
ABSTRACT

ZHANG, YUAN. A Partially Observable Markov Decision Process for Optimal Design of
Surveillance Policies for Bladder Cancer. (Under the direction of Dr. Brian Denton.)

Bladder Cancer is the fourth most common cancer in men and eighth in women in the

United States. For patients with a history of bladder cancer, the probability of recurrence

at one year ranges from 15% to 70%; and the probability of progression to high risk muscle

invasive bladder cancer at 5 years ranges from 7% to 40%, depending on the patient’s par-

ticular risk factors. Cystoscopy is regarded as the gold standard for surveillance of bladder

cancer recurrence and progression. However, no consensus exists about the best frequency of

follow-up cystoscopy for patients with a history of low grade Ta disease. In this thesis we use

stochastic models to investigate policies for bladder cancer surveillance. First, we formulate

a partially observable Markov model. The model includes states defining stages of bladder

cancer, the effects of treatment, death from bladder cancer, and all other cause mortality. Sim-

ulation is used to compare published recommendations for bladder cancer surveillance policies

based on expected quality adjusted life years (QALYs) over the patient’s lifetime. We compare

the American Urological Association (AUA) guideline, the European Association of Urology

(EAU) guideline, and several other policies. Next, we extend our model to a partially ob-

servable Markov decision process (POMDP) to determine the optimal surveillance policy. We

present a series of computational experiments. Results show that age and comorbidity sig-

nificantly affect the optimal surveillance policy. We find that younger patients should have

more intensive surveillance than older patients and patients having comorbidity should have

less intensive surveillance. We perform sensitivity analysis to evaluate the influence of model

input parameters. Among them we find that disutility of cystoscopy has a significant influence

on the optimal surveillance policy. In general, the lower the disutility of cystoscopy, the more

intensively surveillance should be performed. Finally, we extend our initial POMDP model

to incorporate a new urine based biomarker test into the surveillance process. We study the

incremental benefit of the optimal policy that includes a biomarker test and cystoscopy over

the optimal policy based on cystoscopy alone. We also compare the optimal policy to easy-

to-implement heuristic policies using a biomarker to direct the frequency of cystoscopies. We

find that introduction of a biomarker does not significantly improve the optimal policy based

on cystoscopy alone; however, biomarkers may significantly improve the heuristic policies we

investigated.
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Chapter 1

Introduction

Bladder cancer is the fourth most common cancer in men and the eleventh most common in

women, accounting for 3.2% of all men who died of cancer between 2001 and 2005 [31]. The

U.S. National Cancer Institutes (NCI) estimated that there were 70,530 new cases of bladder

cancer (52,760 men and 17,770 women) diagnosed and 14,680 deaths caused by bladder cancer

(10,410 men and 4,270 women) in 2010 [34].

Bladder cancer occurs in two clinically significant forms: (1) non-muscle invasive bladder

cancer (NMIBC) and (2) muscle invasive bladder cancer (MIBC). MIBC typically results in

worse outcomes than NMIBC, often resulting in death from bladder cancer. NMIBC represents

a heterogeneous group of tumors with completely different ontological outcomes. Low grade

NMIBC has a modest recurrence rate and a very low risk for progression. High grade NMIBC,

on the other hand, is associated with much higher recurrence, progression, and mortality rates

than low grade NMIBC [14]. According to the World Health Organization (WHO) cancer report

(2008) [7], approximately 75% of individuals with bladder cancer have NMIBC. Among patients

with NMIBC approximately 70% of tumours are low grade [38]. A significant proportion of

patients with NMIBC (with varying estimates from 31-78%) have at least one recurrence during

a 5-year period [66].

Definitive treatment such as cystectomy (surgical removal of the bladder or part of the blad-

der) is often recommended for patients with MIBC or high grade bladder cancer. For patients

with low grade NMIBC, on the other hand, regular surveillance is recommended. Cystoscopy

is currently the gold standard for bladder cancer surveillance. However, the procedure can be

painful, and a source of anxiety for patients [5] [29]. Current guidelines are not consistent in

their recommendations about the frequency of cystoscopy for low risk bladder cancer patients

[4] [54] [52] [24]. The International Bladder Cancer Group (IBCG) compared guideline recom-

mendations of the European Association of Urology (EAU, 2009) [4], the First International

Consultation on Bladder Tumors (FICBT, 2005) [54], the National Comprehensive Cancer Net-
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work (NCCN, 2010) [52], and the American Urological Association (AUA, 2007) [24]. The IBCG

concluded that there is currently no consensus on optimal surveillance for low risk patients [55].

Nevertheless, a study by Schrag et al. [60] showed that many urologists and patients seem to

have chosen a lower cystoscopy frequency than those guidelines.

This thesis investigates the design of surveillance policies for low risk bladder cancer patients.

First, we use Monte-Carlo simulation to compare international guidelines for low risk bladder

cancer surveillance. Next, we extend our model to a partially observable Markov decision

process (POMDP) model to investigate the optimal surveillance policies. Finally, we extend

the POMDP model to incorporate new urine based biomarker tests into the surveillance process.

We analyze the incremental benefit of biomarker tests for improving the optimal surveillance

policies and we investigate easy-to-implement heuristic surveillance schedules that are near to

optimal. Following is a detailed description of each of the chapters of this thesis.

Chapter 2 provides some background on bladder cancer and motivation for studying low

risk bladder cancer surveillance. We describe some important statistics related to bladder

cancer. We discuss risk factors, methods for bladder cancer detection, and common forms

of treatment. We also provide a methodological review of the POMDP literature, including

theoretical properties of POMDPs and algorithms for solving POMDPs. Finally we review

some recent applications of POMDPs to medical decision making.

In Chapter 3 we describe a partially observable Markov model based on states that define

patient risk levels associated with recurrence and progression of bladder cancer. The model

includes states defining the effects of treatment, death from bladder cancer, and all other

cause mortality. The model is partially observable in that the precise health state of the

patient is unknown in the absence of cystoscopy test results. International bladder cancer

surveillance guidelines are compared with alternative surveillance policies based on expected

quality adjusted life years (QALYs) over the patient’s lifetime. Monte-Carlo sampling is used

to generate 100,000 sample paths for each surveillance policy to estimate expected QALYs.

Sensitivity analysis is performed on the patient’s disutility associated with cystoscopy, bladder

cancer mortality, and all other cause mortality. Computational results show that age and

comorbidity affect the ranking of the best surveillance policies. We find that younger patients

should have more intensive surveillance than older patients. Patients having comorbidity should

have less intensive surveillance. Model parameters also affect the optimal strategy. The lower

the disutility of cystoscopy on patients, the more intensively surveillance should be performed.

In Chapter 4 we formulate a POMDP model based on states that define patient risk levels

associated with recurrence and progression of bladder cancer to study the optimal surveillance

policy that maximizes expected QALYs. Optimal policies are computed using an exact method

called incremental pruning. We compare the optimal policy to the current international guide-

lines studied in Chapter 3 for male and female patients respectively. We find the optimal
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policy for typical male patients can result in an expected gain of 0.4 QALYs over the EAU and

AUA guidelines for our base case computational experiments. Sensitivity analysis is performed

on the patient’s disutility associated with cystoscopy, bladder cancer mortality, and all other

cause mortality. Results show that age, gender, and comorbidity significantly affect the optimal

surveillance policy. We find that younger patients should have more intensive surveillance than

older patients. Patients having comorbidity should have less intensive surveillance. We per-

form sensitivity analysis to evaluate the influence of model input parameters. Among them we

find that disutility of cystoscopy has a significant influence on the optimal surveillance policy.

In general, the lower the disutility of cystoscopy, the more intensively surveillance should be

performed.

In Chapter 5 we extend the POMDP model of Chapter 4 by incorporating a urine based

biomarker test. In addition to the standard surveillance protocol that uses cystoscopy alone, we

consider an alternative surveillance protocol in which a biomarker test is performed first, with a

positive result triggering a follow-up cystoscopy. We investigate the optimal surveillance policy

using both the standard protocol and the alternative protocol by maximizing the total expected

QALYs. We analyze the incremental benefit of using a biomarker to direct the frequency of

diagnostic tests by comparing the outcomes resulting from an easy-to-implement heuristic policy

with and without using the biomarker as part of the surveillance protocol.

In Chapter 6 we conclude with a summary of the most significant findings from Chapter 3,

4, and 5. We discuss some of the limitations of our work, and opportunities for future research

related to bladder cancer surveillance.
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Chapter 2

Background and Literature Review

2.1 Introduction

In this chapter we first provide some background on bladder cancer and motivation for studying

low risk bladder cancer surveillance. In Section 2.3 we review the standard formulation of a

POMDP. In Section 2.4 we provide a literature review of theoretical methods and algorithms

for solving POMDPs. In Section 2.5 we provide a review of applications of POMDP to medical

decision making. Finally, in Section 2.6 we summarize the contributions of this thesis to the

literature.

2.2 Bladder Cancer Background

Early detection of bladder cancer can reduce disease related mortality. According to the Na-

tional Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) program [31],

50% of urinary bladder cancer cases are diagnosed while the cancer is only in the layer of cells

in which it began (in situ stage); 36% are diagnosed while the cancer is still confined to the pri-

mary site (localized stage). These early stage bladder tumors are also called NMIBCs, as they

have not invaded the muscle layer of the bladder. For NMIBCs effective medical and surgical

treatment options are available which can reduce or eliminate the possibilities of progression to

later stages.

The severity of bladder cancer is characterized by the degree to which it has spread in the

bladder and the body. NMIBC is limited to the innermost linings of the bladder. Most patients

with NMIBC have very low risk of progression to MIBC, but the 5-year relative survival rate

drops from 95% to 36.2% when the cancer has spread to regional lymph nodes or beyond the

primary site; even worse it drops to 5.8% when the cancer has metastasized. However, NMIBC

represents a heterogeneous group of tumors with different ontological outcomes. Low grade
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NMIBC has a modest recurrence rate but a very low risk for progression. High grade NMIBC,

on the other hand, is associated with significantly higher recurrence, progression, and mortality

rates [14]. In spite of these differences current recommendations for NMIBC are “one size fits

all”.

2.2.1 Bladder Cancer Detection

Most cancers are detected when patients present with symptoms of the disease. In the case of

bladder cancer, the most common cancer symptom is haematuria, the presence of red blood cells

in the urine. It is the most common finding in Ta and T1 NMIBCs because they do not cause

bladder pain and rarely present with bladder irritation, dysuria or urgency [4]. Once a patient

has been diagnosed and treated with bladder cancer, cystoscopy is used to perform regular

surveillance. Cystoscopy is a diagnostic test in which a urologist looks inside of the bladder

and urethra with a thin lighted tube called a cystoscope. A description of the cystoscopy

findings include the site, size, number, and appearance (papillary or solid) of the tumors as

well as a description of mucosal abnormalities [4]. Urine cytology is also commonly used in

combination with cystoscopy. It involves the examination of a urine specimen for exfoliated

cancer cells. However it is of limited value for low grade tumors due to operator dependency

and low sensitivity. Therefore it is normally combined with cystoscopy.

The limitations of cytology and the invasiveness of cystoscopy for detecting bladder cancer

have generated interest in the development of new urine based biomarker tests. These simple

tests involve the use of urine samples to detect the recurrence of certain types of bladder tumors.

According to van Rhijn, et al. (2005) [67], microsatellite analysis, CYFRA21-1 and LewisX are

the most promising non-FDA approved urine based biomarkers while NMP22, ImmunoCyt and

FISH are the best FDA approved tests for surveillance.

NMP22 is a point-of-care biomarker which does not require expert analysis or laboratory

time. The cost of NMP22 is less than half that of cytology [23]. NMP22 has much higher

sensitivity than cytology, but its specificity is lower [23] [53]. Studies show the combination

of NMP22 and cystoscopy can identify 99% of all malignancies versus 91.3% with cystoscopy

alone [23] [68]. According to Grossman, et al [23], Immunocyt and FISH have some limitations

compared with NMP22. Immunocyt is FDA-approved for surveillance only in conjunction with

traditional urine cytology; FISH is the only test other than the NMP22 biomarker that is FDA-

approved for use in diagnosis (in patients with hematuria only) as well as surveillance, but

published sensitivity and specificity were not calculated from the target population. Unlike the

NMP22 test, costs for Immunocyt and FISH are equivalent to or higher than urine cytology,

thereby increasing the cost of cancer detection.

Fritsche, el al [20] summarized several potential applications of urine based biomarker tests
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in patient surveillance, including serial testing to detect recurrent disease and as an adjunct

to urine cytology to direct the frequency of cystoscopy evaluation in the follow-up of patients

with bladder cancer. There are many possible ways to combine urine based biomarkers with

cystoscopy and/or cytology in bladder cancer surveillance. Mowatt, et al [53] proposed two

options based on advice from clinical experts. Option one is to use one test tool (flexible

cystoscopy, cytology or biomarker) as an initial test; a positive result from the initial test would

qualify the patient for cystoscopy. Option two is to use two tests (either flexible cystoscopy

and a biomarker, or flexible cystoscopy and cytology) initially, and a positive result of both the

initial tests would qualify the patient for cystoscopy.

Even though most proposed biomarkers have higher sensitivities than cytology, none of

them has comparable sensitivity with cystoscopy; therefore at the present time it seems unlikely

cystoscopy could be entirely replaced by biomarkers. However some studies have suggested that

biomarker tests could be used to help determine the frequency of cystoscopy evaluation in the

follow-up of patients with bladder cancer [20]. For example, an alternative surveillance protocol

could alternate cystoscopies with biomarker tests. This could reduce the number of cystoscopies

over a patient’s lifetime but possibly increase the risk of progression since the lower sensitivity

of the urine based biomarker test may result in failure to detect tumors. Based on a systematic

review, van Rhijn et al.(2005) [67] concluded that current evidence is insufficient to determine

if or how to use a urine based biomarker test for bladder cancer surveillance.

2.2.2 Bladder Cancer Treatment

Once diagnosed, NMIBCs can often be removed by surgery, called transurethral resection of

bladder tumors (TURBT). This involves passing a high-frequency electric current through

a wire inserted through the cystoscope, removing and burning cancer cells on the bladder

wall. Patients with high risk bladder tumors are often treated with TURBT combined with

chemotherapy, which may be delivered by mouth, intravenously, or instilled directly into the

bladder. Chemotherapy may cause many side effects including bloody urine and bladder ir-

ritation causing increased urination frequency, urgency, pain and/or burning with urination.

Bacillus Calmette-Guerin solution (BCG) is another way to treat bladder cancer. It contains

weakened bacteria that stimulate the immune system to kill cancer cells in the bladder. The

physician uses a catheter (a thin, flexible tube) to put the solution in the bladder, and the

patient typically hold the solution in the bladder for about two hours. This treatment is usu-

ally done once a week for at least six weeks. Side effects may include irritation of the bladder,

urination urgency, and urination frequency.

MIBC has a high risk of progression to metastatic cancer. As a result, the standard surgical

treatment for MIBC is cystectomy, surgical removal of all or part of the urinary bladder.
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Approximately 50% of NMIBC patients will need cystectomy eventually, and one-third are at

risk over a 15-20 year period of dying of bladder cancer [27].

2.2.3 Bladder Cancer Risk

For patients that have been diagnosed and treated for early stage bladder cancer, the risk of

recurrence and progression of the disease is an important consideration in designing a surveil-

lance policy. Prognostic factors for recurrence and progression include the number of tumors,

tumor size, prior recurrence rate, stage, and grade. The EAU [66] developed a simple scoring

system based on these prognostic factors, as described in Table 2.1. A recurrence score can be

calculated for each patient, from 0 (best prognosis) to 17 (worst prognosis). Patients can be

then divided into four groups according to their score, as shown in Table 2.2. For example, a

patient with a primary small (≤ 3 cm) tumor of the lowest stage and the lowest grade would

have a recurrence score of 0 and a progression score of 0, which indicate a recurrence rate of 15%

and a progression rate of 0.2%, at one year, respectively. If the patient has a recurrent small

(≤ 3cm) tumor of the same stage and grade after surgical removal of the primary tumor, his

1 year recurrence rate and 1 year progression rate would increase to 24% and 1% respectively,

indicated by the new recurrence score of 2 and the new progression score of 2.

2.3 Partially Observable Markov Decision Processes

A Markov decision process (MDP) is a sequential decision process in which an underlying

stochastic process, a Markov process, is combined with a set of feasible actions at each state,

and rewards that depend on the action and state. MDPs have been applied to several types of

medical decision making problems. POMDPs are well known extensions of (completely observ-

able) MDPs to the case in which some states are not directly observable. POMDPs assume the

state of a specific system is not known with certainty, but can be described probabilistically

by a belief state. Medical diagnosis fits this context well since it often prone to errors due to

imperfect sensitivity and specificity of diagnostic tests. Since the exact health state of the pa-

tient never completely reveals itself, partial observability is an integral part of medical decision

making.

In this section, we describe the standard formulation of a finite state POMDP. The following

description uses notation similar to that of Monahan (1982) [51]. Let Xt define a core state

of the unobservable process. It is a random variable which takes on values in the finite set

S ≡ {1, ..., N}. The stochastic process {Xt, t ∈ T}, called the core process, is assumed to

be a finite state Markov chain. Associated with Xt is a random variable Yt that defines the

observation state, which takes on values in the finite observation set Θ ≡ {1, ...,M}. The

stochastic process {Yt, t ∈ T} is called the observation process.
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Table 2.1: The scoring system proposed by the EAU to calculate the recurrence and progression
scores for bladder cancer [66].

Factor Recurrence Progression

Number of tumors
Single 0 0
2 to 7 3 3
≥ 8 6 3

Tumor size
< 3 cm 0 0
≥ 3 cm 3 3

Prior recurrence rate
Primary 0 0
≤ 1 rec/yr 2 2
> 1 rec/yr 4 2

Stage
Ta 0 0
T1 1 4
Ta and CIS 1 6
T1 and CIS 2 10

Grade
G1 0 0
G2 1 0
G3 2 5

Total score 0-17 0-23

Table 2.2: Probability of recurrence and progression according to recurrence and progression
scores [66].

Recurrence score Probability of recurrence Probability of recurrence
at 1 year (95% CI) at 5 years (95% CI)

0 15% (10%, 19%) 31% (24%, 37%)

1 to 4 24% (21%, 26%) 46% (42%, 49%)

5 to 9 38% (35%, 41%) 62% (58%, 65%)

10 to 17 61% (55%, 67%) 78% (73%, 84%)

Progression score Probability of progression Probability of progression
at 1 year (95% CI) at 5 years (95% CI)

0 0.2% (0%, 0.7%) 0.8% (0%, 1.7%)

2 to 6 1.0% (.4%, 1.6%) 6% (5%, 8%)

7 to 13 5% (4%, 7%) 17% (14%, 20%)

14 to 23 17% (10%, 24%) 45% (35%, 55%)
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Let at be a decision variable, called an action, that takes on values in a finite set At. Assume

that the decision maker can control the observation process by choosing actions at ∈ At. Let

qt(θt|st, at) denote the probability of Yt = θt conditioning on Xt = st given choosing action at

at epoch t. Qt(at) is called the information matrix conditioned on action at, with elements

qt(θt|st, at). Assume the core process is related to the observation. Let pt(st+1|st, θt) denote the

core state transition probability from core state st to st+1 at time epoch t given observation θt,

and the matrix Pt(θt) is the transition probability matrix conditioning on observation θt, with

elements pt(st+1|st, θt).
At each epoch t, the information available for decision making is denoted by ηt. Define

πt(st) ≡ Pr{Xt = st | ηt} to be the probability that Xt = st given the available information ηt,

and the vector πt = (πt(1), ..., πt(N)) is called the belief state.

We assign a real number rt(st, at), called an immediate reward, to each core state st after

taking action at at time epoch t. The vector rt(at) = (rt(1, at), ..., rt(N, at))
T is called the

immediate reward vector. Thus, the expected immediate reward at a belief state πt after

taking action at can be written as rt(πt, at) =
∑
st∈S

πt(st)rt(st, at) = πtrt(at).

Without loss of generality, we assume that the rewards are discounted annually by λ ∈ [0, 1].

At each epoch, the expected immediate reward and the expected discounted future rewards are

used to determine the optimal decision. The optimality equations at each epoch can be written

as:

vt(πt) = max
at∈At

rt(πt, at) + λ
∑
θt∈Θ

vt+1(πt+1)pt(θt|πt, at)

 ,∀(t, πt), t = 1, ..., T − 1 (2.1)

and

vT (πT ) =
∑
sT∈S

πT (sT )rT (sT ), ∀πT . (2.2)

The optimal action in epoch t at belief state πt can be written as:

a∗t (πt) = arg max
at∈At

rt(πt, at) + λ
∑
θt∈Θ

vt+1(πt+1)pt(θt|πt, at)

 , (2.3)

where

pt(θt|πt, at) =
∑
st∈S

πt(st)qt(θt|st, at) (2.4)

denotes the probability of observing θt given action at is taken at belief state πt at epoch t. In
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equation 2.1 and equation 2.3, πt+1 is determined by πt, at, and θt by using Bayesian updates

defined by the following formula:

πt+1(st+1) =

∑
st∈S

πt(st)qt(θt|st, at)pt(st+1|st, θt)∑
st∈S

πt(st)qt(θt|st, at)
(2.5)

where πt+1(st+1), the component of the belief vector, πt+1, is a function of θt, at, and πt. Thus

equation 2.5 provides a means to update the belief state of the core process based on the prior

belief state and the most recent action and most recent observation.

2.4 POMDP Methods

A number of exact methods and approximate solution methods for POMDPs have been pro-

posed over the last 40 years. In this subsection we provide a brief review of exact methods

directly related to this thesis. More general reviews can be found in [51], [45], [69], [35], [10],

and [56].

Sondik [63] proved a number of properties of POMDPs which are central to solution meth-

ods. He showed that the optimal value function vt(·), as defined in equation 2.1, is piecewise

linear and convex. Therefore it can be expressed as follows: vt(πt) = max
αt∈Ωt

{πtαt}, where Ωt is

a finite set of n-dimensional vectors, called the α-vector set that construct vt(·). At epoch t, Ωt

can be recursively determined by substituting vt+1(πt+1) = max
αt+1∈Ωt+1

{πt+1αt+1} into equation

2.1, which results in the following:

vt(πt) = max
at∈At

πtrt(at) + λ
∑
θt∈Θ

max
αt+1∈Ωt+1

{πt+1αt+1} pt(θt|πt, at)

 . (2.6)

By plugging in equations 2.5 and 2.4, equation 2.6 can be rewritten as:

vt(πt) = max
at∈At

πtrt(at) + λ
∑
θt∈Θ

max
αt+1∈Ωt+1

{πtQt(θt, at)Pt(θt)αt+1}

 , (2.7)

where Qt(θt, at) is defined as the following N ×N diagonal matrix:
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Qt(θt, at) =


qt(θt|1, at)

0
0 . . .

qt(θt|N, at)

 .
Equation 2.7 can be rewritten in terms of α-vectors as:

vt(πt) = max
at∈At

πt{rt(at) +
∑
θt∈Θ

max
αt∈Ωt+1

λQt(θt, at)Pt(θt)αt+1}

 . (2.8)

Given the above properties, the problem of solving a POMDP is equivalent to finding the α-

vector set that describes vt(·). Sondik proposed the first exact algorithm for solving a finite

horizon POMDP in 1971 [63]. His algorithm, called one-pass, constructs Ωt from the previous

α-vector set Ωt+1 as follows:

Ωt =

αt = rt(at) + λ
∑
θt∈Θ

Qt(θt, at)Pt(θt)α
θt
t+1 | ∀at ∈ At, ∀α

θt
t+1 ∈ Ωt+1

 .

Sondik’s one-pass algorithm is often unable to solve POMDPs because of the exponential growth

in the number of α-vectors in Ωt as |Ωt| = |At||Ωt+1|M . However, not all α-vectors in Ωt are

useful when determining the optimal value function, vt(·), as some are dominated by other

vectors in Ωt. Thus, Monahan (1982) [51] proposed to prune Ωt to its minimal representation

Ω∗t by removing dominated α-vectors. An α-vector α ∈ Ωt can be evaluated to determine

whether or not is dominated by solving the following linear program LP (α,Ωt):

Min z(π, y) = y −
∑
s∈S

π(s)α(s)

subject to
∑
s∈S

π(s)αt(s) ≤ y,∀αt ∈ Ωt∑
s∈S

π(s) = 1

1 ≥ π(s) ≥ 0, ∀s ∈ S.

(2.9)

If the optimal objective value z(π∗, y∗) > 0, then α is dominated by some vectors in Ωt. Other-

wise if z(π∗, y∗) = 0, then α supports the value function, vt(·), at belief point π∗. This pruning

process affects the running time by reducing the computation complexity from |At||Ωt+1|M to
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|At||Ω∗t+1|M , where Ω∗t+1 denotes the minimal representation of Ωt+1. However this is done at

the expense of solving |At||Ω∗t+1|M LPs at each epoch t. It has been shown that Monahan’s

algorithm remains exponential in the worst case and intractable for large size problems [10].

Rather than generating a large α-vector set and then pruning it to its minimal represen-

tation, Cheng (1988) [12] proposed an algorithm, called linear support, to compute vt(·) by

generating only the support α-vectors of vt(·). Given a belief state π, it is trivial to see that

the α-vector

α∗t (π) = arg max
αt

παt | αt = rt(at) + λ
∑
θt∈Θ

Qt(θt, at)Pt(θt)α
θt
t+1, ∀at ∈ At, ∀α

θt
t+1 ∈ Ωt+1


is a support vector of vt(·) at belief π, where π is called a witness point for α∗t (π). Therefore,

finding support α-vectors is equivalent to finding a set of corresponding witness points. Cheng

proved that given a subset of support α-vectors of vt(·), Ω
′
t, one can search for witnesses of the

missing support α-vectors among the vertices of the convex hull constructed by Ω
′
t. A vertex π is

a witness point for some missing support α-vector if α∗t (π) /∈ Ω
′
t. Therefore, Ω

′
t is incrementally

augmented by finding a witness π and adding α∗t (π) to Ωt. Cheng’s linear support algorithm is

exponential in the worst case as the convex hull of a given Ωt may have an exponential number

of vertices [44].

Rather than constructing a support α-vector set to represent vt(·), Kaelbling, Littman and

Cassandra (1994) [43] proposed an algorithm, called the witness algorithm, to solve vt(·) by

concentrating on representing the conditional value function vt(· | at) for each action at ∈ At
at a time, where

vt(πt | at) =

πtrt(at) + λ
∑
θt∈Θ

max
αt+1∈Ωt+1

{πt+1αt+1} pt(θt|πt, at)

 ,

and then combining vt(· | at) to write the value function as vt(·) =
∑

at∈At

vt(· | at). Like Cheng’s

linear support algorithm, the witness algorithm starts with a subset of support α-vectors of

vt(· | at), Ωat , and incrementally augments it by finding witness points for missing support α

vectors and adding the corresponding support α vectors to Ωat . Littman, et al. proposed to

find a witness point by solving LP (α, β,Ωat) formulated as follows:
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Max z(π) =
∑
s∈S

π(s)α(s)−
∑
s∈S

π(s)β(s))

subject to
∑
s∈S

π(s)α(s) ≥
∑
s∈S

π(s)αi(s),∀αi ∈ Ωat∑
s∈S

π(s) = 1

1 ≥ π(s) ≥ 0,∀s ∈ S,

(2.10)

where β is a vector in Ωat , and α is constructed based on β. If the optimal objective value

z(π∗) > 0, then the optimal solution, π∗, is a witness point of some missing α-vector. Otherwise,

π∗ is not a witness point. The witness algorithm is also exponential in the worst case, however

it is typically much faster than Sondik’s one-pass algorithm in practice [43].

Zhang and Liu (1996) [73] proposed an algorithm, called incremental pruning, to solve

POMDPs by combining Monahan’s method and the witness algorithm. Like the witness algo-

rithm, it represents the conditional value function vt(· | at) for each action at ∈ At and then

focuses on the conditional value function vt(· | at, θt) for each observation θt ∈ Θ individually,

where

vt(πt|θt, at) = rt(πt, at)/|Θ|+ λvt+1(πt+1)pt(θt|πt, at),

vt(πt|at) =
∑
θt∈Θ

vt(πt|θt, at),

and

vt(πt) = max
at∈At

vt(πt|at).

For each action at and observation θt, it first generates an α-vector set Ωθt
at to represent vt(· |

at, θt) from the previous α-vector set Ωt+1 as below:

Ωθt
at = {αt = rt(at)/|Θ|+ λQt(θt, at)Pt(θt)αt+1 | ∀αt+1 ∈ Ωt+1} .

Ωθt
at is pruned to a minimal set that includes only support α-vectors of vt(· | at, θt) by solving

LPs using Monahan’s method. Next, an α-vector set Ωat for representing vt(· | at) can be

constructed as follows:

Ωat = (
⊕

θt+1∈Θ

Ωθt
at(x)),
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where the
⊕

is the cross sum operation of two sets of vectors defined as:

A
⊕

B = {α+ β|α ∈ A, β ∈ B}.

Next, Ωat is pruned using Monahan’s method. Finally, Ωt is constructed as

Ωt =
⋃
at∈A

Ωat ,

and it is pruned to a minimal size to represent vt(·). Incremental pruning has been shown to

be faster than other exact algorithms including the witness algorithm [8].

All of the above exact algorithms are intractable for large POMDPs, therefore a number of

approximate algorithms have been proposed. Lovejoy [46] categorized the approximations into

two categories: finite-memory and finite-grid. In finite-memory, such as the policy improvement

algorithm proposed by Howard (1973) [32], only a finite number of decision policies are kept

at each epoch, in other words, the α-vector set, Ωt, is truncated to a finite set at each epoch.

Therefore the value function, vt(·), is approximated by the finite α-vector set. In finite-grid

approximations, such as the fixed-grid algorithm proposed by Eckles (1966) [17], the continuous

belief space π is descritised as a finite number of grids πn, n = 1, ..., N . Thus the value function,

vt(π), is approximated by {vt(πn) | n = 1, ..., N}. A more through review of these types of

methods can be found in [46].

2.5 Applications of MDPs and POMDPs in Medical Decision

Making

MDPs are a powerful and appropriate technique for many medical treatment decisions. MDPs

provide optimal policies to stochastic and dynamic decisions. Examples of such decisions nat-

urally arise in finding optimal disease treatment plans. For example, Schaefer, et al. (2005)

summarized some of the most successful applications of MDPs to medical treatment decisions

[59]. For example, Ahn and Hornberger (1996) used an MDP model for a kidney transplanta-

tion problem in which patients may accept or reject an offered kidney based on the quality of

the organ [2]. As another example, Alagoz et al. (2004) [3] used an MDP model for deciding

the optimal time to perform a living-donor liver transplantation.

POMDPs fit the structures of medical decisions where a patient’s true health status is not

known with certainty and can only be inferred probabilistically based on imperfect medical

tests. In such cases, a POMDP represents the decision making process more accurately than an

MDP. Smallwood et al. (1971) [63] was among the first to suggest formulating medical decision

problems in the POMDP framework. Since then, there have been many successful POMDP
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applications to medicine and healthcare [9]. Following are some examples.

Hauskrecht and Fraser (2000) [25] applied a POMDP formulation to the problem of treating

patients with ischemic heart disease (IHD). The state of the patient was described by a variety of

variables including the level of coronary heart disease, ischemia level, history of coronary artery

bypass grafting, history of percutanerous transluminal coronary angioplasty, and stress test

results. The uncertainty of the patient health state arises from the inability to know exactly the

level of coronary artery occlusion or the homodynamic impact of that occlusion on myocardial

ischemia. Some variables, such as level of chest pain, are directly observable. The authors

framed their POMDP as an infinite-horizon discounted model that seeks a treatment policy

that minimizes total lifetime costs. Their POMDP was solved with approximating methods

very efficiently in generating good treatment strategies for IHD.

Maillart, et al. (2008) [49] used a POMDP to develop a cost benefit analysis of mammogram

frequency and treatment options for breast cancer. The part of the model that was partially

observable was the patient’s cancer state. The goal was to minimize the total expected cost over

a patient’s lifetime, where costs were based on the patient’s condition, exams, and treatment

options. Ivy solved this POMDP problem and characterized optimal decision regions based on

the perceived probabilities of the different states of breast cancer.

Leshno, et al. (2003) [42] conducted a cost-effective analysis of screening for Colorectal

cancer (CRC) using a POMDP model. Screening policies were evaluated using simulation

based on the POMDP model. Their study revealed that it is highly cost-effective to screen

average-risk asymptomatic individuals.

Zhang, et al. (2009) [72] [71] used a POMDP model to estimate the benefit of PSA-

based screening for prostate cancer. Zhang first solved one POMDP to maximize individual’s

expected quality-adjusted life years (QALYs), then he solved another POMDP to maximize

the expected monetary value based on societal willingness to pay for QALYs and the cost of

PSA testing, prostate biopsies and treatments. An age and belief dependent biopsy referral

threshold is calculated with a xed-nite-grid approximation algorithm. He also proved a number

of structural properties of the POMDP including the existence of a control-limit type policy

for the biopsy referral decision.

2.6 Contributions of this Thesis to the Literature

This thesis presents several new model formulations for the evaluation of surveillance policies

for low risk bladder cancer patients. To our knowledge, we present the first models to study

bladder cancer surveillance in low risk patients. We use a partially observable simulation

model to compare published international guidelines for bladder cancer surveillance. We extend

our simulation model to a POMDP model to determine the optimal surveillance policy that
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maximizes a patient’s expected QALYs. Based on computational results we develop a number

of new insights about the optimal structure of surveillance policies, and the influence of risk

factors and gender. We further extend the POMDP model of Chapter 4 to a new POMDP

model that involves decisions about the optimal selection and timing of a diagnostic test with

imperfect sensitivity and specificity to detect bladder cancer. In Chapter 5 we study the optimal

policies based on an additional surveillance protocol that includes a urine based biomarker test.

We further investigate easy-to-implement age dependent surveillance schedules and compare

them to the optimal surveillance policies. We evaluate the urine based biomarker test in terms

of expected QALYs, expected number of cystoscopies, expected number of biomarker tests, by

comparing the outcomes from the optimal policy using biomarkers and the one using cystoscopy

alone. Finally, we evaluate the incremental benefit of using the FDA approved biomarkers in

directing the frequency of diagnostic tests by comparing easy-to-implement heuristic policies

using a biomarker with the easy-to-implement heuristic policy using cystoscopy alone.
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Chapter 3

Low Risk Bladder Cancer

Surveillance Strategies

3.1 Introduction

Carcinoma of the urinary bladder ranks fifth among malignancies, with greater than 70,000

new cases estimated and over 500,000 survivors in 2009 [34]. Typical of epithelial malignancies,

bladder cancer incidence is highest in the elderly. Therefore the changing age structure of the

U.S. population suggests that the burden of this disease will increase in the future. Clinically,

bladder cancer cases are risk-stratified on the basis of stage and grade. The natural history and

molecular biology of different risk groups are sufficiently different to suggest the existence of at

least three discrete phenotypes: high grade muscle-invasive, and high and low grade non-muscle-

invasive [70] [13]. Muscle-invasive disease (stage T2 or greater) accounts for approximately 25%

of incident cases, with high risks of metastasis-related morbidity and disease-specific mortality

despite radical surgical therapy and systemic chemotherapy. The overwhelming majority of inci-

dent bladder cancer presents at a stage superficial to the muscularis propria, broadly defined as

non-muscle-invasive bladder cancer (NMIBC). For these NMIBC cases, standard clinical man-

agement includes endoscopic transurethral resection of the bladder tumor (TURBT), followed

by frequent, invasive surveillance with cystoscopy.

The proximate outcomes for patients with a history of NMIBC are recurrence of NMIBC or

progression, defined as recurrence of a tumor with invasion into the muscle. The risks of these

distinct outcomes differ starkly between high and low grade NMIBC. Low grade noninvasive

tumors account for approximately 70% of all incident NMIBC, and given the comparatively

indolent natural history of these cases, likely represent the majority of prevalent bladder cancer

cases [7]. In this setting, the principal risk (approximately 40-50% by 5 years [66]) is recurrence

of low grade noninvasive tumors, whereas the long-term risk of progression to muscle-invasive
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disease is less than 5% and in some series, less than 1% [66] [28] [30]. The long-term progression

rates from low grade noninvasive urothelial carcinoma to invasive cancer, in some respects,

parallel those of colorectal adenomata [50]. In contrast, high grade NMIBC cases have not only

higher rates of recurrence, typically of high grade NMIBC, but more importantly, substantially

higher risks of progression to muscle-invasive disease, up to 50-75% by 5 years [66] [16]. Given

that low grade noninvasive bladder cancer accounts for nearly half of the overall incident cases,

these differences in phenotype-associated outcomes argue for consideration of a risk-adjusted

approach to surveillance.

Cystoscopy is the reference standard for surveillance of patients with a history of NMIBC.

In the context of the heterogeneous natural history of NMIBC, there is an interesting and

substantial difference between the recommendations of the relevant European and U.S. clinical

practice guidelines. The European Association of Urology (EAU 2009) [4] advocates explicit

risk stratification and, among low risk cases, recommends surveillance cystoscopy at 3 months,

9 months, and annually thereafter for patients without recurrence. In contrast, the American

Urological Association (AUA) guidelines (e.g. AUA 2007 [24]) do not explicitly risk-stratify

surveillance recommendations, and outline a schedule of cystoscopy every 3 months for 2 years,

every 6 months for the next 3 years, and annually thereafter for patients without recurrence.

The AUA guidelines acknowledge the potential appropriateness of less intensive regimens for

select patients, but no explicit guidance is given, and a one size fits all, relatively intensive

approach would be consistent with the AUA guideline recommendations.

For NMIBC patients, surveillance policies must trade off the benefit of early detection of

recurrence and/or progression against the economic and quality of life costs of frequent, invasive

surveillance. Cystoscopy can be painful and anxiety-provoking for patients [5] [29]. Given the

variable natural history of NMIBC, these tradeoffs can differ greatly not only in terms of

cancer-specific risks but also, with the predominantly elderly demography of the bladder cancer

population, in terms of age and associated competing risks to survival.

We developed a partially observable Markov model to compare surveillance strategies for

patients with low grade noninvasive bladder cancer. We evaluated strategies based on QALYs;

we also performed a bicriteria analysis to compare expected life-long progression rate versus

the number of cystoscopies. We found that the best strategy is sensitive to the disutility of

cystoscopy, age, and all other cause mortality. We conclude that the best surveillance strategy

is highly dependent on the individual patient. The lower the disutility of cystoscopy, the

more frequently cystoscopy should be performed. Older patients and patients with comorbidity

should be screened less frequently.
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3.2 Model Formulation

The EAU and AUA guidelines represent the reference standard practice guidelines for bladder

cancer surveillance in Europe and the U.S., respectively, as summarized in Table 3.1. For low

risk patients, the EAU suggests cystoscopy at 3 months, if negative then follow-up cystoscopy

is advised at 9 months, and subsequently at yearly intervals for 5 years. The AUA guidelines

do not make specific, explicit recommendations for low risk disease; instead they recommend

a more intense surveillance schedule for all patients, regardless of risk stratum. The AUA

guidelines do suggest, however, consideration of less intensive regimens (not further specified)

based on individual patient factors. In this context, we also considered additional hypothetical

dynamic strategies.

Table 3.1: Published guidelines for surveillance of low risk bladder cancer patients.

Guidelines Recommendations for Low Risk Bladder Cancer Patients

EAU [4] Cystoscopy at 3 months;
If negative, next cystoscopy at 9 months;
If negative, cystoscopy yearly for 5 years.

AUA [24] No low-risk-stratum-specific schedule is explicitly advocated; the following is mentioned:
Every 3 months in the first two years;
Every 6 months for subsequent 2-3 years;
Annually thereafter.

Since the guidelines advocate cystoscopy every 3 months, with increasing intervals if ap-

propriate, we also evaluated additional strategies with increasing intervals for patients who do

not have a recurrence. Since it is a standard among published guidelines to do the first cys-

toscopy at 3 months, and to stop surveillance for low risk patients after 5 years, all strategies

we evaluated discontinued surveillance at 5 years provided the patient had no recurrence during

that period. With this in mind, we evaluated a series of dynamic strategies, denoted by Di,

in which cystoscopies are performed at increasing intervals of 3, 3 + i, 3 + 2i, 3 + 3i, ... up to 5

years if no recurrence occurs. Thus, for example, strategy D3 involved cystoscopies at month

0, 3, 9, 18, 30, 45.

3.2.1 Partially Observable Markov Model

The patient’s health state at any given decision epoch is not known with certainty. Observa-

tions are obtained as a result of cystoscopy and a positive observation will trigger treatment.

Therefore, frequent cystoscopy will result in a higher probability of diagnosing recurrent tumors
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prior to progression. On the other hand, more frequent surveillance results in a reduction in

expected rewards due to the disutility associated with cystoscopy. To compare how strategies

balance these competing factors we used a Markov model comprised of health states that define

the natural history of bladder cancer, treatment, and death from bladder cancer and all other

causes. The model is illustrated in Figure 3.1. The model formulation is defined as follows:

Table 3.2: Markov states of the natural history model and treatment model for bladder
cancer. Note that the stratification of low risk, intermediate risk and high risk is with regard to
nonmuscle invasive bladder cancer, and the high risk state is actually lower risk than muscle-
invasive bladder cancer state.

Index Natural History States Description

1 Low Risk Disease Free History of small volume, low-grade Ta

2 Intermediate Risk NMIBC Recurrent low-grade Ta or
multi-focal and/or large volume low-grade Ta

4 High Risk NMIBC High-grade Ta, T1, and/or CIS

6 Muscle Invasive Bladder Cancer T2, T3, T4 tumors

7 Death from other causes Competing Mortality

Index Treatment States Description

3 Intermediate Risk Disease Free Intermediate Risk
Following Treatment Bladder Cancer Treated, Disease Free

5 High Risk Disease Free Following Treatment High Risk Bladder
Cancer Treated, Disease Free

Decision epochs: We let t = 1, 2, ..., T index monthly decision epochs over the course of a

bladder cancer patient’s lifetime, where T represents a reasonable upper limit on a patient’s

age (e.g. 100 years).

States: The patients’ health state at epoch t is indexed by st ∈ S, where S = {1, ...,H,H + 1}.
State H represents the state of muscle invasive bladder cancer and H + 1 represents the state

of death. States 1 to H − 1 were developed from the EAU classification of non-muscle invasive

patients, based on prognostic factors including tumor stage, tumor grade, tumor size, and

recurrence rate [4]. A descriptive list of states including the index for each state is provided

in Table 3.2. The model includes the following five natural history health states: low risk

NMIBC, intermediate risk NMIBC, high risk NMIBC, muscle invasive bladder cancer, and

death from bladder cancer and all other causes. For high risk and muscle invasive disease,

cystectomy is a common recommendation [18]. For small, recurrent, low grade bladder tumors,

some studies suggest it may not be necessary to remove tumors promptly at recurrence [64] [57]
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Intermediate Risk 
Disease Free 

Following Treatment

High Risk 
Disease Free 
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Intermediate Risk 
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High Risk 
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Muscle Invasive 
Bladder Cancer

Unobservable States Observable States

Death

Figure 3.1: The states and possible transitions between states for a patient with bladder cancer.
The solid lines indicate the probabilistic transitions. The dashed lines indicate the transitions
resulting from the detection of bladder cancer via cystoscopy.
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[21]. In our model low risk patients continue to follow cystoscopic surveillance, and treatment

is triggered when the patient progresses to intermediate or high risk. We include the following

two treatment states: (1) intermediate risk disease free following treatment, and (2) high risk

disease free following treatment. Patients are only low risk until the first occurrence, after

which they are intermediate risk (recurrent Low grade Ta) or high risk (high grade recurrence).

Transition Probabilities: We let pst,st+1(t) denote the probability that the patient will be in

health state st+1 in epoch t + 1 given he is in state st in epoch t. The transition probability

matrix, P (t), can be written as follows (blank spaces indicate zeros):

P (t) =



p1,1(t) p1,2(t) p1,7(t)

p2,2(t) p2,4(t) p2,7(t)

p3,2(t) p3,3(t) p3,7(t)

p4,4(t) p4,6(t) p4,7(t)

p5,4(t) p5,5(t) p5,7(t)

p6,6(t) p6,7(t)

p7,7(t)


. (3.1)

We define parameters for annual rates of bladder cancer mortality, bladder cancer recurrence

and progression, and all other cause mortality in Table 3.3. At each health state, patients may

die from other causes; we assume p1,7(t) = p2,7(t) = p3,7(t) = p4,7(t) = p5,7(t) = δ(t). In the

MIBC state, patients may die from BC with probability δBC , or other causes with probability

δ(t). Therefore we assume p6,7(t) = δBC+δ(t). In the LRDF state, patients may have recurrent

cancer of intermediate risk with probability p1,2(t) = τLR. In the IRBC state, bladder cancer

may progress to the HRBC state with probability τIR, thus p2,4(t) = τIR. In the IRDF state,

patients may have recurrence with probability γIR, thus p3,2(t) = γIR. Similarly, in the HRDF

state, patients may have recurrence with probability γHR, thus p5,4(t) = γHR. In the HRBC

state, patients may progress to the MIBC state with probability τHR, thus p4,6(t) = τHR.

Finally, the Death state is an absorbing state, with p7,7(t) = 1.

Decision: The cystoscopy surveillance decision at epoch t is indexed by at ∈ At ={Cystoscopy

(C), No Cystoscopy (N)}.

Rewards: The rewards for state st and action at are denoted by r(st, at). They are measured

in QALYs, by subtracting the disutilities of cystoscopy and treatment associated with decision

at. The disutilities are defined in Table 3.4.

We use R(at) = {r(st, at)} to denote the reward vector which can be written as follows:
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Table 3.3: Model parameters and data sources for monthly mortality, bladder cancer mortality,
bladder caner recurrence and progression rates.

Parameter Description Data Sources

δ(t) Mortality rate at age t CDC [26]

δBC Bladder cancer mortality Madersbacher [48]

ϕC Sensitivity of cystoscopy Grossman [22]

γIR Recurrence rate of intermediate risk NMIBC after treatment

EORTC [14]

γHR Recurrence rate of high risk BC after treatment
ρLR Progression rate of low risk BC after treatment
ρIR Progression rate of intermediate risk NMIBC after treatment
ρHR Progression rate of high risk NMIBC after treatment
τLR Probability of transition from LRDF to IRBC
τIR Probability of transition from IRBC to HRBC
τHR Probability of transition from HRBC to MIBC

Table 3.4: Model parameters and data sources for utilities and disutilities for estimating
QALYs. The base case values are drawn from Kulkarni’s study [41].

Parameter Description Value

µC Disutility of Cystoscopy 0.0025
µT Disutility of TURBT 0.03
µChemo Disutility of Chemotherapy 0.02
µBCG Disutility of BCG Maintenance 0.09
rLRDF Utility in State Low Risk Disease Free Following Treatment 0.98
rIRBC Utility in State Intermediate Risk NMIBC 0.95
rIRDF Utility in State Intermediate Risk Disease Free Following Treatment 0.95
rHRBC Utility in State High Risk NMIBC 0.93
rHRDF Utility in State High Risk Disease Free Following Treatment 0.93
rMIBC Utility in State High Muscle Invasive Bladder Cancer 0.80

23



R(N) =



rLRDF

rIRBC

rIRDF

rLRBC

rHRDF

rMIBC

0


, R(C) =



rLRDF − µC
rIRBC − µC − µT − µChemo − µBCG

rIRDF − µC
rHRBC − µC − µT − µChemo − µBCG

rHRDF − µC
rMIBC

0


.

A surveillance strategy defines the sequence of decisions, ξ = {a1, a2, ..., aT }, about whether to

perform a cystoscopy at each decision epoch, t. To compare strategies we estimated the total

expected QALYs, Eξ[
∑T

t=1 r(st, at)], over the patient’s lifetime. We also estimated expected

life-long progression rate and the expected number of cystoscopies.

3.3 Data Sources

Transition probabilities are derived from the EORTC risk table [14], CDC mortality table [26],

and survival data [61], summarized in Table 3.3. The EORTC risk tables were developed

from pooled individual patient-level data from 2596 patients with NMIBC enrolled in 7 clinical

trials. Annual (1 through 5-year) probability estimates of NMIBC recurrence and progression to

muscle-invasive bladder cancer are calculated on the basis of coefficients from clinicopathological

variables in multivariate logistic regression models. A recent study [33] of 13 cancers (not

including bladder cancer) provides evidence that conditional survival rate increase with the

time since diagnosis of cancer. To incorporate this into the bladder cancer survival probability,

we used a yearly discounting factor, γ, and we assumed the recurrence rate in year t, conditional

on remaining disease free, is pt = p1γ
t−1. We used 1 year and 5 year recurrence and progression

rates from the EORTC table to estimate γ.

It was not possible to estimate the parameters for grade progression, τLR, τIR, τHR, di-

rectly from the literature. Therefore we estimated them by comparing the model outputs

with published progression rates ρLR, ρIR, ρHR. We denote the model output of the 5 year

progression rate of HRBC patients starting at age t as fHR(τHR). Similarly, we denote the

model output of the 5 year progression rate of IRBC at age t as fIR(τIR, τHR), and for

LRBC as fLR(τLR, τIR, τHR). We estimated τHR, τIR, τLR, as the choices that minimize

| fHR(τHR)− ρHR |, | fIR(τIR, τHR)− ρIR |, and | fLR(τLR, τIR, τHR)− ρLR |, respectively.

We estimated the mortality rate of MIBC from survival data of MIBC patients who under-

went radical cystectomy. We performed a PubMed search on the recent published literature on

the bladder cancer survival from 2000 to 2010 using the following keywords: (bladder cancer

[Title/Abstract]) AND survival[Title]) AND radical cystectomy[Title])). We excluded studies
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that were not based on patient cohort data or clinical trials, leaving 8 studies in total [15], [47],

[65], [61], [48], [39], [19], [11], as summarized in Table 3.5. We performed sensitivity analysis

with respect to bladder cancer mortality estimated from these studies.

Table 3.5: Characteristics of papers studying survival of muscle invasive bladder cancer pa-
tients. MI = muscle invasive. DSS = disease-specific survival. RC = radical cystectomy.
Chemo = chemotherapy. RR = radical radiology. RFS = recurrence-free survival. OS = over-
all survival. PMI = primary muscle invasive. PRMI = progressive muscle invasive. C.I.=95%
confidence interval.

Authors Vries [15] Lund [47] Stein [65] Shariat [61] Madersbacher
[48]

Koga [39] Ferreira [19] Chahal
[11]

Published
Year

2010 2010 2001 2006 2003 2008 2007 2003

Country Netherlands Denmark U.S. U.S. Switzerland Japan Brazil UK

Study pe-
riod

1987-2005 1996-
2007

1971-1997 1984-2003 1985-2000 1997-2006 1993-2005 1993-1996

Sample size 188 3997 1054 888 507 97 242 398

Median age 61 72 66 66 70 69

Male 75% 74% 80% 79% 73% 60%

Comorbidity 43% 28%

Treatment RC RC RC RC,
Chemo

RC RR,RC

5y
RFS(C.I.)

68% 58% (56-60) 62%

5y OS(C.I.) 45% (41-
48)

66% 59% 66% 37%

5y
DSS(C.I.)

66% (64-68) 74%

PMI 5y
DSS(C.I.)

49% (40-60) 52%

PRMI 5y
DSS(C.I.)

52% (37-74) 58%

The base case mortality rate, δBC , was estimated from the 5-year disease specific survival

of MIBC patients reported by Shariat (2006) [61] because this study had the largest sam-

ple size for bladder cancer disease specific survival. The authors reported results based on a

multi-institutional database consisting of 888 consecutive patients with bladder transitional cell

carcinoma who were treated with radical cystectomy and pelvic lymphadenectomy at 3 aca-

demic centers in the U.S. between 1984 and 2003. Mortality rates from all other causes were

estimated from the statistics reports published by the US Centers for Disease Control (CDC)

(2009) [26]. We transformed yearly rates, denoted by py, to corresponding monthly rates, pm,

by the formula (1− pm)12 = (1− py). The base case of cystosocpy sensitivity is set to be 0.95

[22].
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We used estimates of utilities and disutilities reported by Kulkarni et al. (2007) [41]. The

estimates are summarized in Table 3.4.

3.4 Results

We used our Markov model to compare the EAU, AUA, and dynamic strategies D1, D2, ..., D12.

The base case parameter choices are defined in Tables 3.3 and 3.4. We performed sensitivity

analysis with respect to this base case. The results, if not specified otherwise, are based on the

base case scenario. We used C++ to implement the simulation process. For each scenario, we

used 1,000,000 samples to estimate the mean and 95% confidence intervals. In all the scenarios

presented below, the simulation process were be completed within 1 hours on a PC with quad

core 2.83GHz CPU and 8GB RAM.

3.4.1 Model Validation

We compared our model estimates of survival to those published in the EUROCARE-3 study

(2003) [58], which studied patients diagnosed with bladder cancer during 1990-1994. The

EUROCARE-3 study summarized one-year, three-year and five-year survival by age at di-

agnosis for 21 European countries. The age ranges reported are 45-54, 55-64, 65-74 and 75-99.

For our validation results we assigned the value of each age range to the appropriate range in

the EUROCARE-3 study. Most of the bladder cancer patients in the EUROCARE-3 study

had muscle invasive disease, however the proportion varies considerably from one country to

another. Therefore, we compared the EUROCARE-3 study results to the computational lower

bounds and upper bounds of our model, defined by the survival of MIBC patients and the

survival of LRBC patients, respectively. As expected the 5-year survival results obtained from

our model lie between the survival of MIBC patients and that of HRBC patients starting at

any age between 50 and 85.

3.4.2 Base Case Results

From 2004-2008, the median age at diagnosis for bladder cancer was 73 years; approximately

9.6% were diagnosed under age 55, and 13.2% above age 85 [1]. Therefore we compare the

EAU and AUA guidelines, and strategies D1 to D12, for the base case of a 73 year old male

and female patient. The base case parameter values are provided in Table 3.4. Note that the

value for the disutility of cystoscopy, 0.025, is based on the midpoint of the plausible range in

Kulkarni et al (2007). From Figure 3.2, the EAU guideline resulted in higher expected QALYs

compared to the more intensive AUA guideline (11.05 vs 10.90 QALYs for a 73 year old male),

and dynamic strategy D12 resulted in the highest QALYs (11.11 QALYs), which dominates
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AUA, EAU, D1, D2, D3 and D4, but not statistically different than the other policies. The

results in Figure 3.2 indicate that the ranking of strategies is similar for female patients.

Figure 3.2: Expected QALYs and 95% confidence intervals for all strategies for a 73 year old
male and a female patient in the base case.

We compared the surveillance strategies on the basis of expected progression rate versus

number of cystoscopies. Figure 3.3 shows the outcome of all strategies for low risk male patients

aged 73. The results indicate considerable differences between the EAU and AUA guidelines.

For example, the EAU guideline resulted in a higher expected life-long progress rate but with

approximately half the number of cystoscopies over the patient’s lifetime. The AUA guideline

had an absolute reduction of 0.4% in life-long progression rate and increase of 6.48 cystoscopies

on average compared to the EAU guideline. No one strategy dominates another; however, there

are significant differences in number of cystoscopies relative to changes in expected progression

rate.
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Figure 3.3: The expected life-long progression rate to muscle invasive disease versus number
of cystoscopies over a patient’s life time for a patient aged 73 under the base case scenario.

3.4.3 Sensitivity Analysis

We performed one-way sensitivity analysis on all strategies for model parameters including

disutility of cystoscopy, BC mortality, recurrence and progression rates, and all other cause

mortality. The parameter ranges are presented in Table 3.6. In the case of recurrence and

progression rates, all parameters were varied simultaneously. Table 3.7 provides the one-way

sensitivity analysis for disutility of cystoscopy. The results for disutility of cystoscopy suggest

more intensive surveillance when the disutility of cystoscopy is lower. Table 3.8 provides the one-

way sensitivity analysis for other cause mortality. Results for all other cause mortality indicate

that patients should have less intensive surveillance as all other cause mortality increases.

Finally, the ranking of strategies does not change significantly within the range of bladder

cancer mortality and recurrence and progression rates, as shown in Tables 3.9 and 3.10.

We evaluated sensitivity of strategies to the starting age of surveillance. We compared the

strategies for male patients from 55 through 85 year old, as shown in Table 3.11. The best

strategy for age 55 patients is D8. The best strategy for age 85 patients is D12.

3.5 Discussion

Our model for bladder cancer is based on recent estimates of risk of recurrence and progression

derived from the EORTC risk table [14]. The most related work to ours is that of Kent et al

[37], [36]. The authors developed a probabilistic model with five health states: free of tumor,

with tumor and intact bladder, post-cystectomy and tumor-free, post-cystectomy with tumor,

and death. They compared hypothetical surveillance strategies with an optimal strategy that
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Table 3.6: The base case values and ranges for the parameters that changed in the one-way
sensitivity analysis. (Note that parameter δ(t) is dependent on age, progression and recurrence
rates were varied by a factor of 0.5 and 2.0.)

Description Parameter Base Case Value Lower Bound Upper Bound

Disutility of Cystoscopy µC 0.025 0.003 0.05

Bladder Cancer Mortality δBC 0.011 0.005 0.016

Other Cause Mortality δ(t) δ(t) 0.5× δ(t) 2× δ(t)
Cystoscopy Sensitivity ϕC 0.95 0.90 1.00

γIR 0.030 0.015 0.060
γHR 0.075 0.038 0.150

Progression and Recurrence Rates τLR 0.002 0.001 0.004
τIR 0.008 0.004 0.016
τHR 0.070 0.035 0.140

Table 3.7: One-way sensitivity analysis with respect to disutility of cystoscopy on practical,
and dynamic policies for 73 year old low risk male patients. The bold font value at each column
indicates the best strategy in the corresponding scenario.

Strategies
Disutility of Cystoscopy Disutility of Cystoscopy

Lower Bound Upper Bound

EAU 11.230 (11.216, 11.244) 10.835 (10.821, 10.849)

AUA 11.225 (11.211, 11.239) 10.523 (10.510, 10.537)

D1 11.227 (11.213, 11.241) 10.741 (10.727, 10.755)

D2 11.230 (11.216, 11.244) 10.834 (10.820, 10.848)

D3 11.229 (11.215, 11.243) 10.880 (10.866, 10.894)

D4 11.236 (11.222, 11.250) 10.892 (10.878, 10.906)

D5 11.225 (11.211, 11.239) 10.930 (10.917, 10.944)

D6 11.230 (11.216, 11.244) 10.938 (10.925, 10.952)

D7 11.232 (11.218, 11.246) 10.947 (10.933, 10.960)

D8 11.232 (11.218, 11.246) 10.953 (10.939, 10.967)

D9 11.218 (11.204, 11.231) 10.980 (10.967, 10.994)

D10 11.219 (11.205, 11.233) 10.987 (10.973, 11.000)

D11 11.219 (11.205, 11.233) 10.990 (10.976, 11.004)

D12 11.219 (11.205, 11.232) 10.993 (10.979, 11.007)
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Table 3.8: One-way sensitivity analysis with respect to other cause mortality on practical, and
dynamic policies for 73 year old low risk male patients. The bold font value at each column
indicates the best strategy in the corresponding scenario.

Strategies
Other Cause Mortality Other Cause Mortality

Lower Bound Upper Bound

EAU 16.757 (16.736, 16.779) 8.626 (8.615, 8.637)

AUA 16.627 (16.605, 16.649) 8.476 (8.465, 8.487)

D1 16.711 (16.689, 16.732) 8.580 (8.569, 8.591)

D2 16.752 (16.730, 16.773) 8.624 (8.613, 8.635)

D3 16.773 (16.752, 16.795) 8.646 (8.635, 8.657)

D4 16.808 (16.787, 16.830) 8.653 (8.642, 8.664)

D5 16.789 (16.767, 16.810) 8.670 (8.659, 8.681)

D6 16.814 (16.793, 16.836) 8.674 (8.663, 8.685)

D7 16.826 (16.804, 16.847) 8.677 (8.666, 8.688)

D8 16.841 (16.819, 16.863) 8.680 (8.669, 8.691)

D9 16.798 (16.776, 16.819) 8.694 (8.683, 8.705)

D10 16.802 (16.780, 16.824) 8.697 (8.686, 8.708)

D11 16.813 (16.791, 16.834) 8.698 (8.687, 8.709)

D12 16.818 (16.796, 16.840) 8.700 (8.689, 8.711)

Table 3.9: One-way sensitivity analysis with respect to bladder cancer mortality on practical,
and dynamic policies for 73 year old low risk male patients. The bold font value at each column
indicates the best strategy in the corresponding scenario.

Strategies
Bladder Cancer Mortality Bladder Cancer Mortality

Lower Bound Upper Bound

EAU 11.110 (1.096, 11.124) 11.009 (10.995, 11.023)

AUA 10.956 (10.942, 10.970) 10.863 (10.850, 10.877)

D1 11.063 (11.049, 11.077) 10.964 (10.950, 10.978)

D2 11.109 (11.095, 11.123) 11.008 (10.994, 11.021)

D3 11.132 (11.118, 11.146) 11.028 (11.014, 11.042)

D4 11.137 (11.123, 11.151) 11.040 (11.026, 11.053)

D5 11.156 (11.142, 11.170) 11.049 (11.035, 11.063)

D6 11.160 (11.146, 11.174) 11.056 (11.042, 11.070)

D7 11.163 (11.149, 11.177) 11.061 (11.047, 11.075)

D8 11.166 (11.152, 11.180) 11.064 (11.051, 11.078)

D9 11.180 (11.166, 11.194) 11.066 (11.052, 11.079)

D10 11.183 (11.169, 11.197) 11.070 (11.056, 11.084)

D11 11.184 (11.170, 11.198) 11.072 (11.058, 11.086)

D12 11.186 (11.172, 11.200) 11.072 (11.059, 11.086)
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Table 3.10: One-way sensitivity analysis with respect to progression and recurrence rates on
practical, and dynamic policies for 73 year old low risk male patients. The bold font value at
each column indicates the best strategy in the corresponding scenario.

Strategies
Progression and Recurrence Rates Progression and Recurrence Rates

Lower Bound Upper Bound

EAU 11.289 (11.275, 11.304) 10.406 (10.393, 10.419)

AUA 11.132 (11.117, 11.146) 10.292 (10.280, 10.305)

D1 11.242 (11.228, 11.257) 10.373 (10.360, 10.386)

D2 11.289 (11.274, 11.303) 10.405 (10.393, 10.418)

D3 11.312 (11.297, 11.326) 10.419 (10.406, 10.431)

D4 11.317 (11.303, 11.332) 10.425 (10.412, 10.437)

D5 11.336 (11.322, 11.351) 10.429 (10.416, 10.442)

D6 11.340 (11.326, 11.355) 10.431 (10.419, 10.444)

D7 11.342 (11.328, 11.357) 10.433 (10.420, 10.445)

D8 11.346 (11.332, 11.361) 10.432 (10.419, 10.445)

D9 11.360 (11.346, 11.375) 10.433 (10.421, 10.446)

D10 11.363 (11.348, 11.377) 10.434 (10.422, 10.447)

D11 11.364 (11.350, 11.378) 10.433 (10.420, 10.445)

D12 11.365 (11.351, 11.380) 10.432 (10.419, 10.445)

Table 3.11: Comparison of strategies with respect to changes in starting age of surveillance.

Strategies 55 73 85

AUA 21.713 (21.694, 21.732) 11.045 (11.031, 11.059) 5.913 (5.901, 5.924)

EAU 21.605 (21.585, 21.624) 10.896 (10.883, 10.910) 5.792 (5.780, 5.803)

D1 21.668 (21.649, 21.687) 10.999 (10.986, 11.013) 5.873 (5.862, 5.885)

D2 21.705 (21.686, 21.724) 11.044 (11.031, 11.058) 5.910 (5.898, 5.921)

D3 21.722 (21.703, 21.741) 11.066 (11.052, 11.079) 5.929 (5.918, 5.940)

D4 21.785 (21.766, 21.804) 11.075 (11.061, 11.089) 5.937 (5.926, 5.949)

D5 21.733 (21.713, 21.752) 11.087 (11.073, 11.101) 5.949 (5.938, 5.961)

D6 21.774 (21.755, 21.794) 11.094 (11.080, 11.107) 5.955 (5.943, 5.966)

D7 21.795 (21.776, 21.814) 11.098 (11.084, 11.112) 5.959 (5.948, 5.971)

D8 21.813 (21.794, 21.832) 11.101 (11.087, 11.115) 5.963 (5.952, 5.975)

D9 21.729 (21.710, 21.749) 11.107 (11.093, 11.120) 5.969 (5.958, 5.981)

D10 21.738 (21.719, 21.757) 11.110 (11.096, 11.124) 5.972 (5.960, 5.983)

D11 21.752 (21.733, 21.772) 11.112 (11.098, 11.126) 5.974 (5.963, 5.985)

D12 21.762 (21.742, 21.781) 11.113 (11.099, 11.127) 5.977 (5.965, 5.988)
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was calculated using a non-linear optimization model to minimize expected delay of tumor

detection. In contrast, our study uses recent data, including the EORTC risk tables, to define

the model. We compared current guidelines specifically for low risk bladder cancer patients,

which are the focus of our study and represent the majority of patients with bladder cancer. We

compared strategies on the basis of QALYs, and we used bicriteria analysis to compare expected

life-long progression rate versus expected number of cystoscopies over a patient’s lifetime.

Our base case results indicated the EAU guideline is associated with greater QALYs than the

AUA guideline. We observed no evidence of benefits from very intensive surveillance strategies.

For example, strategies D3 through D12 are similar in QALYs but strategy D12 results in

significantly fewer cystoscopies on average. The best strategy for a 73 year old male patient

was found to be D9, which has nearly half the expected number of cystoscopies compared to

EAU over a patients lifetime. The best strategy for a 55 old patient is D3 and for a 85 year old

patient is D12, suggesting that older patients or patients with higher all other cause mortality

should generally undergo less intensive surveillance.

Although the differences among strategies on the basis of QALYs is relatively small, our

bicriteria analysis revealed there are significant differences among strategies, specifically in the

number of cystoscopies. We observed that the number of cystoscopies over a patient’s lifetime

ranged from 4.13 for strategy D12 to 13.76 for the AUA strategy. We found that no one

strategy dominated another, i.e., all strategies were on the efficient frontier. We observed

that the EAU policy resulted in nearly half of the number of cystoscopies with a relative risk

reduction of 17% and an absolute risk reduction of 0.4%. The large variation in the number of

cystoscopies with the different surveillance strategies, particularly in the context of the very low

background rate of progression to invasive cancer in this population, underscores the importance

of understanding the quality of life impact of this management practice on patients.

Based on sensitivity analysis, we found that disutility of cystoscopy affected the selection

of the best strategy. Generally speaking, patients should undergo more intensive surveillance

as the disutility of cystoscopy is reduced. In the extreme case, where disutility is negligible,

patients should be screened at each decision epoch since it maximizes the probability of early

detection when the patient has entered the intermediate or high risk NMIBC state. All other

cause mortality also affects the selection of the best strategy. Patients with higher all other

cause mortality should undergo less intensive surveillance. Factors which were not associated

with significant differences included bladder cancer mortality, sensitivity of cystoscopy, and

progression rate.
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3.6 Conclusions

Current guidelines, such as EAU and AUA, do not distinguish patients on the basis of age,

comorbidity, or patient’s disutility associated with cystoscopy. Our study suggests that the

EAU guideline yields higher expected QALYs but also higher life long progression probabilities

than the AUA policy. We found that younger patients should be screened more intensively

than older patients. Sensitivity analysis showed that patients should undergo more intensive

surveillance if the disutility of cystoscopy is reduced. The analysis also showed that patients

should also undergo less intensive surveillance as all other cause mortality increases. Based on

these results we conclude that patient specific factors such as the presence of comorbidity, or

perception of utility loss from cystoscopy, should play a role in determining the best surveillance

strategy.

Our study has some limitations. First, in the absence of estimates from the literature, we

calculated the monthly stage progression rates in our natural history model by minimizing the

absolute deviations of observed 5 year progression rates from the EORTC risk table with our

simulation model. Second, we made several assumptions regarding the timing, adherence, and

duration of treatment. We assumed that treatment is immediate and adherence to treatment

is perfect; we also assumed that treatments will always be done within one decision epoch (one

month), while in reality BCG and chemotherapy may last longer. Finally, the disutilities of

cystoscopy and various treatment were drawn from Kulkani’s study [40], which were in turn

drawn from studies of disutility of other invasive procedures, not specifically cystoscopy. Low

risk bladder cancer patients have a very low risk of disease progression and cancer-specific mor-

tality. The results of this study suggest that further research to more completely characterize

the quality of life impact of frequent, repetitive, invasive procedures in this context are needed

to better inform the understanding of the most efficient and effective surveillance program.

Finally, we did not include considerations of costs in this model. Given that bladder cancer has

been characterized as having the highest cost per-patient from diagnosis to death of all cancer

sites, future research could consider the economic, as well as quality of life, impacts of these

common practices in a predominantly elderly population [6].
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Chapter 4

A POMDP for Low Risk Bladder

Cancer Surveillance

4.1 Introduction

Currently there is disagreement in the medical community about how frequently low risk

NMIBC patients should receive cystoscopies. Current guidelines are not consistent in their

recommendations [4] [54] [52] [24]. In Chapter 3, Monte-Carlo simulation was used to compare

guideline recommendations of the European Association of Urology (EAU, 2009) [4], the Amer-

ican Urological Association (AUA, 2007) [24], and other surveillance strategies. In this chapter

we consider the design of an optimal surveillance policy. We extend the simulation model in

Chapter 3 to a POMDP.

In our POMDP model the health status of a patient is defined by a set of core states.

The core states are not directly observable, but they can be observed with a diagnostic test

(cystoscopy). Decisions are defined on the belief about the patient’s heath status, i.e, the

probability that the patient’s cancer has recurrence or progression. At each epoch the decision

maker chooses either to perform a cystoscopy or defer the decision to test until the next epoch.

The belief is updated at each decision epoch. As in Chapter 3, we assume the decision maker’s

objective is to maximize the patient’s expected quality adjusted life years (QALYs).

We begin by formulating the POMDP and discussing its special structure relative to a

general POMDP. Next, we use the incremental pruning algorithm [8] to find the optimal epoch

at which to perform cystoscopy over the course of a patient’s lifetime. Using a base case, similar

to that of Chapter 3, we compare the optimal surveillance policy based on our model to those

of the published EAU and AUA guidelines. We also conduct sensitivity analysis with respect to

model input parameters to determine which parameters most influence the optimal policy. We

use the results of our numerical experiments to draw some insights about optimal surveillance
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strategies and the potential for improving the existing guidelines.

The remainder of this chapter is organized as follows. In Section 4.2, we describe the

POMDP model formulation. Next in Section 4.3 we illustrate the methodologies and algorithms

used to solve our model. In Section 4.4 we present the numerical results, and in Section 4.5 we

discuss the implication of our results. Finally, the conclusions of our study are summarized in

Section 4.6.

4.2 POMDP Model Formulation

The objective in our model is to maximize the expected QALYs for a patient. QALYs are esti-

mated by decrementing a normal life year as a result of various events including (a) performing

cystoscopy, (b) treatment upon detection of bladder cancer, and (c) long-term complications

resulting from treatment. The optimal policy for cystoscopy must trade off the disutility of

cystoscopy with possible benefits of early detection of bladder cancer.

The decision process is illustrated by Figure 4.1. At each decision epoch, a decision is made

to either perform a cystoscopy, or to defer the decision to the next decision epoch. If the

decision is deferred, then the patient’s core state changes according to the core state Markov

chain. If the patient undergoes cystoscopy, and a negative result is observed, then the patient’s

core state also changes according to the core state Markov chain. If a positive cystoscopy

result is observed (this means it is a true positive as we assume the specificity of cystoscopy

is perfect, as in Chapter 3), we assume that the patient will be treated immediately. As in

Chapter 3, TURBT, and BCG [55] are assumed to be the treatment for NMIBC disease based

on the study of Kulkarni [41]. After treatment, patients are assumed to follow a standard

surveillance guideline for intermediate and high risk patients (we assume this because there is

general agreement about this guideline in the medical community [4] [54] [52] [24]). Therefore,

the patient will leave the decision process. A post-treatment state can be viewed as an absorbing

state in our model, with the reward representing expected future QALYs for entering the post-

treatment state given the patient undergoes standard surveillance. We use the simulation model

from Chapter 3 to estimate the expected rewards of the post-treatment state. Following is a

mathematical description of our POMDP model:

Time Horizon: Cystoscopy is performed monthly from a defined starting age (representing an

initial occurrence of low risk bladder cancer) to a reasonable upper bound on life span (e.g. age

100). Decision epochs are indexed by t = 0, 1, 2, ..., T .

Actions: Action, at ∈ At = {C,W} denotes the decision to perform a cystoscopy (C) at epoch

t or defer the decision to perform cystoscopy (W) until the next decision epoch t+ 1.

States: At each decision epoch a patient is in one of several health states including low risk
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Figure 4.1: Recurring surveillance decision process for low risk bladder cancer patients, in
which decision epoches (t, t+ 1, ...) occur monthly. The belief state is updated before deciding
to perform a cystoscopy in each epoch.
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disease free following treatment (LRDF), intermediate risk bladder cancer (IRBC), intermediate

risk disease free following treatment (IRDF), high risk bladder cancer (HRBC), high risk disease

free following treatment (HRDF), muscle invasive bladder cancer (MIBC), and death from

bladder cancer and other causes (D).

A descriptive list of all states is provided in Table 3.2. For HRBC and MIBC disease,

delay in surgical treatment could result in progression of cancer and decreased survival [18].

Therefore, we assume patients are treated immediately and we represent these treated states,

HRDF and MIBC, by absorbing states in our model. As pointed out in Chapter 3, small,

recurrent, low grade bladder tumors are slow growing and pose minimal risk; studies indicate

that it may not be necessary to remove those tumors promptly at recurrence [64] [57] [21].

Therefore, in our model we assume these low risk patients continue surveillance, and treatment

is triggered once a tumor progresses to intermediate risk. Treatment occurs immediately upon

detection of intermediate risk recurrent tumors, and the treated state IRDF is also represented

by an absorbing state in our model. Figure 4.2 illustrates how treating MIBC, IRDF and HRDF

as absorbing states simplifies the model. This simplification does not cause a loss of accuracy in

our model since the rewards for states IRDF, HRDF and MIBC are the expected future rewards

associated with the underlying Markov reward chain, which is estimated via simulation. We

index the possible belief states by st where st ∈ S = {LRDF, IRBC,HRBC}. The set of

absorbing state are denoted by S̄ = {IRDF,HRDF,MIBC,D}.

Observations: After a cystoscopy (at = C) the test result is either positive (p) or negative (n).

We let n also denote the observation following the action at = W . We index the observation

by θt where θt ∈ Θ = {p, n}.

Information Matrix: Conditional probabilities relate the underlying core states to the observa-

tions following a specific action at each decision epoch. We let qt(θt|st, at) denote the probability

of observing θt conditional on being in core state st following action at at epoch t. We let Qt(at)

denote the information matrix conditioning on action at, with elements qt(θt|st, at). We use f

to represent the sensitivity of cystoscopy, resulting in the following two information matrices:

Q(C) =


p n

LRDF 0 1

IRBC f 1− f
HRBC f 1− f

, Q(W ) =


p n

LRDF 0 1

IRBC 0 1

HRBC 0 1

.

For convenience, we define the follow matrices (note that blank spaces indicate zeros):
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Intermediate Risk 
Disease Free 

Following Treatment

High Risk 
Disease Free 

Following Treatment

Low Risk 
Disease Free  

Following Treatment

Intermediate Risk 
NMIBC

High Risk 
NMIBC

Muscle Invasive 
Bladder Cancer

Death

(DX/RX)

(DX/RX)

Figure 4.2: The states and possible transitions between states for a patient with bladder cancer
in the POMDP model. The solid lines indicate the probabilistic transitions. The dashed lines
indicated the transitions resulting from the detection of bladder cancer via cystoscopy. The
post-treatment states IRDF, HRDF and MIBC, indicated by dashed boxes, are treated as
absorbing states. The rewards for the intermediate and high risk disease free states and the
muscle invasive bladder cancer states are estimated using simulation of the underlying Markov
reward chain.
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Q(p, C) =

 0

f

f

, Q(n,C) =

 1

1− f
1− f

,

Q(p,W ) =

 0

0

0

, Q(n,W ) =

 1

1

1

.

Belief States: We define πt = (πt(LRDF ), πt(IRBC), πt(HRBC)) as the belief state of the non-

absorbing states at epoch t, and π̄t+1 = (π̄t+1(IRDF ), π̄t+1(HRDF ), π̄t+1(MIBC), π̄t+1(D))

as the belief state defined by the absorbing states at epoch t+ 1.

Transition Probabilities: After taking an action at, an observation θt is observed. If θt = p,

treatment is triggered and the patient transfers to one of the post-treatment states. If θt = n,

treatment is not triggered, and the core state transition proceeds. Therefore, the state transition

is only dependent on the observation, θt, at epoch t. We let pt(st+1|st, θt) denote the core state

transition probability from state st to st+1, given observation θt, at epoch t. We let Pt(θt) denote

the transition probability matrix conditioned on observation θt, with elements pt(st+1|st, θt) for

st+1 ∈ S. Similarly we let P̄t(θt) denote the transition probability matrix conditioned on

observation θt, with elements p̄t(st+1|st, θt) for st+1 ∈ S̄. Therefore, we have the following

transition matrices defined as:

Pt(n) =


LRDF IRBC HRBC

LRDF 1− ρLR − δ(t) ρLR

IRBC 1− ρIR − δ(t) ρIR

HRBC 1− ρHR − δ(t)

,

P̄t(n) =


IRDF HRDF MIBC D

LRDF δ(t)

IRBC δ(t)

HRBC ρHR δ(t)

,
and
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Pt(p) =


LRDF IRBC HRBC

LRDF 1− ρLR − δ(t) ρLR

IRBC

HRBC

,

P̄t(p) =


IRDF HRDF MIBC D

LRDF δ(t)

IRBC 1− δ(t) δ(t)

HRBC 1− δ(t) δ(t)

,
where ρLR, ρIR, ρHR are the recurrence rates of low risk, intermediate risk and high risk NMIBC

patients, and δ(t) is other cause mortality, defined in Table 3.3.

Rewards: Performing a cystoscopy imposes a disutility on the patient since it is an invasive

test. We let rt(st, at) be the core state expected immediate reward (measured in QALYs) given

the patient is in state st after taking action at at time epoch t. After a cystoscopy is performed,

the disutility associated with cystoscopy, µC , is subtracted; if the patient is in core state IRBC

or HRBC, then with probability, f (the sensitivity of cystoscopy), a positive results is observed,

after which treatment is triggered and disutilities of treatment, µT and µBCG, is collected.

We let rt(st, θt) be the core state immediate reward associated with treatment triggered by

observation θt. Thus, the belief state expected immediate reward with action at can be written

as:

rt(W ) =

LRDF rLRDF

IRBC rIRBC

HRBC rHRBC

, rt(I) =

LRDF rLRDF − µC
IRBC rIRBC − µC − f(µT − µBCG)

HRBC rHRBC − µC − f(µT − µBCG)

,
where the utilities rLRDF , rIRBC , rIRDF , rHRBC , rHRDF , rMIBC and the disutilities of treat-

ment µC , µT , and µBCG are as defined in Table 3.4. The expected reward vector of elements for

a patient entering the absorbing states, IRDF, HRDF, MIBC, is calculated using the simulation
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model of Chapter 3. They are denoted as:

Rt =


IRDF Rt(LRDF )

HRDF Rt(HRDF )

MIBC Rt(MIBC)

D 0

.

Similarly, we denote the expected reward at LRDF, IRBC, and HRBC at the last decision

epoch T as RT (LRDF ), RT (IRBC), and RT (HRBC), respectively.

4.2.1 POMDP Model Structure

It is well known that POMDPs can be reduced to an equivalent completely observable Markov

decision process on the continuous belief states. The optimal value function can be written as:

vt(πt) = max
at∈At

rt(πt, at) + λ
∑
θt∈Θ

(vt+1(πt+1) + π̄t+1Rt+1)Pr(θt|πt, at)

 , ∀πt, t = 1, ..., T − 1,

(4.1)

and the value function of the terminal period, T , is defined as:

vT (πT ) =
∑
sT∈S

πT (sT )RT (sT ), ∀πT . (4.2)

The optimal action is defined as:

a∗t (πt) = arg max
at∈At

rt(πt, at) + λ
∑
θt∈Θ

(vt+1(πt+1) + π̄t+1Rt+1)Pr(θt|πt, at)

 , ∀πt, t = 1, ..., T−1,

(4.3)

where

Pr(θt|πt, at) =
∑
st∈S

πt(st)qt(θt|st, at).

Bayesian updates are defined by the following formula:

πt+1(st+1) =

∑
st∈S

πt(st)qt(θt|st, at)pt(st+1|st, θt)∑
st∈S

πt(st)qt(θt|st, at)
, ∀st+1 ∈ S, (4.4)

and
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π̄t+1(st+1) =

∑
st∈S

πt(st)qt(θt|st, at)p̄t(st+1|st, θt)∑
st∈S

πt(st)qt(θt|st, at)
, ∀st+1 ∈ S̄. (4.5)

Equations (4.4) and (4.5) provide a means to update the belief state of a patient based on their

prior belief state and their most recent action and most recent observation.

4.3 Methodology

Our POMDP is a finite horizon problem with three months as one decision epoch. This is

a reasonable assumption, as the published guidelines such as the AUA and EAU guidelines

only consider multiples of three months as the surveillance intervals. For such problems it

is generally hard to find optimal policies with exact algorithms due to geometric growth in

the policy space. However our POMDP has a special structure which significantly reduces its

computational complexity such that it can be solved in a reasonable time using incremental

pruning. In this section, we first briefly review the incremental pruning algorithm. Next, we

describe the special characteristics of our POMDP and illustrate how these can be exploited to

reduce its computational complexity.

Incremental pruning uses the conditional value function vt(· | at) for each action at ∈ At,
and then focuses on the conditional value function vt(· | at, θt) for each observation θt ∈ Θ

individually. For each action at and observation θt, it first generates an α-vector set of Ω̄θt
at to

represent vt(· | at, θt) from the previous α-vector set Ωt+1. Then Ω̄θt
at is pruned to a minimal

set Ωθt
at with cardinality less than or equal to that of Ωt+1. Next, an α-vector set Ω̄at , which

represents vt(· | at), is constructed as follows:

Ω̄at = (
⊕
θt∈Θ

Ωθt
at(x)),

where
⊕

is the notation of Minkowski summation of two sets defined as follows:

A
⊕

B = {a+ b|∀a ∈ A,∀b ∈ B}.

Again, Ω̄at is pruned to its minimal size, Ωat , and finally, Ω̄t is constructed as:

Ω̄t =
⋃
at∈A

Ωat .

Ω̄t is then pruned to a minimal size, Ωt, to represent vt(·). As discussed in Chapter 2, the

purging process for an α-vector set Ω̄t involves solving |Ω̄t| linear programs. Thus, the process of
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generating the minimal α-vector set is computationally challenging. In fact, the computational

complexity of a general POMDP is known to be NP-hard since |Ω̄t| = O(|A||Ωt+1||Θ|) [62].

In our POMDP, if a patient has a cystoscopy and if a positive result is observed, it is assumed

that treatment is triggered and the patient leaves the decision process. In other words, the

minimal α-vector set Ωθt=p
at=I

consists of just one α-vector, which corresponds to the decision to do

no further cystoscopies. Therefore, |Ωat=I | = O(|Ωθt=p
at=I
||Ωθt=n

at=I
|) = O(|Ωθt=n

at=I
|) = O(|Ωt+1|). If a

patient defers a cystoscopy, then only a negative result is observed. Therefore, Ωat=W = Ωθt=n
at=W

such that |Ωat=W | = |Ωθt=n
at=W

| = O(|Ωt+1|). It follows that, |Ωt| = O(|Ωat=I |) + O(|Ωat=W |) =

O(|Ωt+1|), i.e. the size of the α- vector set for our POMDP increases polynomially with respect

to the number of decision epochs.

4.4 Results

We used incremental pruning to solve our POMDP. Our implementation was developed in

C++ using ILOG 12 CPLEX Concert Technology to solve the linear programs. Computational

experiments were performed on a Linux server with quad core 2.83GHz CPU and 8GB RAM.

In most scenarios presented below, the exact solutions were generated within 20 minutes.

4.4.1 Data Sources

The POMDP model inputs are based on the Markov model as described in Chapter 3. The base

case scenario is defined in Table 4.1. We use this base case scenario to compare the optimal

policy with EAU and AUA guidelines. Note that this base case is similar to that used in

Chapter 3; one exception is that the disutility is set equal to 0.0003, which corresponds to the

base case value used in Kulkarni [41]. We also report the results of sensitivity analysis with

respect to this base case. The results, if not otherwise specified, are based on the base case

scenario.

4.4.2 Base Case Scenario Results

We report results for base case scenarios for both male and female patients respectively. We

compare the optimal policy with the EAU guideline and the AUA guideline for both male and

female low risk patients aged 73 in the base case, as shown in Table 4.2. We selected age 73

because it is the median age for diagnosis of bladder cancer in the U.S. [1]. The EAU guideline

results in the same expected QALYs compared to the more intense AUA guideline for low risk

BC patients. In other words, the EAU guideline dominates the AUA guideline in that it results

in the same QALYs and fewer cystoscopies.
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Table 4.1: The base case model parameters for evaluation and comparison of bladder cancer
surveillance strategies.

Parameter Value Source

µC 0.003

Kulkarni (2007) [41]

µT 0.1
µBCG 0.08
rLRDF 0.95
rIRBC 0.95
rIRDF 0.95
rHRBC 0.95
rHRDF 0.95
rMIBC 0.80
f 0.95

Grossman (2007) [22]
g 1

The top part of Table 4.2 shows that the optimal policy results in a 0.13 QALY gain over

the EAU and AUA guidelines for a 73 year old male patient; it also shows that the optimal

policy is more intensive than the EAU guideline but less intensive than the AUA guideline. The

lower part of Table 4.2 indicates that the optimal policy results in a 0.13 QALY gain over the

EAU and AUA guidelines for a 73 year old female patient; it also indicates that intensity of the

optimal policy, in terms of number of cystoscopies, is between the EAU and AUA guidelines.

For both 73 year old male and female patients, the optimal policies resulted in 0.16 life year

gain compared with the AUA and EAU guidelines.

4.4.3 Sensitivity Analysis

We performed one-way sensitivity analysis on several of the model parameters including disu-

tility of cystoscopy, BC mortality, other cause mortality, sensitivity of cystoscopy, disutility

of each treatment type, and utilities after treatment for 73 year old male patients. Sensitiv-

ity analysis is performed with respect to the base case scenario. Specifically, we consider the

following scenarios:

• Disutility of Cystoscopy: with other parameters fixed, we changed the disutility of cys-

toscopy from a base case of 0.003 to a lower bound of 0.0015 (50% of the base case value),

and an upper bound of 0.05 respectively. The base case value and the upper bound on

disutility of cystoscopy were chosen from Kulkarni’s study [41], because it is the only

published study we have found that provides plausible estimates of the disutility of cys-

toscopy; although the estimate was based on data for cardiac catheterization procedures.
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Table 4.2: The optimal policy is compared to the AUA and EAU guidelines in terms of the
expected QALYs (95% CI), the expected life years (95% CI), and the number of cystoscopies
(95% CI). CI=Confidence Interval.

Base case; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.16 (11.12, 11.20) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.16 (11.12, 11.20) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.29 (11.25, 11.34) 12.07 (12.02, 12.11) 8.74 (8.67, 8.81)

Base case; Female, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 13.03 (12.99, 13.08) 13.91 (13.86, 13.96) 15.67 (15.61, 15.73)

EAU 13.03 (12.98, 13.08) 13.88 (13.83, 13.93) 8.93 (8.87, 8.98)

Optimal 13.16 (13.11, 13.21) 14.07 (14.02, 14.13) 9.98 (9.89, 10.06)

• BC Mortality: With other parameters fixed, we changed the monthly BC mortality rate

from a base case of 0.01083 (5 year DSS survival = 0.52) drawn from the study of Maders-

bacher (2003) [48] to a lower bound 0.005 (50% of the base case value, 5 year DSS survival

= 0.74) and an upper bound of 0.01643 (150% of the base case value, 5 year DSS survival

= 0.37).

• Other Cause Mortality: With other parameters fixed, we changed the other cause mor-

tality from a base case drawn from CDC (2009) [26] to a lower bound of base case (50%

of the base case value), and an upper bound of base case (150% of the base case value),

respectively.

• Sensitivity of Cystoscopy: With other parameters fixed, we changed the sensitivity of

cystoscopy from a base case value of 95% drawn from the study of Grossman (2007) [22]

to a lower bound of 90%, and an upper bound of 100%, respectively.

• Disutility of TURBT: With other parameters fixed, we changed the disutility of TURBT

from a base case value of 0.10 drawn from Kulkarni’s study [41] to a lower bound of 0.50

(50% of the base case value), and an upper bound of 0.15 (150% of the base case value),

respectively.

• Disutility of BCG: With other parameters fixed, we changed the disutility of BCG treat-

ment from a base vase value of 0.08 drawn from Kulkarni’s study [41] to a lower bound

of 0.04 (50% of the base case value), and an upper bound of 0.12 (150% of the base case

value), respectively.
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• Utility after Treatment of NMIBC: With other parameters fixed, we changed the utility

after treatment of NMIBC disease from a base case value of 0.95 drawn from Kulkarni’s

study [41] to a lower bound of 0.90, and an upper bound of 1, respectively.

• Utility after Treatment of MIBC: With other parameters fixed, we changed the utility

after treatment of MIBC disease from a base case value of 0.80 drawn from Kulkarni’s

study [41] to a lower bound of 0.75 (50% of the base case value), and an upper bound of

0.85, respectively.

The parameter ranges in each of the defined scenarios are presented in Table 4.3.

Table 4.3: The base case values and ranges for the parameters that changed in the one-way
sensitivity analysis. (Note that parameter δ(t) is dependent on age.)

Description Parameter Base Case Value Lower Bound Upper Bound

Disutility of Cystoscopy µC 0.003 0.0015 0.05

Bladder Cancer Mortality δBC 0.011 0.005 0.016

Other Cause Mortality δ(t) δ(t) 0.5× δ(t) 1.5× δ(t)
Sensitivity of Cystoscopy f 0.95 0.90 1.00

Disutility of TURBT µT 0.1 0.05 0.15

Disutility of BCG µBCG 0.08 0.04 0.12

rLRDF 0.95 0.90 1.0
rIRBC 0.95 0.90 1.0

Utility after Treatment of NMIBC rIRDF 0.95 0.90 1.0
rHRBC 0.95 0.90 1.0
rHRDF 0.95 0.90 1.0

Utility after Treatment of MIBC rMIBC 0.80 0.75 0.85

The results of our sensitivity analysis are presented in Table 4.4 to Table 4.11. We observed

that expected QALYs for the optimal surveillance strategy is most sensitive to other cause

mortality. We also observed that the number of cystoscopies is highly sensitive to the disutility

of cystoscopy and other cause mortality. A detailed discussion of the sensitivity analysis for

each parameter is presented below.

Table 4.4 presents the comparison of the optimal policy with the EAU and EAU guidelines

for the lower bound and the upper bound scenarios with respect to disutility of cystoscopy. The

frequency of cystoscopies in the optimal policy is highly sensitive to the disutility of cystoscopy.

Varying the disutility of cystoscopy from 0.05 to 0.0015 resulted in changing the number of

cystoscopies from 0 to 11.20. In the lower bound scenarios, the optimal policy resulted in a

0.12 QALY gain and a 0.13 life year gain over the EAU and AUA guidelines. In the upper bound
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scenario, the optimal policy resulted in a 0.37 QALY gain over the EAU and AUA guidelines;

however it resulted in reduction of 0.10 life year over these two guidelines.

Table 4.4: Sensitivity analysis with respect to disutility of cystoscopy comparing the optimal
policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI), the
expected life years (95% CI), and the number of cystoscopies (95% CI). CI=Confidence Interval.

Disutility of cystoscopy, upper bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 10.46 (10.42 , 10.50) 11.91 (11.86 , 11.96) 14.91 (14.86 , 14.97)

EAU 10.77 (10.73 , 10.81) 11.89 (11.84 , 11.94) 8.40 (8.35 , 8.45)

Optimal 11.14 (11.09 , 11.18) 11.79 (11.74 , 11.84) 0.00 (0.00 , 0.00)

Disutility of cystoscopy, lower bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.18 (11.14, 11.23) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.18 (11.13, 11.22) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.30 (11.26, 11.35) 12.07 (12.03, 12.12) 11.20 (11.12, 11.27)

Table 4.5 presents the sensitivity analysis with respect to bladder cancer mortality. Variation

of the base case value of bladder cancer mortality by 50% resulted in changing the number of

cystoscopies in the optimal policy from 8.69 to 6.69. In the upper bound scenario, the optimal

policy resulted in a 0.13 QALY gain and 0.16 life year gain over the EAU and AUA guidelines;

while in the lower bound scenario, the optimal policy results in a 0.08 QALY gain and 0.09 life

year gain over the EAU and AUA guidelines. The results indicated that the worse the bladder

cancer mortality the higher the incremental benefit of the optimal surveillance policy compared

with the EAU and AUA guidelines.

Table 4.6 shows the sensitivity analysis with respect to other cause mortality. The results

show that the frequency of cystoscopies in the optimal policy is highly sensitive to other cause

mortality. Varying the base case value of other cause mortality from 150% of the base case to

50% of the base case would result in changing the mean number of cystoscopies in the optimal

policy from 5.20 to 14.00. In the upper bound scenario, the optimal policy resulted in 0.01

QALY gain and 0.02 life year gain over the EAU and AUA guidelines; while in the lower bound

scenario, the optimal policy results in a 0.35 QALY gain and 0.33 life year gain over the EAU

and AUA guidelines. The results suggest that, for patients with lower other cause mortality,

the optimal surveillance policy results in higher incremental benefits (in both QALY gain and

life year gain) compared with the EAU and AUA guidelines. The results also indicated that
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Table 4.5: Sensitivity analysis with respect to bladder cancer mortality comparing the optimal
policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI), the
expected life years (95% CI), and the number of cystoscopies (95% CI). CI=Confidence Interval.

Bladder cancer mortality, upper bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.13 (11.08, 11.17) 11.87 (11.82, 11.92) 14.92 (14.86, 14.97)

EAU 11.13 (11.09, 11.17) 11.85 (11.80, 11.89) 8.40 (8.35, 8.45)

Optimal 11.26 (11.22, 11.31) 12.03 (11.98, 12.08) 8.69 (8.62, 8.76)

Bladder cancer mortality, lower bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.22 (11.17, 11.26) 11.98 (11.94, 12.03) 14.91 (14.86, 14.97)

EAU 11.23 (11.19, 11.27) 11.97 (11.92, 12.02) 8.41 (8.36, 8.46)

Optimal 11.31 (11.26, 11.35) 12.07 (12.03, 12.12) 6.69 (6.62, 6.76)

patients with higher other cause mortality should generally follow less intensive surveillance.

Table 4.7 presents the sensitivity analysis with respect to sensitivity of cystoscopy. Assuming

cystoscopy has a sensitivity of 100%, i.e. perfect sensitivity, the optimal policy would result in

a 0.12 QALY gain and a 0.14 life year gain over the EAU and AUA guidelines by performing

7.78 cystoscopies on average; Assuming cystoscopy has a sensitivity of 90%, on the other hand,

the optimal policy would result in a 0.13 QALY gain and a 0.16 life year gain over the EAU and

AUA guidelines by performing 8.74 cystoscopies on average. The results suggest the optimal

policy is relatively insensitive to the sensitivity of cystoscopy and the optimal policy would

result in similar incremental benefits over the EAU and AUA guidelines with fewer number of

cystoscopies for sensitivity in the range of 90% to 100%.

Table 4.8 presents the sensitivity analysis with respect to the disutility of TURBT. In the

upper bound scenario, the optimal policy resulted in a 0.10 QALY gain and a 0.13 life year

gain over the EAU and AUA guidelines with 7.80 cystoscopies on average; while in the lower

bound scenario, the optimal policy would result in a 0.15 QALY gain and 0.16 life year gain

over the EAU and AUA guidelines with 8.74 cystoscopies on average. The results suggest that

the lower the disutility of TURBT, the more incremental benefit the optimal surveillance policy

can add compared with the EAU and AUA guidelines. This is intuitive because the benefit of

surveillance is ultimately influenced by the expected rewards for detection and treatment.

Table 4.9 presents the sensitivity analysis with respect to disutility of TURBT. The results

are quite similar to the sensitivity analysis with respect to disutility of BCG, listed in Table

4.8. The results indicated that the lower the disutility of BCG, the more incremental benefit
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Table 4.6: Sensitivity analysis with respect to other cause mortality comparing the optimal
policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI), the
expected life years (95% CI), and the number of cystoscopies (95% CI). CI=Confidence Interval.

Other cause mortality, upper bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 8.72 (8.69, 8.76) 9.31 (9.27, 9.34) 13.83 (13.78, 13.87)

EAU 8.74 (8.70, 8.77) 9.30 (9.26, 9.33) 7.63 (7.59, 7.67)

Optimal 8.76 (8.72, 8.79) 9.33 (9.29, 9.36) 5.20 (5.15, 5.25)

Other cause mortality, lower bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 16.88 (16.81, 16.95) 18.04 (17.97, 18.11) 16.40 (16.32, 16.47)

EAU 16.86 (16.79, 16.93) 17.99 (17.92, 18.07) 9.56 (9.50, 9.63)

Optimal 17.23 (17.16, 17.30) 18.47 (18.39, 18.55) 14.00 (13.88, 14.12)

Table 4.7: Sensitivity analysis with respect to sensitivity of cystoscopy comparing the optimal
policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI), the
expected life years (95% CI), and the number of cystoscopies (95% CI). CI=Confidence Interval.

Sensitivity of cystoscopy, upper bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.16 (11.12, 11.20) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.16 (11.12, 11.21) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.28 (11.24, 11.33) 12.05 (12.00, 12.10) 7.78 (7.71, 7.86)

Sensitivity of cystoscopy, lower bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.16 (11.12, 11.20) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.16 (11.12, 11.21) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.29 (11.25, 11.34) 12.07 (12.02, 12.12) 8.74 (8.67, 8.82)
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Table 4.8: Sensitivity analysis with respect to disutility of TURBT comparing the optimal
policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI), the
expected life years (95% CI), and the number of cystoscopies (95% CI). CI=Confidence Interval.

Disutility of TURBT, upper bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.14 (11.09, 11.18) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.14 (11.10, 11.19) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.24 (11.20, 11.29) 12.04 (12.00, 12.09) 7.80 (7.73, 7.87)

Disutility of TURBT, lower bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.18 (11.14, 11.23) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.18 (11.14, 11.23) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.33 (11.28, 11.37) 12.07 (12.02, 12.11) 8.74 (8.67, 8.81)

the optimal surveillance policy can add compared with the EAU and AUA guidelines. Similar

to the results for disutility of TURBT this is also intuitive.

Tables 4.10 and 4.11 present the sensitivity analysis with respect to the utility after treat-

ment of NMIBC disease and the utility after treatment of MIBC disease, respectively. Changing

the utility after treatment of NMIBC disease from 1 to 0.9 would result in changing the expected

number of cystoscopies from 8.74 to 7.80; it also results in a drop of incremental QALYs gained

from 0.14 to 0.10, and a drop of life years gained from 0.16 to 0.13, compared with the EAU and

AUA guidelines. Changing the utility after treatment of MIBC disease from 0.85 to 0.75 would

result in changing the number of cystoscopies from 7.80 to 8.74; it would result in an increase

of incremental QALYs gained from 0.10 to 0.14 and the increase of life years gained from 0.13

to 0.16, compared with the EAU and AUA guidelines. The comparison between the sensitivity

analysis with respect to utility after treatment of NMIBC disease and that after treatment of

MIBC disease shows that the larger the utility loss when NMIBC disease progresses to MIBC

disease, the higher the incremental benefit (in both QALY gain and life year gain) of the optimal

policy over the EAU and AUA guidelines.

In summary, the optimal surveillance policy is highly sensitive to the disutility of cystoscopy

and other cause mortality. Specifically, varying the disutility of cystoscopy from 150% of the

base case value to 50% of the base case value would result in an increase in the expected number

of cystoscopies from 7.80 to 11.20. We also found that the optimal surveillance policy can be

affected by other cause mortality significantly. Changing other cause mortality from 150% of

the base case to 50% of the base case would result in an increase of QALYs gained from 0.02 to
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Table 4.9: Sensitivity analysis with respect to disutility of BCG comparing the optimal policy
with the AUA and EAU guidelines in terms of the expected QALYs (95% CI), the expected
life years (95% CI), and the number of cystoscopies (95% CI). CI=Confidence Interval.

Disutility of BCG, upper bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.14 (11.10, 11.19) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.15 (11.10, 11.19) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.25 (11.21, 11.29) 12.04 (12.00, 12.09) 7.80 (7.73, 7.87)

Disutility of BCG, lower bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.18 (11.13, 11.22) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.18 (11.14, 11.22) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.32 (11.28, 11.37) 12.07 (12.02, 12.11) 8.74 (8.67, 8.81)

Table 4.10: Sensitivity analysis with respect to utility after treatment of NMIBC comparing
the optimal policy with the AUA and EAU guidelines in terms of the expected QALYs (95%
CI), the expected life years (95% CI), and the number of cystoscopies (95% CI). CI=Confidence
Interval.

Utility after treatment of NMIBC, upper bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.74 (11.70, 11.79) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.75 (11.70, 11.79) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.89 (11.84, 11.94) 12.07 (12.02, 12.11) 8.74 (8.67, 8.81)

Utility after treatment of NMIBC, lower bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 10.57 (10.53, 10.62) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 10.58 (10.54, 10.62) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 10.68 (10.64, 10.72) 12.04 (12.00, 12.09) 7.80 (7.73, 7.87)
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Table 4.11: Sensitivity analysis with respect to utility after treatment of MIBC comparing the
optimal policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI),
the expected life years (95% CI), and the number of cystoscopies (95% CI). CI=Confidence
Interval.

Utility after treatment of MIBC, upper bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.17 (11.13, 11.21) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.18 (11.13, 11.22) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.28 (11.24, 11.33) 12.04 (12.00, 12.09) 7.80 (7.73, 7.87)

Utility after treatment of MIBC, lower bound; Male, aged 73

Policy QALYs Life Years Number of Cystoscopies

AUA 11.15 (11.10, 11.19) 11.91 (11.86, 11.96) 14.91 (14.86, 14.97)

EAU 11.15 (11.11, 11.20) 11.89 (11.84, 11.94) 8.40 (8.35, 8.45)

Optimal 11.29 (11.24, 11.33) 12.07 (12.02, 12.11) 8.74 (8.67, 8.81)

0.35 and an increase of life years gained from 0.02 to 0.43; it also resulted in an increase in the

number of cystoscopies from 5.20 to 14.00 on average. Therefore, we conclude that patients with

higher than typical other cause mortality should generally follow less intensive surveillance.

4.5 Discussion

Based on the results, we observed that the EAU guideline dominates the AUA guideline for the

male and female base cases. Specifically, the EAU guideline resulted in very similar QALYs

and many fewer cystoscopies compared with the AUA guideline. Furthermore, the optimal

policy can result in significant QALY gain and life year gain compared with both the EAU

and AUA guidelines for both male and female patients in the base case. For example, for a 73

year old male patient, the optimal policy resulted in a 0.13 QALY gain and 0.16 life year gain

over the EAU and AUA guidelines; for a 73 year old female patient, the optimal policy also

resulted in a 0.13 QALY gain and 0.16 life year gain over the EAU and AUA guidelines. We

also observed that the optimal surveillance policy for male patients is less intensive than that

for female patients of the same age. Specifically, in the base case, 73 year old male patients

have 8.74 cystoscopies versus 9.98 cystoscopies on average. The only difference between male

and female patients in our model is that male patients have higher other cause mortality risk.

Thus, our findings suggest that older patients or patients with other competing risks should

generally have less intensive surveillance.

Based on sensitivity analysis, we found that the optimal frequency of cystoscopy is highly
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sensitive to the disutility of cystoscopy. Patients should undergo more intensive surveillance

when the disutility of cystoscopy is reduced. For example, changing the disutility of cystoscopy

from 0.05 to 0.0015 would result in an increase in the mean number of cystoscopies from 0

to 11.20. Therefore, the optimal surveillance strategy should be influenced by an individual

patient’s perception of the disutility of cystoscopy. Finally, changes in other cause mortality

also affect the optimal policy. We observed that patients have more cystoscopies when other

cause mortality drops. Specifically, changing other cause mortality from 150% to 50% of the

base case would result in an increase in the mean number of cystoscopies from 5.20 to 14.00 for

a 73 year old male patient. This implies that patients having comorbidity should undergo less

intensive surveillance.

4.6 Conclusions

Current published guidelines, such as the EAU and AUA, are not consistent about the frequency

of cystoscopic surveillance for low risk bladder cancer patients. We used a POMDP model to

investigate the optimal surveillance policy that maximizes a patient’s expected QALYs. Our

numerical results for 73 year old male and female base case patients show that the optimal

policies can result in a significant gain in QALYs (0.13 QALY gain) compared with the EAU

and AUA guidelines.

Current guidelines, such as EAU and AUA, do not distinguish patients on the basis of

age, comorbidity, or patient’s disutility associated with cystoscopy. We performed sensitivity

analysis to determine the model parameters that most affect the optimal policy. We observed

that the frequency of the optimal surveillance policy is highly sensitive to the disutility of

cystoscopy. For example, changing the disutility of cystoscopy from 0.05 (1,667% of the base

case value) to 0.0015 (50% of the base case value) resulted in an increase in the number of

cystoscopies from 0 to 11.20 on average. This suggests that a patient’s preference for cystoscopy

should be considered in designing the optimal surveillance policy.

We found that the optimal surveillance policy can be significantly affected by other cause

mortality in terms of incremental QALY gain and incremental life year gain over the EAU and

AUA guidelines as well as the number of cystoscopies. Changing other cause mortality from

150% to 50% of the base case value resulted in an increase of QALYs (life years) gained from

0.02 (0.02) to 0.35 (0.43) and an increase in the mean number of cystoscopies from 5.20 to 14.00

for a 73 year old male patient. This suggests that patients with lower other cause mortality

may benefit more from the optimal policy and these patients should generally follow more

intensive surveillance than the average patients. Thus, for example, patients with comorbidity

that influences their other cause mortality should be screened less intensively.
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Chapter 5

Optimal Surveillance Protocols

Involving Urine Based Biomarkers

5.1 Introduction

In Chapter 3 a Markov model for bladder cancer surveillance for the low risk patients was

presented. Various surveillance policies were evaluated using Monte Carlo simulation based on

the Markov model. Chapter 4 extended this Markov model to a POMDP model to study optimal

surveillance policies. Results showed that optimal policies were dependent on a patient’s gender,

age, other causes of mortality, and the disutility of cystoscopy. The results also demonstrated

the potential to improve upon current guidelines such as the EAU and AUA guidelines. In

this chapter, we explore further opportunities to improve on the guidelines by expanding the

breadth of diagnostic tests to include recently developed biomarkers.

The POMDP in Chapter 4 considered a surveillance protocol based on cystoscopy alone.

Recent development of urine based biomarkers has opened up research questions about the

possible use of these new diagnostic tests for surveillance of low risk bladder cancer patients.

Van Rhijin, et al. (2005) [67] provides a review of urine based biomarker tests that are ap-

proved or under development. All of these biomarkers have lower sensitivity and specificity

than cystoscopy. Therefore the role of cystoscopy is unlikely to be replaced with these biomark-

ers. Nevertheless, it is possible that biomarkers may be useful for directing the frequency of

cystoscopies in the surveillance process, and could possibly reduce the impact of surveillance

on patients, as proposed by Fritsche, et al [20].

In this chapter we extend our POMDP model to design two surveillance protocols to evaluate

the incremental benefit of urine based biomarkers. The first protocol uses cystoscopy alone, as

in Chapter 4; the second protocol uses a biomarker for the initial test, with a positive result

qualifying the patient for a cystoscopy. We use the new POMDP model to compare the optimal
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surveillance policy resulting from using the two different protocols. As in Chapter 4, we assume

that a patient will be treated immediately following a positive cystoscopy result; after treatment

patients are assumed to follow a standard surveillance guideline for intermediate and high risk

patients.

We begin by formulating the POMDP based on the previous POMDP formulation in Chap-

ter 4. Then we discuss the computational complexity and how we deal with the computational

challenges of this expanded POMDP model. Next, we use the incremental pruning algorithm

[8] to find the optimal surveillance policy over the course of a patient’s lifetime. Using a base

case, we compare the optimal policies, with and without a urine based biomarker, to analyze

the incremental benefit of using the biomarker. Furthermore, we simulate the optimal policies

using the simulation model in Chapter 3 to investigate easy-to-implement heuristic surveillance

policies. We evaluate the heuristic policies’ potential to improve upon the published EAU and

AUA guidelines.

We conduct sensitivity analysis with respect to model input parameters such as the disutility

of cystoscopy, the sensitivity and specificity of biomarkers, and the sensitivity of cystoscopy to

determine which parameters most influence the incremental benefit of biomarker tests. We

use the results of our numerical experiments to draw some insights about if and how to use

biomarkers to direct the frequency of cystoscopy and the potential for improving the existing

guidelines.

The remainder of this chapter is organized as follows. In Section 5.2, we describe the

POMDP model formulation and structure. Next in Section 5.3 we discuss the computational

complexity and illustrate heuristic methods to develop easy-to-implement surveillance policies

by simulating the optimal solution from our POMDP. In Section 5.4 we present the numerical

results, and in Section 5.5 we discuss the implication of our results. Finally, the conclusions of

our study are summarized in Section 5.6.

5.2 POMDP Model Formulation

We illustrate the surveillance decision process in Figure 5.1. At each decision epoch, the patient

decides whether to initiate a diagnostic test or defer the decision until the start of the next

epoch. We first consider using cystoscopy alone for surveillance. If a cystoscopy is initiated

and a positive result is observed, then treatment is triggered since a positive cystoscopic result

means true positive (based on perfect specificity of cystoscopy). Next, we consider using the

biomarker based surveillance protocol. If a biomarker test is initiated and a positive result

is observed, then a cystoscopy will be triggered; a positive triggered cystoscopic result will

automatically trigger treatment. After treatment, the patient follows a standard surveillance

guideline and no more surveillance decisions are made, as assumed in Chapter 4. Otherwise, if
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Figure 5.1: Recurring surveillance decision process for low risk bladder cancer patients with
two surveillance protocols considered. The belief state is updated before choosing an action at
each decision epoch.
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the initial cystoscopic result is negative, or the initial biomarker test result is negative, or the

triggered cystoscopic result is negative, then the patient will continue staying in the decision

process and the patient’s heath state evolves according to the core state transition process. If

the decision is deferred, then the patient’s health state also changes according to the core state

transition process.

As in Chapter 4, the objective in our new POMDP model is to maximize expected QALYs.

Biomarkers are assumed to have no disutility, because the procedure is non-invasive (a simple

urine test conducted in the outpatient environment). However performing a biomarker test

may ultimately decrease a patient’s QALYs, as it may produce a positive result and trigger a

cystoscopy.

We describe the POMDP model with similar notation to that used in Chapter 4. Following

is a mathematical description of our model:

Stages: Surveillance is managed from a starting age (representing an initial occurrence of low

risk bladder cancer) to a reasonable upper bound on life span (age 100). Decision epochs are

indexed by t = 0, 1, 2, ..., T .

Actions: Action, at ∈ At denotes the decision chosen at epoch t. Possible actions at each

epoch t including initiating a biomarker test (B), directly initiating a cystoscopy (without first

initiating a biomarker test) (C) or deferring the decision (waiting) until the next decision epoch

(W ). The action set is At ≡ {C,W},∀t = 1, ..., T, when we consider using cystoscopy alone.

It is set as At ≡ {B,W}, ∀t = 1, ..., T, when we consider use the biomarker based surveillance

protocol.

States: At each decision epoch a patient is in one of several health states including low risk

disease free following treatment (LRDF), intermediate risk bladder cancer (IRBC), interme-

diate risk disease free following treatment (IRDF), high risk bladder cancer (HRBC), high

risk disease free following treatment (HREF), muscle invasive bladder cancer (MIBC), and

death from bladder cancer and other causes (D). We index the states by st and st ∈ S =

{LRDF, IRBC, IRDF,HRBC,HRDF,MIBC,D}. The state description is summarized in

Table 3.2. As in Chapter 4, we assume patients are treated immediately and we represent these

treated states, IRDF, HRDF and MIBC, by absorbing states in our model.

Observations: After a cystoscopy (at = C) the test result is either negative (n) or positive (p).

After a biomarker test (at = B) the test is either negative or positive, which automatically

triggers a cystoscopy. If the triggered cystoscopy is positive, we refer to the compound ob-

servation as double-positive (pp). A double-positive observation confirms that both the initial

biomarker test result and the triggered cystoscopic result are true positive, as the specificity of

cystoscopy is assumed to be perfect. Otherwise, if the triggered cystoscopy is negative, we refer
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to the compound observation as positive-negative (pn). A positive-negative observation indi-

cates that either the initial biomarker test result is false positive, since cystoscopy has perfect

specificity, or the initial biomarker result is true positive but the triggered cystoscopic result

is false negative since cystoscopy does not have perfect sensitivity. In other words, possible

observations following the urine based surveillance protocol can be negative, double-positive or

positive-negative. We let n also denote the observation following the action at = W . We index

the possible observations by θt where θt ∈ Θ ≡ {n, p, pp, pn}.

Information Matrix: Conditional probabilities relate the underlying core states to the obser-

vations. We let qt(θt|st, at) denote the probability of observing θt conditional on being in core

state st following action at at epoch t. We let Qt(at) denote the information matrix given action

at, which has elements qt(θt|st, at). As in Chapters 3 and 4, we assume that cystoscopy has

perfect specificity and we use f to represent the sensitivity of cystoscopy, which is assumed to be

consistent for both low grade and high grade tumors. We let ϕlg and ϕhg denote the sensitivity

of a biomarker test for low grade (IRBC) and high grade (HRBC) tumors, respectively. We let

τ denote the sensitivity and specificity of the biomarker test. The information matrices can be

written as:

Qt(C) =


n p pp pn

LRDF 1 0 0 0

IRBC 1− f f 0 0

HRBC 1− f f 0 0

,

Qt(B) =


n p pp pn

LRDF τ 0 0 1− τ
IRBC 1− ϕlg 0 fϕlg (1− f)ϕlg

HRBC 1− ϕhg 0 fϕhg (1− f)ϕhg

,

Qt(W ) =


n p pp pn

LRDF 1 0 0 0

IRBC 1 0 0 0

HRBC 1 0 0 0

.
Belief States: As in Chapter 4, we define πt = (πt(LRDF ), πt(IRBC), πt(HRBC)) as the

belief state for the non-absorbing states at epoch t, and π̄t+1 = (π̄t+1(IRDF ), π̄t+1(HRDF ),

π̄t+1(MIBC), π̄t+1(D)) as the belief state that patient will enter one of the absorbing states at

epoch t+ 1.

Transition Probabilities: After taking an action, an observation is observed. If an initial cysto-
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scopic result is positive (p) or a triggered cystoscopic result is positive (pp), then treatment is

triggered and the patient transfers to one of the post-treatment states, IRDF or HRDF. Other-

wise, if an initial cystoscopic result is negative (n), or an initial biomarker test result is negative

(n)s or a triggered cystoscopic result is negative (pn), then treatment is not triggered and the

core state transition proceeds according to the natural process. Therefore, the state transition is

only dependent on the observation at each decision epoch. We let pt(st+1|st, θt) denote the core

state transition probability from state st to st+1, given observation θt, at epoch t. We let Pt(θt)

denote the transition probability matrix given observation θt, with elements pt(st+1|st, θt) for

st+1 ∈ S. Similarly, we let P̄t(θt) denote the transition probability matrix given observation θt,

with elements p̄t(st+1|st, θt) for st+1 ∈ S̄. Therefore, we have the following transition matrices

defined as:

Pt(p) = Pt(pp) =


LRDF IRBC HRBC

LRDF 1− ρLR − δ(t) ρLR

IRBC

HRBC

,

P̄t(p) = P̄t(pp) =


IRDF HRDF MIBC D

LRDF δ(t)

IRBC 1− δ(t) δ(t)

HRBC 1− δ(t) δ(t)

,
and

Pt(n) = Pt(pn) =


LRDF IRBC HRBC

LRDF 1− ρLR − δ(t) ρLR

IRBC 1− ρIR − δ(t) ρIR

HRBC 1− ρHR − δ(t)

,

P̄t(n) = P̄t(pn) =


IRDF HRDF MIBC D

LRDF δ(t)

IRBC δ(t)

HRBC ρHR δ(t)

,
where ρLR, ρIR, ρHR are the recurrence rates of low risk, intermediate risk and high risk NMIBC

disease, and δ(t) is other cause mortality at age t, as defined in Table 3.3. Note that empty

spaces denote zeros.
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Rewards: As in Chapter 4, we let rt(st, at) represent the core state expected immediate reward

(measured in QALYs) given the patient is in state st after taking action at at time epoch t.

Performing a cystoscopy imposes a disutility on a patient as it is an invasive test. After a

cystoscopy is performed, if a positive result is observed, then treatment is triggered, imposing

additional disutility associated with treatment. Thus, the belief state expected immediate

reward with action at can be written in vector form as:

rt(W ) =

LRDF rLRDF

IRBC rIRBC

HRBC rHRBC

,

rt(B) =

LRDF rLRDF − (1− τ)µC

IRBC rIRBC − ϕ(µC − f(µT − µBCG))

HRBC rHRBC − ϕ(µC − f(µT − µBCG))

,

rt(C) =

LRDF rLRDF − µC
IRBC rIRBC − µC − f(µT − µBCG)

HRBC rHRBC − µC − f(µT − µBCG)

,
where the utilities rLRDF , rIRBC , rIRDF , rHRBC , rHRDF , rMIBC and the disutilities of treat-

ment µC , µT , and µBCG are as defined in Table 3.4. The expected reward vector for the

absorbing states is calculated from our previous simulation model of Chapter 3 and denoted as

follows:

Rt =


IRDF Rt(IRDF )

HRDF Rt(HRDF )

MIBC Rt(MIBC)

D 0

.
Similarly, we use RT (LRDF ), RT (IRBC), and RT (HRBC), as in Chapter 4, to denote the

expected reward at LRDF, IRBC, and HRBC at the final decision epoch T , respectively.

Although the definition of the action set and observation process is different, the optimal

value function formulation of this POMDP is structurally the same as that in Chapter 4, which

is written as:
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vt(πt) = max
at∈At

rt(πt, at) + λ
∑
θt∈Θ

{vt+1(πt+1) + π̄t+1Rt+1}Pr(θt|πt, at)

 , ∀πt, t = 1, ..., T − 1,

(5.1)

and the value function of the terminal period, T , is defined as:

vT (πT ) =
∑
sT∈S

πT (sT )RT (sT ), ∀πT . (5.2)

The optimal action is defined as:

a∗t (πt) = arg max
at∈At

rt(πt, at) + λ
∑
θt∈Θ

{vt+1(πt+1) + π̄t+1Rt+1}Pr(θt|πt, at)

 , ∀πt, t = 1, ..., T−1,

(5.3)

where

Pr(θt|πt, at) =
∑
st∈S

πt(st)qt(θt|st, at).

Bayesian updates are also the same as that in Chapter 4, defined by the following formula:

πt+1(st+1) =

∑
st∈S

πt(st)qt(θt|st, at)pt(st+1|st, θt)∑
st∈S

πt(st)qt(θt|st, at)
, ∀st+1 ∈ S. (5.4)

and

π̄t+1(st+1) =

∑
st∈S

πt(st)qt(θt|st, at)p̄t(st+1|st, θt)∑
st∈S

πt(st)qt(θt|st, at)
, ∀st+1 ∈ S̄. (5.5)

Equations (5.4) and (5.5) are used to update the belief state of a patient based on their prior

belief state and their most recent action and most recent observation.

5.3 Methodology

This extended POMDP has a similar formulation to the original POMDP of Chapter 4; however

due to the increased observation set, it is much harder to solve. As we discussed in Section 4.3,

the computational complexity of a general POMDP is NP-hard; nevertheless the POMDP in

Chapter 4 has a α-vector set that is polynomial in size. Unfortunately, the POMDP described

above does not have this same property.
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5.3.1 Analysis of POMDP Model

We apply incremental pruning algorithm to solve the POMDP described above. As discussed

in Chapter 4, the key idea of incremental pruning is to represent the conditional value function

vt(· | at) for each action at ∈ At, and then focus on the conditional value function vt(· | at, θt)
for each observation θt ∈ Θ individually. For each action at, and each observation θt, the

incremental pruning algorithm first generates an α-vector set Ω̄θt
at to represent vt(· | at, θt) from

the previous α-vector set Ωt+1. Then Ω̄θt
at is pruned to a minimal set Ωθt

at with cardinality less or

equal to that of Ωt+1. Next, an α-vector set Ω̄at , for representing vt(· | at), is constructed and

pruned to its minimal size, Ωat . Finally, Ω̄t is constructed and then pruned to a minimal size,

Ωt, to represent vt(·). As explained in Chapter 4, the computational complexity of a general

POMDP is NP-hard because |Ω̄t| = O(|A||Ωt+1||Θ|) [62].

In the POMDP presented in this chapter, we analyze the computational complexity for using

each of the two proposed surveillance protocols separately. We first consider using cystoscopy

alone, i.e. At = {C,W}. If a patient has a cystoscopy, and if a positive result is observed, it

is assumed that treatment is triggered and the patient leaves the decision process. In other

words, the minimal α-vector set Ωθt=p
at=C

consists of one α-vector, which corresponds to the

decision to do no further cystoscopies. Therefore, |Ωat=C | = O(|Ωθt=p
at=C
||Ωθt=n

at=C
|) = O(|Ωθt=n

at=C
|) =

O(|Ωt+1|). If a patient defers a cystoscopy, then only a negative result is observed. Therefore,

Ωat=W = Ωθt=n
at=W

such that |Ωat=W | = |Ωθt=n
at=W

| = O(|Ωt+1|). It follows that |Ωt| = O(|Ωat=C |)+

O(|Ωat=W |) = O(|Ωt+1|), which means the size of α-vector set grows linearly in decision epoch

t.

Next, we consider using a biomarker based protocol, i.e. At = {B,W}. If a patient chooses

to initiate a biomarker test, then there will be three possible observations, negative (n), double-

positive (pp) or positive-negative (pn). Similar to Ωθt=p
at=C

, Ωθt=pp
at=B

consists of one α-vector,

since a double-positive observation will trigger treatment such that the patient would leave

the decision process. Nevertheless, if the observation is negative or positive-negative, the pa-

tient will continue the decision process. Therefore, |Ωat=B| = O(|Ωθt=pp
at=B

||Ωθt=pn
at=B

||Ωθt=n
at=B
|) =

O(|Ωθt=pn
at=B

||Ωθt=n
at=B
|). It follows that, |Ωt| = O(|Ωat=W |+ O(|Ωat=B|) = O(|Ωt+1|2), i.e. the size

of the α-vector set grows quadratically in the α-vector set at each decision epoch.

To compensate for the additional computational burden, we use three months as one decision

epoch within the first three years and we use six months as one decision epoch after three years

to reduce the number of decision epochs. This a reasonable assumption, because the published

guidelines such as the AUA and EAU guidelines only consider multiples of six months as the

surveillance intervals after two years.
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5.3.2 Heuristic Policies

The POMDP solution is defined by a set of α-vectors for each decision epoch. Collectively the

α-vectors define optimal decisions as a policy defined on the continuous belief state space. In

other words, for a specific belief at a given decision epoch, the optimal action is chosen as the

one associated with the α-vector that results in the largest value at that epoch, as illustrated

by Equation 5.3. Therefore, the optimal decision at each epoch is only dependent on a patient’s

updated belief, which relies on the patient’s previous belief, last action, and last observation.

That means, the optimal policy cannot be translated into a surveillance schedule that is only

dependent on time (equivalently age), without loss of accuracy. Nevertheless, from a practical

point of view it is desirable to have a purely time dependent policy (if such a policy is near

optimal) since such a policy is easy to implement. Note that the AUA and EAU guidelines

both have this structure.

In this subsection we use heuristic methods to obtain near-optimal policies by simulating the

optimal POMDP solution in the simulation model of Chapter 3. We analyze the two protocols

(a) using cystoscopy alone and (b) using cystoscopy and a biomarker. We develop a heuristic

policy, named heuristic-cyst, for (a) and another heuristic policy, named heuristic-bmk, for (b).

We compare these heuristic policies with the optimal policies as well as the published EAU and

AUA guidelines. As we describe below, the heuristic-cyst policy is the most common pattern

resulting from simulating sample paths for the optimal policy using cystoscopy alone; while the

heuristic-bmk policy is the most common pattern from simulating sample paths for the optimal

policy using a biomarker based surveillance protocol. In the remainder of this subsection, we

discuss the methods for generating the heuristic in detail.

We first consider protocol (a) that uses cystoscopy alone for surveillance. The heuristic-cyst

policy has the structure defined in Table 5.1.

Table 5.1: The structure of a heuristic policy using cystoscopy alone is defined by a set of
integer intervals (in months) between two consecutive cystoscopies.

A Heuristic Policy Using Cystoscopy Alone

Initial cystoscopy after a1 months;
Heuristic-cyst If negative during year t, next cystoscopy after at months.

The policy is denoted as {a1, a2, ..., aT }

Given an optimal policy for a POMDP using cystoscopy alone for surveillance over T years,

the heuristic-cyst policy is represented by {a1, a2, ..., aT }, with at representing waiting period

after a cystoscopy during year t, as shown in Table 5.1. Based on a simulated set of sample
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paths, we record the frequencies of a range of waiting periods during each year, t, and select

the most common frequency during year t as at to define the heuristic-cyst policy.

Next, we consider protocol (b). The heuristic-bmk policy is defined to have the form in Table

5.2. Given an optimal policy for a POMDP using a biomarker based protocol for surveillance

over T years, the heuristic-bmk policy is represented by two sets of numbers {b1, b2, ..., bT } and

{c1, c2, ..., cT }, with bt and ct representing the waiting periods after after a negative biomarker

test and after a negative triggered cystoscopic test during year t, respectively, as illustrated in

Table 5.2. Based on a simulated set of sample paths, we record the frequencies of a range of

waiting periods, corresponding to a latest observation of negative biomarker test and a latest

observation of negative triggered cystoscopic test, respectively. We select the most frequent

waiting period after a negative biomarker test during year t as bt, and the most frequent waiting

period after a negative triggered cystoscopic test during year t as ct to define the heuristic-bmk

policy.

Table 5.2: The structure of a heuristic policy using both cystoscopy and a biomarker is defined
by two sets of integer intervals (in decision epochs) for consecutive diagnostic tests.

A Heuristic Policy Using a Biomarker Based Surveillance Protocol

Heuristic-bmk

Initial biomarker test is at month b1;
If biomarker is negative during year t,

next biomarker after bt months;
If biomarker is positive, do a cystoscopy;

If cystoscopy is negative in year t,
next biomarker after ct months.

The policy is denoted as {b1, b2, ..., bT } and {c1, c2, ..., cT }

5.4 Results

As in Chapter 4, we used incremental pruning to solve our POMDP. The implementation was

developed in C++ using ILOG 12 CPLEX Concert Technology to solve the linear programs.

We ran 100,000 simulated sample paths for the optimal policy to generate a heuristic policy for

each of the protocol (a) and (b). We also ran 100,000 samples to calculate the mean and 95%

confidence intervals for each policy to compare with the EAU and AUA published guidelines.

Computational experiments were performed on a Linux server with quad core 2.83GHz CPU and

8GB RAM. In most scenarios presented below, the optimal POMDP solutions were generated

within 120 minutes.
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5.4.1 Data Sources

We used the same base case scenario defined in Chapter 4, in Table 4.1, for comparison of

the optimal policy using cystoscopy alone with the one using a biomarker based surveillance

protocol. We report the results of sensitivity analysis with respect to this base case scenario.

Furthermore, we compare the heuristic-cyst and heuristic-bmk policies for each of scenarios

evaluated in sensitivity analysis. Finally, we compare several of the FDA approved biomarkers

with varying sensitivities and specificities. The results, if not otherwise specified, are based on

the base case scenario.

5.4.2 Base Case Results

We report base case results for both male and female patients. We compared the optimal policy

using cystoscopy alone (protocol (a)) and the policy using a biomarker (protocol (b)) as well

as the EAU and AUA guidelines, as shown in Table 5.3. The top part of Table 5.3 shows that

both the optimal policies for protocols (a) and (b) resulted in a mean of 0.14 and 0.13 QALY

gain over the EAU and AUA guidelines. We observed that using the biomarker based protocol

resulted in a mean reduction of 1.16 cystoscopies with a mean of 8.97 biomarker tests compared

with the optimal policy using cystoscopy alone. The lower part of Table 5.3 shows that both

the optimal policies for protocol (a) and (b) resulted in a mean 0.13 QALY gain over the EAU

and AUA guidelines; while the optimal policy using the biomarker based protocol resulted in

no reduction of cystoscopies and 12.51 biomarker tests performed on average compared with

the optimal policy using cystoscopy alone. We also observed that the total number of expected

biomarker tests is much lower for the male (8.97) compared to the female patient (12.51). The

only difference between male and female patients in our model is that male patients have higher

other cause mortality. Therefore, our results suggest that older patients and those with other

competing risks should follow surveillance less intensively given the biomarker based protocol

is adopted.

The most notable point to draw from the base case results is that there is no significant

difference between protocol (a) and (b) on the basis of expected QALYs.

5.4.3 Sensitivity Analysis

We performed one-way sensitivity analysis on several of the model parameters including sensi-

tivity of the biomarker, specificity of the biomarker, disutility of cystoscopy, and sensitivity of

cystoscopy. Sensitivity analysis was performed with respect to the base case scenario, defined

in Table 5.4. Specifically, we consider the following scenarios:

• Sensitivity of biomarker: with other parameters fixed, we changed the sensitivity of the
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Table 5.3: The optimal policies with and without using a urine based biomarker are compared
to the AUA and EAU guidelines in terms of the expected QALYs (95% CI), the expected number
of cystoscopies (95% CI) and the expected number of biomarkers (95% CI). CI=Confidence
Interval. Optimal-cyst denotes the optimal policy using cystoscopy alone. Optimal-bmk denotes
the optimal policy using a biomarker based surveillance protocol.

Male, Aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Optimal-cyst 11.29 (11.25, 11.34) 8.74 (8.67, 8.81) -

Optimal-bmk 11.28 (11.24, 11.33) 7.58 (7.51, 7.65) 8.97 (8.95, 8.99)

Female, Aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 13.03 (12.99, 13.08) 15.67 (15.61, 15.73) -

EAU 13.03 (12.98, 13.08) 8.93 (8.87, 8.98) -

Optimal-cyst 13.16 (13.11, 13.21) 9.98 (9.89, 10.06) -

Optimal-bmk 13.16 (13.11, 13.21) 9.98 (9.90, 10.07) 12.51 (12.48, 12.53)

Table 5.4: The base case model parameters for evaluation and comparison of bladder cancer
surveillance strategies.

Parameter Value Source

µC 0.003

Kulkarni (2007) [41]

µT 0.1
µBCG 0.08
rLRDF 0.95
rIRBC 0.95
rIRDF 0.95
rHRBC 0.95
rHRDF 0.95
rMIBC 0.80
f 0.95

Grossman (2007) [22]
g 1

ϕlg 0.47
Van Rhijin (2005) [67]ϕhg 0.80

τ 0.59
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biomarker from a lower bound of 80% of the base case to an upper bound of 120% of the

base case.

• Specificity of biomarker: with other parameters fixed, we changed the specificity of the

biomarker from a lower bound, 80% of the base case, to an upper bound, 120% of the

base case.

• Sensitivity of cystoscopy: with other parameters fixed, we changed the sensitivity of cys-

toscopy from a lower bound of 0.90 to an upper bound of 1.00.

• Disutility of Cystoscopy: with other parameters fixed, we changed the disutility of cys-

toscopy from a lower bound of 0.0015 (50% of the base case value), to an upper bound of

0.05 (1,667% of the base case value).

The results of our sensitivity analysis are presented in Tables 5.5, 5.6, 5.7, and 5.8. We ob-

served that using a biomarker based surveillance protocol can result in the same or very similar

QALY gain over the EAU and AUA guidelines, with noticeable reduction in the average number

of cystoscopies compared with using cystoscopy alone for most of the tested scenarios. We also

observed that the optimal policy using a biomarker based protocol is highly sensitive to the

disutility of the cystoscopy. Assuming the cystoscopy has a lower disutility, the optimal policy

using a biomarker based protocol would result in higher QALYs with more biomarker tests.

This finding is also intuitive because a reduction in the disutility of cystoscopy allows us to

perform more biomarker tests to improve the chance of catching disease recurrence without los-

ing more QALYs imposed by the additional cystoscopies triggered by the additional biomarker

tests. We also found that using a biomarker with higher specificity, the optimal policy can result

in more biomarker tests. This finding is intuitive because a biomarker with higher specificity

corresponds to lower false positive rate, leading to a reduction in the possibility of triggering

any unnecessary cystoscopies. In other words, performing more tests with a biomarker with

higher specificity may help improve the chances of catching a recurrence without triggering

more unnecessary cystoscopies. Therefore, the optimal policy using a biomarker with higher

specificity can ultimately result in more biomarker tests. We discuss the sensitivity analysis for

each scenario in detail as below.

Table 5.5 presents the comparison of the optimal policy with and without using a biomarker

with the EAU and AUA guidelines for both the upper bound and the lower bound with respect

to the sensitivity of the biomarker. Changing the sensitivity of the biomarker from 80% to

120% of the base case resulted in an increase in mean QALYs gained from 11.28 to 11.30. The

change also resulted in an increase in the mean number of cystoscopies from 7.33 to 7.94 and

an increase in the average number of biomarker tests from 8.71 to 9.41. However, none of the

changes in the expected number of cystoscopies or the expected number of biomarker tests is

67



statistically significant. We conjecture this is because the impact of performing more diagnos-

tic tests using a biomarker with higher sensitivity is two-fold. On the one hand, additional

biomarker tests of higher sensitivity would improve the chance of catching possible disease re-

currence, thus possibly leading to more QALYs. On the other hand, more tests could trigger

additional unnecessary cystoscopies since the specificity of the biomarker remains unchanged,

thus resulting in a negative impact on QALYs.

Table 5.5: Sensitivity analysis with respect to biomarker sensitivity by comparing the optimal
policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI), the
expected number of cystoscopies (95% CI) and the expected number of biomarkers (95% CI).
The upper bound of the sensitivity of biomarker is 120% of the base case, and the lower bound
of the sensitivity of biomarker is 80% of the base case. CI=Confidence Interval. Optimal-cyst
denotes the optimal policy using cystoscopy alone. Optimal-bmk denotes the optimal policy
using a biomarker based surveillance protocol.

Sensitivity of biomarker, upper bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Optimal-cyst 11.29 (11.25, 11.34) 8.74 (8.67, 8.81) -

Optimal-bmk 11.30 (11.26, 11.34) 7.94 (7.87, 8.02) 9.41 (9.38, 9.43)

Sensitivity of biomarker, lower bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Optimal-cyst 11.29 (11.25, 11.34) 8.74 (8.67, 8.81) -

Optimal-bmk 11.28 (11.23, 11.32) 7.33 (7.26, 7.40) 8.97 (8.94, 8.99)

Table 5.6 presents the sensitivity analysis with respect to the specificity of the biomarker.

Changing the specificity of the biomarker from 80% to 120% of the base case resulted in an

increase in the expected QALYs from 11.28 to 11.30 for a 73 year old male patient. The

variation in the sensitivity of the biomarker did not resulted in a significant change in the

number of cystoscopies (7.79 versus 7.68); however it resulted in a large increase of biomarker

tests from 7.67 to 12.37. This is likely because a biomarker with a higher specificity is associated

with a lower false positive rate, which would reduce unnecessary cystoscopies triggered by

positive biomarker tests. Therefore, additional biomarker tests with higher specificity can help
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improve the chances of catching possible disease recurrence without triggering more unnecessary

cystoscopies. The results indicated that given a biomarker with higher specificity, the optimal

policy uses an increased number of biomarker tests.

Table 5.6: Sensitivity analysis with respect to the specificity of biomarker by comparing the
optimal policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI), the
expected number of cystoscopies (95% CI) and the expected number of biomarkers (95% CI).
The upper bound of the specificity of biomarker is 120% of the base case, and the lower bound
of the specificity of biomarker is 80% of the base case. CI=Confidence Interval. Optimal-cyst
denotes the optimal policy using cystoscopy alone. Optimal-bmk denotes the optimal policy
using a biomarker based surveillance protocol.

Specificity of biomarker, upper bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Optimal-cyst 11.29 (11.25, 11.34) 8.74 (8.67, 8.81) -

Optimal-bmk 11.30 (11.25, 11.34) 7.68 (7.61, 7.75) 12.37 (12.35, 12.40)

Specificity of biomarker, lower bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Optimal-cyst 11.29 (11.25, 11.34) 8.74 (8.67, 8.81) -

Optimal-bmk 11.28 (11.23, 11.32) 7.79 (7.72, 7.86) 7.67 (7.65, 7.69)

Table 5.7 presents the sensitivity analysis with respect to the sensitivity of cystoscopy.

Changing the sensitivity of cystoscopy from 90% to 100% results in a change in mean QALYs

from 11.28 to 11.27, an increase in the mean number of cystoscopies from 7.64 to 7.74, and an

increase in the mean number of biomarker tests from 9.36 to 9.50. The results suggest that the

optimal policy is relatively insensitive to the sensitivity of cystoscopy in the range of 90% to

100%. We believe this is because the design of the biomarker based surveillance protocol uses

cystoscopy as a secondary test triggered by a positive biomarker test. Using this protocol, the

benefit of an increase on the sensitivity of cystoscopy is limited since it would not provide any

additional benefit unless an initial biomarker test is true positive.

Table 5.8 presents the sensitivity analysis with respect to the disutility of cystoscopy. The

optimal policy using a biomarker based surveillance protocol is highly sensitive to the disutility
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Table 5.7: Sensitivity analysis with respect to the sensitivity of cystoscopy by comparing the
optimal policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI),
the expected number of cystoscopies (95% CI) and the expected number of biomarkers (95%
CI). The upper bound of the sensitivity of cystoscopy is 100%, and the lower bound of the
sensitivity of cystoscopy is 80%. CI=Confidence Interval. Optimal-cyst denotes the optimal
policy using cystoscopy alone. Optimal-bmk denotes the optimal policy using a biomarker
based surveillance protocol.

Sensitivity of cystoscopy, upper bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Optimal-cyst 11.28 (11.24, 11.33) 7.78 (7.71, 7.86) -

Optimal-bmk 11.27 (11.22, 11.31) 7.74 (7.67, 7.81) 9.50 (9.47, 9.52)

Sensitivity of cystoscopy, lower bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Optimal-cyst 11.29 (11.25, 11.34) 8.74 (8.67, 8.82) -

Optimal-bmk 11.28 (11.23, 11.32) 7.64 (7.57, 7.71) 9.36 (9.33, 9.38)
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of cystoscopy. Varying the disutility of cystoscopy from 0.05 (1,667% of the base case) to 0.0015

(50% of the base case) resulted in an increase in the expected number of QALYs from 11.14 to

11.30. The variation with respect to the disutility of cystoscopy also resulted in a large increase

in the average number of biomarker tests from 0 to 14.96 and a large increase in the average

number of cystoscopies from 0 to 10.25. The reason for this significant change of the optimal

policy is likely because a reduction in the disutility of cystoscopy results in the optimal policy

performing more biomarker tests to improve the chance of catching possible disease recurrence

without accumulating more QALY loss imposed by additional cystoscopies triggered by the

additional biomarker tests.

Table 5.8: Sensitivity analysis with respect to the disutility of cystoscopy by comparing the
optimal policy with the AUA and EAU guidelines in terms of the expected QALYs (95% CI),
the expected number of cystoscopies (95% CI) and the expected number of biomarkers (95%
CI). The upper bound of the disutility of cystoscopy is 0.05 QALY, and the lower bound of
the disutility of cystoscopy is 0.0015 QALY. CI=Confidence Interval. Optimal-cyst denotes
the optimal policy using cystoscopy alone. Optimal-bmk denotes the optimal policy using a
biomarker based surveillance protocol.

Disutility of cystoscopy, upper bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 10.46 (10.42 , 10.50) 14.91 (14.86, 14.97) -

EAU 10.77 (10.73 , 10.81) 8.40 (8.35, 8.45) -

Optimal-cyst 11.14 (11.09 , 11.18) 0.00 (0.00 , 0.00) -

Optimal-bmk 11.14 (11.09 , 11.18) 0.00 (0.00 , 0.00) 0.00 (0.00 , 0.00)

Disutility of cystoscopy, lower bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.18 (11.14, 11.23) 14.91 (14.86, 14.97) -

EAU 11.18 (11.13, 11.22) 8.40 (8.35, 8.45) -

Optimal-cyst 11.30 (11.26, 11.35) 11.20 (11.12, 11.27) -

Optimal-bmk 11.30 (11.26, 11.34) 10.25 (10.18, 10.32) 14.96 (14.92, 15.00)

In summary, the optimal policy using a biomarker based surveillance protocol is highly

sensitive to the disutility of cystoscopy. Specifically, varying the disutility of cystoscopy from

1,667% to 50% of the base case resulted in a significant change in the average number of

biomarker tests from 0 to 14.96 and an large increase in the average number of cystoscopies from

0 to 10.25. The surveillance intensity of the optimal policy using a biomarker based protocol
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is highly sensitive to the specificity of the biomarker. Specifically, varying the specificity of

the biomarker from 47% (80% of the base case) to 71% (120% of the base case) would result

an increase in the average number of biomarker tests from 7.67 to 12.37. However, the large

increase in the number of biomarker tests resulted in a reduction in the expected number of

cystoscopies from 7.79 to 7.68 because the biomarker with a higher specificity triggered less

unnecessary cystoscopies due to its lower false positive rate.

5.4.4 Evaluation of Heuristic Policies

In addition to comparing the optimal policies using protocol (a) and (b) with the published EAU

and AUA guidelines, we also developed a heuristic policy, heuristic-cyst, for (a) and a heuristic

policy, heuristic-bmk, for (b). The heuristics were used to generate policies for the male and

female base case patients. We present results comparing these two heuristic policies with the

EAU and AUA guidelines in Table 5.9. Furthermore, we developed a heuristic-cyst policy and

a heuristic-bmk policy for each of the scenarios evaluated in the above sensitivity analysis for

optimal policies. We compared these heuristic policies with the EAU and AUA guidelines from

Table 5.11 to Table 5.14. We observed that all the heuristic-cyst policies have non-decreasing

surveillance intervals after the first year; while not all the heuristic-bmk policies have such a

property. We observed that for all the tested scenarios, the heuristic-bmk policies result in

similar or higher mean QALYs compared with the corresponding heuristic-cyst policies.

Based on the sensitivity analysis, we observed that the intervals of the heuristic-cyst policy

can be significantly affected by the sensitivity of cystoscopy. The higher the sensitivity of

cystoscopy the larger the waiting periods because a negative result from a cystoscopy with

higher sensitivity is less likely to be a false negative. As for the heuristic-bmk policy, we

observed that both the waiting period after a negative biomarker test and the waiting period

after a negative triggered cystoscopic test is affected by the sensitivity and specificity of the

biomarker. Assuming the biomarker has higher sensitivity, a negative biomarker test would be

less likely to be a false negative, therefore the waiting period after a negative biomarker test,

bt, should increase; on the other hand a positive biomarker test would be more likely to be a

true positive, therefore the waiting period after a negative triggered cystoscopy test, ct should

decrease. Assuming the biomarker has a higher specificity, a negative biomarker test would be

more likely to be a true negative, therefore the waiting period after a negative biomarker test,

bt, should increase; on the other hand a positive biomarker test would be less likely to be a

false positive, therefore the waiting period after a negative triggered cystoscopy test, ct should

decrease. We observed each of these trends in the sample paths generated based on the optimal

policies for protocols (a) and (b). We also found that both the heuristic-cyst policy and the

heuristic-bmk policy are highly sensitive to the disutility of cystoscopy. The lower the disutility
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of cystoscopy the more intensive these two heuristic policies and the shorter the waiting periods,

at, bt, and ct for these two heuristic policies. We discuss each of the evaluated scenario in detail

as follows.

Table 5.9 represents the heuristic-cyst policy and the heuristic-bmk policy for base case male

and female patients. The upper part of Table 5.9 shows that both the heuristic-cyst policy and

the heuristic-bmk policy result in 0.05 QALYs gain over the EAU and AUA guidelines. The

heuristic-cyst policy turns out to be less invasive than both the EAU and AUA guidelines. It

schedules cystoscopy yearly in the first two years; after that the surveillance interval increases

from every 18 months to 60 months during year 3 to year 7, and 7 years later the patient

will stop surveillance if no recurrence is detected. The heuristic-bmk policy schedules the first

biomarker test at 12 months. If a biomarker test is negative, then the patient should have

another biomarker test 3 months later in year 2 to 3 or 6 months later in year 4 to 9, after

which patient can stop surveillance. If a positive biomarker result is observed, then a cystoscopy

should be triggered immediately. A negative cystoscopy result in year 1 and year 2 results in a

delay of the next biomarker test to 12 months later; while a negative cystoscopy test in year 3

to year 7 results in a delay of the next biomarker test to 12 to 24 months later. After 7 years

the patient surveillance stops if there is no recurrence (as observed for the optimal policy). The

two heuristic policies are summarized in Table 5.10. Finally we observed that the heuristic-bmk

policy results in a saving of 0.66 cystoscopies at the cost of 8.11 biomarker tests on average.

The lower part of Table 5.9 shows that the heuristic-cyst policy results in 0.09 QALY gain

over the EAU and AUA guidelines and the heuristic-bmk policy results in an incremental 0.03

QALY gain over the heuristic-cyst policy. We find that the heuristic policies for female patients

is quite different from the heuristic policies for male patients of the same age.

Table 5.11 shows the relationship between the heuristic-bmk policy with the sensitivity of

the biomarker. We observed that in the upper bound case (120% of the base case sensitivity),

each of the waiting periods after a negative biomarker test except the first one, bt, is basically

larger than the corresponding waiting periods in the lower bound case (80% of the base case

sensitivity). This finding is intuitive because a negative result from a biomarker with higher

sensitivity is less likely to be a false negative so that the patient should wait for a longer time

period before the next biomarker test. We also observed in the upper bound case, the waiting

period after a negative triggered cystoscopic test, ct, is shorter than the corresponding waiting

periods in the lower bound case. This finding is also intuitive because the positive result from

a biomarker with higher sensitivity is more likely to be a true positive, which means a negative

triggered cystoscopic result would be more likely to be false negative, so that the patient should

wait for shorter time before the next biomarker test. We also found that changing the sensitivity

of the biomarker from 80% to 120% of the base case resulted in an increase in the expected

QALY gain from 11.21 to 11.23, which is not statistical significant.
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Table 5.9: Comparison of the heuristic-cyst policy and the heuristic-bmk policy to the AUA
and EAU guidelines for both male and female patients aged 73 in the base case. The heuristic-
cyst policy is denoted as {at}, illustrated in Table 5.1. The heuristic-bmk policy is denoted as
{bt} and {ct}, illustrated in Table 5.2.

Male, Aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Heuristic-cyst
11.21 (11.17, 11.25) 7.69 (7.62, 7.76) -

{at}={12 12 18 30 30 60 60 120 120 120 120 120}

Heuristic-bmk
11.21 (11.17, 11.26) 7.03 (6.97, 7.10) 8.11 (8.08, 8.13)

{bt}={ 12 3 3 6 6 6 6 6 6 30 120 120 }
{ct}={ 12 12 24 18 12 24 18 48 42 120 120 120 }

Female, Aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 13.03 (12.99, 13.08) 15.67 (15.61, 15.73) -

EAU 13.03 (12.98, 13.08) 8.93 (8.87, 8.98) -

Heuristic-cyst
13.12 (13.07, 13.17) 8.94 (8.86, 9.02) -

{at}={ 12 15 21 21 30 54 54 54 120 120 120 120 }

Heuristic-bmk
13.15 (13.10, 13.20) 10.12 (10.04, 10.20) 13.12 (13.10, 13.15)

{bt}={ 3 3 3 6 6 12 12 6 36 30 120 120 }
{ct}={ 6 9 9 6 12 12 12 18 36 30 120 120 }
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Table 5.10: The most common patterns found by simulating the optimal surveillance policies
for aged 73 typical male patients in the base case.

Heuristic Policies for Male Aged 73, Base Case

Heuristic-bmk

Initial biomarker test at 12 months;
If biomarker is negative in the first 3 (9) years, next biomarker after

3 (6) months;
If biomarker is positive, do a cystoscopy;

If cystoscopy is negative or false positive within 2 years,
next biomarker after 12 months;

If cystoscopy is negative or false positive after 2 years,
next biomarker after 12-24 months.

Stop surveillance after 10 years if no recurrence occurs;

Heuristic-cyst

If negative within 2 years, next cystoscopy after 12 months;
If negative during year 3, next cystoscopy after 18 months;
Else if negative within 5 (7) years, next cystoscopy after 30 (60) months;
If negative after 8 years, next cystoscopy after 21 months.
Stop surveillance after 7 years if no recurrence occurs;

Table 5.12 shows the relationship between the heuristic-bmk policy and the specificity of

the biomarker. We observed that in the upper bound case (120% of the base case specificity),

each of the waiting periods after a negative biomarker test except the first one, bt, is longer than

the corresponding waiting periods in the lower bound case (80% of the base case specificity).

This finding is intuitive because a negative result from a biomarker with higher specificity is

more likely to be a true negative, therefore the patient should wait for a longer period of time

before the next biomarker test. We also observed in the upper bound case that, the waiting

period after a negative triggered cystoscopic test, ct, is shorter than the corresponding waiting

periods in the lower bound case. This finding is also intuitive because the positive result from

a biomarker with higher sensitivity is less likely to be a false positive, which means a negative

triggered cystoscopic result would be less likely to be true negative. Thus, the patient should

wait for a shorter period of time before the next biomarker test. We also found that changing

the specificity of the biomarker from 80% to 120% of the base case resulted in an increase in

the expected QALY gain from 11.22 to 11.23, which is not statistically significant.

Table 5.13 presents the relationship between the heuristic policies, heuristic-cyst and heuristic-

bmk, and the sensitivity of cystoscopy. For the heuristic-cyst policy, we observed each of the

waiting periods after a negative cystoscopic test, at, resulted from the upper bound case (100%)

is shorter than the corresponding waiting periods in the lower bound case (90%). This finding
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Table 5.11: Sensitivity analysis with respect to biomarker sensitivity by comparing the heuris-
tics policies, heuristic-cyst and heuristic-bmk, with the AUA and EAU guidelines in terms of
the expected QALYs (95% CI), the expected number of cystoscopies (95% CI) and the ex-
pected number of biomarkers (95% CI). CI=Confidence Interval. The heuristic-cyst policy is
denoted as {at}, illustrated in Table 5.1. The heuristic-bmk policy is denoted as {bt} and {ct},
illustrated in Table 5.2.

Sensitivity of biomarker, upper bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Heuristic-cyst
11.21 (11.17, 11.25) 7.69 (7.62, 7.76) -

{at}={12 12 18 30 30 60 60 120 120 120 120 120}

Heuristic-bmk
11.23 (11.18, 11.27) 6.79 (6.72, 6.86) 7.63 (7.61, 7.64)

{bt}={ 9 6 6 12 12 18 12 18 36 120 120 120 }
{ct}={ 9 9 9 12 12 18 12 18 36 120 120 120 }

Sensitivity of biomarker, lower bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Heuristic-cyst
11.21 (11.17, 11.25) 7.69 (7.62, 7.76) -

{at}={12 12 18 30 30 60 60 120 120 120 120 120}

Heuristic-bmk
11.21 (11.17, 11.26) 6.63 (6.56, 6.69) 7.82 (7.80, 7.84)

{bt}={ 12 3 3 6 6 6 6 6 6 24 6 6 }
{ct}={ 12 12 18 12 30 24 60 54 42 30 120 120 }
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Table 5.12: Sensitivity analysis with respect to the specificity of the biomarker by comparing
the heuristics policies, heuristic-cyst and heuristic-bmk, with the AUA and EAU guidelines in
terms of the expected QALYs (95% CI), the expected number of cystoscopies (95% CI) and the
expected number of biomarkers (95% CI). CI=Confidence Interval. The heuristic-cyst policy is
denoted as {at}, illustrated in Table 5.1. The heuristic-bmk policy is denoted as {bt} and {ct},
illustrated in Table 5.2.

Specificity of biomarker, upper bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Heuristic-cyst
11.21 (11.17, 11.25) 7.69 (7.62, 7.76) -

{at}={12 12 18 30 30 60 60 120 120 120 120 120}

Heuristic-bmk
11.24 (11.19, 11.28) 7.67 (7.60, 7.74) 12.91 (12.88, 12.94)

{bt}={ 6 3 6 6 6 6 12 12 12 30 120 120 }
{ct}={ 6 3 12 6 12 12 12 12 12 30 120 120 }

Specificity of biomarker, lower bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Heuristic-cyst
11.21 (11.17, 11.25) 7.69 (7.62, 7.76) -

{at}={12 12 18 30 30 60 60 120 120 120 120 120}

Heuristic-bmk
11.22 (11.17, 11.26) 7.66 (7.59, 7.73) 7.79 (7.77, 7.81)

{bt}={ 3 3 6 6 6 6 6 6 6 24 6 6 }
{ct}={ 12 12 18 12 30 24 60 54 42 30 120 120 }
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is intuitive because a negative result from a cystoscopy with higher sensitivity is less likely to

be a false negative so that the patient should wait for a longer time period before the next

cystoscopy test. As to the heuristic-bmk policy, we found that in the lower bound case the

waiting periods, bt and ct, are non-decreasing with the year, t, being disease free; however the

waiting periods after a negative biomarker test, bt, do not seem to have strong linear relation-

ship with the year t. For example, b4 = 6, b5 = 12, b6 = 6, b7 = 6, b8 = 12, b9 = 6. It may be

highly dependent on the time since last cystoscopy test since a negative triggered cystoscopic

test, which has a perfect specificity, would confirm that patient is disease free with probability

100%, which may affect the Bayesian updating of patient’s belief for a long time based on the

Bayesian updating formula 5.4.

Table 5.13: Sensitivity analysis with respect to the sensitivity of cystoscopy by comparing
the heuristics policies, heuristic-cyst and heuristic-bmk, with the AUA and EAU guidelines in
terms of the expected QALYs (95% CI), the expected number of cystoscopies (95% CI) and the
expected number of biomarkers (95% CI). CI=Confidence Interval. The heuristic-cyst policy is
denoted as {at}, illustrated in Table 5.1. The heuristic-bmk policy is denoted as {bt} and {ct},
illustrated in Table 5.2.

Sensitivity of cystoscopy, upper bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Heuristic-cyst
11.20 (11.16, 11.25) 6.63 (6.56, 6.69) -

{at}={ 12 18 18 36 60 60 60 120 120 120 120 120 }

Heuristic-bmk
11.24 (11.19, 11.28) 8.55 (8.48, 8.62) 11.49 (11.46, 11.51)

{bt}={ 3 3 3 6 12 6 6 12 6 30 120 120 }
{ct}={ 9 9 9 12 12 18 18 12 42 30 120 120 }

Sensitivity of cystoscopy, lower bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Heuristic-cyst
11.20 (11.16, 11.25) 7.67 (7.60, 7.74) -

{at}={ 12 12 21 27 27 60 60 120 120 120 120 120 }

Heuristic-bmk
11.20 (11.16, 11.25) 7.24 (7.17, 7.31) 8.94 (8.92, 8.96)

{bt}={ 6 6 6 6 6 12 12 12 36 120 120 120 }
{ct}={ 6 6 12 12 18 24 24 48 36 120 120 120 }
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Table 5.14 presents the changes of the heuristic policies by varying the disutility of cys-

toscopy from 0.0015 (50% of the base case) to 0.05 (1,667% of the base case). We observe that

the heuristic-cyst policy with the upper bound on cystoscopy disutility is much less intensive

than that for the lower bound on cystoscopy disutility. We also observe that the heuristic-bmk

policy is also highly sensitive to the disutility of cystoscopy. Specifically, varying the disutility

from 0.0015 to 0.05 resulted in a decrease of number of biomarker tests from 16.97 to 0.52 and

a decrease of cystoscopies from 11.09 to 1.02. This finding is very intuitive, because a higher

disutility value will offset the benefit of possible early detection of recurrence.

Table 5.14: Sensitivity analysis with respect to the disutility of cystoscopy by comparing
the heuristics policies, heuristic-cyst and heuristic-bmk, with the AUA and EAU guidelines in
terms of the expected QALYs (95% CI), the expected number of cystoscopies (95% CI) and the
expected number of biomarkers (95% CI). CI=Confidence Interval. The heuristic-cyst policy is
denoted as {at}, illustrated in Table 5.1. The heuristic-bmk policy is denoted as {bt} and {ct},
illustrated in Table 5.2.

Disutility of cystoscopy, upper bound; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 10.46 (10.42 , 10.50) 14.91 (14.86, 14.97) -

EAU 10.77 (10.73 , 10.81) 8.40 (8.35, 8.45) -

Heuristic-cyst
11.00 (10.95, 11.04) 2.19 (2.14, 2.23) -
{at}={ 120 120 120 120 120 120 120 120 120 120 120 120 }

Heuristic-bmk
11.04 (10.99, 11.08) 1.02 (0.99, 1.06) 0.52 (0.52, 0.53)
{bt}={ 120 120 120 120 120 120 120 120 120 120 120 120 }
{ct}={ 120 120 120 120 120 120 120 120 120 120 120 120 }

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.18 (11.14, 11.23) 14.91 (14.86, 14.97) -

EAU 11.18 (11.13, 11.22) 8.40 (8.35, 8.45) -

Heuristic-cyst
11.24 (11.20, 11.29) 10.39 (10.32, 10.46) -

{at}={ 9 9 12 12 15 18 21 39 39 120 120 120 }

Heuristic-bmk
11.25 (11.20, 11.29) 11.09 (11.01, 11.16) 16.97 (16.93, 17.01)

{bt}={ 3 3 3 6 6 6 6 12 6 30 6 6 }
{ct}={ 6 3 6 6 6 6 6 12 6 30 120 120 }
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5.4.5 Comparison of Biomarker Tests

Other biomarker tests, in addition to NMP22, are being developed. For example, BTAstat,

BTAtrak, FDP, ImmunoCyt and FISH (UroVysion) have all been approved by the FDA for

diagnosis of bladder cancer recurrence [67]. These biomarkers have different sensitivities and

specificities compared with NMP22, as listed in Table 5.15.

Table 5.15: Sensitivity, specificity of the urine based biomarkers that are approved by FDA
for use in diagnosing bladder cancer recurrence [67].

NMP22 BTAstat BTA Trak FDP Immunocyt FISH

Sensitivity for low and
47% 56% 57% 63%

%
84% 67%

intermediate risk NMIBC

Sensitivity for
80% 75% 74% 86% 100% 95%

high risk NMIBC

specificity for low, interme-
59% 79% 66% 80% 62% 47%

diate and high risk NMIBC

We evaluated each of the FDA approved biomarkers listed above. We compared the resulting

optimal surveillance policies for the base case scenario, as shown in Table 5.16. We observed

that the optimal policy using each of the six biomarkers resulted in significant QALY gain (from

0.14 to 0.19) over the EAU and AUA guidelines. However, none of the biomarker tests led to

statistically significant improvements in QALYs over the use of cystoscopy alone for the base

case. We further evaluated the optimal policy using a perfect biomarker (100% sensitivity and

100% specificity) which resulted in a mean of 11.31 QALYs, which is not statistically larger

than that for the optimal policy using cystoscopy alone (11.29).

Further observation from Table 5.16 for the base case for the male patient revealed the

optimal policies resulted in large variation in the average number of biomarker tests, from

8.18 to 15.10. However, the average number of cystoscopies resulting from each of the optimal

policies are similar (7.49 to 7.69). We further analyzed the heuristic-bmk policies using each of

six biomarkers, named Heuristic-NMP22, Heuristic-BTA-Stat, Heuristic-BTA-Trak, Heuristic-

FDP, Heuristic-Immunocyt and Heuristic-FISH. We compared all of these heuristic policies in

Table 5.17. We observed that all of these heuristic policies using FDA approved biomarkers,

except Heuristic-NMP22, resulted in an incremental QALY gain of 0.04 or more compared with

the heuristic policy using cystoscopy alone. Furthermore, we found that the heuristic policy

using a perfect biomarker (perfect sensitivity and perfect specificity) resulted in an incremental

QALY gain of 0.08 compared with the heuristic policy using cystoscopy alone. These findings
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indicate that the purely time dependent heuristic policy using the biomarker based surveillance

protocol has the potential to significantly improve the purely time dependent heuristic policy

using cystoscopy alone.

We also observed that the heuristic-bmk policies resulted in a large variation in the average

number of biomarker tests, from 7.41 to 16.13; but similar average number of cystoscopies, from

7.03 to 7.67. We also observed that the waiting periods after a negative biomarker test, bt, and

the waiting periods after a negative triggered cystoscopic test, ct, were generally non-decreasing

over time. For example, given FISH is used for surveillance, the heuristic-FISH policy suggested

a biomarker test every 6 months in the first four years, and yearly for another five years if no

recurrence occurs.

From the analysis of the sensitivity and specificity of the biomarker in Tables 5.11 and

5.12, we observed that the waiting period after a negative biomarker test, bt, is positively

correlated with both the sensitivity and specificity of the biomarker; while we also learned

that the waiting period after a negative triggered cystoscopic result, ct, is negatively correlated

with both the sensitivity and specificity of the biomarker. However, one-way sensitivity analysis

cannot determine if bt and ct is most affected by the sensitivity or the specificity of the biomarker.

We can answer this question by compare these heuristic polices using each of these biomarkers

with different combinations of sensitivity and specificity. We excluded NMP22 for this cross

comparison because it has a very low sensitivity for low grade and quite high sensitivity for high

grade tumors, which makes it hard to compare with the sensitivities of the other biomarkers.

Of the other five biomarkers, Immunocyt has the highest sensitivity and the lowest specificity,

and heuristic-Immunocyt has the largest waiting periods, based on the observation of bt and ct.

This finding indicates that bt may be most sensitive to the sensitivity of the biomarker and ct

may be most sensitive of the specificity of the biomarker. We also found that BTA-Stat has the

lowest sensitivity and the second highest specificity (79%, the highest being 80%) of the five

biomarkers considered, and heuristic-BTA-Stat has the shortest waiting periods bt and ct. This

finding strengthens the indication that bt is most sensitive to the sensitivity of the biomarker

and ct is most sensitive of the specificity of the biomarker.

5.5 Discussion

Based on the base case results, we observed that the optimal policy using a biomarker based

protocol result in no significant QALY gain over the protocol based on cystoscopy alone. For

example, in the base case, for both a male patient and a female patient of age 73, the optimal

policy using a biomarker based protocol resulted in 0.13 QALY gain over the EAU and AUA

guidelines. However, the difference between the biomarker based protocols, in terms of expected

QALYs, were not statistically significantly different from policies based on cystoscopy alone.
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Table 5.16: Evaluating the optimal policies using different biomarkers
Male, Aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

AUA 11.16 (11.12, 11.20) 14.91 (14.86, 14.97) -

EAU 11.16 (11.12, 11.21) 8.40 (8.35, 8.45) -

Optimal-cyst 11.29 (11.25, 11.34) 8.74 (8.67, 8.81) -

Optimal-NMP22 11.28 (11.24, 11.33) 7.58 (7.51, 7.65) 8.97 (8.95, 8.99)

Optimal-BTA-Stat 11.30 (11.25, 11.34) 7.54 (7.47, 7.62) 15.10 (15.06, 15.13)

Optimal-BTA-Trak 11.29 (11.25, 11.34) 7.69 (7.61, 7.76) 10.54 (10.51, 10.56)

Optimal-FDP 11.31 (11.26, 11.35) 7.49 (7.41, 7.56) 14.76 (14.72, 14.80)

Optimal-Immunocyt 11.30 (11.25, 11.34) 7.59 (7.52, 7.67) 8.18 (8.16, 8.20)

Optimal-FISH 11.30 (11.26, 11.35) 7.49 (7.42, 7.57) 10.43 (10.40, 10.45)

Optimal-perfect-bmk 11.31 (11.27, 11.36) 5.05 (4.97, 5.13) 27.75 (27.68, 27.83)

Table 5.17: Comparison of the heuristic-bmk policies using each of the FDA approved
biomarkers, named Heuristic-NMP22, Heuristic-BTA-Stat, Heuristic-BTA-Trak, Heuristic-
FDP, Heuristic-Immunocyt and Heuristic-FISH in terms of the expected QALYs (95% CI),
the expected number of cystoscopies (95% CI) and the expected number of biomarkers (95%
CI). CI=Confidence Interval. These heuristic-bmk policies is denoted as {bt} and {ct}, illus-
trated in Table 5.2.

Base Case; Male, aged 73

Policy
Expected Number of Number of
QALYs Cystoscopies Biomarkers

Heuristic-NMP22
11.21 (11.17, 11.26) 7.03 (6.97, 7.10) 8.11 (8.08, 8.13)

{bt}={ 12 3 3 6 6 6 6 6 6 30 120 120 }
{ct}={ 12 12 24 18 12 24 18 48 42 120 120 120 }

Heuristic-BTA-Stat
11.26 (11.22, 11.31) 7.63 (7.56, 7.71) 16.13 (16.09, 16.16)

{bt}={ 3 3 6 6 6 6 6 6 12 30 120 120 }
{ct}={ 3 9 6 6 6 6 6 6 12 30 120 120 }

Heuristic-BTA-Trak
11.25 (11.21, 11.29) 7.67 (7.59, 7.74) 11.04 (11.01, 11.06)

{bt}={ 3 3 6 6 6 6 12 18 36 120 120 120 }
{ct}={ 9 9 15 12 12 18 12 18 36 120 120 120 }

Heuristic-FDP
11.25 (11.21, 11.30) 7.55 (7.48, 7.63) 15.55 (15.51, 15.59)

{bt}={ 6 3 6 6 6 6 6 6 6 30 120 120 }
{ct}={ 6 3 9 6 6 6 6 6 6 30 120 120 }

Heuristic-Immunocyt
11.25 (11.20, 11.29) 7.20 (7.13, 7.27) 7.41 (7.39, 7.43)

{bt}={ 9 9 9 12 12 12 12 18 36 120 120 120 }
{ct}={ 9 9 9 12 12 12 12 18 36 120 120 120 }

Heuristic-FISH
11.25 (11.20, 11.29) 7.44 (7.36, 7.51) 10.61 (10.59, 10.64)

{bt}={ 6 6 6 6 12 12 12 12 12 30 120 120 }
{ct}={ 6 6 6 6 12 12 12 12 12 30 120 120 }

Heuristic-perfect-bmk
11.29 (11.25, 11.34) 4.90 (4.82, 4.98) 27.10 (27.03, 27.18)

{bt} = {3, 3, 3, 3, 3, 3, 3, 3, 3, 33, 120, 120}
{ct} = {3, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}
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We also observed that the optimal policy using a biomarker based surveillance protocol for male

patients is less intensive than that for female patients of the same age. Specifically, in the base

case, the total number of expected biomarker tests for a 73 year old male patient is 8.97 versus

12.51 for a 73 year old female patient. In our model, the only difference between male and

female patients of the same age is that male patients have higher other cause mortality. Thus

it implies that older patients or patients with other competing risks should generally have less

intensive surveillance given a biomarker based protocol is adopted.

Based on the sensitivity analysis, we found that the value function for the optimal policies for

protocols (a) and (b) were not statistically significantly different. However, the optimal surveil-

lance frequency using a biomarker based surveillance protocol is highly sensitive to the specificity

of the biomarker. Patients should follow more intensive surveillance if a biomarker with higher

specificity is used in surveillance. Specifically, varying the specificity of the biomarker from 47%

(80% of the base case) to 71% (120% of the base case) resulted an increase of biomarker tests

from 7.67 to 12.37 on average. We also found that the disutility of cystoscopy affected the opti-

mal policy using a biomarker based surveillance protocol. Specifically, varying the disutility of

cystoscopy from 0.0015 to 0.05 resulted in a decrease in the average number of biomarker tests

from 14.96 to 0. Therefore, the optimal strategy using a biomarker based surveillance protocol

should be influenced by the individual patient’s perception of the disutility of cystoscopy.

Based on the sensitivity analysis, we found that the intervals of the heuristic-cyst policy are

affected by the sensitivity of cystoscopy. Patient should wait for a longer time period given a

negative result from a cystoscopy with higher sensitivity is observed. Based on the sensitivity

analysis on heuristic-bmk we observed that the waiting period after a negative biomarker test,

bt, is positively correlated with both the sensitivity and specificity of the biomarker; we also

observed that the waiting period after a negative triggered cystoscopic result, ct, is negatively

correlated with both the sensitivity and specificity of the biomarker.

We compared the optimal policy using a perfect biomarker (perfect sensitivity and perfect

specificity) with the optimal policy using cystoscopy alone. We found that using the perfect

biomarker (protocol (b)) did not result in statistically larger QALY gain compared to the

optimal policy without using a biomarker (protocol (a)). We also compared the heuristic policy

using a perfect biomarker with the heuristic policy using cystoscopy alone. In contrast, we

found that the purely time dependent heuristic policy using a perfect biomarker resulted in an

incremental QALY gain of 0.10. This suggests there is the potential to improve the purely time

dependent policies using cystoscopy by adding a biomarker.

We compared the heuristic-bmk policy using each of the six biomarkers approved by FDA.

We observed that the heuristic-bmk policies resulted in a large variance of the average of

biomarker tests, from 7.41 to 16.13; but they had similar average number of cystoscopies, from

7.03 to 7.67. We found that the waiting periods after a negative biomarker result, bt, are most
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affected by the sensitivity of the biomarker compared with the specificity of the biomarker; we

also found that the waiting periods after a negative triggered cystoscopic result, ct, are most

affected by the specificity of the biomarker compared with the sensitivity of the biomarker.

5.6 Conclusions

Although there is a significant amount of research on the development of new biomarker tests,

there is a lack of studies to show if urine based biomarkers can improve bladder cancer surveil-

lance, and if so how they can be integrated into a surveillance protocol. Our results show that

using a biomarker based surveillance protocol has very little potential to improve the optimal

policy using cystoscopy alone in terms of QALY gain for low risk bladder cancer patients. It

is worth noting that this results is based on a base case disutility of 0.003 for cystoscopy. For

larger disutilities, such as may be reasonable for certain patients,the benefit of the biomarker

may be larger.

We also developed easy-to-implement heuristic policies to investigate the practical potential

for applying a a protocol based on a biomarker to direct the frequency of tests based on the

time since the start of surveillance. We found that using the easy-to-implement policies gained

from simulating the optimal POMDP solutions can result in significant QALY gain over the

EAU and AUA guidelines. We investigated some general rules for using a biomarker based on

its sensitivity and specificity. Our results suggest that given a biomarker with higher sensitivity,

we should wait a longer period of time before the next biomarker test after a negative biomarker

result; given a biomarker with higher specificity, we should wait a shorter period of time before

the next biomarker test after a negative triggered cystoscopic result. We also observed that

the purely time dependent heuristic policy using a biomarker based surveillance protocol has

significant potential to improve the purely time dependent heuristic policy using cystoscopy

alone.
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Chapter 6

Conclusions

6.1 Summary

This dissertation investigated the design of optimal surveillance policies for low risk bladder

cancer patients. First, we used Monte-Carlo simulation to compare the published EAU and

AUA guidelines. Next, we extended our simulation model to a POMDP model to investigate

the optimal cystoscopy-based surveillance policy. Finally, we extended the POMDP model to

include new urine based biomarker tests in the surveillance policy. We analyzed the incremental

benefit of biomarker tests for improving the optimal surveillance policies and we investigated

easy-to-implement heuristic surveillance policies.

Chapter 2 provided some background on bladder cancer and motivation for studying low

risk bladder cancer surveillance. We also provided a methodological review of the POMDP lit-

erature, and some recent applications of POMDPs to medical decision making. In Chapter 3 we

described the partially observable Markov model based on states that define patient risk levels

associated with recurrence and progression of bladder cancer. Monte-Carlo sampling was used

to generate sample paths for each surveillance policy to estimate expected QALYs. Published

AUA and EAU guidelines were compared with alternative policies based on expected QALYs

over a base case patient’s lifetime. Finally, sensitivity analysis on model input parameters was

presented.

In Chapter 4, we extended the Markov model to a POMDP to study the optimal surveillance

policy that maximizes expected QALYs. Optimal policies were computed using the incremental

pruning algorithm. We compared the optimal policy to the published AUA and EAU guidelines

studied in Chapter 3. We also performed sensitivity analysis on the optimal policy with respect

to model input parameters.

In Chapter 5 we extended the POMDP model of Chapter 4 by incorporating a urine based

biomarker test. In addition we investigated some easy-to-implement surveillance schedules
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obtained with heuristic methods by simulating the optimal policy among patients cohorts with

similar heath profile. We analyzed the incremental benefits of biomarkers in terms of the

incremental QALY gain, by comparing an easy-to-implement heuristic policy using a biomarker

based protocol with an easy-to-implement heuristic policy using cystoscopy alone. We also

performed one-way sensitivity analysis and compared the heuristic policies using alternative

biomarkers with varying sensitivity and specificity.

6.2 Conclusions

Our study in Chapter 3 suggests that the EAU guideline yields higher expected QALYs but

also higher life-long progression probabilities than the AUA policy. We found that patients

with lower all other cause mortality should undergo more intensive surveillance. Our sensitiv-

ity analysis showed that patients should undergo more intensive surveillance if the disutility

of cystoscopy is reduced. Based on the results in Chapter 3, we conclude that patient specific

factors such as the presence of comorbidity, or perception of utility loss from cystoscopy, should

be considered in determining the best surveillance policy for an individual patient. Although

the differences among polices on the basis of QALYs is relatively small, our bi-criteria analysis

revealed there are significant differences among policies in the number of cystoscopies. We

observed that the number of cystoscopies over a patient’s lifetime ranged from 4.13 for strategy

D12 to 13.76 for the AUA strategy. We found that no one policy dominated another, i.e., all

policies were on the efficient frontier. We observed that the EAU policy resulted in nearly

half of the number of cystoscopies with a reduction in the relative progression risk of 17%

and a reduction in the absolute progression risk of 0.4%. The large variation in the number

of cystoscopies among surveillance policies, particularly in the context of the very low back-

ground rate of progression to invasive cancer in this population, underscores the importance of

understanding the quality of life impact of this management practice on patients.

In Chapter 4, we used a POMDP model to investigate the optimal surveillance policies

that maximize a patient’s expected QALYs. From the base case scenario we observed that

the optimal policies can result in a 0.13 QALY gain and 0.16 life year gain compared with the

EAU and AUA guidelines, respectively. We performed sensitivity analysis to determine which

model parameters most affect the optimal policy. We observe that the frequency of the optimal

surveillance policy is highly sensitive to the disutility of cystoscopy. Changing the disutility of

cystoscopy from 0.05 to 0.0015 results in an increase of number of cystoscopies from 0 to 11.20

on average. This indicates that a patient’s personal preference for cystoscopy, i.e., the extent

to which it affects his or her quality of life, should be considered in the design the optimal

surveillance policy. We also found that the optimal surveillance policy can be significantly

affected by other cause mortality in terms of incremental QALY gain and incremental life years
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gain over the EAU and AUA guidelines, as well as the number of cystoscopies. Changing

other cause mortality from 150% of the base case value to 50% of the base case value results

in an increase of QALYs (life years) gained from 0.02 (0.02) to 0.35 (0.43) and an increase of

number of cystoscopies from 5.20 to 14.00. This indicates that patients with lower other cause

mortality may benefit more from the optimal policy and these patients should generally follow

more intensive surveillance than the average patient.

In Chapter 5, we extended the POMDP model of Chapter 4 to include urine based biomarker

tests for surveillance. To investigate the possible benefit of using a biomarker to direct the

frequency of diagnostic tests, we evaluated two different surveillance protocols (with and without

using a biomarker). We observed that the QALY gain from the optimal policy using a biomarker

based surveillance protocol is not statistically different from the optimal policy using cystoscopy

alone for our base case numerical experiments. A further comparison between the optimal policy

using a perfect biomarker (100% sensitivity and 100% specificity) and the optimal policy using

cystoscopy alone shows that the potential to use a biomarker based protocol to improve on

QALYs is very limited.

Based on the sensitivity analysis in Chapter 5, we found that the optimal surveillance

frequency using a biomarker based protocol is highly sensitive to the specificity of the biomarker.

Patients should undergo more biomarker tests if a biomarker with higher specificity is used for

surveillance. Specifically, varying the specificity of the biomarker from 47% (80% of the base

case) to 71% (120% of the base case) resulted an increase of the average biomarker tests from

7.67 to 12.37. We also found that the disutility of cystoscopy affected the optimal policy using

a biomarker based surveillance protocol. Specifically, varying the disutility of cystoscopy from

0.05 to 0.015 resulted in an increase in the number of biomarker tests from 0 to 14.96 on average.

Therefore, the optimal strategy using a biomarker based surveillance protocol should also be

influenced by the individual patient’s perception of the disutility of cystoscopy. This finding is

similar to our finding in Chapter 4 that the optimal policy using cystoscopy alone should be

influenced by a patient’s personal perception of the disutility of cystoscopy.

Based on the sensitivity analysis on the heuristic policy using cystoscopy alone, heuristic-

cyst, we found that the intervals of a heuristic-cyst policy can be affected by the sensitivity

of cystoscopy, which is consistent with our previous finding in Chapter 3. Our results suggest

patients should wait for a longer time period given a negative result from a cystoscopy with

higher sensitivity is observed. Based on the sensitivity analysis on the heuristic policy using a

biomarker based surveillance protocol, heuristic-bmk, we observed that the waiting period after

a negative biomarker test is positively correlated with both the sensitivity and the specificity of

the biomarker; we also observed that the waiting period after a negative triggered cystoscopic

result is negatively correlated with both the sensitivity and the specificity of the biomarker.

We further compared the heuristic-bmk policy using each of six biomarkers approved by
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FDA. We observed that for all six biomarkers, except NMP22, the heuristic-bmk policy resulted

in significant incremental QALY gain over the heuristic-cyst policy. Specifically, the heuristic-

bmk policies using each of the other five biomarkers (which all have higher specificity (on

low and intermediate risk NMIBC) and higher sensitivity than NMP22) resulted in a 11.25

QALY gain compared with 11.21 QALY gain from the heuristic-cyst policy using a cystoscopy

alone. Furthermore, we found that the heuristic policy using a perfect biomarker (perfect

sensitivity and perfect specificity) resulted in an incremental QALY gain of 0.08 compared

with the heuristic policy using cystoscopy alone. These findings indicate that the purely time

dependent heuristic policy using the biomarker based surveillance protocol has the potential

to significantly improve the purely time dependent heuristic policy based on using cystoscopy

alone. We also observed that the heuristic-bmk policies resulted in large variation in the average

of biomarker tests, from 7.41 to 16.13; but similar average number of cystoscopies, from 7.03

to 7.67. We found that the waiting periods after a negative biomarker result can be most

affected by the sensitivity of the biomarker compared with the specificity of the biomarker; we

also found that the waiting periods after a negative triggered cystoscopic result can be most

affected by the specificity of the biomarker compared with the sensitivity of the biomarker.

6.3 Limitations

There were some limitations to our study. First, we made several assumptions in the devel-

opment of our simulation model and POMDP models regarding the timing, adherence, and

duration of treatment. Among these, we assumed that treatment is immediately triggered

after detection of disease, and patients’ adherence to treatment is perfect. We also assumed

that treatments will always be done within a decision epoch (e.g. one month), while in reality

BCG and chemotherapy may last half year or even longer. Second, estimates of bladder cancer

progression rates were not available from the literature, therefore we calculated the implied

monthly progression rates using the simulation model of Chapter 3 by minimizing the differ-

ence between the model output of 5 year progression rates with that in the EORTC risk table.

Finally, model parameter estimates come from various sources in the literature. For example,

we used an estimate of disutility for cystoscopy from a study by Kulkarni et al. [40], which

in turn drew from studies of disutility of other moderately invasive procedures, not specifically

cystoscopy.

6.4 Future Research Opportunities

Low risk bladder cancer patients have a much lower risk of disease progression and cancer-

specific mortality compared than intermediate risk and high risk patients. Nevertheless, current
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guidelines do not distinguish patients on the basis of risk. The results of this thesis suggest

some further research opportunities to more completely characterize the quality of life impact of

frequent, repetitive, invasive procedures in this context, and possibilities for improving surveil-

lance policies using new urine based biomarker tests for low risk bladder cancer patients. First,

due to lack of empirical estimates of cystoscopy disutility, future studies should investigate

individual patient preferences for cystoscopy to determine how variation in disutility among

patients may influence optimal personalized surveillance protocols. Second, since it is desir-

able to develop easy-to-implement surveillance policies that can improve published guidelines,

future work could extend the heuristic policies in Chapter 5 to investigate the possibility of

developing better (closer to optimal) policies with easy-to-implement structures. Third, our

study in Chapter 5 was limited to two particular protocols. Relaxing the biomarker-based pro-

tocol assumption that a cystoscopy is always triggered after a positive biomarker test could

lead to improvement in surveillance polices. Finally, given that bladder cancer has been char-

acterized among cancers as having the highest cost per patient from diagnosis to death, future

work should include the economic evaluation for using biomarkers in surveillance. The work

presented in this thesis provides a foundation for these future studies.
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