
ABSTRACT

HIRD, JOHN THOMAS, JR. Codes and Shifted Codes of Partitions and Compositions. (Under
the direction of Naihuan Jing and Ernest Stitzinger.)

Codes of partitions were originally introduced by Stig Comét in 1959. Recently Carrell and

Goulden have found a formula for the action of Bernstein’s operator on the Schur functions

which has a simple representation in terms of codes. In this work, we prove this formula in

a new way that we then extend to Schur Q-functions. We determine explicit formulas for the

analogous vertex operators acting on Schur Q-function and Hall-Littlewood polynomials. We

also give a combinatorial algorithm to express any sequence of Bernstein operators in terms of a

Schur function. We show how codes of Schur functions can be used to study Schur Q-functions

and vice versa. As another application, we show the connection between Bernstein operators

and Schur functions indexed by compositions.

c© Copyright 2012 by John Thomas Hird, Jr.

All Rights Reserved

Codes and Shifted Codes of Partitions and Compositions

by
John Thomas Hird, Jr.

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2012

APPROVED BY:

Patricia Hersh Kailash Misra

Naihuan Jing
Co-chair of Advisory Committee

Ernest Stitzinger
Co-chair of Advisory Committee

DEDICATION

In memory of Susan Janet Hird. Miss you, Mom.

ii

BIOGRAPHY

John Thomas “J.T.” Hird, Jr. was born on December 31, 1984 in Youngstown, Ohio to Susan

and Jack Hird. He grew up in Poland, Ohio with younger brother Kevin, and attended Holy

Family School and Poland Seminary High School. After graduating, he attended Youngstown

State University, majoring in mathematics. He then went to North Carolina State University,

where he served as a graduate student teaching assistant, while working toward master’s and

doctorate degrees in mathematics.

J.T.’s first memory of the joy of mathematics is of his dad teaching him how to divide before

his teachers had a chance. His uncle Howie predicted a future in mathematics (in between being

a fighter pilot and the president of the United States) after he made a multiplication table to

help teach a younger cousin how to multiply. A long string of exceptional teachers pointed him

toward his eventual career in math and made that prediction come true.

iii

ACKNOWLEDGEMENTS

First, I would like to thank my advisors Ernest Stitzinger and Naihuan Jing for all their help

and patience and my parents Susan and Jack for giving me the opportunities and support that

have led me here.

I would also like to thank all the people who helped me realize how much I love math

and led me to this career. Mrs. Wargo at Holy Family taught me to love math contests.

Mrs. Farina at Poland let me get an early start on math each day. Dr. Buoni taught me for

more semesters than I can count and was always ready with advice. Brian Hamilton convinced

me that taking discrete math with Dr. Fabrykowski was more important than organic chemistry.

Dr. Fabrykowski taught the discrete math class that finally made up my mind about a major,

and helped prepare me for the Putnam and other contests with Dr. Smotzer. Dr. Flowers

taught me to love algebra and group theory and was my undergraduate advisor. Dr. Stitzinger

continued both of these roles, teaching me more algebra and later becoming my graduate

advisor. He helped me get through the trials and tribulations of being a grad student and

helped me find my second advisor, Dr. Jing, who finally led me to the current body of work in

combinatorics and algebra.

iv

TABLE OF CONTENTS

List of Figures . vi

Chapter 1 Introduction . 1
1.1 History of Codes . 1
1.2 Preliminaries . 2

Chapter 2 Bernstein Operators and Analogs . 5
2.1 Introduction . 5
2.2 Codes of Partitions . 7
2.3 Bernstein Operators . 9
2.4 Schur Q-functions . 12
2.5 Littlewood-Richardson Rule . 19

Chapter 3 Equivalence Relations on Codes . 23
3.1 Introduction . 23
3.2 Partitions and Code Models . 24
3.3 A Relation on Codes . 26
3.4 Codes of Compositions . 28
3.5 Schur Functions Indexed by Compositions . 34
3.6 Schur Q-functions . 36
3.7 Shifted Codes . 41
3.8 Reverse Shifted Codes . 46
3.9 The Schur – Schur Q Correspondence . 50

Chapter 4 Hall-Littlewood Polynomials . 54
4.1 Hall-Littlewood Analog . 54
4.2 Restricting to Schur and Schur Q-functions . 57

References . 61

v

LIST OF FIGURES

Figure 1.1 Young diagram and code of λ = (4, 2, 2, 1). 2
Figure 1.2 Shifted Young diagram and shifted code of λ = (4, 2, 1). 3

Figure 2.1 Young diagram and code of λ = (4, 2, 1). 7
Figure 2.2 Change in the code from λ to λ(3). 8
Figure 2.3 Change in the code from λ to λ[1]. 14
Figure 2.4 Change in the code from λ to λ[2]. 15
Figure 2.5 Change in the code from λ to λ[3]. 16
Figure 2.6 Shifted Young diagram and shifted code of λ = (5, 4, 2). 16
Figure 2.7 Shifted Young diagram and shifted code of λ = (6, 4, 3, 1). 17
Figure 2.8 Change in the shifted code from λ to λ[2]. 18
Figure 2.9 Semistandard Young tableau of shape λ/µ. 20

Figure 3.1 Young diagram and code for λ = (4, 2, 2, 1). 25
Figure 3.2 Young diagram and code for µ = (2, 3, 1, 4). 25
Figure 3.3 Change in the code from commuting BnBm. 27
Figure 3.4 Alternate version of the change in the code from commuting BnBm. . . . 28
Figure 3.5 Change in the code from commuting YnYm. 38
Figure 3.6 Shifted Young diagram and shifted code of λ = (4, 2, 1). 42
Figure 3.7 Young diagram and code of λ = φ. 42
Figure 3.8 Shifted Young diagram and preshifted code of λ = φ. 42
Figure 3.9 Shifted Young diagram and shifted code of λ = φ. 43
Figure 3.10 Shifted Young diagram and shifted code of µ = (2, 3, 1). 43
Figure 3.11 Change in the shifted code from commuting YnYm. 44
Figure 3.12 All five code variants for λ = (0, 0, 0, 0). 47
Figure 3.13 Reverse-shifted Young diagram and reverse-shifted code of µ = (3, 1, 2). . 48
Figure 3.14 Change in the reverse-shifted code from commuting BnBm. 49
Figure 3.15 Correspondences between codes. 51
Figure 3.16 Correspondences between relations on codes. 52

vi

Chapter 1

Introduction

1.1 History of Codes

Codes of partitions were originally introduced by Stig Comét [2] in 1959 in the study of hook

lengths and were further developed by J. B. Olsson [10] in 1987. In these first appearances

codes were defined as infinite sequences of zeros and ones with only zeros left of some point

and only ones right of some point. Then each such sequence uniquely determines a partition.

The code can also be recovered by tracing along the bottom-right edge of the Young diagram

associated to the partition and writing 0 for each up step and 1 for each right step. This is the

realization we will use throughout this paper, though we will use U and R instead of 0 and 1.

Codes are also equivalent to Maya diagrams [3], one of the oldest combinatorial descriptions

of partitions. Maya diagrams are also defined as sequences of zeros and ones, except that in

this setting the entries are indexed by the integers. So shifting every element of the sequence of

zeros and ones one position to the right would give a different Maya diagram since the indices of

the entries change, but it would give the same code since codes only keep track of the sequence

itself not its position.

Several combinatorial structures similar to codes have also been used by Andrei Okounkov

in studying random matrices. These structures include another description of Maya diagrams

in [9] and the profile of the partition, which is the piecewise-linear function obtained by tracing

out the code of the partition (see [8]).

Most recently Sean Carrell and Ian Goulden have found a formula for the action of Bern-

stein’s operator on the Schur functions, which has a simple interpretation in terms of codes [1].

It is the goal of this work to generalize and elaborate on this result.

1

1.2 Preliminaries

A partition λ = (λ1, λ2, . . . , λl) of n is a sequence of nonnegative integers satisfying λ1 ≥ λ2 ≥
. . . ≥ λl whose sum is λ1 + λ2 + · · · + λl = |λ| = n. A Young diagram of shape λ is an array

of left aligned boxes with λi boxes in the ith row from the top. A shifted Young diagram is a

Young diagram in which the ith row has been shifted i− 1 positions to the right.

Definition 1.2.1. Define the code of a partition λ to be the doubly infinite sequence of letters

R and U obtained by tracing along the bottom-right edge of the Young diagram of shape λ in

the fourth quadrant of the xy-plane together with the negative y- and positive x-axes, where

R corresponds to a unit right step and U corresponds to a unit up step.

Example 1.2.2. For the partition λ = (4, 2, 2, 1), the path described above is shown in bold

in Figure 1.1. Then the code of λ is given by α = . . . UUURURUURRURRR . . .

Figure 1.1: Young diagram and code of λ = (4, 2, 2, 1).

Definition 1.2.3. Define the shifted code of a strict partition λ to be the infinite sequence of

letters R and U obtained by tracing along the bottom-right edge of the shifted Young diagram

of shape λ in the fourth quadrant together with the positive x-axis, starting at the bottom-right

corner of the leftmost box on the bottom row of the diagram.

Example 1.2.4. For the strict partition λ = (4, 2, 1), the path described above is shown in

bold in Figure 1.2. Then the shifted code of λ is given by α = UURURRR . . .

Let Λ = C[p1, p2, p3, . . .] = ⊕∞n=0Λn be the ring of symmetric functions, where pn is the power

sum symmetric function of degree n. As a graded vector space Λ has several distinguished bases,

2

s
Figure 1.2: Shifted Young diagram and shifted code of λ = (4, 2, 1).

such as the power sum symmetric functions pλ and the Schur functions sλ [7, 13] both indexed

by partitions.

One way to construct the Schur functions is as the images of the Bernstein operators Bn,

whose generating function B(t) is a vertex operator:

B(t) =
∑
n∈Z

Bnt
n = exp

∑
k≥1

tk

k
pk

 exp

−∑
k≥1

t−k
∂

∂pk


which acts on the space Λ. Bernstein also showed the following two results, known as Bernstein’s

Theorem [15]:

BnBm = −Bm−1Bn+1, (1.1)

sλ = Bλ1Bλ2 · · ·Bλl · 1, (1.2)

where sλ is the Schur polynomial indexed by the partition λ = (λ1, λ2, . . . , λl). For convenience

we also write Bµ for Bµ1Bµ2 · · ·Bµl for any composition µ.

Carrell and Goulden [1] have used codes of partitions to compute the action of the Bernstein

operators on the Schur function sλ:

B(t)sλ =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) , (1.3)

where λ(i) is another partition defined in terms of the code of the partition λ. They then use

this formula to prove Bernstein’s Theorem, (1.1) and (1.2). Their proof is combinatorial and

they also show that their identity can be used in Plücker relations and KP hierarchies.

In Chapter 2 we show that Carrell and Goulden’s formula follows directly from the commu-

tation relation (1.1) satisfied by the Bernstein operators, and show how the same approach can

be used to find a formula for the action of the Bernstein operators in any order. We also show

the analogous statements to Carrel and Goulden’s formula and our generalization for Schur Q-

functions [12, 7] and the operator Yn [6], which have an intuitive description in terms of either

codes or shifted codes of partitions. We conclude this chapter with an application of codes to

3

the Littlewood-Richardson Rule and the Pieri Rules.

Chapter 2 is an algebraic study of codes: using algebraic properties to prove identities and

then writing the result in an often more intuitive way using codes. Chapter 3 is a purely

combinatorial study of codes. We define several equivalence relations on codes (and shifted

codes) which allow us to prove the main results from Chapter 2 using only the codes of the

partitions involved. In addition, we show the application of these results to Schur functions

indexed by compositions and introduce another new combinatorial object reverse-shifted codes

to help illustrate the relationship between Schur functions and Schur Q-functions.

As Naihuan Jing pointed out in [6], this relationship between the Schur functions and

Schur Q-functions is one instance of the celebrated Boson-Fermion correspondence. From this

standpoint Schur functions and Schur Q-functions can be viewed as untwisted and twisted

pictures of the Fock space representations respectively, and the vertex operators Bn and Yn

come from two different realizations of affine Lie algebras.

Finally, in Chapter 4 we generalize the main theorems in Chapters 2 and 3 on Schur functions

and Schur Q-functions to Hall-Littlewood polynomials and show how the previous results can

be interpreted as special cases of this more general theory.

4

Chapter 2

Bernstein Operators and Analogs

2.1 Introduction

In this chapter, we prove that Carrell and Goulden’s formula for the action of the Bernstein

operator on a Schur function follows directly from algebraic properties of the Bernstein operator.

We then show how the relation between the Bernstein operator and the vertex operator X(t)

allows us to prove this formula in another way. This same approach can also be generalized to

let us study the equivalent operator, Y (t), on Schur Q-functions. To simplify this problem we

generalize the combinatorial object codes of partitions to the new combinatorial object shifted

codes of partitions. We then show how codes can be used to study the Littlewood-Richardson

and Pieri Rules to show some of the strengths and applications of codes of partitions.

Let Λ = C[p1, p2, p3 . . .] = ⊕∞n=0Λn be the ring of symmetric functions, where pn is the power

sum symmetric function of degree n. As a graded vector space, Λ has several linear bases such

as the power sum symmetric functions pλ and Schur functions sλ [7, 13] indexed by partitions.

One way to construct Schur functions is to realize them as images of Bernstein operators Bn,

whose generating function B(t) is a variant of vertex operator [15]:

B(t) =
∑
n∈Z

Bnt
n = exp

∑
k≥1

tk

k
pk

 exp

−∑
k≥1

t−k
∂

∂pk


which acts on the space Λ. In this construction the Schur function sλ is easily given by

s(λ1,...,λl) = Bλ1 · · ·Bλl · 1. The operator Bn is a graded linear transformation of degree n

defined via its action on the power sum function pµ. We can also define the operator Bn on the

basis of Schur functions. It turns out the action of Bn on Schur functions has a close relation-

ship with Maya diagrams [3], one of the oldest configurations of partitions. Recently Carrell

and Goulden [1] have formulated the action of B(t) in terms of codes of partitions, which are

5

certain combinatorial description of Maya diagrams. Similar combinatorial structures have also

been used in Okounkov’s work on random matrices [9].

Carrell and Goulden use codes of partitions to compute the action of Bernstein operators

on the Schur function sλ:

B(t)sλ =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) , (2.1)

where λ(i) is another partition defined in terms of the code of the partition λ. They then

use this formula to prove Bernstein’s Theorem, that s(λ1,...,λl) = Bλ1 · · ·Bλl · 1 and BmBn =

−Bn−1Bm+1. Their proof is combinatorial and they also show that their identity can be used

in Plücker relations and KP hierarchies.

In this paper we will show that Carrell and Goulden’s formula (2.1) can be easily obtained

from the classical results using algebraic properties satisfied by vertex operators. We will also

generalize the combinatorial structures to the case of Schur Q-functions and derive a similar but

simpler combinatorial formulation for the associated vertex operator. The Schur Q-functions

are certain distinguished linear bases in the subring of symmetric functions:

Λ− = C[p1, p3, p5 . . .] = ⊕∞n=0Λ
−
n .

These symmetric functions were defined by I. Schur in his seminal work [12] on projective

representations of the symmetric group Sn (see also [7]). As pointed out in [6] Schur functions

and Schur Q-functions are two examples of the celebrated Boson-Fermion correspondence, in

which they can be roughly viewed as untwisted and twisted pictures of the Fock space represen-

tations respectively, and the vertex operators for Schur and Schur Q-functions come from two

different realizations of affine Lie algebras. Taking the advantage of this grand picture we can

give a unified approach to derive the action of vertex operators on Schur and Schur Q-functions.

First we can compute the action of Bernstein operator by using the commutation relations:

BmBn = −Bn−1Bm+1. (2.2)

The combinatorial structure of codes then follows easily from the algebraic structure.

When we tensor the ring Λ by the group algebra of one-dimensional lattice Z, the commu-

tation relations (2.2) can be improved into the exact anti-commutation relations of the vertex

operators X(t):

XmXn = −XnXm, (2.3)

thus we obtain our second and even simpler proof of Carrell-Goulden’s formula (2.1). Using

the same idea we can generalize this to the twisted Fock space Λ− = C[p1, p3, . . .] and again we

6

use the similar antisymmetry of the components of the vertex operator Y (z) (see [6]) to study

the action of the Schur Q-functions.

We also formulate the action of the twisted vertex operators in terms of shifted codes. In

this way we have unified codes and shifted codes in the context of vertex operators and Boson-

Fermion correspondence. We also show how these combinatorial objects can help us derive the

Littlewood-Richardson Rule and the Pieri Rules.

2.2 Codes of Partitions

Let λ = (λ1, λ2, . . . , λl) be a decreasing sequence of positive integers, λ1 ≥ λ2 ≥ · · · ≥ λl > 0.

We say that λ is a partition of n, denoted λ ` n, if λ1 +λ2 + · · ·+λl = n. We also say that the

weight of the partition λ is |λ| = n, and the length of the partition is l(λ) = l.

The Young diagram of a partition λ is the left-justified arrangement of boxes with λi boxes

in the ith row from the top. Since the parts of λ are weakly decreasing, the number of boxes in

each row will be less than or equal to the number of boxes in each row above it.

Define the code of a partition λ to be the doubly infinite sequence of letters R and U obtained

from the Young diagram of shape λ as follows. Consider the Young diagram top and left aligned

in the 4th quadrant of the xy-plane together with the negative y-axis and the positive x-axis.

Trace up the negative y-axis to the bottom of the Young diagram, then along the bottommost

edge of the Young diagram, then right along the positive x-axis. The code of the partition is

the sequence of R’s and U’s obtained from this path, where R corresponds to a unit right step

and U corresponds to a unit up step.

Example 2.2.1. Let λ = (4, 2, 1). Then the Young diagram of shape λ in the 4th quadrant of

the xy-plane is shown in Figure 2.1, with the path described above in bold.

Figure 2.1: Young diagram and code of λ = (4, 2, 1).

7

The path consists of infinitely many U’s at the beginning - corresponding to tracing up the

negative y-axis, then RURURRU - corresponding to tracing the bottommost edge of the Young

diagram, then infinitely many R’s at the end - corresponding to tracing right along the positive

x-axis. Thus the sequence . . . UUURURURRURRR . . . is the code of the partition λ = (4, 2, 1).

Note that the code of any partition will always have infinitely many U’s at the beginning

of the code, and infinitely many R’s at the end of the code (corresponding respectively to the

negative y-axis and the positive x-axis).

Define the partition λ(i) to be the partition obtained by turning the ith R from the left in

the code of λ to a U. Equivalently, λ(i) is the partition obtained by looking at the lower-right

edge of the associated Young diagram (together with the positive x-axis and negative y-axis,

where the Young diagram is considered to be in the 4th quadrant) and turning the ith horizontal

edge from the left into a vertical edge (and shifting the resulting path into the 4th quadrant).

Example 2.2.2. Let λ = (4, 2, 1). Then to find λ(3), the third right step from the left becomes

an up step. The changed edge is shown in bold below.

λ = → λ(3) =

Figure 2.2: Change in the code from λ to λ(3).

Thus λ(3) = (3, 2, 2, 1).

A simple formula for the partition λ(i) is

λ(i) = (λ1 − 1, λ2 − 1, . . . , λj − 1, i− 1, λj+1, . . . , λl), (2.4)

where λj ≥ i > λj+1 (with the convention that λl+1 = 0 and λ0 =∞).

Given the code of a partition λ, let ui(λ) be the number of U’s in the code of λ to the right

of the ith R from the left, and let ri(λ) be the number of R’s in the code of λ to the left of the

ith U from the right. This means that ui(λ) is equal to the number of parts of λ of size at least

i, and ri(λ) = λi.

8

2.3 Bernstein Operators

Recall that the Bernstein operators B(t), and Bn are given by

B(t) =
∑
n∈Z

Bnt
n = exp

∑
k≥1

tk

k
pk

 exp

−∑
k≥1

t−k
∂

∂pk

 ,

which acts on the ring of polynomials Λ = C[p1, p2, p3, . . .]. Here the power sum pn acts as a

multiplication on Λ. Bernstein’s primary result with these operators was Bernstein’s formula,

which states:

sλ = Bλ1Bλ2 · · ·Bλl · 1, (2.5)

where λ = (λ1, λ2, . . . , λl), and sλ is the Schur polynomial indexed by λ. For convenience, we

will often denote this composition as Bλ1Bλ2 · · ·Bλl · 1 = Bλ1,λ2,...,λl · 1. Another key relation

satisfied by Bernstein operators is the following:

BnBm = −Bm−1Bn+1. (2.6)

We will now use these two results, Eqs.(2.5) and (2.6), to prove a formula given in [1] which

gives the action of Bernstein’s operators on the Schur polynomials.

Theorem 2.3.1. For any partition λ,

B(t)sλ =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) .

This result was originally proved in [1] using some combinatorial considerations and the

dual action of the Schur functions. In this section we will give two simpler proofs to this result,

which will motivate our later generalization to the case of the Schur Q-functions.

Proof. Since B(t) =
∑

n∈ZBnt
n, we only need to determine the action of Bn on sλ. By equation

(2.5),

Bnsλ = BnBλ1Bλ2 · · ·Bλl · 1.

Case 1: If n ≥ λ1, then by equation (2.5),

Bn,λ1,λ2,...,λl · 1 = s(n,λ1,λ2,...,λl) = sλ(n+1) ,

where this term in the summation on the right has a t term of |λ(n+1)| − |λ|. Since n ≥ λ1,

turning the (n + 1)th horizontal edge to a vertical edge creates a new first row of size n. So

9

|λ(n+1)| − |λ| = n which is the exponent of t associated with Bn.

Case 2: If n = λj − j for some j, 1 ≤ j ≤ l, then by equation (2.6),

Bn,λ1,λ2,...,λl · 1 = (−1) Bλ1−1,n+1,λ2,...,λl · 1

= (−1)2 Bλ1−1,λ2−1,n+2,λ3,...,λl · 1
...

= (−1)j−1 Bλ1−1,λ2−1,...,λj−1−1,n+j−1,λj ,λj+1,...,λl · 1,

but n = λj − j, so n + j − 1 = λj − 1. From equation (2.6), Bi,i+1 = −Bi,i+1 for all i, which

implies Bi,i+1 = 0 for all i. Since Bn+j−1,λj = Bλj−1,λj is such a term, this product is zero.

Case 3: If λj+1 − (j + 1) < n < λj − j for some j, 1 ≤ j < l, then similarly,

Bn,λ1,λ2,...,λl · 1 = (−1)j Bλ1−1,λ2−1,...,λj−1,n+j,λj+1,...,λl · 1

= (−1)j s(λ1−1,λ2−1,...,λj−1,n+j,λj+1,...,λl)

= (−1)(−n)+(n+j+1)−1 sλ(n+j+1)

= (−1)(|λ|−|λ
(n+j+1)|)+(n+j+1)−1 sλ(n+j+1) ,

by equation (2.5), since λ1 − 1 ≥ λ2 − 1 ≥ · · · ≥ λj − 1 ≥ n + j ≥ λj+1 ≥ · · · ≥ λl. Note that

|λ| − |λ(n+j+1)| = −n since λ(n+j+1) removes the last box from each of the first j rows of λ’s

Young diagram and then adds a row of size n+ j. Also note that the exponent of t associated

with sλ(n+j+1) is |λ(n+j+1)| − |λ| = n, the same exponent associated with Bn.

Case 4: If n < λl − l, then similarly,

Bn,λ1,λ2,...,λl · 1 = (−1)l Bλ1−1,λ2−1,...,λl−1,n+l · 1.

We further break this into two cases:

• If n+ l ≥ 0, then by equation (2.5),

(−1)l Bλ1−1,λ2−1,...,λl−1,n+l · 1 = (−1)(−n)+(n+l+1)−1 sλ(n+l+1)

= (−1)|λ|−|λ
(n+l+1)|+(n+l+1)−1 sλ(n+l+1) ,

because |λ| − |λ(n+l+1)| = −n since λ(n+l+1) removes the last box from each of the l rows

of λ’s Young diagram and then adds a row of size n + l. Again note that the exponent

of t associated with sλ(n+l+1) is |λ(n+l+1)|−|λ| = n, the same exponent associated with Bn.

10

• If n+ l < 0, then by equation (2.6):

B−1,0 = −B−1,0 = 0

B−a,0 = −B−1,−a+1 = B−1,−1,−a+2 = · · · = (−1)a B−1,−1,...,−1,0 = 0,

for all a ∈ Z+, since B0 · 1 = 1. This implies that

(−1)l Bλ1−1,λ2−1,...,λl−1,n+l · 1 = (−1)l Bλ1−1,λ2−1,...,λl−1,−a · 1 = 0.

This proves the theorem.

We can also prove this theorem using vertex operators. This method will be particularly

interesting to us because the same approach can be used to analyze the Schur Q-functions.

To see the symmetry of the indices of the Schur functions, we use a modified version of

Bernstein’s operator from [6]. Let C[Z] be the group algebra of Z generated by ep, meaning

C[Z] = ⊕n∈ZCenp. Consider the two operators ep and t∂p on C[Z] defined by

ep · enp = e(n+1)p

t∂p · enp = tnenp.

Following [J1], the vertex operator X(t) is defined on Λ⊗ C[Z] by

X(t) = B(t−1)ept∂p =
∑
n∈Z

Xnt
−n.

The following result was proved in [4]: the product of the vertex operator X(t) is antisym-

metric, so XnXm = −XmXn, and we have the following theorem, which is a modified version

from [4].

Theorem 2.3.2. 1. For any l ∈ N, one has

Xt1 · · ·Xtl = (−1)l(σ)Xtσ(1) · · ·Xtσ(l) ,

for all σ in Sl, where l(σ) is the number of inversions in the permutation σ.

2. For any partition µ = (µ1, . . . , µl), we have

X−µ1 · · ·X−µl · e
mp = sµ−δ+l1e

(m+l)p,

11

where δ = (l − 1, . . . , 2, 1, 0) and 1 = (1, . . . , 1) ∈ Nl.

In particular, this means that

X−µ1 · · ·X−µl · e
−lp = sµ−δ+l1.

For simplicity, we removed the index shift of 1
2 in the definition of X(t) (see [6, 4]).

We can now give a simpler proof of Theorem 2.3.1.

Proof. For simplicity, we will denote the composition as X−µ1X−µ2 · · ·X−µl = X−µ1,−µ2,...,−µl .

B(t)sλ = B(t)X−(λ1−1),−(λ2−2),...,−(λl−l) · e
−lp

= X(t)(ept∂p)−1X−(λ1−1),−(λ2−2),...,−(λl−l) · e
−lp

= X(t)X−(λ1−2),−(λ2−3),...,−(λl−l−1) · (e
pt∂p)−1t−le−lp

= X(t)X−(λ1−2),−(λ2−3),...,−(λl−l−1) · e
−(l+1)p

=
∑
n∈Z

X−nX−(λ1−2),−(λ2−3),...,−(λl−l−1) · e
−(l+1)ptn

=
∑

n 6=λk−k−1
(−1)jX−(λ1−2),...,−(λj−j−1),−n,−(λj+1−j−2),...,−(λl−l−1) · e

−(l+1)ptn

=
∑

n 6=λk−k−1
(−1)jX−(λ(i)1 −1),...,−(λ

(i)
l+1−l−1)

· e−(l+1)ptnsλ(i) ,

where λj − j − 1 > n > λj+1 − j − 2 and i = n + j + 1, so λj > i ≥ λi+1 − 1. This definition

of i also implies that n = |λ(i)| − |λ|, j = |λ| − |λ(i)|+ i− 1, and λ(i) = (λ1 − 1, . . . , λj − 1, i−
1, λj+1, . . . , λl) = (λ1 − 1, . . . , λj − 1, n+ j, λj+1, . . . , λl). With this identification this last line

becomes the following:

B(t)sλ =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i)

and Theorem 2.3.1 is proved.

2.4 Schur Q-functions

We will next state and prove a similar result for the Schur Q-functions, Qλ, where λ is a strict

partition, i.e. λ1 > λ2 > · · · > λl and λi ∈ N.

For any partition µ = (1m1(µ)2m1(µ) · · ·), we define zµ =
∏
i≥1 i

mi(µ)mi(µ)!. We consider the

ring of symmetric functions in x1, x2, . . ., but restrict ourselves to polynomials in odd degree

12

power sums

p2k+1 =
∑
i≥1

x2k+1
i , k ∈ Z+.

Let OP denote the set of partitions with odd parts, and let Λ− be the ring of symmetric

functions generated by p2k+1, k ∈ Z+. Under the inner product

< pλ, pµ >= 2−l(λ)δλ,µzλ, λ, µ ∈ OP,

the space Λ− has Qλ (λ strict) as a distinguished orthogonal basis of symmetric polynomials

[12, 7]. They play a fundamental role in the construction of projective representations of the

symmetric group Sn.

On the space Λ− we recall the definition of the twisted vertex operator [6]:

Y (t) =
∑
n∈Z

Ynt
−n = exp

∑
k≥1

2t−2k+1

k
p2k−1

 exp

−∑
k≥1

t2k−1
∂

∂p2k−1

 ,

which acts on the ring of polynomials Λ− = C[p1, p3, p5, . . .], and the power sum p2k−1 acts as

a multiplication on Λ−.

From [6], we have that the following two results hold:

Qλ = Y−λ1Y−λ2 · · ·Y−λl · 1, (2.7)

where λ = (λ1, λ2, . . . , λl), and Qλ is the Schur Q-function indexed by λ. Again, we will often

denote this composition as Yλ1Yλ2 · · ·Yλl · 1 = Yλ1,λ2,...,λl · 1. The second result is:

YnYm = −YmYn. (2.8)

Theorem 2.4.1. For any strict partition λ,

Y (t)Qλ =
∑
n6=λj

(−1)itnQ(λ1,λ2,...,λi,n,λi+1,...,λl).

Proof. Recall that Y (t) =
∑

n∈Z Ynt
−n, then use equations (2.7) and (2.8):

Y (t)Qλ =
∑
n∈Z

Ynt
−nQλ =

∑
n∈Z

tnY−nY−λ1Y−λ2 · · ·Y−λl · 1

=
∑
n6=λj

(−1)itnY−λ1,−λ2,−...,−λi,−n,−λi+1,...,−λl · 1

=
∑
n6=λj

(−1)itnQ(λ1,λ2,...,λi,n,λi+1,...,λl),

13

where λi > n > λi+1, because by equation (2.8), Y−nY−λj = Y−nY−n = 0 if n = λj .

We can also interpret the result in terms of codes of strict partitions, but we first need to

reinterpret how codes behave for strict partitions.

Definition 2.4.2. Define the partition λ[i] to be the partition obtained from the code of a

strict partition λ by inserting a U between the ith pair of consecutive R’s (with the convention

that three consecutive R’s counts as two pairs, four consecutive R’s counts as three pairs, and

so on). Equivalently, λ[i] is the partition obtained from the code of λ by inserting a U after the

ith R which is immediately followed by an R.

Example 2.4.3. For example, if λ = (6, 4, 3, 1), the first pair of consecutive R’s in the code

of λ is shown in bold in Figure 2.3, with the new edge inserted between them to get λ[1] also

shown in bold.

λ = →

λ[1] =

Figure 2.3: Change in the code from λ to λ[1].

To get λ[2], we insert a U between the second pair of consecutive R’s in the code of λ. Again

the pair of right steps corresponding to those R’s are shown below in bold in Figure 2.4, along

with the up step inserted between them.

To get λ[3], we insert a U between the third pair of consecutive R’s in the code of λ. This works

the same way as the previous examples, except that the third pair of R’s are in the part of the

14

λ = →

λ[2] =

Figure 2.4: Change in the code from λ to λ[2].

code corresponding to the positive x-axis. Again the pair of right steps corresponding to those

R’s are shown in bold in Figure 2.5, along with the up step inserted between them.

Another way to think about λ[i] is the following. With this definition λ[i] is the strict

partition with the ith smallest possible integer inserted into the partition λ. This means that

λ[1] is the strict partition with the smallest possible integer inserted into λ. For λ = (6, 4, 3, 1),

the smallest integer that can be inserted to still have a strict partition is 2, so λ[1] = (6, 4, 3, 2, 1).

The second smallest integer that can be inserted into λ = (6, 4, 3, 1) is 5, so λ[1] = (6, 5, 4, 3, 1).

Similarly, λ[3] = (7, 6, 4, 3, 1), λ[4] = (8, 6, 4, 3, 1), and so on.

Often strict partitions are associated with shifted Young diagrams [14] rather than Young

diagrams. A shifted Young diagram of shape λ, where λ is a strict partition, is an arrangement

of boxes with λi boxes in the ith row, with the leftmost box in each row one unit to the right of

the leftmost box of the row above it. This is sometimes more intuitive since the rightmost edge

of a shifted Young diagram of shape λ, where λ is a strict partition, follows the same rules of

a Young diagram of shape µ, where µ is any partition, namely that the rightmost edge moves

weakly left as you go from top to bottom. We can use this correlation to reinterpret λ[i] using

the analogue of our existing machinery for codes on a shifted Young diagram of shape λ.

Definition 2.4.4. Define the shifted code of a strict partition λ to be the infinite sequence

of letters R and U obtained from the shifted Young diagram of shape λ as follows. Consider

15

λ = →

λ[3] =

Figure 2.5: Change in the code from λ to λ[3].

the shifted Young diagram top and left aligned in the 4th quadrant of the xy-plane together

with the positive x-axis. Starting at the bottom right corner of the leftmost box in the last

row, trace along the rightmost edge of the shifted Young diagram, then right along the positive

x-axis. Equivalently, start the code at the lowest place where the line y = −x intersects the

shifted Young diagram. The shifted code of the strict partition is the sequence of R’s and U’s

obtained from this path, where R corresponds to a unit right step and U corresponds to a unit

up step.

Example 2.4.5. Let λ = (5, 4, 2). Then the shifted Young diagram of shape λ in the 4th

quadrant of the xy-plane is shown in Figure 2.6, with the path described above in bold.

Figure 2.6: Shifted Young diagram and shifted code of λ = (5, 4, 2).

16

Example 2.4.6. Let λ = (6, 4, 3, 1). Then the shifted Young diagram of shape λ in the 4th

quadrant of the xy-plane is shown in Figure 2.7, with the path described above in bold.

Figure 2.7: Shifted Young diagram and shifted code of λ = (6, 4, 3, 1).

Note that the shifted code is not doubly infinite like the code of an arbitrary partition, since

it has a fixed starting point. It does however retain the property that there are infinitely many

R’s at the end of the code.

Using shifted codes we can reinterpret our definition of λ[i]. For a strict partition λ, λ[i] is

obtained from the shifted code of λ by turning the ith R in the shifted code to a U. This is

since either method inserts the ith smallest possible integer into the partition λ to still have a

strict partition, or since the number of pairs of consecutive R’s between two U’s is the number

of consecutive R’s minus one, which is the number of R’s in the shifted code corresponding to

the same row.

Example 2.4.7. We return to our example λ = (6, 4, 3, 1). Then we can find λ[2] by turning

the second right step from the left in the shifted code of λ into an up step. The changed edge

is shown in bold in Figure 2.8.

Given the code of a strict partition λ, let ũi(λ) be the number of U’s in the code of λ to the

right of the ith pair of consecutive R’s from the left, which is the number of U’s in the shifted

code of λ to the right of the ith R from the left.

This means that ũi(λ) is equal to the number of parts of λ greater than the ith smallest

possible integer that can be inserted into λ, which is equal to the number of parts of λ of size

at least |λ[i]| − |λ|. Then the number of parts of λ of size at least |λ[i]| − |λ| is the length

of λ minus the number of parts of size less than |λ[i]| − |λ|. But the number of parts less

than |λ[i]| − |λ| is the number of integers less than |λ[i]| − |λ| minus the number of integers

less than |λ[i]| − |λ| that are not in λ, which is (|λ[i]| − |λ| − 1) − (i − 1) = |λ[i]| − |λ| − i. So

ũi(λ) = l(λ)− (|λ[i]| − |λ| − i) = l(λ) + |λ| − |λ[i]|+ i.

We can now use λ[i] to reinterpret Theorem 2.4.1.

17

λ = →

λ[2] =

Figure 2.8: Change in the shifted code from λ to λ[2].

Theorem 2.4.8. For any strict partition λ,

Y (t)Qλ =
∑
i≥1

(−1)l(λ)+|λ|−|λ
[i]|+it|λ

[i]|−|λ|Qλ[i] .

Proof. By Theorem 2.4.1, we know that

Y (t)Qλ =
∑
n6=λj

(−1)ktnQ(λ1,λ2,...,λk,n,λk+1,...,λl).

But λ[i] is the partition with the ith smallest possible integer that can be inserted into the

partition λ. Thus (λ1, λ2, . . . , λk, n, λk+1, . . . , λl) = λ[i] for i = n− k, since n is the ith smallest

possible integer that can be inserted into λ, so n = |λ[i]| − |λ|. Then k is the number of parts

of λ greater than the ith smallest possible integer that can be inserted into λ, so by definition

18

k = ũi(λ). Thus

Y (t)Qλ =
∑
n6=λj

(−1)ktnQ(λ1,λ2,...,λk,n,λk+1,...,λl)

=
∑
i≥1

(−1)ũi(λ)t|λ
[i]|−|λ|Qλ[i]

=
∑
i≥1

(−1)l(λ)+|λ|−|λ
[i]|+it|λ

[i]|−|λ|Qλ[i]

since we know ũi(λ) = k = l(λ) + |λ| − |λ[i]|+ i, |λ[i]| − |λ| = n, and

λ[i] = (λ1, λ2, . . . , λi, n, λi+1, . . . , λl).

2.5 Littlewood-Richardson Rule

One application for codes of partitions is the following theorem, which gives a new way to com-

pute Littlewood-Richardson coefficients [7, 11], using only the codes of the partitions involved.

A skew-partition λ/µ is a horizontal n-strip if no column in the Young diagram of λ/µ

has more than one box. Equivalently, λ/µ is a horizontal n-strip if λi+1 ≤ µi ≤ λi for all

1 ≤ i ≤ l(µ), where l(µ) is the length of µ.

A skew-partition λ/µ is a vertical n-strip if no row in the Young diagram of λ/µ has more

than one box. Equivalently, λ/µ is a horizontal n-strip if λi − 1 ≤ µi ≤ λi for all 1 ≤ i ≤ l(µ),

where l(µ) is the length of µ.

Theorem 2.5.1. (The Littlewood-Richardson Rule)

sµsν =
∑
λ

cλµ,νsλ =
∑

(µ=µ0,µ1,µ2,...,µl)

sµl ,

where l = u1(ν). Given the code of the partition µi−1, µi is obtained as follows:

• Starting with the U left of the leftmost R in the code of λ and working to the right, move

the U’s to the right a total of ri(ν) places by switching a UR to RU in the code ri(ν) times

(so no U can move past the starting point of the next U in the code).

• Let k(i, j) be the number of UR switches made using the last j U’s. Then k(i, 0) = 0, for

all i.

• k(i, j) ≤ k(i− 1, j − 1), for all i, j ≥ 0.

Note that this proposition implies that cλµ,ν is equal to the number of sequences (µ =

µ0, µ1, µ2, . . . , µl = λ).

19

Proof. This theorem just follows the computational way to calculate Littlewood-Richardson

coefficients, with the only difference being that we use different notation. The sequences (µ =

µ0, µ1, µ2, . . . , µl = λ) are in 1-1 correspondence to the semistandard Young tableaux of shape

λ/µ with 1’s in the boxes in µ1/µ0, 2’s in the boxes in µ2/µ1, . . . , and i’s in the boxes in

µi/µi−1 for all 1 ≤ i ≤ l = u1(ν) = l(ν). The restriction that no U can move past the next

U means that for all i, µi/µi−1 is a horizontal n-strip, so the corresponding Young tableau is

indeed semistandard. The number of i boxes is the number of boxes added to get from µi−1 to

µi, which is equal to the total number of UR to RU switches made in this step, which is ri(ν).

This means that the Young tableau obtained has shape λ/µ and weight ν. The requirement

k(i, j) ≤ k(i − 1, j − 1) means that the number of i’s in the first j rows have is less than the

number of (i− 1)’s in the first (j − 1) rows for all i and j. This is equivalent to saying that the

reverse-row word is a lattice permutation.

To better illustrate the correspondence between sequences of partitions of the form (µ =

µ0, µ1, µ2, . . . , µl = λ) with the preceding conditions and semistandard Young tableaux, we give

the following example.

Example 2.5.2. Consider the following: λ = (4, 3, 2), µ = (2, 1), and ν = (3, 2, 1), and

the sequence µ0 = µ = (2, 1), µ1 = (4, 1, 1), µ2 = (4, 3, 1), and µ3 = λ = (4, 3, 2). It is

straightforward though tedious to verify that this sequence does satisfies the above conditions

and hence contributes to cλµ,ν . If we follow the algorithm in the proof of the theorem and put

i’s in each box in µi/µi−1, we get the semistandard Young tableau in Figure 2.9:

1 1

2 2

1 3

Figure 2.9: Semistandard Young tableau of shape λ/µ.

We can also understand this using only the codes of these partitions. Using the algorithm

for finding such a sequence, we would find the codes of these partitions (not the partitions

themselves) and have the following sequence (omitting leading U’s and trailing R’s): µ0 = µ =

RURU, µ1 = RUURRRU, µ2 = RURRURU, µ3 = λ = RRURURU. To get from the code of µ0

to the code of µ1 the rightmost U has to move past two R’s (since the number of R’s between

this U and the next rightmost U increases by two). This means that we have to add two boxes

20

to the first row of µ in the first step, which are represented in the semistandard Young tableau

with 1’s. Similarly, the second U from the right does not have to move past any R’s, so there

are no boxes added to the second row in the first step thus there are no 1’s in the second row

in the tableau. Again, the third U from the right must move past one R, so one box is added

in the third row and is represented by a 1 in the third row of the tableau. Repeating this

same proceedure to get from µ1 to µ2 gives us the boxes added in the second step which are

represented by 2’s in the tableau. Continuing in this way we can find the same semistandard

Young tableau using only the codes of the partitions.

Using the codes of partitions we can realize the Pieri Rules in a new way.

Corollary 2.5.3. (The Pieri Rules)

1. If ν = (n), then

sµsν =
∑
λ

cλµ,νsλ =
∑
λ

sλ,

where the sum is over all λ such that λ/µ is a horizontal n-strip.

2. If ν = (1n) = (1, 1, . . . , 1), then

sµsν =
∑
λ

cλµ,νsλ =
∑
λ

sλ,

where the sum is over all λ such that λ/µ is a vertical n-strip.

Proof. For part (1), sµsν =
∑

(µ=µ0,µ1=λ) sλ, where λ is obtained from the code of µ by moving

the U’s to the right a total of n places, with no U moving past the starting point of the next

U in the code. Thus for any R in the code of µ, at most one U is moved past this R. But

since the number of U’s moved past the ith R from the left is the number of boxes added to

the ith column, this implies that no two of the added boxes are above each other, so λ/µ is a

horizontal n-strip. Since l = u1(ν) = 1, each sequence has length 2, so the third condition in

the theorem, k(i, j) ≤ k(i− 1, j − 1), is satisfied trivially. For each λ, the multiplicity of sλ in

the summation is the number of sequences (µ = µ0, µ1 = λ) which is one. Therefore cλµ,ν = 1 if

λ is a horizontal n-strip, and cλµ,ν = 0 otherwise.

For part (2), sµsν =
∑

(µ=µ0,µ1,...,µn=λ) sλ, where µi is obtained from the code of µi−1 by

switching one UR to RU, and k(i, j) ≤ k(i− 1, j − 1), for all i, j ≥ 0. This restriction on k(i, j)

implies that the U moved to get from µi to µi+1 is left of the U moved to get from µi−1 to

µi. But since the number of R’s moved past the ith U from the right is the number of boxes

added to the ith row of µ, this implies that no two of the added boxes are in the same row, so

λ/µ is a vertical n-strip. For each λ such that λ/µ is a vertical n-strip, the only way for the

21

sequence (µ = µ0, µ1, . . . , µn = λ) to end with the partition λ is for the rightmost box in λ/µ

to be added first, then the next furthest right, and so on. Since there is only one way to do

this, the multiplicity of sλ in the summation is one. Therefore cλµ,ν = 1 if λ is a vertical n-strip,

and cλµ,ν = 0 otherwise.

22

Chapter 3

Equivalence Relations on Codes

3.1 Introduction

In Chapter 2 we showed that Carrell and Goulden’s formula for the action of Bn on any Schur

function can be derived algebraically from known properties of Bn. In this chapter we define a

combinatorial model of codes and show that the commutation relation satisfied by the Bernstein

operators induces a natural relation on codes. We then show that this relation implies Carrell

and Goulden’s formula as well as a formula for the action Bernstein operators in any order.

This provides a natural generalization of Schur functions to be indexed by compositions and we

use this to prove the analog of Bernstein’s theorem in this setting. We also show the analogous

statements for Schur Q-functions and the operator Yn using both codes and shifted codes of

partitions and compare these results to those for Bernstein operators.

Bernstein defined the operators B(t) and Bn on the ring of symmetric functions Λ =

C[p1, p2, p3, . . .] by

B(t) =
∑
n∈Z

Bnt
n = exp

∑
k≥1

tk

k
pk

 exp

−∑
k≥1

t−k
∂

∂pk

 .

He showed the following two results, often referred to as Bernstein’s Theorem [15]:

BnBm = −Bm−1Bn+1, (3.1)

sλ = Bλ1Bλ2 · · ·Bλl .1, (3.2)

where sλ is the Schur polynomial indexed by the partition λ = (λ1, λ2, . . . , λl). For convenience

we also write Bµ for Bµ1Bµ2 · · ·Bµl for any composition µ.

The code of a partition λ is defined to be the sequence of letters R and U obtained by

23

tracing right and up along the outside edge of the Young diagram of shape λ in the fourth

quadrant. Carrell and Goulden showed that

B(t)sλ =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) , (3.3)

where λ(i) is a particular partition defined in terms of the code of λ [1].

We extend the above model of codes to allow a new left move. In the extended model

a composition µ is the sequence of letters R, L, and U obtained in the same way using the

Young diagram of shape µ, including steps right, left, and up. Using (3.1) we can define an

equivalence relation on the codes of compositions by equality of their Bernstein operators. Using

this identification we can find a simple formula for Bµ using only the code of µ. In the same

spirit the formula (3.3) follows easily.

Schur functions can be defined for any composition as indicated by (3.1). Our new com-

binatorial model of codes provides a new explanation for the reason behind this. Using the

aforementioned results we can state the analog of Bernstein’s Theorem (3.2) for Schur func-

tions indexed by compositions. This shows the relationship between Schur functions and our

relation on codes.

In Chapter 2 we showed the analog of Carrell and Goulden’s formula for the vertex operator

Yn defined in [6] on any Schur Q-function both in terms of codes and in terms of shifted codes

of partitions. We show how these results follow from the relation induced on either codes or

shifted codes by the commutation relation satisfied by Yn and show the similarities between

these two approaches and the corresponding approach for Bernstein operators.

3.2 Partitions and Code Models

A partition λ = (λ1, λ2, . . . , λl) of n is a sequence of nonnegative integers satisfying λ1 ≥ λ2 ≥
. . . ≥ λl whose sum is n. A Young diagram of shape λ is an array of left aligned boxes with λi

boxes in the ith row from the top.

Definition 3.2.1. Define the code of a partition λ to be the doubly infinite sequence of letters

R and U obtained by tracing along the bottom-right edge of the Young diagram of shape λ in

the fourth quadrant of the xy-plane together with the negative y- and positive x-axes, where

R corresponds to a unit right step and U corresponds to a unit up step.

Example 3.2.2. For the partition λ = (4, 2, 2, 1), the path described above is shown in bold

in Figure 3.1. Then the code of λ is given by α = . . . UUURURUURRURRR . . .

We now introduce an extended code model.

24

Figure 3.1: Young diagram and code for λ = (4, 2, 2, 1).

Definition 3.2.3. Define the code of a composition µ to be the doubly infinite sequence of

letters R, L, and U obtained by tracing along the rightmost edge of the Young diagram of shape

λ in the fourth quadrant of the xy-plane together with the negative y- and positive x-axes, where

R corresponds to a unit right step, L corresponds to a unit left step and U corresponds to a

unit up step.

Note that the code of a composition µ will contain L’s exactly when µ has an exceedance,

µi < µi+1.

Example 3.2.4. For the composition µ = (2, 3, 1, 4), the path described above is shown in bold

in Figure 3.2. Then the code of µ is given by α = . . . UUURRRRULLLURRULURRR . . .

Figure 3.2: Young diagram and code for µ = (2, 3, 1, 4).

We will often write codes multiplicatively. For instance, we might write R4 rather than

25

RRRR in a code. As codes in this setting are a special type of word, we also use the terminology

prefix, suffix, and subword in the standard way.

The Bernstein operators B(t) and Bn are defined on the ring of symmetric functions Λ =

C[p1, p2, p3, . . .] by

B(t) =
∑
n∈Z

Bnt
n = exp

∑
k≥1

tk

k
pk

 exp

−∑
k≥1

t−k
∂

∂pk

 ,

where pk is the kth power sum symmetric function pk =
∑

i≥1 x
k
i . Bernstein showed the following

two relations for these operators, often referred to as Bernstein’s Theorem:

BnBm = −Bm−1Bn+1 (3.4)

sλ = Bλ1Bλ2 · · ·Bλl · 1 (3.5)

where λ = (λ1, λ2, . . . , λl) is a partition, and sλ is the Schur polynomial indexed by λ. For

convenience we will write Bµ for Bµ1Bµ2 · · ·Bµl for any composition µ.

3.3 A Relation on Codes

Define an equivalence relation ∼ on the set of signed codes of compositions by α ∼ ±β if and

only if Bµ1Bµ2 · · ·Bµl = ±Bν1Bν2 · · ·Bνl , and α ∼ 0 if and only if Bµ1Bµ2 · · ·Bµl = 0, where

α is the code of µ and β is the code of ν. This is an equivalence relation since there is a one

to one correspondence between a composition µ and its code α. For convenience of notation,

we will write α1 ∼ ±β1 if α1 is a subsequence of α and β1 is a subsequence of β such that

α0α1α2 = α ∼ ±β = ±β0β1β2 where α0 = β0 and α2 = β2.

Proposition 3.3.1. For any positive integer k, we have

R
(
LkURk−1

)
∼

(
Lk−1URk−2

)
R (3.6)

U
(
LkURk−1

)
∼ −

(
Lk−1URk−2

)
U. (3.7)

Proof. To prove relation (3.6), notice that LR ∼ RL ∼ φ, the empty set of no letters. In other

words, any consecutive L’s and R’s will cancel since they leave the path and the composition

unchanged. The proof is then immediate. Throughout this paper we will assume that all codes

have been reduced, meaning any possible LR or RL cancellations have already been made.

Relation (3.7) is actually a version the commutation relation (3.4) in terms of codes. Con-

26

sider the composition µ = (n,m), where n < m. Using the equation BnBm = −Bm−1Bn+1, we

get the change in the code of µ shown in Figure 3.3, with the altered path in bold.

→

n

m

k
· · ·

· · · · · ·

s
s

m− 1

n+ 1

k − 2

· · ·

· · ·

· · ·
s
s

Figure 3.3: Change in the code from commuting BnBm.

Since the bold path above begins and ends at the same point at the same point horizontally,

and since the codes of these two compositions are related from the definition of ∼, we have that

RkULkU ∼ −RURk−2ULk−1. (3.8)

Now multiply both sides of relation (3.8) by Lk on the left and by Rk−1 on the right and

again use the fact that LR ∼ RL ∼ φ to obtain (3.7). If we insert the prefix Lk before both of

the subsequences in (3.8) and cancel any consecutive LR’s, we get exactly identity (3.7).

We can also realize relation (3.7) directly from the commutation identity of the Bernstein

functions (3.4) by following the bold line in Figure 3.4.

In this construction our relation on codes in (3.7) gives exactly the path along the rightmost

edge of the diagram for µ = (n,m) from the bottom-right corner of the bottom row to the point

two units up and one unit left of the starting position. The subsequence on the right-hand side

of (3.7) is exactly the path along the rightmost edge of the diagram for ν = (m−1, n+1) which

starts and ends at those same points. So relation (3.7) follows directly from the fact that the

Bernstein functions indexed by these two compositions are related by (3.4).

27

→

n

m

k

k − 1

· · ·

· · · · · ·

s
s

m− 1

n+ 1

k − 2

k − 1

· · ·

· · ·

· · ·
s

s

Figure 3.4: Alternate version of the change in the code from commuting BnBm.

This interpretation is less intuitive than the original construction, but it serves to show the

deep connection that still exists between this relation on codes and the commutation relation

of the Bernstein functions.

Notice that the special case k = 1 in (3.7) gives that

ULU = U(L1UR0) ∼ −(L0UR−1)U = −ULU,

so ULU ∼ 0, since any composition whose code contains this subword must contain a subse-

quence (n+ 1, n) and Bn+1Bn = −BnBn+1 = 0.

3.4 Codes of Compositions

We now want to use the relation on codes of compositions we developed in Section 3.3 to study

Bµ where µ is a composition.

Lemma 3.4.1. Suppose that the codes α and β of two compositions µ and ν differ only by one

of the relations (3.6) or (3.7). Then µ and ν have the same number of components, l, and the

same sum, µ1 + µ2 + · · ·+ µl = ν1 + ν2 + · · ·+ νl.

Proof. If α and β differ by relation (3.6), notice the two sides of (3.6) are two different descrip-

tions of the same path, Lk−1URk−1, so we actually have that µ = ν.

If α and β differ by relation (3.6), notice that both sides of (3.7) have a net shift of one unit

leftward and two units upward. This implies that µ and ν are the same composition except

28

for the two components determined by the two upward steps in the changed subword. In other

words, both µ and ν have length l and µi = νi for i = 1, 2, . . . , j − 1, j + 2, . . . , l for some

1 ≤ j ≤ l − 1.

It remains only to show that the two components of µ that are changed to get ν have the

same sum. Notice that this case corresponds exactly to the picture above, so the corresponding

components of µ and ν are (n,m) and (m− 1, n+ 1) for some integer n with m = n+ k.

Theorem 3.4.2. Let µ be any composition of m with code α. Suppose that α can be written

in the form

α = . . . β3β2β1L
kUγ1γ2γ3 . . .

where β = . . . β3β2β1 consists only of R’s and U ’s and β1 = U .

• If βk = U , then Bµ = 0.

• If βk = R, then Bµ = (−1)jBν , where j is the number of U ’s in βk−1 . . . β2β1 and ν is

the composition of m with code given by

. . . βk+1Uβk−1 . . . β3β2β1L
k−1γ1γ2γ3 . . .

Proof. First, rewrite α in the form:

α = . . . β3β2β1L
kUγ1γ2γ3 . . .

∼ . . . β3β2β1

(
LkURk−1

)
Lk−1γ1γ2γ3 . . .

By Proposition 3.3.1, every time we permute
(
LkURk−1

)
left past a letter of β, k decreases by

one, and the sign changes if that letter was a U . Thus if we permute
(
LkURk−1

)
past k − 1

letters, we get that

α ∼ (−1)j . . . βk+1βk
(
L1UR0

)
βk−1 . . . β2β1L

k−1γ1γ2γ3 . . .

= (−1)j . . . βk+1(βkLU)βk−1 . . . β2β1L
k−1γ1γ2γ3 . . .

where j is the number of U ’s in βk−1 . . . β2β1. If βk = U , then α is related to a code with the

subword βkLU = ULU ∼ 0, thus Bµ = 0. If βk = R, then βkLU = RLU ∼ U , so

α ∼ (−1)j . . . βk+1Uβk−1 . . . β2β1L
k−1γ1γ2γ3 . . . (3.9)

Thus Bµ = (−1)jBν , where the code of ν is given by the right hand side of relation (3.9). Since

in each step we used only relation (3.7), by Lemma 3.4.1 ν is also a composition of m.

29

Another way to understand this theorem is to notice that the code of ν is obtained from

the code α of µ by replacing the letter βk = R which is k positions left of the leftmost L in

α with U and by replacing LkU with Lk−1, letting j be the number of U ’s between these two

positions.

Corollary 3.4.3. Let λ = (λ1, λ2, . . . , λl) be a partition and n be any integer with n < λ1. Let

k = λ1 − n, and let ζ be the letter k − 1 positions left of the rightmost U in the code of λ.

• If ζ = U , then BnBλ = 0.

• If ζ = R, then BnBλ = (−1)j+1Bν , where j is the number of U ’s between the rightmost

U and ζ, and where ν is the partition whose code is given by replacing ζ by U .

Proof. The corollary follows immediately from Theorem 3.4.2, for the special case where µ =

(n, λ1, λ2, . . . , λl). In this case, β1 is the rightmost U in the code of λ, βk = ζ, γ = γ1γ2γ3 . . . =

RRR . . . and βγ = . . . β3β2β1γ1γ2γ3 . . . is exactly the code of λ. In this case, when we replace

LkU by Lk−1, it cancels with the first k−1 R’s in γ, so our result will actually be a partition.

Corollary 3.4.4. Let µ be any composition of m with code α. Then either Bµ = 0 or Bµ = ±Bλ
for some partition λ of m with the same length as µ.

The proof of this corollary follows directly and immediately from Theorem 3.4.2 by using

induction on the number of L’s in α. However, we will present the proof using induction on the

number of U ’s to the right of the leftmost L in α to better generalize to our later results.

Proof. Consider the leftmost sequence of consecutive L’s in α. If there are no U ’s right of this

sequence, then all the L’s cancel, and µ is a partition. So assume there is at least one U after

the leftmost L and assume α is written in reduced form. Then in the notation of the theorem,

we have

α = . . . β3β2β1L
kUγ1γ2γ3 . . .

where β = . . . β3β2β1 consists only of R’s and U ’s. By Theorem 3.4.2, either α ∼ 0 or

α = . . . βk+1Uβk−1 . . . β3β2β1L
k−1γ1γ2γ3 . . .

In the later case the number of U ’s to the right of the leftmost L has decreased by one (or more

if Lk−1 cancels completely with R’s in γ) so the result holds by induction.

In particular, this corollary provides a simple way to compute Bµ · 1 in terms of Schur

functions for any composition µ, since Bλ · 1 = sλ by equation (3.5) for any partition λ.

In fact, given any composition µ, the number of times we have to apply Theorem 3.4.2 to

get Bµ = ±Bλ for some partition λ is less than or equal to the number of U ’s right of the

30

leftmost L in the code of µ. Equivalently, the maximum number of steps is the largest i such

that µi < µi+1, i.e. the position of the last exceedance in µ. From the remark before the proof,

we can also say that the number of steps is less than or equal to the total number of L’s in the

code of µ.

We now present a purely combinatorial approach to computing the partition λ such that

Bµ = ±Bλ for a given composition µ, as well as the sign itself.

Proposition 3.4.5. Given a composition µ with code α, Bµ = (−1)jBλ, where j and the code

of λ are obtained by reading then deleting letters left to right starting with the leftmost L in α

and keeping track of a position in the code, starting with the same L.

• Every time an L or R is read, move one position in that direction.

• If a U is read and the letter in the current position is a U , Bµ = 0.

• If a U is read and the letter in the current position is an R, increase j by the number of

U ’s between these two positions and replace the R with a U . Move right one position.

Stop when the current position indicates the next letter to be read. If there are still any L’s in

the code, repeat this process.

Note that in this method you must keep track of two positions, the position which is being

read and the “current position” which indicates which letter will be changed by any U ’s which

are read. Note also that this proposition holds even if α is not in reduced form.

Proof. Suppose that the leftmost sequence of consecutive L’s in α is Lk and that this is followed

by a U (this will always happen if α is in reduced form). Then by Theorem 3.4.2, α ∼ 0 if

the letter k positions left of Lk is a U and if this letter is an R, replace it by U , replace LkU

by Lk−1, and change the sign by the number of U ’s between these positions. Following the

algorithm in the proposition, we read k L’s so we move left k positions. Since the next letter

is a U , we perform the same change to the sign and the letter in the current position and will

next consider the letter one position to the right of the changed position, which corresponds to

LkU being replaced by Lk−1.

If the letter after Lk is R, then LkR ∼ Lk−1 so we will next consider the letter one position

further to the right. If the letter after Lk is L, then LkL ∼ Lk+1 so we will next consider the

letter one position further to the left. We stop this process when all the L’s in Lk have been

cancelled.

Example 3.4.6. Consider the composition µ = (1, 3, 1, 6, 2). Then the proposition gives the

following. In each step below we read off letters until a U is reached and underline these letters,

while the arrows indicate how the current position changes. Note that we delete the underlined

letters after each step.

31

α = . . . UUURRURRRRULLLLLURRULLURRRR . . .

↓y

yyyyy

→ (−1)1 . . . UUURRUURRRURRULLURRRR . . .

xx

↓y
→ (−1)1+1 . . . UUURRUURRUULLURRRR . . .

↓y

yy

→ (−1)1+1+2 . . . UUURRUURUUURRRR . . .

xx

α ∼ (−1)1+1+2 . . . UUURRUURUUURR . . .

We stop since the current position is the same as the next letter to be read. This final code

has no remaining L’s so we are done. This code is the code of the partition λ = (3, 3, 3, 2, 2),

so B(1,3,1,6,2) = (−1)4B(3,3,3,2,2) = B(3,3,3,2,2). In particular, this means that B1B3B1B6B3 · 1 =

Bµ · 1 = Bλ · 1 = sλ = s(3,3,3,3,3).

Definition 3.4.7. Define ri(λ) to be the number of R’s in the code of the partition λ left of

the ith U from the right in the code of λ.

Note that ri(λ) = λi, the ith component of λ.

Definition 3.4.8. For any partition λ, define λ(i) to be the partition obtained from the code

of λ by replacing the ith R from the left in the code of λ by U .

In particular, this means that λ(i) = (λ1 − 1, λ2 − 1, . . . , λj − 1, i − 1, λj+1, . . . , λl), where

λj − 1 ≥ i− 1 ≥ λj+1, so λj ≥ i > λj+1. By convention, we take λ0 =∞ and λl+1 = 0, so the

formula for λ(i) holds for 0 ≤ j ≤ l.

Theorem 3.4.9. For any partition λ,

B(t)sλ =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) . (3.10)

Proof. From the definition of B(t) =
∑

n∈ZBnt
n, and equation (3.5), we have that B(t)sλ =∑

n∈ZBnt
n(Bλ1Bλ2 · · ·Bλl ·1). So it is sufficient to consider the coefficient of tn, BnBλ1Bλ2 · · ·Bλl .

If n ≥ λ1, then BnBλ = B(n,λ) is already in decreasing order. In fact, since (n, λ) = λ(n+1),

we can write BnBλ · 1 = B(n,λ) · 1 = Bλ(n+1) · 1 = sλ(n+1) .

If n < λ1, then using the notation of Theorem 3.4.2, we write the code of λ as

α = . . . β3β2β1L
kURRR . . .

where β1 = U . Let j be the number of U ’s in βkβk−1 . . . β2β1, where k = λ1 − n.

32

From Corollary 3.4.3, if βk = U , then α ∼ 0, so BnBλ = 0. Since βk is the jth U from the

right in βkβk−1 . . . β2β1, βk is also the jth U from the right in α. Since ri(λ) = λi is the number

of R’s left of the ith U from the right in α, the number of R’s between the (i+ 1)th U from the

right and the ith U from the right is ri(λ)− ri+1(λ) = λi − λi+1. In this case we can write

α = . . . βk+1UR
λj−1−λjU . . . URλ2−λ3URλ1−λ2URRR . . .

So the k letters βkβk−1 . . . β2β1 consist of j U ’s and (λ1 − λ2) + (λ2 − λ3) + · · · + (λj−1 − λj)
R’s. So we have:

λ1 − n = k = j + (λ1 − λ2) + (λ2 − λ3) + · · ·+ (λj−1 − λj)

n+ j = λ1 − (λ1 − λ2)− (λ2 − λ3)− · · · − (λj−1 − λj)

n+ j = λj

n = λj − j

Thus BnBλ = 0 exactly when n = λj − j for some j = 1, 2, . . . , l.

If n 6= λj − j for any j, then we must have that βk = R. Hence by Corollary 3.4.3,

B(n,λ) = (−1)jBν , where j is the number of U ’s in βkβk−1 . . . β2β1 and ν is the partition whose

code is the same as α except that βk = U . Then the number of R’s in βkβk−1 . . . β2β1 is k−j, and

the number of R’s in all of β = . . . βk+1βkβk−1 . . . β2β1 is λ1 = r1(λ), which is the number of R’s

left of the rightmost U in α, β1. Thus there are λ1−(k−j) = λ1−k+j = λ1−(λ1−n)+j = n+j

R’s left of βk in α. So ν is the partition obtained by replacing the (n+ j + 1)th R from the left

in the code α of λ with a U . Thus ν = λ(n+j+1) and BnBλ · 1 = (−1)jBν · 1 = (−1)jsλ(n+j+1) .

Using the convention that λ0 = ∞ and λl+1 = 0, we obtain a cover of the integers greater

than or equal to −l: [−l,∞) =
l⋃

j=0

(λj+1− (j+1), λj−j]. We know that if n < −l, then Bnsλ =

(−1)lBλ1−1Bλ2−1 · · ·Bλl−1Bn+l · 1 = 0 since B−m · 1 = B−mB0 · 1 = B−1B−1 · · ·B−1B0 · 1 = 0.

Also note that the right limits of this cover are of the form n = λj − j, so we know that

BnBλ = 0. Thus:

B(t)sλ =
∑
n∈Z

tnBnsλ =

l∑
j=0

λj−j∑
n=λj+1−j

tnBnsλ =

l∑
j=0

λj−j−1∑
n=λj+1−j

(−1)jtnsλ(n+j+1) .

But looking at the summation on the right hand side, λj+1− j ≤ n ≤ λj − j − 1, so λj+1 + 1 ≤
n+ j + 1 ≤ λj , so λj+1 < n+ j + 1 ≤ λj so the indices of λ(n+j+1) in the summation cover all

33

positive integers. Hence

B(t)sλ =
l∑

j=0

λj−j−1∑
n=λj+1−j

(−1)jtnsλ(n+j+1) =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) ,

since |λ| − |λ(i)|+ i− 1 = j and |λ(i)| − |λ| = n from the definition of λ(i).

3.5 Schur Functions Indexed by Compositions

In this section we will use the functions, Schur functions indexed by compositions, to show the

usefulness of the results obtained in the previous section. In this section we will consider only

compositions consisting of all nonnegative components.

Let δ = (l−1, l−2, . . . , 2, 1, 0) and define aµ = det(xi
µj)1≤i,j≤l for any composition µ of n of

length l. Then one classical definition of the Schur polynomials is given by sλ(x1, x2, . . . , xl) =
aλ+δ
aδ

for any partition λ of n of length l. This definition can also be generalized to compositions

as follows.

Definition 3.5.1. Let µ be a composition of n of length l. Define the Schur polynomial indexed

by the composition µ to be sµ(x1, x2, . . . , xl) =
aµ+δ
aδ

.

Lemma 3.5.2. Let µ and ν be any two compositions of length l with codes α and β. Then

sµ(x1, x2, . . . , xl) = ±sν(x1, x2, . . . , xl) if and only if α ∼ ±β as described in Sections 3.3 and

3.4.

Proof. By definition, sµ(x1, x2, . . . , xl) =
aµ+δ
aδ

and sν(x1, x2, . . . , xl) =
aν+δ
aδ

, so it suffices to

show that aµ+δ = aν+δ precisely when the codes of µ and ν are related. By the antisymmetry

34

of the determinant, we have

aµ+δ =

∣∣∣∣∣∣∣∣∣∣
x1
µ1+l−1 · · · x1

µi+l−i x1
µi+1+l−i−1 · · · x1

µl+0

x2
µ1+l−1 · · · x2

µi+l−i x2
µi+1+l−i−1 · · · x2

µl+0

...
...

...
...

xl
µ1+l−1 · · · xl

µi+l−i xl
µi+1+l−i−1 · · · xl

µl+0

∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣
x1
µ1+l−1 · · · x1

µi+1+l−i−1 x1
µi+l−i · · · x1

µl+0

x2
µ1+l−1 · · · x2

µi+1+l−i−1 x2
µi+l−i · · · x2

µl+0

...
...

...
...

xl
µ1+l−1 · · · xl

µi+1+l−i−1 xl
µi+l−i · · · xl

µl+0

∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣
x1
µ1+l−1 · · · x1

(µi+1−1)+l−i x1
(µi+1)+l−i−1 · · · x1

µl+0

x2
µ1+l−1 · · · x2

(µi+1−1)+l−i x2
(µi+1)+l−i−1 · · · x2

µl+0

...
...

...
...

xl
µ1+l−1 · · · xl

(µi+1−1)+l−i−1 xl
(µi+1)+l−i−1 · · · xl

µl+0

∣∣∣∣∣∣∣∣∣∣
= − a(µ1,...,µi−1,µi+1−1,µi+1,µi+2,...,µl)+δ.

Hence, the indices, µ, of aµ+δ satisfy the same commutation relation as the indices of the

Bernstein operators in equation 3.4. Thus, by the definition of the equivalence relation ∼ on

signed codes of compositions, aµ+δ = aν+δ if and only if the codes of µ and ν are related, so

the result holds.

Definition 3.5.3. Let µ be a composition of n of length l. Define the Schur function indexed

by the composition µ, sµ, to be the unique symmetric function in ⊕lk=0Λk whose restriction to

xl+1 = xl+2 = · · · = 0 is the Schur polynomial sµ(x1, x2, . . . , xl).

Note that if µ = λ is a partition, we obtain recover the classical definition of Schur functions.

Note also that in Λ there is not a unique symmetric function whose restriction to xl+1 = xl+2 =

· · · = 0 is sµ(x1, x2, . . . , xl). In fact, given any such function sµ, any element of the coset

sµ+ < el+1, el+2, . . . > will satisfy this condition, where em =
∑

1≤i1<i2<···<im(xi1xi2 · · ·xim) is

the elementary symmetric function.

Theorem 3.5.4. Let µ and ν be any two compositions of length l with codes α and β. Then

sµ = ±sν if and only if α ∼ ±β as described in Sections 3.3 and 3.4.

Proof. Suppose that sµ = ±sν . Then restricting to xl+1 = xl+2 = · · · = 0 we obtain that

sµ(x1, x2, . . . , xl) = ±sν(x1, x2, . . . , xl). Hence by Lemma 3.5.2, α ∼ ±β.

35

Suppose that α ∼ ±β. Then by Lemma 3.5.2,

sµ(x1, x2, . . . , xl) = ±sν(x1, x2, . . . , xl).

Now since the Schur functions sµ and sν are both uniquely determined by the same Schur

polynomial sµ(x1, x2, . . . , xl) = ±sν(x1, x2, . . . , xl) (up to the sign), we have that sµ = ±sν .

Theorem 3.5.5. Given any composition µ = (µ1, µ2, . . . , µl),

sµ = Bµ1Bµ2 · · ·Bµl · 1.

Proof. If Bµ = 0, then the columns of (xi
µj+δj) will be linearly dependent and aµ+δ = 0, so

sµ = 0. Thus Bµ · 1 = 0 = sµ.

If Bµ 6= 0, then by Corollary 3.4.4, Bµ = ±Bλ for some partition λ. Hence Bµ · 1 = ±Bλ · 1.

By equation (3.5) we know that Bλ · 1 = sλ. Finally, sλ = ±sµ by Theorem 3.5.4, where the

sign is the same as above, since both come from the relation between the codes of µ and λ.

Therefore Bµ · 1 = ±Bλ · 1 = ±sλ = sµ.

This theorem tells us that when the Bernstein operators act in an arbitrary order on 1,

i.e. when they are indexed by a composition, then the result is the Schur function indexed by

that same composition. This generalizes Berstein’s theorem (3.5), which gives the same result

when the Bernstein operators act in nonincreasing order on 1, i.e. when they are indexed by a

partition, obtaining the classical Schur functions (indexed by partitions) as the result.

3.6 Schur Q-functions

We now turn our attention to Schur Q-functions and show some analogous results using codes

of strict partitions. The Schur Q-functions are denoted by Qλ, where λ is a strict partition,

i.e. λ1 > λ2 > · · · > λl. The functions Qλ where λ is a strict partition are an orthogonal basis

of Λ−, the ring of symmetric functions generated by the odd degree power sums p2k+1. Then

from [6] we have that the twisted vertex operator Y (t) given by

Y (t) =
∑
n∈Z

Ynt
−n = exp

∑
k≥1

2t−2k+1

k
p2k−1

 exp

−∑
k≥1

t2k−1
∂

∂p2k−1

 ,

which acts on Λ−, satisfies the following two results. The first is that Y−λ generates Qλ in the

same way that the Bernstein operator Bλ generates the Schur function sλ. That is

Qλ = Y−λ1Y−λ2 · · ·Y−λl · 1, (3.11)

36

where λ = (λ1, λ2, . . . , λl) is a strict partition and Qλ is the Schur Q-function indexed by λ.

The second result is that the operators Yn anticommute.

YnYm = −YmYn (3.12)

for any integers m and n. In particular, this means that YnYn = −YnYn, so YnYn = Y 2
n = 0.

Now we use the relationship among the Yn’s to define a new equivalence relation on the set

of signed codes of compositions. We define α ∼̇ ±β if and only if Y−µ = ±Y−ν , and α ∼̇ 0 if and

only if Y−µ = 0, where α is the code of the composition µ and β is the code of the composition

ν. As in Section 3.3, this is an equivalence relation since there is a one to one correspondence

between a composition µ and its code α. Throughout this section we will refer only to this new

relation.

Since the operators Yn anticommute, we know that Yµ = 0 whenever µ contains any repe-

titions, so we can restrict ourselves to compositions µ with distinct components, but we want

to recapture this in terms of codes alone.

Proposition 3.6.1. For any positive integer k, we have

R
(
LkURk

)
∼̇

(
Lk−1URk−1

)
R (3.13)

U
(
LkURk

)
∼̇ −

(
LkURk

)
U. (3.14)

The proof of this proposition is similar to Proposition 3.3.1. Relation (3.14) follows from the

commutation identity (3.12) and corresponds to the code given by the altered path in Figure

3.5.

Note that unlike Proposition 3.3.1, Proposition 3.6.1 says that in this setting we only de-

crease the index k when we permute
(
LkURk

)
past an R. However, like the previous case, the

sign only changes when we permute
(
LkURk

)
past a U .

Lemma 3.6.2. Suppose that the codes α and β of two compositions µ and ν differ only by one

of the relations (3.13) or (3.14). Then µ and ν have the same number of components, l, and

the same sum, µ1 + µ2 + · · ·+ µl = ν1 + ν2 + · · ·+ νl.

The proof is identical to Lemma 3.4.1.

Theorem 3.6.3. Let µ be any composition of m with code α. Suppose that α can be written

in the form

α = . . . β3β2β1L
kUγ1γ2γ3 . . .

where β = . . . β3β2β1 consists only of R’s and U ’s and β1 = U . Let j be the smallest integer such

that βk+j . . . β2β1 has k R’s. Then Y−µ = 0 if βk+j+1 = U and Y−µ = (−1)jY−ν if βk+j+1 = R,

37

→

n

m

k
· · ·

· · · · · ·

s
s

m

n

k

· · ·

· · ·

· · ·
s
s

Figure 3.5: Change in the code from commuting YnYm.

where ν is the composition of m with code given by

. . . βk+j+1Uβk+j . . . β2β1L
kγ1γ2 . . .

Proof. By the minimality of j, we have that βk+j = R. By applying Proposition 3.6.1 k + j

times we have that

α = . . . β3β2β1L
kUγ1γ2γ3 . . .

∼̇ . . . β3β2β1

(
LkURk

)
Lkγ1γ2γ3 . . .

∼̇ (−1)j . . . βk+j+1

(
L0UR0

)
βk+j . . . β2β1L

kγ1γ2γ3 . . .

= (−1)j . . . βk+j+1Uβk+j . . . β2β1L
kγ1γ2γ3 . . .

since j is the number of U ’s in βk+j . . . β2β1. If βk+j+1 = U , then the above code contains

the subword βk+j+1U = UU ∼̇ 0, so α ∼̇ 0, so Y−µ = 0. If βk+j+1 = R, then we have that

Y−µ = (−1)jY−ν for the partition ν which satisfies the conditions of the theorem. In particular,

ν is also a partition of m by Lemma 3.6.2.

Corollary 3.6.4. Let λ = (λ1, λ2, . . . , λl) be a strict partition and n be any integer with n < λ1.

Let k = λ1 − n, and let ζ be the letter immediately left of the kth R left of the rightmost U in

the code of λ.

• If ζ = U , then Y−nY−λ = 0.

• If ζ = R, then Y−nY−λ = (−1)j+1Y−ν , where j is the number of U ’s between the rightmost

38

U and ζ, and ν is the strict partition whose code is the code of λ with U inserted after ζ.

This corollary is the analog of Corollary 3.4.3, and similarly follows from Theorem 3.6.3

since the code α of λ can be written in the form α = βγ in the notation of the theorem.

Corollary 3.6.5. Let µ be any composition of m with code α. Then either Y−µ = 0 or Y−µ =

±Y−λ for some strict partition λ of m with the same length as µ.

The proof of this corollary is the same as the proof presented for Corollary 3.4.4, that is by

induction on the number of U ’s right of the leftmost L in α. In this case though we can not

use induction on the number of L’s in α since the number of L’s in the code do not decrease

when we apply Theorem 3.6.3, unlike Theorem 3.4.2.

Similarly to Corollary 3.4.4, this corollary provides a simple way to compute Y−µ ·1 in terms

of Schur Q-functions for any composition µ, since Y−λ ·1 = Qλ by equation (3.11) for any strict

partition λ.

In fact, given any composition µ, the number of times we have to apply Theorem 3.6.3 to

get Y−µ = ±Y−λ for some strict partition λ is less than or equal to the number of U ’s right of

the leftmost L in the code of µ, which is the largest i such that µi < µi+1, i.e. the position of

the last exceedance in µ.

The above corollary follows from the previous theorem, but since in this case we know that

the Y−n anticommute, we actually have the following stronger statement.

Proposition 3.6.6. Let µ be any composition of m with length l. Then either Y−µ = 0 or

Y−µ = sgn(σ)Y−σ(µ) for any permutation σ ∈ Sl.

Proof. The proof of this statement is immediate from (3.12). In particular, Y−µ = 0 exactly

when µ has a repeated index. The second case, Y−µ = sgn(σ)Y−σ(µ) follows from the fact that

any permutation σ can be written as a sequence of adjacent transpositions σ = σ1σ2 · · ·σk,
and sgn(σ) = (−1)k. Then Y−µ = −Y−σk(µ) = +Y−σk−1σk(µ) = · · · = (−1)kY−σ1σ2···σk(µ) =

sgn(σ)Y−σ(µ).

This proposition follows immediately from known results. We include it only to show that

Corollary 3.6.5 gives an only slightly less general version of this result using only codes.

Definition 3.6.7. For any strict partition λ, define λ[i] to be the strict partition obtained from

the code of λ by inserting a U between the ith pair of consecutive R’s from the left.

In particular, this means that λ[i] is the strict partition with the ith smallest positive integer

not already in λ inserted into λ.

39

Theorem 3.6.8. For any strict partition λ = (λ1, λ2, . . . , λl),

Y (t)Qλ =
l∑

j=0

λj−1∑
n=λj+1+1

(−1)j tnQ(λ1,λ2,...,λj ,n,λj+1...,λl) (3.15)

Y (t)Qλ =
∑
i≥0

(−1)l+|λ|−|λ
[i]|+i t|λ

[i]|−|λ|Qλ[i] (3.16)

where we take the convention λ0 =∞ and λl+1 = −1.

Proof. From the definition of Y (t) =
∑

n∈Z Ynt
−n, and equation (3.11), we have that Y (t)Qλ =∑

n∈Z Ynt
−n(Y−λ1Y−λ2 · · ·Y−λl · 1). So it is sufficient to consider the coefficient of t−n,

Y−nY−λ1Y−λ2 · · ·Y−λl .
If n > λ1, then Y−nY−λ = Y−(n,λ) is already in decreasing order. In fact, since (n, λ) =

λ(n−l), we can write Y−nY−λ · 1 = Y−(n,λ) · 1 = Yλ(n−l) · 1 = Qλ(n−l) .

If n ≤ λ1, then we write the code of λ in the form

α = . . . β3β2β1RRR . . .

where β1 = U . Let j be the smallest integer such that βk+j . . . β2β1 has k R’s, where k = λ1−n.

From Corollary 3.6.4, if βk+j+1 = U , then α ∼̇ 0, so Y−nY−λ = 0. Since there are j U ’s in

βk+j . . . β2β1, βk+j+1 is the (j + 1)th U from the right in α. This naturally divides the r1(λ)

R’s left of β1, the rightmost U in α, into rj+1(λ) R’s left of βk+j+1 = U and k R’s right of

βk+j+1. Then we have that n = λ1−k = r1(λ)−k = (rj+1(λ) + k)−k = rj+1(λ) = λj+1. Thus

Y−nY−λ = 0 exactly when n = λi for some i, that is, when n is already a component of λ, as

we expect from (3.11) and (3.12).

If n 6= λi for any i, then from Corollary 3.6.4, Y−nY−λ = (−1)jY−ν , where ν is the strict

partition with code

α′ = . . . βk+j+1Uβk+j . . . β2β1RRR . . .

Comparing this to the code α of λ, we have that rj+1(ν) = n = λ1 − k, ri(λ) = ri(λ) for all

i ≤ j, and ri+1(ν) = ri(λ) for all i > j. Thus ν = (λ1, λ2, . . . , λj , n, λj+1, . . . , λl), and thus

(3.15) holds.

There are n R’s left of the inserted U in α′. Each U corresponding to a component of ν

will be immediately after an R (RU), since ν is a strict partition. Thus l − j of the R’s left

of the inserted U will be immediately before a U , so n − (l − j) = n − l + j of the R’s left

of the inserted U will be immediately before an R. This includes βk+j+1, the R immediately

before the inserted U , so this U is inserted into the (n − l + j)th position from the left. So

ν = λ1, λ2, . . . , λj , n, λj+1, . . . , λl) = λ[n−l+j].

Let i = n− l+j. Then λ[i] = ν, |λ[i]|− |λ| = n, and l+ |λ|− |λ[i]|+ i = l−n+(n− l+j) = j.

40

Finally, notice that as n runs over all summands which contribute to (3.15), i will run over all

nonnegative integers (i = 0 corresponds to the case n = 0), so (3.16) holds.

In light of the results in this section, particularly Proposition 3.6.6 and Theorem 3.6.8, one

might ask if there is an intuitive way to define a function Qµ indexed by compositions such

that Qλ is the Schur Q-function when λ is a partition which satisfies analogous statements

to Theorem 3.5.4 and Theorem 3.5.5. That is, can we generalize Schur Q-functions as we

generalized Schur functions in Section 3.5?

Unfortunately the definition of the Schur Q-functions does not lend itself to generalization

in this manner as the definition of the Schur functions we used in Section 3.5 did. However, even

if we could generalize the definition of the Schur Q-functions in an intuitive way, the analogous

result to Theorem 3.5.4 would tell us that Qµ = sgn(σ)Qσ(µ) for any permutation σ ∈ Sl by

Proposition 3.6.6. This implies that Qµ = Qλ exactly when µ is a rearrangement of λ. In other

words, the result we would get from generalizing Schur Q-functions (unlike when we generalized

Schur functions) would be trivial.

If we choose as our definition Qµ = Y−µ · 1 for any composition µ, then we recover the two

results mentioned in the previous paragraph immediately. Namely that Qµ = sgn(σ)Qσ(µ) for

any permutation σ ∈ Sl (by Proposition 3.6.6) and Qµ = Qλ exactly when µ is a rearrangement

of λ. The drawback here is that we define Qµ to satisfy the same defining relation as the Schur

Q-functions, whereas in Section 3.5 we were able to generalize Schur functions and prove the

relationship between the new function sµ and Bµ · 1 in order to better understand the latter.

So this definition, while valid, is not terribly useful or illustrative.

3.7 Shifted Codes

In this section we will relate codes to shifted codes of strict partitions and use these to study

the analog of the Bernstein operators for Schur Q-functions.

Definition 3.7.1. Define the shifted code of a strict partition λ to be the infinite sequence of

letters R and U obtained by tracing along the bottom-right edge of the shifted Young diagram

of shape λ in the fourth quadrant together with the positive x-axis, starting at the bottom-right

corner of the leftmost box on the bottom row of the diagram.

Example 3.7.2. For the strict partition λ = (4, 2, 1), the path described above is shown in

bold in Figure 3.6. Then the shifted code of λ is given by α = UURURRR . . .

Using the tools we developed to study codes of compositions, we will now show how the

shifted code of a strict partition can be obtained directly from the code of that partition.

41

s
Figure 3.6: Shifted Young diagram and shifted code of λ = (4, 2, 1).

Definition 3.7.3. Given a strict partition λ with code α, replace each U in α with UL and

use the identity LR ∼ φ to cancel wherever possible. Call the resulting sequence of letters R,

L, and U the preshifted code of λ.

If the infinite prefix “. . . ULULU” is removed from the preshifted code of a strict partition,

then you obtain exactly the shifted code of that partition. The reason for this is that replacing

each U with UL makes the diagram left aligned along the line y = −x rather than the negative

y-axis.

Example 3.7.4. For the empty partition λ = φ, the code of λ is . . . UUURRR . . . from the

diagram in Figure 3.7. The preshifted code is . . . ULULURRR . . . from the diagram in Figure

3.8. And the shifted code is RRR . . . from the diagram in Figure 3.9.

Figure 3.7: Young diagram and code of λ = φ.

q q q
Figure 3.8: Shifted Young diagram and preshifted code of λ = φ.

42

q q qs
Figure 3.9: Shifted Young diagram and shifted code of λ = φ.

Shifted codes can provide an alternative (but equivalent) definition of λ[i] to the one given

in Definition 3.6.7.

Definition 3.7.5. For any strict partition λ, define λ[i] to be the strict partition obtained from

the shifted code of λ by replacing the ith R from the left in the shifted code of λ by U .

Notice the similarity to Definition 3.4.8, which defined λ(i) the exact same way using codes

of partitions rather than shifted codes of strict partitions.

Definition 3.7.6. Given a composition µ with code α, replace each U in α with UL. Call

the resulting sequence of letters R, L, and U the preshifted code of µ. Remove the prefix

“. . . ULULU” to obtain the shifted code of µ.

Example 3.7.7. For the composition µ = (2, 3, 1), the shifted code is obtained from the path

shown in bold in Figure 3.10. Then the shifted code of µ is given by α = URULLURRR . . .

s
Figure 3.10: Shifted Young diagram and shifted code of µ = (2, 3, 1).

and the preshifted code of µ is . . . ULULUURULLURRR . . .

We can now use the relationship among the Yn’s to define yet another equivalence relation,

this one on the set of signed shifted codes of compositions. We define α ∼̈ ±β if and only if

Y−µ = ±Y−ν , and α ∼̈ 0 if and only if Y−µ = 0, where α is the shifted code of the composition

µ and β is the shifted code of the composition ν. As before, this will be an equivalence relation

since there is a one to one correspondence between a composition µ and its shifted code α.

43

Proposition 3.7.8. For any positive integer k, we have

R
(
Lk+1URk

)
∼̈

(
LkURk−1

)
R (3.17)

U
(
Lk+1URk

)
∼̈ −

(
LkURk−1

)
U. (3.18)

Again the proof is similar to Proposition 3.3.1. Relation 3.18 follows from the commutation

identity (3.12) and corresponds to the shifted code given by the altered path in Figure 3.11,

where k = m− n as before.

→

n

m

k + 1

k

· · ·

· · · · · ·

s
s

m

n

k − 1

k

· · ·

· · ·

· · ·
s

s

Figure 3.11: Change in the shifted code from commuting YnYm.

Notice that the relation on shifted codes of compositions in Proposition 3.7.8 is identical to

the relation on codes of compositions in Proposition 3.3.1. The two propositions give the same

relation; the only difference being that the index k in Proposition 3.3.1 has been replaced by

k+ 1 in Proposition 3.7.8 to preserve the identity k = m− n. This relationship will be studied

in more depth in Section 3.9.

With this identification we can prove the shifted code analog of each result in Section 3.6 in

exactly the same way as each corresponding result in Section 3.4. We include the statements

of these results for completeness.

Lemma 3.7.9. Suppose that the codes α and β of two compositions µ and ν differ only by one

of the relations (3.17) or (3.18). Then µ and ν have the same number of components, l, and

the same sum, µ1 + µ2 + · · ·+ µl = ν1 + ν2 + · · ·+ νl.

44

The proof is identical to Lemma 3.4.1.

Theorem 3.7.10. Let µ be any composition of m with shifted code α. Suppose that α can be

written in the form

α = βt . . . β3β2β1L
kUγ1γ2γ3 . . .

where β = βt . . . β3β2β1 consists only of R’s and U ’s and β1 = U .

• If βk = U , then Y−µ = 0.

• If βk = R, then Y−µ = (−1)jY−ν , where j is the number of U ’s in βk−1 . . . β2β1 and ν is

the composition of m with shifted code given by

βt . . . βk+1Uβk−1 . . . β3β2β1L
k−1γ1γ2γ3 . . .

The proof is identical to Theorem 3.4.2.

Corollary 3.7.11. Let λ = (λ1, λ2, . . . , λl) be a strict partition and n be any integer with

n < λ1. Let k = λ1 − n, and let ζ be the letter k − 1 positions left of the rightmost U in the

shifted code of λ.

• If ζ = U , then Y−nY−λ = 0.

• If ζ = R, then Y−nY−λ = (−1)j+1Y−ν , where j is the number of U ’s between the rightmost

U and ζ, and ν is the partition obtained by replacing ζ by U .

The proof is identical to Corollary 3.4.3. It follows directly from Theorem 3.7.10 for the

special case where µ = (n, λ1, λ2, . . . , λl) and γ = RRR . . . If n = λj for some j, then we

would have ζ = U and Y−µ = 0. So the case ζ = R corresponds to the strict partition

ν = (λ1, λ2, . . . , λj , n, λj+1, . . . , λl).

Corollary 3.7.12. Let µ be any composition of m with shifted code α. Then either Y−µ = 0

or Y−µ = ±Y−λ for some strict partition λ of m with the same length as µ.

The proof is identical to Corollary 3.4.4. As in that case, we can prove the result using

induction on either the number of L’s in α or on the number of U ’s to the right of the leftmost

L in α. Notice that Corollary 3.6.5 gives the exact same result as this corollary, however in

that case only the latter method of proof is intuitive. This is one example of the strength of

using shifted codes to study this problem.

45

Theorem 3.7.13. For any strict partition λ = (λ1, λ2, . . . , λl),

Y (t)Qλ =
l∑

j=0

λj−1∑
n=λj+1+1

(−1)j tnQ(λ1,λ2,...,λj ,n,λj+1...,λl) (3.19)

Y (t)Qλ =
∑
i≥0

(−1)l+|λ|−|λ
[i]|+i t|λ

[i]|−|λ|Qλ[i] (3.20)

where we take the convention λ0 =∞ and λl+1 = −1.

The proof is almost identical to the proof of Theorem 3.4.9. In the setting of shifted codes,

we replace codes with shifted codes and λ(i) with λ[i]. This means that the number, j, of U ’s

in βk . . . β2β1 will be j = l + |λ| − |λ[i]| + i rather than j = |λ| − |λ(i)| + i − 1, since λ[i] =

(λ1, λ2, . . . , λj , i+ (l− j), λj+1, . . . , λl) and λ(i) = (λ1− 1, λ2− 1, . . . , λj − 1, i− 1, λj+1, . . . , λl).

Finally, we must take the convention λl+1 = −1 rather than zero in this case, since Y0 represents

the nontrivial insertion of zero into the strict partition, whereas B0 acts as trivially on 1.

Notice that this gives the exact same result as Theorem 3.6.8, but the proof will follow that

of the Schur function case.

Since the only difference between preshifted codes and shifted codes is the prefix . . . ULULU ,

we can also state and prove each of these results in terms of preshifted codes, where we concern

ourselves only with L’s not in the prefix . . . ULULU . The statements and proofs of these results

will be otherwise identical to those using shifted codes.

3.8 Reverse Shifted Codes

In Section 3.7 we saw that the relations satisfied by shifted codes in the Schur Q-function case

were identical to the relations satisfied by codes in the Schur function case. In other words,

Propositions 3.3.1 and 3.7.8 have the same statement for their corresponding set of codes.

Furthermore, we found that the shifted codes can be obtained by a translation of the codes in

the Schur Q-function case.

In light of this correspondence between codes for Schur functions and shifted codes for Schur

Q-function, it is natural to ask what is the analog for Schur functions of unshifted codes for

Schur Q-functions. Not surprisingly, the answer involves an inverse operation to that which

gave us shifted codes.

We return now to Schur functions, and will define the following analog of shifted codes in

this setting.

Definition 3.8.1. Given a partition λ with code α, replace each U in α with UR and use the

identity RL ∼ φ to cancel wherever possible. Call the resulting sequence of letters R, L, and

46

U the pre-reverse-shifted code of λ. Remove the infinite prefix “. . . URURU” to obtain the

reverse-shifted code of λ.

It is now convenient to introduce the anagrams S, PS, U, PRS, and RS to denote shifted,

preshifted, unshifted, pre-reverse-shifted, and reverse-shifted codes, respectively, which we will

use only when discussing several of these objects at the same time.

Example 3.8.2. For the partition λ = (0, 0, 0, 0), the various kinds of codes are shown on the

same graph in Figure 3.12, with the infinite portion of the preshifted and pre-reverse-shifted

codes represented by dotted lines.

PRS

RS

U

S

PS

s s

Figure 3.12: All five code variants for λ = (0, 0, 0, 0).

The main insight this example provides is that since the Young diagram of (0, 0, 0, 0) is

empty, the codes of this partition represent the leftmost edges of each kind of diagram. As we

have seen before, all unshifted codes are left aligned, so they have a vertical left edge. Preshifted

codes are aligned along the diagonal line y = −x and continue infinitely, whereas shifted codes

stop at the bottom of the partition. Pre-reverse-shifted and reverse-shifted codes are aligned

the same way along y = x to the left.

As with shifted codes, we define the reverse-shifted (and pre-reverse-shifted) code of a

composition µ using the same definition as for a partition λ.

Example 3.8.3. For the composition µ = (3, 1, 2), the reverse-shifted code is obtained from

the path shown below in bold. So the reverse-shifted code of µ is α = RRUURRRRURRR . . .

and the pre-reverse-shifted code of µ is . . . URURURRUURRRRURRR . . .

47

s
Figure 3.13: Reverse-shifted Young diagram and reverse-shifted code of µ = (3, 1, 2).

Note that in this setting we no longer necessarily have L’s to denote an exceedance. If

µi+1 = µi + 1, as in this example µ3 = µ2 + 1, then the code has only a UU to denote this

position.

We now define another equivalence relation on the set of signed reverse-shifted codes of

compositions by α
...∼ ±β if and only if Bµ = ±Bν , and α

...∼ ±0 if and only if Bµ = 0, where

α is the reverse-shifted code of the composition µ and β is the reverse-shifted code of the

composition ν. This will be an equivalence relation since there is a one to one correspondence

between a composition µ and its reverse-shifted code α.

Proposition 3.8.4. For any positive integer k, we have

R
(
LkURk

)
...∼

(
Lk−1URk−1

)
R (3.21)

U
(
Lk−1URk−1

)
...∼ −

(
Lk−1URk−1

)
U. (3.22)

Again the proof is similar to Propositions 3.3.1, 3.6.1, and 3.7.8. Relation (3.21) follows

from canceling RL
...∼ φ and distributing, and Relation (3.22) follows from the commutation

relation on the Bernstein operators (3.4), BnBm = −Bm−1Bn+1. In particular Relation (3.22)

corresponds to the reverse-shifted code given by the altered path below, where again k = m−n.

Notice that these two relations on reverse-shifted codes for Schur functions are exactly the

same as the two relations we had on codes for Schur Q-functions. The only difference between

Proposition 3.8.4 and Proposition 3.6.1 is an index shift replacing k − 1 by k in the second

relation to preserve the identity k = m − n. This is the exact same as the result we obtained

comparing Proposition 3.3.1 on codes for Schur functions to Proposition 3.7.8 on shifted codes

for Schur Q-functions! We save the explanation for this until the next section, and will first

state the analog of the main results from Sections 3.4, 3.6, and 3.7 for reverse-shifted codes.

Lemma 3.8.5. Suppose that the codes α and β of two compositions µ and ν differ only by one

of the relations (3.21) or (3.22). Then µ and ν have the same number of components, l, and

the same sum, µ1 + µ2 + · · ·+ µl = ν1 + ν2 + · · ·+ νl.

The proof is identical to Lemma 3.4.1.

48

→

n

m

k − 1

· · ·

· · ·

· · · s
s

m− 1

n+ 1

k − 1

· · ·

· · ·

· · ·
s
s

Figure 3.14: Change in the reverse-shifted code from commuting BnBm.

Theorem 3.8.6. Let µ be any composition of m with code α. Suppose that α can be written

in the form

α = βt . . . β3β2β1L
kUγ1γ2γ3 . . .

where β = βt . . . β3β2β1 consists only of R’s and U ’s and β1 = U . Let j be the smallest

integer such that βk+j . . . β2β1 has k R’s. Then Bµ = 0 if βk+j+1 = U and Bµ = (−1)jBν if

βk+j+1 = R, where ν is the composition of m with code given by

βt . . . βk+j+1Uβk+j . . . β2β1L
kγ1γ2 . . .

The proof is identical to Theorem 3.6.3.

Corollary 3.8.7. Let λ = (λ1, λ2, . . . , λl) be a partition and n be any integer with n < λ1. Let

k = λ1 − n, and let ζ be the letter immediately left of the kth R left of the rightmost U in the

code of λ.

• If ζ = U , then BnBλ = 0.

• If ζ = R, then BnBλ = (−1)j+1Bν , where j is the number of U ’s between the rightmost

U and ζ, and ν is the strict partition whose code is the code of λ with U inserted after ζ.

This gives the same result as Corollary 3.4.3 using reverse-shifted codes. The proof is

identical to Corollary 3.6.4 and similarly follows from Theorem 3.8.6, corresponding to the case

when t = n and β = RR . . . RR in the notation of the theorem.

49

Corollary 3.8.8. Let µ be any composition of m with code α. Then either Bµ = 0 or Bµ = ±Bλ
for some strict partition λ of m with the same length as µ.

This corollary gives the same result as Corollary 3.4.4 and follows from Theorem 3.8.6 with

the same proof given for that corollary.

Definition 3.8.9. For any partition λ, define λ(i) to be the partition obtained from the reverse-

shifted code of λ by inserting a U between the ith pair of consecutive R’s from the left.

This definition is actually a new formulation equivalent to the existing definition in terms of

codes of partitions, which we gave in Definition 3.4.8. This is because both definitions for λ(i)

describe ways to insert a new component i− 1 (and decrease the size of all larger components

of λ by 1) in the ith possible position from the bottom of λ. In terms of reverse-shifted codes,

there must be an R both before and after the inserted component or else the result will not be

a partition: two consecutive U ’s would give λj + 1 = λj+1, so λ is not in decreasing order.

Theorem 3.8.10. For any partition λ = (λ1, λ2, . . . , λl),

B(t)sλ =
l∑

j=0

λj−1∑
n=λj+1

(−1)jtnB(λ1−1,λ2−1,...,λj−1,n,λj+1,...,λl) (3.23)

B(t)sλ =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) . (3.24)

The proof is very similar to Theorem 3.6.8. The only differences are the following. The

components before n in λ(i) decrease in size by one in this setting because inserting a U makes

the code above it one unit closer to the left edge (because of the slant). This shift then changes

the exponent of −1, which becomes j = |λ| − |λ(i)| + i − 1, though it is still the position of

the inserted entry. And finally, the limits of the second summation in (3.23) start at λj+1 not

λj+1 + 1 to correspond to consecutive U ’s. In Theorem 3.6.8 consecutive U ’s correspond to not

being a strict partition so Y−nY−λ = 0, whereas in this setting consecutive U ’s correspond to

BnBn+1 = 0, as described in the preceding paragraph.

3.9 The Schur – Schur Q Correspondence

The reason for the similarities between Propositions 3.8.4 and 3.6.1 and between Propositions

3.3.1 and 3.7.8 is the following. Consider a partition λ = (λ1, λ2, . . . , λl) and a strict partition

η = (η1, η2, . . . , ηl) with ηi = λi−i+1 or η = (λ1, λ2−1, λ3−2, . . . , λl−(l−1)) = λ+δ−(l−1)1,

where δ = (l−1, l−2, . . . , 2, 1, 0) as in Section 3.5 and 1 = (1, 1, . . . , 1). Then the reverse-shifted

code of λ will be the same as the code of η and the code of λ will be the same as the shifted

50

code of η, except for their corresponding prefixes, which will be the same for any partition of

length l.

Example 3.9.1. Consider the partition λ = (3, 3). Then η = (λ1, λ2 − 1) = (3, 2). The

correspondences described above are shown as dotted lines in Figure 3.15 with corresponding

codes shown in bold. From left to right, the reverse-shifted code and code of λ are shown in

the first row and the code and shifted code of η are shown in the second row. We also show the

maps S and RS corresponding to shifting and reverse-shifting the codes.

sλ :

s
S //

OO

��

sRS
oo

OO

��

Qη :

s
S //

sRS
oo

Figure 3.15: Correspondences between codes.

Note that in this example we chose the starting points of the shifted and reverse-shifted

codes on the opposite side of the bottom-left corner of the tableau from where we started

previously in this paper in order to match the two unshifted codes shown. This only means

that the prefix which goes before this portion of the code would be RR for the reverse-shifted

code of sλ and LL for the shifted code of Qη (for any λ and η), as opposed to something more

intuitive. In most other situations our previous choice is more intuitive.

We can also summarize this result with Figure 3.16 relating the equivalence relations defined

in this paper: ∼ on codes for Schur functions, ∼̇ on codes for Schur Q-functions, ∼̈ on shifted

codes for Schur Q-functions, and
...∼ on reverse-shifted codes for Schur functions. Again the

dotted lines correspond to changing the prefix, and S and RS correspond to shifting and

reverse-shifting the associated codes.

It is important to note that the relation ∼̇ corresponds to the anticommuting operators

Y−n, so the new relation
...∼ on reverse-shifted codes will also be exactly anticommuting after

truncating the slanted component on the left. Notice that the bijection between sλ and Qη

described above is given by η = λ + δ − (l − 1)1 or λ = η − δ + (l − 1)1, and since the

components of Qη anticommute, the components of sη−δ+(l−1)1 should as well (with respect to

51

sλ :
...∼

S //
OO

��

∼
RS
oo OO

��
Qη : ∼̇

S // ∼̈
RS
oo

Figure 3.16: Correspondences between relations on codes.

permuting components of η).

Then this strange combinatorial object, reverse-shifted codes of partitions (specifically when

the left edge is truncated), indexes an anticommuting version of Bernstein’s operator. Such an

anticommuting operator was defined by Jing in [6] by

X(t) = B(t−1)ept∂p =
∑
n∈Z

Xnt
−n,

acting on the space Λ⊗C[Z], where ep and t∂p act on C[Z] by ep · enp = e(n+1)p and t∂p · enp =

tnenp. Here we follow the notation of Chapter 2 and omit the index shift of 1
2 used in [6] and

[4].

Jing showed in [6] and [4] that the operator X(t) also generates the Schur functions according

to the equation

X−µ1 · · ·X−µl · e
−lp = sµ−δ+l1, (3.25)

and that these operators anticommute,

XnXm = −XmXn.

This commutation of Xn in equation (3.25) is exactly the identity satisfied by sη−δ+(l−1)1 after

an index shift of η = µ− 1.

Then this operator induces the same relation as that given by
...∼ on reverse-shifted codes of

compositions. So we could have instead defined
...∼ by α

...∼ ±β if and only if X−µ = ±X−ν , and

α
...∼ 0 if and only if X−µ = 0, where α is the reverse-shifted code of µ and β is the reverse-shifted

code of ν.

Thus just as the indices of B(t) can be naturally described combinatorially by codes of

partitions and the indices of Y (t) can be naturally described by codes of strict partitions, so

too can the indices of X(t) be naturally described by reverse-shifted codes of partitions.

With this identification, looking back at Chapter 2, we can see that Theorem 3.8.10 is

the combinatorial version of the second proof of Theorem 2.3.1, just as Theorem 3.4.9 is the

combinatorial version of the first proof, Theorem 3.6.8 is the combinatorial version of Theorem

52

2.4.1, and Theorem 3.7.13 is the combinatorial version of Theorem 2.4.8.

53

Chapter 4

Hall-Littlewood Polynomials

4.1 Hall-Littlewood Analog

In Chapters 2 and 3 we showed the action of the Bernstein operators B(t) =
∑

n∈ZBnt
n on the

Schur functions sλ = Bλ1Bλ2 · · ·Bλl · 1 is given by

B(t)sλ =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) ,

for any partition λ = (λ1, λ2, . . . , λl). Similarly we showed that the action of the vertex operator

Y (t) =
∑

n∈Z Ynt
−n on the Schur Q-function Qλ = Y−λ1Y−λ2 · · ·Y−λl · 1 is given by

Y (t)Qλ =
∑
n6=λj

(−1)itnQ(λ1,λ2,...,λi,n,λi+1,...,λl),

for any strict partition λ = (λ1, λ2, . . . , λl).

We now turn our attention to studying with more generality the action of the vertex operator

H(z) on the Hall-Littlewood polynomials Qλ(t) defined in [5], where we have that Qλ(t) =

H−λ1H−λ2 · · ·H−λl · 1 for

H(z) =
∑
n∈Z

H−nz
n = exp

∑
n≥1

1− tn

n
pnz

n

 exp

−∑
n≥1

∂
∂pn

1− tn
zn

 ,

for any partition λ = (λ1, λ2, . . . , λl).

It follows from this thatQλ(t) is the coefficient of zλ = zλ11 zλ22 · · · z
λl
l inH(z1)H(z2) · · ·H(zl)·

1, which then implies that H−nQλ(t) is the coefficient of zn0 z
λ in H(z0)H(z1)H(z2) · · ·H(zl) · 1.

However, if n is less than λ1, then the term H−nH−λ1 · · ·H−λl · 1 which appears is no longer

a Hall-Littlewood polynomial, since the formula Qλ(t) = H−λ1 · · ·H−λl · 1 only holds for λ a

54

partition (decreasing parts).

The expression H−nH−λ1 · · ·H−λl · 1 can be interpreted as a linear combination of Hall-

Littlewood polynomials by repeated applications of the commutation relation [Hm, Hn]t =

−[Hn+1, Hm−1]t, or

HmHn − tHnHm = −(Hn+1Hm−1 − tHm−1Hn+1),

HmHn = tHnHm −Hn+1Hm−1 + tHm−1Hn+1.

The problem with this approach is that if n is significantly smaller than λ1 (if λ1 − n is large),

then the repeated applications yield an enormous number of Hall-Littlewood polynomials as

summands. We therefore seek some other way to explicitly determine H−nQλ(t).

We would like to interpret H−nQλ as a linear combination of Qµ(t) = Hµ1 · · ·Hµl+1
· 1

for some partitions µ. However, Qµ(t) is the coefficient of a power of z0, z1, z2, . . . , zl in

H(zi0)H(zi1)H(zi2) · · ·H(zil) · 1, where i0, i1, . . . , il is some rearrangement of 0, 1, . . . , l. Thus

we have to find some way to interpret H−nQλ(t) as the coefficient of zn0 z
λ in the rearranged

product H(zi0)H(zi1) · · ·H(zil) · 1.

For the remainer of this chapter, we will focus on the case where H(zi0)H(zi1) · · ·H(zil)

is of the form H(z1)H(z2) · · ·H(zj)H(z0)H(zj+1) · · ·H(zl). This means that z0, the variable

corresponding to the entry n in the composition (n, λ1, λ2, . . . , λl), is the only one to change

relative position. In the notation of vertex operators, this means that we are restricting ourselves

to the region where |z1| > |z2| > · · · > |zj | > |z0| > |zj+1| > · · · > |zl|.

Theorem 4.1.1. The action of the vertex operator H(z) =
∑

n∈ZH−nz
n on the Hall-Littlewood

polynomial Qλ(t) is given by

H−nQλ(t) =

∞∑
n1,...,nj=0

cn1,...,nj (t)Q(λ1−n1,...,λj−nj ,n+n1+···+nj ,λj+1,...,λl)(t),

where cn1,...,nj (t) = tn1+···+nj−j+2k(t2 − 1)j−k, for k equal to the number of zeros in the set

{n1, n2, . . . , nj}.

Proof. We have from [5] that

H(z0)H(z1) · · ·H(zl) =

 ∏
0≤i<k≤l

zj − zi
zj − tzi

 : H(z0)H(z1) · · ·H(zl) : 1,

where : : is the normal ordering product, which is symmetric, i.e. : H(n)H(m) : =

: H(m)H(n) : for any n andm. LetK1 denote the coefficient above, K1 =

(∏
0≤i<k≤l

zj − zi
zj − tzi

)
.

55

Similarly,

H(z1) · · ·H(zj)H(z0)H(zj+1) · · ·H(zl) = K2 : H(z1) · · ·H(z0) · · ·H(zl) : 1,

where K2 =

(
j∏
i=1

zi − z0
zi − tz0

) l∏
i=j+1

z0 − zi
z0 − tzi

 ∏
1≤i<k≤l

zi − zk
zi − tzk

 .

Then since the normal ordering product is symmetric, we have that H(z0)H(z1) · · ·H(zl) =
K1
K2
H(z1) · · ·H(z0) · · ·H(zl). Now simplify K1

K2
as follows:

K1

K2
=

(∏
0≤i<k≤l

zj−zi
zj−tzi

)
(∏j

i=1
zi−z0
zi−tz0

)(∏l
i=j+1

z0−zi
z0−tzi

)(∏
1≤i<k≤l

zi−zk
zi−tzk

) =

=

(∏l
i=1

z0−zi
z0−tzi

)
(∏i

i=1
zi−z0
zi−tz0

)(∏l
i=j+1

z0−zi
z0−tzi

) =

j∏
i=1

(
z0−zi
z0−tzi

)
(
zi−z0
zi−tz0

) =

j∏
i=1

(
−zi − tz0
z0 − tzi

)
.

To simplify this, we introduce the notation z̃i = zi
z0

. Then we have

(
−zi − tz0
z0 − tzi

)
=
tz0 − zi
z0 − tzi

=
t− zi

z0

1− t ziz0
=

t− z̃i
1− tz̃i

= (t− z̃i)(1 + tz̃i + t2z̃2i + · · ·)

= t+ (t2 − 1)z̃i + (t3 − t)z̃2i + (t4 − t2)z̃3i + · · ·

= t+

∞∑
n=1

(tn+1 − tn−1)z̃ni

= t+
∞∑
n=1

tn−1(t2 − 1)z̃ni .

This means that the coefficient K1
K2

is given by

K1

K2
=

j∏
i=1

(
t+

∞∑
n=1

tn−1(t2 − 1)

(
zi
z0

)n)

=

∞∑
n1,n2,...,nj=0

cn1,n2,...,nj (t)

(
z1
z0

)n1
(
z2
z0

)n2

· · ·
(
zj
z0

)nj
,

for cn1,n2,...,nj (t) = tm−j+2k(t2−1)j−k =

j−k∑
i=0

(−1)j−k+i
(
j − k
i

)
tm−j+2k+2i, where m = n1+n2+

· · ·+nj , and k is the number of zeros in the set {n1, n2, . . . , nj}. The reason for this is that each

56

ni = 0 gives a factor of t in cn1,...,nj (t), for a total power of t being tk from all ni = 0. Similarly

each ni 6= 0 gives a factor of tni−1(t2−1), for a total factor of tni1−1(t2−1) · · · tnij−k−1(t2−1) =

tn1+···ni−(j−k)(t2 − 1)j−k = tm−j+k(t2 − 1)j−k, since j − k is the number of nonzero ni’s.

Thus H−nQλ(t) is the coefficient of zn0 z
λ in

H(z0) · · ·H(zl) · 1 =
K1

K2
H(z1) · · ·H(z0) · · ·H(zl) · 1

=

∞∑
n1,...,nj=0

cn1,...,nj (t)

(
z1
z0

)n1

· · ·
(
zj
z0

)nj
H(z1) · · ·H(z0) · · ·H(zl) · 1.

For simplicity of notation, we again use m = n1 + · · ·nj and assume the convention that

ni = 0 if i > j. Then H−nQλ(t) is the sum over n1, . . . , nj ∈ Z≥0 of cn1,...nj (t) times the

coefficient of

z
n+n1+n2+···+nj
0 zλ1−n1

1 zλ2−n2
2 · · · zλj−nji z

λj+1

j+1 · · · z
λl
l = zn+m0

l∏
i=0

zλi−nii

inH(z1) · · ·H(z0) · · ·H(zl)·1. But this coefficient is itselfQ(λ1−n1,...,λj−nj ,n+n1+···+nj ,λj+1,...,λl)(t).

In other words:

H−nQλ(t) = coeffzn0 zλ [H(z0) · · ·H(zl) · 1]

= coeffzn0 zλ

 ∞∑
n1,...,nj=0

cn1,...,nj (t)

(
z1
z0

)n1

· · ·
(
zj
z0

)nj
H(z1) · · ·H(z0) · · ·H(zl) · 1


=

∞∑
n1,...,nj=0

cn1,...,nj (t) · coeff
zn+m0

∏l
i=0 z

λi+ni
i

[H(z1) · · ·H(z0) · · ·H(zl) · 1]

=
∞∑

n1,...,nj=0

cn1,...,nj (t)Q(λ1−n1,...,λj−nj ,n+n1+···+nj ,λj+1,...,λl)(t).

This completes the proof.

4.2 Restricting to Schur and Schur Q-functions

One important property of the Hall-Littlewood polynomial Qλ(t) is that its restriction to t = 0

is the Schur function sλ and its restriction to t = −1 is the Schur Q-function Qλ [7]. In other

words,

Qλ(0) = sλ, (4.1)

Qλ(−1) = Qλ. (4.2)

57

N. Jing has also shown in [5] that the corresponding vertex operators satisfy the same properties,

namely that the restriction of H−n to t = 0 is Bn and the restriction of H−n to t = −1 is Q−n.

In other words,

H−n|t=0 = Bn (4.3)

H−n|t=−1 = Y−n (4.4)

Using these four identities we can restrict the result of Theorem 4.1.1 to the case of Schur

and Schur Q-functions. We will now prove the main theorems of Chapters 2 and 3 (in particular

Theorems 2.3.1, 2.4.1, and 2.4.8 – which also appear in Chapter 3) as special cases of Theorem

4.1.1.

Theorem 4.2.1. For any partition λ,

B(t)sλ =
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) . (4.5)

Proof. From Theorem 4.1.1 we have that

H−nQλ(t) =

∞∑
n1,...,nj=0

cn1,...,nj (t)Q(λ1−n1,...,λj−nj ,n+n1+···+nj ,λj+1,...,λl)(t), (4.6)

where cn1,...,nj (t) = tn1+···+nj−j+2k(t2 − 1)j−k, for k equal to the number of zeros in the set

{n1, n2, . . . , nj}. Using the notation of the previous theorem, we let m = n1 + · · · + nj , so

cn1,...,nj (t) = tm−j+2k(t2 − 1)j−k.

Then cn1,...,nj (0) = 0 unless m− i+ 2k = 0, in which case cn1,...,nj (0) = (−1)j−k. But j − k
is the number of nonzero entries in the set {n1, . . . , nj}, so

m− j + k = m− (j − k) =
∑
i=1
ni 6=0

ni − (j − k) =
∑
i=1
ni 6=0

(ni − 1) ≥ 0.

So m − j + 2k = (m − j + k) + k where both (m − j + k) and k are greater than or equal

to zero. So in the case m − j + 2k = 0, we have m − j + k = 0 and k = 0. Since k = 0,

ni 6= 0 for all 1 ≤ i ≤ j and (−1)j−k = (−1)j . Since m − j + k = 0,
∑j

i=1(ni − 1) = 0, so

n1 = n2 = · · · = nj = 1. Thus cn1,...,nj (0) = 0 except for the single case n1 = n2 = · · · = nj = 1.

So when we restrict equation (4.6) to t = 0 we have

(H−nQλ(t))|t=0 =
∑∞

n1,...,nj=0 cn1,...,nj (0) Q(λ1−n1,...,λj−nj ,n+n1+···+nj ,λj+1,...,λl)(0)

H−n|t=0 (Qλ(0)) = c1,1,...,1(0) Q(λ1−1,...,λj−1,n+j,λj+1,...,λl)(0)

Bn(sλ) = (−1)j s(λ1−1,...,λj−1,n+j,λj+1,...,λl)

Bnsλ = (−1)|λ|−|λ
(i)|+i−1 sλ(i) ,

58

where i = n + j + 1 and λ(i) = (λ1 − 1, . . . , λj − 1, i − 1, λj+1, . . . , λl) as in Chapters 2 and 3.

Therefore

B(t)sλ =

(∑
n∈Z

Bnt
n

)
(sλ)

=
∑
n∈Z

tn(Bnsλ)

=
∑
i≥1

tn(−1)jsλ(i)

=
∑
i≥1

(−1)|λ|−|λ
(i)|+i−1t|λ

(i)|−|λ|sλ(i) ,

where j = |λ| − |λ(i)| + i − 1 and n = |λ(i)| − |λ|, since i ranges over all positive integers as n

ranges over Z as discussed in Theorem 2.3.1.

Theorem 4.2.2. For any strict partition λ = (λ1, λ2, . . . , λl),

Y (t)Qλ =
l∑

j=0

λj−1∑
n=λj+1+1

(−1)j tnQ(λ1,λ2,...,λj ,n,λj+1...,λl) (4.7)

Y (t)Qλ =
∑
i≥0

(−1)l+|λ|−|λ
[i]|+i t|λ

[i]|−|λ|Qλ[i] (4.8)

where we take the convention λ0 =∞ and λl+1 = −1.

Proof. From Theorem 4.1.1 we have that

H−nQλ(t) =

∞∑
n1,...,nj=0

cn1,...,nj (t)Q(λ1−n1,...,λj−nj ,n+n1+···+nj ,λj+1,...,λl)(t), (4.9)

where cn1,...,nj (t) = tn1+···+nj−j+2k(t2 − 1)j−k, for k equal to the number of zeros in the set

{n1, n2, . . . , nj}. Again using the notation of Theorem 4.1.1, we let m = n1 + · · · + nj , so

cn1,...,nj (t) = tm−j+2k(t2 − 1)j−k.

Then cn1,...,nj (−1) = (−1)m−j+2k
(
(−1)2 − 1

)j−k
, which is zero if j − k > 0. Hence we can

assume j − k = 0, so j = k. Thus n1 = n2 = · · · = nj = 0, so m = 0. So c0,0,...,0(−1) =

(−1)m−j+2k = (−1)0−j+2j = (−1)j . So when we restrict equation (4.9) to t = −1 we have

(H−nQλ(t))|t=−1 =
∑∞

n1,...,nj=0 cn1,...,nj (−1) Q(λ1−n1,...,λj−nj ,n+n1+···+nj ,λj+1,...,λl)(−1)

H−n|t=−1 (Qλ(−1)) = c0,0,...,0(−1) Q(λ1−0,...,λj−0,n+0+···+0,λj+1,...,λl)(0)

Y−n(Qλ) = (−1)j Q(λ1,...,λj ,n,λj+1,...,λl).

Now notice that since (Ym)2 = 0, this contributes exactly when n is not an element of the

partition λ, or when λj+1 + 1 ≤ n ≤ λj − 1 with the convention mentioned in the theorem.

59

Therefore

Y (t)Qλ =

(∑
n∈Z

Y−nt
n

)
(Qλ)

=
∑
n∈Z

tn(Y−nQλ)

=
l∑

j=0

λj−1∑
n=λj+1+1

(−1)j tnQ(λ1,λ2,...,λj ,n,λj+1...,λl).

So (4.7) holds. Then (4.8) holds by setting i = n− k as in Theorem 2.4.8.

Thus Theorem 4.1.1 is a generalization of Carrell and Goulden’s formula (4.5) and the Schur

Q-analog (4.7) or (4.8), which recaptures the original results as special cases at t = 0 and t = −1

respectively.

60

REFERENCES

[1] Carrell, S. R. and Goulden, I. P. “Symmetric functions, codes of partitions and the KP
hierarchy.” J. Algebraic Combin. 32 (2010): 211–226.

[2] Comét, S. “Über die Anwendung von Binärmodellen in der Theorie der Charaktere der
symmetrischen Gruppen.” Numer. Math. 1 (1959): 90–109.

[3] Date, E., M. Jimbo, A. Kuniba, T. Miwa, and M. Okado. “A new realization of the basic

representation of A
(1)
n .” Lett. Math. Phys. 17 (1989): no. 1, 51–54.

[4] Jing, N. “Symmetric polynomials and Uq(ŝl2).” Rep. Theory 4 (2000): 46–63.

[5] Jing, N. “Vertex operators and Hall-Littlewood symmetric functions.” Adv. Math. 87
(1991): 226–248.

[6] Jing, N. “Vertex operators, symmetric functions, and the spin group Γn.” J. Algebra 138
(1991): no. 2, 340–398.

[7] Macdonald, I. G. Symmetric functions and Hall polynomials. Clarendon Press, Oxford,
1995.

[8] Nekrasov, N. A. and A. Okounkov. “Seilberg-Witten theory and random partitions.” Prog.
in Math. 244, The Unity of Mathematics (2006).

[9] Okounkov, A. “Infinite wedge and random partitions.” Selecta Math. (N.S.) 7 (2001): no. 1,
57–81.

[10] Olsson, J. B. “Frobenius symbols for partitions and degrees of spin characters.” Math.
Scand. 61 (1987): 223–247.

[11] Sagan, B. E. The symmetric group: representations, combinatorial algorithms, and sym-
metric functions. Springer, New York, 1991.

[12] Schur, I. “Über die Darstellung der symmetrischen und der alternierenden Gruppe durch
gebrochene lineare Substitutionen.” J. Reine Angew. Math. 139 (1911): 155–250.

[13] Stanley, R. P. Enumerative combinatorics, Vol. 2. Cambridge University Press, Cambridge,
1999.

[14] Stembridge, J. R. “Shifted tableaux and the projective representations of symmetric
groups.” Adv. Math. 74 (1989): no. 1, 87–134.

[15] Zelevinsky, A. Representations of finite classical groups, A Hopf algebra approach. LNM
869, New York, 1981.

61

	List of Figures
	Introduction
	History of Codes
	Preliminaries

	Bernstein Operators and Analogs
	Introduction
	Codes of Partitions
	Bernstein Operators
	Schur Q-functions
	Littlewood-Richardson Rule

	Equivalence Relations on Codes
	Introduction
	Partitions and Code Models
	A Relation on Codes
	Codes of Compositions
	Schur Functions Indexed by Compositions
	Schur Q-functions
	Shifted Codes
	Reverse Shifted Codes
	The Schur – Schur Q Correspondence

	Hall-Littlewood Polynomials
	Hall-Littlewood Analog
	Restricting to Schur and Schur Q-functions

	References

