
ABSTRACT

RUBTSOV, ALEXEY VLADIMIROVICH. Stochastic Control in Financial Models of
Investment and Consumption. (Under the direction of Dr. Min Kang.)

An extension of the classical Merton’s model of optimal investment and consumption

is considered. We consider a problem of optimal portfolio management under uncertainty

in utility function. In some research, it is claimed that the utility of goods depends not

only on the goods themselves, but also on quality of the goods. However, the quality of the

goods is subject to random changes (for example, the technological progress). Although

there is much debate on the dynamics of technological progress, it is not uncommon in

the literature that the progress in technology in some areas grows exponentially. This

implies that it makes sense to model these random changes by a Geometric Brownian

motion. Thus, it is a natural problem of interest to find out how the optimal policy

changes when some uncertainty in the utility function is introduced.

The definitions and theoretical results used in the research are provided and reviewed.

Once the problem of stochastic control is defined, the classical Merton’s model of optimal

investment and consumption is presented. The importance of the proposed uncertainty

in utility is also discussed.

Once the required theoretical results are stated, the problem of expected utility max-

imization with fully observed uncertainty in utility is solved for a specific utility function

of hyberbolic absolute risk aversion class. To obtain the optimal solution, the Hamilton-

Jacobi-Bellman (HJB) equation is derived and the solution is obtained. To verify that

the viscosity solution to the HJB equation is the value function, a so-called Verification

Theorem is proved. As a result, the optimal investment and consumption are found for

the problems of maximizing the expected utility of consumption and final wealth, only

the expected utility of consumption, and only the expected utility of final wealth.

Having obtained the solution to the fully observed case, the problem of expected

utility maximization is solved under the assumption that uncertainty in utility is not fully

observed. After the corresponding HJB equation is derived and solved, the Verification

Theorem is used to verify that the solution is the value function. Thus, the optimal

investment and consumption under partial observations are obtained for the problems

of maximizing the expected utility of consumption and final wealth, only the expected

utility of consumption, and only the expected utility of final wealth.
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LIST OF NOTATIONS

• Rk - k-dimensional Euclidean space.

• C([0, T ];Rk) - the space of all continuous functions defined on [0, T ] and taking

values in Rk.

• |x| = (|x1| ... |xk|) - a vector made of absolute values of each component of vector

x ∈ Rk.

• ||x|| - norm of x, (unless otherwise indicated, if x ∈ Rk then ||x|| =
( k∑
i=1

x2
i

)1/2

, if

x ∈ Rk×m then ||x|| =
( k∑
i=1

m∑
j=1

x2
ij

)1/2

).

• B(U) - the Borel sigma-algebra generated by all the open sets in a metric space U

(the smallest sigma-algebra containing all the open sets of U).

• F1⊗F2 - direct product of sigma-algebras F1 and F2 (the sigma-algebra generated

by sets A×B, ∀A ∈ F1, ∀B ∈ F2).

• Bm[0, T ] , C([0, T ];Rm) - the space of all continuous Rm-valued functions defined

on [0, T ].

• Bm , C([0,∞);Rm) - the space of all continuous Rm-valued functions defined on

[0,∞) with metric ρ̂(b1, b2) =
∑

j≥1 2−j
(
||b1−b2||C([0,j];Rm)∧1

)
,∀b1, b2 ∈ Bm. Under

the metric ρ̂ the space Bm is a Polish space (complete separable metric space).

• LpF(0, T ;Rk) - the space of all {Fs}s∈[0,T ]-adapted, Rk-valued processes X such that

E
∫ T

0
||Xt||pdt <∞, where ||x||p = |x1|p + ...+ |xk|p, x ∈ Rk, p ≥ 1.

• AnT (U) - the space of all {Bt+(C([0, T ];Rk))}t≥0-progressively measurable processes

ψ : [0, T ]× C([0, T ];Rk)→ U, where
Bm
t [0, T ] = {X(· ∧ t)|X(·) ∈ Bm[0, T ]}, ∀t ∈ [0, T ],

Bt(Bm[0, T ]) = σ(B(Bm
t [0, T ])), ∀t ∈ [0, T ],

Bt+(Bm[0, T ]) =
⋂
s>t

Bs(Bm([0, T ]), ∀t ∈ [0, T ).
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Note that Bt(Bm[0, T ]) is the sigma-algebra in Bm[0, T ] generated by B(Bm
t [0, T ]),

and thus it contains Bm[0, T ]. The fact that Bt+(Bm[0, T ]) 6= Bt(Bm[0, T ]) is proved

in [10], p.122. If the interval [0,∞) is considered then we write Ak(U).

• XUt
t - portfolio (wealth) process when the control Ut is used.

• St - n-dimensional column vector of stock prices (risky assets).

• Nt - the value of the riskless asset.

• Zt - utility randomness process.

• Lt - natural logarithm of the utility randomness process.

• Pt - the observed process (the utility randomness process is not fully observed).

• Πt - n-dimensional row vector that represents the fractions of wealth invested in

the risky assets.

• Ct - consumption per unit time.

• Ut - the control process (in this dissertation the controls are Πt and Ct).

• U - the space of control values.

• Bt,1 - n-dimensional Brownian motion (column vector).

• Bt,2 - one-dimensional Brownian motion.

• Bt,3 - one-dimensional Brownian motion.
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Chapter 1

Introduction

1.1 Stochastic Optimization and its Applications

The model of optimal investment and consumption under uncertainty in utility function

is considered in this dissertation. The maximized criterion in the model is the expected

utility. To maximize the expected utility, the methods of stochastic optimization are

used to find the optimal solution.

Stochastic optimization plays an important role in the design, analysis, and opera-

tion of modern systems. Stochastic optimization methods are used in models that are

inappropriate for classical deterministic methods of optimization. Algorithms that take

advantage of stochastic optimization techniques find their applications in problems in

statistics, science, engineering, and business.

Classical deterministic optimization is based on the assumption of perfect informa-

tion about the minimized (maximized) function (and its derivatives, if necessary). This

information is then used to determine the direction of search in a deterministic manner

at every step of the algorithm. However, in many practical problems, this information is

not available.

In contrast to deterministic optimization, stochastic optimization methods are used

when randomness appears in the formulation of the optimization problem itself (random

objective function, random constraints, etc.). Stochastic optimization also includes meth-

ods with random iterates. Some stochastic optimization methods use random iterates in

solving stochastic problems.

Random real data arise in such problems as real-time estimation and control, simula-
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tion based optimization where Monte Carlo simulations are run as estimates of an actual

system, and problems where there is experimental (random) error in the measurements

of the criterion. In such cases, knowledge that the function values contain random noise

leads naturally to algorithms that use statistical inference tools in estimation of the true

values of the function and/or make statistically optimal decisions about the next steps

of the optimization algorithm. Methods of this class include: stochastic approximation,

stochastic gradient descent, finite-difference stochastic approximation, simultaneous per-

turbation stochastic approximation, etc.

On the other hand, even when the data set consists of exact measurements, some

methods introduce randomness into the search-process to accelerate progress. Such ran-

domness can also make the method less sensitive to modeling errors. Further, the injected

randomness may enable the method to escape a local minimum and eventually to ap-

proach a global optimum. Indeed, this randomization principle is known to be a simple

and effective way to obtain algorithms with almost certain good performance uniformly

across many data sets, for many sorts of problems. Stochastic optimization methods

of this kind include: simulated annealing, reactive search optimization, cross-entropy

method, random search, etc.

Stochastic optimization is closely connected to stochastic control. The theory of

stochastic control provides a vast array of theoretical and computational tools that find

their applications in many areas dealing with decision-making under uncertainty. These

areas include industrial processes, robotics, insurance, economics, and finance. A com-

mon feature of stochastic control problems is that a controlled dynamical system is sub-

ject to random perturbations and the goal is to optimize some performance criterion.

One of the most interesting applications of the theory of stochastic control in finance is

portfolio optimization problem in which an agent invests wealth into risky and riskless

assets and chooses a rate of consumption with the goal of maximizing the expected utility

of consumption.

Under some assumptions, in [15] Merton solved the problem of expected utility max-

imization. In that work it was assumed that the utility function is a power function

and the market includes the riskless asset with constant rate of return and a risky asset

with constant mean rate of return and volatility parameter. Some of the assumptions

were relaxed later. The restriction to power utility functions was removed in [11], and

in [12, 18], the market coefficients were allowed to be non-constant. After that initial

paper, the Merton’s model was generalized in many directions.
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One generalization is the introduction of transaction costs [22] which are the costs

incurred when wealth is moved from one asset to the other. The presence of transaction

costs makes the model more realistic.

Another extension is including past stock prices in the decision-making process. In

the Merton’s model the investor makes investment decisions based on current information

and does not consider the past stock prices. However, in the real world, investors take into

account the historic performance of the risky assets. This approach is called stochastic

portfolio optimization with memory and is treated in [19].

In many cases, the investor does not possess complete information about the stock

prices, model parameters’ values, etc. This implies that the optimal investment and con-

sumption should be obtained under the assumption that some of the required information

is partially observed. The models with partial observations are discussed in [3, 4].

These generalizations are not the only ones and there are many other possible exten-

sions which make the model more realistic, and this dissertation thesis suggests one more

way of extending the model to include such factor as technological progress in investment

decision-making under uncertainty.

In some research [14, 20], it is claimed that the utility of goods depends not only on the

goods themselves but also on qualities of the goods. That is why it makes sense to extend

the classical model of optimal investment and consumption [7, 16, 21] to incorporate this

feature. When the suggested uncertainty in utility is introduced, it is interesting to find

the difference in the optimal policies of the new model and the classical model.

It is natural to assume that when we buy different things we are not buying just

objects, we are buying the qualities that those objects possess and we need those qualities.

For example, if we consider a diamond that costs as much as a house then clearly it has

utility which is different from that of the house. However, using the price of a merchandise

as the only argument to the utility function, the utilities of the diamond and the house

are the same.

Since the technology is changing, new products keep coming out and substitute the

old ones giving the increase in utility. For example, having a computer today gives much

more opportunities to its user compared to the computers and technologies available 30

years ago. Therefore, preferences might change because of better characteristics of new

goods. It is important to note that this change does not have to entail the change of

prices.

On the other hand, preference change might also be due to worsened quality of the

3



products or some other reason (for example, buying the same product over and over might

decrease its utility and ends up in satiation with the product). The described process

is not deterministic because it is not known how the market will change. Therefore, it

makes sense to model the uncertainty in utility by a stochastic process.

Although there is much debate on the dynamics of technological progress [1, 5], it

is not new in literature that in some areas it is growing exponentially [8]. A model

that assumes exponential growth can also be used to model linear behavior because of

the representation ex = 1 + x + o(x2) and, thus, changing the parameters of the model

accordingly, will help analyze the results when the growth is close to linear. Apart from

big technological advancements there are minor improvements in products that people

use every day. Therefore, the Geometric Brownian motion can be used to model the

uncertainty in utility.

1.2 Mathematical Preliminaries

Let Ω be a nonempty set and F be a sigma-algebra on Ω, then (Ω,F) is called a mea-

surable space. Let P be a probability measure defined on the sets from F , then (Ω,F ,P)

is called a probability space. The probability space is said to be complete if for any set

A ∈ F such that P(A) = 0 (null set) a set B ⊆ A is also in F , i.e. B ∈ F .

Definition 1. Let a measurable space (Ω,F) be given. A monotone family of sub-sigma-

algebras Ft ⊆ F , t ∈ [0,∞) is called a filtration if Ft1 ⊆ Ft2 , ∀t1, t2, 0 ≤ t1 ≤ t2 <∞.

Definition 2. A filtration is called right (left) continuous if Ft = Ft+ ,
⋂
s>tFs

(Ft = Ft− , σ(
⋃
s<tFs)), 0 ≤ t <∞.

Definition 3. A filtered probability space (Ω,F , {Fs}s∈[0,∞),P) is said to satisfy

the usual condition if it is complete1, F0 contains all the P-null sets in F2, and the

filtration {Fs}s∈[0,∞) is right continuous3.

1It is necessary to require the filtered probability space be complete because, for example, if ξ is a
random variable (F-measurable function) and η ≡ ξ almost everywhere then η is not necessarily mea-
surable. Thus, by completing the probability space we extend the space of measurable (and, therefore,
integrable) functions.

2The Ito’s stochastic integral with finite upper limit might not be a martingale if the filtration is
incomplete in the sense that all P-null sets of F should be included into F0. See [13], p.93.

3In Lemma 2 (see below) that plays an important role in appropriately formulating stochastic optimal
control problems, the obtained process φ is only {Bt+(Bm[0, T ])}t∈[0,T ]-progressively measurable, not
necessarily {Bt(Bm[0, T ])}t∈[0,T ]-progressively measurable, see [9], p.20.
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Definition 4. Let (Ω,F) and (E, E) be two measurable spaces. A function X : Ω→ E is

an F/E measurable function, or random element, or E-valued random variable

if

{ω : X(ω) ∈ B} ∈ F , ∀B ∈ E.

Definition 5. If Ω is a topological space then the smallest sigma-algebra B(Ω) containing

all open sets of Ω is called the Borel sigma-algebra of Ω.

Definition 6. Let I be a subset of the real line. A family of random variables {Xs, s ∈ I}
from (Ω,F ,P) to Rk is called a stochastic process. For any ω ∈ Ω, the map t 7→ Xt(ω)1

is called a sample path.

Definition 7. Let (Ω,F , {Fs}s∈[0,∞)) be a filtered measurable space and Xt be a stochastic

process taking values in a metric space (Q, d).

(1) The process Xt is said to be measurable if the map (t, ω) 7→ Xt(ω) is (B([0,∞))⊗
F)/B(Q)-measurable.

(2) The process Xt is said to be Ft-adapted if for all t in [0,∞) the map ω 7→ Xt(ω) is

Ft/B(Q)-measurable.

(3) The process Xt is Ft-progressively measurable if for all t in [0,∞) the map

(s, ω) 7→ Xs(ω) is (B([0, t])⊗ Ft)/B(Q)-measurable or {(s, ω) : 0 ≤ s ≤ t, ω ∈ Ω, Xs ∈
A} ∈ B([0, t])⊗Ft, for all A ∈ B(Q).

Remark 1. (a) Notice that in the above definition 3 =⇒ 1, 2. (b) If the process Xt is

Ft-adapted it does not mean the process Yt =

∫ t

0

Xsds is Ft-adapted. However, in many

cases it is required that the process Yt be adapted (for example, in proving the Bellman’s

Principle of Optimality). By Fubini’s theorem (see for example, [13], p.23), the process

Yt is adapted if the process Xt is Ft-progressively measurable.

Definition 8. Let (Ω,F , {Fs}s∈[0,∞),P) be a filtered probability space. An Ft-adapted

Rm-valued process Bt is called an m-dimensional Ft-Brownian motion over [0,∞) if

for all 0 ≤ s < t, Bt − Bs is independent of Fs and is normally distributed with mean 0

and covariance (t− s)I, where I is the m×m identity matrix. If P(B0 = 0) = 1 then Bt

is called an m-dimensional standard Ft-Brownian motion over [0,∞).

Let a ∈ Ak(Rk), s1 ∈ Ak(Rk×m) then we have the following

1The notations Xt(ω) and Xt will be used interchangeably.
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Definition 9. An equation of the form{
dXt = a(t,X)dt+ s1(t,X)dBt,

X0 = ξ
(1.1)

is called a stochastic differential equation with the initial condition.

Remark 2. Notice that the coefficients a, s1 are not random and depend on ω ∈ Ω

through X.

There are different notions of solutions to (1.1) depending on different roles that the

underlying filtered probability space (Ω,F , {Fs}s∈[0,∞),P) and the Brownian motion Bt

are playing.

Definition 10. Let (Ω,F , {Fs}s∈[0,∞),P), m-dimensional standard Ft-Brownian motion

Bt be given, and ξ is F0-measurable. An Ft-adapted continuous process Xt, t ≥ 0 is

called a strong solution of (1.1) if

1. X0 = ξ, P-a.s.,

2.

∫ t

0

(
||a(s,X)||+ ||s1(s,X)||2

)
ds <∞, ∀t ≥ 0, P-a.s.,

3. Xt = X0 +

∫ t

0

a(s,X)ds+

∫ t

0

s1(s,X)dBs, ∀t ≥ 0, P-a.s.

Definition 11. If for any two strong solutions X and Y of equation (1.1) defined on

any given (Ω,F , {Fs}s∈[0,∞),P) along with any given standard Ft-Brownian motion, we

have P(Xt = Yt, t ≥ 0) = 1 then we say that the strong solution is unique1.

Definition 12. A 6-tuple (Ω,F , {Fs}s∈[0,∞),P, B,X) is called a weak solution of (1.1)

if

1. (Ω,F , {Fs}s∈[0,∞),P) is a filtered probability space satisfying the usual condition,

2. B is an m-dimensional standard Ft-Brownian motion and X is Ft-adapted and con-

tinuous,

3. X0 and ξ have the same distribution,

4. 2 and 3 of the definition 10 hold.

Remark 3. For the strong solution the filtered probability space (Ω,F , {Fs}s∈[0,∞),P)

and the Ft-Brownian motion B on it are fixed a priori. For the weak solution,

(Ω,F , {Fs}s∈[0,∞),P) and B are parts of the solution.

1Therefore, the solution is unique if Xt, Yt are indistinguishable processes.
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Definition 13. If for any two weak solutions (Ω,F , {Fs}s∈[0,∞),P, B,X) and

(Ω̃, F̃ , {F̃s}s∈[0,∞), P̃, B̃, X̃) of (1.1) with

P(X0 ∈ D) = P̃(X̃0 ∈ D), ∀D ∈ B(Rk),

we have

P(X ∈ A) = P̃(X̃ ∈ A), ∀A ∈ B(Bk),

then we say that the weak solution is unique.

Now we define another type of SDE which will be used in stochastic control problems.

Definition 14. An equation of the form{
dXt = a(t,X, ω)dt+ s1(t,X, ω)dBt,

X0 = ξ
(1.2)

is called a stochastic differential equation with random coefficients a : [0,∞)×Bk×
Ω→ Rk, s1 : [0,∞)×Bk × Ω→ Rk×m which explicitly depend on ω ∈ Ω (Xt, Bt, ξ also

depend on ω but it is suppressed to simplify the notation).

Remark 4. Notice that the case when the coefficients a, s1 depend on Xt instead of X

(i.e. a : [0,∞) × Rk × Ω → Rk, s1 : [0,∞) × Rk × Ω → Rk×m) is a special case of the

equation in the above definition.

Next, we define what we mean by a solution to (1.2).

Definition 15. Let the maps a : [0,∞)×Bk×Ω→ Rk and s1 : [0,∞)×Bk×Ω→ Rk×m

and an m-dimensional standard Ft-Brownian motion Bt be given on a given filtered prob-

ability space (Ω,F , {Fs}s∈[0,∞),P). Let ξ be F0-measurable. An Ft-adapted continuous

process Xt, t ≥ 0, is called a solution of (1.2) if

1. X0 = ξ, P− a.s.;

2.

∫ t

0

(
||a(s,X, ω)||+ ||s1(s,X, ω)||2

)
ds <∞, t ≥ 0, P− a.s.;

3. Xt = ξ +

∫ t

0

a(s,X, ω)ds+

∫ t

0

s1(s,X, ω)dBs, t ≥ 0, P− a.s..
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Definition 16. If P(Xt = Yt, t ≥ 0) = 1 holds for any two solutions Xt, Yt of (1.2)

defined on the given filtered probability space (Ω,F , {Fs}s∈[0,∞),P) along with the given

Ft-Brownian motion Bt then we say that the solution is unique.

Remark 5. Since the coefficients a, s1 should be given a priori, equation (1.2) should

be defined on a given probability space (Ω,F ,P) where a, s1 are defined. Therefore, for

an SDE with random coefficients it does not make sense to talk about weak solutions.

Now we state the conditions under which the SDE (1.2) admits a unique solution.

Theorem 1. Assume that for any ω ∈ Ω, a(·, ·, ω) ∈ Ak(Rk) and s1(·, ·, ω) ∈ Ak(Rk×m)

and for any x ∈ Bk, a(·, x, ·) and s1(·, x, ·) are both {Ft}-adapted processes. Moreover,

there exists a constant L > 0 such that for all t ∈ [0,∞), x, y ∈ Bk, and ω ∈ Ω,
||a(t, x, ω)− a(t, y, ω)|| ≤ L||x− y||Bk ,
||s1(t, x, ω)− s1(t, y, ω)|| ≤ L||x− y||Bk ,
|a(·, 0, ·)|+ |s1(·, 0, ·)| ∈ L2

F(0, T ;R), ∀T > 0.

(1.3)

Then for any ξ ∈ LpF0
(Ω;Rk) (p ≥ 1), (1.2) admits a unique solution Xt such that1 for

any T > 0  E
(

max
0≤s≤T

||Xs||p
)
≤ K(1 + E||ξ||p),

E||Xt −Xs||p ≤ K(1 + E||ξ||p)|t− s|p/2, ∀s, t ∈ [0, T ].
(1.4)

Moreover, if η ∈ LpF0
(Ω;Rk) is another random variable and Yt is the corresponding

solution of (1.2), then for any T > 0, there exists a K > 0 such that

E
(

max
0≤s≤T

||Xs − Ys||p
)
≤ KE||ξ − η||p. (1.5)

The proof of the theorem is given in appendix A.1.

The following theorem will be used in defining the problem of stochastic control.

Theorem 2. Let (Ω,F , {Fs}s∈[0,∞),P) be a filtered probability space and let Xt be Ft-
adapted, and left or right continuous. Then Xt is Ft-progressively measurable.

The proof of the theorem is given in appendix A.2. Therefore, if the assumptions of

Theorem 1 are satisfied then the solution Xt of (1.2) is Ft-progressively measurable.

1Although the constant K depends on T , the notation K is used.
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These are the basic terminology and results that will be used in formulation of stochas-

tic control problems discussed in the next section.

1.3 The Problem of Stochastic Control

Let 0 < T < ∞ be given. Let (Ω,F , {Fs}s∈[0,T ],P) be a given filtered probability space

satisfying the usual condition (see Definition 3), on which is defined an m-dimensional

standard Brownian motion Bt. Let U be a Polish space (complete separable metric

space). Consider the following stochastic controlled system1

{
dXUt

t = a(t,XUt
t , Ut)dt+ s1(t,XUt

t , Ut)dBt, t ∈ [0, T ],

X0 = x0

(1.6)

with the reward functional2

w(x0, {Us}s∈[0,T ]) = Ex0

[ ∫ T

0

e−ζtf(t,XUt
t , Ut)dt+ e−ζTg(XUT

T )
]
,

where ζ > 0 is a parameter. We define the space of feasible controls3

U s , {U : [0, T ]× Ω→ U|Ut is Ft-progressively measurable}.

The problem of stochastic control is to find U that maximizes w(x0, U) over the set U s4.

One of the approaches to solve the problem is to use the dynamic programming [9].

To guarantee that the reward functional is well-defined (measurability and integrabil-

ity of

∫ T

0

e−ζtf(t,XUt
t , Ut)dt+ e−ζTg(XUT

T ), uniqueness of Xt) we will make some assum-

tions specified later. Notice that the coefficients a(t,XUt
t (ω), Ut(ω)) = ā(t,XUt

t (ω), ω),

s1(t,XUt
t (ω), Ut(ω)) = s̄1(t,XUt

t (ω), ω) of equation (1.6) depend on ω not only through

Xt but also through Ut and, thus, the theory for an SDE with random coefficients can

be applied.

This problem is stated in a strong form (the probability space is given and fixed)

and it is the problem that we want to solve eventually (the initial time is 0 and the

1Notation XUt
t means that Xt depends on Ut.

2Ex0 [·] , E[·|X0 = x0].
3To simplify the notation, U will be used instead of {Us}s∈[0,T ].
4The superscript ’s’ in Us means that the strong formulation is being considered. See Remark 3.
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initial state x0 is deterministic). In order to apply the dynamic programming technique

we need to consider a family of problems with different initial times and states. In

the deterministic case we can change the initial time and state without changing the

mathematical framework of the problem. However, in the stochastic case the states

along a given trajectory become random variables on the original probability space. More

specifically, if X is a state trajectory starting from x0 at time 0 in a probability space

(Ω,F , {Fs}s∈[0,T ],P), then for any time t > 0, Xt is a random variable in (Ω,F ,P) rather

than a deterministic point in Rk. Since the control U is Ft-progressively measurable then

at any time instant t the controller knows all the relevant past information of the system

up to time t and in particular about Xt. This implies that Xt is actually not uncertain

for the controller at time t. In mathematical terms, Xt is almost surely deterministic

under a different probability measure P(·|Ft). Indeed, this can be made precise and we

have the following proposition.

Proposition 1. Let (Ω,F , {Fs}s∈[0,T ],P) be a filtered probability space. Let Xt be an

Ft-adapted process. Then for any s ∈ [0, T ]

P({ω′|Xt(ω
′) = Xt(ω)}|Fs)(ω) = 1, P− a.s., ∀t ∈ [0, s].

Proof.

P({ω′|Xt(ω
′) = Xt(ω)}|Fs)(ω) = E[I{ω′|Xt(ω′)=Xt(ω)}|Fs](ω)

= I{ω′|Xt(ω′)=Xt(ω)}(ω)

= 1, P− a.s..

Therefore, under the probability measure P(·|Fs)(ω) where ω is fixed, the random

variable Xt is almost surely a deterministic constant equal to Xt(ω) for any t ∈ [0, s].

Thus, the above idea requires us to vary the probability spaces as well in order to

employ dynamic programming. Therefore, we consider the weak formulation1.

1The word ’weak’ means that when solving the problem the probability space is allowed to vary which
is similar to the case with obtaining a weak solution to (1.1). The weak formulation does not make sense
if the coefficients a, s1 depend on ω explicitly. See Remark 5.
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For any (t, x) ∈ [0, T )× Rk consider the state equation{
dXUs

s = a(s,XUs
s , Us)ds+ s1(s,XUs

s , Us)dBs, s ∈ [t, T ],

Xt = x,
(1.7)

with the reward functional1

w(t, x, U) = Et,x

[ ∫ T

t

e−ζ(s−t)f(s,XUs
s , Us)ds+ e−ζ(T−t)g(XUT

T )
]
. (1.8)

Next, we define the space of admissible controls Uw[t, T ]2 on [t, T ] as the set of 5-

tuples (Ω,F ,P, B, U) satisfying the following assumption.

Assumption (B):

1. (Ω,F ,P) is a complete probability space3;

2. {Bs}s∈[t,T ] is an m-dimensional standard Brownian motion defined on (Ω,F ,P)

over [t, T ] (with Bt = 0 almost surely) and Fs,t is the sigma-algebra generated by

Br, t ≤ r ≤ s augmented by all P-null sets in F ;

3. U : [t, T ]× Ω→ U is an Fs,t-progressively measurable process on (Ω,F ,P);

4. Under U for any x ∈ Rk equation (1.7) admits a unique solution (in the sense of

definitions 15, 16) on (Ω,F , {Fs,t}s∈[t,T ],P);

5. The function f(·, XU , U) is in L1
F(0, T ;R) and the function g(XUT

T ) is in L1
FT (Ω;R).

Here the spaces L1
F(0, T ;R) and L1

FT (Ω;R) are defined on the given filtered prob-

ability space (Ω,F , {Fs,t}s∈[t,T ],P).

Under this restriction on the space of controls the reward functional defined by (1.8) is

well-defined. Also, note that the expectation in formula (1.8) is taken with respect to

the probability measure P.

The problem of stochastic control is to maximize w(t, x, U) over the space of admis-

sible controls Uw[t, T ].

1Et,x[·] , E[·|Xt = x].
2The superscript ’w’ means that the weak formulation is considered.
3Although denoted similarly, this space should be distinguished from the original filtered probability

space on which (1.6) is defined.
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To guarantee the uniqueness of solutions to (1.7) we have to impose some assumptions.

Let d be the dimension of U ⊆ Rd, the space of control values. We make the following

assumption.

Assumption (A):

The maps a : [0, T ]×Rk×U→ Rk, s1 : [0, T ]×Rk×U→ Rk×m, f : [0, T ]×Rk×U→ R,

g : Rk → R are continuous. There exist concave, increasing in each independent variable,

continuous functions ϕ1 : Rk+d → [0,∞) and ϕ2 : Rk → [0,∞) such that ϕi = 0, i = 1, 2,

if any of the independent variables is equal to 0, and there exists a constant L > 0 such

that we have1

(1) ||a(t, x1, u)− a(t, x2, u)|| ≤ L||x1 − x2||, ∀t ∈ [0, T ], x1, x2 ∈ Rk, u ∈ U,
(2) ||s1(t, x1, u)− s1(t, x2, u)|| ≤ L||x1 − x2||, ∀t ∈ [0, T ], x1, x2 ∈ Rk, u ∈ U,
(3) |f(t, x1, u)− f(t, x2, u)| ≤ Lϕ1(|u|, |x1 − x2|), ∀t ∈ [0, T ], x1, x2 ∈ Rk, u ∈ U,
(4) |g(x1)− g(x2)| ≤ Lϕ2(|x1 − x2|), x1, x2 ∈ Rk,

(5) ||a(t, 0, u)||+ ||s1(t, 0, u)|| ≤ L, ∀(t, u) ∈ [0, T ]× U,
(6) E sup

s∈[t,T ]

||Us|| ≤ L, U ∈ Uw[t, T ], t ∈ [0, T ].

Under the assumptions A(1),(2),(5), equation (1.7) admits a unique solution by

Theorem 1 (the solution is continuous, see Definition 15). Indeed, if in A(1),(2),(5)

we consider a, s1 as maps ā : [0, T ] × Bk × Ω, s̄1 : [0, T ] × Bk × Ω then the Theo-

rem is applicable. Also, since Ut is assumed to be Fs,t-progressively measurable, Xt is

Fs,t-progressively measurable (see Theorem 2), and a, s1 are continuous, we have that

ā(·, ·, ω) ∈ Ak(Rk), s̄1(·, ·, ω) ∈ Ak(Rk×m), ω ∈ Ω.

Since f, g are continuous2, the reward functional (1.8) is well-defined. Thus, we can

define the value function: v(t, x) = sup
U∈Uw[t,T ]

w(t, x, U), ∀(t, x) ∈ [0, T )× Rk,

v(T, x) = g(x), ∀x ∈ Rk.

Next we derive some properties of the value function that will be used in proving

Bellman’s Principle of Optimality.

1Notice the difference between || · || and | · |. If x = (x1 x2), x1, x2 ∈ R then ||x|| =
√
x21 + x22 but

|x| = (|x1| |x2|).
2Since X and U are Fs,t-progressively measurable and f is continuous, the process

∫ T
t
f(s,XUs

s , Us)ds

is FT,t-measurable (see Remark 1). Since g is continuous then g(XUT

T ) is also FT,t-measurable.
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Lemma 1. Let the assumption (A) hold. Then for any ε > 0 and t ∈ [0, T ] there exists

δ(ε) > 0 such that

|w(t, x, U)− w(t, y, U)| ≤ ε, U ∈ Uw[t, T ],

|v(t, x)− v(t, y)| ≤ ε,

if ||x− y|| ≤ δ(ε).

Proof. Let 0 ≤ t ≤ T, x, y ∈ Rk. For any admissible control U let XU , Y U represent the

states starting at time t with values x and y, respectively. Then by Theorem 1 (1.4 and

1.5) we have E
(

sup
s∈[t,T ]

||Xs − Ys||
)
≤ K||x− y||. Using this result, assumption (A), and

Jensen’s inequality we obtain

|w(t, x, U)− w(t, y, U)|

=
∣∣∣E[ ∫ T

t

e−ζ(s−t)(f(s,XUs
s , Us)ds− f(s, Y Us

s , Us))ds+ e−ζ(T−t)(g(XUT
T )− g(Y UT

T ))
]∣∣∣

≤ E
[ ∫ T

t

Lϕ1(|Us|, |XUs
s − Y Us

s |)ds+ Lϕ2(|XUT
T − Y

UT
T |)

]
≤ E[LTϕ1( sup

s∈[t,T ]

|Us|, sup
s∈[t,T ]

|XUs
s − Y Us

s |) + Lϕ2(|XUT
T − Y

UT
T |)]

≤ E[LTϕ1( sup
s∈[t,T ]

||Us||1d, sup
s∈[t,T ]

||XUs
s − Y Us

s ||1k) + Lϕ2(||XUT
T − Y

UT
T ||1

k)] (1.9)

≤ LTϕ1(E sup
s∈[t,T ]

||Us||1d, E sup
s∈[t,T ]

||XUs
s − Y Us

s ||1k) + Lϕ2(E||XUT
T − Y

UT
T ||1

k)

≤ LTϕ1(E sup
s∈[t,T ]

||Us||1d, E sup
s∈[t,T ]

||XUs
s − Y Us

s ||1k) + Lϕ2(E sup
s∈[t,T ]

||XUs
s − Y Us

s ||1k)

≤ LTϕ1(L1d, K||x− y||1k) + Lϕ2(K||x− y||1k),

where 1d = (1, ..., 1)T is a d-dimensional vector and 1k = (1, ..., 1)T is a k-dimensional

vector. Notice that in (1.9) value of each independent variable in ϕi, i = 1, 2 was

changed from | · | to || · || and the direction of the inequality follows from the fact that

|xi| ≤ ||x|| =
√
x2

1 + ...+ x2
k, i = 1, ..., k, x ∈ Rk.

Since functions ϕi, i = 1, 2 are continuous, increasing in each variable, and ϕi =

0, i = 1, 2, if any of their independent variables is equal to 0, we have that for any ε > 0

there exists δ(ε) > 0 such that |w(t, x, U)− w(t, y, U)| ≤ ε, if ||x− y|| ≤ δ(ε).
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Taking the supremum over U ∈ Uw[t, T ] we obtain

sup
U∈Uw[t,T ]

|w(t, x, U)− w(t, y, U)| ≥ | sup
U∈Uw[t,T ]

(w(t, x, U)− w(t, y, U))|

≥ | sup
U∈Uw[t,T ]

w(t, x, U)− sup
U∈Uw[t,T ]

w(t, y, U))|

= |v(t, x)− v(t, y)|.

Therefore, |v(t, x)− v(t, y)| ≤ ε.

Lemma 2. Let (Ω,F ,P) be a complete probability space and (U, d) be a Polish space.

Let B : [0, T ]× Ω→ Rm be a continuous process and FBt be the sigma-algebra generated

by Bs, 0 ≤ s ≤ t. Then U : [0, T ] × Ω → U is {FBt }t∈[0,T ]-adapted if and only if there

exists φ ∈ AmT (U) such that

Ut(ω) = φ(t, B·∧t(ω))1, P− a.s., ∀t ∈ [0, T ].

The proof of the lemma is given in appendix A.3.

Let t ∈ [0, T ), θ ∈ [t, T ) and ξ be an Fθ,t-measurable random variable and X be a

solution of {
dXUs

s = a(s,XUs
s , Us)ds+ s1(s,XUs

s , Us)dBs, s ∈ [θ, T ],

Xθ(ω) = ξ(ω).
(1.10)

Now we are ready for the next lemma.

Lemma 3. Let t ∈ [0, T ) and U ∈ Uw[t, T ]. Then for any θ ∈ [t, T ) and Fθ,t-measurable

random variable ξ

w(θ, ξ, U) = Eθ,ξ

[ ∫ T

θ

e−ζ(s−θ)f(s,XUs
s , Us)ds+ e−ζ(T−θ)g(XUT

T )|Fθ,t
]
, P− a.s.

Proof. Since the control U is Fs,t-adapted (see the assumption B) and Fs,t is the sigma-

algebra generated by the Brownian motion Br, t ≤ r ≤ s, then by Lemma 2 there exists

a function φ ∈ AmT (U) such that Us(ω) = φ(s, B·∧s(ω)), P − a.s., ω ∈ Ω, s ∈ [t, T ].

1The process B·∧t is the process Bs if s ≤ t with values equal to Bt if s > t.
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Therefore, (1.10) can also be written as{
dXφ

s = a(s,Xφ
s , φ(s, B·∧s))ds+ s1(s,Xφ

s , φ(s, B·∧s))dBs, s ∈ [θ, T ],

Xθ(ω) = ξ(ω).
(1.11)

This equation has a unique strong solution because the equation{
dXs = ā(s,Xs, B·∧s)ds+ s̄1(s,Xs, B·∧s)dBs, s ∈ [θ, T ],

Xθ(ω) = ξ(ω).
(1.12)

is a special case of (1.1). Indeed, if we write dYs = dBs and consider Y as a component

of X, then we have (1.1) and thus, under the assumptions A(1), (2), (5) the equation

(1.12) has a unique strong solution. On the other hand, from Proposition 1 it follows

that P(ω′ : ξ(ω′) = ξ(ω)|Fθ,t)(ω) = 1, P-a.s. This means that there is an Ω0 ∈ F
with P(Ω0) = 1 such that for any ω0 ∈ Ω0, ξ becomes a deterministic constant ξ(ω0)

under the new probability space (Ω,F ,P(·|Fθ,t)(ω0)). In addition, for any s ≥ θ, we

have that Us(ω) = φ(s, B·∧s(ω)) = φ(s, B̃·∧s(ω) + Bθ(ω)), where B̃s = Bs − Bθ is a

standard Brownian motion. Note that Bθ almost surely equals a constant Bθ(ω0) under

the probability measure P(·|Fθ,t)(ω0). It follows then that Us is adapted to the filtration

generated by the standard Brownian motion B̃s for s ≥ θ. Hence by the definition of

admissible controls (Ω,F ,P(·|Fθ,t)(ω0)), B̃s, Us) ∈ Uw[θ, T ].

Thus, if we work under the probability space (Ω,F ,P(·|Fθ,t)(ω0)) and notice the weak

uniqueness (see Definition 13) of (1.10) and (1.11) we obtain the result.

Now we derive Bellman’s Principle of Optimality that will be very important in deriv-

ing the Hamilton-Jacobi-Bellman equation used in solving the optimal control problem

presented in this dissertation.

Theorem 3. Let assumption (A) hold. Then for any (t, x) ∈ [0, T )×Rk and for all t, θ

satisfying 0 ≤ t ≤ θ ≤ T we have

v(t, x) = sup
U∈Uw[t,T ]

Et,x

[ ∫ θ

t

e−ζ(s−t)f(s,XUs
s , Us)ds+ e−ζ(θ−t)v(θ,XUθ

θ )
]
. (1.13)

Proof. By definition of supremum, for any ε > 0 there exists an admissible control U

(there exists (Ω,F ,P, B, U)) such that (using Lemma 3)
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v(t, x)− ε < w(t, x, U)

= Et,x

[ ∫ T

t

e−ζ(s−t)f(s,XUs
s , Us)ds+ e−ζ(T−t)g(XUT

T )
]

= Et,x

[ ∫ θ

t

e−ζ(s−t)f(s,XUs
s , Us)ds

+ Et,x

[ ∫ T

θ

e−ζ(s−t)f(s,XUs
s , Us)ds+ e−ζ(T−t)g(XUT

T )|Fθ,t
]]

= Et,x

[ ∫ θ

t

e−ζ(s−t)f(s,XUs
s , Us)ds

+ e−ζ(θ−t)E
θ,X

Uθ
θ

[ ∫ T

θ

e−ζ(s−θ)f(s,XUs
s , Us)ds+ e−ζ(T−θ)g(XUT

T )|Fθ,t
]]

= Et,x

[ ∫ θ

t

e−ζ(s−t)f(s,XUs
s , Us)ds+ e−ζ(θ−t)w(θ,XUθ

θ , U)
]

≤ Et,x

[ ∫ θ

t

e−ζ(s−t)f(s,XUs
s , Us)ds+ e−ζ(θ−t)v(θ,XUθ

θ )
]

≤ sup
U∈Uw[t,T ]

Et,x

[ ∫ θ

t

e−ζ(s−t)f(s,XUs
s , Us)ds+ e−ζ(θ−t)v(θ,XUθ

θ )
]
.

Conversely, by Lemma 1 for any ε > 0 there exists δ(ε) such that if ||x− y|| ≤ δ(ε) then

e−ζ(θ−t)
(
|w(θ, x, U)− w(θ, y, U)|+ |v(θ, x)− v(θ, y)|

)
≤ ε

3
, ∀U ∈ Uw[θ, T ]. (1.14)

Let {Dj}j≥1 be a Borel partition of Rk (Dj ∈ B(Rk),
∞⋃
j=1

Dj = Rk, Di∩Dj = ∅, i 6= j)

with diameter diam(Dj) < δ(ε). Choose xj ∈ Dj. For each j there is an admissible

control U j (there exists (Ωj,F j,Pj, Bj, U j)) such that

e−ζ(θ−t)w(θ, xj, U j) ≥ e−ζ(θ−t)v(θ, xj)− ε

3
. (1.15)

Hence for any x ∈ Dj, combining (1.14) and (1.15), we have

e−ζ(θ−t)w(θ, x, U j) ≥ e−ζ(θ−t)w(θ, xj, U j)− ε

3

≥ e−ζ(θ−t)v(θ, xj)− 2ε

3

≥ e−ζ(θ−t)v(θ, x)− ε.
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By the definition of admissible control (Ωj,F j,Pj, Bj, U j) (see assumption (B)) and

Lemma 2 there is a function φj ∈ AmT (U) such that U j
s (ω) = φj(s, Bj

·∧s(ω)), Pj − a.s., for

all s ∈ [θ, T ].

For any admissible (Ω,F ,P, B, U) define a new control

Ūs(ω) =

{
Us(ω), s ∈ [t, θ),

φj(s, B·∧s(ω)−Bθ(ω)), s ∈ [θ, T ] and Xs ∈ Dj.

Clearly, (Ω,F ,P, B, Ū) is admissible. Therefore,

v(t, x) ≥ w(t, x, Ū) = Et,x

[ ∫ T

t

e−ζ(s−t)f(s,X Ūs
s , Ūs)ds+ e−ζ(T−t)g(X ŪT

T )
]

= Et,x

[ ∫ θ

t

e−ζ(s−t)f(s,XUs
s , Us)ds

+ e−ζ(θ−t)E
θ,X

Ūθ
θ

[ ∫ T

θ

e−ζ(s−θ)f(s,X Ūs
s , Ūs)ds+ e−ζ(T−θ)g(X ŪT

T )|Fθ,t
]]

= Et,x

[ ∫ θ

t

e−ζ(s−t)f(s,XUs
s , Us)ds+ e−ζ(θ−t)w(θ,X Ūθ

θ , Ū)
]

≥ Et,x

[ ∫ θ

t

e−ζ(s−t)f(s,XUs
s , Us)ds+ e−ζ(θ−t)v(θ,XUθ

θ )− ε
]
.

Taking the supremum over U ∈ Uw[t, T ] we obtain (1.13).

Equation (1.13) is very difficult to solve directly. One of the techniques allowing to

obtain the value function v(t, x), t ∈ [0, T ], x ∈ Rk is to use the Bellman’s Principle

of Optimality to derive the second-order partial differential equation that this function

should satisfy. This equation is called the Hamilton-Jacobi-Bellman (HJB) equation.

Although the equation can be obtained in general form, it will be derived for the specific

stochastic control problems considered in the next sections.
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1.4 Classical Model of Optimal Investment and

Consumption

In this section we consider the model of optimal investment and consumption originated

by Merton [15]. Consider an investor who at each time t has a portfolio valued at Xt.

This portfolio invests in a money market account (riskless asset) paying rate of interest

r(t) and in n stocks (risky assets) modeled by Geometric Brownian motion1. Suppose at

each time t, the agent holds Ht shares of the risky assets, H0
t shares of the riskless asset,

and consumes at a rate Ct per unit time. We define the corresponding processes below2

• Riskless asset : dNt = r(t)Ntdt, where r(t) is a continuous deterministic function.

Let us denote r , r(t).

• Risky assets : dSit = Sit(µ
i(t)dt +

n∑
j=1

σi,j1 (t)dBj
t ), where σ1(t) = (σi,j1 (t))i,j=1...n is

continuous deterministic volatility matrix which is invertible for each t and, thus,

the market is complete, µi(t) is continuous deterministic expected return. Let us

denote σ1 , σ1(t), µi , µi(t), i = 1, ..., n.

• Portfolio value : XUt
t = H0

tNt + HtSt, where H0
t is the number of shares of the

riskless asset, Ht is a row vector of numbers of shares of the risky assets, St =

(S1
t , ..., S

n
t )T is a vector of assets’ prices.

• Portfolio process : dXUt
t = H0

t dNt + HtdSt − Ctdt, where Ct denotes consumption

per unit time at time t. Expanding the expression for the portfolio process we

obtain

dXUt
t = rH0

tNtdt+
n∑
i=1

H i
tS

i
t(µ

idt+
n∑
j=1

σi,j1 dB
j
t )− Ctdt

= (1− Πt1)rXUt
t dt+ ΠtX

Ut
t (µdt+ σ1dBt)− Ctdt

=
(

(1− Πt1)rXUt
t + ΠtX

Ut
t µ− Ct

)
dt+ Πtσ1X

Ut
t dBt, (1.16)

1See [23], p.147.
2This model is more general than the model in Merton’s paper [15] where, for example, the rate of

interest was considered to be a constant. This generalization is necessary for comparing the results of
this research with the results in the classical model.
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where Πt =
(
diag(Ht)St

X
Ut
t

)T
represents the fractions of wealth invested in the risky

assets, 1− Πt1 =
H0
tNt

X
Ut
t

is the fraction of wealth invested in the riskless asset (bor-

rowing and shortselling (borrowing and selling assets) are allowed), 1 = (1, ..., 1)T,

µ = (µ1, ..., µn)T is a vector of expected returns1, and Bt = (B1
t , ..., B

n
t )T is an

n-dimensional Brownian motion.

Using the previous notation a ≡ (1−Πt1)rXUt
t + ΠtX

Ut
t µ−Ct, s1 ≡ Πtσ1X

Ut
t , Ut =

(Πt Ct), U = Rn × [0,∞).

Once the controlled system (1.16) has been defined, we set up the reward functional

and the value function. The problem of stochastic control is to find the consumption and

investment strategy that maximizes the investor’s expected utility. Let ζ > 0 denote the

utility discount rate which may be different from the risk-free rate r.

Remark 6. The reward functionals, value functions, and optimal strategies obtained in

the following sections will be denoted by the same notation even though they are not

necessarily the same and, thus, should be interpreted in the context of each section only.

1.4.1 Maximizing the Utility of Consumption and Final Wealth

Let f(s,XUs
s , Us) = (Cs)γ

γ
, g(XUT

T ) =
(X

UT
T )γ

γ
, γ ∈ (0, 1) be the hyperbolic absolute

risk aversion (HARA) utility functions for consumption and final wealth, respectively.

These utility functions are very general and are often used because of their mathematical

simplicity. The reward functional

w(t, x, U) =
1

γ
Et,x

[ ∫ T

t

e−ζ(s−t)(Cs)
γds+ eζ(T−t)(XUT

T )γ
]
,

and the value function

v(t, x) = sup
U∈Uw[t,T ]

w(t, x, U).

The corresponding HJB equation for t ∈ (0, T ) and x > 0 is

pt − ζp+ sup
(π, c)∈Rn×[0,∞)

((
(1− π1)rx+ πxµ− c

)
px +

1

2
||πσ1x||2pxx +

cγ

γ

)
= 0.

1In this section, 1 is an n-dimensional vector.
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The terminal and boundary conditions are{
p(T, x) = 1

γ
xγ, x > 0,

p(t, 0) = 0, t ∈ (0, T ).

The meaning of the terminal condition is that if the investor starts at time T then

there is no time for trading and the utility is equal to the utility of the wealth he starts

with. The boundary condition means that if the investor has no money then there in

nothing to invest and the utility is zero.

The solution to this boundary value problem is

p(t, x) =
xγ

γ

(
e
∫ T
t q(τ)dτ +

∫ T

t

e
∫ τ
t q(y)dydτ

)1−γ
.

where

q(t) = − ζ

1− γ
+

γr

1− γ
+
||(r − µT)(σT

1 )−1||2γ
2(γ − 1)2

. (1.17)

It has been verified [15] that p ≡ v. Therefore, the optimal control1 is

Π∗t =
(r − µT)(σ1σ

T
1 )−1

(γ − 1)
, C∗t =

XUt
t

e
∫ T
t q(τ)dτ +

∫ T
t
e
∫ τ
t q(y)dydτ

.

1.4.2 Maximizing the Utility of Consumption

Let f(s,XUs
s , Us) = (Cs)γ

γ
, g(XUT

T ) ≡ 0, γ ∈ (0, 1) be the utility functions for consumption

and final wealth, respectively. The reward functional

w(t, x, U) =
1

γ
Et,x

[ ∫ T

t

e−ζ(s−t)(Cs)
γds
]
,

and the value function

v(t, x) = sup
U∈Uw[t,T ]

w(t, x, U).

1If some of the entries of the vector Π∗t are negative (positive), then the investor should shortsell
(buy) the corresponding assets.
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The corresponding HJB equation for t ∈ (0, T ) and x > 0 is

pt − ζp+ sup
(π, c)∈Rn×[0,∞)

((
(1− π1)rx+ πxµ− c

)
px +

1

2
||πσ1x||2pxx +

cγ

γ

)
= 0.

The terminal and boundary conditions are{
p(T, x) = 0, x > 0,

p(t, 0) = 0, t ∈ (0, T ).

The solution to this boundary value problem is

p(t, x) =
xγ

γ

(∫ T

t

e
∫ τ
t q(y)dydτ

)1−γ
,

where q is defined in (1.17). It has been verified [15] that p ≡ v. Therefore, the optimal

control is

Π∗t =
(r − µT)(σ1σ

T
1 )−1

(γ − 1)
, C∗t =

XUt
t∫ T

t
e
∫ τ
t q(y)dydτ

.

1.4.3 Maximizing the Utility of Final Wealth

Let f(s,XUs
s , Us) = 0, g(XUT

T ) =
(X

UT
T )γ

γ
, γ ∈ (0, 1) be the utility functions for consump-

tion and final wealth, respectively. The reward functional

w(t, x, U) =
1

γ
Et,x

[
eζ(T−t)(XUT

T )γ
]
,

and the value function

v(t, x) = sup
U∈Uw[t,T ]

w(t, x, U).

The corresponding HJB equation for t ∈ (0, T ) and x > 0 is

pt − ζp+ sup
(π, c)∈Rn×[0,∞)

((
(1− π1)rx+ πxµ− c

)
px +

1

2
||πσ1x||2pxx

)
= 0.

The terminal and boundary conditions are{
p(T, x) = 1

γ
xγ, x > 0,

p(t, 0) = 0, t ∈ (0, T ).
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The solution to this boundary value problem is

p(t, x) =
xγ

γ

(
e
∫ T
t q(τ)dτ

)1−γ
,

where q is defined in (1.17). It has been verified [15] that p ≡ v. Therefore, the optimal

control is

Π∗t =
(r − µT)(σ1σ

T
1 )−1

(γ − 1)
, C∗t = 0.

1.5 Uncertainty in the Utility Function

In some papers [14, 20], it is claimed that the utility of goods depends not only on the

goods themselves but also on qualities of the goods. The classical models of optimal

investment and consumption [7, 16, 21] can be extended to incorporate this feature.

Thus, it is of interest to find out how the optimal policy changes when the uncertainty

in utility is introduced.

Indeed, when we buy different things we are not buying just objects, we are buying the

qualities that those objects possess and we need those qualities. Clearly, a diamond that

costs as much as a house has utility which is different from that of the house. However, if

the only argument to the utility function is the price of a merchandise then the utilities

of the diamond and the house are the same.

The good, per se, does not give utility to the consumer; it possesses charac-

teristics, and these characteristics give rise to utility.1

Since the technology is changing, new products keep coming out and substitute the

old ones giving the increase in utility. For example, having a computer today gives much

more opportunities to its user compared to the computers and technologies available 30

years ago. Therefore, preferences might change because of better characteristics of new

goods. It is important to note that this change does not have to entail the change of

prices.

The inflationary increase in prices being relative to the decrease caused by

technological progress means there is no variation in the price index.2

1Lancaster, K.J. (1966) A New Approach to Consumer Theory, Journal of Political Economy, Vol.74,
N.2, p.134.

2Cencini, A. (1996) Inflation and Unemployment: Contributions to a New Macroeconomic Approach,
Routledge studies in the modern world economy, Routledge, p.23.
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On the other hand, preference change might also be due to worsened quality of the

products or some other reason (for example, buying the same product over and over might

decrease its utility and ends up in satiation with the product). The described process

is not deterministic because it is not known how the market will change. Therefore, it

makes sense to model the uncertainty in utility by a stochastic process.

Although there is much debate on the dynamics of technological progress [1, 5], it

is not new in literature that in some areas it is growing exponentially [8]. A model

that assumes exponential growth can also be used to model linear behavior because of

the representation ex = 1 + x + o(x2) and, thus, changing the parameters of the model

accordingly, will help analyze the results when the growth is close to linear. Apart from

big technological advancements there are minor improvements in products that people

use every day. Therefore, the Geometric Brownian motion can be used to model the

uncertainty in utility.

The role played by the utility discount rate (ζ in the notation of this paper) used in

classical models should not be confused with the proposed utility randomness. The utility

discount rate accounts for the preference to obtain something now instead of waiting and

getting it later. For example, it is preferable to have a laptop today rather than tomorrow.

However, this only works if the implied computer has the same characteristics. In general,

it is not true because computer in the future can be more advanced.
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Chapter 2

Fully Observed Case

2.1 Formulation of the Problem

The problem of optimal portfolio management under uncertainty in utility function is

considered in this chapter. We begin by assuming that we have a filtered probability

space (Ω,F , {Fs}s∈[0,T ],P) satisfying the usual condition and there are two stochastic

processes defined on this space, XUt
t , Zt which represent the agent’s wealth and utility

randomness process at time t, respectively (here we use the same notation as in chapter

1 and XUt
t means that Xt depends on the control Ut). The two processes are defined by

the following stochastic differential equations:

dXUt
t = a(XUt

t , Ut)dt+ s1(XUt
t , Ut)dBt,1, (2.1)

dZt = b(Zt)dt+ s2(Zt)dBt,2,

where Bt,1 = (B1
t,1, ..., B

n
t,1)T is an n-dimensional Brownian motion, Bt,2 is a one dimen-

sional Brownian motion, Bt,1, Bt,2 are correlated and dBi
t,1dBt,2 = ρi(t)dt, where function

ρ(t) = (ρ1(t), ..., ρn(t))T is continuous and deterministic (||ρ(t)||2 < 1 for all t ∈ [0, T ]).

To shorten the notation, let a , a(XUt
t , Ut), b , b(Zt), s1 , s1(XUt

t , Ut), s2 , s2(Zt),

and ρ , ρ(t).

Note that the utility randomness process Zt does not depend on the control Ut =

(Πt, Ct). However, the randomness of the stock prices represented by the Brownian

motions Bt,1 can be correlated with that of the utility randomness process specified by

Bt,2. This assumption makes sense because it is reasonable to assume that technological
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progress might influence the stock prices.

Denote the utility discounting factor by q(s) = e−ζ(s−t), where ζ > 0 is the utility

discount rate. Define the reward functional1 as

w(t, x, z, U) = Et,x,z

[ ∫ T

t

q(s)f(s,XUs
s , Cs, Zs)ds+ q(T )g(XUT

T , ZT )
]
, (2.2)

and the value function as

v(t, x, z) = sup
U∈Uw[t,T ]

w(t, x, z, U). (2.3)

Therefore, the goal is to find a feasible control process {U∗s }s∈[t,T ] that gives the

supremum of the reward functional.

The system (2.1) can be put in a form (1.6) and, thus, under certain assumptions

(Lipschitz continuity in space variable and boundedness at zero) has a unique strong

solution. Indeed, changing the Brownian motions dBt,1, dBt,2 into independent Brownian

motions dB̃t,1 = dBt,1, dB̃t,2 = dBt,2−ρTdBt,1√
1−||ρ||2

, the system (2.1) can be written as

dX̃t = ã(t, X̃Ut
t , Ut)dt+ s̃1(t, X̃Ut

t , Ut)dB̃t,

where X̃t = (XUt
t , Zt)

T, B̃t = (B̃t,1, B̃t,2)T and the functions a, b and s1, s2 are combined

into ã and s̃1, respectively. This suggests the assumptions on a, s1, b, s2 required for the

results of sections 1.2 and 1.3 in chapter 1 be applicable, namely (defining U as the space of

control values), the functions a : [0,∞)×U→ R, s1 : [0,∞)×U→ R1×n, b : [0,∞)→ R,

and s2 : [0,∞) → R are continuous and satisfy2 the assumptions A(1),(2), and (5).

Similarly, functions f , and g should satisfy assumption A(3), and (4).

2.2 Fully Observed Utility Randomness Process

In this section the problem (2.3) for certain class of functions f, g, a, b, s1, and s2 is

solved under the assumption that the utility randomness process Zt is fully observed. In

addition to the processes defined in section 1.4, we also define

1Et,x,z[·] , E[·|XUt
t = x, Zt = z].

2It should be taken into account that these functions do not depend on t explicitly, and b, and s2 do
not depend on the control.
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Utility randomness process :

dZt = βZtdt+ σ2ZtdBt,2, Z0 = z0.

As it was mentioned in section 1.5, a Geometric Brownian motion is an appropriate

process to model the uncertainty in the utility function. Let us use the previous notation

b ≡ βZt, s2 ≡ σ2Zt. The parameter β represents the expected instantaneous growth

in utility and σ2 > 0 is the utility growth volatility. Since technological achievements

usually tend to raise the utility, it is only natural to assume that β > 0. We use the utility

functions of hyperbolic absolute risk aversion (HARA) type, which is U(C) = Cγ

γ
with

γ ∈ (0, 1). To model the uncertainty in the utility, we multiply the utility function by

the utility randomness process Zt. Therefore, the functions f and g are f(t, x, c, z) = cγz
γ

and g(x, z) = xγz
γ

, respectively.

As it was mentioned in section 1.3, the problem (2.3) is difficult to solve directly.

One way to solve it is to derive a corresponding second-order partial differential equation

(more precisely, HJB equation) that the value function should satisfy. It is assumed that1

the value function v ∈ C1,2,2(D) ∩ C(D̄), D = {(t, x, z) : t ∈ [0, T ), x > 0, z > 0} and

the HJB equation admits a classical solution. If the solution has been obtained and it

has been verified that the solution to the HJB equation is the value function then the

optimal control can be found.

2.3 Derivation of the HJB Equation

In this section we derive the HJB equation using the Bellman’s equation defined in (1.13).

Consider the times t, θ ∈ [0, T ), θ > t and a constant control U ≡ u ∈ Uw[t, T ] then from

Bellman’s Principle of Optimality (1.13), we have the following inequality for the value

function

v(t, x, z) ≥ Et,x,z

[ ∫ θ

t

q(s)f(s,Xu
s , Cs, Zs) ds+ q(θ)v(θ,Xu

θ , Zθ)
]
. (2.4)

1Notation D̄ means the completion of D, and C1,2,2(D) is the space of functions continuously dif-
ferentiable in first independent variable and twice continuously differentiable in the second and third
independent variables.
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Since v ∈ C1,2,2(D) ∩ C(D̄), Ito’s formula (see [23], p.167) yields

d
(
q(s)v(s,Xu

s , Zs)
)

= q(s)
(
(vs − ζv)ds+ vxdX

u
s + vzdZs + vxzd[Xu

s , Zs]

+
1

2
vxxd[Xu

s , X
u
s ] +

1

2
vzzd[Zs, Zs]

)
= q(s)

(
(vs − ζv)ds+ vxads+ vxs1dBs,1 + vzbds+ vzs2dBs,2

+
1

2
vxxs1s

T
1 ds+

1

2
vzzs

2
2ds+ vxzs1ρs2ds

)
.

Integrating from t to θ, and noting that q(t) = 1, we get

q(θ)v(θ,Xu
θ , Zθ) = v(t,Xu

t , Zt)

+

∫ θ

t

q(s)
(
vs − ζv + vxa+ vzb+

1

2
vxxs1s

T
1 +

1

2
vzzs

2
2 + vxzs1ρs2

)
ds

+

∫ θ

t

q(s)vxs1dBs,1 +

∫ θ

t

q(s)vzs2dBs,2.

The stochastic integrals in the above expression are local martingales (see [10], p.36).

Consider a sequence of stopping times τn = inf{h ≥ t :

∫ h

t

(
||q(s)vxs1||2 +

||q(s)vzs2||2
)
ds ≥ n}. Notice that τn diverges to infinity almost surely as n goes to infin-

ity. Let τ = θ ∧ τn, then the stochastic integrals

∫ τ

t

q(s)vxs1dBs,1 and

∫ τ

t

q(s)vzs2dBs,2

are martingales. Plugging q(τ)v(τ,Xu
τ , Zτ ) into equation (2.4) we obtain

v(t, x, z) ≥ Et,x,z

[ ∫ τ

t

q(s)
(
f(s,Xu

s , Cs, Zs) + vs − ζv + vxa+ vzb

+
1

2
vxxs1s

T
1 +

1

2
vzzs

2
2 + vxzs1ρs2

)
ds

+

∫ τ

t

q(s)vxs1dBs,1 +

∫ τ

t

q(s)vzs2dBs,2 + v(t,Xu
t , Zt)

]
.

Since Et,x,z

[
v(t,Xu

t , Zt)
]

= v(t, x, z), we have

Et,x,z

[ ∫ τ

t

q(s)
(
f(s,Xu

s , Cs, Zs) + vs − ζv + vxa+ vzb

+
1

2
vxxs1s

T
1 +

1

2
vzzs

2
2 + vxzs1ρs2

)
ds
]
≤ 0,
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in other words,

Et,x,z

[ ∫ τ

t

q(s)
(
f(s,Xu

s , Cs, Zs)ds+ Lv(s,Xu
s , Zs)

)
ds
]
≤ 0, (2.5)

where L = ∂
∂s
− ζ + a ∂

∂x
+ b ∂

∂z
+ 1

2
s1s

T
1
∂2

∂x2 + 1
2
s2

2
∂2

∂z2 + s1ρs2
∂2

∂z∂x
is a differential operator.

Assume that Et,x,z

[ ∫ T

t

q(s)
∣∣∣f(s,Xu

s , Cs, Zs)ds+Lv(s,Xu
s , Zs)

∣∣∣ds] <∞ if t < T <∞.

Then taking the limit as n goes to infinity of (2.5) and using the Dominated Convergence

Theorem (see [23], p.27), we obtain, for any t < θ < T ,

Et,x,z

[ ∫ θ

t

q(s)
(
f(s,Xu

s , Cs, Zs)ds+ Lv(s,Xu
s , Zs)

)
ds
]
≤ 0. (2.6)

Note that f is continuous, v ∈ C1,2,2(D) ∩ C(D̄), and we divide equation (2.6) by θ − t
and take the limit as θ decreases to t to get

f(t, xu, c, z) + Lv(t, xu, z) ≤ 0, ∀(t, x, z) ∈ D.

Also notice that this is true for any constant control u ∈ Uw[t, T ] for all t ∈ [0, T ), then

we reach

sup
u∈U

(
f(t, xu, c, z) + Lv(t, xu, z)

)
≤ 0, ∀(t, x, z) ∈ D. (2.7)

On the other hand, suppose that U∗ is an optimal control then by definition of the

value function

v(t, x, z) = Et,x,z

[ ∫ θ

t

q(s)f(s,XU∗s
s , Cs, Zs)ds+ q(θ)v(θ,X

U∗θ
θ , Zθ)

]
.

Using the same approach as before, we obtain

f(t, xU
∗
t , c, z) + Lv(t, xU

∗
t , z) = 0, ∀(t, x, z) ∈ D. (2.8)

Thus, equations (2.7) and (2.8) suggest that the function v should satisfy the following
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equation

sup
u∈U

(
f(t, xu, c, z) + Lv(t, xu, z)

)
= 0, ∀(t, x, z) ∈ D.

Therefore, v satisfies (solves) the HJB equation with the boundary condition given below. sup
u∈U

(
f(t, xu, c, z) + Lv(t, xu, z)

)
= 0, ∀(t, x, z) ∈ D,

v(T, x, z) = g(x, z), ∀x > 0, ∀z > 0.
(2.9)

where L = ∂
∂t
− ζ + a ∂

∂x
+ b ∂

∂z
+ 1

2
s1s

T
1
∂2

∂x2 + 1
2
s2

2
∂2

∂z2 + s1ρs2
∂2

∂z∂x
is a differential operator.

2.4 Verification Theorem

Once the HJB equation has been solved and we have a solution v(t, x, z) we need to

check that this solution is indeed the function defined by (2.3). The next theorem gives

sufficient conditions that the solution to the HJB equation should satisfy to be the value

function. The notation p and v are used to distinguish a solution of the HJB equation

from the value function, respectively.

Theorem 4. (Verification Theorem) Let a function p ∈ C1,2,2(D)∩C(D̄) and satisfy

a quadratic growth condition such as |p(t, x, z)| ≤ C(1 + |x|2 + |z|2), ∀(t, x, z) ∈ D̄ for

some constant C > 0.

(1) Suppose that

− sup
u∈U

(
f(t, xu, c, z) + Lp(t, xu, z)

)
≥ 0, ∀(t, x, z) ∈ D, (2.10)

p(T, x, z) ≥ g(x, z), ∀x > 0, ∀z > 0, (2.11)

where L = ∂
∂t
− ζ + a ∂

∂x
+ b ∂

∂z
+ 1

2
s1s

T
1
∂2

∂x2 + 1
2
s2

2
∂2

∂z2 + s1ρs2
∂2

∂z∂x
is a differential operator.

Then p ≥ v on D̄.

(2) Suppose that p(T, x, z) = g(x, z) and there exists a measurable function U∗(t, x, z),
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where (t, x, z) ∈ D, and taking values in U such that

− sup
u∈U

(
f(t, xu, c, z) + Lp(t, xu, z)

)
= f(t, xU

∗
t , c, z) + Lp(t, xU∗t , z) = 0. (2.12)

Also assume that the stochastic differential equation

dXs = a(Xs, U
∗(s,Xs, Zs))ds+ s1(Xs, U

∗(s,Xs, Zs))dBs,1

admits a unique strong solution denoted by X∗t , given an initial condition Xt = x and

the process U∗ ∈ Uw[0, T ]. Then the function p is the value function v given by (2.3), in

other words p = v on D̄, and U∗ is an optimal Markov control (at time t depends only

on Xt and Zt).

Proof. (1) Assume that the function p satisfies the stated in the theorem assumptions.

Let τn = inf{h ≥ t :

∫ h

t

(
||q(s)pxs1||2 + ||q(s)pzs2||2

)
ds ≥ n} be a sequence of stopping

times diverging to infinity almost surely as n goes to infinity and let τ = τn ∧ θ, then by

the integral form of Ito’s formula, we have for all U in Uw[t, τ ]

q(τ)p(τ,XUτ
τ , Zτ ) = p(t,XUt

t , Zt) +

∫ τ

t

q(s)Lpds+

∫ τ

t

q(s)pxs1dBs,1 +

∫ τ

t

q(s)pzs2dBs,2.

Taking expectations of both sides and using the fact that the stochastic integrals are

martingales, we obtain

Et,x,z[q(τ)p(τ,XUτ
τ , ZUτ

τ )] = p(t, x, z) + Et,x,z

[ ∫ τ

t

q(s)Lpds
]
, ∀U ∈ Uw[t, τ ].

Since p satisfies inequality (2.10), we have q(s)f(s,XUs
s , Cs, Zs) + q(s)Lp(s,XUs

s , Zs) ≤ 0,

∀Us ∈ U, s ∈ [t, T ]. Hence for all U in Uw[t, τ ],

Et,x,z[q(τ)p(τ,XUτ
τ , ZUτ

τ )] ≤ p(t, x, z)− Et,x,z
[ ∫ τ

t

q(s)f(s,XUs
s , Cs, Zs)ds

]
. (2.13)

Note that
∣∣∣ ∫ τ

t

q(s)f(s,XUs
s , Cs, Zs)ds

∣∣∣ ≤ ∫ T

t

∣∣∣q(s)f(s,XUs
s , Cs, Zs)

∣∣∣ds and also recall

that |p(τ,XUτ
τ , Zτ )| ≤ C(1 + sup

s∈[t,T ]

|XUs
s |2 + sup

s∈[t,T ]

|Zs|2) and the right hand sides of these

inequalities are integrable (see Theorem 1). If we apply the Dominated Convergence
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Theorem to take the limit in (2.13) as n goes to infinity then one can obtain

Et,x,z[q(θ)p(θ,X
Uθ
θ , ZUθ

θ )] ≤ p(t, x, z)− Et,x,z
[ ∫ θ

t

q(s)f(s,XUs
s , Cs, Zs)ds

]
, ∀U ∈ Uw[t, θ].

By the assumption that the function p is continuous in D̄, by the condition (2.11) and

by the Dominated Convergence Theorem, as θ goes to T , we get that for all U ∈ Uw[t, T ]

the following inequality holds

Et,x,z[q(T )g(XUT
T , ZT )] ≤ Et,x,z[q(T )p(T,XUT

T , ZUT
T )]

≤ p(t, x, z)− Et,x,z
[ ∫ T

t

q(s)f(s,XUs
s , Cs, Zs)ds

]
,

or equivalently,

p(t, x, z) ≥ Et,x,z

[ ∫ T

t

q(s)f(s,XUs
s , Cs, Zs)ds+ q(T )g(XUT

T , ZT )
]
. (2.14)

Since (2.14) holds for all U ∈ Uw[t, T ], we can conclude p ≥ v.

(2)Adopting a way similar to the proof of part (1), we consider a sequence of stopping

times τn defined as in (1), τ = τn ∧ θ, and apply the Ito’s formula to the function

q(τ)p(τ,X
U∗τ
τ , Zτ ). Then we take expectation on both sides and take limit as n tends to

infinity. Then it is easy to see

Et,x,z[q(θ)p(θ,X
U∗τ
θ , Zθ)] = p(t, x, z) + Et,x,z

[ ∫ θ

t

q(s)Lp(s,XU∗s
s , Zs)ds

]
.

By (2.12) we have that

Et,x,z[q(θ)p(θ,X
U∗θ
θ , Zθ)] = p(t, x, z)− Et,x,z

[ ∫ θ

t

q(s)f(s,XU∗s
s , Cs, Zs)ds

]
and taking the limit as θ goes to T we obtain

p(t, x, z) = Et,x,z

[ ∫ T

t

q(s)f(s,XU∗s
s , Cs, Zs)ds+ q(T )g(X

U∗T
T , ZT )

]
= w(t, x, z, U∗),

which means that p(t, x, z) = w(t, x, z, U∗) ≤ v(t, x, z). This, together with the result in

part (1) implies that p = v with U∗ as an optimal Markov control.

31



2.5 Maximizing the Utility of Consumption and

Final Wealth

In this section we consider the problem of maximizing the utility of consumption and

final wealth. The value function (assuming γ ∈ (0, 1)) is

v1(t, x, z) =
1

γ
sup

U∈Uw[t,T ]

Et,x,z

[ ∫ T

t

q(s)(Cs)
γZsds+ q(T )(XU

T )γZT

]
.

The corresponding HJB equation (2.9) for t ∈ (0, T ), x > 0, and z > 0 is

pt − ζp+ βzpz +
1

2
(σ2z)2pzz + sup

(π, c)∈Rn×[0,∞)

((
(1− π1)rx+ πxµ− c

)
px

+
1

2
||πσ1x||2pxx + πσ1ρσ2xzpzx +

cγz

γ

)
= 0 (2.15)

where for each t ∈ (0, T ) we have π ∈ Rn is a row vector that represents the fractions

of wealth invested in the risky assets, 1 = (1, ..., 1)T ∈ Rn, µ ∈ Rn is a column vector

of expected returns, c is a scalar-valued consumption rate, and ρ ∈ Rn is the correlation

column vector defined in section 2.1. The terminal and boundary conditions are
p(T, x, z) = 1

γ
xγz, x > 0, z > 0,

p(t, 0, z) = 0, t ∈ (0, T ), z > 0,

p(t, x, 0) = 0, t ∈ (0, T ), x > 0.

We now discuss the meaning of the terminal and boundary conditions. The terminal

condition p(T, x, z) = 1
γ
xγz means that if the investor starts trading at time T then there

is no time for investment and the utility of his wealth is equal to the utility of the wealth

he starts with. The boundary condition p(t, 0, z) = 0 says that if the initial capital is

zero then the value function is zero. The third condition p(t, x, 0) = 0 implies that the

investor is not interested in trading because the quality of goods he can buy is zero and

therefore the value function is zero regardless of the amount of wealth he has. This case

seems unrealistic and the probability of this happening is zero.
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2.5.1 Solution to the HJB equation

We look for a solution in the form of p(t, x, z) = 1
γ
xγzh(t)1−γ where h(t) is some positive

function. This form of solution is suggested by the functions f(t, x, c, z) = cγz
γ

and

g(x, z) = xγz
γ
, γ ∈ (0, 1) defined in section 2.2. First, we evaluate the supremum

sup
(π, c)∈Rn×[0,∞)

((
(1− π1)rx+ πxµ− c

)
xγ−1zh(t)1−γ

+
1

2
||πσ1x||2(γ − 1)xγ−2zh(t)1−γ + πσ1ρσ2zx

γh(t)1−γ +
cγz

γ

)
= xγzh(t)1−γ

sup
(π, c)∈Rn×[0,∞)

(
(1− π1)r + πµ− c

x
+

1

2
||πσ1||2(γ − 1) + πσ1ρσ2 +

cγ

xγh(t)1−γγ

)
= xγzh(t)1−γ(

sup
π∈Rn

(
(1− π1)r + πµ+

1

2
||πσ1||2(γ − 1) + πσ1ρσ2

)
+ sup

c∈[0,∞)

( cγ

xγh(t)1−γγ
− c

x

))
.

Consider the functions

g1(π) = (1− π1)r + πµ+
1

2
||πσ1||2(γ − 1) + πσ1ρσ2,

g2(c) =
cγ

xγh(t)1−γγ
− c

x
.

The Hessian of the function g1(π) is H(π) = σ1σ
T
1 (γ−1) and it is negative definite. Also,

d2g2

dc2
= (γ−1)cγ−2

xγh(t)1−γ < 0. Therefore, the maximum (π∗, c∗) is obtained from

∇g1(π) = (µ− r) + σ1σ
T
1 π

T(γ − 1) + σ1ρσ2 = 0,

dg2

dc
= −1

x
+

cγ−1

xγh(t)1−γ = 0.

Thus,

π∗ =
(r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)
,

c∗ =
x

h(t)
.
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Substituting π∗ into the supremum over π we obtain

(
(1− (r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)
1)r +

(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
µ

+
1

2

∣∣∣∣∣∣(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
σ1

∣∣∣∣∣∣2(γ − 1) +
((r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)

)
σ1ρσ2

)
=
(
r − (r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)
1r +

(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
µ

+
1

2

∣∣∣∣∣∣(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
σ1

∣∣∣∣∣∣2(γ − 1) +
((r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)

)
σ1ρσ2

=
(
r − ||(r − µ

T − ρTσT
1 σ2)(σT

1 )−1||2

2(γ − 1)

)
.

Now we substitute c∗ into the supremum over c we have

−
x
h(t)

x
+

(
x
h(t)

)γ
xγh(t)1−γγ

= − 1

h(t)
+

1

h(t)γ
.

Therefore, the HJB equation (2.15) becomes

(1− γ)

γ
xγzh(t)−γh′(t)− ζ

γ
xγzh(t)1−γ +

β

γ
zxγh(t)1−γ

+ xγzh(t)1−γ
(
r − ||(r − µ

T − ρTσT
1 σ2)(σT

1 )−1||2

2(γ − 1)
− 1

h(t)
+

1

h(t)γ

)
= 0. (2.16)

Dividing both sides of the equation (2.16) by (1−γ)
γ
xγzh(t)−γ we obtain

h′(t)− ζ

1− γ
h(t) +

β

1− γ
h(t)

+
γ

1− γ
h(t)

(
r − ||(r − µ

T − ρTσT
1 σ2)(σT

1 )−1||2

2(γ − 1)
− 1

h(t)
+

1

h(t)γ

)
= 0

which is equivalent to

h′(t)− ζ

1− γ
h(t) +

β

1− γ
h(t)

+
γr

1− γ
h(t) +

||(r − µT − ρTσT
1 σ2)(σT

1 )−1||2γ
2(γ − 1)2

h(t) +
γ

γ − 1
+

1

1− γ
= 0.
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In other words,

h′(t) + y(t)h(t) + 1 = 0, (2.17)

where y(t) is defined as

y(t) =
−ζ + β + γr

1− γ
+
||(r − µT − ρTσT

1 σ2)(σT
1 )−1||2γ

2(γ − 1)2
. (2.18)

Since y(t) is continuous, the equation (2.17) with the terminal condition h(T ) = 1 admits

the unique solution

h1(t) = e
∫ T
t y(τ)dτ +

∫ T

t

e
∫ τ
t y(q)dqdτ.

The function h1(t) is in C1([0, T ]) and is positive. Therefore, the solution to the HJB

equation (2.15) is

p1(t, x, z) =
xγz

γ

(
e
∫ T
t y(τ)dτ +

∫ T

t

e
∫ τ
t y(q)dqdτ

)1−γ
. (2.19)

2.5.2 Verification

The solution p1 to equation (2.15) is a C1,2,2(D) ∩C(D̄) function. The quadratic growth

condition is also satisfied as one can see below. We see that the function h1(s) > 0 is

bounded on the interval [0, T ] and since 0 < γ < 1, x ≥ 0, z ≥ 0 we have xγ < 1 + x

which implies

xγz ≤ z + xz < 1 + xz + z2 < 1 + 2x2 + 2z2 + z2 < 3(1 + x2 + z2).

It should also be verified that the obtained control is admissible. The wealth process

(1.16) when the control {Π∗s, C∗s}s∈[t,T ] is used, satisfies the following stochastic differential

equation

dX∗s =
(

(1− Π∗s)rX
∗
s + Π∗sX

∗
sµ− C∗s

)
ds+ Π∗sσ1X

∗
sdBs,1
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=
(

(1− (r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
1)r +

(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
µ

− 1

h1(s)

)
X∗sds+

(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
σ1X

∗
sdBs,1

=
(
r − (r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1(r − µ)

(γ − 1)
− 1

h1(s)

)
X∗sds

+
(r − µT − ρTσT

1 σ2)(σT
1 )−1

(γ − 1)
X∗sdBs,1

which is a Geometric Brownian motion (assumption B(4) in Section 1.3 is satisfied).

Since X∗s is continuous then by Theorem 2 X∗s is Fs,t-progressively measurable and B(3)

in section 1.3 is fulfilled. From the fact that h1(s) > K > 0 for all s ∈ [0, T ] for

some constant K > 0 and f(t, x, z, c) = cγz
γ

< 3
γ
(1 + c2 + z2), we have 1

γ
(Cs)

γZs =

1
γ

(
Xs
h1(s)

)γ
Zs <

3
γ
(1 + 1

K2 (Xs)
2 + (Zs)

2) and, thus, by Theorem 1 function f is integrable.

Similarly, function g is also integrable. This implies that B(5) in section 1.3 is satisfied.

Therefore, the control is admissible.

Since the solution p1(t, x, z) to (2.15) satisfies the assumptions of the verification

theorem then v1 = p1 and the optimal control is

Π∗s =
(r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)
, C∗s,1 =

Xs

h1(s)
. (2.20)

2.6 Maximizing the Utility of Consumption

In this section, we will consider a problem of maximizing the utility of consumption. The

value function is

v2(t, x, z) =
1

γ
sup

U∈Uw[t,T ]

Et,x,z

[ ∫ T

t

q(s)(Cs)
γZsds

]
.

The corresponding HJB equation (2.9) for t ∈ (0, T ), x > 0 and z > 0 is

pt − ζp+ βzpz +
1

2
(σ2z)2pzz + sup

(π, c)∈Rn×[0,∞)

((
(1− π1)rx+ πxµ− c

)
px

+
1

2
||πσ1x||2pxx + πσ1ρσ2xzpzx +

cγz

γ

)
= 0. (2.21)
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The dimensions and meaning of all the variables and parameters is the same as in section

2.5. The terminal and boundary conditions are
p(T, x, z) = 0, x > 0, z > 0,

p(t, 0, z) = 0, t ∈ (0, T ), z > 0,

p(t, x, 0) = 0, t ∈ (0, T ), x > 0.

The meaning of the terminal and boundary conditions is the same as in section 2.5.

2.6.1 Solution to the HJB equation

The calculations are the same as in section 2.5 and the only difference is that the terminal

condition for the function h(t) is given as h(T ) = 0. Therefore, we have

h′(t) + y(t)h(t) + 1 = 0, (2.22)

where y(t) is defined by (2.18).

It is easy to verify that the solution to equation (2.22) with the terminal condition

h(T ) = 0 is h2(t) =

∫ T

t

e
∫ τ
t y(q)dqdτ .

The function h2(t) is in C1([0, T ]) and is positive. Therefore, the solution to the HJB

equation (2.21) is given as

p2(t, x, z) =
xγz

γ

(∫ T

t

e
∫ τ
t y(q)dqdτ

)1−γ
. (2.23)

2.6.2 Verification

The verification is mostly identical to the one in section 2.5 but the function h2(s) goes

to 0 as s goes to T due to continuity. Hence the condition h2(s) > K > 0 is not satisfied.

To verify that the function f is integrable, let us denote A1 , r− (r−µT−ρTσT
1 σ2)(σ1σT

1 )−1(r−µ)

(γ−1)

and A2 ,
(r−µT−ρTσT

1 σ2)(σT
1 )−1

(γ−1)
, then the equation for the wealth process (assuming s < T )

becomes

dX∗s =
(
A1 −

1

h2(s)

)
X∗sds+ A2X

∗
sdBs,1.
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The solution to this stochastic differential equation with the initial condition X0 = x is

X∗s =xe

∫ s
0 A2dBτ,1+

∫ s
0

(
(A1− 1

h2(τ)
)− 1

2
A2

2

)
dτ

=xe

∫ s
0 A2dBτ,1+

∫ s
0

(
A1− 1

2
A2

2

)
dτ
· e−

∫ s
0

1
h2(τ)

dτ
.

Thus,

C∗s =
X∗s
h2(s)

= xe

∫ s
0 A2dBτ,1+

∫ s
0

(
A1− 1

2
A2

2

)
dτ
· e
−

∫ s
0

1
h2(τ)

dτ

h2(s)
= Ys

e
−

∫ s
0

1
h2(τ)

dτ

h2(s)

where Ys = xe

∫ s
0 A2dBτ,1+

∫ s
0

(
A1− 1

2
A2

2

)
dτ

is a Geometric Brownian motion with the initial

condition Y0 = x. We will show that the term 1
h2(s)
· e−

∫ s
0

1
h2(τ)

dτ
is bounded on [0, T ].

Since the function y(s), s ∈ [0, T ] is continuous, it attains its minimum and max-

imum. That is why, for some ε > 0 we may denote m = min( min
s∈[0,T ]

y(s),−ε) and

M = max( max
s∈[0,T ]

y(s), ε). The following inequalities hold

∫ T

s

em(τ−s)dτ ≤ h2(s) =

∫ T

s

e
∫ τ
s y(q)dqdτ ≤

∫ T

s

eM(τ−s)dτ

and, hence,

1

m
(em(T−s) − 1) ≤ h2(s) ≤ 1

M
(eM(T−s) − 1).

Using the above inequalities, we obtain

e
−

∫ s
0

1
h2(τ)

dτ

h2(s)
≤ e

−
∫ s
0

1
h2(τ)

dτ

1
m

(em(T−s) − 1)
≤ e

−
∫ s
0

M

eM(T−l)−1
dl

1
m

(em(T−s) − 1)
=
e
Ms+ln( 1−eM(T−s)

1−eMT )

1
m

(em(T−s) − 1)

and after simlification, the last term in the above inequality equals

meMs
1−eM(T−s)

1−eMT

em(T−s) − 1
=

meMs

1− eMT

1− eM(T−s)

em(T−s) − 1
=

meMs

eMT − 1

1− eM(T−s)

1− em(T−s)

which goes to meMT

eMT−1
M
m

, or after simplification MeMT

eMT−1
as s approaches T from the left.
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From the fact that function f satisfies f(t, x, z, c) = cγz
γ
< 3

γ
(1 + c2 + z2), we have the

inequality 1
γ
(Cs)

γ ·Zs = 1
γ

(
Xs
h2(s)

)γ
Zs <

3
γ
(1 +K2(Ys)

2 + (Zs)
2), where K = MeMT

eMT−1
. Thus,

by Theorem 1 the function f is integrable. Therefore, v2 = p2. The optimal control is

Π∗s =
(r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)
, C∗s,2 =

Xs

h2(s)
. (2.24)

2.7 Maximizing the Utility of Final Wealth

In this section, we look at the problem of maximizing the utility of final wealth. The

value function is

v3(t, x, z) =
1

γ
sup

U∈Uw[t,T ]

Et,x,z[q(T )(XU
T )γZT ].

The corresponding HJB equation (2.9) for t ∈ (0, T ), x > 0 and z > 0 is

pt − ζp+ βzpz +
1

2
(σ2z)2pzz + sup

(π, c)∈Rn×[0,∞)

((
(1− π1)rx+ πxµ− c

)
px

+
1

2
||πσ1x||2pxx + πσ1ρσ2xzpzx

)
= 0. (2.25)

The dimensions and meaning of all the variables and parameters is the same as in section

2.5. The terminal and boundary conditions are
p(T, x, z) = 1

γ
xγz, x > 0, z > 0,

p(t, 0, z) = 0, t ∈ (0, T ), z > 0,

p(t, x, 0) = 0, t ∈ (0, T ), x > 0.

The meaning of the terminal and boundary conditions is the same as in section 2.5.

2.7.1 Solution to the HJB equation

We may look for a solution in the form of p(t, x, z) = 1
γ
xγzh(t)1−γ where h(t) is some

positive function. This form of solution is suggested by the functions f(t, x, c, z) = cγz
γ

and g(x, z) = xγz
γ
, γ ∈ (0, 1) defined in section 2.2. First we evaluate the supremum in
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the equation (2.25)

sup
(π, c)∈Rn×[0,∞)

((
(1− π1)rx+ πxµ− c

)
xγ−1zh(t)1−γ

+
1

2
||πσ1x||2(γ − 1)xγ−2zh(t)1−γ + πσ1ρσ2zx

γh(t)1−γ
)

= xγzh(t)1−γ sup
(π, c)∈Rn×[0,∞)

(
(1− π1)r + πµ− c

x
+

1

2
||πσ1||2(γ − 1) + πσ1ρσ2

)
= xγzh(t)1−γ

(
sup
π∈Rn

(
(1− π1)r + πµ+

1

2
||πσ1||2(γ − 1) + πσ1ρσ2

)
+ sup

c∈[0,∞)

(
− c

x

))
.

Consider the functions

g1(π) = (1− π1)r + πµ+
1

2
||πσ1||2(γ − 1) + πσ1ρσ2,

g2(c) = − c
x
.

The Hessian of g1(π) is H(π) = σ1σ
T
1 (γ−1) and is negative definite. Also, the maximum

of g2(c) is reached when c = 0. Therefore, the maximum of g1(π) is obtained from

∇g1(π) = (µ− r) + σ1σ
T
1 π

T(γ − 1) + σ1ρσ2 = 0.

Thus,

π∗ =
(r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)
,

c∗ = 0.

Substituting (π∗, c∗) into the suprema we obtain

(
(1− (r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)
1)r +

(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
µ

+
1

2

∣∣∣∣∣∣(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
σ1

∣∣∣∣∣∣2(γ − 1) +
((r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)

)
σ1ρσ2

)
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=
(
r − (r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)
1r +

(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
µ

+
1

2

∣∣∣∣∣∣(r − µT − ρTσT
1 σ2)(σ1σ

T
1 )−1

(γ − 1)
σ1

∣∣∣∣∣∣2(γ − 1) +
((r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)

)
σ1ρσ2

=
(
r − ||(r − µ

T − ρTσT
1 σ2)(σT

1 )−1||2

2(γ − 1)

)
.

Therefore, the HJB equation (2.25) becomes

(1− γ)

γ
xγzh(t)−γh′(t)− ζ

γ
xγzh(t)1−γ +

β

γ
zxγh(t)1−γ

+ xγzh(t)1−γ
(
r − ||(r − µ

T − ρTσT
1 σ2)(σT

1 )−1||2

2(γ − 1)

)
= 0. (2.26)

Dividing both sides of the equation (2.26) by (1−γ)
γ
xγzh(t)−γ, we obtain

h′(t)− ζ

1− γ
h(t) +

β

1− γ
h(t)

+
γ

1− γ
h(t)

(
r − ||(r − µ

T − ρTσT
1 σ2)(σT

1 )−1||2

2(γ − 1)

)
= 0

equivalently,

h′(t)− ζ

1− γ
h(t) +

β

1− γ
h(t)

+
γr

1− γ
h(t) +

||(r − µT − ρTσT
1 σ2)(σT

1 )−1||2γ
2(γ − 1)2

h(t) = 0.

Hence

h′(t) + y(t)h(t) = 0, (2.27)

where y(t) is defined by (2.18).

The solution to (2.27) with the terminal condition h(T ) = 1 is h3(t) = e
∫ T
t y(τ)dτ . The

function h3(t) is in C1([0, T ]) and is positive. Therefore, the solution to the HJB equation

(2.25) is

p3(t, x, z) =
xγz

γ

(
e
∫ T
t y(τ)dτ

)1−γ
. (2.28)
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2.7.2 Verification

For this problem, the verification is quite similar to the one already done in section 2.5

and v3 = p3. The optimal control here is

Π∗s =
(r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

(γ − 1)
, C∗s,3 = 0. (2.29)

2.8 Analysis of the Results and Numerical

Experiments

Here we analyse and interpret the results obtained in sections 2.5, 2.6, and 2.7. Through-

out this section, we assume that all the parameters are constant, t < T , and the investor

has the utility function U(C) = Cγ

γ
, γ ∈ (0, 1) (the utulity function assumed in sections

2.5, 2.6, and 2.7). From (2.20), (2.24), and (2.29) we have the following claim.

Proposition 2. The optimal portfolio is

Π∗t =
(r − µ)T(σ1σ

T
1 )−1vx

Xtvxx
− ρTσ−1

1 σ2Ztvzx
Xtvxx

regardless of the problem (maximizing both the utility of consumption and final wealth,

only the utility of consumption, or only the utility of final wealth).

There are a few things to discuss about this proposition. By comparison with the

solution of the classical model (section 1.4), one should notice that the second fraction

is the effect of the randomness in the utility. For n = 1 (there is only one risky asset),

if µ < r, then the investor will short (borrow and sell) some of the risky assets, and if

µ > r, then he will invest in the risky assets.

We next show that the Mutual Fund Theorem holds.

Theorem 5. The optimal portfolio is made of three mutual funds. First fund Φ1(t) con-

sists of the risk-free asset and the other two funds Φ2(t) = (r − µ)T(σ1σ
T
1 )−1, Φ3(t) =

ρTσ−1
1 include risky assets. The vectors Φ2(t),Φ3(t) represent the second and third port-

folio’s weights of the risky assets at time t. The optimal allocation of the wealth in each

fund is given by λ2 = vx
Xtvxx

, λ3 = σ2Ztvzx
Xtvxx

, and λ1 = 1− λ2 − λ3.
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Proof. The proof follows immediately from the obtained optimal portfolio (see Proposi-

tion 2).

The mutual fund theorem above states that the investor who wants to maximize his

expected utility (2.2) will be indifferent between choosing from the linear combination

of n + 1 assets or a linear combination of the three mutual funds. The first and second

funds are the same as those in the classical problem whereas the third fund arises from

the correlation between Bt,1 and Bt,2.

Let n = 1, and we realize the optimal portfolio is Π∗t = (r−µ)

σ2
1(γ−1)

− ρσ2

σ1(γ−1)
. Since

dZt
Zt

dSt
St

= ρσ1σ2dt, consider Π∗t as a function of ρ, then
dΠ∗t
dρ

= σ2

σ1(1−γ)
> 0 and we see that

the higher the correlation between relative changes in asset price and utility randomness

process is, the more the investor should invest in the asset. Also, comparing the behaviors

of the investor in the classical case and the investor who takes into account technological

progress, product improvements and other factors, the latter is investing more in the

risky asset when ρ > 0 and less when ρ < 0.

The optimal portfolio does not include the drift parameter β of the utility randomness

process. This means that the portion of the wealth invested in the risky asset does not

depend on how fast new products come into the market. It only depends on how volatile

these changes are which is characterized by the variance parameter σ2. Also if ρ > 0

(ρ < 0), then the larger the value of σ2 is, the more (less) shares of the risky asset should

be included in the optimal portfolio.

Proposition 3. The highest satisfaction the investor can acquire is from maximizing

both the utility of consumption and final wealth. In other words, v1(t, x, z) ≥ v2(t, x, z),

and v1(t, x, z) ≥ v3(t, x, z), for all (t, x, z) ∈ D.

To see why proposition 3 is true one needs to compare (2.19), (2.23), and (2.28).

Remark 7. In general, similar conclusions comparing v2 and v3 (value functions in the

problems of maximizing the utility of consumption and final wealth, respectively) cannot

be made because e
∫ T
t y(τ)dτ −

∫ T

t

e
∫ τ
t y(q)dqdτ can be positive or negative depending on the

function y. For example, if y = 0, then e
∫ T
t y(τ)dτ = 1 and

∫ T

t

e
∫ τ
t y(q)dqdτ = T − t and

thus we can clearly see that v2 > v3, if T − t > 1 and v3 > v2, if T − t < 1.

Proposition 4. If the utility uncertainty and the market risk are uncorrelated, then the

investor who takes into account the technological progress invests as much in the risky
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asset as the investor who does not consider that. The only difference is in their optimal

consumption and the value function.

This result readily follows from the definition of y(t) in (2.18) and the obtained

optimal portfolio. One should also notice that the utility discount rate ζ plays the role

opposite to that of the expected instantaneous growth rate β in the utility.

Next we state a rather obvious observation about the dependence of the value func-

tions on the technological progress.

Proposition 5. The more rapid the technological progress is, the higher the value func-

tions v1, v2, and v3 are.

To verify this proposition we need to find how sensitive the value functions are to

the change in the parameter β (the higher the value of β is, the faster products imporve

in the market). Thus, we may consider the value functions as functions of β. Since the

signs of dv1

dβ
, dv2

dβ
, and dv3

dβ
are the same as the signs of dh1

dβ
, dh2

dβ
, and dh3

dβ
respectively, we

consider h1, h2, and h3 as functions of β and recall that h2 = ey(T−t)−1
y

, h3 = ey(T−t), and
dy
dβ

= 1
1−γ . Then we reach

dh2

dβ
=
dh2

dy

dy

dβ
=

(T − t)ey(T−t)y − (ey(T−t) − 1)

y2

1

1− γ
=
ey(T−t)(y(T − t)− 1) + 1

(1− γ)y2
,

dh3

dβ
=
dh3

dy

dy

dβ
=
T − t
1− γ

ey(T−t).

From the above expressions, we see that dh2

dβ
≥ 0 and dh3

dβ
> 0. Indeed, to show that

dh2

dβ
≥ 0, it is enough to check that the minimum of f(x, y) = exy(xy−1)+1, y > 0 is equal

to 0. We have ∂f
∂x

= xy2exy = 0 if x = 0. Let z = xy then f(x, y) = g(z) = ez(z − 1) + 1.

Since dg
dz

= zez = 0 if z = 0 and dg
dz

is positive when z > 0 and negative when z < 0.

So we have that the minimum of g(z) is reached at z = 0. Therefore, the minimum of

f(x, y) is equal to zero. Since h1 = h2 + h3 we have dh1

dβ
> 0 as well.

Although the signs of the second derivatives for the functions v1, v2 are quite difficult

to determine in general, for the function v3 it is fairly easy. Indeed, from the above

expression for the derivative of h3 with respect to β and from (2.28), we have

dv3

dβ
=
xγz

γ
(T − t)

(
ey(T−t)

)1−γ
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and after differentiating again, we obtain

d2v3

dβ2
=
xγz

γ
(T − t)2

(
ey(T−t)

)1−γ
.

Since the second derivative with respect to β is positive, the function v3 is convex in β.

Therefore, we have the following proposition.

Proposition 6. When the objective is to maximize the expected utility of final wealth,

the corresponding value function v3 is convex in β.

This result means that the value function increases at a higher rate as the parameter β

increases. For example, to double the agent’s expected utility, the expected instanteneous

growth rate β has to increase by less then its current value. This makes sense because, as

it was mentioned in the introduction, the technological progress is assumed to increase

the utility exponentially.

Proposition 7. If y > 0, then as the terminal time increases, the value functions grow

at an exponential rate.

To verify this proposition, one needs to consider the value functions as functions of

the final time T . Since h1 = h2 + h3, we find that the derivatives are positive

dh2

dT
= ey(T−t),

dh3

dT
= yey(T−t).

For example, if the agent wants to double the value of his value function obtained over

time interval (0, T ), then he needs to increase T by the amount smaller than T .

Remark 8. If y ≤ 0, the proposition 7 is not true in general.

Next, to simplify the analysis, we assume that n = 1, then we have

Proposition 8. If µ − r ≥ 0 and ρ > 0, then the value functions are increasing in the

volatility constant σ2 and correlation ρ.

For the same reason as above, it is enough to determine the signs of the derivatives
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of h1, h2, and h3 with respect to σ2 and ρ. Recall that

dy

dσ2

=
(µ− r + ρσ1σ2)ργ

(γ − 1)2σ1

,

dy

dρ
=

(µ− r + ρσ1σ2)σ2γ

(γ − 1)2σ1

.

Then

dh2

dσ2

=
dh2

dy

dy

dσ2

=
(T − t)ey(T−t)y − (ey(T−t) − 1)

y2
· (µ− r + ρσ1σ2)ργ

(γ − 1)2σ1

,

dh3

dσ2

=
dh3

dy

dy

dσ2

=
(T − t)(µ− r + ρσ1σ2)ργ

(γ − 1)2σ1

· ey(T−t),

dh2

dρ
=
dh2

dy

dy

dρ
=

(T − t)ey(T−t)y − (ey(T−t) − 1)

y2
· (µ− r + ρσ1σ2)σ2γ

(γ − 1)2σ1

,

dh3

dρ
=
dh3

dy

dy

dρ
=

(T − t)(µ− r + ρσ1σ2)σ2γ

(γ − 1)2σ1

· ey(T−t).

Since h1 = h2 + h3, we also have dh1

dσ2
> 0 and dh1

dρ
> 0. The assumption that µ − r ≥ 0

is not unrealistic, because this is usually the case (the expected return on a risky asset

is usually higher than the riskless interest rate). The fact that under the assumptions

that were made the value functions are increasing in σ2 makes sense, because in this case

there is a high probability that the products are to be improved significantly and this,

in turn, will increase the agent’s satisfaction. It is worth noting that this interpretation

is in accordance with that of an option price sensitivity to the change in the underlying

stock volatility (’vega’ in greeks). It is well known that the larger the volatility of the

underlying is, the higher the option price becomes because in this case the probability

that the option will be in-the-money is bigger than for the option written on a stock with

small volatility.

Remark 9. If ρ < 0, the derivatives can take on positive or negative values depending on

the values of the other parameters. As can be easily verified, the necessary and sufficient

condition for the value functions to be increasing in σ2 is ρ2σ1σ2 > (r − µ)ρ and to be

increasing in ρ is ρσ1σ2 > r − µ.

Proposition 9. For a given wealth process Xt, the optimal rates of the consumption per

unit time are decreasing functions of β. Furthermore, if µ− r ≥ 0 and ρ > 0, then they

are also decreasing both in σ2 and ρ.
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As it was found in (2.20), (2.24) the optimal rates of the consumption per unit time

are C∗t,i = Xt
hi(t)

, i = 1, 2 depending on the objective. We can use the evaluated derivatives

of the functions hi,
dhi
dβ
, dhi
dσ2
, i = 1, 2 to find the derivatives of the functions C∗t,i,

dC∗t,i
dβ

,
dC∗t,i
dσ2

.

Indeed,

dC∗t,i
dβ

= − Xt

(hi(t))2

dhi
dβ

,

dC∗t,i
dσ2

= − Xt

(hi(t))2

dhi
dσ2

,

dC∗t,i
dρ

= − Xt

(hi(t))2

dhi
dρ

.

Therefore, under the assumptions that were made, the derivatives above are negative.

This proposition agrees with the propositions 2, 5, and 6, because it says that when the

products improve fast and the relative change in the asset’s price is positively correlated

with that of the technological improvements, the investor should invest more in the risky

asset and, thus, decrease the consumption.

To help the readers’ understanding we consider the following numerical example with

parameters’ values chosen only for demonstration. Let the correlation be ρ = 0.4 and the

risky asset volatility be σ1 = 0.1. The risk-free interest rate is r = 0.05. The risky asset’s

instantaneous mean rate of return is µ = 0.2. The utility discount rate is ζ = 0.05. The

investor’s initial wealth is x = 1. The relative risk aversion is γ = 0.5, and the terminal

time is T = 1. The parameters β and σ2 vary in the interval [0, 0.5]. The consumption

per unit wealth as a function of time and β, time and σ2, when the utility of consumption

and final wealth is maximized, is shown in Figure 2.1.

As one can see from Figure 2.1, the consumption rate is increasing over time. The

consumption per unit wealth as a function of time and β, time and σ2, when only the

utility of consumption is maximized, is shown in Figure 2.2.

One can observe that as t approaches terminal time T , the optimal rate of consump-

tion C∗t,2 per unit wealth approaches infinity. However, it shouldn’t be interpreted as

an infinite rate of consumption. Rather more proper explanation may be the following.

Since there is no utility associated with the wealth for t > T , the consumption rate

should increase, thus, making Xt approach 0 as t approaches T . A similar explanation

of this behavior in the classical model can be found in [16].

The graphs of the optimal consumptions C∗t,1 and C∗t,2 per unit wealth as functions
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Figure 2.1: Consumption C∗t,1 per unit wealth as (a) function of time and β (σ2 = 0.4); (b)
function of time and σ2 (β = 0.4).

Figure 2.2: Consumption C∗t,2 per unit wealth as (a) function of time and β (σ2 = 0.4); (b)
function of time and σ2 (β = 0.4).

of time and correlation ρ look very similar to the graphs in Figure 2.1 and Figure 2.2,

respectively.

2.9 Conclusions

In this chapter so far we mainly extended the classical model of optimal investment

and consumption by adding uncertainty in the utility function. It was shown that the

Bellman’s Principle of Optimality also holds for this new randomized model and as

a result, we derived the Hamilton-Jacobi-Bellman equation associated with the value

function. Since not all the solutions of the HJB equation are the value functions, we

proved the theorem that can be used to verify that the obtained solution becomes the
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value function.

The problem was solved explicitly for some specific utility function of HARA type.

The optimal consumption and investment were obtained for the problems of maximizing

the expected utility of: consumption and final wealth, only consumption, and only final

wealth. Although the obtained optimal portfolios are the same for these problems, the

optimal consumption rates are different. As in the classical model, if the parameters are

constant, the optimal portion of wealth to be invested in the risky asset is constant but

depends on the volatility of the utility randomness process and its correlation with the

assets’ prices.

It was also shown that the so-called Mutual Fund Theorem holds and the optimal

portfolio consists of three funds: one includes the riskless asset and the other two contain

only the risky assets. The third fund arises from the correlation of the utility uncertainty

with the market risk. If the correlation is zero then the agent who takes into account

the uncertainty in the utility invests as much in the risky asset as the agent who does

not consider it. The investor who is maximizing the utility of his consumption and final

wealth gets the highest satisfaction compared with the other investors who maximize

either the expected utility of consumption only or the expected utility of final wealth

only.

Another quite natural and expected result is that more rapid technological growth

yields higher satisfaction. In the particular case when the objective is to maximize the

utility of final wealth, the agent’s happiness grows at increasing rates with the parameter

that defines how fast the products improve. Furthermore, the optimal consumption is

decreasing when either the correlation or the volatility of the utility randomness process

are increasing provided the risk premium for investing in the stock is non-negative and

the correlation is positive. On the other hand, the satisfaction in this case is actually

getting higher.
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Chapter 3

Partially Observed Case

3.1 Partially Observed Utility Randomness Process

In general, technological progress and other factors modeled by the utility randomness

process Zt are difficult to measure exactly. That is why it makes sense to consider the

case when the process Zt is not fully observed and the observed process is a noisy version

of Zt. For convenience, we will work with the process Lt = lnZt where

dLt =
(
β − 1

2
σ2

2

)
dt+ σ2dBt,2.

Instead of the process Lt, the investor observes its noisy version, that is,

Observed process:

dPt = Ltdt+ σ3dBt,3

with the initial condition P0 = 0. The constant σ3 > 0 represents the observed process

volatility. The one-dimensional Brownian motion Bt,3 is Ft-adapted1 and is independent

of the driving force behind the randomness, namely, Brownian motions, Bt,1, Bt,2. Since

the matrix σ1 is invertible the Brownian motion Bt,1 can be obtained from observing

the asset price process St. Thus, the investor observes both processes Bt,1 and Pt. This

means that the optimal controls should be progressively measurable with respect to the

filtration Gt = σ{Bs,1, Ps, | s ≤ t}. It is immediate that Gt ⊂ Ft, and the objective is to

1For example, Ft can be defined as Ft = σ{Bs,1, Bs,2, Bs,3, | s ≤ t}.
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maximize the expected utility conditional on Gt (partial observation), namely,

E
[ ∫ T

t

q(s)f(s,XUs
s , Cs, Ls)ds+ q(T )g(XUT

T , LT )
∣∣∣ Gt]

Since XUs
s , Cs are measurable with respect to Gs for any s ∈ [t, T ], to evaluate the

expectation, we need to find the conditional distribution of Lt given Gt.
For convenience, we rewrite the equation of wealth (1.16) in the form below

dXUt
t = (rXUt

t + Πtσ1θX
Ut
t − Ct)dt+ Πtσ1X

Ut
t dBt,1 (3.1)

where µi − r =
n∑
j=1

σi,j1 θj, i = 1, ..., n. The meaning of the variables in equation (3.1) is

the same as in section 1.4. Since the market is complete (in other words σ1 is invertible),

a unique column vector θ exists which is called the market price of risk, the ratio of the

reward (from investing in stocks) and the risk (associated with the investment). We also

assume that the correlation ρ between Bt,1 and Bt,2 is constant.

3.2 Conditional Distribution

Here we obtain the conditional distribution of Lt given Gt. The proofs of the stated

results are given in the appendix to organize this chapter 3 better.

Following the nonlinear filtering theory [2], we first change the processes Bt,1, Bt,2,

and Pt into the processes which are independent Brownian motions.

Lemma 4. Under the probability measure P̃ given by dP̃ = MtdP, where

Mt = exp
(
−
∫ t

0

(
θTdBs,1 +

Ls
σ3

dBs,3

)
− 1

2

∫ t

0

(
||θ||2 +

L2
s

σ2
3

)
ds
)
,

such that E
[ ∫ T

0

||θMs||2ds
]
< ∞, and E

[ ∫ T

0

∣∣∣Ls
σ3

Ms

∣∣∣2ds] < ∞, the underlying Gaus-

sian processes

dB̃t,1 = dBt,1 + θdt, dB̃t,2 =
dBt,2 − ρTdBt,1√

1− ||ρ||2
, dP̃t =

1

σ3

dPt, (3.2)

are independent standard Brownian motions.
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Proof. Note that Mt is a P−martingale. In fact,

dMt = −Mt

(
θTt dBt,1 +

Lt
σ3

dBt,3

)
, M0 = 1,

or in the integral form

Mt = M0 −
∫ t

0

Ms

(
θTs dBs,1 +

Ls
σ3

dBs,3

)
.

Since Ito’s integrals are martingales, Mt is a martingale such that M0 = 1.

It is easy to check, using the Lévy’s theorem, that the process defined by

dB̃t,2 =
dBt,2 − ρTdBt,1√

1− ||ρ||2

is a Brownian motion independent of Bt,1 under this measure P. Consider the process Yt

dYt =

 θtdt

0
Lt
σ3
dt

+

 dBt,1

dB̃t,2

dBt,3

 .

Since Bt,1, B̃t,2, and Bt,3 are independent Brownian motions, according to Girsanov

theorem (see [17], p.162), the process Yt is an (n+ 2)-dimensional Brownian motion, and

thus, the processes dB̃t,1, dB̃t,2, and dP̃t are independent Brownian motions under the

measure P̃.

To compute the conditional probability of Lt given Gt, let us define a linear operator

defined as

∆t(ψ) = E[ψ(Lt, t)|Gt] =

∫ ∞
−∞

p(l, t)ψ(l, t)dl

where ψ(·, ·) is a smooth bounded function with compact support and p(l, t) is a con-

ditional probability density with respect to probability measure P. The operator is a

solution to the Kushner-Stratonovich equation (see [2], chapter 4). It can also be written

as ∆t(ψ) = p̃t(ψ)
p̃t(1)

where p̃t(ψ) =

∫ ∞
−∞

p̃(l, t)ψ(l, t)dl and p̃ is called the un-normalized

conditional probability and is a solution to the Zakai equation (see [2], chapter 4).

52



Lemma 5. The process of the un-normalized probability density p̃(l, t) is given by

dp̃ =
[
− p̃l

(
β − 1

2
σ2

2

)
+

1

2
σ2

2 p̃ll

]
dt+ (p̃θ − p̃lσ2ρ)TdB̃t,1 + p̃

l

σ3

dP̃t, (3.3)

where p̃(l, 0) = p0(l) is the initial distribution and

∫ ∞
−∞

p(l, t)ψ(l, t)dl =

∫ ∞
−∞

p̃(l, t)ψ(l, t)dl∫ ∞
−∞

p̃(l, t)dl

for any given test function ψ ∈ C2,1(R, [0, T ]) with bounded support.

The proof of the lemma 5 is given in appendix B.1.

Theorem 6. Let the initial probability density be that of a normal distribution, namely,

p0(l) =
1√

2πm0

e
− (l−l0)2

2m0 .

Then the solution to (3.3) is

p̃(l, t) =
Kt√

2πm(t)
e−

(l−L̂t)
2

2m(t) , (3.4)

where L̂t = E[Lt|Gt] and variance m(t) = E[(Lt − L̂t)2|Gt] is deterministic and given by

m(t) =


σ3λ1

λ2 exp(2λ1t/σ3)−1
λ2 exp(2λ1t/σ3)+1

if m0 < σ3λ1,

σ3λ1 if m0 = σ3λ1,

σ3λ1
λ2 exp(2λ1t/σ3)+1
λ2 exp(2λ1t/σ3)−1

if m0 > σ3λ1,

(3.5)

where λ1 = σ2

√
1− ||ρ||2 and λ2 =

∣∣∣σ3λ1+m0

σ3λ1−m0

∣∣∣. Furthermore, the process L̂t is the solution

to the Kalman filter (see [17], p.99)

dL̂t = (β − 1

2
σ2

2 − σ2ρ
Tθ)dt+ σ2ρ

TdB̃t,1 +
m(t)

σ3

(
dP̃t −

L̂t
σ3

dt
)

(3.6)

where L̂0 = l0. The variable Kt in (3.4) is adapted to Gt and is given by

Kt = exp
(
− 1

2

∫ t

0

( L̂2
s

σ2
3

+ ||θ||2
)
ds+

∫ t

0

L̂s
σ3

dP̃s +

∫ t

0

θTdB̃s,1

)
. (3.7)

The proof of the theorem 6 is given in appendix B.2.
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From lemma 5 we have

∫ ∞
−∞

p(l, t)ψ(l, t)dl =

∫ ∞
−∞

p̃(l, t)ψ(l, t)dl∫ ∞
−∞

p̃(l, t)dl

=
(∫ ∞
−∞

e−
(l−L̂t)

2

2m(t) dl
)−1

∫ ∞
−∞

e−
(l−L̂t)

2

2m(t) ψ(l, t)dl.

Therefore, the conditional distribution of Lt given Gt is normal with mean L̂t and variance

m(t). The differential dL̂t can be written in a more convenient form using the following

lemma.

Lemma 6. Let the innovation process B̃t,3 be defined by

dB̃t,3 =
1

σ3

(
dPt − L̂tdt

)
, B̃0,3 = 0. (3.8)

Then B̃t,3 and Bt,1 together form an (n+1)-dimensional P-Brownian motion adapted to

the filtration Gt.

The proof of the lemma 6 is given in appendix B.3.

From (3.2), (3.6) and (3.8) we have

dL̂t = (β − 1

2
σ2

2 − σ2ρ
Tθ)dt+ σ2ρ

TdB̃t,1 +
m(t)

σ3

(
dP̃t −

L̂t
σ3

dt
)

= (β − 1

2
σ2

2 − σ2ρ
Tθ)dt+ σ2ρ

TdBt,1 + σ2ρ
Tθdt+

m(t)

σ2
3

(
dPt − L̂tdt

)
= (β − 1

2
σ2

2)dt+ σ2ρ
TdBt,1 +

m(t)

σ3

dB̃t,3. (3.9)

The process L̂t is driven by two independent Brownian motions: Bt,1 and B̃t,3.

3.3 Reward Functional and Value Function

Since Lt is not fully observable, the objective is to maximize the expected utility con-

ditional on Gt. Therefore, the initial conditions at time t are L̂t = l̂, Xt = x, and the

reward functional1 is

1Although denoted by the same notation, functions f and g may not be the same as in chapter 2.
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w̃(t, x, l̂, U)

= Et,x,l̂

[ ∫ T

t

q(s)f(s,XUs
s , Cs, Ls)ds+ q(T )g(XUT

T , LT )
∣∣∣ Gt]

= Et,x,l̂

[ ∫ T

t

q(s)E[f(s,XUs
s , Cs, Ls) | Gs]ds+ q(T )E[g(XUT

T , LT ) | GT ]
∣∣∣ Gt].

Since XUt
t , Ct are Gt-measurable and the conditional distribution of Lt given Gt is known,

we can evaluate the conditional expectationsE[f(s,XUs
s , Cs, Ls)|Gs] andE[g(XUT

T , LT )|GT ].

f̃(s,XUs
s , Cs, L̂s) , E[f(s,XUs

s , Cs, Ls)|Gs]

=
1√

2πm(s)

∫ ∞
−∞

f(s,XUs
s , Cs, l)e

− (l−L̂s)2

2m(s) dl

=
1√
2π

∫ ∞
−∞

f(s,XUs
s , Cs, L̂s + l

√
m(s))e−

l2

2 dl. (3.10)

g̃(XUT
T , L̂T ) , E[g(XUT

T , LT )|GT ]

=
1√

2πm(T )

∫ ∞
−∞

g(XUT
T , l)e−

(l−L̂T )2

2m(T ) dl

=
1√
2π

∫ ∞
−∞

g(XUT
T , L̂T + l

√
m(T ))e−

l2

2 dl. (3.11)

The reward functional is

w̃(t, x, l̂, U) = Et,x,l̂

[ ∫ T

t

q(s)f̃(s,XUs
s , Cs, L̂s)ds+ q(T )g̃(XUT

T , L̂T )
]
. (3.12)

And the value function is

ṽ(t, x, l̂) = sup
U∈Uw[t,T ]

w̃(t, x, l̂, U). (3.13)

Thus, the problem with partial observations has been put in the form (3.12), (3.13)

similar to the fully observed case (2.2), (2.3), respectively, with functions f̃ , g̃ instead of

f, g and the process L̂t instead of Zt. This implies that a similar approach to that used

to solve the problem with full observations can also be employed to obtain the solution

to the partially observed case.
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3.4 Derivation of the HJB Equation

In this section we derive the HJB equation for the value function ṽ using Bellman’s

equation (1.13). Assume that ṽ ∈ C1,2,2(D) ∩ C(D̄) where D = {(t, x, l̂) : t ∈ (0, T ), x >

0, l̂ ∈ R}. To keep the notation simple for the processes (3.1), (3.9), let us denote the

coefficients of dt and dBt,1 in (3.1) as a , rXUt
t + Πtσ1θX

Ut
t − Ct and s1 , Πtσ1X

Ut
t ,

respectively, and the coefficients of dt, dBt,1, and dB̃t,3 in (3.9) as b̂ , β− 1
2
σ2

2, ŝ2 , σ2ρ
T,

and ŝ3 ,
m(t)
σ3

, respectively.

Consider the times t, κ ∈ [0, T ), κ > t and a constant control U ≡ u ∈ Uw[t, T ] then

from the Bellman’s Principle of Optimality (1.13)

ṽ(t, x, l̂) ≥ Et,x,l̂

[ ∫ κ

t

q(s)f̃(s,Xu
s , Cs, L̂s)ds+ q(κ)ṽ(κ,Xu

κ , L̂κ)
]
. (3.14)

From the fact that ṽ ∈ C1,2,2(D) ∩ C(D̄), Ito’s formula (see [23], p.167) yields

d
(
q(s)ṽ(s,Xu

s , L̂s)
)

= q(s)
(
(ṽs − ζṽ)ds+ ṽxdX

u
s + ṽl̂dL̂s + ṽxl̂d[Xu

s , L̂s]

+
1

2
ṽxxd[Xu

s , X
u
s ] +

1

2
ṽl̂l̂d[L̂s, L̂s]

)
= q(s)

(
(ṽs − ζṽ)ds+ ṽxads+ ṽxs1dBs,1 + ṽl̂b̂ds+ ṽl̂ŝ2dBs,1

+ ṽl̂ŝ3dB̃s,3 +
1

2
ṽxxs1s

T
1 ds+

1

2
ṽl̂l̂(ŝ2ŝ

T
2 + ŝ2

3)ds+ ṽxl̂s1ŝ
T
2 ds
)
.

Integrating from t to κ on both sides, we get

q(κ)ṽ(κ,Xu
κ , L̂κ)

= ṽ(t,Xu
t , L̂t)

+

∫ κ

t

q(s)
(
ṽs − ζṽ + ṽxa+ ṽl̂b̂+

1

2
ṽxxs1s

T
1 +

1

2
ṽl̂l̂(ŝ2ŝ

T
2 + ŝ2

3) + ṽxl̂s1ŝ
T
2

)
ds

+

∫ κ

t

q(s)ṽxs1dBs,1 +

∫ κ

t

q(s)ṽl̂ŝ2dBs,1 +

∫ κ

t

q(s)ṽl̂ŝ3dB̃s,3.

The stochastic integrals from the last line in the above expression are local martingales

(see [10], p.36). Consider a sequence of stopping times

τn = inf{h ≥ t :

∫ h

t

(
||q(s)ṽxs1||2 + ||q(s)ṽl̂ŝ2||2 + ||q(s)ṽl̂ŝ3||2

)
ds ≥ n}.
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Notice that τn diverges to infinity almost surely as n goes to infinity. Let τ = κ ∧ τn,

then the stochastic integrals

∫ τ

t

q(s)ṽxs1dBs,1,

∫ τ

t

q(s)ṽl̂ŝ2dBs,1, and

∫ τ

t

q(s)ṽl̂ŝ3dB̃s,3

are martingales. Plugging q(τ)ṽ(τ,Xu
τ , L̂τ ) into (3.14), we obtain

ṽ(t, x, l̂)

≥ Et,x,l̂

[ ∫ τ

t

q(s)
(
f̃(s,Xu

s , Cs, L̂s) + ṽs − ζṽ + ṽxa+ ṽl̂b̂

+
1

2
ṽxxs1s

T
1 +

1

2
ṽl̂l̂(ŝ2ŝ

T
2 + ŝ2

3) + ṽxl̂s1ŝ
T
2

)
ds

+

∫ τ

t

q(s)ṽxs1dBs,1 +

∫ τ

t

q(s)ṽl̂ŝ2dBs,1 +

∫ τ

t

q(s)ṽl̂ŝ3dB̃s,3 + ṽ(t,Xu
t , L̂t)

]
.

Since Et,x,l̂

[
ṽ(t,Xu

t , L̂t)
]

= ṽ(t, x, l̂), we have

Et,x,l̂

[ ∫ τ

t

q(s)
(
f̃(s,Xu

s , Cs, L̂s) + ṽs − ζṽ + ṽxa+ ṽl̂b̂

+
1

2
ṽxxs1s

T
1 +

1

2
ṽl̂l̂(ŝ2ŝ

T
2 + ŝ2

3) + ṽxl̂s1ŝ
T
2

)
ds
]
≤ 0,

or

Et,x,l̂

[ ∫ τ

t

q(s)
(
f̃(s,Xu

s , Cs, L̂s)ds+ L̃ṽ(s,Xu
s , L̂s)

)
ds
]
≤ 0, (3.15)

where L̃ = ∂
∂s
− ζ + a ∂

∂x
+ b̂ ∂

∂l̂
+ 1

2
s1s

T
1
∂2

∂x2 + 1
2
(ŝ2ŝ

T
2 + ŝ2

3) ∂
2

∂l̂2
+ s1ŝ

T
2

∂2

∂l̂∂x
is an operator.

Assume that Et,x,l̂

[ ∫ T

t

q(s)
∣∣∣f̃(s,Xu

s , Cs, L̂s)ds + L̃ṽ(s,Xu
s , L̂s)

∣∣∣ds] < ∞. Then by the

Dominated Convergence Theorem (see [23], p.27), if we take the limit of (3.15) as n goes

to infinity, the inequality in (3.15) becomes

Et,x,l̂

[ ∫ κ

t

q(s)
(
f̃(s,Xu

s , Cs, L̂s)ds+ L̃ṽ(s,Xu
s , L̂s)

)
ds
]
≤ 0. (3.16)

Recall that we assume that f̃ is continuous and that ṽ ∈ C1,2,2(D) ∩ C(D̄)), if we divide

(3.16) by κ− t and then take the limit as κ decreases to t, then we see that

f̃(t, xu, c, l̂) + L̃ṽ(t, xu, l̂) ≤ 0, ∀(t, x, l̂) ∈ D.
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Since this is true for any constant control u ∈ Uw[t, T ] for all t ∈ [0, T ), one can see

sup
u∈U

(
f̃(t, xu, c, l̂) + L̃ṽ(t, xu, l̂)

)
≤ 0, ∀(t, x, l̂) ∈ D. (3.17)

On the other hand, suppose that U∗ is an optimal control, then by definition of the

value function

ṽ(t, x, l̂) = Et,x,l̂

[ ∫ κ

t

q(s)f̃(s,XU∗s
s , Cs, L̂s)ds+ q(κ)ṽ(κ,XU∗κ

κ , L̂κ)
]
.

Using the same approach as the one just performed for the inequality (3.14), we obtain

f̃(t, xU
∗
t , c, l̂) + L̃ṽ(t, xU

∗
t , l̂) = 0, ∀(t, x, l̂) ∈ D. (3.18)

Therefore, (3.17) and (3.18) suggest that ṽ should satisfy

sup
u∈U

(
f̃(t, xu, c, l̂) + L̃ṽ(t, xu, l̂)

)
= 0, ∀(t, x, l̂) ∈ D.

As a result, the HJB equation with the boundary condition is sup
u∈U

(
f̃(t, xu, c, l̂) + L̃ṽ(t, xu, l̂)

)
= 0, ∀(t, x, l̂) ∈ D,

ṽ(T, x, l̂) = g̃(x, l̂), ∀x > 0, ∀l̂ ∈ R.
(3.19)

where L̃ = ∂
∂s
− ζ + a ∂

∂x
+ b̂ ∂

∂l̂
+ 1

2
s1s

T
1
∂2

∂x2 + 1
2
(ŝ2ŝ

T
2 + ŝ2

3) ∂
2

∂l̂2
+ s1ŝ

T
2

∂2

∂l̂∂x
is a differential

operator.

3.5 Maximizing the Utility of Consumption and

Final Wealth

Here we use the same utility function as in section 2.2, namely, U(C) = Cγ

γ
with γ ∈ (0, 1).

To model the uncertainty in the utility, we multiply the utility function by the utility

randomness process Zt which is the same as multiplying by eLt because Lt = lnZt.

Therefore, the functions f and g are f(t, xu, c, l) = cγel

γ
and g(x, l) = xγel

γ
, respectively.

58



We evaluate the conditional expectations (3.10) and (3.11), respectively

1√
2π

∫ ∞
−∞

f(s,XUs
s , Cs, L̂s + l

√
m(s))e−

l2

2 dl =
(Cs)

γ

√
2πγ

∫ ∞
−∞

eL̂s+l
√
m(s)e−

l2

2 dl

=
1

γ
(Cs)

γeL̂s+
m(s)

2 . (3.20)

1√
2π

∫ ∞
−∞

g(XUT
T , L̂T + l

√
m(T ))e−

l2

2 dl =
(XUT

T )γ√
2πγ

∫ ∞
−∞

eL̂T+l
√
m(T )e−

l2

2 dl

=
1

γ
(XUT

T )γeL̂T+
m(T )

2 . (3.21)

The value function is

ṽ1(t, x, l̂) =
1

γ
sup

U∈Uw[t,T ]

Et,x,l̂

[ ∫ T

t

q(s)(Cs)
γeL̂s+

m(s)
2 ds+ q(T )(XU

T )γeL̂T+
m(T )

2

]
.

The corresponding HJB equation (3.19) for t ∈ (0, T ), x > 0, and l̂ ∈ R is

p̃t − ζp̃+ rxp̃x +
(
β − 1

2
σ2

2

)
p̃l̂ +

1

2

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)
p̃l̂l̂

+ sup
c∈[0,∞)

(cγel̂+m(t)
2

γ
− cp̃x

)
+ sup

π∈Rn

(
xπσ1(θp̃x + ρσ2p̃l̂x) +

||xπσ1||2

2
p̃xx

)
= 0. (3.22)

The terminal and boundary conditions are p̃(T, x, l̂) = xγel̂+
m(T )

2

γ
, x > 0, l̂ ∈ R,

p̃(t, 0, l̂) = 0, t ∈ (0, T ), l̂ ∈ R.

We discuss the meaning of the terminal and boundary conditions. The terminal

condition p̃(T, x, l̂) = xγel̂+
m(T )

2

γ
means that if the investor starts trading at time T then

there is no time for investment and the utility (conditional utility evaluated in (3.21)) of

his wealth is equal to the utility of the wealth he starts with. The boundary condition

p̃(t, 0, l̂) = 0 says that if the initial capital is zero then the value function is zero.
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3.5.1 Solution to the HJB equation

We consider a solution in the form of p̃(t, x, l̂) = xγel̂+
m(T )

2

γ
h̃(t)1−γ. This form of solution

is suggested by the functions f(t, x, c, l) = cγel

γ
and g(x, l) = xγel

γ
, γ ∈ (0, 1). Substituting

into the equation (3.22) we get

(1− γ)xγel̂+
m(T )

2

γ
h̃−γh̃′ − ζ x

γel̂+
m(T )

2

γ
h̃1−γ + rxγel̂+

m(T )
2 h̃1−γ +

(
β − 1

2
σ2

2

)xγel̂+m(T )
2

γ
h̃1−γ

+
1

2

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)xγel̂+m(T )
2

γ
h̃1−γ + sup

c∈[0,∞)

(cγel̂+m(t)
2

γ
− cxγ−1el̂+

m(T )
2 h̃1−γ

)
+ sup

π∈Rn

(
xπσ1(θxγ−1el̂+

m(T )
2 h̃1−γ + ρσ2x

γ−1el̂+
m(T )

2 h̃1−γ)

+
||xπσ1||2

2
(γ − 1)xγ−2el̂+

m(T )
2 h̃1−γ

)
= 0.

in other words,

(1− γ)xγel̂+
m(T )

2

γ
h̃−γh̃′ − ζ x

γel̂+
m(T )

2

γ
h̃1−γ + rxγel̂+

m(T )
2 h̃1−γ +

(
β − 1

2
σ2

2

)xγel̂+m(T )
2

γ
h̃1−γ

+
1

2

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)xγel̂+m(T )
2

γ
h̃1−γ + sup

c∈[0,∞)

(cγel̂+m(t)
2

γ
− cxγ−1el̂+

m(T )
2 h̃1−γ

)
+ xγel̂+

m(T )
2 h̃1−γ sup

π∈Rn

(
πσ1(θ + ρσ2) +

||πσ1||2

2
(γ − 1)

)
= 0. (3.23)

Consider the following two functions

g1(c) =
cγel̂+

m(t)
2

γ
− cxγ−1el̂+

m(T )
2 h̃1−γ,

g2(π) = πσ1θ + πσ1σ2ρ+
||πσ1||2

2
(γ − 1).

Since d2g1

dc2
= (γ − 1)cγ−2el̂+

m(T )
2 < 0 and the Hessian H(π) = σ1σ

T
1 (γ − 1) is negative

definite, the functions g1 and g2 are concave. The maxima may be obtained from the

equations

∇g2(π) = σ1θ + σ1σ2ρ+ σ1σ
T
1 π

T(γ − 1) = 0,
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dg1

dc
= cγ−1el̂+

m(t)
2 − xγ−1el̂+

m(T )
2 h̃1−γ = 0.

The maxima are achieved at

π∗ =
(−θT − σ2ρ

T)σ−1
1

(γ − 1)
,

c∗ =
x

h̃
e
m(T )−m(t)

2(γ−1) .

Substituting (π∗, c∗) into the functions g1(c), g2(π), we obtain

g1(c∗) =
1

γ

(x
h̃
e
m(T )−m(t)

2(γ−1)

)γ
el̂+

m(t)
2 − x

h̃
e
m(T )−m(t)

2(γ−1) xγ−1el̂+
m(T )

2 h̃1−γ

=
1− γ
γ

xγh̃−γel̂+
γm(T )−m(t)

2(γ−1) ,

g2(π∗)

=
(−θT − σ2ρ

T)σ−1
1

(γ − 1)
σ1θ +

(−θT − σ2ρ
T)σ−1

1

(γ − 1)
σ1σ2ρ+

1

2

∣∣∣∣∣∣(−θT − σ2ρ
T)σ−1

1

(γ − 1)
σ1

∣∣∣∣∣∣2(γ − 1)

=
(−θT − σ2ρ

T)

(γ − 1)
θ +

(−θT − σ2ρ
T)

(γ − 1)
σ2ρ+

1

2

∣∣∣∣∣∣(−θT − σ2ρ
T)

(γ − 1)

∣∣∣∣∣∣2(γ − 1)

=
(−θT − σ2ρ

T)

(γ − 1)

(
θ + σ2ρ+

1

2
(−θ − σ2ρ)

)
= −||θ + σ2ρ||2

2(γ − 1)
.

Substituting into the equation (3.23) we get

(1− γ)xγel̂+
m(T )

2

γ
h̃−γh̃′ − ζ x

γel̂+
m(T )

2

γ
h̃1−γ + rxγel̂+

m(T )
2 h̃1−γ +

(
β − 1

2
σ2

2

)xγel̂+m(T )
2

γ
h̃1−γ

+
1

2

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)xγel̂+m(T )
2

γ
h̃1−γ

+
1− γ
γ

xγh̃−γ exp
(
l̂ +

γm(T )−m(t)

2(γ − 1)

)
− xγel̂+

m(T )
2 h̃1−γ ||θ + σ2ρ||2

2(γ − 1)
= 0.

61



Dividing both sides by 1−γ
γ
xγel̂+

m(T )
2 h̃−γ, we have

h̃′ − ζ

1− γ
h̃+

rγ

1− γ
h̃+

(β − 1
2
σ2

2

1− γ

)
h̃+

1

2(1− γ)

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)
h̃

+ exp
(m(T )−m(t)

2(γ − 1)

)
+
γ||θ + σ2ρ||2

2(1− γ)2
h̃ = 0,

which can be rewritten as

h̃′ + ỹ(t)h̃+ e
m(T )−m(t)

2(γ−1) = 0, (3.24)

where ỹ(t) = 1
1−γ

(
− ζ + rγ + β − 1

2
σ2

2 + 1
2

(
σ2

2||ρ||2 + m2(t)

σ2
3

))
+ γ||θ+σ2ρ||2

2(1−γ)2 .

The solution of the equation (3.24) that satisfies the condition h̃(T ) = 1 is

h̃1(t) = e
∫ T
t ỹ(τ)dτ +

∫ T

t

e
∫ τ
t ỹ(q)dq+

m(T )−m(τ)
2(γ−1) dτ.

We simplify the expression for h̃1(t). Since the function m(t) satisfies the equation

(see appendix B.2)

m′(t) = − 1

σ2
3

m2(t) + σ2
2(1− ||ρ||2),

we obtain ∫ T

t

m2(τ)

σ2
3

dτ = σ2
2(1− ||ρ||2)(T − t)− (m(T )−m(t)).

Thus, we have

h̃1(t) = exp
(∫ T

t

y(τ)dτ +
1

2(1− γ)

∫ T

t

m2(τ)

σ2
3

dτ − σ2
2(1− ||ρ||2)

2(1− γ)
(T − t)

)
+

∫ T

t

e

∫ τ
t y(q)dq+ 1

2(1−γ)

∫ τ
t
m2(q)

σ2
3

dq−σ
2
2(1−||ρ||2)

2(1−γ)
(τ−t)+ (m(T )−m(τ))

2(γ−1) dτ

= exp
(∫ T

t

y(τ)dτ − (m(T )−m(t))

2(1− γ)

)
+

∫ T

t

e
∫ τ
t y(q)dq− (m(τ)−m(t))

2(1−γ)
+

(m(T )−m(τ))
2(γ−1) dτ

= exp
(∫ T

t

y(τ)dτ − (m(T )−m(t))

2(1− γ)

)
+

∫ T

t

e
∫ τ
t y(q)dq− (m(T )−m(t))

2(1−γ) dτ
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= e−
(m(T )−m(t))

2(1−γ)

(
e
∫ T
t y(τ)dτ +

∫ T

t

e
∫ τ
t y(q)dqdτ

)
= e−

(m(T )−m(t))
2(1−γ) h1(t) (3.25)

Therefore, the solution to the HJB equation (3.22) is

p̃1(t, x, l̂) =
xγel̂+

m(t)
2

γ

(
e
∫ T
t y(τ)dτ +

∫ T

t

e
∫ τ
t y(q)dqdτ

)1−γ
.

3.5.2 Verification

The solution p̃1 is a function in C1,2,2(D) ∩ C(D̄), but the quadratic growth condition is

not satisfied. However, in the Verification Theorem this condition is required to be able

to take advantage of the Dominated Convergence Theorem. From section 2.5.2 we have

xel̂ ≤ 3(1 + x2 + (el̂)2). Since L̂s = E[Ls|Gs],

sup
s∈[t,T ]

(exp(L̂s))
2 = (exp( sup

s∈[t,T ]

L̂s))
2 ≤ (exp( sup

s∈[t,T ]

Ls))
2 = sup

s∈[t,T ]

(exp(Ls))
2 = sup

s∈[t,T ]

(Zs)
2

where Zs is the Geometric Brownian motion. Taking into account that function h̃1 is

bounded and the term e
m(t)

2 is bounded (see the formula (3.5)), there exists a constant

K̃ > 0 such that

p̃1(τ,XUτ
τ , L̂τ ) ≤ K(1 + sup

s∈[t,T ]

|XUs
s |2 + sup

s∈[t,T ]

(eL̂s)2) ≤ K̃(1 + sup
s∈[t,T ]

|XUs
s |2 + sup

s∈[t,T ]

|Zs|2)

which is integrable.

Since the function m(t) is continuous, the rest of the verification is analogous to that

of the section 2.5.2. Therefore, using (3.25), the optimal controls are

Π̃∗s =
(−θT − σ2ρ

T)σ−1
1

(γ − 1)
,

C̃∗s,1 =
Xs

h̃1(s)
e
m(T )−m(s)

2(γ−1) =
Xs

h1(s)
.
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3.6 Maximizing the Utility of Consumption

We already evaluated in (3.20) the conditional expectation (3.10), and thus, the value

function is

ṽ2(t, x, l̂) =
1

γ
sup

U∈Uw[t,T ]

Et,x,l̂

[ ∫ T

t

q(s)(Cs)
γeL̂s+

m(s)
2 ds

]
.

The corresponding HJB equation (3.19) for t ∈ (0, T ), x > 0, and l̂ ∈ R is

p̃t − ζp̃+ rxp̃x +
(
β − 1

2
σ2

2

)
p̃l̂ +

1

2

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)
p̃l̂l̂

+ sup
c∈[0,∞)

(cγel̂+m(t)
2

γ
− cp̃x

)
+ sup

π∈Rn

(
xπσ1(θp̃x + ρσ2p̃l̂x) +

||xπσ1||2

2
p̃xx

)
= 0. (3.26)

The terminal and boundary conditions are{
p̃(T, x, l̂) = 0, x > 0, l̂ ∈ R,
p̃(t, 0, l̂) = 0, t ∈ (0, T ), l̂ ∈ R.

The meaning of the terminal and boundary conditions is the same as in the section 3.5.

3.6.1 Solution to the HJB equation

The calculations are analogous to those in the previous section 3.5.1 and the only differ-

ence is the condition h̃(T ) = 0 for the equation

h̃′ + ỹ(t)h̃+ e
m(T )−m(t)

2(γ−1) = 0, (3.27)

where ỹ(t) = 1
1−γ

(
− ζ + rγ + β − 1

2
σ2

2 + 1
2

(
σ2

2||ρ||2 + m2(t)

σ2
3

))
+ γ||θ+σ2ρ||2

2(1−γ)2 .

The solution of (3.27) that satisfies the condition h̃(T ) = 0 is

h̃2(t) =

∫ T

t

e
∫ τ
t ỹ(q)dq+

m(T )−m(τ)
2(γ−1) dτ.
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Taking into account (3.25), we have

h̃2(t) = e−
(m(T )−m(t))

2(1−γ)

(∫ T

t

e
∫ τ
t y(q)dqdτ

)
= e−

(m(T )−m(t))
2(1−γ) h2(t).

Therefore, the solution to the HJB equation (3.26) is

p̃2(t, x, l̂) =
xγel̂+

m(t)
2

γ

(∫ T

t

e
∫ τ
t y(q)dqdτ

)1−γ
.

3.6.2 Verification

The verification that the obtained solution is the value function is identical to the ver-

ification in the previous section 3.5.2 and section 2.6.2. Therefore, the optimal controls

are

Π̃∗s =
(−θT − σ2ρ

T)σ−1
1

(γ − 1)
,

C̃∗s,2 =
Xs

h̃2(s)
e
m(T )−m(s)

2(γ−1) =
Xs

h2(s)
.

3.7 Maximizing the Utility of Final Wealth

We already evaluated in (3.21) the conditional expectation (3.11), and thus, the value

function is

ṽ3(t, x, l̂) =
1

γ
sup

U∈Uw[t,T ]

Et,x,l̂

[
q(T )(XU

T )γeL̂T+
m(T )

2

]
.

The corresponding HJB equation (3.19) for t ∈ (0, T ), x > 0, and l̂ ∈ R is

p̃t − ζp̃+ rxp̃x +
(
β − 1

2
σ2

2

)
p̃l̂ +

1

2

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)
p̃l̂l̂

+ sup
c∈[0,∞)

(
− cp̃x

)
+ sup

π∈Rn

(
xπσ1(θp̃x + ρσ2p̃l̂x) +

||xπσ1||2

2
p̃xx

)
= 0. (3.28)
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The terminal and boundary conditions are p̃(T, x, l̂) = xγel̂+
m(T )

2

γ
, x > 0, l̂ ∈ R,

p̃(t, 0, l̂) = 0, t ∈ (0, T ), l̂ ∈ R.

3.7.1 Solution to the HJB equation

We start by looking for a solution in the form p̃(t, x, l̂) = xγel̂+
m(T )

2

γ
h̃(t)1−γ. Substituting

into the equation (3.28), we get

(1− γ)xγel̂+
m(T )

2

γ
h̃−γh̃′ − ζ x

γel̂+
m(T )

2

γ
h̃1−γ + rxγel̂+

m(T )
2 h̃1−γ +

(
β − 1

2
σ2

2

)xγel̂+m(T )
2

γ
h̃1−γ

+
1

2

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)xγel̂+m(T )
2

γ
h̃1−γ + sup

c∈[0,∞)

(
− cxγ−1el̂+

m(T )
2 h̃1−γ

)
+ sup

π∈Rn

(
xπσ1(θxγ−1el̂+

m(T )
2 h̃1−γ + ρσ2x

γ−1el̂+
m(T )

2 h̃1−γ)

+
||xπσ1||2

2
(γ − 1)xγ−2el̂+

m(T )
2 h̃1−γ

)
= 0.

which is equivalent to

(1− γ)xγel̂+
m(T )

2

γ
h̃−γh̃′ − ζ x

γel̂+
m(T )

2

γ
h̃1−γ + rxγel̂+

m(T )
2 h̃1−γ +

(
β − 1

2
σ2

2

)xγel̂+m(T )
2

γ
h̃1−γ

+
1

2

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)xγel̂+m(T )
2

γ
h̃1−γ + sup

c∈[0,∞)

(
− cxγ−1el̂+

m(T )
2 h̃1−γ

)
+ xγel̂+

m(T )
2 h̃1−γ sup

π∈Rn

(
πσ1(θ + ρσ2) +

||πσ1||2

2
(γ − 1)

)
= 0. (3.29)

Similarly to calculations in section 3.5, the suprema are achieved at

π∗ =
(−θT − σ2ρ

T)σ−1
1

(γ − 1)
,

c∗ = 0.
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Therefore, substituting into the equation (3.29), we obtain

(1− γ)xγel̂+
m(T )

2

γ
h̃−γh̃′ − ζ x

γel̂+
m(T )

2

γ
h̃1−γ + rxγel̂+

m(T )
2 h̃1−γ +

(
β − 1

2
σ2

2

)xγel̂+m(T )
2

γ
h̃1−γ

+
1

2

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)xγel̂+m(T )
2

γ
h̃1−γ − xγel̂+

m(T )
2 h̃1−γ ||θ + σ2ρ||2

2(γ − 1)
= 0.

Dividing the above equation by 1−γ
γ
xγel̂+

m(T )
2 h̃−γ, we obtain

h̃′ − ζ

1− γ
h̃+

rγ

1− γ
h̃+

(β − 1
2
σ2

2

1− γ

)
h̃+

1

2(1− γ)

(
σ2

2||ρ||2 +
m2(t)

σ2
3

)
h̃

+
γ||θ + σ2ρ||2

2(1− γ)2
h̃ = 0.

We simplify this to

h̃′ + ỹ(t)h̃ = 0, (3.30)

where ỹ(t) = 1
1−γ

(
− ζ + rγ + β − 1

2
σ2

2 + 1
2

(
σ2

2||ρ||2 + m2(t)

σ2
3

))
+ γ||θ+σ2ρ||2

2(1−γ)2 .

The solution of the equation (3.30) that satisfies the condition h̃(T ) = 1 is

h̃3(t) = e
∫ T
t ỹ(τ)dτ .

Taking into account the equation (3.25), we obtain

h̃3(t) = e−
(m(T )−m(t))

2(1−γ)

(
e
∫ T
t y(τ)dτ

)
= e−

(m(T )−m(t))
2(1−γ) h3(t)

Therefore, the solution to the HJB equation (3.28) is

p̃3(t, x, l̂) =
xγel̂+

m(t)
2

γ

(
e
∫ T
t y(τ)dτ

)1−γ
.

3.7.2 Verification

The verification that the obtained solution is the value function is very similar to the

verification when the utility of consumption and final wealth is maximized. It can be

easily seen that all the inequalities obtained in section 3.5.2 hold for the function p̃3(t, x, l̂).
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This means that the obtained solution p̃3(t, x, l̂) is the value function ṽ(t, x, l̂). Therefore,

the optimal controls are

Π̃∗s =
(−θT − σ2ρ

T)σ−1
1

(γ − 1)
,

C̃∗s,3 = 0.

3.8 Analysis of the Results and Numerical

Experiments.

Here we analyze the obtained results in the partially observed case. Throughout this

section, we assume that all the parameters (such as ζ, r, β, σ2, σ3, θ, and ρ) are constant,

t < T , and the investor has the utility function U(C) = Cγ

γ
, γ ∈ (0, 1).

Proposition 10. The optimal portfolio ( Π̃∗s) and optimal consumption (C̃∗s,i, i = 1, 2, 3)

in the partially observed case are the same as the optimal portfolio ( Π∗s) and the optimal

consumption (C∗s,i, i = 1, 2, 3) in the fully observed case, respectively.

Proof. Indeed, comparing the formulae for optimal portfolios Π∗s and Π̃∗s, and noticing

that by definition θ = σ−1
1 (µ− r) we have

Π∗s =
(r − µT − ρTσT

1 σ2)(σ1σ
T
1 )−1

γ − 1
=

((r − µT)(σT
1 )−1 − ρTσ2)(σ1)−1

γ − 1

=
(−θT − ρTσ2)(σ1)−1

γ − 1
= Π̃∗s.

Comparing the formulae for optimal consumption we see that C̃s,i = Cs,i, i = 1, 2, 3.

Therefore, the uncertainty in the knowledge of the utility randomness process Zt does

not influence the investor’s optimal portfolio and optimal consumption. It means that

most of the results of the section 2.8 obtained in the fully observed case are also applicable

in the partially observed case. Indeed, we have the following relation

ṽi =
el̂+

m(t)
2

z
vi, i = 1, 2, 3
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where the function m(t) depends on the parameters σ2, σ3, ρ. Therefore, only the

results (Proposition 8, Proposition 9) of section 2.8 involving these parameters don’t

have to hold.

Proposition 11. The variance m(t) is decreasing if m(0) > σ2σ3

√
1− ||ρ||2, increas-

ing if m(0) < σ2σ3

√
1− ||ρ||2, and it approaches value σ2σ3

√
1− ||ρ||2 as t approaches

infinity.

Proof. The proof follows easily from the formula for m(t) given in (3.5).

From Theorem 6 it follows that if the initial variance m(0) for the conditional distri-

bution of L0 is higher than σ2σ3

√
1− ||ρ||2, then the variance m(t) for the conditional

distribution of Lt decreases over time to σ2σ3

√
1− ||ρ||2 and vice versa.

3.9 Conclusions

We consider the model of optimal investment and consumption described in the previous

chapter 2 under the assumption that the utility randomness process is partially observed.

It was shown that the Bellman’s Principle of Optimality also holds and as a result we

derived the Hamilton-Jacobi-Bellman equation associated with the value function. The

Verification Theorem from the chapter 2 can be used in checking that the obtained

solution is the value function.

The problem was solved explicitly for a specific utility function of HARA type. The

optimal consumption and investment were obtained for the problems of maximizing the

expected utility of: consumption and final wealth, only consumption, and only final

wealth. The obtained optimal portfolios and consumptions are the same for these prob-

lems. It was shown that the solutions to these problems are the same as when the utility

randomness process is fully observed. One of the differences from the fully observed case

is the value function. Therefore, some of the results obtained in the previous chapter

also hold for partially observed utility randomness process.
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Chapter 4

Summary and Future Research

4.1 Summary

The research done in this dissertation extended the Merton’s model [15] to include tech-

nological progress. Since advancements in technology influence consumers’ satisfaction

(utility), we include them in the model by means of the utility function. It is reasonable

to assume that the future technological progress is not fully known to investors. On

the other hand, in some reasearch [8] it is claimed that in some areas the technological

progress exhibits exponential growth. Therefore, a Geometric Brownian motion is used

to model the proposed uncertainty in the utility function.

As the criterion to maximize (the reward function), the expected utility is chosen.

Since the technological progress is a characteristic that is difficult to measure exactly, the

cases of fully observed and partially observed utility randomness process are considered

and solved for a specific utility function of hyperbolic absolute risk aversion type. The

three problems solved in the two cases are the problems of maximizing both the expected

utility of consumption and final wealth, the expected utility of consumption only, and

the expected utility of final wealth only.

The problems were solved via second-order partial differential equations, also known

as Hamilton-Jacobi-Bellman equations. The Verification Theorem, necessary to show

that the obtained solutions are optimal solutions to the original problem of expeceted

utility maximization, was also proved.

For the case of fully observed utility randomness process, it was shown that the so-

called Mutual Fund Theorem holds and the optimal portfolio consists of three funds:
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one includes the riskless asset and the other two contain only the risky assets. The

third fund arises from the correlation of the utility uncertainty with the market risk.

If the correlation is zero then the agent who takes into account the uncertainty in the

utility invests as much in the risky asset as the agent who does not consider it. In other

words, when the correlation is zero, the optimal portfolio is the same as in the classical

Merton’s model. It was also shown, that the investor who is maximizing the utility of

his consumption and final wealth gets the highest satisfaction compared with the other

investors who maximize either the expected utility of consumption only or the expected

utility of final wealth only.

Another quite natural and expected result is that more rapid technological growth

yields higher satisfaction. In the particular case when the objective is to maximize the

expected utility of final wealth, the agent’s happiness grows at increasing rates with

the parameter that defines how fast the products improve. Furthermore, the optimal

consumption is decreasing when either the correlation or the volatility of the utility

randomness process are increasing provided the risk premium for investing in the stock

is non-negative and the correlation is positive. On the other hand, the satisfaction in

this case is actually getting higher.

In case of partially observed utility randomness process, the optimal portfolios and

consumptions for the considered three problems are the same as for the case of full

observations. One of the differences from the fully observed case is the value functions.

Therefore, most of the results obtained for the fully observed case also hold for partially

observed utility randomness process.

4.2 Future Research

The classical model generalization proposed in this dissertation can be further extended.

It is common to assume that the stock prices follow a Geometric Brownian Motion.

However, a financial portfolio can include assets that are usually described by different

stochastic processes (for example, arithmetic Brownian Motion). This gives a problem

of finding the optimal portfolio under the assumption that the assets in the portfolio are

modeled by different stochastic processes.

Liquidity risk is one the most important factors that should be taken into account

when modelling financial markets. Thus, the problem of expected utility maximization
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can also be considered under the assumption that the risky assets are traded in illiq-

uid markets. In this setting the assets’ prices, modeled by a jump-diffusion process, are

observed and traded at random times. The goal is to find the optimal portfolio and

consumption that yield the maximum of expected utility from consumption. Once the

problem is formulated, different stochastic control approaches (HJB equations, proba-

bilistic methods, etc.) can be used to solve it.

Portfolio optimization for various risk measures is another interesting area of research.

In this regard, a proper joint distribution of financial data becomes an issue, which can

be resolved by using, for example, copula functions. This, in turn, implies the problem

of choice of individual data distributions. Once these issues are resolved, the problem of

portfolio optimization can be set up and and attempted to be solved.

It is very common to use Brownian motion as the only source of randomness in

financial models. For example, Brownian motion appears in the stochastic process that

models the dynamics of stock prices (Geometric Brownian motion). However, Brownian

motion has normally distributed increments and all the models that use it are based on

this assumption. Thus, considering other sources of randomness which do not include

normal distribution could be a further extension of the classical model of investment and

consumption.

Assuming there are many investment opportunities (not only stocks), one can con-

sider the problem of diversifying the portfolio among the opportunities. The issue is

to find appropriate stochastic processes that model the risks accociated with different

investement venues. If we can construct the cost related to the degree of diversification

of the portfolio, then we can pose a problem of ideal optimization of reaching a portfolio

that maximizes the expected return.

In the model of optimal investment and consumption under partial observations the

observed process was assumed to be a noisy version of the actual process. The noise was

chosen to be a Brownian motion. This was one of the reasons that the obtained optimal

solution is the same as when the utility randomness process is fully observed. Therefore,

it would be interesting to find the optimal solution if the noise has different distribution.
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Appendix A

Proofs for Chapter 1

A.1 Theorem 1

Let T > 0. To prove that (1.2) admits a strong solution on [0, T ], for any 0 ≤ τ ≤ T , we

denote

Xl[0, τ ] , LlF(Ω;C([0, τ ];Rn))

= {x : [0, τ ]× Ω→ Rn|x(·) is Ft − adapted, continuous, and E[ sup
0≤t≤τ

|x(t)|l] <∞}.

Clearly, Xl[0, τ ] is a Banach space with the norm

|x(·)|Xl[0,τ ] ,
(
E[ sup

0≤t≤τ
|x(t)|l]

) 1
l
. (A.1)

For any x(·), y(·) ∈ Xl[0, τ ], define for t ∈ [0, τ ],
Xt = ξ +

∫ t

0

a(s, x, ω)ds+

∫ t

0

s1(s, x, ω)dBs,

Yt = ξ +

∫ t

0

a(s, y, ω)ds+

∫ t

0

s1(s, y, ω)dBs.

(A.2)

Where the functions a and s1 are assumed to satisfy the following conditions. For any

ω ∈ Ω, a(·, ·, ω) ∈ Ak(Rk) and s1(·, ·, ω) ∈ Ak(Rk×m) and for any x ∈ Bk, a(·, x, ·) and

s1(·, x, ·) are both {Ft}-adapted processes. Moreover, there exists a constant L > 0 such
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that for all t ∈ [0,∞), x, y ∈ Bk, and ω ∈ Ω,
||a(t, x, ω)− a(t, y, ω)|| ≤ L||x− y||Bk ,
||s1(t, x, ω)− s1(t, y, ω)|| ≤ L||x− y||Bk ,
|a(·, 0, ·)|+ |s1(·, 0, ·)| ∈ L2

F(0, T ;R), ∀T > 0.

By (1.3) and the Burkholder-Davis-Gundy inequality (see, for example, [9]), we have{
|X·|lXl[0,τ ] ≤ K,

|X· − Y·|lXl[0,τ ] ≤ K
(
τ
l
2 |x(·)− y(·)|lXl[0,τ ]

)
.

(A.3)

Here the constant K is independent of τ, ξ, x(·), and y(·).
We let τ ∈ [0, T ] be a given deterministic constant such that Kτ

l
2 < 1, where K

is in (A.3). From the equation (A.3), it follows that for any ξ ∈ LlF0
(Ω;Rn), the map

x(·) 7→ X· defined via (A.2) is from space Xl[0, τ ] to itself (with the norm (A.1)) and is

contractive. Thus, there exists a unique fixed point, which gives a strong solution X· to

(1.2) on [0, τ ]. Next, repeating the procedure on [τ, 2τ ], etc., we are able to get the unique

strong solution on [0, T ]. Since T > 0 is arbitrary, we obtain the strong solution on [0,∞).

The proof of the remaining conclusions follow easily from the Burkholder-Davis-Gundy

inequality.

The proof of the theorem follows the approach taken in [9].

A.2 Theorem 2

We treat the case of right-continuity. With t > 0, n ≥ 1, k = 0, 1, ..., 2n − 1, and

0 ≤ s ≤ t, we define

X(n)
s (ω) = X(k+1)t/2n(ω) for

kt

2n
< s ≤ (k + 1)t

2n
,

as well as X
(n)
0 (ω) = X0(ω). The so-constructed map (s, ω) 7→ X

(n)
s (ω) from [0, t] × Ω

into Rk is demonstrably B([0, t]) ⊗ Ft-measurable. Besides, by right-continuity of the

process Xt we have lim
n→∞

X
(n)
s (ω) = Xs(ω), ∀(s, ω) ∈ [0, t] × Ω. Therefore, the (limit)

map (s, ω) 7→ Xs(ω) is also B([0, t])⊗Ft-measurable.

The proof of the theorem follows the approach taken in [10].
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A.3 Lemma 2

In order to prove the Lemma, we need two propositions. A set B ⊆ Bm[0, T ] is called a

Borel cylinder, if there exists 0 ≤ t1 < t2 < ... < tj ≤ T and E ∈ B(Rjm) such that

B = {ζ ∈ Bm[0, T ] | (ζ(t1), ζ(t2), ..., ζ(tj)) ∈ E}. (A.4)

We let Cs be the set of all Borel cylinders in Bm
s [0, T ] of the form (A.4) with t1, ..., tj ∈

[0, s].

Proposition 12. The sigma-algebra σ(CT ) generated by CT coincides with the Borel

sigma-algebra B(Bm[0, T ]) of Bm[0, T ].

Proof. Let 0 ≤ t1 < t2 < ... < tj ≤ T be given. We define a map T : Bm[0, T ]→ Rjm as

follows

T (ζ) = (ζ(t1), ζ(t2), ..., ζ(tj)), ∀ζ ∈ Bm[0, T ].

Clearly, T is continuous. Consequently, for any E ∈ B(Rjm), it follows that T −1(E) ∈
B(Bm[0, T ]). This implies

CT ⊆ B(Bm[0, T ]). (A.5)

Next, for any ζ0 ∈ Bm[0, T ] and ε > 0, we have

{ζ ∈ Bm[0, T ] | ||ζ − ζ0||Bm[0,T ] ≤ ε} (A.6)

=
⋂

r∈Q,r∈[0,T ]

{ζ ∈ Bm[0, T ] | ||ζ(r)− ζ0(r)|| ≤ ε} ∈ σ(CT ),

since {ζ ∈ Bm[0, T ] | ||ζ(r) − ζ0(r)|| ≤ ε} is a Borel cylinder, and Q is the set of all

rational numbers (which is countable). Because the set of all sets in the form of the

left-hand side of (A.6) is a basis of the open sets in Bm[0, T ], we have

B(Bm[0, T ]) ⊆ σ(CT ). (A.7)

Combining (A.5) and (A.7), we obtain our result.

78



Proposition 13. Let (Ω,F ,P) be a complete probability space and ξ : [0, T ] × Ω → Rm

be a continuous process. Then there exists an Ω0 ∈ F with P(Ω0) = 1 such that ξ : Ω0 →
Bm[0, T ] and for any s ∈ [0, T ],

Ω0

⋂
F ξs = Ω0

⋂
ξ−1(Bs(Bm[0, T ])).

Proof. Let t ∈ [0, s] and a set E ∈ B(Rm) be fixed. Then for simplicity denote by

Et , {ζ ∈ Bm[0, T ] | ζ(t) ∈ E} ∈ Cs. Note that

ω ∈ ξ−1(Et)⇐⇒ ξ(·, ω) ∈ Et ⇐⇒ ξ(t, ω) ∈ E ⇐⇒ ω ∈ ξ(t, ·)−1(E).

Thus, ξ(t, ·)−1(E) = ξ−1(Et). We obtain the result by the previous proposition 12.

Proof. Proof of the Lemma 2.

We prove only the ’only if’ part. The ’if’ part is clear.

For any s ∈ [0, T ], we consider a mapping

θs(t, ω) , (t ∧ s, ξ(· ∧ s, ω)) : [0, T ]× Ω→ [0, s]×Bm
s [0, T ].

By Proposition 13, we have B[0, s] ⊗ F ξs = σ(θs). On the other hand, we have that

(t, ω) 7→ ϕ(t ∧ s, ω) is (B[0, s] ⊗ F ξs )/B(U)-measurable (see definition 4 in chapter 1 for

the meaning of the notation). Thus, there exists a measurable map which is given by

ηs : ([0, T ]×Bm
s [0, T ],B[0, s]× Bs(Bm[0, T ]))→ U such that

ϕ(t ∧ s, ω) = ηs(t ∧ s, ξ(· ∧ s, ω)), ∀ω ∈ Ω, t ∈ [0, T ].

Now, for any i ≥ 0, let 0 = ti0 < ti1 < ... be a partition of [0, T ] with max
j≥1

(tij − tij−1)→ 0

as i→∞, and define

ηi(t, ζ) = η0(0, ζ(· ∧ 0))I{0}(t) +
∑
j≥1

ηtij(t, ζ(· ∧ tij))I(tij−1,t
i
j ]

(t), ∀(t, ζ) ∈ [0, T ]×Bm[0, T ].

For any t ∈ [0, T ], there exists a uniquely determined index j such that tij−1 < t ≤ tij.

Then

ηi(t, ξ(· ∧ tij, ω)) = ηtij(t, ξ(· ∧ t
i
j, ω)) = ϕ(t, ω).
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Now, in case U is either R or N, we may define

η(t, ζ) = lim sup
i→∞

ηi(t, ζ)

to get the desired result.

The proof of the lemma follows the approach taken in [9].

80



Appendix B

Proofs for Chapter 3

B.1 Lemma 5

Step 1: Un-Normalized Conditional Probability. Let us introduce a new filtration defined

by G̃t = σ{B̃s,1, P̃s | s ≤ t}. Obviously, Gt = G̃t and, therefore, ∆t(ψ) = E[ψ(Lt, t)|Gt] =

E[ψ(Lt, t)|G̃t], where ψ ∈ C2,1(R, [0, T ]) is a test function with a bounded support.

It is convenient to use probability measure P̃ instead of P since the observation pro-

cesses under P̃ are a Brownian motions. Therefore, we also need the Radon-Nikodym

derivative

dP
dP̃

=
1

Mt

= Qt

on Ft, and we have

∆t(ψ) = E[ψ(Lt, t)|G̃t] =
Ẽ[ψ(Lt, t)Qt|G̃t]

Ẽ[Qt|G̃t]

where Ẽ is the expectation with respect to P̃. This formula leads to the introduction of

the un-normalized conditional probability defined by

pt(ψ) = Ẽ[ψ(Lt, t)Qt|G̃t].
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Step 2: Zakai Equation. We note that

dBt,2 =
√

1− ||ρ||2dB̃t,2 + ρTdBt,1,

dBt,1 = dB̃t,1 − θdt,
dBt,3 = dP̃t − 1

σ3
Ltdt,

we have that

dLt =
(
β − 1

2
σ2

2

)
dt+ σ2dBt,2

=
(
β − 1

2
σ2

2 − σ2ρ
Tθ
)
dt+ σ2

(√
1− ||ρ||2dB̃t,2 + ρTdB̃t,1

)
and

dQt = Qt

(
θTdBt,1 +

Lt
σ3

dBt,3

)
+Qt

(
θTθ +

L2
t

σ2
3

)
dt

= Qt

(
θTdB̃t,1 +

Lt
σ3

dP̃t

)
.

Therefore, by Ito’s formula,

d(Qtψ(Lt, t)) = Qt

(∂ψ
∂t

+
(
β − 1

2
σ2

2 − σ2ρ
Tθ
)∂ψ
∂l

+
1

2
σ2

2

∂2ψ

∂l2

)
dt

+Qtσ2
∂ψ

∂l

(√
1− ||ρ||2dB̃t,2 + ρTdB̃t,1

)
+Qtψ

(
θTdB̃t,1 +

Lt
σ3

dP̃t

)
+Qtσ2

∂ψ

∂l
ρTθdt

= Qt

((∂ψ
∂t
−Aψ

)
dt+ σ2

∂ψ

∂l

√
1− ||ρ||2dB̃t,2

+
(
ψθ +

∂ψ

∂l
σ2ρ
)T
dB̃t,1 + ψ

Lt
σ3

dP̃t

)
,

where the second-order differential operator A is given by

A = −
(
β − 1

2
σ2

2

) ∂
∂l
− 1

2
σ2

2

∂2

∂l2
.
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In the integral form

Qtψ(Lt, t) = ψ(L0, 0) +

∫ t

0

Qs

(∂ψ
∂s
−Aψ

)
ds+

∫ t

0

Qsσ2
∂ψ

∂l

√
1− ||ρ||2dB̃s,2

+

∫ t

0

Qs

(
ψθ +

∂ψ

∂l
σ2ρ
)T
dB̃s,1 +

∫ t

0

Qsψ
Ls
σ3

dP̃s.

To compute the conditional expectation pt(ψt) = Ẽ[ψ(Lt, t)Qt|G̃t], we use test func-

tions which are G̃t-measurable. Because the generating processes are Brownian motions,

it is sufficient to test with stochastic processes of the form

dJt = iJt(ξ1(t)TdB̃t,1 + ξ2(t)dP̃t), κ0 = 1,

where i =
√
−1, and ξ1(t) ∈ Rn and ξ2(t) ∈ R are arbitrarily chosen deterministic

bounded functions. Recall that by the process Qtψ(Lt, t), the definition of pt(ψ) and

Ẽ[B̃t,2|G̃t] = 0, we have (B̃t,1, B̃t,2, P̃t are independent Brownian motions under P̃),

Ẽ[Jtpt(ψ)] = Ẽ[Jt∆0(ψ)] + Ẽ
[
Jt

(∫ t

0

ps

(∂ψ
∂s
−Aψ

)
ds

+

∫ t

0

ps

(
ψθ +

∂ψ

∂l
σ2ρ
)T
dB̃s,1 +

∫ t

0

ps

(
ψ
Ls
σ3

)
dP̃s

)]
.

Because this equality holds for all Jt, we obtain the Zakai equation

pt(ψ) = ∆0(ψ) +

∫ t

0

ps

(∂ψ
∂s
−Aψ

)
ds+

∫ t

0

ps

(
ψθ +

∂ψ

∂l
σ2ρ
)T
dB̃s,1 +

∫ t

0

ps

(
ψ
Ls
σ3

)
dP̃s.

Step 3. Un-normalized Density. We look for a density that solves the Zakai equation,

that is p̃(l, t) such that

pt(ψ) =

∫ ∞
−∞

p̃(l, t)ψ(l, t)dl.
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Substituting into the Zakai equation we obtain1

∫ ∞
−∞

p̃(l, t)ψ(l, t)dl =

∫ ∞
−∞

p̃(l, 0)ψ(l, 0)dl +

∫ t

0

∫ ∞
−∞

p̃(l, s)
(∂ψ
∂s
−Aψ

)
dl ds

+

∫ t

0

∫ ∞
−∞

p̃(l, s)
(
ψθ +

∂ψ

∂l
σ2ρ
)T
dl dB̃s,1

+

∫ t

0

∫ ∞
−∞

p̃(l, s)
(
ψ
l

σ3

)
dl dP̃s.

Using integration by parts in t and l, we get∫ ∞
−∞

(
dp̃+A∗p̃dt− (p̃θ − p̃lσ2ρ)TdB̃t,1 − p̃

l

σ3

dP̃t

)
ψdl = 0,

where A∗ is the adjoint of A given by

A∗ =
(
β − 1

2
σ2

2

) ∂
∂l
− 1

2
σ2

2

∂2

∂l2
.

This gives the stochastic partial differential equation for the density.

The proof of this lemma follows the approach taken in [3].

B.2 Theorem 6

The Theorem 6 is proved by showing that (3.4)-(3.7) give (3.3).

Step 1: Un-normalized Density Process. We look for a solution in the form

p̃(l, t) = e−
1
2

(φ(t)l2−2Ftl+Gt), (B.1)

where φ(t) is deterministic, and Ft and Gt are Ito processes such that Ft satisfies

dFt = Ft,0dt+ FT
t,1dB̃t,1 + Ft,2dP̃t, (B.2)

and Gt satisfies

dGt = Gt,0dt+GT
t,1dB̃t,1 +Gt,2dP̃t. (B.3)

1The functions under the integral involving ψ (for example, ∂ψ
∂s −Aψ), are functions of l and s, not

Ls and s as before.
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Considering function p̃(l, t) as a function p̃(t, Ft, Gt), and using Ito’s lemma we obtain

dp̃ = p̃
(
− 1

2
φ′l2dt+ ldFt −

1

2
dGt +

1

2
||lFt,1 −

1

2
Gt,1||2dt+

1

2
(lFt,2 −

1

2
Gt,2)2dt

)
. (B.4)

We also note that p̃l = p̃(−lφ+ Ft) and p̃ll = p̃(−lφ+ Ft)
2 − p̃φ, and, thus, equating the

diffusion terms of (3.3) and (B.4), we obtain

p̃(lFT
t,1 −

1

2
GT
t,1) = (p̃θ − p̃lσ2ρ)T,

p̃
l

σ3

= p̃(lFt,2 −
1

2
Gt,2).

This implies that

Ft,1 = σ2φρ, −
1

2
Gt,1 = θ − σ2Ftρ, Ft,2 =

1

σ3

, Gt,2 = 0. (B.5)

Equating the drift terms of (3.3) and (B.4) we obtain

−1

2
φ′l2 + lFt,0 −

1

2
Gt,0 +

1

2

( l2
σ2

3

+ ||(lφ− Ft)σ2ρ+ θ||2
)

(B.6)

= (lφ− Ft)(β −
1

2
σ2

2) +
1

2
σ2

2((lφ− Ft)2 − φ).

We select the parameters so that (B.6) holds.

Step 2. Variance. Equating the coefficients of l2 in (B.6) we obtain

−φ′ + 1

σ2
3

+ φ2σ2
2(||ρ||2 − 1) = 0. (B.7)

By Lemma 2 and Theorem 6, p̃(l, 0) = p0(l) = 1√
2πm0

e
− (l−l0)2

2m0 , and, thus, equation (B.1)

implies that φ(0) = 1
m0

. Therefore, by setting m(t) = 1
φ(t)

we obtain the following Riccati

equation for the variance

m′(t) = −m
2(t)

σ2
3

+ σ2
2(1− ||ρ||2), m(0) = m0, (B.8)

The solution to this equation is (3.5).

Step 3: Kalman Filter. Equating the coefficients of l in (B.6), we can obtain the
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coefficient Ft,0 of l to be

Ft,0 = σ2
2Ftφ(||ρ||2 − 1) + φ(β − 1

2
σ2

2 − σ2ρ
Tθ),

which with (B.2) and (B.5) give

dFt + (1− ||ρ||2)σ2
2φFt dt = φ(β − 1

2
σ2

2 − σ2ρ
Tθ)dt+ σ2φρ

TdB̃t,1 +
1

σ3

dP̃t.

Let L̂t = Ftm(t), then by Ito’s lemma, we obtain the Kalman filter (3.6). Because

p̃(l, 0) = p0(l) and (B.1) imply F0 = l0
m0

, we get the initial condition L̂0 = l0.

Step 4: Conditional Probability Density. Equating the terms independent of l in (B.6)

permits us to compute Gt,0. This gives

Gt,0 = ||θ||2 + F 2
t σ

2
2(||ρ||2 − 1) + Ft(2β − σ2

2) + σ2
2φ− 2Ftσ2θ

Tρ.

From equations (B.3) and (B.5) we obtain

dGt =
(
||θ||2 + F 2

t σ
2
2(||ρ||2 − 1) + Ft(2β − σ2

2) + σ2
2φ− 2Ftσ2θ

Tρ
)
dt (B.9)

+ 2(σ2Ftρ− θ)TdB̃t,1.

Using p̃(l, 0) = p0(l) and (B.1), we have the initial condition

e−
G0
2 =

1√
2πm0

e
− l20

2m0 . (B.10)

Using φ(t) = 1
m(t)

and Ft = L̂t
m(t)

, we can write (B.1) as follows

p̃(l, t) =
Kt√

2πm(t)
e−

(l−L̂t)
2

2m(t) , (B.11)

where Kt =
√

2πm(t)e
1
2

(
−Gt+

L̂2
t

m(t)

)
, eΦt and Φt = 1

2

(
− Gt +

L̂2
t

m(t)

)
+ ln(

√
2πm(t)).

From (B.10) and L̂0 = l0, we get Φ0 = 0. By Ito’s lemma and equations (3.6), (B.8), and
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(B.9), we obtain

dΦt = −1

2

L̂2
t

σ2
3

dt− 1

2
θTθdt+ θTdB̃t,1 +

L̂t
σ3

dP̃t.

which gives (3.7). Thus, the un-normalized density in Theorem 6 equals (B.1) and (B.11).

Then by φ(t), Ft, Gt, equation (3.3) holds. Using Lemma 2 we get that the density solves

the Zakai equation.

The proof of this theorem follows the approach taken in [3].

B.3 Lemma 6

Since the observed process is given by dPt = Ltdt + σ3dBt,3, then combining with (3.8)

we obtain dB̃t,3 = εt
σ3
dt+ dBt,3, where εt = Lt − L̂t. In order to solve the distribution of

(Bt,3, Bt,1) under P, we analyze characteristic function

ϕ(t) = E
[

exp
(
i

∫ t

0

(ξ2(s)dB̃s,3 + ξ1(s)dBs,1)
)
|G0

]
= E

[
exp

(
i

∫ t

0

(ξ2(s)εs
σ3

ds+ ξ2(s)dBs,3 + ξ1(s)dBs,1

))
|G0

]
,

where i =
√
−1, and ξ1 ∈ Rn and ξ2 ∈ R are arbitrarily chosen deterministic bounded

functions. Let us define

Ht = exp
(
i

∫ t

0

(ξ2(s)εs
σ3

ds+ ξ2(s)dBs,3 + ξ1(s)dBs,1

))
.

By Ito’s lemma, iterated expectation, and the fact that ε(s) is independent of Gs, we

have

ϕ(t) = E[H0|G0] + E
[ ∫ t

0

dHs|G0

]
= ϕ(0) + i

∫ t

0

ξ2(s)E
[Hsεs
σ3

|G0

]
ds+ i

∫ t

0

ξ1(s)E[HsdBs,1|G0]

− 1

2

∫ t

0

(ξ2
2(s) + ||ξ1(s)||2)E[Hs|G0]ds
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= 1 + i

∫ t

0

ξ2(s)E
[Hs

σ3

E[εs|Gs]|G0

]
ds− 1

2

∫ t

0

(ξ2
2(s) + ||ξ1(s)||2)E[Hs|G0]ds

= 1− 1

2

∫ t

0

(ξ2
2(s) + ||ξ1(s)||2)E[Hs|G0]ds = exp

(
− 1

2

∫ t

0

(ξ2
2(s) + ||ξ1(s)||2)ds

)
.

A comparison of this with the characteristic function of the standard (n+1)-dimensional

Brownian motion completes the proof.

The proof of this lemma follows the approach taken in [3].
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