complex processes involved in cell proliferation,
we are confident that the model discussed here provides a firm physiological foundation upon which
CFSE-based assay data can be understood. We strongly believe that the ideas and results presented
here will form an important interpretive framework with a wide array of applications in experimental
settings, diagnostic tests [46], and perhaps in a more integrated model of cell dynamics [63, 74].
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