
ABSTRACT

WILSON, EVAN ANDREW. Root Multiplicities of the Indefinite Type Kac-Moody
Algebra HD

(1)
n . (Under the direction of Kailash C. Misra.)

In 1968, Victor Kac and Robert Moody independently introduced a class of Lie alge-

bras called Kac-Moody algebras, to generalize the concept of finite dimensional semisim-

ple Lie algebras to the infinite dimensional case. There are many applications of Kac-

Moody algebras in physics and other areas of mathematics.

Each Kac-Moody algebra is determined by a so-called generalized Cartan matrix

(GCM). Every indecomposable symmetrizable GCM is one of three kinds: finite, affine,

or indeterminate type. A finite type Kac-Moody algebras is a finite dimensional simple

Lie algebra, the other types are infinite dimensional.

For indefinite type Kac-Moody algebras an important problem is determining its root

multiplicities. For finite and affine type Kac-Moody algebras the root multiplicities are

known, but not for a single indefinite type Kac-Moody algebra is this problem completely

solved, although certain root multiplicities are known.

In this thesis, we study the root multiplicities of the indefinite type Kac-Moody

algebra HD
(1)
n . We use a construction that realizes g = HD

(1)
n as a Z-graded Lie algebra

with local part g−1 ⊕ g0 ⊕ g1 where g0 is the affine type Kac-Moody algebra D
(1)
n . Using

this construction, Kang has given a formula for root multiplicities in terms of weight

multiplicities of g0-modules. The theory of crystal bases allows us to compute these

weight multiplicities. We derive a formula for root multiplicities of the form −α−1 − kδ
and −2α−1 − 3δ. In particular, we find that they are polynomials in n. We show that

mult(−kα−1− lδ) = 0 if k > l and n if k = l. We also give tables of the root multiplicities

of the roots −2α−1 − kδ and −2α−1 − α0 − kδ of HD
(1)
4 for various k that verifies a

conjecture of Frenkel that mult(α) ≤ pn
(

1− (α|α)
2

)
for this case (although it has been

disproven for type HC
(1)
n ). We also give a conjecture regarding a generating function for

degree 2 root multiplicities of HD
(1)
4 .
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Bender: Ey, bro bot, what’s your serial number?

Flexo: 3370318.

Bender: Nooooo waaaaay! Mine’s 2716057!

Flexo: BAAAHAHAHA!

Bender: Haw haw haw haw!

Fry: Heh heh. I don’t get it.

Bender: [condescendingly] We’re both expressable as the sum of two cubes!

Flexo: HWOOOOOOO!
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Chapter 1

Introduction

In 1968, Victor Kac ([15]) and Robert Moody ([33]) independently introduced a class of

Lie algebras called Kac-Moody algebras, to generalize the concept of finite dimensional

semisimple Lie algebras to the infinite dimensional case. Since then, Kac-Moody alge-

bras have grown into an important field with applications in physics and many areas of

mathematics. For example, some Kac-Moody algebras are associated with hyperbolic tes-

selations of the Poincaré disk (see Figure 1.1 for an example). Each Kac-Moody algebra

is determined by a matrix called a generalized Cartan matrix (GCM). Indecomposable,

symmetrizable GCMs are classified into three kinds: finite, affine, and indefinite types,

and their corresponding Kac-Moody algebras are classifed in the same way. Let g be a

Kac-Moody algebra. The subspace gα := {xα|[h, xα] = 〈h, xα〉xα, h ∈ h}, for α ∈ Q, is

called the root space of g corresponding to the root α if α 6= 0 and dim(gα) 6= 0 where h

is a Cartan subalgebra of g and Q is the root lattice. If α is a root of g then dim(gα) <∞
(see [16]) and we define dim(gα) to be the multiplicity of α, denoted mult(α). For a finite

type Kac-Moody algebra, mult(α) = 1 for all roots α. If g is affine type, then the root

multiplicities are also known (see [16]). It is an open and difficult problem to compute the

root multiplicities of indefinite type Kac-Moody algebras. This problem has been studied

in [8] and [20] for type HA
(1)
1 , [26] and [12] for type HA

(1)
n , [28] for type HC

(1)
n , [4] for

HX
(1)
n , X = A,B,C,D, and [18] for E10 = HE

(1)
8 . However, there is not a single indefinite

type Kac-Moody algebra for which the root multiplicities are known completely.

In this thesis, we study the root multiplicities of the indefinite Kac-Moody algebra
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HD
(1)
n , n ≥ 4, which has the GCM:

2 −1 0 0 0 0 · · · 0 0 0

−1 2 0 −1 0 0 · · · 0 0 0

0 0 2 −1 0 0 · · · 0 0 0

0 −1 −1 2 −1 0 · · · 0 0 0

0 0 0 −1 2 −1 · · · 0 0 0

· · · · · · · · · ·
0 0 0 0 0 0 · · · 2 −1 −1

0 0 0 0 0 0 · · · −1 2 0

0 0 0 0 0 0 · · · −1 0 2


and the index set I = {−1, 0, 1, 2, . . . , n − 2, n − 1, n}. By restricting to the index set

I\{−1} we see that the affine type Kac-Moody algebra D
(1)
n is a subalgebra of HD

(1)
n .

In chapter 3 we review the following construction given in [3], (see also [8] and [15]).

Let g0 be a Lie algebra and let V and V ′ be two g0-modules. Now, let ψ : V ⊗V ′ → g0 be

a g0-module homomorphism. We construct the minimal graded Lie algebra g =
⊕

i∈Z gi

such that g−1 = V, g1 = V ′, and no ideal intersects g−1 ⊕ g0 ⊕ g1 trivially. We remark

that g is not always a Kac-Moody algebra, unless we set certain conditions on g0, V, V
′,

and ψ. If g0 = D
(1)
n , V = V (Λ0) is the basic D

(1)
n -module, V ′ = V ∗(Λ0) is its finite

dual, and ψ : V (Λ0) ⊗ V ∗(Λ0) → D
(1)
n is the D

(1)
n - module homomorphism such that

ψ(v⊗w∗) = −
∑

i∈I〈w∗, xi ·v〉−2〈w∗, v〉c, where {xi|i ∈ I} is a basis of D
(1)
n and c spans

the one-dimensional center of D
(1)
n , then g ∼= HD

(1)
n .

In chapter 4 we review several results from the homology theory of Lie algebra mod-

ules, and a formula of Kang ([19],[22]) that gives root multiplicities in terms of weight

multiplicities of certain g0-modules. To use this formula, one needs to find the partitions

of the desired root, and compute certain weight multiplicities for D
(1)
n -modules. To do

this, we use the theory of quantum groups and crystal bases.

In chapter 5 we review the concepts of quantum groups and crystal bases, and the path

realization of D
(1)
n -modules. In 1985 Drinfel′d ([7]) and Jimbo ([14]) introduced quantum

groups as “q-deformations” of universal enveloping algebras of (symmetrizable) Kac-

Moody algebras. In 1988, Lusztig ([30]) showed that for generic deformation parameter

“q” the representation theory of the quantum group is parallel to that of the underlying

Kac-Moody algebra. Around 1990, Kashiwara ([17]) and Lusztig ([31]) introduced the

2



notion of a crystal base, which is basis of V q(λ) in the “q = 0” limit. In [23] and [24] the

notion of perfect crystals was introduced to realize the crystal bases of affine algebras.

The set B(λ) is called the crystal of V q(λ), which can be realized as a semi-infinite

tensor product P(λ) = · · · ⊗ B ⊗ B. Here B is a perfect crystal of level l = 〈λ, c〉. The

elements of P(λ) consist of semi-infinite sequences (. . . , p1, p0) satisfying the condition

that pi = bi, i � 0 for a certain path bλ = (. . . , b1, b0) ∈ P(λ), called the ground state

path, corresponding to the highest weight vector. These paths have some applications in

mathematical physics (see [32] for example).

In chapter 6, we use the results of previous chapters to compute the multiplicities of

certain HD
(1)
n roots. In particular, we consider roots of the form −kα−1 − lδ. A general

result is that mult(−kα−1− lδ) = 0 if k > l and mult(−kα−1−kδ) = n. Then we consider

roots of degree 1, and 2, where the degree of the root −kα−1 − lδ is defined to be the

integer k. Degree 1 root multiplicities are equal to the corresponding weight multiplicities,

by Kang’s formula. We give an explicit formula for these multiplicities based on a well-

known generating series as well as several examples for small l. In particular, we observe

that these are all polynomials in n of degree l. In the next section, we consider the

degree 2 root −2α−1 − 3δ and compute its multiplicity polynomial. Finally, we discuss

a conjecture of Frenkel that states that for a root α of a hyperbolic Kac-Moody algebra

of rank n + 2, mult(α) ≤ pn
(
1− (α|α)

2

)
, which has been shown not to hold in the HC

(1)
2

case in [28], [34]. We give a table of some root multiplicities of HD
(1)
4 based on Peterson’s

recurrent formula. However, there is no observed contradiction with Frenkel’s conjecture

in our case. We also conjecture that the multiplicity of any degree 2 root is determined

by the integer 1 − (α|α)
2

. This leads to a conjecture regarding a generating function for

the degree 2 roots of HD
(1)
4 .

3



Figure 1.1: Example of a hyperbolic tesselation.
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Chapter 2

Kac-Moody Algebras

In this chapter, we review Lie algebras, Kac-Moody algebras, and their representations.

We let k = C denote the field of complex numbers.

2.1 Lie algebras

Definition 1. A Lie algebra is a vector space g over k together with a binary operation

called the bracket [·, ·] : g× g→ g which satisfies the following properties:

1. [cx+ y, z] = c[x, z] + [y, z], and [z, cx+ y] = c[z, x] + [z, y] for all x, y, z ∈ g, c ∈ k,

2. [x, x] = 0, for all x ∈ g,

3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all x, y, z ∈ g.

Remark: In a Lie algebra,

[x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] by Property (1)

= [x, y] + [y, x] by Property (2).

But [x+ y, x+ y] = 0 by Property (2) of the definition of Lie algebra. Therefore, [x, y] =

−[y, x].

Remark: Property (3) of the definition of a Lie algebra is called the Jacobi Identity.

It can also be written in the following equivalent form:

adx([y, z]) = [adx(y), z] + [y, adx(z)]

5



where adx(y) := [x, y] is called the adjoint map.

Example: Let sl(2, k) =

{ (
a b

c d

)
a, b, c, d ∈ k, b+ d = 0

}
and define [A,B] =

AB − BA for all A,B ∈ sl(2, k). Under this bracket, sl(2, k) is a Lie algebra. A basis of

sl(2, k) is {
e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)}
.

The bracket is given on the basis elements by

[e, f ] = h, [h, f ] = −2f, [h, e] = 2e.

Example: Let A be an associative algebra, that is, a vector space over k equipped

with an associative bilinear operation · : A × A → A, (x, y) 7→ x · y. Then A is a Lie

algebra with bracket given by [x, y] = x · y − y · x, for x, y ∈ A.
Example: Let V be a vector space over k. Then the vector space End(V ) of invertible

linear transformations from V to itself is an associative algebra with product given by

function composition. The corresponding Lie algebra is denoted gl(V ).

The notions of homomorphism and isomorphism of Lie algebras are fundamental to

the study of their structure.

Definition 2. A homomorphism from a Lie algebra g1 to a Lie algebra g2 is a map

φ : g1 → g2 satisfying the following properties:

1. φ(cx+ y) = cφ(x) + φ(y), x, y ∈ g1, c ∈ k,

2. φ([x, y]) = [φ(x), φ(y)].

A homomorphism of Lie algebras is called an isomorphism if it is one-to-one and onto.

An isomorphism from a Lie algebra to itself is called an automorphism. An involution

is an automorphism ω satisfying ω2 = id where id denotes the identity map.

Thus, a homomorphism of Lie algebras is a map preserving both the linear structure

and the bracket operation of a Lie algebra.

Example: The adjoint homorphism ad : g → gl(g) given by ad(x) = adx is a Lie

algebra homomorphism.

When studying a Lie algebra, it is often important to understand its ideals.

6



Definition 3. An ideal of a Lie algebra g is a subspace i of g satisfying

[x, i] ∈ i

for all x ∈ g, i ∈ i.

Example: Let V be a vector space over k. Then the subspace spank{id} is an ideal of

gl(V ).

An important construction in Lie algebras is that of a quotient Lie algebra.

Definition 4. Let g be a Lie algebra over k and i an ideal of g. Then the quotient Lie

algebra is defined to be the quotient vector space:

g/i = {x+ i|x ∈ g}

with the bracket

[x+ i, y + i] = [x, y] + i.

In fact, this bracket is well-defined and gives the structure of a Lie algebra to g/i (see

[10]).

Another useful concept is that of a (universal) enveloping algebra.

Definition 5.

1. Let g be a Lie algebra. An enveloping algebra of g is a pair (A, ι) where A is

an associative algebra, considered as a Lie algebra with commutator bracket, and

ι : g→ A is a Lie algebra homomorphism.

2. The universal enveloping algebra (U(g), ι) of g is the unique enveloping algebra of

g satisfying the following universal property: if (A, κ) is another enveloping algebra

of g then there exists a unique homomorphism of algebras φ : U(g)→ A such that

φ ◦ ι = κ, alternately, such that the following diagram commutes:

g

ι
U(g)

κ A

!φ

7



The uniqueness of U(g), provided that it exists, follows from a standard argument.

To see that it exists, consider the tensor algebra T (g) :=
⊕∞

i=0 g
⊗i, and let I be the

two-sided ideal of T (g) generated by the set {x ⊗ y − y ⊗ x − [x, y]|x, y ∈ g}. Then

the set U(g) = T (g)/I, together with the map ι : g → U(g) given by composing the

inclusion map of g into T (g) with the quotient map, satisfies the conditions for a universal

enveloping algebra.

From the above construction, it is not clear whether g is mapped injectively into U(g)

by ι. The Poincaré-Birkhoff-Witt theorem stated below makes it clear that ι is in fact

injective, and gives a basis of U(g) as well.

Theorem 1 (see [10]).

1. The map ι : g→ U(g) is injective.

2. Let I be a well-ordered index set and {xi|i ∈ I} be an ordered basis of g. Then the

set {xi1xi2 · · ·xik |i1 < i2 < · · · < ik} is a basis of U(g). Here we understand the

empty product to be 1.

2.2 Kac-Moody Algebras

In this section, we define a certain class of possibly infinite dimensional Lie algebras called

Kac-Moody algebras and give the basic results and definitions that we will use regarding

them.

Every Kac-Moody algebra is determined by a generalized Cartan matrix (GCM),

which is a matrix A = (aij)i,j∈I , where I is a finite index set, satisfying the following

conditions:

1. aii = 2,

2. aij ≤ 0 if i 6= j,

3. aij < 0 if and only if aji < 0.

A GCM is called symmetrizable if there exists a diagonal matrix D = diag(si)i∈I such that

si ∈ Q>0, i ∈ I and DA is a symmetric matrix. The matrix A is called indecomposable if

for every pair of subsets I1, I2 ⊂ I with I1 ∪ I2 = I, there exists some i ∈ I1 and j ∈ I2

such that aij 6= 0. We will consider only symmetrizable GCMs.

8



For a GCM A with index set I, let I ′ be a subset of I of cardinality corank(A) and

define h to be the vector space over C generated by the set {hi, dj|i ∈ I, j ∈ I ′}. For

i ∈ I, we define αi ∈ h∗ to be the linear functional satisfying 〈αi, hj〉 = aij for j ∈ I, and

〈αi, dj〉 = δij for j ∈ I ′. We define Π = {αi|i ∈ I} to be the set of simple roots of g. The

set Π∨ := {hi|i ∈ I} is defined to be the set of simple co-roots.

Definition 6. Let A = (aij)i,j∈I be a (symmetrizable) GCM and Π,Π∨ given sets of

simple roots, co-roots. The Kac-Moody algebra g(A) is the Lie algebra over C generated

by the elements ei, fi, i ∈ I, and h satisfying the following relations:

1. [h, h′] = 0, h, h′ ∈ h

2. [ei, fj] = δijhi, i, j ∈ I

3. [h, ei] = αi(h)ei, i ∈ I, h ∈ h

4. [h, fi] = −αi(h)fi, i ∈ I, h ∈ h

5. (adei)
1−aij(ej) = 0, (adfi)

1−aij(fj) = 0, for i 6= j ∈ I.

Where there is no confusion about A, we write g for g(A).

Relations (1)-(4) of Definition 6 are called the Chevalley relations and the relations

in (5) are called the Serre relations. We have the following alternate characterization of

Kac-Moody algebras:

Theorem 2 (see [16]). Let A be a (symmetrizable) GCM and g(A) be the Kac-Moody al-

gebra determined by A. Then g(A) = ĝ/i where ĝ is the Lie algebra generated by {ei, fi, h}
satisfying relations (1)-(4) of Definition 6 and i is the maximal ideal of ĝ intersecting h

trivially.

The subalgebra h of g is called a Cartan subalgebra of g. Define Q := spanZ(Π) to be

the root lattice, Q+ := spanZ>0
(Π) to be the positive root lattice, and Q− := spanZ<0

(Π)

to be the negative root lattice of g. Finally, define gα := {xα|[h, xα] = 〈h, xα〉xα, h ∈ h}
for α ∈ Q, to be the root space of g corresponding to the root α if α 6= 0 and dim(gα) 6= 0.

A root α ∈ Q+ (resp. Q−) is called a positive (resp. negative) root. The set of roots of

a Kac-Moody algebra is denoted by ∆ and the set of positive (resp. negative) roots is

denoted by ∆+ (resp. ∆−). If α is a root of g then dim(gα) <∞ (see [16]) and we define

dim(gα) to be the multiplicity of α, denoted mult(α). We have the following result.
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Proposition 1 (see [16]).

1. (Root space decomposition). g =
⊕

α∈∆ gα.

2. (Triangular decomposition). Let n+ (resp. n−) be the subalgebra of g generated by

ei, i ∈ I (resp. fi, i ∈ I). Then we have the following:

g = n− ⊕ h⊕ n+,

and for α ∈ ∆+ we have g±α ⊂ n±.

3. (Chevalley involution). There exists an involution ω of g satisfying ω(ei) = −fi
and ω(h) = −h for h ∈ h.

Remark: From the definition of ω it is clear that ω(fi) = −ei.
If α ∈ ∆+ is a root of g then ω(gα) = g−α, so we see that mult(α) = mult(−α). This

fact is important for computing the root multiplicities of Kac-Moody algebras, since by

the above proposition every root is either in ∆+ or ∆−.

Let A = (aij)i,j∈I be a (symmetrizable) GCM and fix a matrix D = diag(si)i∈I , si ∈
Q>0 such that DA is symmetric. Define the following symmetric bilinear form on h:

(h|hi) = 〈αi, h〉si for h ∈ h, i ∈ I,

(di|dj) = 0 for i, j ∈ I ′.

Then, it is possible to extend (·|·) to a symmetric bilinear form on g such that the

following conditions are satisfied (see [16]):

1. (·|·) is associative, that is ([x, y]|z) = (x|[y, z]), x, y, z ∈ g,

2. (·|·) is non-degenerate on g and h,

3. (gα|gβ) = 0 for all roots α and β unless α + β = 0

4. gα is non-degererately paired with g−α under (·|·) for all roots α.

There is also a corresponding bilinear form, also denoted (·|·) : h∗ × h∗ → C. We start

by defining the map ν : h → h∗ to be the linear map satisfying ν(h)(h′) = (h|h′).
This map is one-to-one, since (·|·) is non-degenerate on h, and therefore bijective since

dim(h) = dim(h∗). We then define the form (·|·) on h∗ by (λ|µ) = (ν−1(λ)|ν−1(µ)).
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For i ∈ I, define a linear transformation ri : h∗ → h∗ by ri(λ) = λ − 〈λ, hi〉αi.
Then ri is its own inverse, hence is an element of the group GL(h∗) of invertible linear

transformations of h∗. We define the Weyl group of g to be the subgroup W of GL(h∗)

generated by the set {ri|i ∈ I}. The length of w ∈ W denoted `(w) is the least positive

integer t such that w = ri1ri2 · · · rit for some i1, i2, . . . it ∈ I. A root α is called a real

root if there exists w ∈ W such that w(αi) = α for some i ∈ I. Otherwise it is called an

imaginary root. If α is a real root then mult(α) = 1 (see [16]). However, the multiplicities

of imaginary roots are not necessarily equal to 1, so we focus on these roots.

Let I be an index set. For a column vector v = (vi)i∈I we say v ≥ 0 if vi ≥ 0, i ∈ I
and similarly v > 0 if vi > 0, i ∈ I. Then we have the following classification of GCMs:

Theorem 3 (see [16]). Let A be an indecomposable GCM. Then exactly one of the

following three conditions is satisfied for both A and AT :

(F) det(A) 6= 0, there exists u > 0 such that Au > 0, and Av ≥ 0 implies v > 0 or

v = 0,

(A) corank(A) = 1, there exists u > 0 such that Au = 0, and Av ≥ 0 implies Av = 0,

(I) there exists u > 0 such that Au < 0, and Av ≥ 0 and v ≥ 0 imply v = 0.

If A is an indecomposable GCM satisfying condition (F) (resp. (A), (I)) above, we

call g(A) a finite (resp. affine, indeterminate) type Kac-Moody algebra. If g is a finite

type Kac-Moody algebra, then g is a finite-dimensional simple Lie algebra and all its

roots are real, so mult(α) = 1 for all roots α.

Let g be an affine type Kac-Moody algebra with index set I = {0, 1, . . . , n}. There

exists a vector u = (a0, a1, . . . , an)T > 0 such that Au = 0, ai ∈ Z>0, gcd(a0, a1, . . . , an) =

1. The element δ =
∑n

i=0 aiαi is called the canonical null root. Dually, there exists a vector

v = (a∨0 , a
∨
1 . . . , a

∨
n)T such that ATv = 0, a∨i ∈ Z>0, gcd(a∨0 , a

∨
1 , . . . , a

∨
n) = 1. The element

c =
∑n

i=0 a
∨
i hi is called the canonical central element, and satisfies [c, x] = 0 for all

x ∈ g. In this case, corank(A) = 1, so we take the subset I ′ = {0} ⊂ I and put d = d0.

Furthermore 1,

mult(α) =

{
1, α real,

n, α imaginary.

1Strictly this is only true if g is an untwisted affine type Kac-Moody algebra (see [16]), which is the
only kind we consider.
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2.3 Modules and Representations of Lie algebras

We now review the notions of representations and modules of Lie algebras, with a special

focus on the results for Kac-Moody algebras which we will use later in the construction

of HD
(1)
n and in computing its root multiplicities.

Definition 7. Let g be a Lie algebra.

1. A representation of g on a vector space V over k is a Lie algebra homomorphism

φ : g→ gl(V ).

2. A g-module is a vector space V over k together with an operation · : g × V → V

satisfying the following properties:

(a) (cx+ y) · v = c(x · v) + y · v for c ∈ k, x, y ∈ g, v ∈ V,

(b) x · (cv + w) = c(x · v) + x · w for c ∈ k, x ∈ g, v, w ∈ V,

(c) x · (y · v)− y · (x · v) = [x, y] · v for x, y ∈ g, v ∈ V.

A g-module V is equivalent to a representation φ of g on V by the following identifi-

cation: for x ∈ g, v ∈ V,
x · v ←→ φ(x)(v).

Let V be a g-module. The action of g on V extends to an action of U(g) on V by defining,

for a degree k element x1x2 · · ·xk ∈ U(g), and v ∈ V,

(x1x2 · · ·xk) · v := x1 · (x2 · (· · · (xk · v) · · · )).

Under the above identification, V is a U(g)-module. Let V be a g-module. If W is a

subspace of V such that x ·W ⊂ W then W is called a g-submodule of V . V is called

irreducible if it has no submodules other than {0} and V . We now give some examples

of representations and g-modules.

Example: As we have seen, the adjoint map ad : g→ gl(g) is a homomorphism of Lie

algebras. Therefore, it is a representation of g on itself. In this context, it is called the

adjoint representation.
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Example: Let V = spanC{v0, v1, . . . , vk} be a vector space and define an action of

sl(2,C) on V by:

h · vj = (k − 2j)vj

f · vj = (j + 1)vj+1

e · vj = (k − j + 1)vj−1

where vj is understood to be 0 if j < 0 or j > k. Then V is an sl(2,C)-module.

Example: Let V,W be g-modules. Then V ⊗ W can be made into a g-module by

defining x · (v ⊗ w) = x · v ⊗ w + v ⊗ x · w.
A g-module homomorphism, which we define below, is a structure preserving map

between two g-modules.

Definition 8. Let V,W be two g-modules. A g-module homomorphism from V to W is

a linear map φ : V → W satisfying:

φ(x · v) = x · φ(v),

for all x ∈ g, v ∈ V.

Now we consider the case where g is a Kac-Moody algebra. Analogously to how we

have defined root spaces, for µ ∈ h∗ we define the set Vλ := {v ∈ V |h · v = 〈µ, h〉v, h ∈ h}
to be the weight space of V of weight λ and dim(Vλ) to be the (weight) multiplicity of µ

denoted multV (µ). If all the weight spaces of a g-module V are finite dimensional, then

we define the character of V to be the formal sum:

ch(V ) =
∑
µ∈h∗

multV (µ)e(µ),

where e(·) is the formal exponential satisfying e(λ+ µ) = e(λ) · e(µ).

A g-module V is called a highest weight module with highest weight λ if and only if

it satisfies the following:

1. There exists 0 6= vλ ∈ V such that h · vλ = 〈λ, h〉vλ for all h ∈ h,

2. n+ · vλ = {0},

3. U(g) · vλ = V .
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We define a partial ordering on h∗ by λ < µ if and only if λ − µ ∈ Q−. Any highest

weight g-module V of highest weight λ satisfies the following properties (see [16]):

1. (Weight Space Decomposition). V =
⊕

µ≤λ Vµ,

2. Vλ = Cvλ,

3. Vµ <∞, µ ∈ h∗.

For every λ ∈ h∗ there exists a unique irreducible highest weight module with highest

weight λ (see [16]), which we denote by V (λ). Define P := {λ ∈ h∗|〈λ, hi〉, 〈λ, dj〉 ∈ Z, i ∈
I, j ∈ I ′} to be the weight lattice, P∨ := spanZ({hi|i ∈ I}∪{dj|j ∈ I ′}) to be the coweight

lattice and P+ := {λ ∈ P |〈λ, hi〉 ∈ Z≥0, i ∈ I} to be the positive weight lattice. Elements

of P are called integral weights and elements of P+ are called dominant integral weights.

If g is an affine type Kac-Moody algebra, then P = spanZ({Λi|i ∈ I} ∪ {a−1
0 δ}), where

Λi ∈ h∗ is defined by Λi(hj) = δij, i ∈ I, Λi(d) = 0. The set of all Λi is called the set of

fundamental weights. For λ ∈ P+, we define the integer l = 〈λ, c〉 to be the level of λ.

For l ∈ Z≥0 we define the set P+
l := {λ ∈ P+|〈λ, c〉 = l}.

A g-module is called integrable if ei, fi act locally nilpotently on V for all i ∈ I. Then

we have the following result.

Theorem 4 (see [16]). The irreducible highest weight g-module V (λ) is integrable if and

only if λ ∈ P+.
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2.4 The Indefinite Type Kac-Moody Algebra HD
(1)
n

and the Affine Type Kac-Moody algebra D
(1)
n

The Kac-Moody algebra HD
(1)
n , n ≥ 4 is determined by the following GCM:

A = (aij)
n
i,j=−1 =



2 −1 0 0 0 0 · · · 0 0 0

−1 2 0 −1 0 0 · · · 0 0 0

0 0 2 −1 0 0 · · · 0 0 0

0 −1 −1 2 −1 0 · · · 0 0 0

0 0 0 −1 2 −1 · · · 0 0 0

· · · · · · · · · ·
0 0 0 0 0 0 · · · 2 −1 −1

0 0 0 0 0 0 · · · −1 2 0

0 0 0 0 0 0 · · · −1 0 2


(2.1)

It is an indefinite type Kac-Moody algebra that conatins as a subalgebra the affine type

Kac-Moody algebra D
(1)
n by deleting the index −1. The canonical null root of D

(1)
n is

δ = α0 + α1 + 2α2 + · · · + 2αn−2 + αn−1 + αn and the canonical central element is

c = h0 + h1 + 2h2 + · · · + 2hn−2 + hn−1 + hn. In the next chapter, we will describe an

explicit construction of HD
(1)
n in terms of D

(1)
n -modules.
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Chapter 3

Construction of HD
(1)
n

The construction of the algebra HD
(1)
n has three components:

1. The Lie algebra g0 = D
(1)
n

2. The g0-modules V (Λ0), V ∗(Λ0).

3. A g0-module homomorphism ψ : V ∗(Λ0)⊗ V (Λ0)→ g0.

With these components, we construct the graded Lie algebra g̃, and g as a quotient of g̃.

We then show that g is isomorphic to HD
(1)
n .

We introduce the following notation:

• S = {0, 1, . . . , n}: The index set of g0 = D
(1)
n .

• ∆S : The set of roots of g0.

• ∆±S : The set of positive (resp. negative) roots of g0.

• ∆±(S) : ∆±\∆±S .

• W (S) : {w ∈ W |w∆− ∩∆+ ⊆ ∆+(S)}.

3.1 The Homomorphism ψ

Let g0 = D
(1)
n . Let h0 = spanC{h0, h1, . . . , hn, d} be the Cartan subalgebra of g0. Let

V (Λ0) be the irreducible highest weight g0-module of highest weight Λ0. The restricted
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dual V ∗(Λ0) of V (λ) is defined to be the subset
⊕

µ∈h∗0
(V (Λ0)µ)∗ of V (Λ0)∗. Then V ∗(Λ0)

is a g0-module under the action

〈x · w∗, v〉 = −〈w∗, x · v〉, w∗ ∈ V ∗(Λ0) (3.1)

In fact, it is a lowest weight module, with lowest weight vector v∗0, because 〈fi · v∗0, v〉 =

−〈v∗0, fi · v〉 is only non-zero if fi · v is proportional to v0. In that case, wt(v) = Λ0 + αi,

which is not a weight of V (Λ0). Hence v = 0, which is a contradiction since 〈fi ·v∗0, 0〉 = 0.

Therefore, fi · v∗0 = 0. Similarly, we can see that U(g0) · v∗0 = V ∗(Λ0) and h · v∗0 =

−Λ0(h)v∗0, h ∈ h0.

In order to define ψ : V ∗(Λ0) ⊗ V (Λ0) → g0, we will make use of the symmetric,

associative bilinear form (·|·) on g0 which has the following properties:

1. (·|·) is non-degenerate on g0

2. ((g0)α, |(g0)β) = 0 for all roots α and β unless α + β = 0

3. (g0)α is non-degererately paired with (g0)−α under (·|·) for all roots α.

For α ∈ ∆+
S , let {yα,1, yα,2, . . . , yα,l} be a basis of (g0)α and choose a basis

{y−α,1, y−α,2, . . . , y−α,l}

of (g0)−α such that (yα,i|y−α,j) = δij. Then, the set Bα := {xα,i = 1√
±2

(yα,i ± y−α,i)|i =

1, 2, . . . , l} is an orthonormal basis of (g0)α⊕ (g0)−α by properties (2) and (3) above. Set

B0 =
{
xi, x0 =

1√
2

(c+ d), x−1 =
1√
−2

(c− d)
∣∣i = 1, 2, . . . , n

}
,

where {xi|i = 1, 2, . . . , n} is an orthonormal basis of spanC{h1, h2, . . . , hn}. Then B =⋃
α∈∆+

S
Bα ∪B0 is an orthonormal basis of g0. Let I be an index set of B.

The structure coefficients of g0 with respect to B are given by:

[xi, xj] =
∑
t∈I

cti,jxt (3.2)
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We calculate:

([xi, xj]|xk) =
(∑
t∈I

cti,jxt|xk
)

(3.3)

=
∑
t∈I

cti,j(xt|xk)

= cki,j

Using associativity of the form we get:

([xi, xj]|xk) = (xi|[xj, xk]) =
(
xi
∣∣∑
t∈I

ctj,kxt
)

(3.4)

=
∑
t∈I

ctj,k(xi|xt)

= cij,k

Therefore

cki,j = cij,k (3.5)

for all i, j, k ∈ I.

Now we define the map ψ : V ∗(Λ0)⊗ V (Λ0)→ g0 by defining, for every w∗ ∈ V ∗(Λ0)

and v ∈ V (Λ0)

ψ(w∗ ⊗ v) = −
∑
i∈I

〈w∗, xi · v〉xi − 2〈w∗, v〉c

We wish to show that ψ is a g0-module homomorphism from V ∗(Λ0) ⊗ V (Λ0) to g0

considered as a module under the adjoint action. Let xi ∈ B,w∗ ∈ V ∗(Λ0), v ∈ V (Λ0) be

18



given. Then

xj · ψ(w∗ ⊗ v) = xj ·
(
−
∑
i∈I

〈w∗, xi · v〉xi − 2〈w∗, v〉c
)

= adxj
(
−
∑
i∈I

〈w∗, xi · v〉xi − 2〈w∗, v〉c
)

= −
∑
i∈I

〈w∗, xi · v〉adxj(xi)− 2〈w∗, v〉adxj(c)

= −
∑
i∈I

〈w∗, xi · v〉[xj, xi]

=
∑
i∈I

〈w∗, xi · v〉[xi, xj]

=
∑
i,k∈I

〈w∗, xi · v〉cki,jxk.

On the other hand,

ψ(xj · (w∗ ⊗ v)) = ψ(xj · w∗ ⊗ v + w∗ ⊗ xj · v)

= −
∑
i∈I

〈xj · w∗, xi · v〉xi − 2〈xj · w∗, v〉c

−
∑
i∈I

〈w∗, (xi · (xj · v))〉xi − 2〈w∗, xj · v〉c

=
∑
i∈I

〈w∗, xj · (xi · v))〉xi + 2〈w∗, xj · v〉c

−
∑
i∈I

〈w∗, xi · (xj · v))〉xi − 2〈w∗, xj · v〉c

=
∑
i∈I

〈w∗, [xj, xi] · v〉xi

=
∑
i∈I

〈w∗,
(∑
k∈I

ckj,ixk
)
· v〉xi

=
∑
i,k∈I

〈w∗, xk · v〉ckj,ixi

=
∑
i,k∈I

〈w∗, xi · v〉cij,kxk.

Therefore,

xj · ψ(w∗ ⊗ v) = ψ(xj · (w∗ ⊗ v)) (3.6)
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which proves that ψ is a g0-module homomorphism.

3.2 The Construction of g̃

Let g̃1 = V (Λ0), g̃−1 = V ∗(Λ0), g̃0 = g0, and g̃− and g̃+ be the free Lie algebras generated

by g̃−1 and g̃1 respectively.

Let g̃±i = spanC{[y1, [y2, [. . . , [yi−1, yi] . . . ]]]|y1, y2, . . . , yi ∈ g̃±1}, i > 0. We define the

map

[·, ·] : (g̃−1 ⊕ g̃0 ⊕ g̃1)⊗ (g̃−1 ⊕ g̃0 ⊕ g̃1)→ g̃−2 ⊕ g̃−1 ⊕ g̃0 ⊕ g̃1 ⊕ g̃2

for w∗ ∈ g̃−1, v ∈ g̃1, x ∈ g̃0 by the following:

[w∗, v] = ψ(w∗ ⊗ v)

[x, v] = x · v

[x,w∗] = x · w∗.

The map [·, ·] is bilinear, and satisfies the Jacobi identity:

[x, [w∗, v]] = x · ψ(w∗ ⊗ v) (3.7)

= ψ(x · (w∗ ⊗ v))

= ψ(x · w∗ ⊗ v + w∗ ⊗ x · v)

= ψ(x · w∗ ⊗ v) + ψ(w∗ ⊗ x · v)

= [[x,w∗] , v] + [w∗, [x, v]] .

We then extend the bracket operation defined above to the vector space g̃−⊕ g̃0⊕ g̃+

by first defining inductively for each x ∈ g̃0 a linear map adx : gi →
⊕i

j=1 gj. Using the

Jacobi identity in g̃+ each v ∈ g̃i, i > 1 can be written as a linear combination of elements

of the form [g, h] for some g ∈ g̃1, h ∈ g̃i−1, so it suffices to define adx for elements of that

form. Now, set

adx([g, h]) = [adx(g), h] + [g, adx(h)] (3.8)

and define [x, v] = adx(v) for all v ∈ g̃+. We can define the linear map adx : g̃−i →⊕i
j=1 g−j similarly. Because g̃ =

⊕
i∈Z g̃j, we can linearly extend the map adx to all of g̃.

It now remains to extend the bracket operation to each v ∈ g̃−,w ∈ g̃+. As before, we
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define the linear transformations

adw∗ : g̃i →
⊕i

j=0 g̃j, adv : g̃−i →
⊕i

j=0 g̃−j, for w∗ ∈ g̃−1, v ∈ g̃1 by

adw∗([g, h]) = [adw∗(g), h] + [g, adw∗(h)], g ∈ g̃1, h ∈ g̃i−1

adv([g, h]) = [adv(g), h] + [g, adv(h)], g ∈ g̃−1, h ∈ g̃−i+1

and extend linearly to all of g̃. We can and do define the Lie algebra homomorphisms

ad : g̃± → gl(g̃) inductively by ad(v) = adv, ad(w) = adw, and, for all v ∈ g̃1, w ∈ g̃i,

x ∈ g̃−1, y ∈ g̃−i

ad([v, w]) = [ad(v), ad(w)], ad([x, y]) = [ad(x), ad(y)], (3.9)

where the brackets on the right hand side are the commutator brackets of linear trans-

formations.

For all v ∈ g̃+, w ∈ g̃−, x ∈ g̃ we define [v, x] = ad(v)(x), [w, x] = ad(w)(x). All

that remains to show is that the Jacobi identity holds with the bracket so defined. The

definitions above prove the Jacobi identity for v ∈ g̃1, x, y ∈ g̃ so assume that it holds

for all w ∈
⊕i

j=0 g̃j, x, y,∈ g̃. Then, since the commutator of two derivations is again a

derivation, ad([v, w]) = [ad(v), ad(w)] is a derivation, and therefore:

[[v, w] , [x, y]] = ad([v, w])[x, y]

= [ad([v, w])(x), y] + [x, ad([v, w])(y)]

= [[[v, w], x], y] + [x, [[v, w], y]]

(3.10)

which completes the proof the Jacobi identity for all basis elements of g̃. Therefore, g̃ is

a Lie algebra with bracket [·, ·].
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3.3 The Construction of g and isomorphism of g with

HD
(1)
n

In this section, we define g as a quotient of g̃, and then show that it is isomorphic to the

Kac-Moody algebra HD
(1)
n . For all k > 1 define the subspaces:

Jk = {x ∈ g̃k|[v1, [v2, . . . , [vk−1, x] . . . ]] = 0,∀v1, v2, . . . , vk−1 ∈ g̃1}

J−k = {x ∈ g̃k|[w∗1, [w∗2, . . . , [w∗k−1, x] . . . ]] = 0, ∀w∗1, w∗2, . . . , w∗k−1 ∈ g̃−1}

Let J± =
⊕

k>1 J±k and J = J+ ⊕ J−. Then J+ and J− are ideals of g̃, and J is the

largest graded ideal g̃ that intersects g̃−1 ⊕ g̃0 ⊕ g̃1 trivially (see [3] for a proof). Finally,

we define
g = g̃/J

=
(⊕

k<1 gk
)
⊕ g−1 ⊕ g0 ⊕ g1 ⊕

(⊕
k>1 gk

) (3.11)

where g±k = g̃±k/J±k for k > 1. Note that since J intersects g̃−1 ⊕ g̃0 ⊕ g̃1 trivially and

is a graded ideal, then

g±1 = g̃±1/(J ∩ g̃±1) = g̃±1

g0 = g̃0/(J ∩ g̃0) = g0

(3.12)

In other words:

g1 = V (Λ0), g−1 = V ∗(Λ0), g0 = D(1)
n (3.13)

a fact that will be important in what follows. In particular, g0 is embedded isomorphically

in g, as are the basic representations V (Λ0), and V ∗(Λ0). Now we are ready to prove the

following main theorem:

Theorem 5. Let {Ei}ni=−1, {Fi}ni=−1, {Hi}ni=−1 be the generators of HD
(1)
n , and {ei}ni=0,

{fi}ni=0, h0 be the generators of D
(1)
n . Then the map φ : HD

(1)
n → g, defined on the

generators by:

φ(E−1) = v∗0, φ(F−1) = v0, φ(H−1) = −2c− d

φ(Ei) = ei, φ(Fi) = fi, φ(Hi) = hi, i ∈ {0, 1, . . . , n} (3.14)

is an isomorphism of Lie algebras.
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Proof. Recall that HD
(1)
n = g(A), where A is given in (2.1). Recall also, by Theorem 2,

that g(A) = ĝ(A)/i, where ĝ(A) is the Lie algebra satisfying relations (1)-(4) of Definition

6, and g(A) = ĝ(A)/i, and i is the maximal ideal of ĝ(A) intersecting h trivially. Since

J is the maximal graded ideal of g̃ which intersects the local part of g̃ trivially, we need

only show the following:

[φ(Hi), φ(Hj)] = 0 (3.15)

[φ(Ei), φ(Fj)] = δi,jφ(Hi) (3.16)

[φ(Hi), φ(Ej)] = aijφ(Ej) (3.17)

[φ(Hi), φ(Fj)] = −aijφ(Fj) (3.18)

To show (3.15):

[φ(Hi), φ(H−1)] = [hi,−2c− d] = 0, i ∈ {0, 1, . . . , n}

To show (3.16):

[φ(E−1), φ(F−1)] = [v∗0, v0]

= ψ(v∗0 ⊗ v0)

= −
∑
i∈I

〈v∗0, xi · v0〉xi − 2〈v∗0, v0〉c

= −
〈
v∗0,

1√
2

(c+ d) · v0

〉 1√
2

(c+ d)

−
〈
v∗0,

1√
−2

(c− d) · v0

〉 1√
−2

(c− d)− 2c

= −1

2
(c+ d) +

1

2
(c− d)− 2c

= −2c− d

= φ(H−1)

[φ(Ei), φ(F−1)] = ei · v0 = 0, i ∈ {0, 1, . . . , n}

[φ(E−1), φ(Fi)] = −fi · v∗0 = 0, i ∈ {0, 1, . . . , n}
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To show (3.17):

[φ(Hi), φ(E−1)] = [hi, v
∗
0], i ∈ {0, 1, . . . , n}

= hi · v∗0
= −Λ0(hi)v

∗
0

= −δi,0v∗0
= ai,−1φ(E−1)

[φ(H−1), φ(E−1)] = [−2c− d, v∗0]

= −Λ0(−2c− d)v∗0

= 2v∗0

= 2φ(E−1)

and similarly one can show:

[φ(Hi), φ(F−1)] = −ai,−1φ(F−1)

Since D
(1)
n is an affine-type Kac-Moody algebra, the root multiplicities of ∆S are

already known. Because of the Chevalley automorphism ω : n− → n+, it suffices to

consider root multiplicities in ∆+(S) or ∆−(S). In the next chapter, we will describe a

formula for giving the multiplicities of roots in ∆−(S), which uses the construction given

in this chapter and elements of the theory of homology of g-modules.
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Chapter 4

Multiplicity Formula

In this chapter we review the basic definitions and results of homology of g-modules, and

Kang’s multiplicity formula for roots in ∆−(S).

Definition 9. A chain complex of g-modules is a family {Ck}k∈Z of g-modules together

with g-module homomorphisms dk : Ck → Ck−1 such that dk ◦ dk+1 ≡ 0. The maps dk are

called differentials. The chain complex C is admissible if
⋃
k∈ZCk is itself a g-module.

Definition 10. Let C = {Ck}k∈Z be a chain complex of g-modules with differentials dk.

The kth homology module of C is given by

Hk(C) = ker(dk)/im(dk+1).

Theorem 6 (Euler-Poincaré Principle). Let C = {Cn}n∈Z be an admissible chain complex

of g-modules. Then ∑
k∈Z≥0

(−1)kch(Ck) =
∑
k∈Z≥0

(−1)kch(Hk(C)).

Theorem 7 (Kostant’s Formula for Kac-Moody algebras [9],[29]). Let λ ∈ P be given.

Then

· · · →
∧

k
g− ⊗ V (λ)

dk−→
∧

k−1
g− ⊗ V (λ)

dk−1−−→ · · · d1−→
∧

0
g− ⊗ V (λ)→ 0→ · · ·
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with,

dk((x1∧x2∧· · ·∧xk)⊗v) =



∑k
i=1(−1)i(x1 ∧ · · · x̂i ∧ · · · ∧ xk)⊗ xi · v

+
∑

r<t([xr, xt] ∧ x1 ∧ · · · ∧ x̂r ∧ · · · ∧ x̂t ∧ · · · ∧ xk)⊗ v

for k ≥ 1,

0 otherwise,

is a g0-module complex. In addition, the homology modules Hk(g−, V (λ)) of this complex

are g0-modules and

Hk(g−, V (λ)) ∼=
∑

w∈W (S)

`(w)=k

V (w(λ+ ρ)− ρ), (4.1)

where ρ ∈ h∗ denotes the functional such that ρ(hi) = 1, i ∈ I.

Now, we consider the case V (0) ∼= C, the trivial g-module. By Theorem 7,

· · · →
∧

k
g−

dk−→
∧

k−1
g−

dk−1−−→ · · · d1−→ C→ 0→ · · ·

is a g-module complex where the differential dk is given by:

dk(x1 ∧ x2 ∧ · · · ∧ xk) =


∑

r<t [xr, xt] ∧ x1 ∧ · · · ∧ x̂r ∧ · · · ∧ x̂t ∧ · · · ∧ xk
for k ≥ 2,

0 otherwise.

Applying the Euler-Poincaré principle to this complex gives (omitting the module C):

∞∑
k=0

(−1)kch
(∧

k
g−

)
=
∞∑
k=0

(−1)kch(Hk(g−)). (4.2)
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Consider the left hand side of (4.2):

∞∑
k=0

(−1)kch
(∧

k
g−

)
=

∞∑
k=0

(−1)k
∑

xα1∧xα2∧···∧xαk
αi∈∆−(S)

e(α1 + α2 + · · ·+ αk)

=
∞∑
k=0

(−1)k
∑

xα1∧xα2∧···∧xαk
αi∈∆−(S)

e(α1)e(α2) · · · e(αk)

=
∏

α∈∆−(S)

(1− e(α))dim(gα).

Now, consider the right hand side of (4.2):

∞∑
k=0

(−1)kch(Hk(g−)) = ch(H0(g−)) +
∞∑
k=1

(−1)kch(Hk(g−))

= 1−
∞∑
k=1

(−1)k+1ch(Hk(g−))

= 1−
∑

w∈W (S)

`(w)≥1

(−1)`(w)+1ch(V (w(ρ)− ρ))

= 1−
∑

w∈W (S)

`(w)≥1

(−1)`(w)+1
∑
τ∈P

dim(V (w(ρ)− ρ))τe(τ)

(by Kostant’s formula (4.1))

= 1−
∑
τ∈P

∑
w∈W (S)

`(w)≥1

(−1)`(w)+1 dim(V (w(ρ)− ρ))τe(τ).

Equating the left and right hand sides of equation (4.2) gives:∏
α∈∆−(S)

(1− e(α))dim(gα) = 1−
∑
τ∈P

Kτe(τ) (4.3)

where

Kτ =
∑

w∈W (S)

`(w)≥1

(−1)`(w)+1 dim(V (w(ρ)− ρ))τ .
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Taking the logarithm of both sides of (4.3) we obtain

∑
α∈∆−(S)

dim(gα) log(1− e(α)) = log

(
1−

∑
τ∈P

Kτe(τ)

)
. (4.4)

Using the formal power series expansion log(1 − x) = −
∑∞

k=1
xk

k
the left hand side of

(4.4) becomes

∑
α∈∆−(S)

dim(gα) log(1− e(α)) = −
∑

α∈∆−(S)

dim(gα)
∞∑
k=1

1

k
e(α)k

= −
∑

α∈∆−(S)

∞∑
k=1

dim(gα)
1

k
e(kα).

The right hand side of (4.4) becomes

log

(
1−

∑
τ∈P

Kτe(τ)

)
= −

∞∑
k=1

1

k

(∑
τ∈P

Kτe(τ)

)k

= −
∞∑
k=1

1

k

(
∞∑
i=1

Kτie(τi)

)k

= −
∞∑
k=1

1

k

∑
(ni)∑
ni=k

(
∑
ni)!∏

(ni!)

∏
Kni
τi
e
(∑

niτi

)
(multinomial expansion)

= −
∑
τ∈P

 ∑
(ni)∑
niτi=τ

(
∑
ni − 1)!∏
(ni!)

∏
Kni
τi

 e(τ)

where {τi|i = 1, 2, . . . } is an enumeration of the elements of P .

Equating the right and left hand sides of (4.4) we see

∑
τ∈P

B(τ)e(τ) =
∑

α∈∆−(S)

∞∑
k=1

dim(gα)
1

k
e(kα)
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where

B(τ) =
∑
(ni)∑
niτi=τ

(
∑
ni − 1)!∏
(ni!)

∏
Kni
τi
.

Therefore,

B(τ) =
∑

α∈∆−(S)

τ=kα

1

k
dim(gα)

=
∑

α∈∆−(S)

α|τ

α

τ
dim(gα)

where the notation α|τ (α divides τ) means τ = kα for some k ∈ Z and τ/α (resp. α/τ)

is equal to k (resp. 1/k). Using Möbius inversion, we see for α ∈ ∆−(S):

dim(gα) =
∑
τ |α

µ
(α
τ

) α
τ
B(τ),

where

µ(n) =


1, if n is squarefree with an even number of distinct prime factors,

-1, if n is squarefree with an odd number of distinct prime factors,

0, otherwise,

is the classical Möbius function. We then have the following:

Theorem 8 (Kang’s Multiplicity Formula [22]). Let α ∈ ∆−(S). Then

dim(gα) =
∑
τ |α

µ
(α
τ

) τ
α
B(τ)

where,

• µ(n) =Classical Möbius Function,

• B(τ) =
∑

(niτi)∈T (τ)
(
∑
ni−1)!∏
(ni!)

∏
Kni
τi

,

• T (τ) =

{
(niτi)

∣∣∣∣ni ∈ Z≥0,
∑
niτi = τ, τi ∈ P

}
,
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• Kτi =
∑

w∈W (S)
`(w)≥1

(−1)`(w)+1dim(V (wρ− ρ)τi).

Note that in order to apply this theorem, we must compute weight multiplicities of

D
(1)
n -modules. In the next chapter, we survey the path realization of D

(1)
n -modules, which

uses the theory of quantum groups and crystal bases to give a combinatorial way to

compute weight multiplicities.
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Chapter 5

The Path Construction of

D
(1)
n -modules

In this chapter, we define quantum groups and crystal bases. In particular, we will realize

the crystal bases of integrable modules of D
(1)
n using the path realization. We review the

necessary notions of perfect crystals and paths. Then we give the data for perfect crystals

of D
(1)
n , which will be used in a later chapter to compute root multiplicities of HD

(1)
n

We will use the following notation:

• [n]q = qn−q−n
q−q−1 ,

• [n]q! = [n]q[n− 1]q!, where [0]q! = 1,

•

[
m

n

]
q

= [m]q !

[n]q ![m−n]q !
,

• e
(k)
i =

eki
[k]q !

,

• f
(k)
i =

fki
[k]q !

,

• A0 = {f/g
∣∣ f, g ∈ C[q], g(0) 6= 0}.
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Recall the sets Π,Π∨, P, P∨. The tuple (A,Π,Π∨, P, P∨) is called a Cartan datum (here

P, P∨ can be given subsets of the ones given in chapter 1).

5.1 Quantum Groups and their Modules

A quantum group is an associative algebra that can be seen as a ‘q-deformation’ of the

universal enveloping algebra of a Kac-Moody algebra.

Definition 11. The quantum group or quantized universal enveloping algebra Uq(g)

associated with a Cartan datum (A,Π,Π∨, P, P∨) is the associative algebra over C(q)

with 1 generated by the elements ei, fi (i ∈ I) and qh (h ∈ P∨) with the following defining

relations:

1. q0 = 1, qhqh
′
= qh+h′ for h, h′ ∈ P∨,

2. qheiq
−h = qαi(h)ei for h ∈ P∨,

3. qhfiq
−h = q−αi(h)ei for h ∈ P∨,

4. eifj − fjei = δij
Ki−K−1

i

qi−q−1
i

for i, j ∈ I,

5.
∑1−aij

k=0 (−1)k

[
1− aij
k

]
qi

e
1−aij−k
i eje

k
i = 0 for i 6= j,

6.
∑1−aij

k=0 (−1)k

[
1− aij
k

]
qi

f
1−aij−k
i fjf

k
i = 0 for i 6= j.

Where qi = qsi and Ki = qsihi.

Example: The quantum group Uq(sl(2)) is the associative algebra generated by the

set {e, f, qh} satisfying the following relations:

1. qheq−h = q2e,

2. qhfq−h = q−2f,

3. ef − fe = qh−q−h
q−q−1 .

Analogous to the definition of a module of a Lie algebra, we have the following:
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Definition 12. A Uq(g)-module is a vector space V q over C(q) together with an operation

· : Uq(g)× V q → V q, which satisfies:

x · (y · v) = (xy) · v

for x, y ∈ Uq(g), and v ∈ V q.

Example: Let V q = spanC(q){v0, v1, . . . , vk} be a vector space and define an action of

Uq(sl(2)) on V q by:

qh · vj = qk−2jvj

f · vj = [j + 1]qvj+1

e · vj = [k − j + 1]qvj−1

where vj is understood to be 0 if j < 0 or j > k. Then V q is a Uq(sl(2))-module.

Let V q be a Uq(g)-module. For λ ∈ h∗ we define the set V q
λ := {v ∈ V q|qh · v =

q〈λ,h〉v, h ∈ h} to be the weight space of V q of weight λ and dim(V q
λ ) to be the (weight)

multiplicity of λ denoted multV q(λ). If all the weight spaces of a Uq(g)-module V q are

finite, we define the character of V q to be the formal sum:

ch(V q) =
∑
µ∈h∗

dimV q
µ e(µ),

where e(·) is the formal exponential.

A Uq(g)-module V q is called a highest weight module with highest weight λ if and

only if it satisfies the following:

1. There exists 0 6= vλ ∈ V such that qh · vλ = q〈λ,h〉vλ for all h ∈ h,

2. U+
q · vλ = {0},

3. Uq(g) · vλ = V q,

where U+
q is the subalgebra of Uq(g) generated by {ei|i ∈ I}.

Any highest weight Uq(g)-module V q of highest weight λ satisfies the following prop-

erties:

1. (Weight Space Decomposition). V q =
⊕

µ≤λ V
q
µ ,
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2. V q
λ = Cvλ,

3. V q
µ <∞, µ ∈ h∗.

For every λ ∈ h∗ there exists a unique irreducible highest weight module with highest

weight λ (see [11]), which we denote by V q(λ).

A large motivation to study quantum groups comes from the following:

Theorem 9 ([30]). Let λ ∈ P+. Then

ch(V (λ)) = ch(V q(λ)).

Therefore, in particular

multV (λ)(µ) = multV q(λ)(µ)

.

5.2 Crystal Bases

Before we define crystal bases, we need the notion of the Kashiwara operators ẽi, f̃i, i ∈ I.

These are certain modified root vectors for the quantum group Uq(g). But first, we need

a preliminary result:

Lemma 1 ([17]). Let λ ∈ P+ and V q(λ) be the highest weight Uq(g)-module of highest

weight λ. For each i ∈ I, every weight vector u ∈ V q(λ)µ(µ ∈ P ) may be written in the

form

u = u0 + fiu1 + · · ·+ f
(N)
i uN ,

where N ∈ Z≥0 and uk ∈ V q(λ)µ+kαi ∩ ker ei for all k = 0, 1, . . . , N. Here, each uk in the

expression is uniquely determined by u and uk 6= 0 only if µ(hi) + k ≥ 0.

We now have the following:

Definition 13. Let λ ∈ P+. The Kashiwara operators ẽi and f̃i(i ∈ I) on V q(λ) are

defined by

ẽiu =
N∑
k=1

f
(k−1)
i uk, f̃iu =

N∑
k=0

f
(k+1)
i uk.
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We also need an auxiliary definition of a crystal lattice.

Definition 14. Let λ ∈ P+ and V q(λ) be the highest weight Uq(g)-module of highest

weight λ. A free A0-submodule L of V q(λ) is called a crystal lattice if

1. L generates V q(λ) as a vector space over C(q),

2. L =
⊕

µ∈P Lλ, where Lµ = L ∩ V q(λ)µ for all λ ∈ P ,

3. ẽiL ⊂ L, f̃iL ⊂ L for all i ∈ I.

Finally, we have the following:

Definition 15. A crystal base of the irreducible highest weight Uq(g)-module V q(λ), λ ∈
P+ is a pair (L,B) such that

1. L is a crystal lattice of V q(λ),

2. B is a C-basis of L/qL,

3. B =
⊔
µ∈P Bµ, where Bµ = B ∩ (Lµ/qLµ),

4. ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0} for all i ∈ I,

5. for any b, b′ ∈ B and i ∈ I, we have f̃ib = b′ if and only if b = ẽib
′.

The set B is called the crystal graph of (L,B). This is because B can be regarded as

a colored, oriented graph by defining

b
i→ b′ ⇐⇒ f̃ib = b′.

Proposition 2 ([17], [31]).

multV q(λ)(µ) = #Bµ.

Therefore we can turn many questions about weight multiplicities into counting prob-

lems on the set B, provided that a crystal base of the corresponding Uq(g)-module exists.

An (abstract) crystal is a combinatorial structure that embodies some of the features

of a crystal base.

Definition 16. A crystal associated with Uq(g) is a set B together with maps wt : B →
P, ẽi, f̃i : B → B ∪ {0}, and εi, ϕi : B → Z ∪ {−∞}, for i ∈ I satisfying the following

properties:
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1. ϕi(b) = εi(b) + 〈hi,wt(b)〉 for all i ∈ I,

2. wt(ẽib) = wt(b) + αi if ẽib ∈ B,

3. wt(f̃ib) = wt(b)− αi if f̃ib ∈ B,

4. εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1 if ẽib ∈ B,

5. εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1 if f̃ib ∈ B,

6. f̃ib = b′ if and only if b = ẽib
′ for b, b′ ∈ B, i ∈ I,

7. if ϕi(b) = −∞ for b ∈ B, then ẽib = f̃ib = 0.

Then one may easily prove the following:

Proposition 3 ([17]). Let (L,B) be the crystal basis of a Uq(g)-module V q(λ). Then B
is a crystal if we define in addition to ẽi, f̃i:

• wt(b) = µ if b ∈ Bµ,

• εi(b) = max{k|ẽki (b) 6= 0},

• ϕi(b) = max{k|f̃ki (b) 6= 0}.

The tensor product B1⊗B2 of crystals B1 and B2 is the set B1×B2 together with the

following maps:

1. wt(b1 ⊗ b2) = wt(b1) + wt(b2),

2. εi(b1 ⊗ b2) = max(εi(b1), εi(b2)− 〈hi,wt(b1)〉),

3. ϕi(b1 ⊗ b2) = max(ϕi(b2), ϕi(b1) + 〈hi,wt(b2)〉),

4. ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2, if ϕi(b1) ≥ ε(b2),

b1 ⊗ ẽib2, if ϕi(b1) < ε(b2),

5. f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2, if ϕi(b1) > ε(b2),

b1 ⊗ f̃ib2, if ϕi(b1) ≤ ε(b2),

where we write b1⊗ b2 for (b1, b2) ∈ B1×B2, and understand b1⊗ 0 = 0⊗ b2 = 0. B1⊗B2

is a crystal, as can easily be shown.
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5.3 Quantum Affine Algebras and Perfect Crystals

Let (A,P, P∨,Π,Π∨) be the Cartan datum of an affine type Kac-Moody algebra g with

index set I. Then the quantum group Uq(g) is called a quantum affine algebra. Let U ′q(g)

be the subalgebra of Uq(g) generated by {ei, fi, K±i |i ∈ I}, also called a quantum affine

algebra. Recall that

P = spanZ{Λ0,Λ1, . . . ,Λn,
1

a0

δ},

P∨ = spanZ{h0, h1, . . . , hn, d},

where Λi are the fundamental weights, δ is the standard null root and d is the degree

derivation of g. Similarly, we define the classical weights, and dominant classical weights

to be the sets:

P̄ = spanZ{Λ0,Λ1, . . . ,Λn},

P̄+ = {λ ∈ P̄ |〈λ, hi〉 ≥ 0, i ∈ I}.

A crystal associated with the Cartan datum (A, P̄ , P̄∨,Π,Π∨) is called a classical crystal

(or U ′q(g)-crystal).

Remark: The quantum affine algebra Uq(g) has no finite dimensional modules other

than the trivial module. On the other hand, U ′q(g) can have finite dimensional modules.

The notion of perfect crystals was introduced in [23] to realize the Uq(g)-crystal

B(λ), λ ∈ P+. Let ε(b) =
∑

i∈I εi(b)Λi, ϕ(b) =
∑

i∈I ϕi(b)Λi, and P̄l = {λ ∈ P̄+|〈c, λ〉 =

l}, recalling the canonical central element c of g.

Definition 17. For a positive integer l > 0, we say that a finite classical crystal B is a

perfect crystal of level l if it satisfies the following conditions:

1. there exists a finite dimensional U ′q(g)-module with a crystal base whose crystal

graph is isomorphic to B,

2. B ⊗ B is connected,

3. there exists a classical weight λ0 ∈ P̄ such that wt(B) ⊂ λ0 +
∑

i 6=0 Z≤0αi, and

#Bλ0 = 1,

4. for any b ∈ B, we have 〈c, ε(b)〉 ≥ l,
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5. for each λ ∈ P̄l there exist unique bλ ∈ B and bλ ∈ B such that ε(bλ) = λ, ϕ(bλ) = λ.

Let B be a perfect crystal of level l. We define Bmin to be the set

{b ∈ B|〈wt(b), c〉 = l}.
Example: The following is the crystal graph of a perfect U ′q(D

(1)
4 )-crystal.

1
1

2
2

3

3
4

4

3̄

4
4̄

3

2
2̄

1
1̄

0

0

5.4 Paths, Energy Functions, and Affine Crystals

In this section, we introduce paths and energy functions of perfect crystals then use them

to construct the crystal bases of irreducible integrable highest weight modules of quantum

affine algebras. Recall that the crystal base of the irreducible integrable highest weight

module V q(λ), λ ∈ P+ is denoted by B(λ) and we denote its highest weight vector by uλ.

Then we have the following.

Theorem 10 ([23]). Fix a positive integer l > 0 and let B be a perfect crystal of level l.

For any classical dominant weight λ ∈ P̄+
l , there exists a unique crystal isomorphism

Ψ : B(λ)→ B(ε(bλ))⊗ B

given by uλ 7→ uε(bλ) ⊗ bλ, where bλ is the unique element in B such that ϕ(bλ) = λ.

Let B be as in theorem 10 and define inductively

λ0 = λ, λk+1 = ε(λk),

b0 = bλ, bk+1 = bλk+1
.

The sequences bλ := (bk)
∞
k=0 and wλ := (λk)

∞
k=0 are periodic with the same period. To

see this observe that the sets P+
l and B are both finite, and |P+

l | = |Bmin|. This means
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that, for some integer k ≥ 0, b0 = bk, λ0 = λk, and since bλ and wλ are both defined

inductively, both sequences must repeat every k iterations. So we take k to be the least

such integer, and this is the period of both sequences.

Definition 18. Let B be as in Theorem 10 and (bk)
∞
k=0 be the sequence defined iteratively

above. Then:

1. The sequence bλ = (bk)
∞
k=0, is called the ground-state path of weight λ.

2. A λ-path in B is a sequence p = (pk)
∞
k=0 with pk = bk for all k � 0.

Example: Consider the level 1 perfect D
(1)
4 -crystal B1 described in the previous section.

Then to find the ground state path of weight Λ0 we compute:

k λk bk

0 Λ0 bΛ0 = 1̄

1 ε(1̄) = Λ1 bΛ1 = 1

2 ε(1) = Λ0 bΛ0 = 1̄

After k = 2 the pattern repeats. Therefore, the ground state path of weight Λ0 for the

perfect D
(1)
4 -crystal B1 is (. . . , 1̄,1, 1̄).

Let Pλ, λ ∈ P+ be the set of all λ-paths. We seek to define a crystal structure on Pλ
such that Pλ ∼= B(λ). The idea is to iterate the isomorphism in Theorem 10 and view

B(λ) as a semi-infinite tensor product of a perfect crystal of level l:

B(λ0) ∼= B(λ1)⊗ B ∼= B(λ2)⊗ B ⊗ B ∼= · · · ∼= B(λk)⊗ B⊗k ∼= · · · ∼=
∞⊗
i=0

B,

with

uλ0 7→ uλ1 ⊗ b0 7→ · · · 7→ uλk ⊗ bk−1 ⊗ bk−2 ⊗ · · · ⊗ b0 7→ · · · 7→
∞⊗
k=0

bk.

Therefore it is natural to view the “tail end” of a λ-path as an element of B⊗N for

sufficiently large N . The explicit U ′q(g)-crystal structure is as follows. Let p = (pk)
∞
k=0 be

a λ-path in B and let N > 0 be the smallest positive integer such that pk = bk for all

k ≥ N. Let p′ = pN−1 ⊗ · · · ⊗ p1 ⊗ p0. For each i ∈ I, we define

• wt p = λ+
∑N−1

k=0 (wt (pk)− wt (bk)),
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• ẽip =

{
· · · ⊗ pN ⊗ ẽi(p′) if ϕi(pN) < εi(pN−1),

0 otherwise,

• f̃ip = · · · ⊗ pN+1 ⊗ f̃i(pN ⊗ p′),

• εi(p) = max(ε(p′)− ϕi(bN), 0)),

• ϕi(p) = ϕi(p
′) + max(ϕi(bN)− εi(p′), 0).

We then have the following:

Theorem 11 ([23]). The maps wt, ẽi, f̃i, εi, ϕi given above define a U ′q(g)-crystal structure

on Pλ, and there exists an isomorphism

Ψ : B(λ)→ Pλ

given by uλ 7→ bλ.

Note that the map wt is a map from Pλ to P̄ only and not to P . In order to give a

Uq(g)-crystal structure to Pλ we need to give the appropriate map wt : Pλ → P . To do

this, we need the following definition:

Definition 19. Let V be a finite dimensional U ′q(g)-module with crystal B. An energy

function on B is a map H : B ⊗ B → Z satisfying the following conditions:

H(ẽi(b1 ⊗ b2)) =


H(b1 ⊗ b2), if i 6= 0,

H(b1 ⊗ b2) + 1, if i = 0, ϕ0(b1) ≥ ε0(b0),

H(b1 ⊗ b2)− 1, if i = 0, ϕ0(b1) < ε0(b2),

for all i ∈ I, b1 ⊗ b2 ∈ B ⊗ B, with ẽi(b1 ⊗ b2) ∈ B ⊗ B.

Remark: If B is perfect, then there is a unique energy function up to translation by

an integer.

Example: We give an energy function for the D
(1)
4 -crystal B1 defined previously. Let
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i, j ∈ {1, 2, 3, 4} be given. Then:

H(j⊗ k) =

{
1, if j ≥ k

0, otherwise

H (̄j⊗ k̄) =

{
1, if j ≤ k

0, otherwise

H (̄j⊗ k) =

{
0, if j = k = 4

1, otherwise

H(j⊗ k̄) =

{
−1, if j = k = 1

0, otherwise.

So, for example H(1⊗ 1̄) = −1, H(1̄⊗ 1) = 1 and so on. Now we are ready to give the

affine weight formula.

Theorem 12 ([23]). Let p ∈ P(λ). Then the affine weight of p is given by the formula

wt(p) = λ+
∞∑
k=0

(wt pk − wt bk) (5.1)

−

(
∞∑
k=0

(k + 1)(H(pk+1 ⊗ pk)−H(bk+1 ⊗ bk))

)
δ.

Example: In the D
(1)
4 -crystal PΛ0 , consider p = f̃0(. . . , 1̄,1, 1̄) = (. . . , 1̄,1,2). Since

wt(bΛ0) = Λ0, we expect to have wt(p) = Λ0 − α0 = Λ2 − Λ0 − δ. Indeed, using (5.1) we

compute:

wt(p) = Λ0 +
∞∑
k=0

(wt pk − wt bk)

−

(
∞∑
k=0

(k + 1)(H(pk+1 ⊗ pk)−H(bk+1 ⊗ bk))

)
δ

= Λ0 + wt(2)− wt(1̄)− (H(1⊗ 2)−H(1⊗ 1̄))δ

= Λ0 + (Λ2 − Λ1 − Λ0)− (Λ0 − Λ1)− (0− (−1))δ

= Λ2 − Λ0 − δ.
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5.5 Perfect Crystal and Energy Function for D
(1)
n

Let Bl := {b = (x1, x2, . . . , xn, x̄n, x̄n−1, . . . , x̄1) ∈ Z2n
≥0|s(b) :=

∑n
i=1 xi+

∑n
i=1 x̄i = l, xn =

0 or x̄n = 0} and define

ẽ0b =

{
(x1, x2 − 1, . . . , x̄2, x̄1 + 1) if x2 > x̄2,

(x1 − 1, x2, . . . , x̄2 + 1, x̄1) if x2 ≤ x̄2,

ẽnb =

{
(x1, . . . , xn + 1, x̄n, x̄n−1 − 1, . . . , x̄1) if xn ≥ 0, x̄n = 0,

(x1, . . . , xn−1 + 1, xn, x̄n − 1, . . . , x̄1) if xn = 0, x̄n > 0,

ẽib =

{
(x1, . . . , xi + 1, xi+1 − 1, . . . , x̄1) if xi+1 > x̄i+1,

(x1, . . . , x̄i+1 + 1, x̄i − 1, . . . , x̄1) if xi+1 ≤ x̄i+1.

f̃0b =

{
(x1, x2 + 1, . . . , x̄2, x̄1 − 1) if x2 ≥ x̄2,

(x1 + 1, x2, . . . , x̄2 − 1, x̄1) if x2 < x̄2,

f̃nb =

{
(x1, . . . , xn − 1, x̄n, x̄n−1 + 1, . . . , x̄1) if xn > 0, x̄n = 0,

(x1, . . . , xn−1 − 1, xn, x̄n + 1, . . . , x̄1) if xn = 0, x̄n ≥ 0,

f̃ib =

{
(x1, . . . , xi − 1, xi+1 + 1, . . . , x̄1) if xi+1 ≥ x̄i+1,

(x1, . . . , x̄i+1 − 1, x̄i + 1, . . . , x̄1) if xi+1 < x̄i+1.

If xi < 0 or x̄i < 0 in b′ = ẽi(b) or f̃i(b) then b′ is understood to be 0.

wt(b) = (x̄1 − x1 + x̄2 − x2)Λ0 +
n−2∑
i=1

(xi − x̄i + x̄i+1 − xi+1)Λi

+ (xn−1 − x̄n−1 + x̄n − xn)Λn−1

+ (xn−1 − x̄n−1 + xn − x̄n)Λn,

ϕ0(b) = x̄1 + (x̄2 − x2)+, ε0(b) = x1 + (x2 − x̄2)+,

ϕi(b) = xi + (x̄i+1 − xi+1)+ for i = 1, . . . , n− 2,

εi(b) = x̄i + (xi+1 − x̄i+1)+ for i = 1, . . . , n− 2,

ϕn−1(b) = xn−1 + x̄n, εn−1(b) = x̄n−1 + xn,

ϕn(b) = xn−1 + xn, εn(b) = x̄n−1 + x̄n,
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where (n)+ := max(n, 0). Let

H(b⊗ b′) = max({θj(b⊗ b′), θ′j(b⊗ b′)|1 ≤ j ≤ n− 2} ∪

{ηj(b⊗ b′), η′j(b⊗ b′)|1 ≤ j ≤ n}),

where,

θj(b⊗ b′) =

j∑
k=1

(x̄k − x̄′k) for j = 1, . . . , n− 2,

θ′j(b⊗ b′) =

j∑
k=1

(x′k − xk) for j = 1, . . . , n− 2,

ηj(b⊗ b′) =

j∑
k=1

(x̄k − x̄′k) + (x̄′j − xj) for j = 1, . . . , n− 1,

ηn(b⊗ b′) =
n−1∑
k=1

(x̄k − x̄′k) + (xn − x̄′n),

η′j(b⊗ b′) =

j∑
k=1

(x′k − xk) + (xj − x̄′j) for j = 1, . . . , n− 1,

η′n(b⊗ b′) =
n−1∑
k=1

(x′k − xk)− (xn − x̄′n).

Then we have the following:

Theorem 13 ([25]). The maps ẽi, f̃i, εi, ϕi,wt define a Uq(D
(1)
n )-crystal structure on Bl

which is perfect of level l.

Example: Consider the D
(1)
4 -crystal B(Λ0). An element b = (x1, x2, · · · x̄1) of the level

1 crystal B1 satisfies s(b) = 1. Therefore, we can more compactly denote b as i (resp. ī) if

xi = 1 (resp. x̄i = 1) and the rest of the coordinates are 0. This notation coincides with

that of the previous section. The top part of the crystal graph of B(Λ0) is given in Figure

5.1. Here, only the tail of the each path is given.

Example: We introduce the following notation for the level two crystal B2. Let the

ordered pair (i, j) represent the element i + j. Here i and j represent integers from 1 to n

with or without a bar. The ground state path is p = (. . . , (2, 2̄), (2, 2̄)). The top part of

this crystal is given in Figure 5.2, where, as before, only the tail of each path is given.
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Figure 5.1: Top part of the D
(1)
4 -crystal B(Λ0)
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Figure 5.2: Top part of the D
(1)
4 -crystal B(Λ2).
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Chapter 6

Root Multiplicities of HD
(1)
n

In this chapter, we use the results of previous chapters to compute multiplicities of roots of

the form −lα−1−kδ. We use the theory of quantum groups and crystal bases to compute

certain weight multiplicities of D
(1)
n -modules, and hence determine closed formulas for

the corresponding root multiplicities.

We begin by proving a fundamental result.

Proposition 4 (Analogous to [28] for HC
(1)
n ). −lα−1 − kδ is a root of HD

(1)
n only if

k ≥ l. Also, mult(−lα−1 − lδ) = n.

Proof. We compute:

r−1(−lα−1 − kδ) = −lα−1 − kδ − 〈−lα−1 − kδ, h−1〉α−1

= −lα−1 − kδ − (−2l + k)α−1

= (l − k)α−1 − kδ.

If k < l then (l − k)α−1 − kδ /∈ Q+ ∪Q−, hence is not a root of HD
(1)
n . Therefore:

mult(−lα−1 − kδ) = mult(r−1(−lα− kδ)) = 0.

Hence, −lα−1 − kδ is not a root.

If k = l then

mult(−lα−1 − lδ) = mult(r−1(−lα−1 − lδ)) = mult(−lδ) = n.
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Recall Kang’s multiplicity formula:

dim(gα) =
∑
τ |α

µ
(α
τ

) τ
α
B(τ)

where,

µ(n) =


1, if n is squarefree with an even number of distinct prime factors,

-1, if n is squarefree with an odd number of distinct prime factors,

0, otherwise,

B(τ) =
∑

(niτi)∈T (τ)

(
∑
ni − 1)!∏
(ni!)

∏
Kni
τi
,

T (τ) =

{
(niτi)

∣∣∣∣ni ∈ Z≥0,
∑

niτi = τ

}
Kτi =

∑
w∈W (S)
`(w)≥1

(−1)`(w)+1dim(V (wρ− ρ)τi).

The first thing we need to know is which elements of W are in W (S) for a given

length `. We use the following result.

Lemma 2 ([19]). w = w′ri ∈ W (S) ⇐⇒ w′ ∈ W (S), `(w) > `(w′), and w′(αi) ∈
∆+(S) = ∆+\∆+

S .

Now we can proceed inductively on `(w).

Case i: `(w) = 0. The only length 0 element is the identity, 1.

Case ii: `(w) = 1. In this case w = ri. However, αi ∈ ∆+(S) only if i = −1.

Case iii: `(w) = 2. r−1(α0) = α0 + α1 ∈ ∆+(S). Otherwise r−1(αi) /∈ ∆+(S).

Consider the restriction of α−1 to h0:

〈α−1, hi〉 = −δi0, i = 0, 1, . . . , n,

〈α−1, d〉 = 0.

Therefore, α−1|h0 = −Λ0. We will understand α−1 as restricted form, and therefore iden-

tify α−1 with −Λ0. We define the degree of −lα−1− kδ to be the integer by which it acts

on c: namely l.
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Table 6.1: Elements of W (S)

`(w) w wρ− ρ level

1 r−1 −α−1 = Λ0 1
2 r−1r0 −2α−1 − α0 = Λ2 − δ 2

6.1 Degree 1 Roots

In this section, we consider the root α = −α−1 − kδ of HD
(1)
n , n ≥ 4, k ≥ 1. By Kang’s

multiplicity formula, mult(α) = dim(V (Λ0)α). The following result is well-known:

Proposition 5 (See [16]).

dim(V (Λ0)λ) = pn
(
−(λ|λ)

2

)
,

where pn(k) is given by the generating series:

∞∑
k=0

pn(k)qk =
∞∏
i=1

(1− qi)−n.

Using the binomial expansion (1 − qi)−n =
∑∞

j=0(−1)j
(−n
j

)
qij, we give a formula for

the multiplicity of −α−1−kδ for any k. We use the notation n(k) := n(n+1) · · · (n+k−1)

for the rising factorial. Now we compute:

∞∑
k=0

pn(k)qk =
∞∏
i=1

(1− qi)−n

=
∞∏
i=1

∞∑
j=0

(−1)j
(
−n
j

)
qij

=
∞∏
i=1

∞∑
j=0

n(j)

j!
qij

=
∞∑
k=0

( ∑
j1+2j2+···+ljl=k

l∏
i=1

n(ji)

ji!

)
qk.

Therefore, mult(−α−1 − kδ) = pn(k) =
∑

j1+2j2+···+ljl=k
∏l

i=1
n(ji)

ji!
. Notice, in particular,

that it is a polynomial in n of degree k. We give the first few examples in the following
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table:

Table 6.2: Degree 1 multiplicities.

Root Multiplicity

−α−1 − δ n

−α−1 − 2δ n(n+3)
2

−α−1 − 3δ n(n+1)(n+8)
6

−α−1 − 4δ n(n+1)(n+3)(n+14)
24

−α−1 − 5δ n(n+3)(n+6)(n2+21n+8)
120

6.2 Degree 2 Roots

In this section, we consider the degree 2 root −2α−1 − 3δ of HD
(1)
n , n ≥ 4. For τ ∈ P+

2

let

X(τ) =
∑
λ∈P

dim(V (Λ0)λ)dim(V (Λ0)τ−λ).

Then, by Kang’s multiplicity formula:

mult(−2α−1 − 3δ) = X(2Λ0 − 3δ)− dim(V (Λ2 − δ)2Λ0−3δ). (6.1)

Let λi = Λi − Λi−1, if 1 ≤ i ≤ n, i 6= 2, n − 1, and λ2 = Λ2 − Λ0 − Λ1, λn−1 =

Λn−2 − Λn−1 − Λn. Then we have the following:

Lemma 3. If λ, µ ∈ P (Λ0) satisfy λ+µ = 2Λ0−3δ, λ > µ, then λ is one of the following:

Λ0, Λ0 ± λi ± λj − δ, i ≤ j, (i, j) 6= (1, 1).

Proof. If p ∈ B(Λ0) is such that wt(p) = Λ0−
∑

i∈I aiαi then ai is the number of i-colored

arrows in a path from uΛ0 to p. If p 6= uΛ0 then a0 > 0, because ϕi(uΛ0) = Λ0(hi) = δi0.

Therefore, we may consider p to be an element of the D4-subcrystal of B1⊗B1 generated

by the element 1 ⊗ 2. Therefore, we see that b = i ⊗ j with i < j, or b = i ⊗ j̄ with

(i, j) 6= (1, 1̄), or b = j̄⊗ ī, i < j. The weight of each element may easily be computed by

the affine weight formula (5.1).
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We summarize the conditions on λ, along with the dimensions of V (Λ0)λ and

V (Λ0)2Λ0−λ−3δ in table 6.3.

Table 6.3: Partitions of λ.

λ dim(V (Λ0)λ) dim(V (Λ0)2Λ0−λ−3δ) Count

Λ0 1 n(n+1)(n+8)
6

1

Λ0 ± λi ± λj − δ, i < j 1 n 4n(n−1)
2

Λ0 − δ n n(n+3)
2

1

Now let us consider the weight multiplicity of λ = 2Λ0 − 3δ of the D
(1)
n -module

V (Λ2 − δ) ∼= V (Λ2)⊗ V (−δ) ∼= V (Λ2) We remark that the weights of V (Λ2) are shifted

up by δ under this identification. The ground state path of the path realization of V (Λ2)

is p = (. . . , bg, bg, bg), where bg = (0, 1, 0, . . . , 0, 1, 0) = (2, 2̄).

The only f̃i which has non-zero action on bg is f̃2. Note that 2Λ0 − 2δ = Λ2 − (2α0 +

3α1 + 6α2 + · · ·+ 6αn−2 + 3αn−1 + 3αn). Therefore, the only paths we need consider are

those for which ẽk2(p) = 0, k > 6, i.e. those of the form p = (. . . , bg, p5, p4, . . . , p1, p0). Let

pk = (x1,k, x2,k, . . . , xn,k, x̄n,k . . . , x̄1,k), k = 0, 1, . . . , 5. Let Hk = H(pk+1 ⊗ pk).

Lemma 4. Let p ∈ B(Λ2)2Λ0−2δ. Then p satisfies exactly one of the following for

[H5, H4, . . . , H0]:

Category A: [0,0,0,0,0,2]

Category B: [0,0,0,0,1,0]

Category C: [0,0,0,0,2,-2]

Category D: [0,0,0,1,-1,1]

Category E: [0,0,1,-1,1,-1]

Proof. From the affine weight formula (5.1) we have 6H(bg⊗p5)+5H(p5⊗p4)+· · ·+H(p1⊗
p0) = 2. First, note that −2 ≤ H(b⊗ b′) ≤ 2 for all b, b′ ∈ B2. This follows from the fact

that s(b) =
∑n

i=1 xi+
∑n

i=1 x̄i = 2 and by observing that all the sums defining the energy

function are bounded by −s(b) and s(b). Next, H5 ≥ 0 since H(b⊗ b′) ≥ θ′i(b⊗ b′), and

θ′1((2, 2̄)⊗ (i, j)) = 0 if i, j 6= 1̄, θ′2((2, 2̄)⊗ (i, 1̄)) = 0 if i 6= 1̄, 2̄, and θ′1((2, 2̄)⊗ (i, j)) = 0

otherwise. Furthermore, for i ≥ 0 it is true that if Hi+1 < 0 then Hi > 0. To see this,

observe that if Hi+1 < 0 then in particular η′1(pi+2 ⊗ pi+1) = x1,i+1 − x̄1,i+1 < 0, which
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implies that x1,i+1 < x̄1,i+1. Therefore η1(pi+1⊗ pi) = x̄1,i+1− x1,i+1 > 0 and we conclude

that Hi > 0.

Another condition on the Hi’s is that if Hi+1 = 0 then Hi ≥ 0. Suppose, to the

contrary, that Hi+1 = 0 and Hi < 0. Since η1(p1,i+1 ⊗ p1,i) = x̄1,i+1 − x1,i+1 < 0, it must

be true that η′1(p1,i+2 ⊗ p1,i+1) = x1,i+1 − x̄1,i+1 > 0, contradicting the hypothesis that

Hi+1 = 0. Therefore if Hi+1 = 0 then Hi ≥ 0.

The final condition on the Hi’s is that if Hi = −2 then Hi+1 = 2 and, if i > 0, then

Hi−1 = 2. It must be the case that η′1(pi+1 ⊗ pi) = x1,i − x̄1,i ≤ −2 and η1(pi+1 ⊗ pi) =

x̄1,i+1−x1,i+1 ≤ −2. But 0 ≤ x1,i, x̄1,i, x1,i+1, x̄1,i+1 ≤ 2, so x1,i+1 = 2, x̄1,i+1 = 0, x̄1,i = 2,

and x1,i = 0, Therefore η′1(pi+2 ⊗ pi+1) = x1,i+1 − x̄i+1 = 2 so Hi+1 = 2. Furthermore, if

i > 0 then η1(pi ⊗ pi−1) = x̄1,i − x1,i = 2. Summarizing, we have:

(C-I) −2 ≤ Hi ≤ 2,

(C-II) H5 ≥ 0,

(C-III) Hi+1 < 0 =⇒ Hi > 0,

(C-IV) Hi+1 = 0 =⇒ Hi ≥ 0,

(C-V) Hi = −2 =⇒ Hi+1 = 2 and, if i > 0, Hi−1 = 2.

Now let us see which sequences [H5, H4, . . . , H0] satisfy the conditions given above

and the sum condition: 6H5 + 5H4 + · · ·+H0 = 2. The following general observation will

be helpful in our analysis: if Hi+1 > 0 and Hi < 0 then their total contribution to the

energy sum must be positive. We analyze the cases in the following table:

Table 6.4: Lemma 4 cases (part 1).

Hi+1 Hi (i+ 2)Hi+1 + (i+ 1)Hi

1 -1 1
2 -1 i+ 3
2 -2 2

(Note: the pair (1,−2) does not occur by C-V above). Now, conditions C-II and C-III

imply that at most three of the Hi’s can be negative. Therefore we divide our search into

four cases according to the number of signs.

Case i: None of the Hi’s are negative. In this case, there are clearly only two possible
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energy configurations: [0, 0, 0, 0, 0, 2], and [0, 0, 0, 0, 1, 0].

Case ii: One of the Hi’s is negative. If H0 is negative, then H1 must be positive by C-III

and C-IV. By inspection of the table above we see that H0 = −2, and H1 = 2 gives a

sum of 2, and the rest of the Hi’s are 0. Now suppose Hi < 0 for some i > 0. Then

Hi−1, Hi+1 > 0, and the following possible configurations exist:

Table 6.5: Lemma 4 cases (part 2).

Hi+1 Hi Hi−1 (i+ 2)Hi+1 + (i+ 1)Hi + iHi−1

2 -2 2 2i+ 2
1 -1 1 i+ 1
2 -1 1 2i+ 3
1 -1 2 2i+ 1
2 -1 2 3i+ 3

Of the possible configurations, only the second gives the correct energy, only when i = 1.

In this case, all of the remaining Hi’s must be 0. Summarizing, the possible energy con-

figurations in this case are [0, 0, 0, 0, 2,−2], and [0, 0, 0, 1,−1, 1].

Case iii: Two of the Hi’s are negative. In this case, we must have the sign pattern

+−+−+ occurring somewhere in the sequence, or +−+ +−+, or else +−+− on the

left side of the sequence. First, the sign pattern +− + +−+ may be ruled out because

the two +− pairs already contribute at least 2 to the energy sum. Similarly, we can rule

out the sign pattern +−+−+. So the only remaining possibility is that there is +−+−
at the left side of the sequence. Suppose H0 = H1 = −1 and 4H3 + 2H1 − 4 = 2. Then

H3 = H1 = 1, and the rest of the Hi’s are 0. The following table eliminates the rest of

the cases:
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Table 6.6: Lemma 4 cases (part 3).

H3 H2 H1 H0 4H3 + · · ·+H0

2 -2 2 -2 4
2 -2 2 -1 5
1 -1 2 -2 3
2 -1 2 -2 7

So [0, 0, 1,−1, 1,−1] is the only configuration such that two of the Hi’s are negative.

Case iv: Three of the Hi’s are negative. This case does not occur. The only allowable sign

pattern is +−+−+−. Each +− pair contributes at least 1 to the energy sum, which is

too large.

The following technical lemma will be used several times in the proof of the weight

multiplicity formula.

Lemma 5. If Hk = Hk−1 = Hk−2 = 0 and pk+1 = bg then pk = bg.

Proof. Hk = H(bg ⊗ pk) = H((2, 2̄) ⊗ pk) = 0. Suppose that x̄k,2 = 0. Then, in order

for Hk to equal 0, we must have θ2(bg ⊗ pk) = −x̄k,1 + 1 ≤ 0, so x̄k,1 ≥ 1. However,

Hk−1 = 0 so in particular η1(pk ⊗ pk−1) = x̄k,1 − xk,1 ≤ 0, hence 0 < x̄k,1 ≤ xk,1.

Therefore pk = (1, 1̄). However, in this case θ′1(bg, pk) = 1, which is a contradiction since

Hk is assumed to be 0. Therefore it must be the case that x̄k,2 > 0. Now, suppose that

xk,2 = 0. Then, xk,1 = 0 in order for θ′1(bg ⊗ pk) ≤ 0 to be true. So, by reasoning similar

to above, we must have x̄k−1,1 ≥ 0. Since Hk−2 = 0, by reasoning similar to above it

must be true that pk−1 = (1, 1̄), contradicting the assumption that Hk−1 = 0. So in fact,

pk = (2, 2̄) = bg.

Now, we are ready to prove the following:

Lemma 6. For the D
(1)
n -module V (Λ2), n ≥ 4, we have

dim(V (Λ2))2Λ0−2δ =
n2(5n− 1)

2
.
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Proof. Let si =
∑5

k=0 xi,k, s̄i =
∑5

k=0 x̄i,k. Then:

wt(p) = Λ2 +
5∑

k=0

wt(pk)

= Λ2 +
5∑

k=0

(x̄1,k − x1,k + x̄2,k − x2,k)Λ0

+
n−2∑
i=1

5∑
k=0

(xi,k − x̄i,k + x̄i+1,k − xi+1,k)Λi

+
5∑

k=0

(xn−1 − x̄n−1 + x̄n − xn)Λn−1

+
5∑

k=0

(xn−1 − x̄n−1 + xn − x̄n)Λn

= Λ2 + (s̄1 − s1 + s̄2 − s2)Λ0

+
n−2∑
i=1

(si − s̄i + s̄i+1 − si+1)Λi + (sn−1 − s̄n−1 + s̄n − sn)Λn−1

+ (sn−1 − s̄n−1 + sn − s̄n)Λn,

so we have, since wt(p) = 2Λ0,

2Λ0 − Λ2 = (s̄1 − s1 + s̄2 − s2)Λ0

+
n−2∑
i=1

(si − s̄i + s̄i+1 − si+1)Λi + (sn−1 − s̄n−1 + s̄n − sn)Λn−1

+ (sn−1 − s̄n−1 + sn − s̄n)Λn.

By linear independence of the Λi’s we see that sn−1 − s̄n−1 + sn − s̄n = 0 and sn−1 −
s̄n−1 + s̄n − sn = 0. Therefore, by subtracting these equations, we see 2sn − 2s̄n = 0 so

sn = s̄n. By substitution, we see that sn−1 = s̄n−1. Therefore, proceeding inductively, we

conclude that si = s̄i, for 2 < i ≤ n, s2 = s̄2 − 1, and s1 = s̄1 − 1.

Category A: The paths in this category have [Hi]
5
i=0 = [0, 0, 0, 0, 0, 2].

For paths in category A, k = 0 is the greatest k such that Hk 6= 0. Therefore, by

Lemma 5, all pk with k > 2 must be equal to bg. We must have x̄2,2 > 0. Otherwise, it

would be the case that x̄1,2 > 0 since θ2(bg⊗p2) = −x̄1,2 +1 ≤ H(bg⊗p2) = 0. If x̄1,2 > 0
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and x1,2 = 0 then η1(p3 ⊗ p2) > 0, contradicting the assumption that H2 = 0. However,

H((2, 2̄)⊗ (1, 1̄)) = 1, so we see that x̄2,2 > 0. Also, x1,2 = 0 or H(bg⊗p2) = 1. Therefore

we can choose p2 to be (i, 2̄), i > 1 or (̄i, 2̄). Every i > 1 gives H(bg ⊗ (i, 2̄)) = 0 and

every i gives H(bg ⊗ (̄i, 2̄)) = 0.

Now, it must be the case that x̄1,1 > 0 or p2 = (2, 2̄) and x̄2,1 > 0. For, if x̄1,1 = 0

then θ1(p2⊗p1) = x̄1,2 ≤ H(p2⊗p1) = 0 so x̄1,2 = 0. Therefore η2(p2⊗p1) = x̄2,2−x2,2 ≤
H(p2 ⊗ p1) = 0, and 0 < x̄2,2 ≤ 2, 0 ≤ x2,2 ≤ 1 so x̄2,2 = x2,2 = 1.

If x̄1,1 = 0 then p2 = (2, 2̄), p1 = (i, 2̄), p0 = (̄i, 1̄), or p2 = (2, 2̄), p1 = (̄i, 2̄), p0 =

(i, 1̄), i > 1. If p1 = (i, 2̄), p0 = (̄i, 1̄) and i = 1 then H0 = −1, otherwise H0 = 0, which

rules out this case. If p1 = (i, 2̄), p0 = (i, 1̄), i > 1 and i = n then H0 = 0, otherwise

H0 = 1, which rules out this case. So for a path to be in category A, we must have

x̄1,1 > 0.

Now suppose it is the case that p2 = (i, 2̄), i > 1. Then p1 = (̄i, 1̄), p0 = (j, j̄), or

p1 = (j, 1̄), p0 = (̄i, j̄), or p1 = (̄j, 1̄), p0 = (̄i, j). If p1 = (̄i, 1̄), p0 = (j, j̄), i > 1, then

H1 = 0 and H0 = 2 if and only if i ≤ j < n. If p1 = (j, 1̄), p0 = (̄i, j̄), then H0 = 0 if

j = 1 and H0 = 1 otherwise, which rules out this case. Finally, if p1 = (̄j, 1̄), p0 = (̄i, j)

then H1 = 0 and H0 = 2 if and only if 1 ≤ j < i ≤ n.

Finally, suppose it is the case that p2 = (̄i, 2̄). Then H1 = 0 if and only if p1 =

(̄j, 1̄), 1 ≤ j < i ≤ n or p1 = (n, 1̄), i = n. However H0 = 2 if and only if it is the case

that p1 = (̄j, 1̄), p0 = (i, j). We summarize the above in the following table.

Table 6.7: Category A cases.

p2 p1 p0 Conditions Count

(i, 2̄) (̄i, 1̄) (j, j̄) 1 < i ≤ j < n (n−2)(n−1)
2

(i, 2̄) (̄j, 1̄) (̄i, j) 1 ≤ j < i ≤ n n(n−1)
2

(̄i, 2̄) (̄j, 1̄) (i, j) 1 ≤ j < i ≤ n n(n−1)
2

So the total number of paths in category A is (n−1)(3n−2)
2

.

Category B: Paths in this category have energy [0, 0, 0, 0, 1, 0]. By Lemma 5, it must
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be the case that pk = bg, k > 4. First suppose that p3 = (i, 2̄), i > 1 and p2 = (j, 1̄).

Then H2 = 0 if and only if i < j ≤ n. If p1 = (̄i, j̄) and p0 = (k, k̄), 1 < i < j ≤ n then

H0 > 0 which rules out this case. Similarly, if p1 = (̄i, k̄) and p0 = (k, j̄), 1 < i < j ≤ n

then H0 > 0. The following table summarizes the remaining cases, and the sufficient and

necessary conditions for them to be in category B. They are also distinct, since we make

j 6= k in the second case in the table below.

Table 6.8: Category B cases (part 1).

p3 p2 p1 p0 Conditions Count

(i, 2̄) (j, 1̄) (k, k̄) (̄i, j̄) 1 < i < j ≤ n
∑n−2

i=1 i
2 =

i ≤ k < n (n−1)(n−2)(2n−3)
6

(i, 2̄) (j, 1̄) (̄j,k) (̄i, k̄) 1 < i < j ≤ n (n−1)(n−2)2

2

1 < k ≤ n, j 6= k

(i, 2̄) (j, 1̄) (̄j, n̄) (̄i,n) 1 < i < j ≤ n (n−1)(n−2)
2

(i, 2̄) (j, 1̄) (̄i,k) (̄j, k̄) 1 ≤ k < i < j ≤ n n(n−1)(n−2)
6

Now suppose it is the case that p3 = (i, 2̄), i > 1, p2 = (̄j, 1̄). If p1 = (̄i, j) and

p0 = (k, k̄), i > 1 then H0 > 0 unless i = j ≤ k. However, if this is the case then

i = j = n, or H2 > 0. But if j = k = n then we have p1 = p0 = (n, n̄) which is not

in B2, which rules out this case. If p1 = (j, k̄) and p0 = (̄i,k), i > 1, then i = j = k,

or H0 > 0. But then i = k = n or else H2 = 2. Therefore p1 = p0 = (n, n̄), which was

already ruled out. Finally, suppose p1 = (̄i, k̄), i > 1, p2 = (j,k). Then i = j = k = n or

H0 > 0. However, then H1 = 2, which rules out this case.

Now suppose it is the case that p2 = (̄i, 1̄), i > 1. If p1 = (j,k), j ≤ k then i = k = n,

or H1 = 2, which is included in case 3 in the table below. If p1 = (̄j, k̄) then j = k = n,

or H0 > 0. However, if j = k = n then H1 = 2, which rules out this case. The remaining

cases are all in category B, and are summarized in the following table, along with the

sufficient and necessary conditions for the paths to be in category B. Notice that there

is no overlap between each of the cases.

Now suppose it is the case that p3 = (̄i, 2̄). Then H2 = 0 if and only if p2 = (̄j, 1̄), 1 ≤
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Table 6.9: Category B cases (part 2).

p3 p2 p1 p0 Conditions Count

(i, 2̄) (̄j, 1̄) (k, k̄) (̄i, j) 1 < i < k < j ≤ n (n−1)(n−2)(n−3)
6

(i, 2̄) (̄j, 1̄) (̄i,k) (j, k̄) 1 ≤ k ≤ i < j ≤ n
∑n−2

i=1 i(n− i) =

i > 1 (n−1)(n−2)(n+3)
6

(i, 2̄) (n̄, 1̄) (n,k) (̄i, k̄) 1 < i ≤ n (n− 1)2

1 < k ≤ n

(i, 2̄) (̄i, 1̄) (j, k̄) (̄j,k) 1 ≤ j ≤ k < i ≤ n
∑n−1

i=1 i(n− i) =
n(n+1)(n−1)

6

j < i ≤ n or p2 = (n, 1̄), i = n as we have previously observed for paths in category

A. Suppose p2 = (̄j, 1̄), 1 ≤ j < i ≤ n. If p1 = (k, l), 1 ≤ k, l ≤ n then H1 = 2 which

rules out this case. If p1 = (i, k̄), p0 = (j,k) then H0 > 0 which rules out this case. If

p1 = (j, k̄), p0 = (i,k) or p1 = (i, k̄), p0 = (j,k) then H0 > 0 unless k = n. However, then

H1 = 2, which rules out this case. If p1 = (k, k̄), p0 = (i, j), then H0 > 0, which rules out

this case. Therefore, no paths in category B have p3 = (̄i, 2̄), p2 = (̄j, 1̄).

Now suppose it is the case that p3 = (n̄, 2̄), p2 = (n, 1̄). If p1 = (i, j), p0 = (̄i, j̄) then

H1 = 2 which rules out this case. The remaining cases are all in category B, and are

summarized in the following table, along with the sufficient and necessary conditions for

the paths to be in category B. Notice that there is no overlap between the two cases.

Table 6.10: Category B cases (part 3).

p3 p2 p1 p0 Conditions Count

(n̄, 2̄) (n, 1̄) (i, j̄) (̄i, j) 1 ≤ i ≤ j ≤ n n2+n−4
2

i 6= n or j 6= n
i 6= 1 or j 6= n

(n̄, 2̄) (n, 1̄) (n̄, n̄) (n,n) None 1

Now suppose it is the case that p3 = (2, 2̄), p2 = (i, 2̄). Then i > 1 since otherwise
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H2 = 1. And p1 cannot be (̄j, 1̄), since otherwise H1 = 0. If p1 = (j, 1̄) then j ≤ i since

otherwise H1 = 0. But then p0 = (̄i, j), which implies that H0 > 0 contrary to hypothesis,

which rules out this case.

Now suppose it is the case that p2 = (̄i, 2̄). We can assume i > 1 since we have

previously analyzed the case where p2 = (2̄, 1̄). If p1 = (̄j, 1̄) then p0 = (i, j) which

implies that H0 > 0 contrary to hypothesis, which rules out this case. If p1 = (j, 1̄) then

p0 = (i, j̄) which implies that H0 > 0 unless j = 1 which rules out this case unless j = 1.

If p1 = (̄j, 1̄) then j ≥ i since otherwise H1 = 0 contrary to hypothesis. In this case

p0 = (i, j) which implies H0 > 0 contrary to hypothesis, which rules out this case. If

p1 = (i, j̄), 1 < i, i 6= n or j 6= n then p0 = (̄i, j) which implies that H0 > 0 contrary to

hypothesis, which rules out this case. The remaining cases are all in category B, and are

summarized in the following table, along with the sufficient and necessary conditions for

the paths to be in category B. Notice that there is no overlap among the cases since we

make i 6= j in the first line.

Table 6.11: Category B cases (part 4).

p3 p2 p1 p0 Conditions Count

(2, 2̄) (i, 2̄) (̄i, j) (̄j, 1̄) 2 < i ≤ n, 1 < j ≤ n (n− 2)2

i 6= j

(2, 2̄) (i, 2̄) (̄i, n̄) (n, 1̄) 2 < i ≤ n n− 2

(2, 2̄) (i, 2̄) (j, j̄) (̄i, 1̄) 1 < i ≤ n, 1 ≤ j < n n(n− 2)
i 6= 2 or j 6= 2

(2, 2̄) (̄i, 2̄) (j, j̄) (i, 1̄) 1 ≤ j < i ≤ n n(n−1)
2

(2, 2̄) (n̄, 2̄) (j,n) (̄j, 1̄) 1 < j ≤ n n− 1

After adding the number of paths in each possible case we get 3n3−2n2−n−2
2

paths in

category B.

Category C: Paths in this category have energy [0, 0, 0, 0, 2,−2]. Since H0 = −2 we

must have p1 = (1,1), p0 = (1̄, 1̄). Suppose p3 = (i, 2̄) which implies p2 = (̄i, 1̄). Then
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i > 1 or else H3 > 0 contrary to hypothesis. Otherwise, if p3 = (̄i, 2̄) then p2 = (i, 1̄) and

we must have i = n or else H2 > 0 contrary to hypothesis. All the cases are summarized

following table, along with the sufficient and necessary conditions for the paths to be in

category C.

Table 6.12: Category C cases.

p3 p2 p1 p0 Conditions Count

(i, 2̄) (̄i, 1̄) (1,1) (1̄, 1̄) 1 < i ≤ n n− 1

(n̄, 2̄) (n, 1̄) (1,1) (1̄, 1̄) None 1

The total number of paths in this category is n.

Category D: Paths in this category have energy [0, 0, 0, 1,−1, 1]. Since H1 = −1 we must

have x2,1 > 0 and x̄1,1 > 0. Suppose that p4 = (i, 2̄) and p3 = (j, 1̄), i < j. If p0 = (k, k̄)

and p2 = (̄i,1), p1 = (̄j, 1̄) then H1 = 0, which rules out this case. If p0 = (̄i, k̄) and

p2 = (̄j,1), p1 = (k, 1̄) then H1 = 0, which rules out this case. If p0 = (̄j,k) and

p2 = (̄i,1), p1 = (k̄, 1̄) then k < i, since otherwise H1 = 0. But then k < i < j, so

H0 = 2, which rules out this case. If p0 = (̄j,k) and p2 = (k̄,1), p1 = (̄i, 1̄) then H0 = 2

since i < j, which rules out this case. If p0 = (̄j, k̄) and p2 = (k,1), p1 = (̄i, 1̄) then

j < k, since otherwise H2 = 2. But then H0 = 2, since i < j < k, which rules out this

case. If p0 = (̄j, k̄) and p2 = (̄i,1), p1 = (k, 1̄) then H1 = 0 unless i = k = n, which is

counted in line 5 of the table below. The remaining cases are all in category D, and are

summarized in the following table, along with the sufficient and necessary conditions for

the paths to be in category D. Notice that there is no overlap among the cases.

Now suppose that p4 = (i, 2̄) and p3 = (̄j, 1̄). Suppose p2 = (k̄,1), k 6= i. Then j > k

since otherwise H1 = 2. If p1 = (k, 1̄) or (j, 1̄) then H1 = 0 unless k = n, which is

ruled out because k < j ≤ n, so p1 = (̄i, 1̄). But in this case p0 = (j,k), which implies

that H0 = 2. Therefore p2 6= (k̄,1), k 6= i. Now suppose p2 = (̄i,1). Then j > i since

otherwise H1 = 2. If p1 = (k, 1̄) or (j, 1̄) then H1 = 0 unless i = n, which is ruled out

because i < j ≤ n, so p1 = (k̄, 1̄). But in this case p0 = (j,k), which implies that H0 = 2.

Therefore p2 6= (̄i,1). Now suppose p2 = (k,1), j 6= k. Then H2 = 2. Therefore p2 = (j,1)
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Table 6.13: Category D cases (part 1).

p4 p3 p2 p1 p0 Conditions Count

(i, 2̄) (j, 1̄) (̄j,1) (̄i, 1̄) (k, k̄) 1 ≤ k < i < j ≤ n n(n−1)(n−2)
6

(i, 2̄) (j, 1̄) (k,1) (k̄, 1̄) (̄i, j̄) 1 < i < j < k ≤ n (n−1)(n−2)(n−3)
6

(i, 2̄) (j, 1̄) (k,1) (̄j, 1̄) (̄i, k̄) 1 < i < j < k ≤ n (n−1)(n−2)(n−3)
6

(i, 2̄) (j, 1̄) (̄j,1) (k̄, 1̄) (̄i,k) 1 < i < k < j ≤ n (n−1)(n−2)(n−3)
6

(i, 2̄) (j, 1̄) (n̄,1) (n, 1̄) (̄i, j̄) 1 < i < j ≤ n (n−1)(n−2)
2

(i, 2̄) (j, 1̄) (k̄,1) (̄j, 1̄) (̄i,k) 1 < i < j < k ≤ n (n−1)(n−2)(n−3)
6

and j = n, since otherwise H2 = 2. If p1 = (k, 1̄) then H1 = 0.

Now suppose that p4 = (̄i, 2̄). Then H3 = 0 if and only if p3 = (̄j, 1̄), 1 ≤ j < i or

p3 = (n, 1̄), i = n. Suppose it is the case that p3 = (̄j, 1̄), 1 ≤ j < i. If p2 = (k,1), k 6= n,

then H2 = 2, which rules out this case. If p2 = (n,1), then j = n, since otherwise H2 = 2.

However, this is impossible since j < i ≤ n, which rules out this case. So we must have

p2 = (k̄,1). Then k < j, since otherwise H2 = 2. But then p1 = (i, 1̄), (j, 1̄), or (k, 1̄),

hence H1 = 0 unless k = n. But k < j ≤ n, which rules out this case.

Now suppose that p4 = (n̄, 2̄), and p3 = (n, 1̄). Then p2 = (̄j,1), since otherwise

H2 = 2. But then p1 = (n, 1̄), j = n, since otherwise H1 = 0. The remaining cases are all

in category D, and are summarized in the following table, along with the sufficient and

necessary conditions for the paths to be in category D. Notice that there is no overlap

among the cases.

Table 6.14: Category D cases (part 2).

p4 p3 p2 p1 p0 Conditions Count

(i, 2̄) (n̄, 1̄) (n,1) (k̄, 1̄) (̄i,k) 1 < i < k ≤ n (n−1)(n−2)
2

(i, 2̄) (n̄, 1̄) (n,1) (̄i, 1̄) (k, k̄) 1 ≤ k < i ≤ n n(n−1)
2

(n̄, 2̄) (n, 1̄) (n̄,1) (n, 1̄) (j, j̄) 1 ≤ j < n n− 1
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Now suppose that p4 = (2, 2̄). If p2 = (1, 1̄) then H1 = 0, which rules out this case.

If p1 = (1̄, 1̄) then H0 = 2, which rules out this case. Therefore x̄1,0 > 0, in order for

wt(p) to be 2Λ0 − Λ2. Suppose that p3 = (i, 2̄). If p2 = (̄i,1), p1 = (j, 1̄), p0 = (̄j, 1̄)

then i = j = n, since otherwise H1 = −1. This case is included in line 5 of the table

below. Now suppose that p3 = (̄i, 2̄). Then p2 = (̄j,1), j < i or p2 = (n,1), i = n. If

p2 = (̄j,1), j < i then p1 can be (i, 1̄) or (j, 1̄). But then we must have j = n, since

otherwise H1 = 0, but that is impossible since j < i ≤ n, which rules out this case. The

remaining cases are all in category D, and are summarized in the following table, along

with the sufficient and necessary conditions for the paths to be in category D. Notice

that there is no overlap among the cases.

Table 6.15: Category D cases (part 3).

p4 p3 p2 p1 p0 Conditions Count

(2, 2̄) (i, 2̄) (j,1) (̄j, 1̄) (̄i, 1̄) 1 < i < j ≤ n (n−1)(n−2)
2

(2, 2̄) (i, 2̄) (j,1) (̄i, 1̄) (̄j, 1̄) 1 < i < j ≤ n (n−1)(n−2)
2

(2, 2̄) (i, 2̄) (̄j,1) (̄i, 1̄) (j, 1̄) 1 < i < j ≤ n (n−1)(n−2)
2

(2, 2̄) (i, 2̄) (̄i,1) (̄j, 1̄) (j, 1̄) 1 < j < i ≤ n (n−1)(n−2)
2

(2, 2̄) (i, 2̄) (n̄,1) (n, 1̄) (̄i, 1̄) 1 < i ≤ n n− 1

(2, 2̄) (n̄, 2̄) (n,1) (̄i, 1̄) (i, 1̄) 1 < i ≤ n n− 1

Therefore, the total number of paths in category D is (n−1)(5n2−n+6)
6

.

Category E: Paths in this category have energy [0, 1,−1, 1,−1]. Therefore,

x3,1, x1,1 > 0 and x̄2,1, x̄0,1 > 0. Suppose that p5 = (i, 2̄), p4 = (j, 1̄), p5 = (k,1). Then

i < j < k, since otherwise H4 = 1 or H3 = 2. Then p2 = (k̄, 1̄), p1 = (̄j,1), p0 = (̄i, 1̄),

since otherwise H0 = 0 or H1 = 2.

Now suppose that p5 = (i, 2̄), p4 = (j, 1̄), p5 = (k̄,1). Then i < j, since otherwise

H4 = 1. Then p2 = (k, 1̄), p1 = (̄j,1), p0 = (̄i, 1̄), since otherwise H0 = 0 or H1 = 2. But
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then k = n, since otherwise H2 = 0.

Now suppose that p5 = (i, 2̄), p4 = (̄j, 1̄). If p3 = (k̄,1) then k < j, since otherwise

H3 = 2. Then p2 = (k, 1̄), p1 = (j,1), p0 = (̄i, 1̄), since otherwise H0 = 0 or H1 = 2.

But then k = n in order for H2 to be −1. However k < j ≤ n, which rules out this

case. If p5 = (i, 2̄), p4 = (̄j, 1̄), p3 = (k,1) then j = k = n, since otherwise H3 = 2. Then

p2 = (n̄, 1̄), p1 = (n,1), p0 = (̄i, 1̄), or p2 = (n, 1̄), p1 = (n̄,1), p0 = (̄i, 1̄) since otherwise

H0 = 0 or H1 = 2. However, if p2 = (n, 1̄), p1 = (n̄,1), p0 = (̄i, 1̄) then H2 = 0, which

rules out this case. Therefore p2 = (n̄, 1̄), p1 = (n,1), p0 = (̄i, 1̄).

Now suppose that p5 = (̄i, 2̄). Then H4 = 0 if and only if p4 = (̄j, 1̄), j < i or

p4 = (n, 1̄), i = n. Suppose it is the case that p4 = (̄j, 1̄), j < i. If p3 = (k,1) then j = n,

since otherwise H3 = 2. But j < i ≤ n, which rules out this case. Now suppose that

p3 = (k̄,1). Then k < j, since otherwise H3 = 2. But then, p2 = (i, 1̄), (j, 1̄), or (k, 1̄),

which implies that k = n since otherwise H2 = 0. But k < j ≤ n, which rules out this

case. Therefore p5 = (n̄, 2̄), p4 = (n, 1̄). It cannot be the case that p3 = (k,1), because

in that case H3 = 2. Therefore p3 = (k̄,1). But then k = n, since otherwise H3 = 2. Now

suppose that p2 = (̄l,1). Then l < n, since otherwise H2 = 0. Then p1 = (n,1) or (l,1).

In either case, H1 = 0 since l < n, which rules out this case. Therefore p2 = (l,1). This

implies l = n, since otherwise H1 = 0. It cannot be the case that p1 = (m,1) since then

H1 = 2. So put p1 = (m̄,1), p0 = (m, 1̄). Then m = n, since otherwise H0 = 0. All the

cases are summarized following table, along with the sufficient and necessary conditions

for the paths to be in category E.

Table 6.16: Category E cases (part 1).

p5 p4 p3 p2 p1 p0 Conditions Count

(i, 2̄) (j, 1̄) (k,1) (k̄, 1̄) (̄j,1) (̄i, 1̄) 1 < i < j < k ≤ n (n−1)(n−2)(n−3)
6

(i, 2̄) (j, 1̄) (n̄,1) (n, 1̄) (̄j,1) (̄i, 1̄) 1 < i < j ≤ n (n−1)(n−2)
2

(i, 2̄) (n̄, 1̄) (n,1) (n̄, 1̄) (n,1) (̄i, 1̄) 1 < i ≤ n n− 1

(n̄, 2̄) (n, 1̄) (n̄,1) (n, 1̄) (n̄,1) (n, 1̄) None 1

Now suppose that p5 = (2, 2̄), p4 = (i, 2̄). If p3 = (j,1) then i < j, since otherwise
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H3 = 2. Then x̄2,1, x̄0,1 = 2, or x̄1,1 = 1 in order for wt(p) to be 2Λ0 − Λ2. It must be

the case that p2 = (̄j, 1̄), p1 = (̄i,1), p0 = (1̄, 1̄), since otherwise H1 = 2 or H0 = 0. Now

suppose that p3 = (̄j,1). Then j > 1, since otherwise H2 = 0. Therefore x̄2,1, x̄0,1 = 2, or

x̄1,1 = 1 in order for wt(p) to be 2Λ0 −Λ2. Then p2 = (j, 1̄), p1 = (̄i,1), p0 = (1̄, 1̄), since

otherwise H1 = 2 or H0 = 0. But then j = n, since otherwise H2 = 0.

Now suppose that p5 = (2, 2̄), p4 = (̄i, 2̄). If p3 = (̄j,1), then 1 < j < i since otherwise

H3 = 2 or H2 = 2. Since j > 1, it must be the case that x̄2,1, x̄0,1 = 2, or x̄1,1 = 1 in

order for wt(p) to be 2Λ0 − Λ2. If p2 = (i, 1̄) or (j, 1̄) then H2 = 0, since j < i ≤ n.

If p2 = (1̄, 1̄) then H2 = 0, which rules out this case. Therefore p2 = (j,1). But then

i = j = n since otherwise H3 = 2. If p2 = (k, 1̄) then H2 = 0. Therefore p2 = (k̄, 1̄).

But then k = n, since otherwise H2 = 0. If p1 = (1̄,1), then p0 = (n, 1̄), which implies

that H0 = 0. Therefore p1 = (n,1), p0 = (1̄, 1̄). All the cases are summarized following

table, along with the sufficient and necessary conditions for the paths to be in category

E. Therefore the number of paths in category E is (n+1)(n2−n+6)
6

.

Table 6.17: Category E cases (part 2).

p5 p4 p3 p2 p1 p0 Conditions Count

(2, 2̄) (i, 2̄) (j,1) (̄j, 1̄) (̄i,1) (1̄, 1̄) 1 < i < j ≤ n (n−1)(n−2)
2

(2, 2̄) (i, 2̄) (n̄,1) (n, 1̄) (̄i,1) (1̄, 1̄) 1 < i ≤ n n− 1

(2, 2̄) (n̄, 2̄) (n,1) (n̄, 1̄) (n,1) (1̄, 1̄) None 1

Combining the results from categories A through E gives the following cubic polyno-
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mial for the weight multiplicity of 2Λ0 − 2δ in V (Λ2):

dim(V (Λ2)2Λ0−2δ) =
9n2 − 15n+ 6

6
+

9n3 − 6n2 − 3n− 6

6

+
6n

6
+

5n3 − 6n2 + 7n− 6

6
+
n3 + 5n+ 6

6

=
15n3 − 3n2

6

=
n2(5n− 1)

2
.

Finally, we have the following:

Theorem 14. The multiplicity of the root −2α−1− 3δ of the Kac-Moody algebra HD
(1)
n ,

n ≥ 4 is given by the polynomial n(n+1)(n+8)
6

.

Proof. We have:

X(2Λ0 − 3δ) =
n(n+ 1)(n+ 8)

6
+

4n2(n− 1)

2
+
n2(n+ 3)

2

=
n(n+ 1)(n+ 8)

6
+
n2(5n− 1)

2
.

The multiplicity of 2Λ0 − 3δ in V (Λ2 − δ) is equal to:

dim(V (Λ2)2Λ0−2δ) =
n2(5n− 1)

2
.

Therefore, by equation (6.1):

mult(−2α−1 − 3δ) = X(2Λ0 − 3δ)− dim(V (Λ2 − δ)2Λ0−3δ)

=
n(n+ 1)(n+ 8)

6
+
n2(5n− 1)

2
− n2(5n− 1)

2

=
n(n+ 1)(n+ 8)

6
.
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6.3 Concluding Remarks

We have so far approached the multiplicities of the HD
(1)
n root −kα−1 − lδ by fixing k, l

and letting n vary. All the formulas we have seen have been polynomials in n of degree

less than l, though this conjecture has not been proven. Another approach would be to

fix n, k and letting l vary. It was conjectured by Frenkel that mult(α) ≤ pn(1 − (α|α)
2

),

for a hyperbolic Kac-Moody algebra of rank n + 2, though this hase been disproven in

the case HC
(1)
2 ([34]). Using the Maple code given in Appendix A, we computed the root

multiplicities of the HD
(1)
4 root −2α−1−kδ, for , and for −2α−1−α0−kδ for various k. We

summarize the results in Tables 6.18, 6.19. In our case, there is no observed discrepancy

with Frenkel’s conjecture.

This data was computed using two methods. For α ≥ −2α−1− 6δ, we used procedure

mult from Appendix A. This approach required computing the multiplicities of all roots

≥ −2α−1 − 6δ. For this data set, we observed that the root multiplicity depends only

on the degree of the root and the integer 1− (α|α)
2
. This led to a new procedure, mult 2

in Appendix A, which allowed us to compute the remainder of tables 6.18 and 6.19, and

make the following conjecture:

Conjecture 1. Let α be a root of HD
(1)
4 of degree 2. Then:

mult(α) = p̃

(
1− (α|α)

2

)
,

where

∞∑
k=0

p̃(k)qk =

(
∞∑
k=0

p4(k)qk

)
(1−3q8 + 7q10−15q12 + 30q14−54q16 + 92q18−154q20 + · · · )
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Table 6.18: Multiplicities of roots of the form −2α−1 − kδ. This data is conjectural if
k > 6.

α 1− (α|α)
2

mult(α) p4(1− (α|α)
2

)

−2α−1 − 2δ 1 4 4
−2α−1 − 3δ 3 40 40
−2α−1 − 4δ 5 252 252
−2α−1 − 5δ 7 1240 1240
−2α−1 − 6δ 9 5168 5180
−2α−1 − 7δ 11 19116 19208
−2α−1 − 8δ 13 64424 64960
−2α−1 − 9δ 15 201548 203984
−2α−1 − 10δ 17 592692 602348
−2α−1 − 11δ 19 1654204 1688400
−2α−1 − 12δ 21 4413292 4524760

Table 6.19: Multiplicities of roots of the form −2α−1−α0− kδ. This data is conjectural
if k > 5.

α 1− (α|α)
2

mult(α) p4(1− (α|α)
2

)

−2α−1 − α0 − δ 0 1 1
−2α−1 − α0 − 2δ 2 14 14
−2α−1 − α0 − 3δ 4 105 105
−2α−1 − α0 − 4δ 6 574 574
−2α−1 − α0 − 5δ 8 2577 2580
−2α−1 − α0 − 6δ 10 10073 10108
−2α−1 − α0 − 7δ 12 35461 35693
−2α−1 − α0 − 8δ 14 114923 116090
−2α−1 − α0 − 9δ 16 348086 353017
−2α−1 − α0 − 10δ 18 996192 1014580
−2α−1 − α0 − 11δ 20 2716178 2778517
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Appendix A

Maple Code

In the appendix, we give the Maple code we used to compute root multiplicities of HD
(1)
4 .

Procedure: height.

Input: b ∈ Q.

Output: ht(b). Note: The “inline” option is used for greater efficiency.

height:=proc(b) option inline;

add(b[i],i=1..nops(b))

end proc:

Procedure: get predecessor greater.

Input: a, b ∈ Q−, a > b.

Output: The element c ∈ Q− which is a predecessor of a in some well-ordering of Q− ∩
(b + Q+). I.e., if Q− = {µ0, µ1, µ2, . . . } is an enumeration of Q−, and a = µi then the

output is µj < b where j is the greatest index < i satisfying this property.

get_predecessor_greater:=proc(a,b) local c,n,i,h,j,s,k;

c:=a;

n:=nops(c);

j:=n-1;

s:=1+c[n];

while j>0 and c[j]=b[j] or (s>0 and c[j]<>b[j]) do s:=s+c[j];

j:=j-1 end do;

for k from n to j+1 by -1 do
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if s<=b[k] then

c[k]:=b[k];

s:=s-b[k]

else

c[k]:=s;

s:=0

end if

end do;

if j<>0 then c[j]:=c[j]-1 end if;

c

end proc:

Procedure: F.

Input: v, w ∈ C6.

Output: The complex number
(∑4

i=−1 viαi|
∑4

j=−1wjαj
)
.

F:=proc(v,w) option inline;

w[1]*(2*v[1]-v[2])+w[2]*(-v[1]+2*v[2]-v[4])+w[3]*(2*v[3]-v[4])

+w[4]*(-v[2]-v[3]+2*v[4]-v[5]-v[6])

+w[5]*(-v[4]+2*v[5])+w[6]*(-v[4]+2*v[6])

end proc:

Procedure: mult.

Input: a ∈ Q+.

Output: The multiplicity of a in HD
(1)
4 , if a is a root, 0 otherwise.

Note: The global constant rh is the vector ρ. The table ta is a global variable that stores

the previously encountered values of mult to minimize unnecessary recursion.

ta:=table();

rh:=[-6, -13, -10, -21, -10, -10];

mult:=proc(a) local i,s,b,k,v,r,t,l,d; global ta,rh;

if type(a,[integer$nops(a)]) then i:=igcd(op(a))

else return 0

end if;

if assigned(ta[a]) then return ta[a] end if;

if height(a)=1 then ta[a]:=1; return 1 end if;
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v:=F(a,a-2*rh);

if v=0 then ta[a]:=0; return 0 end if;

s:=0;

b:=-get_predecessor_greater(-a,-a);

while height(b)>0 do

r:=igcd(op(b));

t:=igcd(op(a-b));

d:=F(b,a-b)*add(mult(b/j)/j,j=1..r)*

add(mult((a-b)/j)/j,j=1..t);

s:=s+d;

b:=-get_predecessor_greater(-b,-a)

end do;

s:=s/v;

if i=1 then ta[a]:=s; return s end if;

for l from 2 to i do

s:=s-mult(a/l)/l

end do;

ta[a]:=s;

s

end proc:

Procedure:mult 2 .

Input:a ∈ Q+.

Output:The multiplicity of a in HD
(1)
4 assuming that this depends only on the degree of

a and 1− (a|a)
2

, (cf. Conjecture 1).

ta:=table();

rh:=[-6, -13, -10, -21, -10, -10];

mult_2:=proc(a) local i,s,b,k,v,r,t,l,d,h; global ta,da,rh;

if type(a,[integer$nops(a)]) then i:=igcd(op(a))

else return 0

end if;

h:=1-F(a,a)/2;

if h<0 then return 0 end if;

if height(a)=1 then ta[a[1],h]:=1; return 1 end if;
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if assigned(ta[a[1],h]) then return ta[a[1],h] end if;

v:=F(a,a-2*rh);

if v=0 then return 0 end if;

s:=0;

b:=-get_predecessor_greater(-a,-a);

while height(b)>0 do

r:=igcd(op(b));

t:=igcd(op(a-b));

d:=F(b,a-b)*add(mult_2(b/j)/j,j=1..r)*

add(mult_2((a-b)/j)/j,j=1..t);

s:=s+d;

b:=-get_predecessor_greater(-b,-a)

end do;

s:=s/v;

if i=1 then ta[a[1],h]:=s; return s end if;

for l from 2 to i do

s:=s-mult_2(a/l)/l

end do;

ta[a[1],h]:=s;

s

end proc:
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