
ABSTRACT

MOKRAUER, DAVID SAMUEL. Interpolatory Surrogate Models for Light-Induced
Transition Dynamics. (Under the direction of Dr. C. T. Kelley.)

The potential energy of a molecule is a function of its geometry. Molecules observed

naturally will be in conformations that minimize this potential energy and some molecules

have multiple minima. In this dissertation, we develop algorithms that simulate transition

paths between local energy minima through higher energy states.

Computing the potential energy is an expensive optimization process that may fail

due to poor initial iterates. An N atom molecule has 3N-6 degrees of freedom so the

problem must be simplified to a few choice coordinates. Prior simulations rarely used

more than a single degree of freedom. While this may be successful for a small molecule,

simulations for larger molecules are not feasible with such simplification.

We addressed some of the difficulties in computing the potential energy for specified

geometries by developing continuation schemes. These continuation schemes incorpo-

rate pre-processing of some non-design variables for improved results. Our continuation

methods run in parallel and exhibit good scalability.

Simulation of the transitions is done by following the gradient flow. Even though our

continuation methods make it possible to compute the potential energy at nearly any

point in the design space, increasing the degrees of freedom in the simulation is still a

burden because the energy computations are so expensive. We decreased the number of

function evaluations by incrementally constructing cubic spline surrogates of the energy

functional in small patches surrounding the gradient flow path. The tensor product

grids required for the spline surrogate exhibit exponential complexity in the number of

degrees of freedom. We are able to obtain polynomial complexity by replacing splines

with Smolyak sparse interpolation. Finally we incorporate multiple error approximation

and control schemes to maintain accuracy and decrease the simulation time.

© Copyright 2012 by David Samuel Mokrauer

All Rights Reserved

Interpolatory Surrogate Models for Light-Induced Transition Dynamics

by
David Samuel Mokrauer

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2012

APPROVED BY:

Dr. Jerry Whitten Dr. Ralph Smith

Dr. Dwight Woolard Dr. C. T. Kelley
Chair of Advisory Committee

DEDICATION

This work is dedicated to my beautiful wife, Danielle. Every day she inspires me to be

the best person that I can be. It is my deepest wish that each of my children grow up to

find as amazing a partner as I have found for myself.

The most memorable moments of my years of graduate school were the birth of my

2 children, Karen and Gavin. Nary a moment goes by when they are not on my mind.

All of the work of my life will always be in their honor.

It is tough for me to think about mathematics without thinking of my parents. My

mother began teaching me about right angles before I was in kindergarten and my father

was showing me calculus in the sixth grade. I am profoundly grateful for the work ethic

and values they instilled in me.

ii

BIOGRAPHY

David Mokrauer was born on February 13, 1979 in Summit, NJ. Both of his parents

have bachelors degrees in mathematics so perhaps a career in mathematics was simply

destiny. He graduated from Westfield High School in Westfield, NJ in 1997. The most

important event in David’s life occurred in May 2001 when he met Danielle Sciarrone

who would become his wife in 2007. In 2002 he graduated from the College of New

Jersey with honors in Mathematics and went on to teach high school mathematics in

Cinnaminson, NJ for 4 years. In 2007 David entered North Carolina State University

to pursue a doctorate in applied mathematics. In July 2010 Danielle and David were

blessed with their daughter, Karen, and in October 2011 they were blessed once again

by the birth of their son, Gavin.

iii

ACKNOWLEDGEMENTS

I would like to thank my wife, Danielle, for the great sacrifices she has made so that I may

accomplish this goal. She has been patient, understanding, and supportive throughout

the entire process. I am forever in her debt.

Few phd students are lucky enough to work with an advisor as fantastic as Tim Kelley.

His enthusiasm is infectious and I am thankful for his dedication to my success. Having

an advisor who values your time is worth its weight in gold. Often graduate school is

a story of strife and although I worked extremely hard, I had a lot of fun thanks to

Tim’s sense of humor and quick wit. Meetings, conferences, classes, and any other events

always included some laughter.

I am grateful for the mentoring of Dwight Woolard. This thesis exists thanks to his

vision. I would also like to thank him for the concrete chicken adorning my desk.

iv

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1

Chapter 2 Background Chemistry . 5
2.1 Describing a Molecule . 5

2.1.1 Example . 7
2.2 Quantized Operators . 9

2.2.1 Example . 10
2.3 Hydrogen Atom . 12
2.4 Spin . 14
2.5 Calculating Energy . 15

2.5.1 Variation Method . 15
2.5.2 Example . 16
2.5.3 Perturbation Theory . 18
2.5.4 Determinantal Wavefunctions . 21
2.5.5 Hartree-Fock Self-Consistent Field Method 22

2.6 Geometry Optimization . 25
2.6.1 Energy Gradient . 26
2.6.2 Pulay Mixing . 27

Chapter 3 Interpolation . 29
3.1 Background . 29
3.2 Cubic Spline . 30

3.2.1 Derivation . 30
3.3 Smolyak Interpolation . 31

3.3.1 Formulation in a Single Dimension 31
3.3.2 Example . 33
3.3.3 Formulation in High Dimension 33
3.3.4 Example . 34
3.3.5 Example . 35
3.3.6 Example . 37

3.4 Complexity . 38
3.5 Interpolation Error . 40

3.5.1 1 Dimension . 40
3.5.2 2 Dimensions . 42
3.5.3 d Dimensions . 43

v

3.5.4 Taylor Series . 45
3.5.5 Example . 45
3.5.6 Exactness . 46
3.5.7 Example . 48
3.5.8 Error Based on Exactness . 48

Chapter 4 Surface Construction . 50
4.1 Surrogate Models . 50
4.2 Excited States . 51
4.3 Gaussian Scan . 52
4.4 Single Initial Iterate . 54
4.5 Expanding Perimeter . 55
4.6 Ray Generation . 60
4.7 Sparse Interpolation . 64

Chapter 5 Simulation . 66
5.1 Single Degree of Freedom . 66
5.2 Two Degrees of Freedom . 68

5.2.1 Integration . 68
5.2.2 Full Surface Simulation . 68
5.2.3 Incremental Surfaces . 70
5.2.4 The Next Patch . 71
5.2.5 2-butene Example . 71

5.3 More than Two Degrees of Freedom . 72
5.3.1 Termination . 73
5.3.2 Example . 74

Chapter 6 Patch Control . 78
6.1 Trust Region Approach . 78

6.1.1 Trust Region Approach Flow Chart 80
6.2 Runge-Kutta Approach . 81

6.2.1 Example . 81
6.2.2 Patch Size . 82
6.2.3 Example . 83
6.2.4 Termination Inside a Patch . 83
6.2.5 Runge-Kutta Approach Flow Chart 85

Chapter 7 Results . 86
7.1 2-butene . 86
7.2 Stilbene . 88
7.3 Azobenzene . 92

vi

References . 95

Appendices . 100
Appendix A Runge-Kutta Methods . 101

A.1 Definition . 101
A.2 Embedding . 103
A.3 Step-Size Control . 104
A.4 Optimization . 105

Appendix B User’s Manual . 106
B.1 Overview . 106
B.2 Simulation Method . 106
B.3 Summary of Tasks for Running LITES 107
B.4 Example: 2-butene Simulation . 108

B.4.1 Permissions and HPC . 108
B.4.2 First Simulation . 114
B.4.3 Output . 122

B.5 Simulation Inputs . 151
B.6 Simulation Output . 153

Appendix C Codes . 156

vii

LIST OF TABLES

Table 2.1 Sample Z-matrix for ethylene . 7

Table 4.1 Scalability . 64

Table 5.1 Scalability of Sparse Incremental Surface Construction 77

viii

LIST OF FIGURES

Figure 2.1 water molecule with and without orbitals shown 6
Figure 2.2 Sample internal coordinates . 8
Figure 2.3 ethylene molecule C2H4 . 9
Figure 2.4 Potential energy function for a particle in a one-dimensional box. 11

Figure 3.1 Nested sets of interpolation points as d increases. 39

Figure 4.1 PES generated by 2 Gaussian scans for Stilbene 53
Figure 4.2 PES generated with 2 Gaussian scans for TMS 53
Figure 4.3 Two views of PES for 2-butene computed in parallel with the same

initial iterate at each point . 55
Figure 4.4 2-D expanding perimeter scheme 56
Figure 4.5 Stilbene molecule . 58
Figure 4.6 Butene surface generated by expanding perimeter without pre-

processing . 59
Figure 4.7 Stilbene surface generated by expanding perimeter algorithm and

pre-processing . 59
Figure 4.8 2-Dimensional ray generation file dependence 60
Figure 4.9 Two views of PES for 2-butene computed using ray generation

without pre-processing . 63
Figure 4.10 Two views of PES for 2-butene computed with ray generation with

pre-processing . 63
Figure 4.11 Tensor grid vs. Sparse grid . 65
Figure 4.12 Two views of PES for 2-butene computed on a sparse grid from a

single iterate . 65

Figure 5.1 Butene molecule, C4H8 . 67
Figure 5.2 2-Butene transition path in a single degree of freedom 67
Figure 5.3 2-butene torsion angles selected for a 2 dimensional simulation . . 69
Figure 5.4 Successful transition path for 2-butene simulated on a full PES

computed with expanding perimeter 70
Figure 5.5 Incremental surface simulation of 2-butene transition path 72
Figure 5.6 2-butene torsion angles selected for a 3 dimensional simulation . . 75
Figure 5.7 3-D simulation of the transition path for 2-butene 76
Figure 5.8 Plot of the energy path taken by the 3-D simulation 77

Figure 6.1 Full flow chart for LITES with Trust Region approach 80
Figure 6.2 Full flow chart for LITES with Runge-Kutta approach 85

Figure 7.1 Butene molecule, C4H8 . 87

ix

Figure 7.2 Actual vs. approximate error for 2-butene 3D simulation 87
Figure 7.3 Simulation history for 2-butene with RK approach 88
Figure 7.4 Both stable conformations of the molecule stilbene 89
Figure 7.5 Each of the 5 coordinates in the stilbene simulation 90
Figure 7.6 Results of 5 degree of freedom simulation of stilbene with quadratic

exactness. 91
Figure 7.7 Initial and final geometries for 5 degree of freedom simulation of

stilbene . 92
Figure 7.8 Both stable geometries for Azobenzene, C12H10N2 93
Figure 7.9 Potential intrinsic reaction coordinates for Azobenzene 93
Figure 7.10 Sample simulation history for Azobenzene 94

Figure B.1 View upon opening putty . 109
Figure B.2 putty with host queue . 110
Figure B.3 putty login screen . 110
Figure B.4 putty login/password screen . 111
Figure B.5 successful login . 111
Figure B.6 Initial WinSCP screen . 112
Figure B.7 Result of clicking ”New” . 112
Figure B.8 Filled out WinSCP session . 113
Figure B.9 WinSCP session, your computer on the left and the hpc on the right113

x

Chapter 1

Introduction

The potential energy of a molecule depends on the interatomic forces between all of the

electrons and nuclei within the molecule. Nature dictates that the molecule maintain

a geometry that is a minimum of the potential energy. Some molecules have multiple

potential energy minima. By exciting a molecule photonically it is possible that the

molecule will transition from one of these minima to another. Simulating this reaction

has historically been limited to a one [47] or two dimensional model[2, 44]. If the reaction

can be simulated using just a single degree of freedom, then we call that coordinate the

intrinsic reaction coordinate (IRC). As molecules get more complex one should expect

that there is no longer a single IRC which will capture the effects of excitation. The algo-

rithms that follow increase the potential degrees of freedom for this simulation to double

digits and by doing so allow for more accurate simulations of much larger molecules.

The standard model used to compute the potential energy has nuclei in fixed locations

surrounded by moving electrons which are occupying orbitals. The geometry of a molecule

with N atoms is uniquely determined by 3N − 6 nuclear coordinates. Based on specified

nuclear coordinates, software determines the electrons’ orbitals and thus the potential

energy of the molecule. Potential energy is a quantized value meaning that for a given

value of the nuclear coordinates, there are only a subset of the real numbers which can be

possible values of the molecule’s potential energy. When an electron within the molecule is

excited it will change states to occupy a higher orbital. This change in state also signifies

an increase in potential energy of the molecule. As a consequence of the excitation the

new orbital causes a change in the interatomic forces within the molecule. While the

potential energy had been a minimum before the excitation there is no guarantee that

1

the current geometry is a minimum in the new state thus the 3N − 6 nuclear coordinates

will relax to a local minimum energy in that new state.

Modeling the energy as a function of 3N − 6 coordinates is too complex for current

technology. Fortunately many of those coordinates will remain relatively stationary dur-

ing the relaxation so we may simplify the model to a function of only the significant

nuclear coordinates. This means we partition the coordinates into design variables, x,

and dependent variables, ξ. We use software to determine optimal values of ξ for given

values of x. This optimization requires a good initial guess for the values of those depen-

dent variables, but we do not have one for most choices of x. The only value of ξ that we

know is the value at the initial geometry which is a minimum energy. This led us to use

continuation in order to successfully calculate the potential energy for any chosen values

of x.

Having decreased the number of variables in the model and devised a method for

evaluating the potential energy of the molecule at all values of the design variables, we

could now simulate the relaxation. Our first simulation method computed the potential

energy of the molecule at all points on a two-dimensional square grid. The surface is

then interpolated using a cubic spline to obtain a surrogate for the energy function.

The relaxation of the coordinates follows the gradient flow of the surrogate. A finite

difference of the surrogate serves as the gradient and we use continuous steepest descent

to determine the path. This method of simulation successfully finds a path between

minima for our test molecule 2-butene. Unfortunately much of the surface that we

compute goes unseen by the optimization and thus is wasted effort.

In order not to waste valuable computer time computing points which we won’t use,

we then built the surface incrementally. Starting with a local minimum we compute

energy at points on a much smaller square grid surrounding the point. On this smaller

surface we optimize to a local minimum or a boundary. If we come to a boundary,

then we compute energy on another small grid surrounding the boundary point. This

method gives us identical results with far fewer computations. This method becomes far

too computationally intensive when we increase the degrees of freedom. The number of

gridpoints we need to evaluate with square interpolation grids will grow exponentially in

the number of degrees of freedom which will render it impossible to run high degree of

freedom simulations.

Smolyak’s multidimensional interpolation algorithm uses sparse grids instead of square

2

ones. The grids are generated as a linear combination of tensor products of one dimen-

sional interpolation nodes. The set of nodes that are commonly used are nested in the one

dimension and the Smolyak algorithm inherits the nesting in higher dimension. Smolyak’s

algorithm allows for polynomial exactness to any degree. By replacing square grids with

Smolyak grids our patches can be produced for much larger degrees of freedom since the

number of Smolyak gridpoints grow polynomially in the degrees of freedom instead of

exponentially for square grids. Once we had a technique for constructing patches we pro-

ceeded to develop error controls which would allow us to grow the size of the individual

patches to be as large as possible.

Our first method of error estimation was borrowed from trust-region algorithms [23].

At the terminal point of the gradient flow on the surrogate we calculated the actual

energy. We calculated both the predicted decrease in the energy from the initial point

on the patch to the terminal point and the actual decrease in energy from the initial

point to the terminal point. If the ratio of the actual decrease to predicted decrease was

near 1, then we could grow the patch. Similarly if the ratio of the actual decrease to

predicted decrease was not close to 1, then we would shrink the patch. Otherwise the

patch remained the same size.

We were able to run successful simulations using a trust-region approach to error

control, but we identified some drawbacks. This method requires an actual energy cal-

culation at the terminal point of each patch. This serial calculation takes a long time

and ends up doubling the simulation time. The trust-region approach also does not rec-

ommend how much to grow or shrink the patch. We would like them to be as large as

possible while remaining accurate and never having an energy calculation fail.

Smolyak’s algorithm using the Chebyshev extrema as the one-dimensional interpo-

lation nodes provides nested sets of multi-dimensional interpolation nodes. This means

that a k + 1 degree exact grid contains all the points for the k degree exact grid. If we

subtract the lower order surrogate from the higher order surrogate, we get an estimate for

the actual error as a function of the grid length h. Using this estimate we can calculate

how large h can be while remaining accurate to our chosen tolerance. Since we would also

like to prevent convergence failures of every energy calculation we only use the formula

to calculate a new h if the number of iterations for every energy calculation stays low. If

the energy calculations take too many iterations we shrink h by a factor of 2 regardless

of the accuracy.

3

This final version of the software is titled LITES for Light-Induced Transition Effects

Simulator and the code for the entire simulation appears in the Appendix C.

4

Chapter 2

Background Chemistry

2.1 Describing a Molecule

Molecules form when atoms bond and share their electrons. The molecule consists of

the nuclei of the atoms which are in a fixed position surrounded by electrons moving

throughout fixed orbitals. The standard picture of a molecule displays only the nuclei

and the bonds between them. Figure 2.1 shows a water molecule both with and without

the orbitals. Each of the orbitals contains 2 of the molecule’s electrons.

5

(a) Water molecule showing only nuclei and

bonds

(b) Water molecule including the lowest occu-

pied energy orbital

(c) Water molecule including the highest occu-

pied energy orbital

Figure 2.1: water molecule with and without orbitals shown

The fixed locations of the nuclei describe the geometry of the molecule. In this work,

we define those locations by internal coordinates instead of Cartesian [3, 20, 14, 39].

These consist of 3 types of coordinates:

1. Bond length, the distance between bonded nuclei.

2. Bond angle, the angle formed by 3 nuclei connected by 2 bonds.

3. Torsion or dihedral angle, formed by 4 nuclei connected by 3 bonds. Its value is

the measure of the angle formed by the projection of the 2 outer bonds onto the

plane perpendicular to the center bond.

Examples of all of these coordinates are shown in Figure 2.2. A molecule with N atoms is

uniquely determined by 3N − 6 internal coordinates [22]. There are N − 1 bond lengths,

6

N −2 bond angles, and N −3 torsion angles. The coordinates are collected into an array

called a Z-matrix.

2.1.1 Example

We will use the molecule ethylene, C2H4. Figure 2.3 was generated by the Z-matrix in

Table 2.1

Table 2.1: Sample Z-matrix for ethylene

Type

of

atom

Atom

2

Bond

length

Atom

3

Bond

Angle

Atom

4

Torsion

Angle

C

C 1 1.3

H 1 1.1 2 120

H 2 1.1 1 120 3 180.0

H 1 1.1 2 120 4 0.0

H 2 1.1 1 120 5 100.0

The first column gives the types of atoms. The second column indicates the number

of the atom bonded to the atom in the first column. For instance, we see that the carbon

in the second row is bonded to the carbon in the first row. The third column shows the

length of that bond, in this case the carbon 1 - carbon 2 bond is 1.3 angstroms. The

fourth column gives the third atom that forms the angular bond and the fifth column

gives the measure of that bond. In the fourth row we see that hydrogen 4 is bonded to

carbon 2, which is bonded to carbon 1, and the angle formed by those 2 bonds is 120◦.

Finally the last 2 columns give the fourth nucleus which forms the torsion angle and the

corresonding measure. The last row shows hydrogen 6 bonded to carbon 2 bonded to

carbon 1 bonded to hydrogen 5, and the dihedral angle they form measures 100◦.

7

(a) Sample bond length (b) Sample bond angle

(c) 0◦ torsion angle between 4 atoms (d) Torsion angle rotated to 140◦

Figure 2.2: Sample internal coordinates

8

Figure 2.3: ethylene molecule C2H4

2.2 Quantized Operators

The Z-matrix contains information about the nuclei of the atoms; it does not give any

information about the orbitals occupied by the electrons. The 3N − 6 coordinates are

sufficient for uniquely determining the orbitals [22]. These orbitals are solutions to the

time independent Schrödinger equation:

ĤΨ = EΨ. (2.1)

E is the energy of the wave function Ψ describing these orbitals and Ĥ is the polyatomic

Hamiltonian operator for a molecule of k atoms with n electrons. The Hamiltonian

consists of the sum of the kinetic and potential energy [17, 21]. The kinetic energy of a

particle with wavefunction, ψ, is

Tψ = − h2

8π2m
∇2ψ = − ~2

2m
∇2ψ ~ =

h

2π
(2.2)

where h is Planck’s constant, 6.6 × 10−34J · s, and m is the mass of the particle. The

potential energy for our systems is the attraction/repulsion between charged particles.

9

This term is given by

Q1Q2

4πε0r12

=
Q′1Q

′
2

r12
Q′i =

Qi√
4πε0

(2.3)

where Qi is the charge of the particle, ε0 = 8.854× 10−12C2N−1m−2 is called the electric

constant, and rij is the distance between particles i and j. For an electron Q′ = 1 and

for a nucleus of p protons Q′ = p. For our system of k nuclei and n electrons there will

be 2 potential energy terms for

V = −
n∑
i=1

k∑
j=1

Zj
rij

+
n−1∑
i=1

n∑
j=i+1

1

rij
. (2.4)

where Zj is the number of protons in the jth nucleus. Combining the kinetic and potential

energy we have the entire Hamiltonian to be

Ĥ = T + V = − ~
2m

n∑
i=1

∇2
i −

n∑
i=1

k∑
j=1

Zj
rij

+
n−1∑
i=1

n∑
j=i+1

1

rij
(2.5)

When an operator applied to a function results only in values that belong to some discrete

subset of the real numbers, we say the operator is quantized. Wavefunctions that are

solutions to 2.1 are eigenfunctions of 2.5 and we will find that the associated eigenvalues

will only take certain discrete values.

2.2.1 Example

Consider a particle in a one-dimensional box where the potential energy, V (x), is zero

inside the box and infinite outside of the box as in Figure 2.4.

V (x) =

0 if 0 ≤ x ≤ a

∞ else
(2.6)

The Hamiltonian for this system is

Ĥ = − ~2

2m

d2

dx2
+ V (x). (2.7)

10

Figure 2.4: Potential energy function for a particle in a one-dimensional box.

Our Schrödinger equation will be

− ~2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x). (2.8)

In the locations outside the box where the potential is infinite the wavefunction will

vanish. Thus, we may conclude ψ(x) = 0 outside the box so we only need solve 2.8 inside

the box where V (x) = 0.

− ~2

2m

d2

dx2
ψ(x) = Eψ(x) (2.9)

Solutions to this type of differential equation may be found in [40]. Those solutions will

be

ψ(x) = c1 cos

(√
2mE

~
x

)
+ c2 sin

(√
2mE

~
x

)
(2.10)

Now we apply the boundary conditions. Since we know that ψ(0) = 0, we have c1 = 0 so

ψ(x) = c2 sin

(√
2mE

~
x

)
. (2.11)

11

We also know that ψ(a) = 0 so

0 = c2 sin

(√
2mE

~
a

)
. (2.12)

This can only be the case when

√
2mE

~
a = ±nπ, n = 0, 1, 2, ... (2.13)

Thus we may solve for the energy of the sytem to be

E =
1

2m

(
nπ~
a

)2

, n = 0, 1, 2, ... (2.14)

Equation 2.14 shows that allowable values for the energy of the particle in the box will

take only discrete values depending on the quantum number n. Thus the energy of the

system is quantized.

2.3 Hydrogen Atom

The only molecule where a wavefunction may be calculated explicitly is a single hydrogen

atom. We are able to solve 2.54 for the hydrogen atom where n = k = 1. The Hamiltonian

is

− ~2

2µ
∇2 − Ze′2

r
. (2.15)

µ is the center of mass between the nucleus and the electron and e′ = 1.6×10−19
√

4πε0
C is the

charge of a single electron. We use spherical coordinates to define the wavefunction and

we will use separation of variables to solve 2.54.

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (2.16)

The Laplacian in spherical coordinates is

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

1

r2
cot θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
. (2.17)

12

We begin by solving for Φ(φ) by isolating all terms in 2.15 containing Φ(φ) and setting

them to be a constant
1

Φ(φ)

∂Φ(φ)

∂φ2
= α. (2.18)

This will yield solutions

Φ(φ) = e±imφ, m ∈ Z, α = −m2. (2.19)

This solution contains the quantum number m. Now we use the solution for Φ(φ) and

isolate the terms containing Θ(θ) setting them equal to the constant λ

1

Θ(θ)

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

α

sin2 θ

)
Θ(θ) = λ. (2.20)

Solutions to this type of equation can be found in [31, 41] and use the Legendre functions

P
|m|
l (x)

Θ(θ) = P
|m|
l (cos θ) = (1− cos2 θ)

dl+|m|

dxl+|m|
(cos2 θ − 1)l, l = 0, 1, 2, ... (2.21)

where λ = −l(l + 1), l ≥ |m|.

This solution gave us another quantum number, l. Finally we may use both 2.21 and

2.19 to solve for R(r)[
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
− 2µ

~2

Ze′

r

]
R(r) =

−2µE

~2
R(r). (2.22)

Methods for solving this equation may also be found in [41] and will contain the Laguerre

polynomials

Lα,β(x) =
∂β

∂xβ

(
ex
∂α

∂xα
xαe−x

)
. (2.23)

Solutions to the final equation 2.22 contain the quantum number

B ≥ l + 1, (2.24)

13

RB,l(r) =
(r
a

)l
e−

r
2aLB+l,2l+1

(r
a

)
(2.25)

where a =

√
~2

8µE
.

We may now state the full wavefunction solution to the hydrogen atom in terms of the

quantum numbers n, l, and m using 2.25, 2.19, and 2.21

ψB,l,m(r, θ, φ) =
(r
a

)l
e−

r
2aLB+l,2l+1

(r
a

)
(1− cos2 θ)

dl+|m|

dxl+|m|
(cos2 θ − 1)le±imφ. (2.26)

The associated energy of the wavefunction will be

En(ψB,l,m) = −µe
′4Z2

2B2~2
. (2.27)

These exact solutions to the hydrogen atom can be used to approximate the orbitals

electrons occupy in larger systems, atoms, and molecules.

2.4 Spin

The Hamiltonian which we used to find exact wavefunctions for the hydrogen atom

was sufficient for a system with a single electron, but when there are multiple electrons

present we must take into account an additional property called spin. Electrons have

angular momentum due to their motion just like all other particles, but they also have an

intrinsic spin angular momentum. A wavefunction for an electron must also incorporate

its spin angular momentum. The spin of an electron has 2 possible values, ms = 1
2

and

ms = −1
2
. The elements of the Hamiltonian that involve spin do not interact with the

spatial variables so the wavefunction may be separated

ψ(r, θ, φ,ms) = ψ(r, θ, φ)g(ms). (2.28)

This product of a spatial wavefunction with a spin function is called a spin-orbital. The

common way to denote the spin functions is

g

(
1

2

)
= α, g

(
−1

2

)
= β (2.29)

14

Spin will have no effect on the overall energy of the system since

Ĥψ(r, θ, φ)α = αĤψ(r, θ, φ) = αEψ(r, θ, φ) = Eψ(r, θ, φ)α. (2.30)

Even though the energy of the wavefunction remains unchanged by spin, the number of

solutions doubles, due to the 2 values of ms.

2.5 Calculating Energy

The only wavefunction that can be solved exactly is the wavefunction for a single hy-

drogen atom. In all other instances we must approximate the solution. There are a few

methods for doing so. The variation method assumes a structure for the wavefunction

that is dependent on certain parameters, then optimizes over those parameters. Pertur-

bation theory approaches the problem by using a Hamiltonian with a known wavefunction

solution and then slightly increasing the complexity of the Hamiltonian.

2.5.1 Variation Method

The first method for approximating the energy of a system is called the variation method.

The idea is to assume a class of functions that will be the wavefunction for the system,

then we find the optimal function among that class. For example, below we will assume

that the solution to a system is of the form x2 − c and then we determine the optimal

c. We find the optimal values for the parameters using the Rayleigh Quotient. For any

operator, the Rayleigh quotient is bounded below by the least eigenvalue [24].

W =

∫
ψ∗Ĥψdτ∫
ψ∗ψdτ

≥ E0. (2.31)

Since we are able to evaluate the integrals in 2.31, we can find the ψ which minimizes

the Rayleigh Quotient and use that as our approximate solution.

15

2.5.2 Example

We will solve the problem of the particle in a box with a slight modification, V (x) = 0

for −a ≤ x ≤ a. We will attempt to approximate the wavefunction with

ψ(x) = x2 − c. (2.32)

This will give us a Rayleigh quotient of

W =

∫ a
−a(x

2 − c)
[
−~2
2m

d2

dx2
(x2 − c)

]
dx∫ a

−a(x
2 − c)(x2 − c)dx

(2.33)

W =
−~2
m

[
2
3
a3 − 2ca

]
2
5
a5 − 4

3
ca3 + 2c2a

(2.34)

Now we differentiate with respect to c and set it to 0 to get

4c2a2 − 8

3
ca4 +

(
8

9
− 4

5

)
a6 = 0. (2.35)

Solving for c we have

c =
1

3
a2 ± a2

√
4

45
(2.36)

Now we have the optimal approximation for the energy of the system among function of

the form 2.34 by substituting c = 1
3
a2 − a2

√
4
45

back into 2.34

W ≈ −1.6771~2

a2m
(2.37)

A common choice for the form of the wavefunction is linear combinations of linearly

independent basis functions

ψ = c1f1 + c2f2 + ...+ cnfn =
n∑
i=1

cifi. (2.38)

Now we substitute this function into the parts of the Rayleigh quotient 2.31∫
ψ∗Ĥψdτ =

∫ n∑
i=1

cifiĤ
n∑
j=1

cjfjdτ =
n∑
i=1

n∑
j=1

cicj

∫
fiĤfjdτ =

n∑
i=1

n∑
j=1

cicjHij (2.39)

16

∫
fiĤfjdτ = Hij. (2.40)

Similarly we have ∫
ψ∗ψdτ =

n∑
i=1

n∑
j=1

cicjSij (2.41)

∫
fifjdτ = Sij. (2.42)

Thus

W =

∑n
i=1

∑n
j=1 cicjHij∑n

i=1

∑n
j=1 cicjSij

. (2.43)

Now we optimize over the parameters

∂

∂ck

n∑
i=1

n∑
j=1

cicjHij = 2
n∑
i=1

ciHik. (2.44)

Similarly
∂

∂ck

n∑
i=1

n∑
j=1

cicjSij = 2
n∑
i=1

ciSik. (2.45)

Now we differentiate the Rayleigh quotient

∂W

∂ck
=

(∑n
i=1

∑n
j=1 cicjSij

)
(2
∑n

i=1 ciHik)−
(∑n

i=1

∑n
j=1 cicjHij

)
(2
∑n

i=1 ciSik)(∑n
i=1

∑n
j=1 cicjSij

)2 .(2.46)

Next we set ∇W to 0 so we may find optimal values for the parameters.(
n∑
i=1

n∑
j=1

cicjSij

)(
2

n∑
i=1

ciHik

)
−

(
n∑
i=1

n∑
j=1

cicjHij

)(
2

n∑
i=1

ciSik

)
= 0 (2.47)

n∑
i=1

ciHik =

∑n
i=1

∑n
j=1 cicjHij∑n

i=1

∑n
j=1 cicjSij

n∑
i=1

ciSik (2.48)

n∑
i=1

ciHik = W

n∑
i=1

ciSik (2.49)

n∑
i=1

ci [Hik −WSik] = 0 (2.50)

17

This gives us the following system of equations
H11 H12 · · · H1n

H21 H22 · · · H2n

...
.

...

Hn1 Hn2 · · · Hnn



c1

c2

...

cn

−W

S11 S12 · · · S1n

S21 S22 · · · S2n

...
.

...

Sn1 Sn2 · · · Snn



c1

c2

...

cn

 = 0. (2.51)

We may simplify this equation further by requiring that our basis functions fi be or-

thonormal so that ∫
f ∗i fjdτ = Sij = δij (2.52)

and we will have an eigenvalue problem
H11 H12 · · · H1n

H21 H22 · · · H2n

...
.

...

Hn1 Hn2 · · · Hnn



c1

c2

...

cn

 = W


c1

c2

...

cn

 . (2.53)

2.5.3 Perturbation Theory

The second method for approximating the energy of a system is called perturbation

theory. This method uses a solution to a system similar to the current one to construct

an approximation. We assume that there is an incremental difference between the system

with a known solution and the current one. Call that increment λ. We are looking for

solutions to the time-independent Shrödinger equation

Ĥψ = Eψ (2.54)

We expand our wavefunction in a power series about the parameter λ

ψl = ψl|λ=0 +
∂ψl
∂λ
|λ=0λ+

∂2ψl
2∂λ2

|λ=0λ
2... (2.55)

Similarly we may expand the energy in a Taylor series

El = El|λ=0 +
∂El
∂λ
|λ=0λ+

∂2El
2∂λ2

|λ=0λ
2... (2.56)

18

Each of the partial derivates recieves a superscript to denote the order

ψ
(k)
l =

∂kψl
k!∂λk

E
(k)
l =

∂kEl
k!∂λk

(2.57)

ψl = ψ
(0)
l + λψ

(1)
l + λ2ψ

(2)
l ... (2.58)

El = E
(0)
l + λE

(1)
l + λ2E

(2)
l ... (2.59)

We do not know the value of ψl so we will use a nearby problem whose solution is known.

Assume that if the Hamiltonian is H0 in 2.54 then we have a known solution {ψ0
l }, {E0

l }
and that the wavefunctions of the solution are orthogonal

H0ψ
0
l = E0

l ψ
0
l (2.60)∫

ψ0
iψ

0
j = δij. (2.61)

We separate our Hamiltonian

Ĥ = H0 + λh′ (2.62)

where λ is small. We assume that the first order correction is the known solution to the

nearby problem

ψ
(0)
l = ψ0

l E
(0)
l = E0

l (2.63)

We expand 2.54 in terms of our known solutions and the parameter λ

(H0 + λh′)
(
ψ

(0)
l + λψ

(1)
l + λ2ψ

(2)
l + ...

)
=(

E
(0)
l + λE

(1)
l + λ2E

(2)
l + ...

)(
ψ

(0)
l + λψ

(1)
l + λ2ψ

(2)
l + ...

)
(2.64)

Next we may operate and combine terms with like powers of λ

H0ψ
(0)
l = E

(0)
l ψ0

l (2.65)

(H0 − E(0)
l)ψ

(1)
l = (E

(1)
l − h

′)ψ
(0)
l (2.66)

(H0 − E(0)
l)ψ

(2)
l = E

(2)
l ψ

(0)
l + E

(1)
l ψ

(1)
l + h′ψ

(1)
l (2.67)

...

19

Now we may use our set of known solutions, {ψ0
l } as a basis for ψ

(1)
l

ψ
(1)
l =

∑
k

akψ
0
k, where ak = 〈ψ(0)

k |ψ
(1)
l 〉. (2.68)

This expansion is substituted into 2.66

(H0 − E0
l)
∑
k

akψ
0
k =

∑
k

(E0
k − E0

l)ψ
0
k = (E

(1)
l − h

′)ψ0
l . (2.69)

If we multiply both sides of the equation by ψ0
l and then integrate we will have∫

ψ0
l

∑
k

(E0
k − E0

l)ψ
0
k =

∫
ψ0
l (E

(1)
l − h

′)ψl

∑
k

∫
ψ0
l (E

0
k − E0

l)ψ
0
k =

∫
ψ0
l (E

(1)
l − h

′)ψ0
l∑

k

(E0
k − E0

l)〈ψ0
l |ψ0

k〉 = E
(1)
l 〈ψ

0
l |ψ0

l 〉 − 〈ψ0
l |h′|ψ0

l 〉 (2.70)

0 = E
(1)
l − 〈ψ

0
l |h′|ψ0

l 〉

E
(1)
l = 〈ψ0

l |h′|ψ0
l 〉 (2.71)

In order find an expression for the wavefunction we need to determine the coefficients, ak,

so we expand it in terms of the orthonormal set of known solutions, {ψ0
l }, as in equation

2.68. Next we substitute ak = 〈ψ(0)
k |ψ

(1)
l 〉 into equation 2.70 and solve for ak to obtain

our expression

ak =
−〈ψ0

k|h′|ψ0
l 〉

E0
k − E0

l

. (2.72)

Summing up over all k solutions to the original Hamiltonian, H0, we may specifiy the

first order correction energy and wavefunction

El = E0
l + λE

(1)
l = E0

l + 〈ψ0
l |h′|ψ0

l 〉 (2.73)

ψl = ψ0
l − λ

∑
k 6=l

〈ψ0
k|h′|ψ0

l 〉
E0
k − E0

l

ψ0
k. (2.74)

We expect the power series to converge to the exact solution for the Hamiltonian

specific to our problem, so we may truncate when we are satisfied with the accuracy of the

current wavefunction. Both the variation method and perturbation theory require some

20

initial information to the methods. For the variation method it is an initial wavefunction

and for perturbation theory it is an initial Hamiltonian with solution. These methods

are made much more efficient by addressing the initial values and Gaussian may compute

energy using either method.

2.5.4 Determinantal Wavefunctions

In section 2.5.1 we computed a wavefunction using the variation method by first assuming

the solution will have a specific structure, namely ψ(x) = x2−c. In this section we discuss

the specific structure that the computational methods within Gaussian assume which are

based on the behavior of electrons. In a system with multiple electrons each electron will

occupy an orbital which is some product of spatial and spin functions. We denote the

spatial functions by χi and number the electrons occupying the orbitals. If the first

electron is occupying the first spin orbital with alpha spin we would have

χ1(1)α(1). (2.75)

These single electron spin orbitals will have the form 2.38. A wavefunction for a 2 electron

system may be

ψ = χ1(1)α(1) + χ1(2)β(2) (2.76)

or

ψ =
1

2
(χ1(1)α(1)χ1(2)β(2)− χ1(1)β(1)χ1(2)α(2)) (2.77)

where the 2 electrons occupy the same orbital with different spins. Wavefunctions of

systems with multiple electrons have been shown to be antisymmetric [26]. This means

that interchanging the locations or spin of 2 electrons negates the wavefunction. By

defining the wavefunction for an N particle system as a determinant of an N ×N matrix

of a set of spin orbitals as in 2.77 the antisymmetry requirement will be upheld

ψ =
1√
N !

det(χ1(1)α(1), χ1(2)β(2), ...) =

1√
N !

∣∣∣∣∣∣∣∣
χ1(1)α(1) χ1(1)β(1) χ2(1)α(1) ...

χ1(2)α(2) χ1(2)β(2) χ2(2)α(2)
. . .

...
...

...
. . .

∣∣∣∣∣∣∣∣ . (2.78)

21

2.5.5 Hartree-Fock Self-Consistent Field Method

The Hartree-Fock method [46] is a specific application of the variation method which

astutely separates the inner product 〈ψ|Ĥ|ψ〉 by electronic interactions. We assume that

there is a distinct spin orbital for each electron in an atom. The potential energy between

two electrons is
QiQj

4πε0rij
(2.79)

We rearrange the Hamiltonian in terms of the electrons’ interactions. Define

hi =
−~2

2m
∇2
i −

∑
N

ZN
riN

(2.80)

to be the Hamiltonian of the kinetic energy and nuclear repulsion of the ith electron.

We next approach the interactions between the spin orbitals. Coulomb integrals are the

repulsion between electrons occupying different spin orbitals

Jij =

∫ ∫
|χi(1)|2|χj(2)|2

r12

dvkdvl (2.81)

= 〈|χi(1)|2| 1

r12

||χj(2)|2〉 (2.82)

Electrons may also exchange orbitals and this energy is

Kij = −
∫ ∫

χ∗i (1)χ∗j(2)χi(2)χj(1)

r12

dv1dv2 (2.83)

= −〈χi(1)χj(2)| 1

r12

|χi(2)χj(1)〉. (2.84)

Thus our full energy expression will be

E =
∑
i

〈χi(i)|hi|χi(i)〉+
1

2

∑
i

∑
j

(Jij −Kij) . (2.85)

We do not know the spin orbitals that our electrons occupy, so in order to compute the

energy of the molecule we must optimize the spin orbitals.

In order to determine the spin orbitals we use some complete set of orthogonal func-

22

tions, {fj}, which we call a basis set and let g be the spin of the orbital

χi = φig = g
∞∑
m=1

cimfm (2.86)

Since the basis of functions is complete, this sum will be exact [24]. We cannot use the

entire set of functions so we truncate the sum at some term

φi ≈
k∑

m=1

cimfm. (2.87)

We have now restated the energy to be a function of these coefficients and so the energy

of the molecule is

min
cim

E(cim). (2.88)

The orbitals comprising the wavefunction are orthogonal so we also introduce a Lagrange

multiplier, ε, to address this constraint to obtain a new function for minimization

E ′ = E +
∑
k

εk(1− 〈φk|φk〉). (2.89)

In order to optimize we set the derivative to 0

∂E ′

∂cim
= 0. (2.90)

We differentiate the expression in parts

∂〈φi(1)g(1)|hi|φi(1)g(1)〉
∂cim

= 2〈fm(1)g(1)|hi|χi(1))〉. (2.91)

∂
∑

j Jij

∂cim
= 2

∑
j

〈fm(1)g(1)χi(1)| 1

r12

||χj(2)|2〉 = 4〈fm(1)g(1)χi(1)| 1

r12

|ρ(2)〉. (2.92)

ρ(k) =
n∑
i=1

|χi(k)|2. (2.93)

23

ρ is called the density matrix.

∂
∑

jKij

∂cim
= −

∑
j

〈fm(1)g(1)χj(2)| 1

r12

|χi(2)χj(1)〉

+〈χi(1)χj(2)| 1

r12

|fm(2)g(2)χj(1)〉

= −2
∑
j

〈fm(1)χi(2)| 1

r12

|χj(2)χj(1)〉

= −4〈fm(1)χi(2)| 1

r12

|γ(1, 2)〉 (2.94)

where γ(1, 2) =
∑
i

χi(1)χi(2) (2.95)

γ is called the exchange matrix. Finally we differentiate the multiplier term

∂εi(1− 〈φi(1)g(1)|φi(1)g(1)〉)
∂cim

= −2εi〈fm(1)|χi(1)〉. (2.96)

Combining our terms we have

〈fm(1)g(1)|hi|χi(1))〉+ 〈fm(1)g(1)χi(1)| 1

r12

|ρ(2)〉

−〈fm(1)χi(2)| 1

r12

|γ(1, 2)〉 − εi〈fm(1)|χi(1)〉 = 0. (2.97)

Now we may expand (we drop the spin term for simplicity since it does not affect the

calculation)

χi =
k∑
j=1

cijfj (2.98)

k∑
j=1

cij[〈fm(1)|hi|fj(1)〉+ 〈fm(1)fj(1)| 1

r12

|ρ(2)〉

−〈fm(1)fj(2)| 1

r12

|γ(1, 2)〉 − εm〈fm(1)|fj(1)〉] = 0. (2.99)

24

Thus we have the eigenvalue equation ∑
j

(Fmj − εmδmj)cmj = 0 (2.100)

Fmj = 〈fm(1)|hi|fj(1)〉+ 〈fm(1)fj(1)| 1

r12

|ρ(2)〉 − 〈fm(1)fj(2)| 1

r12

|γ(1, 2)〉. (2.101)

2.6 Geometry Optimization

Using the methods shown in 2.5.5 we may compute the energy of a molecule for any

values of the molecule’s atom’s coordinates, p. Hamilton’s principle tells us that the

molecule will minimize its energy in any quantum state

En = min
p
En(p). (2.102)

This optimization is performed using a method called direct inversion in the iterative

subspace (DIIS) [42, 13, 12, 27, 30, 51]. DIIS is a quasi-Newton method [23] which

constructs the consecutive iterates using a linear combination of potential solutions.

All quasi-Newton methods use an approximate Hessian which is updated as the op-

timization proceeds. The steps are as follows

• Begin at xc

• Compute d = −H−1
c ∇f(xc)

• x+ = xc + λd

• update Hc to H+

For E(p) we are able to compute an analytic gradient, ∇E(p).

25

2.6.1 Energy Gradient

The gradient of the energy can be found using the Hellman-Feynman theorem [26]. We

are differentiating the energy expression with respect to some coordinate, p

∂

∂p
E =

∂

∂p

∫
ψ∗Ĥψdτ (2.103)

∂E

∂p
=

∫
∂

∂p

(
ψ∗Ĥψd

)
τ (2.104)

=

∫ (
∂ψ∗

∂p

)
Ĥψdτ +

∫
ψ∗

(
∂Ĥψ

∂p

)
dτ. (2.105)

First we differentiate the term with the Hamiltonian

∂

∂p

(
Ĥψ
)

=
∂Ĥ

∂p
ψ + Ĥ

∂ψ

∂p
. (2.106)

So we have

∂

∂p
E =

∫
∂ψ∗
∂p

Ĥψdτ +

∫
ψ∗
∂Ĥ

∂p
ψdτ +

∫
ψ∗Ĥ

∂ψ

∂p
dτ. (2.107)

The first term can be evaluated using the Schrödinger equation∫
∂ψ∗

∂p
Ĥψdτ = E

∫
∂ψ∗
∂p

ψdτ (2.108)

The last term may be evaluated using the fact that the Hamiltonian is Hermitian∫
ψ∗Ĥ

∂ψ

∂p
dτ =

∫
∂ψ

∂p

(
Ĥψ
)∗
dτ = E

∫
ψ∗
∂ψ

∂p
dτ. (2.109)

Since the wavefunction is normalized we know that∫
ψ∗ψdτ = 1⇒ ∂

∂p

∫
ψ∗ψdτ = 0. (2.110)

Thus
∂E

∂p
=

∫
ψ∗
∂Ĥ

∂p
ψdτ. (2.111)

Now we apply the Hellman-Feynman theorem to the Hamiltonian for our system of

26

k atoms and n electrons

Ĥ = − ~
2m

n∑
i=1

∇2
i −

n∑
i=1

k∑
j=1

Zj
rij

+
n−1∑
i=1

n∑
j=i+1

1

rij
+

k−1∑
i=1

k∑
i+1

ZiZj
rij

. (2.112)

We take p = xp to be a nuclear cartesian coordinate in the x direction and now differen-

tiate

∂Ĥ

∂xp
=

∂

∂xp

−~
2m

n∑
i=1

∇2
i −

∂

∂xp

n∑
i=1

k∑
j=1

Zj
rij

+
∂

∂xp

n−1∑
i=1

n∑
j=i+1

1

rij
+

∂

∂xp

k−1∑
i=1

k∑
i+1

ZiZj
rij

(2.113)

= − ∂

∂xp

n∑
i=1

k∑
j=1

Zj
rij

+
∂

∂xp

k−1∑
i=1

k∑
i+1

ZiZj
rij

(2.114)

= −Zp
n∑
i=1

(xi − xp)
r3
ip

+ Zp

k∑
j 6=p

Zj(xj − xp)
r3
jp

.(2.115)

Thus we have an expression for the gradient of the wavefunction

∂E

∂xp
=

∫
ψ∗

(
−Zp

n∑
i=1

(xi − xp)
r3
ip

+ Zp

k∑
j 6=p

Zj(xj − xp)
r3
jp

)
ψdτ. (2.116)

2.6.2 Pulay Mixing

We are solving the problem

min
p
E(p). (2.117)

Pulay mixing[42, 13] begins with a set of coordinates, pk, and an approximate Hessian,

Hk [50]. Next we obtain a set of vectors, pi0, through the following set of iterations

p0
0 = p0 (2.118)

p1
0 = p0

0 −H−1
0 ∇E(p0

0) (2.119)

p2
0 = p1

0 −H−1
0 ∇E(p1

0) = p0 −H−1
0 ∇E(p0

0)−H−1
0 ∇E(p1

0) (2.120)

pi0 = p0 −
i∑

j=0

H−1
0 ∇E(pj0) (2.121)

27

We continue to generate these vectors, pi0, until the m + 1st vector is nearly a linear

combination of the other m vectors (in a least-squares sense). These m vectors are then

used to construct the iterate

pk+1 =
m∑
i=1

cip
i
k by solving (2.122)

min
ci

m∑
i=1

ci(p
i
k − pi−1

k) =
m∑
i=1

ci∆p
i
k (2.123)

subject to
m∑
i=1

ci = 1. (2.124)

This can be solved using a Lagrange multiplier, λ,
B11 ... B1m −1

...
. . .

...
...

Bm1 ... Bmm −1

−1 ... −1 0



c1

...

cm

λ

 =


0
...

0

−1

 (2.125)

Bij = ∆pik∆p
j
k (2.126)

Once we have determined a new iterate, pk+1, DIIS uses the BFGS update scheme [23]

for computing a new approximate Hessian

H+ = Hc +
yyT

yT s
− (Hcs)(Hcs)

T

sTHcs
(2.127)

s = x+ − xc (2.128)

y = ∇f(x+)−∇f(xc). (2.129)

Geometry optimizations use more convergence criteria than a standard quasi-Newton

method [27], which would normally terminate at a small gradient. The four criteria are

• RMS of the force is less than 10−5

• Maximum single force is less than 1.5× 10−5

• RMS of the geometry displacement is less than 4× 10−5

• Maximum single displacement is less than 6× 10−5

28

Chapter 3

Interpolation

3.1 Background

The simulations we have developed have used two different methods of interpolation.

Initially we constructed the simulation to use cubic splines. The advantage of using

splines is that there are many robust codes available for implementation. Similarly the

implementation is also eased by the regular pattern of the nodes. This regular pattern

of nodes causes us problems in high dimensional simulations since the number of nodes

grows exponentially in the degrees of freedom as we discuss in Section 5.3.

The interpolation method that we found superior to splines for our purposes was

developed by Smolyak. The Smolyak algorithm [56, 60] has been utilized by the numerical

integration community to perform integration in high dimension for some time [61, 36,

19, 37, 4] due to the fact that it has a few pleasing characteristics:

• The method is exact for polynomials of selected degree k in d dimensions.

• Although the algorithm does not use the minimum number of nodes for a degree

k interpolation in d dimensions, the number of nodes grows polynomially with the

degrees of freedom.

• The nodes are well dispersed throughout the domain.

• There is a simple formula for determining the nodes given degree k and dimension

d.

29

The polynomial growth in the number of nodes gives us the opportunity to feasibly run

simulations in up to 10 degrees of freedom. By choosing nested nodes for the Smolyak

algorithm we also develop error estimation techniques in Chapter 6.

3.2 Cubic Spline

A cubic spline approximates a function by connecting a set of cubic polynomials on

a domain[18, 43]. The advantage to this construction is that there is global smooth-

ness without using a high degree polynomial. Given a set of n + 1 well-ordered nodes,

{x0, ..., xn}, and the corresponding function values at each node, {y0, ..., yn} any cubic

spline, p(x), will satisfy three criteria:

1. On each subinterval [xi, xi+1] p(x) is a cubic polynomial.

2. p(xi) = yi for i = 0...n.

3. p(x) is twice continuously differentiable within [x0, xn].

This leaves the spline underdetermined because there are a total of n intervals. Each

interval requires 4 coefficients so there are a total of 4n coefficients to be determined.

Condition 2 accounts for 2n− 2 equations and condition 3 accounts for 2n equations so

we are left with 2 degrees of freedom at the boundary of the domain. There are three

common types of conditions to fully determine the spline:

1. A clamped spline has p′(x0) and p′(xn) predetermined.

2. A natural spline has p′′(x0) = p′′(xn) = 0.

3. A periodic spline had pj(x0) = pj(xn) for j = 1, 2.

3.2.1 Derivation

Let Mi = p′′(xi) and pi(x) be the cubic polynomial on the interval [xi, xi+1]. Since these

are cubic polynomials p′′(x) is piecewise linear, thus

p′′i (x) = Mi
xi+1 − x

hi
+Mi+1

x− xi
hi

(3.1)

30

where hi = xi+1 − xi. Next integrate twice to get

pi(x) =
Mi(xi+1 − x)3

6hi
+
Mi+1(x− xi)3

6hi
+ ci(x− xi) + di (3.2)

Now we may substitute our constraints pi(xi) = yi and pi(xi+1) = yi+1 into pi(x) to

determine the constants ci and di.

ci =
yi+1 − yi

hi
− hi

6
(Mi+1 −Mi) (3.3)

di = yi −Mi
h2
i

6
. (3.4)

The values of Mi can be determined by imposing the continuity constraint on the first

derivative

p′i(xi) = −Mi(xi+1 − xi)2

2hi
+ ci =

Mi(xi − xi−1)2

2hi−1

+ ci−1 = p′i−1(xi) (3.5)

This gives us a three term recurrence relation for the values Mi

hi−1

6
Mi−1 +

(
hi
2
− hi

6
+
hi−1

2
− hi−1

6

)
Mi +

hi
6
Mi+1 =

yi+1 − yi
hi

− yi − yi−1

hi−1

(3.6)

Which may be simplified further to

hi−1

hi + hi−1

Mi−1 + 2Mi +
hi

hi + hi−1

Mi+1 =
6

hi + hi−1

(
yi+1 − yi

hi
− yi − yi−1

hi−1

)
. (3.7)

The final constraints determined by the type of spline complete the system.

3.3 Smolyak Interpolation

3.3.1 Formulation in a Single Dimension

Assume we would like to approximate the value of a function

f : [a, b]→ R (3.8)

31

at some point in the domain [a, b] . Given a set of g + 1 nodes

{xi} ∈ [a, b] i = 1...k + 1 (3.9)

and the corresponding set of function values

{f(xi) ∈ R} i = 1...k + 1 (3.10)

there exists a unique polynomial Πk(x) of degree k such that

Πk(xi) = f(xi) for i = 1...k + 1 (3.11)

The equation for that polynomial is

Πk(x) =
k+1∑
i=1

f(xi)li(x) (3.12)

Where li(x) is the ith Lagrange interpolating polynomial:

li(x) =
k+1∏

j=1,j 6=i

x− xj
xi − xj

(3.13)

The interpolation will be exact at each node since

li(xj) =

1 if j = i

0 if j 6= i
(3.14)

In order to determine the nodes we assume

f : [−1, 1]→ R. (3.15)

Once the nodes are determined we scale [−1, 1] to any desired rectangular domain [a, b].

In this work our nodes are the extrema of the Chebyshev polynomials[5]. For a degree k

interpolating polynomial the k + 1 extrema which will be the nodes are

xi = − cos
π(i− 1)

k − 1
, i = 1...k + 1. (3.16)

32

By selecting only values of k so that

k(z) = 2z−1 z ∈ N (3.17)

we obtain a set of nodes that are nested. This means that the set of nodes determined

by z + 1, denoted by {xi}z+1, will contain the every node in the set determined by z.

{xi}z ⊂ {xi}z+1 (3.18)

3.3.2 Example

If z = 3, then k(z) = 4. We obtain the following set of nodes

xi = − cos
π(i− 1)

4
, i = 1, 2, 3, 4, 5 (3.19)

{xi}3 = {−1,−
√

2

2
, 0,

√
2

2
, 1} (3.20)

Increasing z by 1 we have z = 4 and k(z) = 8, giving us a new set of nodes, the nodes

{xi}3 are in bold.

xi = − cos
π(i− 1)

8
, i = 1, 2, 3, 4, 5, 6, 7, 8, 9 (3.21)

{xi}4 = {−1,−0.9239,−
√

2

2
,−0.3827,0, 0.3827,

√
2

2
, 0.9239,1} (3.22)

3.3.3 Formulation in High Dimension

Multi-dimensional Lagrange interpolation requires a multivariate analog to the Lagrange

polynomial. We expect that polynomial to exhibit the property that

li(Yj) =

1 if j = i

0 if j 6= i
(3.23)

if Yj are the set of nodes in R
d. We accomplish this by taking the product of the single

dimension polynomials assuming that the ith node corresponds to the single coordinate

33

nodes {m1, ...,md} for each of the variables {y1, ..., yd} [9, 49, 16]

Li(y1, .., yd) = lm1(y1).̇..l̇md
(yd) =

d∏
i=1

lmi
(yi). (3.24)

In constructing an interpolation in dimension d > 1 we want to preserve the properties

of the one dimension interpolation [48]. We will be approximating a function

f : [−1, 1]d → R (3.25)

where once again we may scale the unit cube to any desired domain. For each of the d

directions r = 1, ..., d we have a one-dimensional interpolation of degree k(z) from 3.12

U z(x) = Πk(z)(x). (3.26)

Let Z be the multi-index of length d containing the individual values of z that determine

the degree of the interpolation in each of the d coordinate directions. Thus UZr(x) is the

interpolant in the rth coordinate.

3.3.4 Example

If d = 3 and Z = (2, 3, 2) then we would have a k(Z1) = 2Z1−1 = 2 degree interpolation

in the first direction, U2(x) = Π2(x). Similarly we have 2Z2−1 = 4 and 2Z3−1 = 2 degree

interpolations in the other 2 respective directions.

Define points Y in R
d by the variables yr in each direction

Y = (y1, y2, ..., yd) (3.27)

Now we define a tensor product between d one-dimensional interpolations in the d dif-

ferent directions with degree determined by Z

UZ(Y) =
d⊗
r=1

UZr(x) =

k(Z1)+1∑
s1=1

k(Z2)+1∑
s2=1

...

k(ZN)+1∑
sN=1

f(xs1 , xs2 , ..., xsN)
d∏
r=1

lsr(yr) (3.28)

34

3.3.5 Example

Let d = 2 and Z = (2, 2). Our tensor product would look like

U(2,2)(y1, y2) = U2(x)⊗ U2(x) =
3∑

s1=1

3∑
s2=1

f(xs1 , xs2)ls1(y1)ls2(y2) (3.29)

The Chebyshev extrema associated with z = 2 can be found with 3.16. They are {xi}2 =

{−1, 0, 1}. So we obtain

U(2,2)(y1, y2) = f(−1,−1)
(y1 − 0)(y1 − 1)

(−1− 0)(−1− 1)

(y2 − 0)(y2 − 1)

(−1− 0)(−1− 1)
+

f(−1, 0)
(y1 − 0)(y1 − 1)

(−1− 0)(−1− 1)

(y2 + 1)(y2 − 1)

(0 + 1)(0− 1)
+

f(−1, 1)
(y1 − 0)(y1 − 1)

(−1− 0)(−1− 1)

(y2 + 1)(y2 − 0)

(1 + 1)(1− 0)
+

f(0,−1)
(y1 + 1)(y1 − 1)

(0 + 1)(0− 1)

(y2 − 0)(y2 − 1)

(−1− 0)(−1− 1)
+

f(0, 0)
(y1 + 1)(y1 − 1)

(0 + 1)(0− 1)

(y2 + 1)(y2 − 1)

(0 + 1)(0− 1)
+

f(0, 1)
(y1 + 1)(y1 − 1)

(0 + 1)(0− 1)

(y2 + 1)(y2 − 0)

(1 + 1)(1− 0)
+

f(1,−1)
(y1 + 1)(y1 − 0)

(1 + 1)(1− 0)

(y2 − 0)(y2 − 1)

(−1− 0)(−1− 1)
+

f(1, 0)
(y1 + 1)(y1 − 0)

(1 + 1)(1− 0)

(y2 + 1)(y2 − 1)

(0 + 1)(0− 1)
+

f(1, 1)
(y1 + 1)(y1 − 0)

(1 + 1)(1− 0)

(y2 + 1)(y2 − 0)

(1 + 1)(1− 0)
(3.30)

Smolyak’s algorithm uses linear combinations of the tensor products 3.28. We de-

rive the formula in the same identically to [60]. The user determines a degree of one-

dimensional polynomial exactness which is maintained in the multi-dimensional interpo-

lation. For a d dimensional interpolation with exactness k, define

q = d+ k (3.31)

35

We define a difference of single dimension interpolations

∆0 = 0, ∆z(x) = U z(x)− U z−1(x) (3.32)

We also define

‖Z‖ =
N∑
r=1

Zr (3.33)

and recall that Z contains the degrees of the interpolation in each direction so every

element is non-negative. Smolyak’s interpolation is a set of tensor products of the single

dimension difference functions ∆z(x)

A(q, d)(Y) =
∑
‖Z‖≤q

d⊗
r=1

∆Zr(x) (3.34)

Since we have ∆0 = 0 any Z containing an element that is 0 will not be included in

the sum. Thus we can be sure that Z ≥ 1, where 1 is a vector of length N with every

element equal to 1. Define the set of allowable multi-indices Z

Q(q, d) = {Z ∈ R
d|Z ≥ 1, ‖Z‖ ≤ q} (3.35)

The cardinality of the set Q(q, d) is
(
q
d

)
. We have

A(q, d) =
∑

Z∈Q(q,d)

d⊗
r=1

∆Zr =
∑

Z∈Q(q−1,d−1)

(
d−1⊗
r=1

∆Zr

)
⊗

q−‖Z‖∑
Zn=1

∆Zd

=
∑

Z∈Q(q−1,d−1)

(
d−1⊗
r=1

∆Zr

)
⊗ Uq−‖Z‖, (3.36)

since we obtain a telescoping series using 3.32

m∑
i=1

∆i = Um. (3.37)

We now derive an explicit form of A(q, d) for all indices Z for which Zl = jl +αl with

α ∈ {0, 1}d and ‖α‖ ≤ q − ‖j‖. Furthermore, the sign of ⊗dl=1U
jl in this case is (−1)|α|.

36

Let

b(z,N) =
∑

α∈{0,1}d,|α|≤z

(−1)|α| (3.38)

This and 3.36 yield

A(q, d) =
∑

j∈Q(q,d)

b(q − |j|, d)
d⊗
l=1

U jl . (3.39)

We now compute b(z, d). Clearly, we can sum with respect to |α| = 0, 1, ..., d. Since

|α| = j corresponds to
(
d
j

)
terms, we have

b(z, d) =

min z,d∑
j=0

(
d

j

)
(−1)j = (−1)z

(
d− 1

z

)
. (3.40)

In particular, b(z, d) = 0 for z ≥ d. Thus

A(q, d)(Y) =
∑

Z∈Q(q,d)

(−1)q−‖Z‖
(

d− 1

q − ‖Z‖

) d⊗
r=1

UZr(x). (3.41)

3.3.6 Example

We take d = 2, k = 2, so q = d+ k = 4. Generate

Q(4, 2) = {Z ∈ R
2|Z ≥ 1, ‖Z‖ ≤ 4} =

{(1, 3), (3, 1), (2, 2), (2, 1), (1, 2), (1, 1)}. (3.42)

Knowing that 3 is the largest element of Z we generate the sets of one dimensional

interpolation points from formulas 3.16 and 3.17 for z=3,2,1.

z = 3⇒ k(z) = 4 {xi}3 = {−1,−
√

2
2
, 0,

√
2

2
, 1} (3.43)

z = 2⇒ k(z) = 2 {xi}2 = {−1, 0, 1} (3.44)

z = 1⇒ k(z) = 1 {xi}1 = {0} (3.45)

Each pair (a,b) in Q(4,2) defines a set of points defined by the cartesian product of {xa}
with {xb}. For instance, if we begin with the first element of Q, (1,3), we have the

37

following points at which the function needs to be evaluated

{x3} × {x1} = {(0,−1)(0,−
√

2

2
), (0, 0), (0,

√
2

2
), (0, 1)}. (3.46)

Since (1,3) will also be an element of Q, the reflection of these points along the line

y=x will also be points for evaluation. For the element (2,2) we have these interpolation

points

{x2} × {x2} = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}
(3.47)

The entire set of points can be observed in Figure 3.1 (a) along with the grids for suc-

cessively larger values of k. It is important to note that each grid contains all of the

points from the previous grid. These grids contain fewer points than a spline using grids

derived from the same one-dimensional set of points as in figure 3.1 (d).

3.4 Complexity

We derive a bound for the number of gridpoints in the same manner as [37]. Let X i
j be

the set of nodes used by the single dimension interpolation U i
j . Denote the number of

nodes as num(X i
j) and X i+1

j \ X i
j be the nodes contained in X i+1

j that are not in X i
j.

Denote the grid for the interpolation scheme A(d+ k, d) to be H(d+ k, d).

Theorem 3.4.1. For some constant value of k as d → ∞ the number of nodes for

Smolyak’s algorithm grows polynomially in d. That is

num(H(d+ k, d)) ≈ 2kdk

k!
(3.48)

Proof. The sparse grid defined by A(d+ k, d) has the grid

H(d+ k, d) =
⋃

k+1≤‖i‖≤d+k

X i1
1 × ...×X

id
d . (3.49)

Due to the fact that X0
j = ∅ and num(X2

j \X1
j) = 2 we have

H(d+ k, d) ⊃
⋃

‖i‖=d+k,im≤2 ∀m

(
X i1

1 \X i1−1
1

)
× ...×

(
X id
d \X

id−1
d

)
. (3.50)

38

(a) Smolyak points for N=2, d=2 (b) Smolyak points for N=2, d=3

(c) Smolyak points for N=2, d=4 (d) Spline grid using the same points as
Smolyak for N=2, d=4

Figure 3.1: Nested sets of interpolation points as d increases.

Since we are going to let d be large, we may assume that k ≤ d, thus that gives us a

lower bound on the number of nodes

num (H(k + d, d)) ≥
(
d

k

)
· 2k. (3.51)

If x is a node of H(d + k, d), then there may only be k coordinates of x which are not

members of X1
j . Let J = {j1, ..., jv} be a set of directions so that {xj /∈ X1

j |∀j ∈ J}. The

cardinality of J is v ≤ k. If v = k we have

xj ∈ X2
j \X1

j ∀j ∈ J. (3.52)

39

The number of nodes x ∈ H(d + k, d) so that xj /∈ X1
j if and only if j ∈ J is bounded

above by 2k. If v < k, then

xj ∈
k⋃
i=1

X i
j ∀j ∈ J. (3.53)

The number of nodes x ∈ H(d+ k, d) so that xj /∈ X1
j if and only if j ∈ J in this case is

found by simple counting to be (
k∑
i=1

num(X i)

)k

= ck. (3.54)

So we obtain a bound on num(H(d + k, d)) by counting the number of nodes for all

possible J

num(H(d+ k, d)) ≤
k−1∑
v=0

(
d

v

)
· ck +

(
d

k

)
· 2k ≤ k · dk−1 · ck +

(
d

k

)
· 2k. (3.55)

Now we let d→∞ and remind the reader that d >> k so we have

lim
d→∞

num(H(d+ k, d)) ≤ limd→∞ k · dk−1 · ck + d!
k!(d−k)!

· 2k (3.56)

= limd→∞ k · dk−1 · ck + d(d− 1)...(d− k + 1) · 2k

k!
(3.57)

≈ 2kdk

k!
(3.58)

3.5 Interpolation Error

3.5.1 1 Dimension

Let the operator Πk be the interpolating polynomial at n+ 1 distinct nodes.

Theorem 3.5.1. Let ωk+1 be the nodal polynomial at the n+ 1 interpolation nodes

ωk+1 =
k∏
i=0

(x− xi). (3.59)

40

Then the single dimension interpolation error is

Ek(x) =
f (k+1)(ξ)

(k + 1)!
ωk+1(x) ≤ f (k+1)(ξ)

(k + 1)!
Hk+1 (3.60)

where H is the maximal distance between gridpoints.

Proof. If x = xi then Ek(x) = 0. Assume x ∈ [x0, xk], but x 6= xi. Define the polynomial

P (t) = Ek(t)−
ωk+1(t)Ek(x)

ωk+1(x)
(3.61)

then P (t) has at least k + 2 zeros in [x0, xk]. There are k + 1 zeros at the interpolation

nodes as well as a zero when t = x. By the mean value theorem P ′(t) has at least k + 1

zeros. We may continue to differentiate and we have P k+1(t) has at least 1 zero. Since

Πkf is a degree k polynomial we have

E
(k+1)
k (t) = f (k+1)(t). (3.62)

Similarly

ω
(k+1)
k+1 (t) = k + 1!. (3.63)

Thus we have

P (k+1)(t) = f (k+1)(t)− (k + 1)!Ek(x)

ωk+1(x)
. (3.64)

We know that P (k+1)(t) has at least one root. Let ξ ∈ [x0, xk] be such that P (ξ) = 0,

then we have

P (k+1)(ξ) = f (k+1)(ξ)− (k + 1)!Ek(x)

ωk+1(x)
(3.65)

f (k+1)(ξ) =
(k + 1)!Ek(x)

ωk+1(x)
(3.66)

Ek(x) =
f (k+1)(ξ)

(k + 1)!
ωk+1(x). (3.67)

41

Since for all x within the interpolation interval, x− xi ≤ H we have

ωk+1(x) ≤ Hk+1

Ek(x) =
f (k+1)(ξ)

(k + 1)!
ωk+1(x) ≤ f (k+1)(ξ)

(k + 1)!
Hk+1. (3.68)

3.5.2 2 Dimensions

Define

Dm
x f =

∂m

∂xm
f. (3.69)

Let kx be the number of interpolation nodes in the x coordinate and H the maximal

distance between nodes.

Theorem 3.5.2. The 2 dimensional interpolation error is given by

‖f − Πf‖ ≤ ‖D(ky+1)
y f‖

(ky+1)!
H(ky+1) + ‖D(kx+1)

x f‖
(kx+1)!

H(kx+1)

+
‖D(ky+1)

y D
(kx+1)
x f‖

(ky+1)!·(kx+1)!
Hky+1Hkx+1 (3.70)

Proof. Define the interpolation operators in coordinate directions Πx and Πy. So we have

Πf = ΠxΠyf = ΠyΠxf (3.71)

Now we use the triangle inequality

‖f − Πf‖ ≤ ‖f − Πyf‖+ ‖Πyf − Πf‖ (3.72)

The first term can be handled by 3.60

‖f − Πyf‖ ≤
‖D(ky+1)

y f‖
(ky + 1)!

Hky+1. (3.73)

The second term is the interpolation error of the x-interpolant operating on the y-

42

interpolant

‖Πyf − Πx(Πyf)‖ ≤ ‖D
(kx+1)
x Πyf‖
(kx + 1)!

Hkx+1 =
‖ΠyD

(kx+1)
x f‖∞

(kx + 1)!
Hkx+1. (3.74)

ΠyD
(kx+1)
x f is the interpolation in y of D

(kx+1)
x f so we may apply 3.60

‖D(kx+1)
x f − ΠyD

(kx+1)
x f‖ ≤ ‖D

(ky+1)
y D

(kx+1)
x f‖

(ky + 1)!
Hky+1. (3.75)

Now we use the triangle inequality again

‖ΠyD
(kx+1)
x f‖ = ‖ΠyD

(kx+1)
x f −D(kx+1)

x f +D(kx+1)
x f‖

≤ ‖D(kx+1)
x f‖+

‖D(ky+1)
y D

(kx+1)
x f‖

(ky + 1)!
Hky+1. (3.76)

We substitute 3.76 into 3.74

‖Πyf − Πx(Πyf)‖ ≤ ‖D
(kx+1)
x f‖

(kx + 1)!
H(kx+1) +

‖D(ky+1)
y D

(kx+1)
x f‖

(ky + 1)! · (kx + 1)!
Hky+1Hkx+1. (3.77)

Combining the two terms from 3.72 we have a bound

‖f − Πf‖ ≤ ‖D(ky+1)
y f‖

(ky+1)!
H(ky+1) + ‖D(kx+1)

x f‖
(kx+1)!

H(kx+1)

+
‖D(ky+1)

y D
(kx+1)
x f‖

(ky+1)!·(kx+1)!
Hky+1Hkx+1 = O(Hmin(kx,ky)+1) (3.78)

3.5.3 d Dimensions

Let the d degrees of freedom be the variables x1 through xd and we will assume that the

same set of one dimensional interpolation nodes is used for each of the degrees of freedom

and that number of nodes is n.

Theorem 3.5.3. Let σ(m, j) be the set of all combinations of j integers between 1 and

m, so that elements of σ(m, j) are multi-indices. For instance (2, 3, 7) ∈ σ(8, 3). The

43

interpolation error in d dimensions is given by

‖f − Πf‖ ≤
d∑
j=1

 ∑
I∈σ(d,j)

‖Dn+1
xI1

...Dn+1
xIj

f‖

((n+ 1)!)j
Hj(n+1)

 = O(Hn+1) (3.79)

Proof. We will prove by induction. Assume that for d − 1 variables the interpolation

Π(d−1)

‖f − Π(d−1)f‖ ≤
d−1∑
j=1

 ∑
I∈σ(d−1,j)

‖Dn+1
xI1

...Dn+1
xIj

f‖

((n+ 1)!)j
Hj(n+1)

 (3.80)

Now we use the triangle inequality

‖f − Πf‖ ≤ ‖f − Π(d−1)f‖+ ‖Π(d−1)f − Πf‖ (3.81)

The first term is exactly the error given by 3.80 so we only need handle the the second

term. Once again we have the single dimension interpolation error of the d−1 dimension

interpolating polynomial

‖Π(d−1)f − Πxd(Π(d−1)f)‖ ≤ ‖D
(kxd+1)
xd Π(d−1)f‖
(kxd + 1)!

Hkxd+1 ≤ ‖Π
(d−1)D

(kxd+1)
xd f‖

(kxd + 1)!
Hkxd+1.

(3.82)

The triangle inequality again gives us

‖Π(d−1)D
(kxd+1)
xd f‖ ≤ ‖Π(d−1)D

(kxd+1)
xd f −D(kxd+1)

xd f +D
(kxd+1)
xd f‖

≤ ‖Π(d−1)D
(kxd+1)
xd f −D(kxd+1)

xd f‖+ ‖D(kxd+1)
xd f‖. (3.83)

The second term is given by 3.80 with D
(kxd+1)
xd f replacing f and so we may combine all

our terms to get our formula

‖f − Πf‖ ≤ ‖f − Π(d−1)f‖+ ‖Π(d−1)f − Πf‖ (3.84)

≤ ‖f − Π(d−1)f‖+
‖Π(d−1)D

(kxd+1)
xd f −D(kxd+1)

xd f‖+ ‖D(kxd+1)
xd f‖

(kxd + 1)!
Hkxd+1 (3.85)

≤
d∑
j=1

 ∑
I∈σ(d,j)

‖Dn+1
xI1

...Dn+1
xIj

f‖

((n+ 1)!)j
Hj(n+1)

 (3.86)

44

3.5.4 Taylor Series

We can develop useful error estimates for our interpolation using multivariable Taylor’s

theorem. Taylor polynomials in multiple variables do not give rise to as simple a formula

as the univariate case, so we will need to develop some notation.

3.5.5 Example

For a quadratic approximation using a Taylor polynomial we have

f(x+ hu) = f(x) + h∇f(x)Tu+
h2

2!
uT∇2f(x)u+O(h3). (3.87)

Were we to desire a cubic term this notation would fail us.

For the multivariate case we proceed as in [7], let

∆x =
[
x1 − u1 x2 − u2 ... xd − ud

]
(3.88)

and

∇ =
[

∂
∂x1

∂
∂x1

... ∂
∂xd

]T
(3.89)

then we have the differential operator

∆x · ∇ = ∆x1
∂

∂x1

+ ...∆xd
∂

∂xd
. (3.90)

We also use the analog to the binomial expansion(
r

p1p2...pd

)
=

r!

p1!p2!...pd!
, p1 + p2 + ...+ pd = r. (3.91)

The expansion for higher degree differentials will be

(∆x · ∇)r =
∑

p1+...+pd=r

(
r

p1...pd

)
(∆x1)p1 ...(∆xd)

pd
∂r

∂xp11 ...∂x
pd
d

. (3.92)

45

Finally we may define the mth degree Taylor operator and polynomial

Tm =
m∑
r=0

1

r!
(∆x · ∇)r (3.93)

Tmf =
m∑
r=0

1

r!
(∆x · ∇)r f(x) ≈ f(x+ ∆x) (3.94)

along with the remainder

Rm,x(∆x) =
1

m!

∫ 1

0

(∆x · ∇)m+1 f(x+ t∆x)(1− t)mdt (3.95)

which we may approximate by

Rm,x(∆x) ≈ 1

(m+ 1)!
(∆x · ∇)m+1 f(x+ θ∆x) 0 ≤ θ ≤ 1 (3.96)

= O(Hm+1) ∆xi ≤ H ∀i. (3.97)

3.5.6 Exactness

In one dimension Lagrange interpolation will exactly interpolate polynomials of degree

k if there are k+1 distinct nodes used for the interpolation. Smolyak interpolation will

exactly interpolate all polynomials of a certain degree as well, but that degree is not as

easily discernible. Let Pm be the space of polynomials in one variable of degree m or less.

Theorem 3.5.4. The interpolation formula

A(q, d)(Y) =
∑

Z∈Q(q,d)

(−1)q−‖Z‖
(

d− 1

q − ‖Z‖

) d⊗
r=1

UZr(x) (3.98)

will exactly reproduce all polynomials of the form∑
|i|=q

(
Pmi1

⊗ ...⊗ Pmid

)
(3.99)

Proof. We prove this by induction on d [36]. For the case where d = 1 we have A(q, 1) =

U q which is exact. In the case that d > 1 the function is a product of univariate

46

polynomials

f = fi1 ⊗ ...⊗ fiN . (3.100)

We use the first Smolyak formula 3.34 and assume that A(q, d) is exact

A(q, d+ 1) =
∑
‖Z‖≤q

d+1⊗
r=1

∆Zr =

q−1∑
l=d

A(l, d)⊗∆q−l (3.101)

A(q, d+ 1)f =

q−1∑
l=d

A(l, d) (fi1 ⊗ ...⊗ fid) ·
(
∆q−lfid+1

)
. (3.102)

Let

m =
d∑
j=1

ij (3.103)

so that

q = m+ id+1. (3.104)

We know that

A(l, d) (fi1 ⊗ ...⊗ fid) = fi1 ⊗ ...⊗ fid = fd,
∑

in = l < q (3.105)

from the induction assumption. Also by the single dimension interpolation properties

U q−lfid+1
= U q−l−1fid+1

= fid+1
. (3.106)

So we may write 3.102 as

A(q, d+ 1)f =

q−1∑
l=m

A(l, d) (fi1 ⊗ ...⊗ fid) ·
(
U q−l − U q−l−1

) (
fid+1

)
. (3.107)

Since U0 = 0 this series telescopes to leave a single remaining term

A(q, d+ 1)f = A(l, d) (fi1 ⊗ ...⊗ fid) · U q−mfid+1
= fi1 ⊗ ...⊗ fid+1

= fd+1. (3.108)

This means that A(d + k, d) is exact for all polynomials of degree less than or equal

to k.

47

3.5.7 Example

Let d = 3 and k = 2 so q = 5, then each polynomial of degree 2 in 3 variables is a linear

combination from a basis of monomials

{x2, y2, z2, xy, xz, yz, x, y, z, 1}. (3.109)

We form the multiindices which combine to form the interpolating polynomial

{(3, 1, 1), (1, 3, 1), (1, 1, 3), (2, 2, 1), (2, 1, 2), (1, 2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1)}.
(3.110)

Recall that the indices are used to form nested single dimension interpolating polynomial

of degree k(z) = 2z−1 from equation 3.17. Now we observe the types of terms that each

of the indexes give us

(3, 1, 1)→ x4, x3, ...

(1, 3, 1)→ y4, y3, ...

(1, 1, 3)→ z4, z3, ...

(2, 2, 1)→ x2y2, x2y, ...

(2, 1, 2)→ x2z2, x2z, ...

(1, 2, 2)→ y2z2, y2z, ...

(2, 1, 1)→ x2, x, ...

(1, 2, 1)→ y2, y, ...

(1, 1, 2)→ z2, z, ...

(1, 1, 1)→ 1. (3.111)

While we do obtain every term in the basis for quadratic polynomials in 3 dimensions,

we cannot recover every cubic polynomial due to the absence of the cross-term xyz.

3.5.8 Error Based on Exactness

We would like to combine the exactness above with Taylor’s theorem to get an approxi-

mation of the error based on the exactness of the approximation instead of the number

of gridpoints as in Section 3.5.3. A bound on the operator was developed in [60] which

48

we will restate here.

Theorem 3.5.5. Assume the following all hold for the case d = 1

‖I1 − U i‖ ≤ CDi, ∀i ≥ 0 (3.112)

‖∆i‖ = ‖U i − U i−1‖ ≤ EDi, ∀i ≥ 1 (3.113)

then

e(A) = ‖Id − A(d+ k, d)‖ ≤ CHd−1

(
d+ k

d− 1

)
Dd+k where H = max(1/D,E) (3.114)

For any function f we have

‖Id(f)− A(f)‖ ≤ e(A)‖f‖. (3.115)

Theorem 3.5.6. For a function, f , Smolyak’s formula with predetermined exactness k

will yield an approximation with an error on the order of k + 1.

Proof. Since these operators are linear we split the function with its Taylor series of

degree k

f = Tkf + (f − Tkf) (3.116)

‖Id(f)− A(f)‖ = ‖Id(Tkf)− A(Tkf) + Id(f − Tkf)− A(f − Tkf)‖ (3.117)

Using the triangle inequality along with the polynomial exactness we have

‖Id(f)− A(f)‖ ≤ ‖Id(Tkf)− A(Tkf)‖+ ‖Id(f − Tkf)− A(f − Tkf)‖ (3.118)

≤ 0 + e(A)‖f − Tkf‖ = O(Hk+1) (3.119)

49

Chapter 4

Surface Construction

4.1 Surrogate Models

The geometry of a molecule with N atoms is uniquely determined by 3N−6 coordinates.

The potential energy of a molecule is a function of all of the coordinates, p, as well as its

quantum state, n.

En(p) n = 0, 1, ... (4.1)

In order to perform these simulations in a reasonable amount of time we must simplify

the problem to use fewer coordinates. We achieve this by partitioning coordinate space

into design variables, x, and dependent variables, ξ

p = (x, ξ). (4.2)

The energy at any value of the design variables, x, on the ground state is determined by

minimizing the energy as a function of the dependent variables

E0(x) = min
ξ
E0(x, ξ). (4.3)

This optimization is performed internally by Gaussian and we describe the method in

Section 2.6, but it is a slow and expensive calculation. We built our simulation by

decreasing the number of times that we need to perform the optimization in Equation

50

4.3. This is done by constructing a surrogate model for the energy function

E0(x) ≈ Es
0(x). (4.4)

The surrogate model is an interpolant of the energy function calculated at pre-specified

gridpoints. By using this method of pre-specified gridpoints we can take advantage of

parallel computations to build the surrogate quickly, potentially in the time it takes for

a single optimization if there are enough processors. The surrogate models allow for fast

computation of the energy at any point within the interpolation domain and we can also

easily construct an analytic gradient for the surrogate to approximate the gradient of the

actual energy function. Each of the methods described in the rest of this chapter focus

on the calculation of the actual energy at all of the interpolation nodes for the surrogate.

4.2 Excited States

Even more difficult than the ground state energy optimization in Equation 4.3 is an

optimization in the excited state

En(x) = min
ξ
En(x, ξ), n 6= 0. (4.5)

There are some methods for performing this calculation [59, 15], but they are inadequate

for dealing with larger molecules.

The common way to approximate the excited state energy is through vertical excita-

tion [58]. This means we optimize the geometry on the ground state and then compute

the excited state energy for the ground state geometry

En(x) ≈ En(x, ξj) where E0(x, ξj) ≤ E0(x, ξj + δ). (4.6)

The excited state surrogate is constructed identically to the previous section, but it

is important to note that the potential energy that we are using is no longer a local

minimum geometry.

51

4.3 Gaussian Scan

We first used the tools within Gaussian to draw the potential energy surfaces (PES).

This is done by specifying the angles to be rotated, the number of degrees per rotation,

and the number of rotations. Gaussian also allows the user to choose the number of

processors for parallel computation. The energy optimizations are performed in parallel,

but each of the gridpoints are evaluated in serial.

We have identified 2 problems with Gaussian’s internal scan. Since the gridpoints

must be evaluated in serial, Gaussian’s internal scan is an inefficient method for high-

performance clusters. Since E(x) = E(x, ξ) is found by optimizing ξ, Gaussian needs

a good initial iterate, ξ0 for each gridpoint. By leaving the choice of initial iterate to

gaussian, the optimization is often unable to converge. When there is a convergence

failure of a gridpoint, the entire scan terminates instead of computing the energy of the

next point in the succession. Secondly, we have found that the surface generated when

this scan is successful may be inconsistent with the physics. These surfaces are expected

to be C2, and at the very least the energy should depend continuously on the angles

[32]. Figures 4.1 and 4.2 were both generated by a Gaussian scan and the large jump

discontinuities are clearly visible.

52

Figure 4.1: PES generated by 2 Gaussian scans for Stilbene

Figure 4.2: PES generated with 2 Gaussian scans for TMS

53

4.4 Single Initial Iterate

Since Gaussian computes the energy at each gridpoint in serial, it is highly inefficient

to run its scan on a large cluster. We begin all of our surface constructions with a

single known Z-matrix, (x0, ξ(x0)). The fastest way to compute an entire PES would

be to compute the energy for each point on a specified grid simultaneously on separate

processors. Each of those separate energy computations needs an initial Z-matrix for the

optimizations. At each gridpoint the value of the design variables, xi, is fixed, but the

remaining coordinates in the Z-matrix, the dependent variables ξ, must be specified with

an initial value in order for the optimization to begin. The simplest guess for the initial

iterate, ξ, is the value of those variables in the original Z-matrix, then each gridpoint will

be the result of the following optimization

Ei = min
ξ
E(xi, ξ(x0)). (4.7)

Where ξ(x0) is the optimal value of the dependent variables at the initial point of the

scan. If we have d independent variables, then the initial iterate at each gridpoint will

have 3N − 6− d coordinates that are identical.

While this method is extremely efficient in parallel performance it also does not always

produce feasible results. Although the surface looks to be differentiable almost every-

where, there are still large discontinuities which remains inconsistent with the physics,

as seen in figure 4.3.

54

(a) (b)

Figure 4.3: Two views of PES for 2-butene computed in parallel with the same initial
iterate at each point

4.5 Expanding Perimeter

For Quasi-Newton method optimizations to successfully converge they must have a good

initial iterate. The previous surfaces used the same initial iterate, ξ(x0), at each gridpoint.

Clearly the dependent variables from the initial Z-matrix, ξ(x0), are good initial iterates

for some of the gridpoints since there is a smooth lower section in Figure 4.1. In order to

manage good iterates and take advantage of parallelism we used a succession of gridpoints

[34]. Each point on the grid, assuming it converges successfully, should be a good initial

iterate for any points surrounding it. This is due to the fact that the surfaces are at least

twice differentiable [32]. The scheme is illustrated in figure 4.4. Since the user begins

with one Z-matrix (in our case it is a local minimizer), the dependent variables in that

Z-matrix, ξ(x0), serve as the initial iterate for the 8 points in a rectangle surrounding it

on a 2-dimensional grid (labeled 0 through 8). Once the optimizations at each of those 8

gridpoints have returned (converged or not) a new rectangle is produced. Each optimized

geometry’s dependent variables, ξ(xi) for i = 1...8, in the finished round will serve as the

initial iterate for a new point on the next rectangle. The corners of the rectangle are the

initial iterates for 3 points on the next round (e.g. point 1 is the iterate for points 9, 10,

55

and 24). In the event that a file fails to converge, the nearest point of a lesser number

replaces it as the initial iterate for the point (e.g. if point 12 did not converge then point

11 will be the initial iterate for both 28 and 29). Each round has 8 gridpoints more than

the previous round. Each gridpoint in a round is submitted independently as a Gaussian

job and this parallelism immensely speeds up the computations.

Figure 4.4: 2-D expanding perimeter scheme

The expanding perimeter algorithm in 2 dimensions is:

While this method of continuation accomplishes its goal of using nearby converged

geometries as the initial iterates, it does not work perfectly. The PES still had some

large discontinuities as in Figure 4.6. In order to properly use the expanding perimeter

algorithm to draw a smooth PES for stilbene from a single point, we also had to incor-

porate some of our expectations about the physics of the molecule. Figure 4.5 shows

the location of D1 which is the rotation of the middle bond. Both atoms making up the

central bond are also bonded to hydrogen atoms. As the angle D1 rotates we can expect

the hydrogens to rotate symmetrically along with it so that the ring and hydrogen will

56

Algorithm 4.1 Expanding Perimeter 2-Dimensional Algorithm

input x0, ξ(x0), step, num steps
Calculate E0=F(x0, ξ(x0)), xcur = 1

H =

[
−1 −1 −1 0 1 1 1 0
−1 0 1 1 1 0 −1 −1

]
for m=1:8 do

Em=F(H(:,m) ∗ step+ x0, ξ(x0))
end for
for n=1:num steps do

while E(2n−1)2 : E(2n−1)2+8n−1 do not exist do
continue

end while
j=1
for i=0:8n do

if E(2n−1)2+i converged then
last converged=(2n− 1)2 + i

end if
if i = 0 mod(2n) then

if j=1 then
for k=1:2 do

Calculate Ex cur = F (n ∗ step ∗H(:, j) + x0, ξ(last converged))
j=j+1, x cur=x cur+1

end for
else

for k=1:3 do
Calculate Ex cur = F (n ∗ step ∗H(:, j) + x0, ξ(last converged))
j=j+1, x cur=x cur+1

end for
end if

else
Calculate Ex cur = F (n ∗ step ∗H(:, j) + x0, ξ(last converged))
j=j+1, x cur=x cur+1

end if
end for

end for

57

remain approximately 180◦ from one another. The angle specifying the rotation of the

hydrogen need not be a dependent variable, but by pre-processing the initial iterate to

maintain the symmetry within the molecule we may improve our initial iterates. Specifi-

cally in Figure 4.7 we pre-process the torsion angles 5-3-1-19 and 7-4-2-28 to be D1-180◦.

This continuation combined with pre-processing produced a PES that converges at every

gridpoint and is continuous.

Figure 4.5: Stilbene molecule

58

Figure 4.6: Butene surface generated by expanding perimeter without pre-processing

Figure 4.7: Stilbene surface generated by expanding perimeter algorithm and pre-
processing

59

4.6 Ray Generation

Expanding perimeter successfully draws the PES, but the method of concentric squares

once again leaves processors idle unnecessarily since the gridpoints in the next round are

not submitted until every point in the previous round has finished. By changing the

file dependence, this problem can be alleviated. Instead of filling the grid by drawing

squares around the initial iterate, we draw rays with endpoint at the original gridpoint,

x0. Each gridpoint along the ray serves as the initial iterate for the gridpoint following

it. This means that eight rays originate from the initial gridpoint. Each new point on

the diagonal rays begin both a new horizontal and a new vertical ray. This entire set of

rays can be generated ahead of time, and each time the energy is successfully optimized

at a gridpoint the converged geometry can be used for the next gridpoint on the ray

without awaiting other computations to return. In the event that a computation does

not converge, the last converged geometry in the ray is used for the gridpoint succeeding

it. Not only will this method expand the grid more quickly to maintain use of all available

processors, but the generalization into larger dimensions is much simpler.

Figure 4.8: 2-Dimensional ray generation file dependence

60

The ray generation algorithm in 2 dimensions is:

Algorithm 4.6.1 Ray Generation

input x0, ξ(x0), step, bounds

cur file = 1

H =

[
1 0 −1 −1 −1 0 1 1

1 1 1 0 −1 −1 −1 0

]
for m=1:8 do

n=1

Raym = [x0′, H(:,m)′, 0]

while H(:,m) ∗ n ∗ step+ x0 =bounds do

Raym = [Raym, cur file]

curf ile = cur file+ 1

n = n+ 1

end while

end for

m = m+ 1

for k=1:2:7 do

for j = length(Rayk)− 6 do

Raym = [x0′ + j ∗H(:, k)′, H(1, k), 0, Rayk(j + 5)]

n = 1

while Raym(1) + n ∗ step ∗H(1, k) =bounds do

Raym = [Raym, cur file]

cur file = cur file+ 1

n = n+ 1

end while

Raym+1 = [x0′ + j ∗H(:, k)′, 0, H(2, k), Rayk(j + 5)]

n = 1

while Raym+1(1) + n ∗ step ∗H(2, k) =bounds do

Raym+1 = [Raym+1, cur file]

cur file = cur file+ 1

n = n+ 1

end while

m = m+ 2

61

end for

end for

completed files = []

Calculate E0=F(x0, ξ(x0))

for i = 0 : cur file− 1 do

if (Ei exists) and (i ∈ completed files = False) then

completed files = [completed files, i]

for j=1:m-1 do

if i ∈ Rayj == True then

k = Rayj(index(i))

ERayj(k+1) = F (Rayj(1 : 2) + (k − 4) ∗Rayj(3 : 4), ξ(xi))

end if

end for

end if

end for

We applied the ray generation algorithm to 2-butene without pre-processing the an-

gles [35]. The results in figure 4.9 imply that pre-processing the angles in the same

manner as we did with expanding perimeter is necessary to prevent jump discontinuities.

Figure 4.10 was generated by pre-processing 2-butene in the same fashion that we pre-

processed Stilbene in Figure 4.7, and the results are a continuous surface that matches

our expectation. The ray generation algorithm also exhibits good weak scalability mean-

ing that doubling the size of the problem (number of computations) along with doubling

the number of processors does not have an effect on the overall compute time.

We performed a scalability study of the ray generation algorithm. All computations

were performed on the high performance computing cluster at North Carolina State

University. Our chassis has 60 quad core Xeon processors with 2GB distributed memory

per core and dual gigabit ethernet interconnects. The operating system is Red Hat Linux

2.6.9 Potential energy computations are performed using Gaussian 03. Script editing is

done with Python 2.5.4. The results of this scalability study are shown in table 4.1.

62

(a) (b)

Figure 4.9: Two views of PES for 2-butene computed using ray generation without pre-
processing

(a) (b)

Figure 4.10: Two views of PES for 2-butene computed with ray generation with pre-
processing

63

Table 4.1: Scalability

Grid Size Processors Time (secs.)

17x17 12 525

25x25 24 451

37x37 48 570

4.7 Sparse Interpolation

The gridpoints generated by the Smolyak algorithm (see Section 3.3.3) are not distributed

in a way that makes it possible to use either ray generation or expanding perimeter to

construct the PES. Since we use this method to compute only small patches of the full

PES (see Section 5.2.3) we do not need to use continuation to prevent discontinuities.

Instead we manage large discontinuities, slow convergence, and failure to converge by

shrinking the size of the patch.

Both the expanding perimeter and the ray generation algorithms are continuation

algorithms. The Smolyak algorithm uses the same initial iterate for every gridpoint.

Since we are evaluating only portions of the surface in an incremental fashion, we will

be using a new initial iterate for each new patch, so each patch is a continuation of

the previous. Figure 4.12 is a full PES for 2-Butene computed using only the sparse

gridpoints and some pre-processing. The advantage of sparse interpolation is that our

PES becomes feasibly computable with degrees of freedom far larger than 2. Smolyak

grids grow polynomially in size as the dimension increases, whereas the grids for the

splines we had used earlier were square and thus grew exponentially in size. Figure 4.11

compares the gridpoints from a tensor grid to Smolyak’s grid produced from the same

one-dimensional nodes.

64

(a) Gridpoints resulting from Tensor of Chebyshev

Nodes

(b) Sparse Gridpoints resulting from the same

Chebyshev Nodes

Figure 4.11: Tensor grid vs. Sparse grid

(a) (b)

Figure 4.12: Two views of PES for 2-butene computed on a sparse grid from a single
iterate

65

Chapter 5

Simulation

5.1 Single Degree of Freedom

We use 2-butene as a demonstration molecule because it has a known transition path

[38, 55, 29]. We reproduce the results from [29] using Gaussian. Since we are performing

the simulation with a single degree of freedom, it is easiest to compute the entire potential

energy curve and then interpolate it using a standard cubic spline (Section 3.2). Here we

use the default spline in Matlab which is a cubic spline with continuous 3rd derivative.

Starting from a local minimum geometry in the ground state we excite the molecule

from the ground state, E0(x0) to a preselected excited state, En(x0). Excitation creates

an entirely new energy function, and the current point is no longer a local minimum.

To find a local minimum on the current energy level, we follow the gradient descent

direction. Once we have reached the local minimum on the current state, the molecule

then is excited or emits energy and changes energy levels again. Once we return to the

ground state and relax for the last time, we check if the new value of the coordinate

differs from the initial value. When the final geometry differs from the initial geometry,

the simulation has successfully discovered a path between stable geometries.

Figure 5.1 shows the two stable geometries for 2-butene. It is clear that the largest

difference between the two conformations is the rotation of the double bond in the center

of the molecule. Figure 5.2 depicts the entire simulation for 2-Butene with this single

coordinate as the only independent variable.

66

(a) Trans 2-Butene (b) Cis 2-Butene

Figure 5.1: Butene molecule, C4H8

Figure 5.2: 2-Butene transition path in a single degree of freedom

67

5.2 Two Degrees of Freedom

5.2.1 Integration

Our simulations are meant to successfully predict the natural relaxation of a molecule.

This means we do not want to take large steps when integrating on the surface since they

may pass over a local minimum. We use continuous steepest descent [8, 28] to simulate

this relaxation. This method uses an ODE solver (in our case a Runge-Kutta 45 method

[1]) to integrate

ẋ = −∇f(x). (5.1)

In our case, the independent variables are the design variables, x, and f(x) is the surrogate

model for the energy, Es
n(x). We have used both a finite difference and an analytic

gradient for this integration. Gaussian is able to compute an analytic gradient, but calls

to Gaussian are quite expensive and you have to compute the gradient of ξ(x). A robust

integrator, like ode45, has stepsize management that ensures local minima are not missed

by the integration path.

5.2.2 Full Surface Simulation

Since we had a test molecule with a known excitation path we could expand our simula-

tions to higher dimension and have confidence in the validity of our simulation’s results if

they verify the known result of excitation. Using the expanding perimeter algorithm, we

computed the entire PES for 2-butene by adding a second coordinate to the computation.

This coordinate can be seen in figure 5.3 (c). Once all of the gridpoints had successfully

converged, we could interpolate the PES with Matlab’s cubic spline. In two dimensions

Matlab’s cubic spline requires a square grid. With a complete surrogate for the sur-

faces, we may excite the molecule from any point on the ground surface, Es
0(x)→ Es

i (x).

Next,the molecule relaxes to a local minimum in that state and transfers to a new sur-

face. This process continues until it reaches a local minimum on the ground state. The

sequence of the excited states is determined at the beginning of the simulation. The full

surface simulation algorithm is

A successful optimization on the full surface can be seen in figure 5.4. In this simu-

lation we computed the surface using the expanding perimeter algorithm.

68

Algorithm 5.1 Full Surface Simulation Algorithm

input states, xcur
for i in states do
xcur = ode solver(ẋcur = −∇Es

i (xcur)
end for

(a) Coordinate to be rotated consists of the

bond angle between atoms labeled 2 and 3

(b) Atoms 1 and 2 whose locations are pre-

processed for better convergence of gaussian

optimizations

(c) 2nd coordinate to be rotated consists of the

bond angle between atoms labeled 2 and 3

Figure 5.3: 2-butene torsion angles selected for a 2 dimensional simulation

69

(a) (b)

Figure 5.4: Successful transition path for 2-butene simulated on a full PES computed
with expanding perimeter

5.2.3 Incremental Surfaces

Simulations run on a fully computed surface are successful, but they have 3 major draw-

backs

• The process is very slow since it must compute energy at so many gridpoints.

• Resources are wasted computing areas of the surface never seen by the optimization.

• The cost of each energy computation grows exponentially with the number of atoms

in the molecule.

For these reasons, we aimed to keep the number of calls to Gaussian to a minimum. We

decreased the number of calls to Gaussian by computing small patches of the PES and

integrating either to a local minimum or to a boundary on those patches. The integration

is performed using ODE45 in Matlab [53]. Once we have exhausted the search on the

current patch we draw a new patch. The surrogate for the surface on the patch is still

interpolated with matlab’s default cubic spline.

70

5.2.4 The Next Patch

Each of our patches is square of length h. Obviously an integration step will never

collide directly with a boundary of the domain. In the case where the minimum does not

lie within the domain, we terminate the integration when a step, yi, falls within some

distance of the interior boundary Ω

‖Ω− yi‖1 ≤ δ, yi ∈ Ω. (5.2)

Normally the value of δ is chosen to be .05h. If the integration step exceeds the boundary,

then we reject the step and shrink the stepsize similar to the case when the error is too

large (see Appendix A).

Upon termination at the boundary of a patch we have to draw a new patch. We

expect the integration to continue in the direction it was going when it terminated inside

the previous patch, so it would be redundant to center the new patch at that terminal

point. Instead we shift the center of the patch so that any variable that was within δ of

the previous boundary lies at δ̂ from the previous boundary with which it collided. The

normal choice of δ̂ is .2h. For example, if the last integration terminated at the point

yi = (−.99, .5) and the domain had been [−1, 1]2, then we would center the next patch at

(−.99, .5) + (−1, 0) ∗ .6 = (−1.59, .5). The vector (-1,0) signifies that the terminal point

was near the lower boundary of the first variable.

We also have to deal with the termination of a patch at a minimum. In this case the

algorithm will change states, but we already own a surface in the next state in the same

domain as the current patch due to the method for computing excited states. Whenever

possible we would prefer to continue integrating without having to perform new energy

evaluations and we address how we determine whether it is prudent to do so in Section

6.2.

5.2.5 2-butene Example

Figure 5.5 displays the outcome of the simulation performed on incrementally constructed

surfaces. Each surface was drawn using the ray generation algorithm from Section 4.6.

The results were identical to the path found on the full surface, but the compute time de-

creased. The entire simulation including computing a full PES in figure 5.4 lasted 3275.66

seconds while the incremental surfaces required only 1404.93 seconds. The speedup is

71

limited by the ray generation algorithm because the algorithm initially calculates the

energy at only a few points.

(a) Entire ground state PES overlaid with the

patches computed in the simulation

(b) Entire excited state PES overlaid with the

patches computed in the simulation

Figure 5.5: Incremental surface simulation of 2-butene transition path

5.3 More than Two Degrees of Freedom

The number of gridpoints necessary if we use surrogates that are splines on a square

grid grows exponentially with the number of degrees of freedom. This would render our

problem intractable for high dimensional simulations. The Smolyak algorithm gives us

similar accuracy to a square or a full tensor grid. We showed in Section 3.4 that the

growth in the number of gridpoints is polynomial in the degrees of freedom[61]

dim(A(d+ k, d)) ≈ 2k

k!
dk. (5.3)

We have no need to alter the methods of transitioning between patches to adapt to our

new interpolation scheme so the transitions are the same as in Section 5.2.4. Combining

the incremental surface construction with a sparse interpolation allowed us to perform

rapid and efficient simulations in three or more degrees of freedom. We decided to name

the multi-dimensional sparse version of the software LITES for Light-Induced Transition

Effects Simulator.

72

5.3.1 Termination

Once all of the states for the simulation have been exhausted and the integration has

terminated at a local minimizer of the surrgoate at the ground state, we would like to

find the actual local minimizer of the energy function. This is easily handled by Gaussian

since we are already nearby as we discussed in Section 4.5. Thus final point in the entire

simulation will be calculated by an unconstrained geometry optimization with the initial

iterate being the terminal point, (xfsim , ξfsim), of the integration on the final patch

(xf , ξf) = minpE0(xfsim , ξfsim). (5.4)

The full LITES algorithm will be

Algorithm 5.2 LITES Algorithm

input h0, state order, x0, k
h = h0

for state in state order do
edge = zeros(length(x0))
at min = False
while at min = False do

from x0, h, edge generate Smolyak grid
Calculate Estate(x) at each gridpoint in parallel and count maximum iterations
while Estate(xi) fails do
h→ h

2

from x0, h, edge generate Smolyak grid
Calculate Estate(x) at each gridpoint in parallel and count maximum iterations

end while
integrate ẋ = −∇ES

state(x) using RK45, return at min, xf , edge
h =Patch Control(xf , h,edge)
x0 = xf

end while
end for
Optimize E0 with initial iterate xf .

73

5.3.2 Example

We added a third angle to the simulation of 2-butene as shown in figure 5.6. Since we are

no longer drawing full PES’s, we no longer need the continuation methods from Chapter

4. Instead we will use a single initial iterate on each patch. The patches themselves serve

as a continuation of the previous patch with a new initial iterate on each one. In the

next chapter we develop methods of error approximation and control for the progression

of patches.

Applying the incremental sparse surface construction algorithm to 2-butene again

yielded a successful path. The patches in Figure 5.7 grow in size throughout the simu-

lation. The error control method was borrowed from trust region methods [23] and we

discuss it in detail in Section 6.1. We expect these simulation methods to exhibit good

weak scalability regardless of the error control technique and we demonstrate that they

do in table 5.1.

74

(a) Coordinate to be rotated consists of the

bond angle between atoms labeled 2 and 3

(b) Atoms 1 and 2 whose locations are pre-

processed for better convergence of gaussian

optimizations

(c) 2nd coordinate to be rotated consists of the

bond angle between atoms labeled 2 and 3

(d) 3nd coordinate to be rotated consists of the

bond angle between atoms labeled 2 and 3

Figure 5.6: 2-butene torsion angles selected for a 3 dimensional simulation

75

(a) First view of path in D1 D2 space (b) Second view of path in D1 D2 space

(c) First view of path in D1 D3 space (d) Second view of path in D1 D3 space

(e) First view of path in D2 D3 space (f) Second view of path in D2 D3 space

Figure 5.7: 3-D simulation of the transition path for 2-butene

76

Figure 5.8: Plot of the energy path taken by the 3-D simulation

Table 5.1: Scalability of Sparse Incremental Surface Construction

degree of interpolation Gridpoints processors Time (secs.)

2 25 13 190.96

3 69 39 194.05

77

Chapter 6

Patch Control

6.1 Trust Region Approach

We borrow ideas from trust-region algorithms [23] to adapt the size of the incremental

surfaces. Each patch is the same length in all variables and we use the parameter h

to be half of that length, similar to the radius of a trust region. At the conclusion of

each patch’s computation and subsequent integration we have 3 metrics which determine

whether the size of the grid is sufficient:

• Have all of the gridpoints converged?

• The maximum number of internal optimizations for convergence among all of the

points

• The ratio of the actual reduction in the energy to the predicted reduction in the

energy: ared
pred

In the first case, if all the gridpoints do not converge then we cannot construct the

surrogate model and thus we must shrink h and start again. Similarly if the number of

internal optimizations at each gridpoint gets to be too large it likely signifies that the

initial iterate, ξ(x0), is not a good one for all of the gridpoints and we will shrink h on

the next patch. The variable ared is the actual reduction in the potential energy of the

molecule at the endpoint of the integration on the patch

ared = En(x0)− En(xf). (6.1)

78

The variable pred is the amount our surrogate model predicted the potential energy

would decrease at the endpoint of the integration on the patch

pred = En(x0)− Ên(xf). (6.2)

If the value of the ratio ared
pred

is within the parameter ρ1 of 1, then our model is very

accurate and we may grow size of the patch, h. If that ratio is outside the parameter ρ2

of 1, then the surrogate is not accurate and we decrease the parameter, h. In all other

cases we do not change the size of the next patch. The Trust Region style error control

algorithm is

Algorithm 6.1 Trust Region Approach Algorithm

input σ, h0, max iters, ρ1, ρ2, xcur, xf
calculate E(xf)
ared=E(xcur)-E(xf)

pred=E(xcur)-Ê(xf)
if (‖1− |ared

pred
|‖ ≤ ρ1) and (max it≤max iters) and (NaNs=0) then

h=σh
else if (‖1− |ared

pred
|‖ ≥ ρ2) or (max it>max iters) or (NaNs6= 0) then

h=h
σ

end if
xcur = xf
return xcur, h

79

6.1.1 Trust Region Approach Flow Chart

Figure 6.1: Full flow chart for LITES with Trust Region approach

80

6.2 Runge-Kutta Approach

Runge-Kutta methods numerically solve ordinary differential equations (odes) by esti-

mating the error of a time-step using a higher order approximation of the same time-step

to give a good estimate of the error. The reason these methods are useful is that both

approximations require the exact same function evaluations and so the error estimate

is attainable with minimal work (see Appendix A). We can estimate the error on our

patches using the same type of idea.

Smolyak’s algorithm 3.3.3 using nested sets of Chebyshev extrema gives us properties

that are similar to Runge-Kutta. Every approximation of order k has already evaluated

the function at every gridpoint necessary for approximations of order less than k, thus

lower order approximations are extremely inexpensive considering the time it requires for

a function evaluation.

6.2.1 Example

Let us assume that we have obtained a cubic approximation for the energy function on

a patch with the error given in Section 3.5.3

ES3
n (x) = En(x) +O(h4). (6.3)

There is no expense (in function evaluations) of evaluating a quadratic approximation

on the same patch

ES2
n (x) +O(h3). (6.4)

Using these 2 approximations we may estimate the error at any point within the patch

using the difference of the two approximations

‖ES3
n (x)− ES2

n (x)‖
‖ES2

n (x)‖
= ch3 = ε. (6.5)

Since the energy function is smooth this is a good approximation of the error.

Since we are dealing with two different approximations for the energy function, we

have a choice of gradients for the integration on the patch. Although we use the quadratic

approximation for the value of the energy, we will use the analytic gradient obtained from

the cubic approximation for calculating the integration path. This method is called order

81

extrapolation[52].

6.2.2 Patch Size

By having a good approximation of the error in our surrogates we can determine how large

to make the next patch to ensure it remains accurate. The error estimate isn’t the only

metric we use for this decision. Each function evaluation is the result of an optimization

as discussed in Section 2.6. We keep track of the maximum number of iterations it took

for the function evaluations on the grid. If that number gets too high we shrink the patch

irrespective of the error estimate. The function evaluations are extremely timely so our

goal is to avoid ever having to restart a patch because of convergence failures within

Gaussian.

Assuming that the iteration count remained below our tolerance we can derive a

predictive formula for the next patch length. Let {X} be the path of the simulation

calculated as in section 5.2.1, then we take the error on the current patch to be

εcur = max
x∈X

‖ESk+1
n (x)− ESk

n (x)‖
‖ESk

n (x)‖
. (6.6)

We calculate the size of the next grid using the common formula from actual Runge-Kutta

methods. We specify a tolerance, δ, so ideally we have

εcur = chk+1 ≤ δ (6.7)

c =
εcur
hk+1
cur

. (6.8)

We would like our next patch to have a size, h+, that is as large as possible while still

keeping the error below our specified tolerance. Normally we choose the limit to be

smaller than the chosen tolerance, ρδ where ρ < 1

chk+1
+ = ρδ < δ (6.9)

εcur

(
h+

hcur

)k+1

= ρδ. (6.10)

h+ = hcur

(
ρδ

εcur

) 1
k+1

. (6.11)

82

In the case where ε > δ we reject the patch because it is not accurate, but the formula

will give us a smaller patch size at which to restart the calculations. If the error remains

acceptable the formula will give us a new length for the next patch.

6.2.3 Example

We will continue with the prior example and choose a quadratic interpolation with a

cubic error term, so k = 2. Let us choose ρ = .83, then we will have

h+ = hcur

(
.83δ

εcur

) 1
3

= .8hcur

(
δ

εcur

) 1
3

(6.12)

6.2.4 Termination Inside a Patch

When the integration terminates in the interior of a patch we will change states. We

assume that the iteration tolerance has not been exceeded, because if it has we will

shrink the patch. Using Formula 6.11 with the ε calculated on the integration path of

the current state would be a mistake. When the state changes so does the function

ES
n (x), but we would like to avoid having to perform more function evaluations. Since

we are beginning the next integration on the interior of a domain where we already own

a surrogate, there is no reason not to keep the current patch if it is accurate. This means

we may use the Formula 6.11 if we can calculate an ε on the new state. We don’t have an

integration path, but since we own the surrogate we can cheaply query any points inside

the domain.

For multi-dimensional functions a common sampling technique is to use a Latin Hy-

percube [57]. From the latin hypercube we get a set of points {X̂} just as we had a set

of points defining a path on the previous state. We determine the ε in the new state the

same way we used the path in the previous state so that

εcur = max
x∈X̂

‖ESk+1
n (x)− ESk

n (x)‖
‖ESk

n (x)‖
. (6.13)

If this error estimate is below our specified tolerance we may keep the patch and integrate

to a steady-state or a boundary. If not we will have to construct a new patch of the size

determined by Formula 6.11. The full Runge-Kutta approach error control algorithm is:

83

Algorithm 6.2 Runge-Kutta Approach Algorithm

input δ, hcur, max iters, ρ, X, k, num iters,at min, Ω, next state

ε = maxx∈X
‖E

Sk+1
n (x)−ESk

n (x)‖
‖ESk

n (x)‖
if ε > δ then

reject X

h+ = hcur
(
ρδ
ε

) 1
k+1

else if num iters ≥ max iters then
h+ = hcur

2

else if at min=FALSE then

h+ = hcur
(
ρδ
ε

) 1
k+1

else
generate X̂ ⊂ Ω

ε = maxx∈X̂
‖E

Sk+1
next state(x)−ESk

next state(x)‖
‖ESk

next state(x)‖

h+ = hcur
(
ρδ
ε

) 1
k+1

end if
return h+

84

6.2.5 Runge-Kutta Approach Flow Chart

Figure 6.2: Full flow chart for LITES with Runge-Kutta approach

85

Chapter 7

Results

7.1 2-butene

2-butene serves as our test molecule because it has a well-known transition path between

stable ground state geometries [29]. We have used the molecule to test every algorithm

that we have developed, but here we will use it to show that the Runge-Kutta approach

to error control is successful at managing the error. We begin in the cis configuration and

the simulation will successfully terminate in the trans configuration as in Figure 7.1. We

will use the same 3 degrees of freedom as in Figure 5.6, but we will display our results

by only showing the individual changes in each variable at each integration step instead

of showing surfaces.

For the Runge-Kutta approach we set the error tolerance of the simulation to be

δ = 10−3 with a fudge factor ρ = .73. The higher order interpolation is cubic and thus

the lower order is quadratic. In this example we will also calculate the actual error at

each integration point to see how well our estimate is performing. This extra calculation

is expensive since it doubles the simulation time and will not be done in simulation with

larger molecules. Figure 7.2 displays the actual error on the integration path versus

the approximation of the error on each of the 5 patches for the simulation. Neither

error comes near the tolerated error of δ = 10−3. Figure 7.3 shows that the simulation

successfully transitioned from cis to trans. This simulation required 1800.75 seconds.

These results also appear in [33].

86

(a) Trans 2-Butene (b) Cis 2-Butene

Figure 7.1: Butene molecule, C4H8

Figure 7.2: Actual vs. approximate error for 2-butene 3D simulation

87

Figure 7.3: Simulation history for 2-butene with RK approach

7.2 Stilbene

Stilbene is a molecule with two known stable conformations in the ground state. They

are both displayed in Figure 7.4. We hope to use our simulation techniques to find an

energy path through the excited states between these 2 geometries. Using just a single

degree of freedom has not yielded a path [34] so this molecule is a perfect candidate for

the algorithms which we developed.

We chose a simulation using 5 degrees of freedom. Each of those 5 coordinates are

displayed in Figure 7.5. The simulation method was trust-region style (Section 6.1) and

the Smolyak surrogates had quadratic exactness. The simulation was run in the following

order of states, 2 → 1 → 0. Simulation time was 95919.22 sec. A simulation history

is displayed in Figure 7.6. The actual initial and final geometries of the simulation are

displayed in Figure 7.7. The 2 geometries are clearly visually different, but they both

seem to be cis-stilbene. While we are unsure whether there is chemical significance to

this outcome, they indicate that the tool can find paths between local minima. Some

discussion of these results appears in [6]

88

(a) cis-stilbene (b) trans-stilbene

Figure 7.4: Both stable conformations of the molecule stilbene

89

(a) D1 (b) D2

(c) D3 (d) D4

(e) D5

Figure 7.5: Each of the 5 coordinates in the stilbene simulation

90

Figure 7.6: Results of 5 degree of freedom simulation of stilbene with quadratic exactness.

91

(a) Initial conformation (b) Final conformation

Figure 7.7: Initial and final geometries for 5 degree of freedom simulation of stilbene

7.3 Azobenzene

Azobenzene is another molecule with a known transition. Both stable geometries are

displayed in Figure 7.8. There is some question as to how this transition occurs [54, 45,

11]. If the transition has a single intrinsic reaction coordinate, then there are different

candidates for this coordinate. The first is a torsion angle similar to those for Stilbene

and Butene. The other choice is a bond angle between the central torsion angle and a

benzene ring. This angle was not a good candidate in the earlier molecules due to the

fact that there were hydrogen bonds which we expect to rotate in symmetry with the

rings. Both potential intrinsic reaction coordinates are displayed in Figure 7.9.

We know that a path does exist, but the geometric transition throughout the path

is unknown. LITES is the perfect tool for resolving this question. Our methods do not

require an intrinsic reaction coordinate so we may run simulations that include both

coordinates as well as other coordinates to attempt to find a transition path. We have

attempted simulations beginning in the cis and the trans confrormation, but neither of

them have yielded a transition path. Figure 7.10 displays one simulation history for each

starting conformation. We have yet to successfully find any path from cis to trans or

vice versa. In either of the two images it is apparent that D1, which is the rotation of

the torsion angle does not achieve a full 90◦ rotation before the molecule returns to the

92

ground state. It does come within 10◦ of that barrier so it is possible that thermal effects

could complete the transition.

(a) Cis Azobenzene (b) Trans Azobenzene

Figure 7.8: Both stable geometries for Azobenzene, C12H10N2

(a) Potential torsion angle rotation (b) Potential bond angle rotation

Figure 7.9: Potential intrinsic reaction coordinates for Azobenzene

93

(a) Simulation starting in the cis conformation (b) Simulation starting in the trans conforma-

tion

Figure 7.10: Sample simulation history for Azobenzene

94

REFERENCES

[1] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. SIAM, Philadelphia, 1998.

[2] P. Y. Ayala and H. B. Schlegel. A combined method for determining reaction paths,
minima and transition state geometries. J. Chem. Phys., 107:375–84, 1997.

[3] Jon Baker and Warren J. Hehre. Geometry optimization in cartesian coordinates:
The end of thez-matrix? Journal of Computational Chemistry, 12:606–610, 1991.

[4] Volker Barthelmann, Erich Novak, and Klaus Ritter. High dimensional polynomial
interpolation on sparse grids. Advances in Computational Mathematics, 12:273–288,
2000.

[5] L Brutman. A note on polynomial interpolation at the chebyshev extrema nodes.
Journal of Approximation Theory, 42:283–292, 1984.

[6] A. Bykhovski and D. Woolard. Physics and modeling of dna-derivative architectures
for long-wavelength bio-sensing. 2011. to appear in Proceedings of CMOS Emerging
Technologies 2011, Whistler, BC, Canada.

[7] James J. Callahan. Advanced Calculus: A Geometric View. Springer, 2010.

[8] R. Courant. Variational methods for the solution of problems of equilibrium and
vibration. Bull. Amer. Math. Soc., 49:1–43, 1943.

[9] Carl de Boor and Amos Ron. On multivariate polynomial interpolation. Constructive
Approximation, 6:287–302, 1990.

[10] J. R. Dormand and P. J. Prince. A family of embedded runge-kutta formulae.
Journal of Computational and Applied Mathematics, 6:19–26, 1980.

[11] R. H. El Halabieh, O. Mermut, and C. J. Barrett. Using light to control physical
properties of polymers and surfaces with azobenzene chromophores. Pure Appl.
Chem.

[12] Odon Farkas and H. Bernhard Schlegel. Methods for optimizing large molecules.
part iii. an improved algorithm for geometry optimization using direct inversion in
the iterative subspace (gdiis). Phys. Chem. Chem. Phys., 4:11–15, 2002.

[13] Geza Fogarasi, Xuefeng Zhou, Patterson W. Taylor, and Peter Pulay. The calcu-
lation of ab initio molecular geometries: efficient optimization by natural internal
coordinates and empirical correction by offset forces. Journal of The American
Chemical Society, 114:8191–8201, 1992.

95

[14] J. B. Foresman and AE. Frisch. Exploring Chemistry with Electronic Structure
Methods. Gaussian inc., Pittsburgh, Pa., second edition, 1996.

[15] F. Furche and R. Ahlrichs. Adiabatic time-dependent density functional methods
for excited state properties. J. Chem. Phys., 117:7433–47, 2002.

[16] Mariano Gasca and Thomas Sauer. Polynomial interpolation in several variables.
Advances in Computational Mathematics, 12:377–410, 2000.

[17] S. Gasiorowicz. Quantum Physics. John Wiley & Sons, 1974.

[18] Walter Gautschi. Numerical Analysis: An Introduction. Birkhauser, Boston, 1997.

[19] Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids.
Numer. Algorithms, 18:209–232, 1998.

[20] Carlos Gonzalez and H. Bernhard. Schlegel. Reaction path following in mass-
weighted internal coordinates. The Journal of Physical Chemistry, 94:5523–5527,
1990.

[21] Alan Hinchliffe. Molecular Modeling for Beginners. Wiley, West Sussex UK, second
edition, 2008.

[22] E. Bright Wilson Jr., J.C. Decius, and Paul C. Cross. Molecular Vibrations: The
Theory of Infrared and Raman Vibrational Spectra. Dover Publications, Philadel-
phia, Pa., 1980.

[23] C. T. Kelley. Iterative Methods for Optimization. SIAM, Philadelphia, Pa., 1999.

[24] Erwin Kreyszig. Introductory Functional Analysis with Applications. Wiley, 1989.

[25] J. D. Lambert. Numerical Methods for Ordinary Differential Systems. Wiley, New
York, 2000.

[26] Ira N. Levine. Quantum Chemistry. Pearson Prentice Hall, Upper Saddle River, NJ,
sixth edition, 2009.

[27] Xiaosong Li and Michael J. Frisch. Energy-represented direct inversion in the itera-
tive subspace within a hybrid geometry optimization method. Journal of Chemical
Theory and Computation, 2(3):835–839, 2006.

[28] X-L Luo, C. T. Kelley, L-Z. Liao, and H-W Tam. Combining trust region techniques
and Rosenbrock methods for gradient systems. J. Opt. Th. Appl., 140:265–286, 2009.

96

[29] Ying Luo, Boris L. Gelmont, and Dwight L. Woolard. Chapter 2 bio-molecular
devices for terahertz frequency sensing. In J.M. Seminario, editor, Molecular and
Nano Electronics:Analysis, Design and Simulation, volume 17 of Theoretical and
Computational Chemistry, pages 55 – 81. Elsevier, 2007.

[30] F. R. Clemente M. J. Frisch, AE. Frisch and G. W. Trucks. Gaussian 09 User’s
Reference. Gaussian inc., Wallingford, CT, 2009.

[31] Robert C. McOwen. Partial Differential Equations: Methods and Applications. Pear-
son Education, Upper Saddle River, NJ, 2003.

[32] R. M. Minyaev. Molecular structure and global description of the potential energy
surface. Journal of Structural Chemistry, 32:559–589, 1992.

[33] D. Mokrauer and C. T. Kelley. Sparse interpolatory reduced-order models for simu-
lation of light-induced molecular transformations. 2012. submitted to Optimization
Methods and Software.

[34] D. Mokrauer, C. T. Kelley, and A. Bykhovski. Efficient parallel computation of
molecular potential energy surfaces for the study of light-induced transition dynam-
ics in multiple coordinates. Nanotechnology, IEEE Transactions on, 10(1):70 –74,
2011.

[35] D. Mokrauer, C.T. Kelley, and A. Bykhovski. Parallel computation of surrogate
models for potential energy surfaces. In Distributed Computing and Applications to
Business Engineering and Science (DCABES), 2010 Ninth International Symposium
on, pages 1 –4, 2010.

[36] Erich Novak and Klaus Ritter. High dimensional integration of smooth functions
over cubes. Numerische Mathematik, 75:79–97, 1996.

[37] Erich Novak and Klaus Ritter. Simple cubature formulas with high polynomial
exactness. Constr. Approx., 15:499–522, 1999.

[38] Ian J. Palmer, Ioannis N. Ragazos, Femando Bemardi, Massimo Olivucci, and
Michael A. Robb. An mc-scf study of the s1 and s2 photochemical reactions of
benzene. J. Am. Chem. Soc., (115):673–682, 1993.

[39] Chunyang Peng, Philippe Y. Ayala, H. Bernhard Schlegel, and Michael J. Frisch.
Using redundant internal coordinates to optimize equilibrium geometries and tran-
sition states. Journal of Computational Chemistry, 17:49–56, 1996.

[40] L. Perko. Differential Equations and Dynamical Systems. Springer, New York, 3rd
edition, 2001.

97

[41] Yehuda Pinchover and Jacob Rubinstein. An Introduction to Partial Differential
Equations. Cambridge University Press, New York, NY, 2007.

[42] Peter Pulay. Convergence acceleration of iterative sequences. the case of scf iteration.
Chemical Physics Letters, 73(2):393 – 398, 1980.

[43] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics.
Springer, Heidelberg, 2007.

[44] Jason Quenneville and Todd J. Martinez. Ab initio study of cis-trans photoisomer-
ization in stilbene and ethylene. J. Phys. Chem., 107:829–837, 2003.

[45] Hermann Rau and Erik Lueddecke. On the rotation-inversion controversy on photoi-
somerization of azobenzenes. experimental proof of inversion. Journal of the Amer-
ican Chemical Society, 104(6):1616–1620, 1982.

[46] C. C. J. Roothaan. New developments in molecular orbital theory. Reviews of
Modern Physics, 23:69–89, 1951.

[47] Jack Saltiel, Srinivasan Ganapathy, and Constance Werking. The delta h for thermal
trans/cis-stilbene isomerization: do s0 and t1 potential energy curves cross? The
Journal of Physical Chemistry, 91:2755–2758, 1987.

[48] Thomas Sauer. Lagrange interpolation on subgrids of tensor product grids. Mathe-
matics of Computation, 73:181–190, 2004.

[49] Thomas Sauer and Yuan Xu. On multivariate lagrange interpolation. Math. Comp,
64:1147–1170, 1995.

[50] H. Bernhard Schlegel. Estimating the hessian for gradient-type geometry optimiza-
tions. Theoretical Chemistry Accounts, 66:333–340, 1984.

[51] H. Bernhard Schlegel. Geometry optimization. Wiley Interdisciplinary Reviews:
Computational Molecular Science, pages n/a–n/a, 2011.

[52] L. F. Shampine. Numerical Solution of Ordinary Differential Equations. Chapman
and Hall, 1994.

[53] Lawrence F. Shampine and Mark W. Reichelt. The matlab ode suite. SIAM Journal
on Scientific Computing, 18.

[54] Dong Myung. Shin and David G. Whitten. Solvent-induced mechanism change
in charge-transfer molecules. inversion versus rotation paths for the z .fwdarw. e
isomerization of donor-acceptor substituted azobenzenes. Journal of the American
Chemical Society, 110(15):5206–5208, 1988.

98

[55] Anton Simeonov, Masayuki Matsushita, Eric A. Juban, Elizabeth H. Z. Thompson,
Timothy Z. Hoffman, Albert E. Beuscher IV, Matthew J. Taylor, Peter Wirsching,
Wolfgang Rettig, James K. McCusker, Raymond C. Stevens, David P. Millar, Pe-
ter G. Schultz, Richard A. Lerner, and Kim D. Janda. Blue-fluorescent antibodies.
Science, (290):307–313, 2000.

[56] S. Smolyak. Quadrature and interpolation formulas for tensor products of certain
classes of functions. Soviet Math. Dokl., 4:240–243, 1963.

[57] Michael Stein. Large sample properties of simulations using latin hypercube sam-
pling. Technometrics, 29(2):pp. 143–151, 1987.

[58] R. E. Stratmann, G. E. Scuseria, and M. J. Frisch. An efficient implementation of
time-dependent density-functional theory for the calculation of excitation energies
of large molecules. J. Chem. Phys., 109:8218–24, 1998.

[59] C. Van Caillie and R. D. Amos. Geometric derivatives of density functional theory
excitation energies using gradient-corrected functionals. Chem. Phys. Letters, 317,
2000.

[60] Grzegorz W. Wasilkowski and Henryk Wozniakowski. Explicit cost bounds of algo-
rithms for multivariate tensor product problems. Journal of Complexity, 11:1–56,
1995.

[61] Dongbin Xiu and Jan S. Hesthaven. High-order collocation methods for differential
equations with random inputs. Siam J. Sci. Comput., 27:1118–1139, 2005.

99

APPENDICES

100

Appendix A

Runge-Kutta Methods

A.1 Definition

We are solving the initial value problem

y′ = f(t, y) f : R× R
n → R

n

y(t0) = y0. (A.1)

Runge-Kutta methods approximate the solution to A.1 by taking single steps toward the

solution [1, 25]. Each step consists of s stages defined by

yn+1 = yn + h
s∑
i=1

biKi (A.2)

Ki = f(tn + cih, yn + h
s∑
j=1

aijKj) (A.3)

ci =
s∑
j=1

aij. (A.4)

The entire set of Runge-Kutta coefficients is collected into a Butcher array with the form:

c A

bT

101

Example

A 4-stage Runge-Kutta method is defined by

0 0 0 0 0
1
2

1
2

0 0 0
1
2

0 1
2

0 0

1 0 0 1 0
1
6

1
3

1
3

1
6

This single step will take

the form

yn+1 = yn + h
4∑
i=1

biKi. (A.5)

Where

K1 = f(tn, yn)

K2 = f(tn +
1

2
h, yn +

1

2
hK1)

K3 = f(tn +
1

2
h, yn +

1

2
hK2)

K4 = f(tn + h, yn +K3).

Thus the full step will be

yn+1 = yn + h

(
1

6
K1 +

1

3
K2 +

1

3
K3 +

1

6
K4

)
. (A.6)

Calculating Runge-Kutta Coefficients

The coefficients for an RK method are chosen so that each single step matches the

coefficients of the Taylor polynomial exactly up to a desired order.

Example

In a 2-stage explicit RK method we have

yn+1 = yn + h(b1K1 + b2K2) (A.7)

K1 = f(tn, yn) K2 = f(tn + hc2, yn + hc2K1).

102

Now we expand K2 in taylor series about tn

K2 = f(tn, yn) + hc2ft(tn, yn) + hc2K1fy(tn, yn) +O(h2). (A.8)

Substituting into our method we have

yn+1 = yn + hb1f(tn, yn) + hb2(f(tn, yn) + hc2ft(tn, yn) + hc2K1fy(tn, yn) +O(h2))

= yn + hf(tn, yn)(b1 + b2) + h2c2b2(ft(tn, yn) + f(tn, yn)fy(tn, yn)) +O(h3).(A.9)

The exact Taylor polynomial about the current point will be

ŷn+1 = yn + hf(tn, yn) +
h2

2
(ft(tn, yn) + f(tn, yn)fy(tn, yn)) +O(h3). (A.10)

Now we match the two equations and obtain the rules for our coefficients

b1 + b2 = 1 c2b2 =
1

2
. (A.11)

For larger stage methods the same derivation will apply.

A.2 Embedding

The error in a single step of an RK method may be approximated by choosing two

methods that have the same number of stages but different orders. For instance, an

RK45 will approximate the error in a 4th order method using a 5th order method with

the same number of stages. These two methods are embedded meaning that the same

set of stages, Ki, are used for both methods. The local truncation error is approximated

by taking the difference of the two methods

ŷn+1 = yn + h
s∑
i=1

b̂iKi +O(hp+1) (A.12)

yn+1 = yn + h
s∑
i=1

biKi +O(hp). (A.13)

103

We assume that the higher order method is exact and thus the difference between the

two methods will give us the error in the lower order method

ŷn+1 − yn+1 = h

(
s∑
i=1

(b̂i − bi)Ki

)
= h(

s∑
i=1

EiKi) = O(hp). (A.14)

The entire method is collected into a modified Butcher array:

c A

bT

b̂T

ET

The method used in Matlab’s RK45 [10, 53] was developed by Dormand and Prince with

the following tableau

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9
−19372

6561
−25360

2187
64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

35
384

0 500
1113

125
192

−2187
6784

11
84

0

71
57600

0 − 71
16695

71
1920

− 17253
339200

22
525

− 1
40

It should be noted that the last row of A is also b̂T which allows even simpler implemen-

tation.

A.3 Step-Size Control

The size of h is managed by comparing the error to some relative tolerance, δ. The

relative error is given by

ε =
‖ŷn+1 − yn+1‖
‖yn+1‖

=
‖h(
∑s

i=1EiKi)‖
‖yn+1‖

. (A.15)

104

If the relative error is greater than the specified tolerance, then we reject the current

step-size and shrink. The methods for shrinking h vary, but the simplest would be to use

a factor of 2. The formula found in ode45 in Matlab is

h = .8h

(
δ

ε

) 1
5

. (A.16)

If h gets too small, then the current method cannot successfully integrate this differential

equation.

A.4 Optimization

We use Runge-Kutta in order to simulate the natural descent of a molecule to a local

minimum energy. In order to prevent increasing the value of the energy we added an

extra criterion for accepting the stepsize, h. The step is rejected if the error tolerance is

exceeded or if the step results in an increase in the objective function.

105

Appendix B

User’s Manual

LITES (Light-Induced Transition Effects Simulator)

B.1 Overview

This software is designed to simulate the response of a single molecule to excitation. The

phenomena in question is often induced by exposure of the molecule to energy in the

form of light. This excitation occurs mathematically as a change in the quantum state

occupied by the electrons. The change in states also forces a change in the geometry of

the molecule and it relaxes to a different conformation in that same energy state. Once

a stable conformation is found in the current state, the user may change states again

and continue the process. This interactive simulation allows a researcher to anticipate

feasible conformations of a molecule as well as find the energy required for a transition

path between stable geometries.

B.2 Simulation Method

An N atom molecule is uniquely determined by 3N − 6 internal coordinates, so the

potential energy of the molecule is a function of every one of those coordinates. The

computational difficulty of potential energy calculations forces us to simplify the model

by assuming the energy is only a function of a few coordinates, the design variables. The

selection of the design variables is left to the user.

In order to improve the performance of the computational chemistry software it may

106

be necessary to specify more information about the coordinates than just the design

variables. For example, if a design variable is the rotation of a ring about a bond then

there may be an atom opposite the ring which will also rotate with the bond. The

simulation allows the user to specify any angles which would benefit from this type of

pre-processing. The sample simulation included in this document includes pre-processing.

The simulator determines the natural conformational changes likely to occur due to

changes in the energy state of a molecule. In order to predict this transition the software

builds a surrogate model (patch) of the potential energy of the molecule in a local area

around the current values of the design variables. This means that the energy of the

molecule is computed for a pre-specified set of gridpoints in the design space. The model

is a polynomial interpolation between the gridpoints. This surrogate is only accurate

inside the domain from which it was constructed. From the surrogate model we use

steepest descent to predict the natural relaxation of the molecule. If the gradient flow

leads to the boundary of the domain of the surrogate model, then a new surrogate model

is built to continue the descent. Once the gradient flow concludes at a local minimum

within the domain of the surrogate model, we may change energy states and continue

building patches until the sequence of desired states specified by the user have concluded

at a local minimum.

The simulation time is heavily dependent on the size of the molecule as well as the

desired accuracy of the patches. Our test molecule 2-butene has 12 atoms and may

requiree nearly 2 minutes for an energy computation. The molecule stilbene which has

26 atoms may require around 45 minutes for an energy computation. Each patch in a

simulation with 5 design variables with a quadraticly exact surrogate requires an energy

computation at each of 241 gridpoints.

This manual is separated into 2 halves. The first half is a full sample simulation and

the second half is an explanation of the inputs and outputs.

B.3 Summary of Tasks for Running LITES

In order to run a simulation with LITES you must:

1. Obtain tarball LITES.tar from http://www4.ncsu.edu/ ctk/Lites.html

2. Obtain permission to use the HPC and Gaussian

107

3. Create a LITES directory

4. Create a directory for the LITES output files

5. Change to the LITES directory

6. Transfer LITES.tar to your LITES directory

7. Unpack the tarball LITES.tar

8. Edit the job submission file to reflect your directories

9. Edit the file chem vars.py for the simulation you would like to perform

10. Make an initial Z-matrix file named zmat.gjf

11. Submit your simulation using bsub ¡ LITES in

12. When complete copy and rename the files Simulation Summary.txt and sim plot.png

from your data directory to a location where you may store and view them.

B.4 Example: 2-butene Simulation

B.4.1 Permissions and HPC

The first requirement in order to use this simulation is that you have the proper per-

missions to use the hpc. In obtaining access, you must also gain specific access to use

Gaussian 09. This requires signing papers, so please be aware.

Once all access has been granted you must ssh to the cluster. If you are using

windows (as I do), then I recommend a program called putty. If you use a Mac, then

you will use terminal. These instructions describe the use of putty. When you open the

client it will look as in Figure B.1. Next fill in the textbox labeled Host Name with

”login64.hpc.ncsu.edu” as in Figure B.2 and click Open. This will prompt you for your

login name which is your unity id as in Figure B.3. Finally you will need your unity

password as in Figure B.4. If your login has been successful it will look similar to Figure

B.5.

In the next section you will create the directory LITES, but you must transfer the

tarball to that directory. If you use a mac, then you will need to use Fugu. If you use

108

windows, then I recommend downloading WinSCP. I will describe the process using this

program.

When you open WinSCP you will see the screen in Figure B.6. Click ”New” and you

will see Figure B.7. Fill in the Host name, User name, and Password then click ”Save”

as in Figure B.8. Now the session will appear in the original screen like in Figure ??.

Now click ”Login” and you will see 2 columns of directories. The left directories are on

your computer and the right directories are on the hpc as in Figure B.9. Now find the

file LITES.tar on your computer and drag it to the LITES directory on the hpc.

Figure B.1: View upon opening putty

109

Figure B.2: putty with host queue

Figure B.3: putty login screen

110

Figure B.4: putty login/password screen

Figure B.5: successful login

111

Figure B.6: Initial WinSCP screen

Figure B.7: Result of clicking ”New”

112

Figure B.8: Filled out WinSCP session

Figure B.9: WinSCP session, your computer on the left and the hpc on the right

113

B.4.2 First Simulation

The following is a step by step example for setting up and simulating the molecule 2-

butene with 3 degrees of freedom.

1. Create the Lites directory:

[dsmokrau@login04 ~]$ mkdir LITES

2. Create a directory for writing your simulation, I use the shared space /kelley data

[dsmokrau@login04 ~]$ mkdir /kelley_data/dsmokrau/db_LITES

3. Change to the new directory

[dsmokrau@login04 ~]$ cd LITES

4. Transfer the file LITES.tar to the directory you just created as described in the

previous section

5. Unpack the LITES files

[dsmokrau@login04 ~/LITES]$ tar -xf LITES.tar

6. Open the job submission file using your favorite editor (I use nano)

[dsmokrau@login04 ~/LITES]$ nano LITES_in

7. Edit the job submission file by replacing each of the my directories with the ones
you created. Each line with dsmokrau should be replaced by your unity id and the
directories you have just created

#!/bin/csh

#BSUB -W 10000

#BSUB -R em64t

#BSUB -x

#BSUB -n 1

#BSUB -q gto

#BSUB -o /kelley_data/dsmokrau/db_LITES/LITES.out

#BSUB -e /kelley_data/dsmokrau/db_LITES/LITES.err

114

rm -r /scratch/dsmokrau

mkdir /scratch/dsmokrau

cp /home/dsmokrau/LITES/* /scratch/dsmokrau

cd /scratch/dsmokrau

/usr/local/apps/python-2.6.5/bin/python LITES.py

cd

rm -r /scratch/dsmokrau

8. Save and exit with Ctrl -o followed by Ctrl -x, if you are using nano

9. Open the file chem vars.py

[dsmokrau@login04 ~/LITES]$ nano chem_vars.py

10. Edit the file chem vars.py. Each input will be described at length later in the
manual. The file initially appears as

#! usr/local/apps/python-2.6.5/bin/python

#chemistry inputs for light-induced simulation

#number of design variables

d =

#name of your molecule

molecule = ’’

#the number of atoms in your molecule

num_atoms =

#the number of cores for your gaussian jobs

n_proc =

#method of energy computation (hf,b3lyp,...)

method = ’’

#basis-set for you gaussian jobs (cep-31g,CBSB7,...)

basis_set = ’’

115

#Gaussian job type (opt=modredundant) and anything else you want in the header

calculation = ’’

#state transitions for your simulation

state_order = []

#where will your gaussian jobs be run?

queue = ’’

#set this to 1 if you want every z-matrix that was calculated during your sim

all_zmats =

#atom number, value, ...

bond_lengths = []

#for reading output files, i.e. ’C1-C2’

bond_names = []

#atom numbers, value, ...

valence_angles = []

#for reading output files, i.e. ’C1-C2-C6’

valence_names = []

#atom numbers, value, ...

torsion_angles = []

#for reading output files, i.e. ’C1-C2-C6-C8’

torsion_names = []

#pre-processed variable, pre-processed to whom, amount to pre-process

deps = []

#where your molecule sits, this directory must have initial zmat as zmat.gjf

home_dir = ’’

#where to write all your files

share_dir = ’’

Once edited, it should appear as (note the differences between 1 and l):

116

#! usr/local/apps/python-2.6.5/bin/python

#chemistry inputs for light-induced simulation

#number of design variables

d = 3

#name of your molecule

molecule = ’Butene’

#the number of atoms in your molecule

num_atoms = 12

#the number of cores for your gaussian jobs

n_proc = 2

#method of energy computation (hf,b3lyp,...)

method = ’b3lyp’

#basis-set for you gaussian jobs (cep-31g,CBSB7,...)

basis_set = ’cep-31g’

#Gaussian job type (opt=modredundant) and anything else you want in the header

calculation = ’opt=modredundant’

#state transitions for your simulation

state_order = [1,0]

#where will your gaussian jobs be run?

queue = ’gto’

#set this to 1 if you want every z-matrix that was calculated during your sim

all_zmats = 0

#atom number, value, ...

bond_lengths = []

#for reading output files, i.e. ’C1-C2’

bond_names = []

#atom numbers, value, ...

117

valence_angles = []

#for reading output files, i.e. ’C1-C2-C6’

valence_names = []

#atom numbers, value, ...

torsion_angles = [’1 2 6 8’, 0., ’6 2 1 5’, 120., ’2 6 8 11’, -120.]

#for reading output files, i.e. ’C1-C2-C6-C8’

torsion_names = [’C1-C2-C6-C8’, ’C6-C2-C1-H5’, ’C2-C6-C8-H11’]

#pre-processed variable, pre-processed to whom, amount to pre-process

deps = [’1 2 6 9’, 0, 180., ’8 6 2 7’, 0, 180., ’9 6 2 7’, 0, 0.]

#where your molecule sits, this directory must have initial zmat as zmat.gjf

home_dir = ’/home/dsmokrau/LITES’

#where to write all your files

share_dir = ’/kelley_data/dsmokrau/db_LITES’

11. Save and exit with Ctrl -o followed by Ctrl -x, if you are using nano

12. Open zmat.gjf

[dsmokrau@login04 ~/LITES]$ nano zmat.gjf

13. The Z-matrix should be the only data in the file so edit the initial file from

%chk=/scratch/butene.chk

%mem=400MW

%NprocShared=1

opt=modredundant b3lyp/cep-31g geom=(connectivity,nodistance) scf=tight

cis 2 butene D5=1-2-6-8

0 1

C

C 1 B1

H 1 B2 2 A1

H 1 B3 2 A2 3 D1

H 1 B4 2 A3 3 D2

118

C 2 B5 1 A4 4 D3

H 2 B6 1 A5 6 D4

C 6 B7 2 A6 1 D5

H 6 B8 2 A7 1 D6

H 8 B9 6 A8 2 D7

H 8 B10 6 A9 2 D8

H 8 B11 6 A10 2 D9

B1 1.52880970

B2 1.10731414

B3 1.10124709

B4 1.10730304

B5 1.37283300

B6 1.09857439

B7 1.52880951

B8 1.09857350

B9 1.10730531

B10 1.10731351

B11 1.10124579

A1 110.62562667

A2 112.79042258

A3 110.62199176

A4 127.18758000

A5 115.32977589

A6 127.18763251

A7 117.48266812

A8 110.62184935

A9 110.62555997

A10 112.79080645

D1 120.95156450

D2 -118.09976127

D3 0.07453914

D4 179.99656673

D5 0.00000000

D6 180.00000000

D7 121.02757116

D8 -120.87281467

D9 0.07914737

1 2 1.0 3 1.0 4 1.0 5 1.0

119

2 6 2.0 7 1.0

3

4

5

6 8 1.0 9 1.0

7

8 10 1.0 11 1.0 12 1.0

9

10

11

12

D 1 2 6 8 F

D 7 2 6 9

D 1 2 6 9

D 7 2 6 8

to contain only the Z-matrix as follows

C

C 1 B1

H 1 B2 2 A1

H 1 B3 2 A2 3 D1

H 1 B4 2 A3 3 D2

C 2 B5 1 A4 4 D3

H 2 B6 1 A5 6 D4

C 6 B7 2 A6 1 D5

H 6 B8 2 A7 1 D6

H 8 B9 6 A8 2 D7

H 8 B10 6 A9 2 D8

H 8 B11 6 A10 2 D9

B1 1.52880970

B2 1.10731414

B3 1.10124709

B4 1.10730304

B5 1.37283300

B6 1.09857439

B7 1.52880951

B8 1.09857350

B9 1.10730531

120

B10 1.10731351

B11 1.10124579

A1 110.62562667

A2 112.79042258

A3 110.62199176

A4 127.18758000

A5 115.32977589

A6 127.18763251

A7 117.48266812

A8 110.62184935

A9 110.62555997

A10 112.79080645

D1 120.95156450

D2 -118.09976127

D3 0.07453914

D4 179.99656673

D5 0.00000000

D6 180.00000000

D7 121.02757116

D8 -120.87281467

D9 0.07914737

14. Save and exit with Ctrl -o followed by Ctrl -x, if you are using nano

15. Submit the simulation using bsub

[dsmokrau@login04 ~/LITES]$ bsub < LITES_in

Job <491566> is submitted to queue <gto>.

[dsmokrau@login04~/LITES]$

16. Check the status of you simulation using the command bhist

[dsmokrau@login04 db_LITES]$ bhist

Summary of time in seconds spent in various states:

JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

491566 dsmokra *smokrau 5 0 57 0 0 0 62

491567 dsmokra E_files0 7 0 35 0 0 0 42

491568 dsmokra E_files1 7 0 35 0 0 0 42

491569 dsmokra E_files2 6 0 35 0 0 0 41

491570 dsmokra E_files3 6 0 35 0 0 0 41

.

121

.

.

491632 dsmokra *files65 30 0 0 0 0 0 30

491633 dsmokra *files66 30 0 0 0 0 0 30

491634 dsmokra *files67 30 0 0 0 0 0 30

491635 dsmokra *files68 30 0 0 0 0 0 30

[dsmokrau@login04 db_LITES]$

17. The simulation has completed when you receive the following

[dsmokrau@login04 db_LITES]$ bhist

No matching job found

[dsmokrau@login04 db_LITES]$

18. If you would like to end a running simulation, use the command

[dsmokrau@login04 db_LITES]$ bkill 0

19. When you begin a simulation the share directory you are using should be empty
and the command to delete all files in a directory is

[dsmokrau@login04 db_LITES]$ rm *

B.4.3 Output

Once the simulation has begun to execute you may check the status of the simulation by
checking the output file Simulation summary.txt. This file will contain a full summary
of the simulation once it is completed, but serves as a checkpoint file throughout the
simulation. Here is the resulting file from the simulation we just submitted.

[dsmokrau@login04 ~/LITES]$ cd /kelley_data/dsmokrau/db_LITES/

[dsmokrau@login04 dd_debug]$ nano Simulation_Summary.txt

Thank you for using LITES

You will be simulating the molecule Butene using b3lyp with cep-31g as a basis set

We begin on state 1

with initial value of x = [0. 120. -120.]

Initial patch size is 20.0

Beginning the simulation with the following Z-matrix

C

C 1 B1

122

H 1 B2 2 A1

H 1 B3 2 A2 3 D1

H 1 B4 2 A3 3 D2

C 2 B5 1 A4 4 D3

H 2 B6 1 A5 6 D4

C 6 B7 2 A6 1 D5

H 6 B8 2 A7 1 D6

H 8 B9 6 A8 2 D7

H 8 B10 6 A9 2 D8

H 8 B11 6 A10 2 D9

B1 1.52880970

B2 1.10731414

B3 1.10124709

B4 1.10730304

B5 1.37283300

B6 1.09857439

B7 1.52880951

B8 1.09857350

B9 1.10730531

B10 1.10731351

B11 1.10124579

A1 110.62562667

A2 112.79042258

A3 110.62199176

A4 127.18758000

A5 115.32977589

A6 127.18763251

A7 117.48266812

A8 110.62184935

A9 110.62555997

A10 112.79080645

D1 120.95156450

D2 -118.09976127

D3 0.07453914

D4 179.99656673

D5 0.00000000

D6 180.00000000

D7 121.02757116

D8 -120.87281467

D9 0.07914737

Now for the patch summaries!

PATCH NUMBER 0

Patch size was 20.0

Current state is state 1

Maximum Gaussian iterations was 5

123

Initial point for the patch was [0. 120. -120.]

Patch terminated at [2.64463711e-02 1.10427830e+02 -1.10386277e+02]

Terminal point hit a boundary of the patch, drawing new patch!

Now the Z-matrix, Patch, and Path

Z-matrix for patch 0 was

C

C 1 B1

H 1 B2 2 A1

H 1 B3 2 A2 3 D1

H 1 B4 2 A3 3 D2

C 2 B5 1 A4 4 D3

H 2 B6 1 A5 6 D4

C 6 B7 2 A6 1 D5

H 6 B8 2 A7 1 D6

H 8 B9 6 A8 2 D7

H 8 B10 6 A9 2 D8

H 8 B11 6 A10 2 D9

B1 1.52880970

B2 1.10731414

B3 1.10124709

B4 1.10730304

B5 1.37283300

B6 1.09857439

B7 1.52880951

B8 1.09857350

B9 1.10730531

B10 1.10731351

B11 1.10124579

A1 110.62562667

A2 112.79042258

A3 110.62199176

A4 127.18758000

A5 115.32977589

A6 127.18763251

A7 117.48266812

A8 110.62184935

A9 110.62555997

A10 112.79080645

D1 120.95156450

D2 -118.09976127

D3 0.07453914

D4 179.99656673

D5 0.00000000

D6 180.00000000

D7 121.02757116

D8 -120.87281467

D9 0.07914737

124

Patch 0

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

-10.0000000,110.0000000,-130.0000000,-744.2032174,-736.9677174

-10.0000000,110.0000000,-120.0000000,-744.2079530,-736.9393530

-10.0000000,110.0000000,-110.0000000,-744.2080695,-736.9375695

-10.0000000,112.9289320,-120.0000000,-744.2097294,-736.9284294

-10.0000000,120.0000000,-130.0000000,-744.2085142,-736.9363142

-10.0000000,120.0000000,-127.0710680,-744.2101750,-736.9261750

-10.0000000,120.0000000,-120.0000000,-744.2126268,-736.9113268

-10.0000000,120.0000000,-112.9289320,-744.2127531,-736.9123531

-10.0000000,120.0000000,-110.0000000,-744.2121621,-736.9174621

-10.0000000,127.0710680,-120.0000000,-744.2132734,-736.9096734

-10.0000000,130.0000000,-130.0000000,-744.2093728,-736.9311728

-10.0000000,130.0000000,-120.0000000,-744.2128879,-736.9136879

-10.0000000,130.0000000,-110.0000000,-744.2119248,-736.9282248

-9.2387950,120.0000000,-120.0000000,-744.2152360,-736.9065360

-7.0710680,110.0000000,-120.0000000,-744.2176155,-736.9211155

-7.0710680,120.0000000,-130.0000000,-744.2182216,-736.9179216

-7.0710680,120.0000000,-120.0000000,-744.2215013,-736.8953013

-7.0710680,120.0000000,-110.0000000,-744.2204466,-736.9050466

-7.0710680,130.0000000,-120.0000000,-744.2211417,-736.9011417

-3.8268340,120.0000000,-120.0000000,-744.2277199,-736.8846199

0.0000000,110.0000000,-130.0000000,-744.2257746,-736.9202746

0.0000000,110.0000000,-127.0710680,-744.2268349,-736.9106349

0.0000000,110.0000000,-120.0000000,-744.2279236,-736.8977236

0.0000000,110.0000000,-112.9289320,-744.2269754,-736.9006754

0.0000000,110.0000000,-110.0000000,-744.2259811,-736.9064811

0.0000000,110.7612050,-120.0000000,-744.2282451,-736.8952451

0.0000000,112.9289320,-130.0000000,-744.2270136,-736.9096136

0.0000000,112.9289320,-120.0000000,-744.2290336,-736.8887336

0.0000000,112.9289320,-110.0000000,-744.2269754,-736.9006754

0.0000000,116.1731660,-120.0000000,-744.2298610,-736.8823610

0.0000000,120.0000000,-130.0000000,-744.2285819,-736.8940819

0.0000000,120.0000000,-129.2387950,-744.2288541,-736.8914541

0.0000000,120.0000000,-127.0710680,-744.2295090,-736.8861090

0.0000000,120.0000000,-123.8268340,-744.2301184,-736.8809184

0.0000000,120.0000000,-120.0000000,-744.2302755,-736.8791755

0.0000000,120.0000000,-116.1731660,-744.2298610,-736.8823610

0.0000000,120.0000000,-112.9289320,-744.2290336,-736.8887336

0.0000000,120.0000000,-110.7612050,-744.2282451,-736.8952451

0.0000000,120.0000000,-110.0000000,-744.2279236,-736.8977236

0.0000000,123.8268340,-120.0000000,-744.2301185,-736.8809185

0.0000000,127.0710680,-130.0000000,-744.2281151,-736.8940151

0.0000000,127.0710680,-120.0000000,-744.2295091,-736.8861091

0.0000000,127.0710680,-110.0000000,-744.2268352,-736.9105352

0.0000000,129.2387950,-120.0000000,-744.2288581,-736.8917581

0.0000000,130.0000000,-130.0000000,-744.2273047,-736.8989047

0.0000000,130.0000000,-127.0710680,-744.2281151,-736.8940151

0.0000000,130.0000000,-120.0000000,-744.2285819,-736.8940819

0.0000000,130.0000000,-112.9289320,-744.2270136,-736.9096136

0.0000000,130.0000000,-110.0000000,-744.2257747,-736.9201747

125

3.8268340,120.0000000,-120.0000000,-744.2277199,-736.8846199

7.0710680,110.0000000,-120.0000000,-744.2204466,-736.9050466

7.0710680,120.0000000,-130.0000000,-744.2211417,-736.9011417

7.0710680,120.0000000,-120.0000000,-744.2215013,-736.8953013

7.0710680,120.0000000,-110.0000000,-744.2176155,-736.9211155

7.0710680,130.0000000,-120.0000000,-744.2182216,-736.9179216

9.2387950,120.0000000,-120.0000000,-744.2152360,-736.9065360

10.0000000,110.0000000,-130.0000000,-744.2119232,-736.9300232

10.0000000,110.0000000,-120.0000000,-744.2121621,-736.9174621

10.0000000,110.0000000,-110.0000000,-744.2080695,-736.9375695

10.0000000,112.9289320,-120.0000000,-744.2127531,-736.9123531

10.0000000,120.0000000,-130.0000000,-744.2128879,-736.9136879

10.0000000,120.0000000,-127.0710680,-744.2132734,-736.9096734

10.0000000,120.0000000,-120.0000000,-744.2126268,-736.9113268

10.0000000,120.0000000,-112.9289320,-744.2097294,-736.9284294

10.0000000,120.0000000,-110.0000000,-744.2079530,-736.9393530

10.0000000,127.0710680,-120.0000000,-744.2101750,-736.9261750

10.0000000,130.0000000,-130.0000000,-744.2093728,-736.9311728

10.0000000,130.0000000,-120.0000000,-744.2085142,-736.9363142

10.0000000,130.0000000,-110.0000000,-744.2032174,-736.9677174

Path 0

0.0000000,120.0000000,-120.0000000,-744.2302755,0.0000000

0.0000000,120.0000000,-120.0000000,-736.8791755,0.0000000

-0.0000000,119.9999981,-119.9999981,-736.8791755,0.0000000

-0.0000000,119.9991230,-119.9991229,-736.8791759,0.0000000

0.0000003,119.8601736,-119.8601642,-736.8792331,0.0000000

0.0001121,118.4531587,-118.4527684,-736.8803288,0.0000001

0.0041719,114.7697414,-114.7618971,-736.8876443,0.0000000

0.0159476,111.8967140,-111.8708534,-736.8977915,0.0000004

0.0264464,110.4278301,-110.3862774,-736.9044682,0.0000004

PATCH NUMBER 1

Patch size was 40.310163591

Current state is state 1

Maximum Gaussian iterations was 5

Initial point for the patch was [2.64463711e-02 1.10427830e+02 -1.10386277e+02]

Patch terminated at [11.6457299 77.02389331 -75.00212746]

Terminal point hit a boundary of the patch, drawing new patch!

Now the Z-matrix, Patch, and Path

Z-matrix for patch 1 was

C

C,1,B1

H,1,B2,2,A1

H,1,B3,2,A2,3,D1,0

H,1,B4,2,A3,3,D2,0

C,2,B5,1,A4,4,D3,0

H,2,B6,1,A5,6,D4,0

C,6,B7,2,A6,1,D5,0

126

H,6,B8,2,A7,1,D6,0

H,8,B9,6,A8,2,D7,0

H,8,B10,6,A9,2,D8,0

H,8,B11,6,A10,2,D9,0

Variables:

B1=1.52919032

B2=1.10631918

B3=1.10162245

B4=1.10787371

B5=1.37292981

B6=1.09843946

B7=1.52919029

B8=1.09843953

B9=1.1063192

B10=1.10787373

B11=1.10162245

A1=110.70937289

A2=112.66207909

A3=110.68500888

A4=127.02642994

A5=115.44734914

A6=127.02645455

A7=117.52089398

A8=110.70934521

A9=110.68502299

A10=112.6620935

D1=121.11494029

D2=-118.4383603

D3=-10.44669938

D4=-179.13272096

D5=0.

D6=-179.11713503

D7=131.56165385

D8=-110.00000003

D9=10.4467318

Patch 1

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

-20.1286354,74.1486829,-114.4172937,-744.1221569,-737.1819569

-20.1286354,74.1486829,-94.2622119,-744.1180248,-737.2198248

-20.1286354,74.1486829,-74.1071301,-744.1001380,-737.2691380

-20.1286354,80.0519693,-94.2622119,-744.1206420,-737.1982420

-20.1286354,94.3037647,-114.4172937,-744.1356715,-737.1037715

-20.1286354,94.3037647,-108.5140073,-744.1369506,-737.1044506

-20.1286354,94.3037647,-94.2622119,-744.1321428,-737.1287428

-20.1286354,94.3037647,-80.0104165,-744.1193299,-737.1718299

-20.1286354,94.3037647,-74.1071301,-744.1130442,-737.1893442

-20.1286354,108.5555601,-94.2622119,-744.1449556,-737.0645556

-20.1286354,114.4588465,-114.4172937,-744.1549643,-737.0111643

-20.1286354,114.4588465,-94.2622119,-744.1492619,-737.0493619

127

-20.1286354,114.4588465,-74.1071301,-744.1288821,-737.1390821

-18.5944205,94.3037647,-94.2622119,-744.1434405,-737.1134405

-14.2253490,74.1486829,-94.2622119,-744.1571206,-737.1717206

-14.2253490,94.3037647,-114.4172937,-744.1765005,-737.0474005

-14.2253490,94.3037647,-94.2622119,-744.1704358,-737.0743358

-14.2253490,94.3037647,-74.1071301,-744.1533049,-737.1419049

-14.2253490,114.4588465,-94.2622119,-744.1844124,-737.0029124

-7.6865689,94.3037647,-94.2622119,-744.1970212,-737.0327212

0.0264464,74.1486829,-114.4172937,-744.2046089,-737.0795089

0.0264464,74.1486829,-108.5140073,-744.2027434,-737.0818434

0.0264464,74.1486829,-94.2622119,-744.1946492,-737.1057492

0.0264464,74.1486829,-80.0104165,-744.1858627,-737.1436627

0.0264464,74.1486829,-74.1071301,-744.1829420,-737.1593420

0.0264464,75.6828978,-94.2622119,-744.1954740,-737.0994740

0.0264464,80.0519693,-114.4172937,-744.2077409,-737.0523409

0.0264464,80.0519693,-94.2622119,-744.1980915,-737.0803915

0.0264464,80.0519693,-74.1071301,-744.1858693,-737.1436693

0.0264464,86.5907495,-94.2622119,-744.2024940,-737.0501940

0.0264464,94.3037647,-114.4172937,-744.2175157,-736.9709157

0.0264464,94.3037647,-112.8830788,-744.2172067,-736.9711067

0.0264464,94.3037647,-108.5140073,-744.2158326,-736.9746326

0.0264464,94.3037647,-101.9752272,-744.2126714,-736.9887714

0.0264464,94.3037647,-94.2622119,-744.2078848,-737.0160848

0.0264464,94.3037647,-86.5491967,-744.2024929,-737.0502929

0.0264464,94.3037647,-80.0104165,-744.1980956,-737.0805956

0.0264464,94.3037647,-75.6413450,-744.1954843,-737.0996843

0.0264464,94.3037647,-74.1071301,-744.1946623,-737.1059623

0.0264464,102.0167799,-94.2622119,-744.2126633,-736.9888633

0.0264464,108.5555601,-114.4172937,-744.2267095,-736.9031095

0.0264464,108.5555601,-94.2622119,-744.2158131,-736.9749131

0.0264464,108.5555601,-74.1071301,-744.2027449,-737.0820449

0.0264464,112.9246316,-94.2622119,-744.2171761,-736.9713761

0.0264464,114.4588465,-114.4172937,-744.2287977,-736.8891977

0.0264464,114.4588465,-108.5140073,-744.2266932,-736.9031932

0.0264464,114.4588465,-94.2622119,-744.2174809,-736.9712809

0.0264464,114.4588465,-80.0104165,-744.2077183,-737.0527183

0.0264464,114.4588465,-74.1071301,-744.2045955,-737.0797955

7.7394616,94.3037647,-94.2622119,-744.1968692,-737.0330692

14.2782418,74.1486829,-94.2622119,-744.1530100,-737.1423100

14.2782418,94.3037647,-114.4172937,-744.1841678,-737.0030678

14.2782418,94.3037647,-94.2622119,-744.1701496,-737.0748496

14.2782418,94.3037647,-74.1071301,-744.1568458,-737.1721458

14.2782418,114.4588465,-94.2622119,-744.1761579,-737.0480579

18.6473133,94.3037647,-94.2622119,-744.1430586,-737.1140586

20.1815282,74.1486829,-114.4172937,-744.1285066,-737.1393066

20.1815282,74.1486829,-94.2622119,-744.1126297,-737.1898297

20.1815282,74.1486829,-74.1071301,-744.0997332,-737.2696332

20.1815282,80.0519693,-94.2622119,-744.1189241,-737.1723241

20.1815282,94.3037647,-114.4172937,-744.1488942,-737.0497942

20.1815282,94.3037647,-108.5140073,-744.1445690,-737.0650690

20.1815282,94.3037647,-94.2622119,-744.1317260,-737.1294260

128

20.1815282,94.3037647,-80.0104165,-744.1202308,-737.1988308

20.1815282,94.3037647,-74.1071301,-744.1176269,-737.2203269

20.1815282,108.5555601,-94.2622119,-744.1364868,-737.1051868

20.1815282,114.4588465,-114.4172937,-744.1545183,-737.0119183

20.1815282,114.4588465,-94.2622119,-744.1351815,-737.1045815

20.1815282,114.4588465,-74.1071301,-744.1216941,-737.1823941

Path 1

0.0264464,110.4278300,-110.3862770,-736.9075595,0.0000041

0.0264465,110.4278052,-110.3862520,-736.9075596,0.0000041

0.0265357,110.4152905,-110.3736357,-736.9076222,0.0000041

0.0434732,108.5122972,-108.4525738,-736.9175607,0.0000046

0.3114732,99.0309144,-98.7937554,-736.9797642,0.0000011

1.1487851,90.8555402,-90.3187550,-737.0471117,0.0000004

3.6537189,83.1201261,-82.0715180,-737.1147700,0.0000041

8.4504014,78.3670757,-76.6850240,-737.1618668,0.0000016

11.6457299,77.0238933,-75.0021275,-737.1838528,0.0000051

PATCH NUMBER 2

Patch size was 35.213509848

Current state is state 1

Maximum Gaussian iterations was 6

Initial point for the patch was [11.6457299 77.02389331 -75.00212746]

Patch terminated at [28.29212708 73.21035762 -69.47580674]

Terminal point hit a boundary of the patch, drawing new patch!

Now the Z-matrix, Patch, and Path

Z-matrix for patch 2 was

C

C,1,B1

H,1,B2,2,A1

H,1,B3,2,A2,3,D1,0

H,1,B4,2,A3,3,D2,0

C,2,B5,1,A4,4,D3,0

H,2,B6,1,A5,6,D4,0

C,6,B7,2,A6,1,D5,0

H,6,B8,2,A7,1,D6,0

H,8,B9,6,A8,2,D7,0

H,8,B10,6,A9,2,D8,0

H,8,B11,6,A10,2,D9,0

Variables:

B1=1.53257957

B2=1.10344567

B3=1.1054505

B4=1.10696393

B5=1.37420478

B6=1.09810856

B7=1.53502319

B8=1.09732867

B9=1.1029387

129

B10=1.10760667

B11=1.10512593

A1=111.59487019

A2=112.17594723

A3=110.19830346

A4=124.69807495

A5=116.19695124

A6=124.77674473

A7=117.88105925

A8=110.83909952

A9=112.37632052

A10=111.04681782

D1=121.29152698

D2=-119.83870601

D3=-44.72108401

D4=-166.9276729

D5=20.1815216

D6=-170.93372093

D7=165.65711997

D8=-74.10713

D9=45.5245615

Patch 2

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

-5.9610250,59.4171384,-78.5234784,-744.1753127,-737.1954127

-5.9610250,59.4171384,-60.9167235,-744.1696816,-737.2053816

-5.9610250,59.4171384,-43.3099686,-744.1711495,-737.1823495

-5.9610250,64.5740372,-60.9167235,-744.1695277,-737.2012277

-5.9610250,77.0238933,-78.5234784,-744.1793896,-737.1490896

-5.9610250,77.0238933,-73.3665797,-744.1763888,-737.1608888

-5.9610250,77.0238933,-60.9167235,-744.1716282,-737.1815282

-5.9610250,77.0238933,-48.4668674,-744.1707558,-737.1844558

-5.9610250,77.0238933,-43.3099686,-744.1718097,-737.1797097

-5.9610250,89.4737494,-60.9167235,-744.1778413,-737.1549413

-5.9610250,94.6306482,-78.5234784,-744.1900398,-737.0877398

-5.9610250,94.6306482,-60.9167235,-744.1811606,-737.1433606

-5.9610250,94.6306482,-43.3099686,-744.1821236,-737.1421236

-4.6207900,77.0238933,-60.9167235,-744.1749511,-737.1789511

-0.8041262,59.4171384,-60.9167235,-744.1772435,-737.1936435

-0.8041262,77.0238933,-78.5234784,-744.1863786,-737.1377786

-0.8041262,77.0238933,-60.9167235,-744.1802446,-737.1775446

-0.8041262,77.0238933,-43.3099686,-744.1819355,-737.1784355

-0.8041262,94.6306482,-60.9167235,-744.1902915,-737.1424915

4.9079171,77.0238933,-60.9167235,-744.1766828,-737.1911828

11.6457299,59.4171384,-78.5234784,-744.1490715,-737.2022715

11.6457299,59.4171384,-73.3665797,-744.1477031,-737.2141031

11.6457299,59.4171384,-60.9167235,-744.1475357,-737.2341357

11.6457299,59.4171384,-48.4668674,-744.1515827,-737.2336827

11.6457299,59.4171384,-43.3099686,-744.1546561,-737.2269561

11.6457299,60.7573734,-60.9167235,-744.1477935,-737.2351935

130

11.6457299,64.5740372,-78.5234784,-744.1511432,-737.1979432

11.6457299,64.5740372,-60.9167235,-744.1488021,-737.2364021

11.6457299,64.5740372,-43.3099686,-744.1554500,-737.2309500

11.6457299,70.2860805,-60.9167235,-744.1511743,-737.2346743

11.6457299,77.0238933,-78.5234784,-744.1588854,-737.1762854

11.6457299,77.0238933,-77.1832435,-744.1582525,-737.1813525

11.6457299,77.0238933,-73.3665797,-744.1567521,-737.1949521

11.6457299,77.0238933,-67.6545364,-744.1554179,-737.2129179

11.6457299,77.0238933,-60.9167235,-744.1551216,-737.2268216

11.6457299,77.0238933,-54.1789107,-744.1561117,-737.2311117

11.6457299,77.0238933,-48.4668674,-744.1582830,-737.2267830

11.6457299,77.0238933,-44.6502036,-744.1603664,-737.2200664

11.6457299,77.0238933,-43.3099686,-744.1611893,-737.2170893

11.6457299,83.7617061,-60.9167235,-744.1598752,-737.2133752

11.6457299,89.4737494,-78.5234784,-744.1684890,-737.1466890

11.6457299,89.4737494,-60.9167235,-744.1642328,-737.1988328

11.6457299,89.4737494,-43.3099686,-744.1703995,-737.1772995

11.6457299,93.2904132,-60.9167235,-744.1670718,-737.1879718

11.6457299,94.6306482,-78.5234784,-744.1721428,-737.1342428

11.6457299,94.6306482,-73.3665797,-744.1698162,-737.1554162

11.6457299,94.6306482,-60.9167235,-744.1680264,-737.1841264

11.6457299,94.6306482,-48.4668674,-744.1714586,-737.1724586

11.6457299,94.6306482,-43.3099686,-744.1744089,-737.1565089

18.3835427,77.0238933,-60.9167235,-744.1155219,-737.2766219

24.0955860,59.4171384,-60.9167235,-744.0536596,-737.3390596

24.0955860,77.0238933,-78.5234784,-744.0696238,-737.2836238

24.0955860,77.0238933,-60.9167235,-744.0687265,-737.3195265

24.0955860,77.0238933,-43.3099686,-744.0823828,-737.2890828

24.0955860,94.6306482,-60.9167235,-744.0850913,-737.2629913

27.9122498,77.0238933,-60.9167235,-744.0310591,-737.3496591

29.2524848,59.4171384,-78.5234784,-743.9940273,-737.3577273

29.2524848,59.4171384,-60.9167235,-743.9978488,-737.3848488

29.2524848,59.4171384,-43.3099686,-744.0160814,-737.3623814

29.2524848,64.5740372,-60.9167235,-744.0024581,-737.3833581

29.2524848,77.0238933,-78.5234784,-744.0149560,-737.3354560

29.2524848,77.0238933,-73.3665797,-744.0134391,-737.3496391

29.2524848,77.0238933,-60.9167235,-744.0166430,-737.3601430

29.2524848,77.0238933,-48.4668674,-744.0282786,-737.3394786

29.2524848,77.0238933,-43.3099686,-744.0342800,-737.3239800

29.2524848,89.4737494,-60.9167235,-744.0300452,-737.3194452

29.2524848,94.6306482,-78.5234784,-744.0318071,-737.2869071

29.2524848,94.6306482,-60.9167235,-744.0340778,-737.3012778

29.2524848,94.6306482,-43.3099686,-744.0529843,-737.2530843

Path 2

11.6457299,77.0238933,-75.0021275,-737.1891837,0.0000001

11.6457956,77.0238741,-75.0020916,-737.1891843,0.0000001

11.6816335,77.0134154,-74.9825472,-737.1895101,0.0000001

16.2168775,75.8550450,-72.8539279,-737.2323482,0.0000034

26.6538819,73.5891975,-69.7717321,-737.3375140,0.0000038

28.2921271,73.2103576,-69.4758067,-737.3540783,0.0000039

131

PATCH NUMBER 3

Patch size was 33.7237357244

Current state is state 1

Maximum Gaussian iterations was 7

Initial point for the patch was [28.29212708 73.21035762 -69.47580674]

Patch terminated at [57.68278356 65.69515353 -68.62004029]

Terminal point hit a boundary of the patch, drawing new patch!

Now the Z-matrix, Patch, and Path

Z-matrix for patch 3 was

C

C,1,B1

H,1,B2,2,A1

H,1,B3,2,A2,3,D1,0

H,1,B4,2,A3,3,D2,0

C,2,B5,1,A4,4,D3,0

H,2,B6,1,A5,6,D4,0

C,6,B7,2,A6,1,D5,0

H,6,B8,2,A7,1,D6,0

H,8,B9,6,A8,2,D7,0

H,8,B10,6,A9,2,D8,0

H,8,B11,6,A10,2,D9,0

Variables:

B1=1.53319955

B2=1.10393204

B3=1.104974

B4=1.10675901

B5=1.37503825

B6=1.09927422

B7=1.53745679

B8=1.09814884

B9=1.10302603

B10=1.10738671

B11=1.10467511

A1=111.82444282

A2=112.31518015

A3=109.60884756

A4=125.00283563

A5=115.31112866

A6=125.1198104

A7=117.24333882

A8=110.61631361

A9=112.83661087

A10=110.78194259

D1=121.61080658

D2=-119.66877226

D3=-41.69652816

D4=-161.64985245

D5=29.25247076

132

D6=-167.20756639

D7=166.39220731

D8=-73.36658

D9=46.57882555

Patch 3

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

24.9197535,56.3484898,-86.3376746,-744.0452186,-737.2881186

24.9197535,56.3484898,-69.4758067,-744.0407020,-737.3358020

24.9197535,56.3484898,-52.6139389,-744.0499642,-737.3412642

24.9197535,61.2872162,-69.4758067,-744.0439245,-737.3365245

24.9197535,73.2103576,-86.3376746,-744.0621848,-737.2688848

24.9197535,73.2103576,-81.3989482,-744.0588321,-737.2887321

24.9197535,73.2103576,-69.4758067,-744.0551699,-737.3259699

24.9197535,73.2103576,-57.5526653,-744.0588541,-737.3342541

24.9197535,73.2103576,-52.6139389,-744.0625148,-737.3290148

24.9197535,85.1334990,-69.4758067,-744.0677353,-737.2963353

24.9197535,90.0722255,-86.3376746,-744.0798496,-737.2260496

24.9197535,90.0722255,-69.4758067,-744.0722128,-737.2811128

24.9197535,90.0722255,-52.6139389,-744.0796419,-737.2728419

26.2032873,73.2103576,-69.4758067,-744.0421336,-737.3377336

29.8584799,56.3484898,-69.4758067,-743.9839134,-737.3825134

29.8584799,73.2103576,-86.3376746,-744.0079150,-737.3212150

29.8584799,73.2103576,-69.4758067,-744.0017728,-737.3705728

29.8584799,73.2103576,-52.6139389,-744.0127130,-737.3653130

29.8584799,90.0722255,-69.4758067,-744.0203093,-737.3223093

35.3288644,73.2103576,-69.4758067,-743.9326902,-737.4196902

41.7816214,56.3484898,-86.3376746,-743.8101049,-737.4656049

41.7816214,56.3484898,-81.3989482,-743.8083230,-737.4772230

41.7816214,56.3484898,-69.4758067,-743.8122110,-737.4936110

41.7816214,56.3484898,-57.5526653,-743.8263473,-737.4908473

41.7816214,56.3484898,-52.6139389,-743.8339041,-737.4841041

41.7816214,57.6320236,-69.4758067,-743.8139329,-737.4935329

41.7816214,61.2872162,-86.3376746,-743.8180065,-737.4638065

41.7816214,61.2872162,-69.4758067,-743.8192521,-737.4918521

41.7816214,61.2872162,-52.6139389,-743.8405633,-737.4812633

41.7816214,66.7576007,-69.4758067,-743.8278846,-737.4852846

41.7816214,73.2103576,-86.3376746,-743.8381305,-737.4457305

41.7816214,73.2103576,-85.0541408,-743.8372687,-737.4490687

41.7816214,73.2103576,-81.3989482,-743.8355802,-737.4575802

41.7816214,73.2103576,-75.9285637,-743.8352968,-737.4670968

41.7816214,73.2103576,-69.4758067,-743.8382929,-737.4718929

41.7816214,73.2103576,-63.0230498,-743.8444909,-737.4698909

41.7816214,73.2103576,-57.5526653,-743.8518788,-737.4643788

41.7816214,73.2103576,-53.8974727,-743.8574714,-737.4583714

41.7816214,73.2103576,-52.6139389,-743.8595014,-737.4558014

41.7816214,79.6631145,-69.4758067,-743.8476846,-737.4539846

41.7816214,85.1334990,-86.3376746,-743.8537632,-737.4146632

41.7816214,85.1334990,-69.4758067,-743.8542539,-737.4371539

41.7816214,85.1334990,-52.6139389,-743.8764064,-737.4177064

133

41.7816214,88.7886917,-69.4758067,-743.8576707,-737.4258707

41.7816214,90.0722255,-86.3376746,-743.8576750,-737.4013750

41.7816214,90.0722255,-81.3989482,-743.8553247,-737.4125247

41.7816214,90.0722255,-69.4758067,-743.8586482,-737.4219482

41.7816214,90.0722255,-57.5526653,-743.8733372,-737.4115372

41.7816214,90.0722255,-52.6139389,-743.8814710,-737.4012710

48.2343783,73.2103576,-69.4758067,-743.7304298,-737.5202298

53.7047628,56.3484898,-69.4758067,-743.5968447,-737.5822447

53.7047628,73.2103576,-86.3376746,-743.6176540,-737.5475540

53.7047628,73.2103576,-69.4758067,-743.6287107,-737.5583107

53.7047628,73.2103576,-52.6139389,-743.6594435,-737.5432435

53.7047628,90.0722255,-69.4758067,-743.6475692,-737.5185692

57.3599554,73.2103576,-69.4758067,-743.5555712,-737.5820712

58.6434892,56.3484898,-86.3376746,-743.4795674,-737.6032674

58.6434892,56.3484898,-69.4758067,-743.4956629,-737.6116629

58.6434892,56.3484898,-52.6139389,-743.5282914,-737.6006914

58.6434892,61.2872162,-69.4758067,-743.5057651,-737.6080651

58.6434892,73.2103576,-86.3376746,-743.5128187,-737.5830187

58.6434892,73.2103576,-81.3989482,-743.5144355,-737.5872355

58.6434892,73.2103576,-69.4758067,-743.5289149,-737.5901149

58.6434892,73.2103576,-57.5526653,-743.5523918,-737.5821918

58.6434892,73.2103576,-52.6139389,-743.5626873,-737.5769873

58.6434892,85.1334990,-69.4758067,-743.5436107,-737.5657107

58.6434892,90.0722255,-86.3376746,-743.5273855,-737.5495855

58.6434892,90.0722255,-69.4758067,-743.5459539,-737.5564539

58.6434892,90.0722255,-52.6139389,-743.5817090,-737.5439090

Path 3

28.2921271,73.2103576,-69.4758067,-737.3564952,0.0000001

28.2922172,73.2103362,-69.4757930,-737.3564961,0.0000001

28.3317639,73.2009516,-69.4697579,-737.3568810,0.0000001

33.1086610,72.0351954,-68.8878871,-737.4025352,0.0000008

52.1554787,67.0751017,-68.4753557,-737.5601028,0.0000002

55.6148539,66.1996347,-68.5646880,-737.5837213,0.0000000

57.6827836,65.6951535,-68.6200403,-737.5971667,0.0000003

PATCH NUMBER 4

Patch size was 54.3519535599

Current state is state 1

Maximum Gaussian iterations was 10

Initial point for the patch was [57.68278356 65.69515353 -68.62004029]

Patch terminated at [101.16631937 74.27748311 -41.86523603]

Terminal point was a minimum, changing states!

Now the Z-matrix, Patch, and Path

Z-matrix for patch 4 was

C

C,1,B1

H,1,B2,2,A1

H,1,B3,2,A2,3,D1,0

134

H,1,B4,2,A3,3,D2,0

C,2,B5,1,A4,4,D3,0

H,2,B6,1,A5,6,D4,0

C,6,B7,2,A6,1,D5,0

H,6,B8,2,A7,1,D6,0

H,8,B9,6,A8,2,D7,0

H,8,B10,6,A9,2,D8,0

H,8,B11,6,A10,2,D9,0

Variables:

B1=1.54128666

B2=1.10313363

B3=1.10666604

B4=1.10457706

B5=1.38416237

B6=1.10390879

B7=1.54401595

B8=1.10316813

B9=1.10355139

B10=1.10690602

B11=1.1032948

A1=111.37985854

A2=113.44686351

A3=108.62848978

A4=126.90047049

A5=111.18253485

A6=126.98394483

A7=113.78989835

A8=110.16757552

A9=114.055218

A10=109.52300643

D1=121.82948157

D2=-119.67998307

D3=-57.20331937

D4=-146.36314157

D5=58.64347464

D6=-155.10111992

D7=170.34739484

D8=-69.475807

D9=51.52986646

Patch 4

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

52.2475882,38.5191768,-95.7960171,-743.5948218,-737.5238218

52.2475882,38.5191768,-68.6200403,-743.6060123,-737.5592123

52.2475882,38.5191768,-41.4440635,-743.6536578,-737.5301578

52.2475882,46.4788356,-68.6200403,-743.6119081,-737.5699081

52.2475882,65.6951535,-95.7960171,-743.6403288,-737.5308288

52.2475882,65.6951535,-87.8363583,-743.6339131,-737.5482131

52.2475882,65.6951535,-68.6200403,-743.6441354,-737.5634354

52.2475882,65.6951535,-49.4037223,-743.6781776,-737.5436776

135

52.2475882,65.6951535,-41.4440635,-743.6915202,-737.5284202

52.2475882,84.9114715,-68.6200403,-743.6736452,-737.5195452

52.2475882,92.8711303,-95.7960171,-743.6713487,-737.4744487

52.2475882,92.8711303,-68.6200403,-743.6782544,-737.5009544

52.2475882,92.8711303,-41.4440635,-743.7301941,-737.4624941

54.3162371,65.6951535,-68.6200403,-743.6041151,-737.5769151

60.2072470,38.5191768,-68.6200403,-743.4362375,-737.6130375

60.2072470,65.6951535,-95.7960171,-743.4682165,-737.5924165

60.2072470,65.6951535,-68.6200403,-743.4832365,-737.6130365

60.2072470,65.6951535,-41.4440635,-743.5350336,-737.5853336

60.2072470,92.8711303,-68.6200403,-743.5138477,-737.5635477

69.0237698,65.6951535,-68.6200403,-743.2835803,-737.6551803

79.4235650,38.5191768,-95.7960171,-742.9171271,-737.6796271

79.4235650,38.5191768,-87.8363583,-742.9229322,-737.6819322

79.4235650,38.5191768,-68.6200403,-742.9604061,-737.6870061

79.4235650,38.5191768,-49.4037223,-742.9984668,-737.6910668

79.4235650,38.5191768,-41.4440635,-743.0060524,-737.6890524

79.4235650,40.5878257,-68.6200403,-742.9642681,-737.6883681

79.4235650,46.4788356,-95.7960171,-742.9349086,-737.6843086

79.4235650,46.4788356,-68.6200403,-742.9768543,-737.6915543

79.4235650,46.4788356,-41.4440635,-743.0235367,-737.6930367

79.4235650,55.2953583,-68.6200403,-742.9978368,-737.6938368

79.4235650,65.6951535,-95.7960171,-742.9778318,-737.6864318

79.4235650,65.6951535,-93.7273681,-742.9784106,-737.6871106

79.4235650,65.6951535,-87.8363583,-742.9829739,-737.6885739

79.4235650,65.6951535,-79.0198355,-742.9970537,-737.6901537

79.4235650,65.6951535,-68.6200403,-743.0203085,-737.6919085

79.4235650,65.6951535,-58.2202451,-743.0443341,-737.6954341

79.4235650,65.6951535,-49.4037223,-743.0604109,-737.6967109

79.4235650,65.6951535,-43.5127125,-743.0674860,-737.6958860

79.4235650,65.6951535,-41.4440635,-743.0691117,-737.6952117

79.4235650,76.0949487,-68.6200403,-743.0344848,-737.6861848

79.4235650,84.9114715,-95.7960171,-742.9906921,-737.6743921

79.4235650,84.9114715,-68.6200403,-743.0373674,-737.6795674

79.4235650,84.9114715,-41.4440635,-743.0863569,-737.6846569

79.4235650,90.8024814,-68.6200403,-743.0342673,-737.6748673

79.4235650,92.8711303,-95.7960171,-742.9836356,-737.6680356

79.4235650,92.8711303,-87.8363583,-742.9908632,-737.6693632

79.4235650,92.8711303,-68.6200403,-743.0322547,-737.6732547

79.4235650,92.8711303,-49.4037223,-743.0728177,-737.6802177

79.4235650,92.8711303,-41.4440635,-743.0805338,-737.6797338

89.8233602,65.6951535,-68.6200403,-742.7287972,-737.7108972

98.6398830,38.5191768,-68.6200403,-742.8616506,-737.8217506

98.6398830,65.6951535,-95.7960171,-742.8157790,-737.8027790

98.6398830,65.6951535,-68.6200403,-742.8092670,-737.8410670

98.6398830,65.6951535,-41.4440635,-742.7356079,-737.8583079

98.6398830,92.8711303,-68.6200403,-742.7544088,-737.8407088

104.5308928,65.6951535,-68.6200403,-742.9868467,-737.8202467

106.5995418,38.5191768,-95.7960171,-743.1196991,-737.7507991

106.5995418,38.5191768,-68.6200403,-743.1044312,-737.7831312

106.5995418,38.5191768,-41.4440635,-743.0340545,-737.8044545

136

106.5995418,46.4788356,-68.6200403,-743.0931552,-737.7947552

106.5995418,65.6951535,-95.7960171,-743.0632282,-737.7696282

106.5995418,65.6951535,-87.8363583,-743.0685889,-737.7789889

106.5995418,65.6951535,-68.6200403,-743.0467159,-737.8125159

106.5995418,65.6951535,-49.4037223,-742.9938814,-737.8343814

106.5995418,65.6951535,-41.4440635,-742.9741616,-737.8331616

106.5995418,84.9114715,-68.6200403,-743.0064140,-737.8138140

106.5995418,92.8711303,-95.7960171,-743.0152165,-737.7715165

106.5995418,92.8711303,-68.6200403,-743.0012280,-737.8085280

106.5995418,92.8711303,-41.4440635,-742.9264104,-737.8239104

Path 4

57.6827836,65.6951535,-68.6200403,-737.6028194,0.0000015

57.6828313,65.6951434,-68.6200400,-737.6028196,0.0000015

57.7037450,65.6906816,-68.6198949,-737.6029239,0.0000014

60.1597851,65.1055487,-68.6003047,-737.6134160,0.0000003

63.3836890,64.2061584,-68.5611737,-737.6236831,0.0000028

66.8270731,63.3154420,-68.4941200,-737.6332698,0.0000134

74.8256261,62.2547086,-68.2669524,-737.6643239,0.0000350

80.1232346,62.0150358,-68.0829522,-737.6982873,0.0000085

87.0131083,61.9148995,-67.7810924,-737.7567064,0.0000906

94.6185574,61.9894388,-67.2294750,-737.8210244,0.0000495

97.7169619,62.1195300,-66.7732695,-737.8386459,0.0000080

99.5352339,62.3055254,-66.2049553,-737.8446913,0.0000061

100.2307113,62.4732990,-65.7124255,-737.8461769,0.0000081

100.5760158,62.6554938,-65.1801390,-737.8469751,0.0000085

100.7448001,62.8570924,-64.5861014,-737.8476655,0.0000088

100.8280432,63.0852689,-63.9027608,-737.8484117,0.0000091

100.8738532,63.3488133,-63.0965299,-737.8492759,0.0000096

100.9070668,63.6601466,-62.1198930,-737.8503086,0.0000101

100.9392727,64.0362778,-60.9062855,-737.8515700,0.0000107

101.1663194,74.2774831,-41.8652360,-737.8644362,0.0000062

PATCH NUMBER 5

Patch size was 14.3008509726

Current state is state 0

Maximum Gaussian iterations was 11

Initial point for the patch was [101.16631937 74.27748311 -41.86523603]

Patch terminated at [107.96257975 73.72968385 -42.41160991]

Terminal point hit a boundary of the patch, drawing new patch!

Now the Z-matrix, Patch, and Path

Z-matrix for patch 5 was

C

C,1,B1

H,1,B2,2,A1

H,1,B3,2,A2,3,D1,0

H,1,B4,2,A3,3,D2,0

C,2,B5,1,A4,4,D3,0

H,2,B6,1,A5,6,D4,0

137

C,6,B7,2,A6,1,D5,0

H,6,B8,2,A7,1,D6,0

H,8,B9,6,A8,2,D7,0

H,8,B10,6,A9,2,D8,0

H,8,B11,6,A10,2,D9,0

Variables:

B1=1.54283584

B2=1.1035385

B3=1.10563068

B4=1.10683613

B5=1.38470232

B6=1.11031082

B7=1.54555825

B8=1.10921133

B9=1.10146904

B10=1.1051482

B11=1.10842989

A1=110.42758828

A2=107.68323669

A3=114.94147169

A4=127.06255099

A5=108.44976778

A6=127.09478679

A7=112.71293055

A8=109.9941327

A9=108.42242655

A10=115.08561294

D1=118.18491632

D2=-120.99232902

D3=-55.12760066

D4=139.51153207

D5=98.6399062

D6=-40.8886822

D7=-161.18350351

D8=-41.444064

D9=77.22277821

Patch 5

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

94.0158939,67.1270576,-49.0156615,-742.6068907,-737.8664907

94.0158939,67.1270576,-41.8652360,-742.5856713,-737.8674713

94.0158939,67.1270576,-34.7148105,-742.5694012,-737.8629012

94.0158939,69.2213686,-41.8652360,-742.5796190,-737.8677190

94.0158939,74.2774831,-49.0156615,-742.5869474,-737.8677474

94.0158939,74.2774831,-46.9213505,-742.5804340,-737.8682340

94.0158939,74.2774831,-41.8652360,-742.5652688,-737.8681688

94.0158939,74.2774831,-36.8091215,-742.5524470,-737.8645470

94.0158939,74.2774831,-34.7148105,-742.5483260,-737.8623260

94.0158939,79.3335976,-41.8652360,-742.5521785,-737.8672785

94.0158939,81.4279086,-49.0156615,-742.5682611,-737.8663611

138

94.0158939,81.4279086,-41.8652360,-742.5471966,-737.8663966

94.0158939,81.4279086,-34.7148105,-742.5291226,-737.8640226

94.5601879,74.2774831,-41.8652360,-742.5826623,-737.8670623

96.1102049,67.1270576,-41.8652360,-742.6532323,-737.8657323

96.1102049,74.2774831,-49.0156615,-742.6529333,-737.8646333

96.1102049,74.2774831,-41.8652360,-742.6326881,-737.8653881

96.1102049,74.2774831,-34.7148105,-742.6160865,-737.8590865

96.1102049,81.4279086,-41.8652360,-742.6149585,-737.8632585

98.4299702,74.2774831,-41.8652360,-742.7057935,-737.8594935

101.1663194,67.1270576,-49.0156615,-742.8291077,-737.8527077

101.1663194,67.1270576,-46.9213505,-742.8229848,-737.8530848

101.1663194,67.1270576,-41.8652360,-742.8094127,-737.8527127

101.1663194,67.1270576,-36.8091215,-742.7991334,-737.8490334

101.1663194,67.1270576,-34.7148105,-742.7960714,-737.8463714

101.1663194,67.6713516,-41.8652360,-742.8078821,-737.8527821

101.1663194,69.2213686,-49.0156615,-742.8234236,-737.8532236

101.1663194,69.2213686,-41.8652360,-742.8035665,-737.8530665

101.1663194,69.2213686,-34.7148105,-742.7899976,-737.8463976

101.1663194,71.5411340,-41.8652360,-742.7972863,-737.8532863

101.1663194,74.2774831,-49.0156615,-742.8103397,-737.8537397

101.1663194,74.2774831,-48.4713675,-742.8087345,-737.8538345

101.1663194,74.2774831,-46.9213505,-742.8042156,-737.8540156

101.1663194,74.2774831,-44.6015852,-742.7976228,-737.8539228

101.1663194,74.2774831,-41.8652360,-742.7902856,-737.8532856

101.1663194,74.2774831,-39.1288869,-742.7838116,-737.8522116

101.1663194,74.2774831,-36.8091215,-742.7791469,-737.8504469

101.1663194,74.2774831,-35.2591045,-742.7765358,-737.8479358

101.1663194,74.2774831,-34.7148105,-742.7757555,-737.8470555

101.1663194,77.0138323,-41.8652360,-742.7837719,-737.8526719

101.1663194,79.3335976,-49.0156615,-742.7983058,-737.8525058

101.1663194,79.3335976,-41.8652360,-742.7785708,-737.8517708

101.1663194,79.3335976,-34.7148105,-742.7634916,-737.8478916

101.1663194,80.8836146,-41.8652360,-742.7752873,-737.8511873

101.1663194,81.4279086,-49.0156615,-742.7938370,-737.8519370

101.1663194,81.4279086,-46.9213505,-742.7877615,-737.8521615

101.1663194,81.4279086,-41.8652360,-742.7741825,-737.8509825

101.1663194,81.4279086,-36.8091215,-742.7628678,-737.8482678

101.1663194,81.4279086,-34.7148105,-742.7591776,-737.8468776

103.9026685,74.2774831,-41.8652360,-742.8732098,-737.8444098

106.2224339,67.1270576,-41.8652360,-742.9601928,-737.8356928

106.2224339,74.2774831,-49.0156615,-742.9600096,-737.8377096

106.2224339,74.2774831,-41.8652360,-742.9418152,-737.8362152

106.2224339,74.2774831,-34.7148105,-742.9294102,-737.8290102

106.2224339,81.4279086,-41.8652360,-742.9269733,-737.8338733

107.7724509,74.2774831,-41.8652360,-742.9868172,-737.8300172

108.3167449,67.1270576,-49.0156615,-743.0376211,-737.8290211

108.3167449,67.1270576,-41.8652360,-743.0204515,-737.8273515

108.3167449,67.1270576,-34.7148105,-743.0093371,-737.8186371

108.3167449,69.2213686,-41.8652360,-743.0149004,-737.8278004

108.3167449,74.2774831,-49.0156615,-743.0199149,-737.8298149

108.3167449,74.2774831,-46.9213505,-743.0143610,-737.8297610

139

108.3167449,74.2774831,-41.8652360,-743.0024618,-737.8277618

108.3167449,74.2774831,-36.8091215,-742.9936761,-737.8228761

108.3167449,74.2774831,-34.7148105,-742.9910843,-737.8194843

108.3167449,79.3335976,-41.8652360,-742.9919103,-737.8262103

108.3167449,81.4279086,-49.0156615,-743.0060328,-737.8276328

108.3167449,81.4279086,-41.8652360,-742.9883138,-737.8253138

108.3167449,81.4279086,-34.7148105,-742.9766473,-737.8177473

Path 5

101.1663194,74.2774831,-41.8652360,-742.7902856,0.0000000

101.1666251,74.2774583,-41.8652614,-742.7902951,0.0000000

101.2932515,74.2671865,-41.8757769,-742.7942161,0.0000000

105.0359129,73.9651507,-42.1811319,-742.9083253,0.0000001

107.3755771,73.7769921,-42.3659977,-742.9776640,0.0000001

107.9625797,73.7296838,-42.4116099,-742.9947675,0.0000001

PATCH NUMBER 6

Patch size was 7.15042548628

Current state is state 0

Maximum Gaussian iterations was 7

Initial point for the patch was [107.96257975 73.72968385 -42.41160991]

Patch terminated at [114.36577164 73.21287474 -42.87115485]

Terminal point hit a boundary of the patch, drawing new patch!

Now the Z-matrix, Patch, and Path

Z-matrix for patch 6 was

C

C,1,B1

H,1,B2,2,A1

H,1,B3,2,A2,3,D1,0

H,1,B4,2,A3,3,D2,0

C,2,B5,1,A4,4,D3,0

H,2,B6,1,A5,6,D4,0

C,6,B7,2,A6,1,D5,0

H,6,B8,2,A7,1,D6,0

H,8,B9,6,A8,2,D7,0

H,8,B10,6,A9,2,D8,0

H,8,B11,6,A10,2,D9,0

Variables:

B1=1.54405258

B2=1.10323068

B3=1.10424895

B4=1.1074571

B5=1.38224916

B6=1.10734342

B7=1.54442397

B8=1.10700776

B9=1.10185864

B10=1.10446728

B11=1.10843202

140

A1=109.68971798

A2=108.9507749

A3=114.93782687

A4=126.60256995

A5=110.24314952

A6=126.63655044

A7=113.7928059

A8=110.01114528

A9=108.98109542

A10=114.72401534

D1=118.59495382

D2=-120.10816839

D3=-47.01939479

D4=143.90149994

D5=107.77247046

D6=-35.74618583

D7=-161.65635892

D8=-41.865236

D9=77.16752555

Patch 6

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

107.2475372,70.1544711,-45.9868227,-742.9914923,-737.8337923

107.2475372,70.1544711,-42.4116099,-742.9829971,-737.8324971

107.2475372,70.1544711,-38.8363972,-742.9760074,-737.8298074

107.2475372,71.2016266,-42.4116099,-742.9803234,-737.8326234

107.2475372,73.7296838,-45.9868227,-742.9826994,-737.8337994

107.2475372,73.7296838,-44.9396672,-742.9800649,-737.8335649

107.2475372,73.7296838,-42.4116099,-742.9741336,-737.8324336

107.2475372,73.7296838,-39.8835527,-742.9689543,-737.8306543

107.2475372,73.7296838,-38.8363972,-742.9670577,-737.8297577

107.2475372,76.2577411,-42.4116099,-742.9683675,-737.8319675

107.2475372,77.3048966,-45.9868227,-742.9747466,-737.8331466

107.2475372,77.3048966,-42.4116099,-742.9661243,-737.8316243

107.2475372,77.3048966,-38.8363972,-742.9589772,-737.8288772

107.5196842,73.7296838,-42.4116099,-742.9819913,-737.8313913

108.2946927,70.1544711,-42.4116099,-743.0130077,-737.8282077

108.2946927,73.7296838,-45.9868227,-743.0126141,-737.8297141

108.2946927,73.7296838,-42.4116099,-743.0042553,-737.8281553

108.2946927,73.7296838,-38.8363972,-742.9974212,-737.8253212

108.2946927,77.3048966,-42.4116099,-742.9963932,-737.8273932

109.4545754,73.7296838,-42.4116099,-743.0372632,-737.8231632

110.8227499,70.1544711,-45.9868227,-743.0919417,-737.8187417

110.8227499,70.1544711,-44.9396672,-743.0895211,-737.8184211

110.8227499,70.1544711,-42.4116099,-743.0841712,-737.8169712

110.8227499,70.1544711,-39.8835527,-743.0796237,-737.8147237

110.8227499,70.1544711,-38.8363972,-743.0779935,-737.8135935

110.8227499,70.4266181,-42.4116099,-743.0834984,-737.8169984

110.8227499,71.2016266,-45.9868227,-743.0894023,-737.8188023

110.8227499,71.2016266,-42.4116099,-743.0816075,-737.8170075

141

110.8227499,71.2016266,-38.8363972,-743.0754053,-737.8136053

110.8227499,72.3615093,-42.4116099,-743.0788496,-737.8169496

110.8227499,73.7296838,-45.9868227,-743.0835661,-737.8186661

110.8227499,73.7296838,-45.7146757,-743.0829211,-737.8186211

110.8227499,73.7296838,-44.9396672,-743.0811236,-737.8183236

110.8227499,73.7296838,-43.7797845,-743.0785507,-737.8177507

110.8227499,73.7296838,-42.4116099,-743.0757157,-737.8168157

110.8227499,73.7296838,-41.0434353,-743.0731173,-737.8157173

110.8227499,73.7296838,-39.8835527,-743.0711105,-737.8146105

110.8227499,73.7296838,-39.1085441,-743.0698729,-737.8137729

110.8227499,73.7296838,-38.8363972,-743.0694582,-737.8134582

110.8227499,75.0978584,-42.4116099,-743.0727238,-737.8166238

110.8227499,76.2577411,-45.9868227,-743.0782188,-737.8182188

110.8227499,76.2577411,-42.4116099,-743.0703118,-737.8163118

110.8227499,76.2577411,-38.8363972,-743.0639973,-737.8128973

110.8227499,77.0327496,-42.4116099,-743.0687702,-737.8160702

110.8227499,77.3048966,-45.9868227,-743.0761753,-737.8178753

110.8227499,77.3048966,-44.9396672,-743.0737109,-737.8175109

110.8227499,77.3048966,-42.4116099,-743.0682431,-737.8160431

110.8227499,77.3048966,-39.8835527,-743.0635769,-737.8137769

110.8227499,77.3048966,-38.8363972,-743.0619020,-737.8126020

112.1909245,73.7296838,-42.4116099,-743.1136419,-737.8102419

113.3508072,70.1544711,-42.4116099,-743.1535021,-737.8038021

113.3508072,73.7296838,-45.9868227,-743.1527104,-737.8060104

113.3508072,73.7296838,-42.4116099,-743.1453787,-737.8037787

113.3508072,73.7296838,-38.8363972,-743.1396868,-737.7999868

113.3508072,77.3048966,-42.4116099,-743.1383293,-737.8029293

114.1258157,73.7296838,-42.4116099,-743.1663703,-737.7997703

114.3979627,70.1544711,-45.9868227,-743.1887074,-737.8007074

114.3979627,70.1544711,-42.4116099,-743.1816776,-737.7983776

114.3979627,70.1544711,-38.8363972,-743.1762996,-737.7942996

114.3979627,71.2016266,-42.4116099,-743.1792426,-737.7984426

114.3979627,73.7296838,-45.9868227,-743.1808158,-737.8006158

114.3979627,73.7296838,-44.9396672,-743.1785765,-737.8000765

114.3979627,73.7296838,-42.4116099,-743.1737004,-737.7983004

114.3979627,73.7296838,-39.8835527,-743.1696556,-737.7955556

114.3979627,73.7296838,-38.8363972,-743.1682396,-737.7942396

114.3979627,76.2577411,-42.4116099,-743.1687111,-737.7977111

114.3979627,77.3048966,-45.9868227,-743.1740400,-737.7997400

114.3979627,77.3048966,-42.4116099,-743.1668322,-737.7974322

114.3979627,77.3048966,-38.8363972,-743.1612795,-737.7933795

Path 6

107.9625798,73.7296839,-42.4116099,-742.9947350,0.0000000

107.9628669,73.7296604,-42.4116315,-742.9947434,0.0000000

108.0579578,73.7218858,-42.4187784,-742.9975060,0.0000000

113.5024612,73.2815728,-42.8118379,-743.1512027,0.0000000

114.3657716,73.2128747,-42.8711548,-743.1747544,0.0000000

PATCH NUMBER 7

142

Patch size was 60.0

Current state is state 0

Maximum Gaussian iterations was 9

Initial point for the patch was [114.36577164 73.21287474 -42.87115485]

Patch terminated at [167.32685802 70.31509819 -43.62247643]

Terminal point hit a boundary of the patch, drawing new patch!

Now the Z-matrix, Patch, and Path

Z-matrix for patch 7 was

C

C,1,B1

H,1,B2,2,A1

H,1,B3,2,A2,3,D1,0

H,1,B4,2,A3,3,D2,0

C,2,B5,1,A4,4,D3,0

H,2,B6,1,A5,6,D4,0

C,6,B7,2,A6,1,D5,0

H,6,B8,2,A7,1,D6,0

H,8,B9,6,A8,2,D7,0

H,8,B10,6,A9,2,D8,0

H,8,B11,6,A10,2,D9,0

Variables:

B1=1.54295879

B2=1.10333148

B3=1.10399057

B4=1.10746019

B5=1.38040069

B6=1.10575781

B7=1.54326837

B8=1.10544014

B9=1.10214411

B10=1.10413081

B11=1.10832557

A1=109.80353398

A2=109.28331735

A3=114.63345515

A4=126.24812413

A5=111.30407217

A6=126.27210677

A7=114.58514255

A8=110.05858034

A9=109.32114484

A10=114.45882952

D1=118.76441352

D2=-120.00708399

D3=-47.4988185

D4=146.90968945

D5=114.39797913

D6=-32.35080126

D7=-162.20816234

D8=-42.41161

143

D9=76.86756189

Patch 7

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

108.3657716,43.2128747,-72.8711548,-743.1579132,-737.7739132

108.3657716,43.2128747,-42.8711548,-743.0821266,-737.8047266

108.3657716,43.2128747,-12.8711548,-743.0857540,-737.7592540

108.3657716,51.9996707,-42.8711548,-743.0642263,-737.8168263

108.3657716,73.2128747,-72.8711548,-743.0872263,-737.8003263

108.3657716,73.2128747,-64.0843588,-743.0667226,-737.8157226

108.3657716,73.2128747,-42.8711548,-743.0084969,-737.8281969

108.3657716,73.2128747,-21.6579508,-742.9961687,-737.7921687

108.3657716,73.2128747,-12.8711548,-743.0120620,-737.7707620

108.3657716,94.4260787,-42.8711548,-742.9827165,-737.8144165

108.3657716,103.2128747,-72.8711548,-743.0705876,-737.7811876

108.3657716,103.2128747,-42.8711548,-742.9905460,-737.8017460

108.3657716,103.2128747,-12.8711548,-742.9879087,-737.7599087

110.6493866,73.2128747,-42.8711548,-743.0729736,-737.8180736

117.1525676,43.2128747,-42.8711548,-743.3215601,-737.7556601

117.1525676,73.2128747,-72.8711548,-743.3239717,-737.7546717

117.1525676,73.2128747,-42.8711548,-743.2484576,-737.7831576

117.1525676,73.2128747,-12.8711548,-743.2661012,-737.7174012

117.1525676,103.2128747,-42.8711548,-743.2445444,-737.7488444

126.8852696,73.2128747,-42.8711548,-743.4873564,-737.7199564

138.3657716,43.2128747,-72.8711548,-743.8448080,-737.5705080

138.3657716,43.2128747,-64.0843588,-743.8232225,-737.5941225

138.3657716,43.2128747,-42.8711548,-743.7912581,-737.5907581

138.3657716,43.2128747,-21.6579508,-743.8148731,-737.5262731

138.3657716,43.2128747,-12.8711548,-743.8356662,-737.4968662

138.3657716,45.4964897,-42.8711548,-743.7858627,-737.5962627

138.3657716,51.9996707,-72.8711548,-743.8241010,-737.5920010

138.3657716,51.9996707,-42.8711548,-743.7698920,-737.6096920

138.3657716,51.9996707,-12.8711548,-743.8144367,-737.5201367

138.3657716,61.7323727,-42.8711548,-743.7471787,-737.6220787

138.3657716,73.2128747,-72.8711548,-743.7866208,-737.6069208

138.3657716,73.2128747,-70.5875398,-743.7808391,-737.6133391

138.3657716,73.2128747,-64.0843588,-743.7642267,-737.6279267

138.3657716,73.2128747,-54.3516568,-743.7424428,-737.6363428

138.3657716,73.2128747,-42.8711548,-743.7291734,-737.6249734

138.3657716,73.2128747,-31.3906528,-743.7342518,-737.5951518

138.3657716,73.2128747,-21.6579508,-743.7514572,-737.5656572

138.3657716,73.2128747,-15.1547698,-743.7669532,-737.5469532

138.3657716,73.2128747,-12.8711548,-743.7727543,-737.5392543

138.3657716,84.6933767,-42.8711548,-743.7266859,-737.6126859

138.3657716,94.4260787,-72.8711548,-743.7973872,-737.5674872

138.3657716,94.4260787,-42.8711548,-743.7375727,-737.5910727

138.3657716,94.4260787,-12.8711548,-743.7791563,-737.5072563

138.3657716,100.9292597,-42.8711548,-743.7502070,-737.5745070

138.3657716,103.2128747,-72.8711548,-743.8150197,-737.5419197

138.3657716,103.2128747,-64.0843588,-743.7924775,-737.5656775

144

138.3657716,103.2128747,-42.8711548,-743.7553122,-737.5685122

138.3657716,103.2128747,-21.6579508,-743.7752171,-737.5096171

138.3657716,103.2128747,-12.8711548,-743.7964505,-737.4828505

149.8462736,73.2128747,-42.8711548,-743.9231894,-737.5240894

159.5789756,43.2128747,-42.8711548,-744.0858760,-737.4118760

159.5789756,73.2128747,-72.8711548,-744.0752480,-737.4458480

159.5789756,73.2128747,-42.8711548,-744.0469173,-737.4464173

159.5789756,73.2128747,-12.8711548,-744.1031768,-737.3509768

159.5789756,103.2128747,-42.8711548,-744.0942928,-737.3633928

166.0821566,73.2128747,-42.8711548,-744.1073808,-737.4046808

168.3657716,43.2128747,-72.8711548,-744.1597997,-737.3796997

168.3657716,43.2128747,-42.8711548,-744.1506887,-737.3599887

168.3657716,43.2128747,-12.8711548,-744.2080092,-737.2513092

168.3657716,51.9996707,-42.8711548,-744.1343749,-737.3823749

168.3657716,73.2128747,-72.8711548,-744.1387039,-737.3999039

168.3657716,73.2128747,-64.0843588,-744.1245775,-737.4147775

168.3657716,73.2128747,-42.8711548,-744.1242215,-737.3928215

168.3657716,73.2128747,-21.6579508,-744.1643500,-737.3220500

168.3657716,73.2128747,-12.8711548,-744.1819192,-737.2925192

168.3657716,94.4260787,-42.8711548,-744.1584600,-737.3334600

168.3657716,103.2128747,-72.8711548,-744.1924654,-737.2975654

168.3657716,103.2128747,-42.8711548,-744.1768462,-737.2981462

168.3657716,103.2128747,-12.8711548,-744.2332734,-737.1766734

Path 7

114.3657716,73.2128747,-42.8711549,-743.1747311,0.0000000

114.3660403,73.2128580,-42.8711667,-743.1747383,0.0000000

114.5074685,73.2040417,-42.8773868,-743.1785564,0.0000000

131.1843871,72.1922509,-43.5192083,-743.5849095,0.0000003

151.0082298,71.0676854,-43.9507110,-743.9413550,0.0000010

163.0427991,70.4783444,-43.8302201,-744.0816961,0.0000023

167.3268580,70.3150982,-43.6224764,-744.1167085,0.0000027

PATCH NUMBER 8

Patch size was 60.0

Current state is state 0

Maximum Gaussian iterations was 7

Initial point for the patch was [167.32685802 70.31509819 -43.62247643]

Patch terminated at [183.6925856 96.1353827 -16.41072805]

Terminal point hit a boundary of the patch, drawing new patch!

Now the Z-matrix, Patch, and Path

Z-matrix for patch 8 was

C

C,1,B1

H,1,B2,2,A1

H,1,B3,2,A2,3,D1,0

H,1,B4,2,A3,3,D2,0

C,2,B5,1,A4,4,D3,0

H,2,B6,1,A5,6,D4,0

145

C,6,B7,2,A6,1,D5,0

H,6,B8,2,A7,1,D6,0

H,8,B9,6,A8,2,D7,0

H,8,B10,6,A9,2,D8,0

H,8,B11,6,A10,2,D9,0

Variables:

B1=1.53536405

B2=1.10316111

B3=1.10425545

B4=1.10687577

B5=1.37028103

B6=1.09837022

B7=1.53490307

B8=1.0984525

B9=1.10393484

B10=1.10379502

B11=1.10682661

A1=110.96505733

A2=111.03313144

A3=112.17446948

A4=124.36843004

A5=116.79260009

A6=124.37049736

A7=118.63328247

A8=110.58890115

A9=111.19334205

A10=112.36143204

D1=120.00911403

D2=-120.23968599

D3=-46.53832498

D4=173.77500424

D5=168.36578242

D6=-6.05625409

D7=-162.28405545

D8=-42.871155

D9=78.05077553

Patch 8

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

161.3268580,40.3150982,-73.6224764,-744.1298009,-737.4007009

161.3268580,40.3150982,-43.6224764,-744.1072864,-737.3940864

161.3268580,40.3150982,-13.6224764,-744.1631304,-737.2843304

161.3268580,49.1018942,-43.6224764,-744.0881352,-737.4200352

161.3268580,70.3150982,-73.6224764,-744.0911835,-737.4388835

161.3268580,70.3150982,-64.8356804,-744.0740249,-737.4567249

161.3268580,70.3150982,-43.6224764,-744.0638414,-737.4400414

161.3268580,70.3150982,-22.4092724,-744.1005767,-737.3702767

161.3268580,70.3150982,-13.6224764,-744.1197725,-737.3417725

161.3268580,91.5283022,-43.6224764,-744.0878769,-737.3962769

161.3268580,100.3150982,-73.6224764,-744.1362069,-737.3512069

146

161.3268580,100.3150982,-43.6224764,-744.1066720,-737.3626720

161.3268580,100.3150982,-13.6224764,-744.1611002,-737.2537002

163.6104730,70.3150982,-43.6224764,-744.0849807,-737.4243807

170.1136540,40.3150982,-43.6224764,-744.1644095,-737.3455095

170.1136540,70.3150982,-73.6224764,-744.1462209,-737.3948209

170.1136540,70.3150982,-43.6224764,-744.1326906,-737.3908906

170.1136540,70.3150982,-13.6224764,-744.1901537,-737.2916537

170.1136540,100.3150982,-43.6224764,-744.1823025,-737.3012025

179.8463560,70.3150982,-43.6224764,-744.1687615,-737.3665615

191.3268580,40.3150982,-73.6224764,-744.1300358,-737.3838358

191.3268580,40.3150982,-64.8356804,-744.1276481,-737.3888481

191.3268580,40.3150982,-43.6224764,-744.1552124,-737.3516124

191.3268580,40.3150982,-22.4092724,-744.1979095,-737.2762095

191.3268580,40.3150982,-13.6224764,-744.2081979,-737.2506979

191.3268580,42.5987132,-43.6224764,-744.1518494,-737.3589494

191.3268580,49.1018942,-73.6224764,-744.1211502,-737.4041502

191.3268580,49.1018942,-43.6224764,-744.1450246,-737.3763246

191.3268580,49.1018942,-13.6224764,-744.1986322,-737.2785322

191.3268580,58.8345962,-43.6224764,-744.1436832,-737.3909832

191.3268580,70.3150982,-73.6224764,-744.1359847,-737.4035847

191.3268580,70.3150982,-71.3388614,-744.1340908,-737.4068908

191.3268580,70.3150982,-64.8356804,-744.1318628,-737.4120628

191.3268580,70.3150982,-55.1029784,-744.1376090,-737.4080090

191.3268580,70.3150982,-43.6224764,-744.1558082,-737.3847082

191.3268580,70.3150982,-32.1419744,-744.1798940,-737.3471940

191.3268580,70.3150982,-22.4092724,-744.1987134,-737.3109134

191.3268580,70.3150982,-15.9060914,-744.2079042,-737.2889042

191.3268580,70.3150982,-13.6224764,-744.2102325,-737.2824325

191.3268580,81.7956002,-43.6224764,-744.1779441,-737.3525441

191.3268580,91.5283022,-73.6224764,-744.1798964,-737.3290964

191.3268580,91.5283022,-43.6224764,-744.1983931,-737.3099931

191.3268580,91.5283022,-13.6224764,-744.2521697,-737.1894697

191.3268580,98.0314832,-43.6224764,-744.2102401,-737.2814401

191.3268580,100.3150982,-73.6224764,-744.1945319,-737.2953319

191.3268580,100.3150982,-64.8356804,-744.1904880,-737.3060880

191.3268580,100.3150982,-43.6224764,-744.2137302,-737.2722302

191.3268580,100.3150982,-22.4092724,-744.2556705,-737.1811705

191.3268580,100.3150982,-13.6224764,-744.2670177,-737.1437177

202.8073600,70.3150982,-43.6224764,-744.0829630,-737.4438630

212.5400620,40.3150982,-43.6224764,-743.9408456,-737.5040456

212.5400620,70.3150982,-73.6224764,-743.9267473,-737.5400473

212.5400620,70.3150982,-43.6224764,-743.9752674,-737.5128674

212.5400620,70.3150982,-13.6224764,-744.0157775,-737.4175775

212.5400620,100.3150982,-43.6224764,-744.0274070,-737.4015070

219.0432430,70.3150982,-43.6224764,-743.8803749,-737.5597749

221.3268580,40.3150982,-73.6224764,-743.7341702,-737.6155702

221.3268580,40.3150982,-43.6224764,-743.7957544,-737.5833544

221.3268580,40.3150982,-13.6224764,-743.8259196,-737.5096196

221.3268580,49.1018942,-43.6224764,-743.7999761,-737.5990761

221.3268580,70.3150982,-73.6224764,-743.7853311,-737.6104311

221.3268580,70.3150982,-64.8356804,-743.7960194,-737.6119194

147

221.3268580,70.3150982,-43.6224764,-743.8428118,-737.5770118

221.3268580,70.3150982,-22.4092724,-743.8755109,-737.5120109

221.3268580,70.3150982,-13.6224764,-743.8751988,-737.4928988

221.3268580,91.5283022,-43.6224764,-743.8840748,-737.5017748

221.3268580,100.3150982,-73.6224764,-743.8305200,-737.5234200

221.3268580,100.3150982,-43.6224764,-743.8886594,-737.4791594

221.3268580,100.3150982,-13.6224764,-743.9194762,-737.3908762

Path 8

167.3268580,70.3150982,-43.6224764,-744.1145505,0.0000000

167.3269293,70.3151060,-43.6224630,-744.1145510,0.0000000

167.3649981,70.3193081,-43.6152667,-744.1148351,0.0000000

172.5742307,71.1354925,-42.3107778,-744.1486841,0.0000006

177.0488989,72.5453928,-40.2794141,-744.1712228,0.0000010

179.8758139,74.3595700,-37.8695717,-744.1849768,0.0000011

181.6683666,76.6613653,-35.0236136,-744.1970128,0.0000013

182.7626781,79.5108577,-31.7508039,-744.2100451,0.0000014

183.3953685,82.9703561,-28.0847033,-744.2250433,0.0000016

183.7118025,87.0417205,-24.1341961,-744.2417399,0.0000020

183.7927444,91.5677455,-20.1267553,-744.2586271,0.0000021

183.6925856,96.1353827,-16.4107281,-744.2732188,0.0000016

PATCH NUMBER 9

Patch size was 60.0

Current state is state 0

Maximum Gaussian iterations was 6

Initial point for the patch was [183.6925856 96.1353827 -16.41072805]

Patch terminated at [180.04690164 120.64145274 -0.25729983]

Terminal point on the last state! Gaussian performing final optimization

Now the Z-matrix, Patch, and Path

Z-matrix for patch 9 was

C

C,1,B1

H,1,B2,2,A1

H,1,B3,2,A2,3,D1,0

H,1,B4,2,A3,3,D2,0

C,2,B5,1,A4,4,D3,0

H,2,B6,1,A5,6,D4,0

C,6,B7,2,A6,1,D5,0

H,6,B8,2,A7,1,D6,0

H,8,B9,6,A8,2,D7,0

H,8,B10,6,A9,2,D8,0

H,8,B11,6,A10,2,D9,0

Variables:

B1=1.5279681

B2=1.10529698

B3=1.10400429

B4=1.10763518

B5=1.36929843

148

B6=1.09874964

B7=1.52725966

B8=1.09883829

B9=1.10646069

B10=1.10345453

B11=1.1073178

A1=112.09493438

A2=111.16636081

A3=110.43329925

A4=124.3490444

A5=116.67193263

A6=124.38928993

A7=118.75846003

A8=111.75109562

A9=111.31131277

A10=110.59591393

D1=121.22102819

D2=-119.86570908

D3=-18.59816473

D4=-173.78308717

D5=-168.67316751

D6=5.74298397

D7=-134.28020334

D8=-13.622476

D9=106.65401107

Patch 9

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

153.6925856,66.1353827,-22.4107281,-744.0129447,-737.4299447

153.6925856,66.1353827,7.5892719,-744.0662984,-737.3773984

153.6925856,66.1353827,37.5892719,-744.0367903,-737.4578903

153.6925856,74.9221787,7.5892719,-744.0631729,-737.3727729

153.6925856,96.1353827,-22.4107281,-744.0342289,-737.3754289

153.6925856,96.1353827,-13.6239321,-744.0547071,-737.3442071

153.6925856,96.1353827,7.5892719,-744.0899135,-737.3092135

153.6925856,96.1353827,28.8024759,-744.0801083,-737.3579083

153.6925856,96.1353827,37.5892719,-744.0635090,-737.3890090

153.6925856,117.3485867,7.5892719,-744.1337466,-737.2232466

153.6925856,126.1353827,-22.4107281,-744.0924690,-737.2861690

153.6925856,126.1353827,7.5892719,-744.1452571,-737.2071571

153.6925856,126.1353827,37.5892719,-744.1172207,-737.3056207

155.9762006,96.1353827,7.5892719,-744.1198735,-737.2865735

162.4793816,66.1353827,7.5892719,-744.1572225,-737.3124225

162.4793816,96.1353827,-22.4107281,-744.1453491,-737.2965491

162.4793816,96.1353827,7.5892719,-744.1916843,-737.2257843

162.4793816,96.1353827,37.5892719,-744.1559395,-737.3181395

162.4793816,126.1353827,7.5892719,-744.2381960,-737.1261960

172.2120836,96.1353827,7.5892719,-744.2604474,-737.1584474

183.6925856,66.1353827,-22.4107281,-744.2096625,-737.2990625

183.6925856,66.1353827,-13.6239321,-744.2234652,-737.2703652

149

183.6925856,66.1353827,7.5892719,-744.2268629,-737.2565629

183.6925856,66.1353827,28.8024759,-744.1909810,-737.3221810

183.6925856,66.1353827,37.5892719,-744.1727860,-737.3530860

183.6925856,68.4189977,7.5892719,-744.2292772,-737.2529772

183.6925856,74.9221787,-22.4107281,-744.2202444,-737.2851444

183.6925856,74.9221787,7.5892719,-744.2386441,-737.2362441

183.6925856,74.9221787,37.5892719,-744.1853393,-737.3352393

183.6925856,84.6548807,7.5892719,-744.2572576,-737.1944576

183.6925856,96.1353827,-22.4107281,-744.2615400,-737.1926400

183.6925856,96.1353827,-20.1271131,-744.2656255,-737.1823255

183.6925856,96.1353827,-13.6239321,-744.2754524,-737.1552524

183.6925856,96.1353827,-3.8912301,-744.2834435,-737.1297435

183.6925856,96.1353827,7.5892719,-744.2801593,-737.1321593

183.6925856,96.1353827,19.0697739,-744.2646968,-737.1674968

183.6925856,96.1353827,28.8024759,-744.2458066,-737.2106066

183.6925856,96.1353827,35.3056569,-744.2324355,-737.2395355

183.6925856,96.1353827,37.5892719,-744.2279340,-737.2490340

183.6925856,107.6158847,7.5892719,-744.2967696,-737.0793696

183.6925856,117.3485867,-22.4107281,-744.2862874,-737.1160874

183.6925856,117.3485867,7.5892719,-744.3020168,-737.0609168

183.6925856,117.3485867,37.5892719,-744.2491243,-737.1960243

183.6925856,123.8517677,7.5892719,-744.3001223,-737.0657223

183.6925856,126.1353827,-22.4107281,-744.2842024,-737.1185024

183.6925856,126.1353827,-13.6239321,-744.2970927,-737.0805927

183.6925856,126.1353827,7.5892719,-744.2984474,-737.0706474

183.6925856,126.1353827,28.8024759,-744.2624413,-737.1652413

183.6925856,126.1353827,37.5892719,-744.2449309,-737.2057309

195.1730876,96.1353827,7.5892719,-744.2334187,-737.1705187

204.9057896,66.1353827,7.5892719,-744.0824536,-737.3701536

204.9057896,96.1353827,-22.4107281,-744.1545292,-737.2718292

204.9057896,96.1353827,7.5892719,-744.1420606,-737.2445606

204.9057896,96.1353827,37.5892719,-744.0828320,-737.3655320

204.9057896,126.1353827,7.5892719,-744.1274122,-737.2381122

211.4089706,96.1353827,7.5892719,-744.0551147,-737.3075147

213.6925856,66.1353827,-22.4107281,-743.9868443,-737.4639443

213.6925856,66.1353827,7.5892719,-743.9623153,-737.4444153

213.6925856,66.1353827,37.5892719,-743.9025219,-737.5385219

213.6925856,74.9221787,7.5892719,-743.9836092,-737.4155092

213.6925856,96.1353827,-22.4107281,-744.0445113,-737.3432113

213.6925856,96.1353827,-13.6239321,-744.0470211,-737.3196211

213.6925856,96.1353827,7.5892719,-744.0197897,-737.3314897

213.6925856,96.1353827,28.8024759,-743.9728666,-737.4131666

213.6925856,96.1353827,37.5892719,-743.9610868,-737.4450868

213.6925856,117.3485867,7.5892719,-744.0089954,-737.3180954

213.6925856,126.1353827,-22.4107281,-744.0214356,-737.3434356

213.6925856,126.1353827,7.5892719,-743.9919903,-737.3392903

213.6925856,126.1353827,37.5892719,-743.9333392,-737.4438392

Path 9

183.6925856,96.1353827,-16.4107280,-744.2716513,0.0000001

183.6925840,96.1354010,-16.4107133,-744.2716514,0.0000001

183.6917626,96.1446359,-16.4032636,-744.2716794,0.0000001

150

183.5656674,97.4826165,-15.3356565,-744.2756383,0.0000000

183.0597074,101.9856368,-11.9028546,-744.2874462,0.0000002

182.5774497,105.6572761,-9.2717353,-744.2952510,0.0000005

182.0813492,109.0603691,-6.9593284,-744.3009590,0.0000006

181.6304007,111.9056736,-5.1192371,-744.3045830,0.0000008

180.0469016,120.6414527,-0.2572998,-744.3092285,0.0000009

Final Path

-180. , 120.51 , -0.06 ,-744.309903152

B.5 Simulation Inputs

All of the inputs for the simulation except the initial Z-matrix are in the file chem vars.py
which will lie in the directory in which you unzip the simulation files. Below is a blank
sample of that file:

#! usr/local/apps/python-2.6.5/bin/python

#chemistry inputs for light-induced simulation

#number of design variables

d =

#name of your molecule

molecule = ’’

#the number of atoms in your molecule

num_atoms =

#the number of cores for your gaussian jobs

n_proc =

#method of energy computation (hf,b3lyp,...)

method = ’’

#basis-set for you gaussian jobs (cep-31g,CBSB7,...)

basis_set = ’’

#Gaussian job type (opt=modredundant) and anything else you want in the header

calculation = ’’

#state transitions for your simulation

151

state_order = []

#where will your gaussian jobs be run?

queue = ’’

#set this to 1 if you want every z-matrix that was calculated during your sim

all_zmats =

#atom number, value, ...

bond_lengths = []

#for reading output files, i.e. ’C1-C2’

bond_names = []

#atom numbers, value, ...

valence_angles = []

#for reading output files, i.e. ’C1-C2-C6’

valence_names = []

#atom numbers, value, ...

torsion_angles = []

#for reading output files, i.e. ’C1-C2-C6-C8’

torsion_names = []

#pre-processed variable, pre-processed to whom, amount to pre-process

deps = []

#where your molecule sits, this directory must have initial zmat as zmat.gjf

home_dir = ’’

#where to write all your files

share_dir = ’’

We now describe each input consecutively

d The number of design variables for your simulation

molecule This name will be written in the simulation summary file for future reference

num atoms The number of atoms in the molecule

152

n proc The number of cores for each individual gaussian job

method Energy computation method within gaussian

basis set Basis set for the energy computations

calculation Not only should you specify ”opt=modredundant”, but any other state-

ments you would like to add to the gaussian header should be placed here. ie

geom=connectivity

state order The quantum states through which your simulation will transition

queue The queue in which the gaussian jobs will run

all zmats Setting this option to 1 will cause the simulator to save every z-matrix on

every patch. Otherwise the simulator will only save the original on each patch.

design angles Design angles for the simulation specified by atom numbers in a string

followed by the value of the angle

angle names Each of the angles in the design angle portion must be paired with the

atom type and separated by hyphens

deps These are the angles to be pre-processed as the design angles are changed. Each

angle requires 3 inputs: atom numbers in a string, design angle to be pre-processed

with (counted by 2 from 0), and the value to be pre-processed by.

home dir Directory containing zmat.gjf

share dir Where do you want to write all the files?

B.6 Simulation Output

Once the simulation has begun, there will be a txt file summarizing the progress of
the simulation in the share dir specified in your input file chem vars.py. The file is
named Simulation summary.txt. The file begins with some information identifying the
simulation for future reference (molecule, basis set, energy computation method, initial
point, initial z-matrix) along with some information about the initial patch as shown
below

153

Thank you for using LITES

You will be simulating the molecule ____ using ____ with ____ as a basis set

We begin on state ____

with initial value of x = [____]

Initial patch size is ____

Beginning the simulation with the following Z-matrix

Following the Z-matrix will be summaries of every patch. The patch summary will
give the number of the patch, the size of the patch, the state the simulation was run
on, the maximum number of gaussian iterations, the initial and terminal points, and the
result of the patch (failed to converge, hit a boundary, found a minimum,..). A sample
of this section is provided below

PATCH NUMBER 0

Patch size was 20.0

Current state is state 1

Maximum Gaussian iterations was 5

Initial point for the patch was [0. 120. -120.]

Patch terminated at [2.64463711e-02 1.10427830e+02 -1.10386277e+02]

Terminal point hit a boundary of the patch, drawing new patch!

Next the summary provides the Z-matrix used as the initial iterate for constructing
that patch. If the patch converged, then each interpolation node is provided and the
simulation path is provided. The patch is provided following 2 lines. The first line
numbers the patch and the second is a key for reading the patch columns as shown below

Patch 0

1*2*6*8 6*2*1*5 2*6*8*11 state0 state1

-10.0000000,110.0000000,-130.0000000,-744.2032174,-736.9677174

-10.0000000,110.0000000,-120.0000000,-744.2079530,-736.9393530

-10.0000000,110.0000000,-110.0000000,-744.2080695,-736.9375695

.

.

.

The numbers separated by * are the torsion angles chosen for the simulation, while
the later columns just give the energy at each requested state. The simulation path is
provided after the patch following the line stating the path number. The columns of this
table are the value of the design variables, the energy at that point, and the predicted
error at that point:

154

Path 0

0.0000000,120.0000000,-120.0000000,-744.2302755,0.0000000

0.0000000,120.0000000,-120.0000000,-736.8791755,0.0000000

-0.0000000,119.9999981,-119.9999981,-736.8791755,0.0000000

-0.0000000,119.9991230,-119.9991229,-736.8791759,0.0000000

0.0000003,119.8601736,-119.8601642,-736.8792331,0.0000000

.

.

.

155

Appendix C

Codes

The codes in this section are the application of the algorithm described in Section 6.2.5

and are exclusively written for use with Python 2.6.5 or Linux C-Shell.
The file LITES defs.py contains classes, script editors, and error controls for the

simulation:

#! usr/local/apps/python-2.6.5/bin/python

#module of script editors and classes for LITES

#import modules we will use

from numpy import *

import os, time, shutil as si

import chem_vars as cv, math_vars as mv, LITES_math as lm, lhs

#Simulation class of values to be carried along throughout the simulation

class Simulation:

def __init__(self):

self.molecule = cv.molecule

self.num_atoms = cv.num_atoms

self.method = cv.method

self.basis_set = cv.basis_set

self.headfoot = make_headfoot(cv.n_proc, cv.method, cv.basis_set, cv.molecule, cv.calculation,\

len(cv.state_order))

mids = []

for angle in cv.torsion_angles[::2]:

m=angle.split()

mid = ’ ’.join([’D’,’*’,m[1],m[2],’*’,’R’,’\n’])

mids.append(mid)

self.mids = ’’.join(mids)

self.bond_lengths = cv.bond_lengths

self.valence_angles = cv.valence_angles

self.torsion_angles = cv.torsion_angles

self.share_dir = cv.share_dir

self.deps = cv.deps

156

self.state_order = cv.state_order

self.queue = cv.queue

self.n_proc = cv.n_proc

self.bond_names = cv.bond_names

self.valence_names = cv.valence_names

self.torsion_names = cv.torsion_names

set = lm.make_index(mv.k,cv.d)

self.point_list = array(lm.gen_grid(set)[0])

bls = array([float(i) for i in cv.bond_lengths[1::2]])

vas = array([float(i) for i in cv.valence_angles[1::2]])

tas = array([float(i) for i in cv.torsion_angles[1::2]])

self.init_point = mat(hstack([bls,vas,tas]))

self.conv_patches = []

self.q_size = mv.q_size

self.H0 = mv.H0

bd,bu = self.init_point.transpose()-mv.H0, self.init_point.transpose()+mv.H0

self.bounds0 = bmat(’bd bu’)

self.gau_time = mv.gau_time

self.sim_time = mv.sim_time

self.ec = mv.error_control

#makes the header and footer that are in every gjf file

#n_proc=number of processors, method=energy computation method,

#basis_set=gaussian basis set, molecule=duh, calculation= type of

#calculation(i.e. opt=modredundant), num_states=number of excited states

#both header and footer are long strings

def make_headfoot(n_proc, method, basis_set, molecule, calculation, num_states):

header = ’’

header = header + ’%%chk=%s\n’ % molecule

header = header + ’%MEM=2GB\n’ #unnecessary in g03, but seem to be for g09

header = header + ’%%NProcShared=%s\n’ % n_proc

header = header + ’# %s %s/%s IOp(99/14=1) scf=tight test\n’ % (calculation, method, basis_set)

header = header + ’\n’

header = header + ’header made by Dave Mokrauer\n\n’

header = header + ’0 1\n’

footer = ’’

footer = footer + ’\n--Link1--\n’

footer = footer + ’%%chk=%s\n’ % molecule

footer = footer + ’%MEM=2GB\n’ #unnecessary in g03, but seem to be for g09

footer = footer + ’%NoSave\n’

footer = footer + ’%%NProcShared=%s\n’ % n_proc

footer = footer + ’# td(NStates=%s) %s/%s scf=tight Geom=(AllCheck,CAngle,CDihedral) Guess=\

Read test\n’ % (num_states, method, basis_set)

return header, footer

#Patch class for each step of the simulation, this passes to function evaluations and RK45

class Patch:

def __init__(self, patch_number, bounds, state, init_point, zmat, point_list):

157

self.p = patch_number

self.k = mv.k - 1

self.d = cv.d

self.b = bounds

self.s = state

self.i = init_point

self.GTOL_RK = mv.GTOL_RK

self.ETOL_RK = mv.ETOL_RK

self.ETOL_sim = mv.ETOL_sim

self.Fudge_sim = mv.Fudge_sim

self.gau_max = mv.gau_max

self.RK_hmin = mv.RK_hmin

self.H = (bounds[0,1]-bounds[0,0])/2.

if patch_number == 0:

self.zmat = read_initial_zmat()

else:

self.zmat = zmat

self.at_min = 0

self.dist = mv.shift_dist

self.grid = zeros(point_list.shape)

for i in range(0,self.grid.shape[1]):

self.grid[:,i] = (bounds[i,1] - bounds[i,0])*point_list[:,i]/2. + bounds[i,0]+self.H

self.Data=mat(zeros(self.grid.shape))

self.Path=mat(zeros((3,3)))

#reads the initial z-matrix from your zmat.gjf file

def read_initial_zmat():

file = open(’zmat.gjf’, ’r’) #open the file

zmat = file.read()

file.close

zmat = zmat.split(’\r\n’) #remove the end lines

zmat = ’\n’.join(zmat)

while zmat[-1] == ’\n’: #remove all the blank lines at the end

zmat=zmat[:-1]

return zmat

#runs the gaussian jobs on the patch, checks for convergence, and returns max gaussian iterations

def run_patch(Sim, Patch):

patch_fin = 1 #indicator that the jobs finished

max_iters = 0 #most iterations of any job on the patch

#make and submit a gaussian file for every point

for i in range(0,Patch.grid.shape[0]):

make_gjf(Patch.zmat, Patch.grid[i], Sim, i)

make_sub_file(Sim, i)

os.system(’bsub < g_sub1’)

sub_files = range(0,Patch.grid.shape[0])

#wait for gaussian files to return, check if they converged, kill those running if there is a failure

158

while len(sub_files) > 0:

for i in sub_files:

if os.path.exists(’%s/%s_sp%s.log’ % (Sim.share_dir, Sim.molecule, i)) == True:

sub_files.remove(i)

if convergence_check(’%s/%s_sp%s.log’ % (Sim.share_dir, Sim.molecule, i))==0:

patch_fin = 0

if patch_fin == 0:

sub_files = []

#kills the runing gaussian jobs

os.system(’bkill -J E_files*’)

if they all converged write the files

if patch_fin == 1:

time.sleep(5)

max_iters = write_patch(Sim.share_dir,Patch.grid, Patch.p, Sim.molecule, max(Sim.state_order))

return max_iters, patch_fin

#makes the file that submits gaussian jobs by replacing place holders in file g_sub

def make_sub_file(Sim, file_number):

f = open(’g_sub’,’r’)

s = f.read()

f.close()

s = s.split(’\n’)

scratch = ’/scratch/dsmokrau%s’ % file_number

gjf = ’%s_sp%s.gjf’ % (Sim.molecule, file_number)

log = ’%s_sp%s.log’ % (Sim.molecule, file_number)

for line in s:

line1 = line.split(’ ’)

if ’log’ in line1:

line1[line1.index(’log’)] = log

if ’gjf’ in line1:

line1[line1.index(’gjf’)] = gjf

if ’scratch’ in line1:

line1[line1.index(’scratch’)] = scratch

if ’n_proc’ in line1:

line1[line1.index(’n_proc’)] = str(Sim.n_proc)

if ’queue’ in line1:

line1[line1.index(’queue’)] = Sim.queue

if ’time’ in line1:

line1[line1.index(’time’)] = str(Sim.gau_time)

if ’share’ in line1:

line1[line1.index(’share’)] = Sim.share_dir

if ’out’ in line1:

line1[line1.index(’out’)] = ’%s_sp%s.out’ % (Sim.molecule, file_number)

if ’err’ in line1:

line1[line1.index(’err’)] = ’%s_sp%s.err’ % (Sim.molecule, file_number)

if ’E_files’ in line1:

line1[line1.index(’E_files’)] = ’E_files%s’ % file_number

line1 = ’ ’.join(line1)

159

line1 = line1 + ’\n’

s[s.index(line)]=line1

f = open(’g_sub1’,’w’)

f.writelines(s)

f.close()

#makes the gjf file with the header and footer for the simulation

#need to add bond length

def make_gjf(zmat, x, Sim, file_number):

angle_edits = ’’

for i in Sim.valence_angles[::2]:

angle_edits = angle_edits + ’A %s %f F\n’ % (i, x[Sim.valence_angles.index(i)/2])

for i in Sim.torsion_angles[::2]:

angle_edits = angle_edits + ’D %s %f F\n’ % (i, x[len(Sim.valence_angles)/2\

+Sim.torsion_angles.index(i)/2])

for i in Sim.deps[::3]:

angle_edits = angle_edits + ’D %s %f\n’ % (i, float(x[Sim.deps[Sim.deps.index(i)+1]]\

+Sim.deps[Sim.deps.index(i)+2]))

tzmat = zmat+’\n\n’

gjf_file = open("%s_sp%s.gjf" % (Sim.molecule, file_number), ’w’)

gjf_file.write(Sim.headfoot[0] + tzmat + Sim.mids + angle_edits + Sim.headfoot[1])

gjf_file.close()

#collects all the patch’s data into a function so that the smolyak algorithm can evaluate

#pretty standard, read lines and write them

#also counts the iterations

def write_patch(share_dir,X,patch_number,molecule,num_states):

X=mat(X)

max_iters = 0

energy = mat(zeros((X.shape[0],num_states+1)))

for i in range(0,X.shape[0]):

#################

[evals, iters] = get_energy_vals(share_dir, molecule, i, num_states)

if iters > max_iters:

max_iters = iters

#################

energy[i]=evals

Data=bmat(’X energy’)

savetxt(’%s/Data%s.txt’ % (share_dir,patch_number), Data)

return max_iters

#just extracts energy from the log file and counts the iterations

def get_energy_vals(share_dir, molecule, file_number, num_states):

inf = open("%s/%s_sp%s.log" % (share_dir, molecule, file_number), ’r’)

F = inf.read()

inf.close()

F = F.split(’\n’)

160

Z = []

iters = 0

for line in F:

line = line.split()

Z.append(line)

matrix_line=[]

E_spots=[]

exc_line = [’Excited’, ’State’]

for line in Z:

if line[0:2] == [’SCF’, ’Done:’]:

E_spots.append(Z.index(line))

iters = iters + 1

for i in range(1, num_states+1):

exc_line.append(’%s:’ % i)

if (line[0:3] == exc_line):

if (i == num_states):

matrix_line.append(’%s\n’ % line[4])

else:

matrix_line.append(line[4])

exc_line = exc_line[:-1]

matrix_line.insert(0,Z[E_spots[-1]][4])

matrix_line[0]=float(matrix_line[0])*27.2112

for i in range(1,len(matrix_line)):

matrix_line[i]=float(matrix_line[i])+matrix_line[0]

iters = iters - 1

return matrix_line, iters

#checks if the gaussian file converged by looking for a zmatrix and a statement of convergence

#input is the file to check

def convergence_check(log_file):

log = open(’%s’ % log_file, ’r’)

log_str = log.read()

log.close()

log_str = log_str.split(’\n’)

chk1 = ’ -- Stationary point found.’ in log_str

chk2 = ’ Final structure in terms of initial Z-matrix:’ in log_str

chk = 0

if (chk1 == 1) and (chk2 == 1):

chk=1

return chk

#runs the integrator and a newton if a minimum is found. The rest is data for passing

def Patch_Path(Patch,Sim):

#integrator

[path,f,edge,reject_patch]=lm.RK45(Patch)

#do a newton if steady state is reached

at_min=0

if all(edge==0):

161

at_min=1

[pn,fn] = lm.newton(path[-1],Patch)

path=bmat(’path;pn’)

f=bmat(’f;fn’)

#RK error needs the higher order function values

Patch.k = Patch.k+1

f1=lm.my_fun(path,Patch)

#Relative error for RK approach

int_err=max(abs(f-f1)/abs(f))[0,0]

#Values for TR approach

o_energy=f[0]

p_energy=f[-1]

#next initial point

init_point=path[-1]

Patch.Data=mat(genfromtxt(’Data%s.txt’ % Patch.p ,delimiter=’ ’))

Patch.Path=path

#Find the nearest zmat to the initial point on the next patch

nearby,dist,p_count=0,10000,0

for i in Patch.Data[:,0:Patch.d]:

if linalg.norm(init_point[0]-i[0])<dist:

dist=linalg.norm(init_point[0]-i[0])

nearby=p_count

p_count=p_count+1

file with values for checking the exact error

savetxt(’check_error.py’,path)

path=bmat(’path f’)

savetxt(’Path%s.txt’ % Patch.p, path)

init_point = array(init_point)

return init_point, edge, at_min, nearby, p_energy, o_energy, int_err

#Calculates the new patch size using number of gaussian iterations and the error estimate

def RK_approach(Patch, int_err, max_iters, init_point, edge):

if max_iters > Patch.gau_max:

H = Patch.H/2.

else:

print(’Patch.k = %s’ % Patch.k)

H = Patch.Fudge_sim*Patch.H*(Patch.ETOL_sim/int_err)**(1.0/Patch.k)

x0 = init_point+(Patch.dist*2-1)*edge*H

bd,bu = x0.transpose()-H, x0.transpose()+H

new_bounds = bmat(’bd bu’)

return new_bounds

162

#reads the z-matrix from the log file

#i.e. file = ’TMS_sp3.log’

def read_zmat(file,num_atoms):

zmat=[]

inf = open("%s" % file, ’r’)

F = inf.read()

inf.close()

F = F.split(’\n’) # we have to split the file twice in order to read the first line

Z = []

for line in F:

line = line.split() # 2nd split

Z.append(line)

for line in Z:

if len(line)!=0 and line[0] == ’Final’: #signals the end of the zmatrix

locale = Z.index(line)

num_vars = 4*num_atoms-4

zmat=zmat+Z[locale+1:locale+num_vars][:]

zmat.append([’’])

zmat1=’’

for line in zmat:

zmat1=zmat1+line[0]+’\n’

zmat = zmat1

while zmat[-1] == ’\n’:

zmat=zmat[:-1]

return zmat

#When the integrator finds a minimum, we change states and estimate

#a global error from a latin hypercube

#If the error is unacceptable on the new state we will drop the patch

def keep_patch(Patch,next_state):

lhc=mat(lhs.lhsFromSample(Patch.b.transpose(),siz=1000))

Patch.s = next_state

F1 = lm.my_fun(lhc,Patch)

Patch.k = Patch.k-1

F2 = lm.my_fun(lhc,Patch)

int_err = max(abs(F2-F1)/abs(F2))[0,0]

return int_err

#Makes or continues summary of simulation file

#Just a script to write to the file

def Sim_Sum(Sim,Patch,patch_fin,at_min,gau_iters):

if os.path.exists(’Simulation_Summary.txt’) == False:

sim_file = open(’%s/Simulation_Summary.txt’ % cv.share_dir,’w’)

sim_file.write(’Thank you for using LITES\n’)

sim_file.write(’You will be simulating the molecule %s using\

%s with %s as a basis set\n’ % (Sim.molecule,Sim.method,Sim.basis_set))

sim_file.write(’We begin on state %s\n’ % Sim.state_order[0])

sim_file.write(’with initial value of x = %s’ % Patch.i)

163

H = 2*Patch.H

sim_file.write(’\nInitial patch size is %s\n’ % H)

sim_file.write(’Beginning the simulation with the following Z-matrix\n’)

si.copyfileobj(open(’zmat.gjf’,’r’),sim_file)

sim_file.write(’\n\nNow for the patch summaries!’)

sim_file.close()

else:

sim_file = open(’%s/Simulation_Summary.txt’ % cv.share_dir, ’a’)

sim_file.write(’\n\n\nPATCH NUMBER %s\n’ % Patch.p)

H = 2*Patch.H

sim_file.write(’Patch size was %s\n’ % H)

if patch_fin == 0:

sim_file.write(’Convergence Failure! Shrinking the Patch!\n\n’)

if .5*H < mv.H_min:

sim_file.write(’Simulation Failure! H too small!’)

else:

sim_file.write(’Current state is state %s\n’ % Patch.s)

sim_file.write(’Maximum Gaussian iterations was %s\n’ % gau_iters)

sim_file.write(’Initial point for the patch was %s\n’ % Patch.i)

sim_file.write(’Patch terminated at %s\n’ % Patch.Path[-1])

if (at_min == 1) and (Patch.s != Sim.state_order[-1]):

sim_file.write(’Terminal point was a minimum, changing states!\n\n’)

elif (at_min == 1) and (Patch.s == Sim.state_order[-1]):

sim_file.write(’Terminal point on the last state! Gaussian performing final optimization\n\n’)

else:

sim_file.write(’Terminal point hit a boundary of the patch, drawing new patch!\n\n’)

sim_file.write(’Now the Z-matrix, Patch, and Path\n’)

sim_file.write(’Z-matrix for patch %s was\n %s\n’ % (Patch.p,Patch.zmat))

vars=[]

for line in Sim.torsion_angles:

line1 = line.split()

line1 = ’*’.join(line1)

Sim.torsion_angles[Sim.torsion_angles.index(line)]=line1

for i in range(0,len(Sim.state_order)+1):

Sim.torsion_angles.append(’state%s’ % i)

vars.append(’\n’)

vars = ’ ’.join(vars)

sim_file.write(’Patch %s \n’ % Patch.p)

sim_file.write(vars)

si.copyfileobj(open(’Data%s.txt’ % Patch.p,’r’),sim_file)

sim_file.write(’Path %s \n’ % Patch.p)

si.copyfileobj(open(’Path%s.txt’ % Patch.p,’r’),sim_file)

sim_file.close()

return

The file LITES math.py contains the math codes for the simulation. These include
Smolyak interpolation codes, Runge-Kutta 45, and a Newton’s method code as well as
function evaluations from Gaussian.

#! usr/local/apps/python-2.6.5/bin/python

#module of math codes for LITES all converted from matlab

164

from math import *

from numpy import *

#makes every index for the Smolyak interpolation

#k is the degree of exactness

#d is the degree

def make_index(k,d):

set = ones((1,d))

#generate all the possible indices

for i in range(0,k):

for j in range(set.shape[0]-d**i+1,set.shape[0]+1):

set = vstack([set,tile(set[j-1],(d,1))+eye(d)])

#remove the redundancies

set = unique(set.view([(’’,set.dtype)]*set.shape[1])).view(set.dtype).reshape(-1,set.shape[1])

lines=[]

#remove elements whose sums are too small

for i in range(0,set.shape[0]):

if sum(set[i]) < k+1:

lines.append(i)

set=delete(set,lines,0)

return set

#Generates the set of points for the patches and writes to a file

def gen_grid(set):

max_size = max(set[:,0])

nodes = zeros((max_size,2**(max_size-1)+1))

#make the nodes

for i in range(1,int(max_size)):

j=range(1,2**i+2)

nodes[i,range(0,2**i+1)]=-cos(pi*(j-ones(len(j)))/(2**i))

#make sure that 0 is 0

nodes[nonzero(abs(nodes)<10**(-15))]=0

nodes=mat(nodes)

grid = zeros((1,set.shape[1]))

#now the grid from the cartesian product of each dimension for the index

for i in set:

w = ’cartesian((’

for k in range(0,len(i)):

if i[k] == 1:

w = w +’[nodes[0,0]]’

else:

165

w = w + ’nodes[’ + str(int(i[k]-1)) + ’,range(0,’ + str(int(2**(i[k]-1)+1)) + ’)]’

if k != len(i)-1:

w = w + ’,’

w = w + ’))’

grid = vstack([grid,eval(w)])

#remove the redundancies

grid = unique(grid.view([(’’,grid.dtype)]*grid.shape[1])).view(grid.dtype).reshape(-1,grid.shape[1])

grid = mat(grid)

return grid, nodes

#cartesian product of arrays

def cartesian(arrays, out=None):

arrays = [asarray(x) for x in arrays]

dtype = arrays[0].dtype

n = prod([x.size for x in arrays])

if out is None:

out = zeros([n, len(arrays)], dtype=dtype)

m = n / arrays[0].size

out[:,0] = repeat(arrays[0], m)

if arrays[1:]:

cartesian(arrays[1:], out=out[0:m,1:])

for j in xrange(1, arrays[0].size):

out[j*m:(j+1)*m,1:] = out[0:m,1:]

return out

#d-dimensional Smolyak interpolation with degree of exactness k

#x is the points you are evaluating, where each row is a point, x is a MATRIX!

def ddim_smol(x,Patch):

set = make_index(Patch.k,Patch.d)

max_size=max(set[:,0])

nodes = zeros((max_size,2**(max_size-1)+1))

#compute the nodes

for i in range(1,int(max_size)):

j=range(1,2**i+2)

nodes[i,range(0,2**i+1)]=-cos(pi*(j-ones(len(j)))/(2**i))

nodes[nonzero(abs(nodes)<10**(-15))]=0

g = zeros(x.shape)

f = zeros((x.shape[0],1))

#Linear combinations for Smolyak

for i in set:

[f_cur,g_cur] = vec_lagrange(i,nodes,x,Patch)

coeffs = (-1)**(Patch.d+Patch.k-sum(i))*factorial(Patch.d-1)/(factorial(Patch.d-1\

166

-Patch.d-Patch.k+sum(i))*factorial(Patch.d+Patch.k-sum(i)))

f=f+f_cur*coeffs

g=g+coeffs*g_cur.transpose()

f=mat(f)

g=mat(g)

return f, g

#multi-dimensional lagrange interpolation for vector i of indices with associated

#smolyak nodes. Takes the product of 1d lagrange polynomials

#x is columns of points

def vec_lagrange(i,nodes,x,Patch):

#generate the grid for the current index i

w = ’cartesian((’

for k in range(0,len(i)):

if i[k] == 1:

w = w +’[nodes[0,0]]’

else:

w = w + ’nodes[’ + str(int(i[k]-1)) + ’,range(0,’ + str(int(2**(i[k]-1)+1)) + ’)]’

if k != len(i)-1:

w = w + ’,’

w = w + ’))’

grid = mat(eval(w))

#move the grid to the current domain

bounds1=tile((Patch.b[:,1]-Patch.b[:,0]).transpose()/2,(grid.shape[0],1))

grid1=multiply(grid,bounds1)

grid1 = grid1 + tile((Patch.b[:,1]+Patch.b[:,0]).transpose()/2,(grid.shape[0],1))

#evaluate the function at each gridpoint

f = Gau_Evals(grid1,Patch)

#pre-allocate

lg_poly = ones((grid.shape[0],x.shape[0]))

grad = ones((grid.shape[0],x.shape[0],grid.shape[1]))

z=0

grid=array(grid)

for j in grid:

for k in range(0,len(j)):

if i[k] != 1:

cur_nodes=nodes[i[k]-1,range(0,int(2**(i[k]-1)+1))] #row

cur_nodes=cur_nodes[cur_nodes!=j[k]] #row

#move the nodes

cur_nodes=cur_nodes*(Patch.b[k,1]-Patch.b[k,0])/2+(Patch.b[k,1]+Patch.b[k,0])/2; #row

oth_node=j[k]*(Patch.b[k,1]-Patch.b[k,0])/2+(Patch.b[k,1]+Patch.b[k,0])/2 #row

#evaluate the lagrange poly

cur_den=tile(oth_node-cur_nodes,(x.shape[0],1))

cur_num=tile(x[:,k],(1,len(cur_nodes)))-tile(cur_nodes,(x.shape[0],1))

167

cur_dim=prod(cur_num/cur_den,1)

lg_poly[z,:]=multiply(lg_poly[z,:],cur_dim.transpose());

#differentiate the same way

other_vars=mat(range(0,len(j)))

other_vars=other_vars[other_vars!=k] #only diff the variable k

cur_dim = tile(cur_dim.transpose(),(1,other_vars.shape[1]))

cur_dim = array(cur_dim)

cur_dim = cur_dim.reshape(1,x.shape[0],other_vars.shape[1],order=’F’)

#product with only other variables

grad[z,:,other_vars]=multiply(grad[z,:,other_vars][0],cur_dim[0].transpose())

int_num = zeros((1,x.shape[0]))

for m in range(0,cur_num.shape[1]):

inds=array(cur_num)

inds[:,m]=1

#product rule

int_num=int_num+prod(inds,1).transpose()

grad[z,:,k]=multiply(grad[z,:,k],int_num)/(prod(cur_den,1))

else:

#constant terms zero out

grad[z,:,k]=0

z=z+1

g=tile(f,(1,grad.shape[1]*grad.shape[2]))

g=array(g)

g=g.reshape(f.shape[0],grad.shape[1],grad.shape[2],order=’F’)

#sum the polynomials

grad=sum(multiply(g,grad),0)

grad=grad.reshape(x.shape[0],x.shape[1],order=’F’)

grad=grad.transpose()

f=sum(multiply(tile(f,(1,x.shape[0])),lg_poly),0).transpose()

return f,grad

#Runge-Kutta 4/5 with Dormand=Prince coefficients for use in continuous steepest

#descent optimization on a closed and bounded surface

#you are solving x’=grad f(x)

#my_mod is the module with all of your functions

#grad is the NEGATIVE gradient of your function

#mf is the function you are minimizing

#Hess is the function that gives you a Hessian

#all in this module

#y is a matrix of a single row!

168

def RK45(Patch):

h=.01

y = Patch.i

f = my_fun(y,Patch)

A= mat([[0., 0., 0., 0., 0., 0., 0.],

[1./5., 0., 0., 0., 0., 0., 0.],

[3./40., 9./40., 0., 0., 0., 0., 0.],

[44./45., -56./15., 32./9., 0., 0., 0., 0.],

[19372./6561., -25360./2187., 64448./6561., -212./729., 0., 0., 0.],

[9017./3168., -355./33., 46732./5247., 49./176., -5103./18656., 0., 0.],

[35./384., 0., 500./1113., 125./192., -2187./6784., 11./84., 0.]])

B=mat([[5179./57600., 0., 7571./16695., 393./640., -92097./339200., 187./2100., 1./40.],

[35./384., 0., 500./1113., 125./192., -2187./6784., 11./84., 0.]])

E=B[1,:]-B[0,:]

Y=mat(zeros((7,y.shape[1])))

Y[0,:] = y

g0=linalg.norm(my_grad(y,Patch))

done=0

path=mat(y)

reject_patch = 0

while done !=1:

accept=0

while accept==0:

Y[1,:]=Y[0,:]+h*A[1,0]*my_grad(Y[0,:],Patch)

Y[2,:]=Y[0,:]+h*A[2,0]*my_grad(Y[0,:],Patch)+h*A[2,1]*my_grad(Y[1,:],Patch)

Y[3,:]=Y[0,:]+h*A[3,0]*my_grad(Y[0,:],Patch)+h*A[3,1]*my_grad(Y[1,:],Patch

)+h*A[3,2]*my_grad(Y[2,:],Patch)

Y[4,:]=Y[0,:]+h*A[4,0]*my_grad(Y[0,:],Patch)+h*A[4,1]*my_grad(Y[1,:],Patch

)+h*A[4,2]*my_grad(Y[2,:],Patch)+h*A[4,3]*my_grad(Y[3,:],Patch)

Y[5,:]=Y[0,:]+h*A[5,0]*my_grad(Y[0,:],Patch)+h*A[5,1]*my_grad(Y[1,:],Patch

)+h*A[5,2]*my_grad(Y[2,:],Patch)+h*A[5,3]*my_grad(Y[3,:],Patch)+h*A[

5,4]*my_grad(Y[4,:],Patch)

Y[6,:]=Y[0,:]+h*A[6,0]*my_grad(Y[0,:],Patch)+h*A[6,1]*my_grad(Y[1,:],Patch

)+h*A[6,2]*my_grad(Y[2,:],Patch)+h*A[6,3]*my_grad(Y[3,:],Patch)+h*A[

6,4]*my_grad(Y[4,:],Patch)+h*A[6,5]*my_grad(Y[5,:],Patch)

y_err=y+h*B[0,0]*my_grad(Y[0,:],Patch)

y_new=y+h*B[1,0]*my_grad(Y[0,:],Patch)

for i in range(1,7):

y_err = y_err+h*B[0,i]*my_grad(Y[i,:],Patch)

y_new = y_new+h*B[1,i]*my_grad(Y[i,:],Patch)

f_cur = my_fun(y_new,Patch)

eps=linalg.norm(y_new-y_err)/linalg.norm(y_new);

reject=0;

if eps > Patch.ETOL_RK:

h=.8*h*(Patch.ETOL_RK/eps)**(1./5.)

reject=1

else:

[shrink,done,edge]=check_bounds(y_new,Patch.b)

169

if shrink == 1:

h=.5*h

reject=1

if reject == 0:

accept = 1

f=bmat(’f;f_cur’)

path=bmat(’path;y_new’)

y=mat(y_new)

Y[0,:]=y

h=.8*h*(Patch.ETOL_RK/eps)**(1./5.)

gcur=linalg.norm(my_grad(y,Patch))

if gcur < Patch.GTOL_RK:

[f1,g1,H] = f_newt(y_new,Patch)

[D,V]=linalg.eig(H)

if all(D>0):

done=1

else:

done=0

if h < Patch.RK_hmin:

done = 1

accept = 1

reject_patch = 1

return path, f, edge, reject_patch

#checks that the RK step doesn’t cross the boundary or that it should terminate

def check_bounds(y_new,bounds):

shrink=0

done=0

edge=mat(zeros((1,y_new.shape[1])))

past_bounds=mat(zeros((1,y_new.shape[1])))

b1=.05*(bounds[:,1]-bounds[:,0])

bottom, top = bounds[:,0]+b1, bounds[:,1]-b1

bounds1 = bmat(’bottom top’)

for i in range(0,y_new.shape[1]):

if y_new[0,i]<bounds1[i,0]:

edge[0,i]=-1

if y_new[0,i]>bounds1[i,1]:

edge[0,i]=1

if y_new[0,i]<bounds[i,0]:

past_bounds[0,i]=-1

if y_new[0,i]>bounds[i,1]:

past_bounds[0,i]=1

if all(past_bounds==0)==False:

shrink=1

elif all(edge==0)==False:

done=1

return shrink,done,edge

170

#braindead Newton’s method

#other functions are in this module

#Hess is a function whose definition is in the module mf

#[fout,gout,hout]=Hess(x)

#x is a row vector!

def newton(x,Patch):

tol=10.**-12

[fout,gout,hout] = f_newt(x,Patch)

while linalg.norm(gout) > tol:

s=linalg.solve(hout,-gout)

x=x+s.transpose()

[fout,gout,hout] = f_newt(x,Patch)

return x, fout

#Gives the proper value of the energy at each gridpoint

def Gau_Evals(x,Patch):

F=mat(genfromtxt(’Data%s.txt’ % Patch.p, delimiter=’ ’))

f=mat(zeros((x.shape[0],1)))

kk=0

for j in x:

ind=-3

cc=0

for i in F:

if linalg.norm(i[0,:Patch.d]-j[0])<10.**-4:

ind = cc

cc = cc + 1

f[kk] = F[ind,Patch.d+Patch.s]

kk = kk+1

return f

#interpolation of the energy function

def my_fun(x,Patch):

[f1,g1]=ddim_smol(x,Patch)

return f1

#-grad of the energy function

def my_grad(x,Patch):

Patch.k=Patch.k+1

[f1,g1]=ddim_smol(x,Patch)

g1=-g1

Patch.k=Patch.k-1

return g1

171

#adds a finite difference Hessian to a single point call of the Smolyak interpolation

#also converts the gradient to a column vector.

def f_newt(x,Patch):

[fout]=my_fun(x,Patch)

[gout]=my_grad(x,Patch)

gout=gout.transpose()

h=10.0**-6

hout= h*mat(eye(3))

for i in range(0,x.shape[1]):

gout1=my_grad((x+hout[:,i].transpose()),Patch)

hout[:,i]=gout1.transpose()

hout=hout-tile(gout,(1,x.shape[1]))

hout=-hout/h

gout=-gout

return fout,gout,hout

The file math vars.py contains the math variables that a mathematician may want to
edit in the simulation, but these are not intended for all users.

#! usr/local/apps/python-2.6.5/bin/python

#Math variables for light-induced simulation

#This is the order of the interpolation error. The surrogate will be exact for degree k-1

k = 3

#This is the gradient value where RK45 switches to Newton/Quasi-Newton

GTOL_RK = 10**(-3.0)

#Tolerance for RK45 accuracy

ETOL_RK = 10**(-5.0)

#1/2 the Maximum size of a patch

H_max = 100

#1/2 the minimum size of a patch

H_min = 1

#minimum h for RK45

RK_hmin = 10**(-10)

#Maximum number of Gaussian iterations before shrinking the patch

gau_max = 12

#Error tolerance for patch accuracy

ETOL_sim = 10.0**(-4.0)

#Time requested from LSF for full simulation

sim_time = 10000

172

#Time requested from LSF for gaussian jobs

gau_time = 1000

#number of available processors for jobs. Allows for scaling studies

q_size = 240

#Parameter for growing the trust-region

TR_grow = 2

#Parameter for shrinking the trust-resion

TR_shrink = .5

#accuracy limit to grow the trust-region

TR_accg = .95

#accuracy limit to shrink the trust-region

TR_accs = .85

#Fudge factor for determining the next patch-size

Fudge_sim = .7

#Check the exact error along the simulation path (this doubles the simulation time!)

Check_Exact = 0

#1/2 the initial patch size

H0 = 15

#parameter for shifting the patch when a boundary is hit

shift_dist = .8

#1 for trust-region, 2 for Runge-Kutta

error_control = 2

The file chem vars.py contains the inputs that any user should be prepared to edit in
order to run this simulation.

#! usr/local/apps/python-2.6.5/bin/python

#chemistry inputs for light-induced simulation

#number of design variables

d = 3

#name of your molecule

molecule = ’Butene’

#the number of atoms in your molecule

num_atoms = 12

#the number of cores for your gaussian jobs

n_proc = 2

#method of energy computation (hf,b3lyp,...)

173

method = ’b3lyp’

#basis-set for you gaussian jobs (cep-31g,CBSB7,...)

basis_set = ’cep-31g’

#Gaussian job type (opt=modredundant) and anything else you want in the header

calculation = ’opt=modredundant’

#state transitions for your simulation

state_order = [1,0]

#where will your gaussian jobs be run?

queue = ’gto’

#set this to 1 if you want every z-matrix that was calculated during your sim

all_zmats = 0

#atom number, value, ...

bond_lengths = []

#for reading output files, i.e. ’C1-C2’

bond_names = []

#atom numbers, value, ...

valence_angles = []

#for reading output files, i.e. ’C1-C2-C6’

valence_names = []

#atom numbers, value, ...

torsion_angles = [’1 2 6 8’, 0., ’6 2 1 5’, 120., ’2 6 8 11’, -120.]

#for reading output files, i.e. ’C1-C2-C6-C8’

torsion_names = [’C1-C2-C6-C8’, ’C6-C2-C1-H5’, ’C2-C6-C8-H11’]

#pre-processed variable, pre-processed to whom, amount to pre-process

deps = [’1 2 6 9’, 0, 180., ’8 6 2 7’, 0, 180., ’9 6 2 7’, 0, 0.]

#where your molecule sits, this directory must have initial zmat as zmat.gjf

home_dir = ’/home/dsmokrau/%s’ % molecule

#where to write all your files

share_dir = ’/kelley_data/dsmokrau/db_LITES’

The file LITES.py is the main simulation which calls the above modules.

#! usr/local/apps/python-2.6.5/bin/python

LIGHT INDUCED TRANSITION EFFECTS SIMULATOR

from numpy import *

import shutil, os, sys, time, string

174

import LITES_defs as ld

Sim = ld.Simulation() # all the initial values and sim stuff is in this class

shutil.copyfile(’g_sub’, ’%s/g_sub’ % Sim.share_dir)

shutil.copyfile(’zmat.gjf’, ’%s/zmat.gjf’ % Sim.share_dir)

sys.path.insert(0,’%s’ % Sim.share_dir)

os.chdir(’%s’ % Sim.share_dir)

cur_Patch = ld.Patch(0, Sim.bounds0, Sim.state_order[0], Sim.init_point, 0, Sim.point_list)

print(’cur_Patch is number %s’ % cur_Patch.p)

keep = 0

ld.Sim_Sum(Sim,cur_Patch,0,0,0)

for state in Sim.state_order:

at_min = 0

if state == Sim.state_order[-1]:

next_state = 0

else:

next_state = Sim.state_order[Sim.state_order.index(state)+1]

while at_min == 0:

if keep == 0:

[max_iters, patch_fin] = ld.run_patch(Sim,cur_Patch)

else:

patch_fin = 1

if patch_fin == 0:

ld.Sim_Sum(Sim,cur_Patch,patch_fin,0,max_iters)

bd, bu = cur_Patch.b[:,0]+(cur_Patch.b[:,1]-cur_Patch.b[:,0])/4., cur_Patch.b[:,1]-(cur_Patch.b[:,1]-\

cur_Patch.b[:,0])/4.

bounds = bmat(’bd bu’)

cur_Patch = ld.Patch(cur_Patch.p+1, bounds, state, cur_Patch.i, cur_Patch.zmat, Sim.point_list)

print(’cur_Patch is number %s’ % cur_Patch.p)

os.system(’rm %s_sp*’ % Sim.molecule)

keep = 0

else:

Sim.conv_patches.append(cur_Patch.p)

[init_point, edge, at_min, nearby, p_energy, o_energy, int_err] = ld.Patch_Path(cur_Patch,Sim)

zmat = ld.read_zmat(’%s_sp%s.log’ % (Sim.molecule, nearby), Sim.num_atoms)

keep = 0

if at_min == 0:

if Sim.ec == 1:

pass

elif Sim.ec == 2:

new_bounds = ld.RK_approach(cur_Patch,int_err,max_iters, init_point, edge)

ld.Sim_Sum(Sim,cur_Patch,patch_fin,at_min,max_iters)

cur_Patch = ld.Patch(cur_Patch.p+1, new_bounds, state, init_point, zmat, Sim.point_list)

175

print(’cur_Patch is number %s’ % cur_Patch.p)

os.system(’rm %s_sp*’ % Sim.molecule)

if at_min == 1 and state!=Sim.state_order[-1] and Sim.ec == 2:

edge = mat(zeros((1,cur_Patch.d)))

print(’checking if we keep the patch’)

int_err = ld.keep_patch(cur_Patch,next_state)

new_bounds = ld.RK_approach(cur_Patch,int_err,max_iters, init_point, edge)

print(’state = %s’ % cur_Patch.s)

ld.Sim_Sum(Sim,cur_Patch,patch_fin,at_min,max_iters)

if (new_bounds[0,1]-new_bounds[0,0])/2. > cur_Patch.H:

keep = 1

print(’Keep the Patch’)

cur_Patch = ld.Patch(cur_Patch.p+1, cur_Patch.b, next_state, init_point, zmat, Sim.point_list)

print(’cur_Patch is number %s’ % cur_Patch.p)

os.system(’cp Data%s.txt Data%s.txt’ % (cur_Patch.p-1,cur_Patch.p))

else:

keep = 0

print(’discarding the patch, changing to state %s’ % next_state)

cur_Patch = ld.Patch(cur_Patch.p+1, new_bounds, next_state, init_point, zmat, Sim.point_list)

print(’cur_Patch is number %s’ % cur_Patch.p)

The file g sub is the generic submission file for Gaussian 09 jobs.

#!/bin/csh

source /usr/local/apps/env/g09.csh

#BSUB -W time

#BSUB -R em64t

#BSUB -J E_files

#BSUB -n n_proc

#BSUB -q queue

#BSUB -o out

#BSUB -e err

mkdir scratch

cp gjf scratch

cd scratch

g09 < gjf > log

cp log share

cd

rm -r scratch

The file LITES in submits the entire simulation.

#!/bin/csh

176

#BSUB -W 10000

#BSUB -R em64t

#BSUB -x

#BSUB -n 1

#BSUB -q gto

#BSUB -o /kelley_data/dsmokrau/db_LITES/LITES.out

#BSUB -e /kelley_data/dsmokrau/db_LITES/LITES.err

rm -r /scratch/dsmokrau

mkdir /scratch/dsmokrau

cp /home/dsmokrau/LITES/* /scratch/dsmokrau

cd /scratch/dsmokrau

/usr/local/apps/python-2.6.5/bin/python LITES.py

cd

rm -r /scratch/dsmokrau

177

