
ABSTRACT

WU, SHENG-JHIH. Large Deviation Results for a Randomly Indexed Branching Process with
Applications to Finance and Physics. (Under the direction of Min Kang.)

The large deviation behavior of a randomly indexed branching process is explored for the

first time. We consider a branching process subordinated by a Poisson process. The large devi-

ation behavior of the ratio of successive generation sizes deviating from the expected number of

children of each individual is studied. Assume that at least one child in each birth, under various

moment conditions on the offspring distribution, the rate of convergence is exponential. We also

investigate the behavior under conditioning on non-extinction at the present generation as well

as conditioning on non-extinction at the next generation. Conditioned on the limiting random

variable of a sequence of normalized population sizes being positive, the large deviation prob-

abilities decay super-exponentially. In addition, for the difference between the limiting random

variable and the associated martingale sequence, the rate of convergence is super-exponential.

Some limit theorems concerning the rate of convergence of the generating function as well as

that of its inverse function are obtained. The results are then applied to a mean reversion in

stock market and to a neutron fluctuation control problem.
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Chapter 1

Large Deviation Theory

1.1 Background

Roughly speaking, large deviation is a theory about rare events. More precisely, large deviation

theory studies a family of probabilities of rare events that decay exponentially fast. It is one

of the most active areas in probability theory nowadays. The theory has been widely used in

various fields such as probability theory and stochastic processes, and other disciplines such as

physics, engineering, and finance.

Let us start with a classical problem in probability theory, namely, the asymptotic behavior of

the empirical mean of independent, identically distributed (i.i.d.) random variables. Consider a

sequence of i.i.d. real-valued random variables X1, X2, · · · on a probability space (Ω,F , P ). Let

E(X1) = µ and V ar(X1) = σ2. Consider sum of n i.i.d. random variables Sn = X1 + · · ·+Xn

and empirical mean of n i.i.d. random variables S̄n = X1+···+Xn
n . Two standard theorems dealing

with the asymptotic behavior of the empirical mean S̄n are the Weak Law of Large Numbers

(WLLN) and the Central Limit Theorem (CLT).

Weak Law of Large Numbers:

S̄n converges to µ in probability as n goes to infinity.

The WLLN shows that the empirical mean S̄n converges to the mean µ as n→∞.
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Central Limit Theorem:

S̄n − µ
σ/
√
n

converges to Z in distribution as n goes to infinity,

where Z is a standard Gaussian random variable.

Consequently, for any b > 0, the CLT gives P (|S̄n − µ| ≥ b( σ√
n

)) → 2Φ(−b), where Φ(·) is

the cumulative distribution function of the standard Gaussian random variable. Thus, the CLT

asserts that the probability that S̄n deviates from µ by an amount of order 1/
√
n is asymptot-

ically approximated by a probability from a standard normal distribution. The order 1/
√
n is

the meaningful order of the fluctuations that remains in the limit.

Notice that since the WLLN gives the convergence of the empirical mean to µ, the mean

of one random variable, in probability, it grants the convergence in distribution as well. How-

ever, it does not provide information about the rate of the convergence in distribution. On the

other hand, the CLT gives the rate of the convergence in distribution being of the order of 1/
√
n.

The theory of large deviations is concerned with the asymptotic behavior of the probability

P (|S̄n − µ| ≥ bσ). Thus, the theory of large deviations deals with the events where S̄n deviates

from µ by an amount of order 1. In contrast to the typical fluctuation of the order of 1/
√
n, the

fluctuation which is of the order of 1 is much bigger. This kind of fluctuation is a large deviation

because the differences between the empirical mean and µ stay larger than a constant as the

number of samples n grows — there has to be a larger and larger conspiracy going on among

the samples to remain the empirical mean deviating from µ in the same way. This is why the

theory of large deviations is called “large”.

Roughly speaking, under a certain moment condition, a basic result of large deviation the-

ory indicates

lim
n→∞

1

n
logP (S̄n ≥ µ+ b) = −I(b) < 0, where I is a “rate”. (1.1)

That is, P (S̄n ≥ µ+ b) = e−nI(b)+o(n), (1.2)

i.e., P (S̄n ≥ µ+ b) ≈ e−nI(b) when n is large enough. (1.3)

Notice that while the WLLN gives the convergence of the empirical mean to the mean in prob-

ability, it does not provide information about the rate of the convergence in probability. Large

deviation theory gives the rate of the convergence in probability being of the order of n on the
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logarithmic scale (from the point of view of (1.1)). In other words, the rate of decay of the

probability of this large deviation event is exponential (from the point of view of (1.3)). Large

deviation theory is concerned mainly with quantifying the “rate” I. This result is the Cramer’s

Theorem, which will be formally stated below.

On a proper domain of this function, define

Λ(λ) := logM(λ) := logE(eλX1),

where M(λ) is the moment generating function of X1 evaluated at λ. Let DΛ = {λ : Λ(λ) <∞}.
Define the Fenchel-Legendre transformation of Λ to be

Λ∗(x) := sup
λ∈R

[λx− Λ(λ)].

Λ∗ turns out to be the rate function for the i.i.d. random variables {Xi}. Let DΛ∗ = {x :

Λ∗(x) <∞}.

Theorem 1.1 (Cramer’s Theorem)

Let X1, X2, · · · be i.i.d. R-valued random variables satisfying 0 ∈ D◦Λ, the interior of DΛ. Then

for any a > E(X1),

lim
n→∞

1

n
logP (Sn ≥ an) = −Λ∗(a). (1.4)

Remark 1.1 For any a < E(X1) = µ, the theorem says limn→∞
1
n logP (Sn ≤ an) = −Λ∗(a).

Notice that by the properties of the rate function Λ∗, if a > µ, then Λ∗(x) ≥ Λ∗(a) for all x ≥ a.

Hence (1.4) can be rewritten as

lim
n→∞

1

n
logP (Sn ≥ an) = − inf

x≥a
Λ∗(x). (1.5)

A quotation from [20] is that (1.5) exhibits a key principle in large deviation theory: “any large

deviation result is done in the least unlikely of all the unlikely ways!” That is, if an unlikely

event {Sn ≥ an} happens, it is very likely that it happens in the most likely way since a is the

minimizer of Λ∗(x) on [a,∞) and this event is realized at this cheapest cost (highest probabilty).

It is worth mentioning that in this section we give the motivation for the large deviation theory

through a sequence of i.i.d. random variables, but, in fact, the general theory of large devia-

tions deals with a family of random objects that are not necessarily independent nor identically

distributed. We will see more general theory as we move to the latter sections.
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1.2 The Large Deviation Principle

Notice that the context in the remaining of chapter 1 serves as an introduction to the impor-

tant results in the theory of large deviations. The reader is referred to [12] and [20] for details.

In this section, we introduce the large deviation principle, which characterizes the asymptotic

behavior of a family of probability measures according to a rate function. The characterization

is through asymptotic lower and upper exponential bounds on the values which a measure in

the family assigns to measurable subsets of a topological space.

Let {µn} be a family of probability measures on (X ,B) where X is a topological space and

B is the Borel σ-algebra on X .

Definition 1.1 (Rate Function)

An extended real-valued function I : X → [0,∞] defined on a topological space X is said to be

a rate function if it is not identically ∞ and is lower semi-continuous, i.e., for all α ∈ [0,∞),

the level set {x : I(x) ≤ α} is a closed subset of X . A good rate function is a rate function

where all the level sets associated with it are compact subsets of X . The effective domain of a

rate function I, denoted by DI , is the set of points x in X such that I(x) are finite, i.e., DI =

{x ∈ X : I(x) <∞}.

A rate function is used to formulate a large deviation principle for a family of probability

measures as can be seen from the following definition.

Definition 1.2 (Large Deviation Principle)

{µn} is said to satisfy the large deviation principle with a rate function I, if for each Γ ∈ B,

− inf
x∈Γ0

I(x) ≤ lim inf
n→∞

1

n
logµn(Γ) ≤ lim sup

n→∞

1

n
logµn(Γ) ≤ − inf

x∈Γ̄
I(x),

where Γ◦ is the interior of Γ and Γ̄ is the closure of Γ.

Remark 1.2 The definition of the large deviation principle given above is equivalent to the

following:

(a) for any closed subset F of X ,

lim sup
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
I(x), and

(b) for any open subset G of X ,

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G
I(x).
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Remark 1.3 Recall that a family of probability measures {µn} is said to converge weakly to a

probability measure µ, if either of the following conditions holds:

(a) for any closed subset F of X ,

lim sup
n→∞

µn(F ) ≤ µ(F ), and

(b) for any open subset G of X ,

lim inf
n→∞

µn(G) ≥ µ(G).

The roles of open and closed sets in the definition of the large deviation principle above are

similar to those in that of the weak convergence of probability measures. Therefore, we can view

the two bounds in the definition of the large deviation principle above as analogues of weak

convergence on an exponential scale.

In proving the large deviation principle, it is quite often to prove the upper bound for compact

sets first and then to extend it to closed sets. Thus, this motivates the following definition of

the weak large deviation principle.

Definition 1.3 (Weak Large Deviation Principle)

{µn} is said to satisfy the weak large deviation principle with a rate function I, if

(a) for any compact subset K of X ,

lim sup
n→∞

1

n
logµn(K) ≤ − inf

x∈K
I(x), and

(b) for any open subset G of X ,

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G
I(x).

Definition 1.4 (Exponential Tightness)

{µn} is said to be exponentially tight, if for any α <∞, there exists a compact subset Kα of X
such that

lim sup
n→∞

1

n
logµn(Kc

α) < −α, whereKc
α is the complement ofKα.

The exponential tightness says that for this family of probability measures, most of the prob-

ability mass on an exponential scale is concentrated on compact sets asymptotically. The ex-

ponentially tightness strengthens the weak large deviation principle to a full large deviation

principle as the following remark indicates.
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Remark 1.4 If {µn} is exponentially tight and satisfies the weak large deviation principle with

a rate function I, then {µn} satisfies the large deviation principle with I being a good rate

function.

1.3 Some Important Results in the Theory of Large Deviations

In this section, we investigate some essential results in large deviation theory. First of all, it

would be convenient if we could move a large deviation principle from one space to another.

The so-called contraction principle enables us to generate one large deviation principle from

another through contraction. Therefore, we could prove a large deviation principle in a simpler

space and then transfer it into a more sophisticated target space.

Theorem 1.2 (Contraction Principle)

Let X and Y be two Hausdorff spaces and f : X → Y a continuous function. Suppose {µn}
is a family of probability measures on X that satisfies the large deviation principle with a good

rate function IX : X → [0,∞]. Then {µn ◦ f−1} is a family of probability measures on Y which

satisfies the large deviation principle with a good rate function IY : Y → [0,∞] defined as

IY(y) = inf{IX (x) : x ∈ X , y = f(x)}.

The next theorem indicates that if the family of probability measures is exponentially tight,

then the above contraction principle could work in the opposite direction.

Theorem 1.3 (Inverse Contraction Principle)

Let X and Y be two Hausdorff spaces and f : Y → X a continuous bijective function. Suppose

{µn} is a family of probability measures on Y that is exponentially tight. If {µn ◦ f−1} satisfies

the large deviation principle with a rate function IX : X → [0,∞], then {µn} satisfies the large

deviation principle with the good rate function IY = IX (f).

Let us notice that the above theorem allows us to strengthen the large deviation principle from

a coarser topology to a finer one. This result is stated in the following theorem.

Theorem 1.4 Let (X , τ1) and (X , τ2) be two Hausdorff spaces with topology τ1 coarser than

topology τ2. Let {µn} be a family of probability measures on (X , τ2) that is exponentially tight.

If {µn} satisfies the large deviation principle on (X , τ1), then the same large deviation principle

also holds for (X , τ2).

Recall that in the preceding section, we mention that the definition of the large deviation

principle is similar to that of the weak convergence of a family of probability measures and we

give two equivalent definitions of the weak convergence. In fact, those two definitions of the
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weak convergence are equivalent to

lim
n→∞

∫
X
f(x)µn(dx) =

∫
X
f(x)µ(dx) for all f ∈ Cb(X ),

where Cb(X ) is the space of bounded continuous functions on X .

This suggests that the large deviation principle is suited for handling the convergence of inte-

grals of exponential functionals. This is formulated as the Varadhan’s Integral Lemma, which

could be viewed as a starting point for the theory of large deviations. It is a far-reaching gen-

eralization of the Laplace’s method to abstract spaces and is a very handy tool for applications

of the large deviation theory.

Theorem 1.5 (Varadhan’s Integral Lemma)

Let {µn} satisfy the large deviation principle on a topological space X with a good rate function

I : X → [0,∞]. Suppose f : X → R is a continuous function. Assume that either the following

tail condition (i) or the moment condition (ii) are satisfied, where

(i)

lim
M→∞

lim sup
n→∞

1

n
logE[ef(Zn)n1{f(Zn)≥M}] = −∞, and

(ii)

lim sup
n→∞

1

n
logE[eγf(Zn)n] <∞, for some γ > 1.

Then

lim
n→∞

1

n
logE[ef(Zn)n] = sup

x∈X
{f(x)− I(x)}.

There is a Varadhan’s Integral Lemma in the inverse direction, which is obtained by Bryc. It is

useful for it serves as a way to establish the large deviation principle for an exponentially tight

family of probability measures.

Theorem 1.6 (Inverse Varadhan’s Integral Lemma)

Define Λn(f) = 1
n log

∫
X e

f(x)nµn(dx) for any f ∈ Cb(X ). If {µn} is exponentially tight and

the limit limn→∞ Λ(f) ∈ R exists for any f ∈ Cb(X ), then {µn} satisfies the large deviation

principle on X with a good rate function I given by

I(x) = sup
f∈Cb(X )

{f(x)− Λ(f)}.

Moreover, for each f ∈ Cb(X ),

Λ(f) = sup
x∈X
{f(x)− I(x)}.
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There is an alternative version of the Varahdan’s Integral Lemma, which allows us to generate a

new large deviation principle from an old one by ”tilting”. It is called the tilted large deviation

principle.

Theorem 1.7 (Tilted Large Deviation Principle)

Let {µn} satisfy the large deviation principle on X with a good rate function I. Let f : X → R

be a continuous function that is bounded above. For each Borel subset S of X , define

Jn(S) :=

∫
S
ef(x)nµn(dx).

Further, define a new family {µfn} of probability measures by

µfn(S) :=
Jn(S)

Jn(X )
.

Then {µfn} satisfies the large deviation principle on X with a good rate function If : X → [0,∞]

given by

If (x) = sup
y∈X
{f(y)− I(y)} − {f(x)− I(x)}.

1.4 Three Levels of Large Deviations

In the literature, there are three levels of large deviations. They describe the large deviation

behavior at different levels. These levels will be made precise in this section. Only the i.i.d.

case of a sequence of random variables for these three levels will be discussed for simplicity.

We now define three levels of large deviation principle for a sequence of i.i.d. random variables,

X1, X2, X3, · · · on a probability space (Ω,F , P ) with a common probability law ρ.

The level-1 large deviation is about the empirical mean of the random variable sequence. The

concept of the level-1 large deviation has been mentioned in the preceding section and hence

we give a brief description here. We focus on the case of a sequence of i.i.d. real-valued random

variables, X1, X2, X3, · · · for the level-1. Let Sn be the n-th partial sum of X1, X2, X3, · · · , i.e.,

Sn =
∑n

i=1Xi. Then S̄n = Sn
n is called the empirical mean of the n-th partial sum. Assume

that the common mean E(X1) is finite, then by the WLLN the sequence {S̄n}∞n=1 converges

to E(X1) in probability. The level-1 large deviation investigates the asymptotic behavior of

{S̄n}∞n=1 deviating away from E(X1). Let µ
(1)
n be the probability law of S̄n. Then {µ(1)

n }∞n=1

converges weakly to the unit point measure δE(X1). Let A be an arbitrary Borel subset of R

where A does not contain E(X1), then the level-1 large deviation studies the exponential decay

of the sequence of probabilities {µ(1)
n (A)}∞n=1 to zero as n goes to infinity with an exponen-
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tial rate depending on A. The most classical theorem for i.i.d. case level-1 large deviation is

Cramer’s Theorem, which is briefly mentioned in the previous section. For completeness, we

state it here in a slightly different form.

Recall that Λ(λ) = logM(λ) = logE(eλX1), where M(·) is the moment generating function

of the random variable X1, is the logarithmic moment generating function. Then the Fenchel-

Legendre transformation of Λ is

Λ∗(x) = sup
λ∈R

[λx− Λ(λ)].

Below we state Cramer’s Theorem, which is a classical level-1 large deviation theorem.

Theorem 1.8 (Level-1 Large Deviation Principle)

{µ(1)
n } satisfies the large deviation principle with a convex rate function Λ∗, namely,

(a) for any closed subset F of R,

lim sup
n→∞

1

n
logµ(1)

n (F ) ≤ − inf
x∈F

Λ∗(x), and

(b) for any open subset G of R,

lim inf
n→∞

1

n
logµ(1)

n (G) ≥ − inf
x∈G

Λ∗(x).

Now let us move onto the level-2 large deviation and X be a Polish space. Let X1, X2, X3, · · ·
be a sequence of X -valued random variables with common probability law ρ ∈ M1(X ), where

M1(X ) denotes the space of probability measures on X . Suppose ρ is unknown, then given the

first n samples, one may try to estimate the true probability law ρ by

Ln :=
1

n

n∑
i=1

δXi .

Ln is called the empirical measure of X1, X2, · · · , Xn. Notice that Ln : Ω→M1(X ) is a random

probability measure, i.e., Ln(ω) ∈ M1(X ) for all ω ∈ Ω. Let µ
(2)
n be the probability law of Ln.

By ergodic theorem, the sequence {Ln}∞n=1 converges weakly to ρ almost surely and this implies

that {µ(2)
n }∞n=1 converges weakly to the unit point measure δρ.
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Define the weak topology on M1(X ) as the topology generated by the sets of the form

Uf,x,ε = {ν ∈M1(X ) : |
∫
X
fdν − x| < ε},

where f ∈ Cb(X ), x ∈ R, and ε > 0. ThenM1(X ) is a Polish space since X is and since M1(X )

is equipped with the weak topology. Let A be any Borel subset of M1(X ) where A does not

contain δρ, then the level-2 large deviation studies the exponential decay of the sequence of

probabilities {µ(2)
n (A)}∞n=1 to zero as n goes to infinity with an exponential rate depending on

A. The most well-known theorem for i.i.d. case level-2 large deviation is the Sanov’s Theorem,

which is established by Sanov in 1957. This is an important extension of Cramer’s theorem

to empirical measures of real-valued i.i.d. random variables. Here we provide a more general

Sanov’s Theorem in a Polish space set-up, which is a classical level-2 large deviation theorem.

Theorem 1.9 (Level-2 Large Deviation Principle)

{µ(2)
n } satisfies the large deviation principle with a convex rate function Λ∗, namely,

(a) for any closed subset F of M1(X ),

lim sup
n→∞

1

n
logµ(2)

n (F ) ≤ − inf
ν∈F

Λ∗(ν), and

(b) for any open subset G of M1(X ),

lim inf
n→∞

1

n
logµ(2)

n (G) ≥ − inf
ν∈G

Λ∗(ν),

where Λ∗(ν) = supf∈Cb(X )[
∫
X fdν − Λ(f)] for any ν ∈ M1(X ) and Λ(f) = logE[e

∫
X fdδX1 ] =

logE[ef(X1)] = log
∫
X e

fdρ for all f ∈ Cb(X ).

Furthermore, define the relative entropy of the probability measure ν with respect to ρ as

H(ν|ρ) =


∫
X log dνdρ dν if ν is absolutely continous with respect to ρ

∞ otherwise.

Then Λ∗(ν) = H(ν|ρ).

It is worth mentioning a difference between the set-up for Cramer’s theorem and that of Sanov’s

theorem. The former concerns large deviations away from a deterministic number (common

mean of i.i.d. random variables) and the rate function is defined on R, whereas the latter deals
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with deviations away from a probability measure (common probability law of i.i.d. random

variables) and the rate function is defined on the space of probability measures. And notice

that Ln ∈ M1(X ) is, in fact, the empirical mean of δX1 , δX2 , · · · , δXn . Therefore, from this

point of view, Sanov’s theorem is actually a generalization of Cramer’s theorem to a space of

probability measures.

The level-3 large deviation extends the idea of empirical measure in the level-2 large devi-

ation as shall be made clear in the following context. Let X1, X2, X3, · · · be a sequence of

i.i.d. X -valued random variables on a probability space (Ω,F , P ), where X is a Polish space.

Assume that X1, X2, X3, · · · have a common probability law ρ ∈ M1(X ), where M1(X ) de-

notes the space of probability measures on X . Given a positive integer n, repeat the sequence

X1, X2, · · · , Xn periodically into an infinite sequence by

X(n)(ω) = (X1(ω), X2(ω), · · · , Xn(ω), X1(ω), X2(ω), · · · , Xn(ω), · · · ).

Then X(n) : Ω → XN is a random variable. Let θ be the left-shifting mapping on XN defined

by (θx)j = xj+1 for j ∈ N, x ∈ XN and θi = θ(θi−1) for i = 1, 2, · · · . Define the empirical

process corresponding to X1, X2, · · · , Xn by

Rn :=
1

n

n∑
i=1

δθi(X(n)).

Notice that Rn : Ω →M1(XN) is a random probability measure, where M1(XN) denotes the

space of probability measures on XN. Since Rn may be identified with probability measures on

processes, the large deviation principle associated with Rn is referred to as process-level large

deviation principle. In fact, it is easy to see that Rn(ω) is a θ-invariant probability measure

on XN for all ω ∈ Ω since X(n) is constructed by a repetition with a period n. Therefore,

Rn(ω) ∈Mθ
1(XN) for all ω ∈ Ω, where

Mθ
1(XN) = {ν ∈M1(XN) : ν ◦ θ−1 = ν}

denotes the space of all θ-invariant probability measures on XN.

Let µ
(3)
n be the probability law of Rn. By Birkhoff’s Ergodic Theorem, the sequence {Rn}∞n=1

converges weakly to ρN almost surely and this implies that {µ(3)
n }∞n=1 converges weakly to the

unit point measure δρN . Let A be an arbitrary Borel subset of Mθ
1(XN) where A does not

contain δρN , then the level-3 large deviation studies the exponential decay of the sequence of

probabilities {µ(3)
n (A)}∞n=1 to zero as n goes to infinity with an exponential rate depending on A.
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For k ∈ N, let dk be the total variation distance on M1(XN). Define

d(µ, ν) :=

∞∑
k=1

1

2k
dk(pkµ, pkν),

where pk : XN → X k is the projection of XN onto X k defined by pk(x) = (x1, x2, · · · , xk) for

x = (x1, x2, · · · , xk, · · · ) and pkµ = µ ◦ p−1
k . Then d makes Mθ

1(XN) into a Polish space. The

following theorem concerns the large deviation behavior of {µ(3)
n }∞n=1 away from δρN , which is

a level-3 large deviation result.

Theorem 1.10 (Level-3 Large Deviation Principle)

Let Ba(ρ
N) = {ν ∈Mθ

1(XN) : d(ν, ρN) ≤ a} for a > 0. Let

I∞ρ (ν) =

supk≥2H(pkν|pk−1ν ⊗ ρ) if ν ∈Mθ
1(XN)

∞ otherwise,

where H(·|·) is the relative entropy. Define

J(a) := inf
ν∈Bca(ρN)

I∞ρ (ν).

Then {µ(3)
n } satisfies the large deviation principle with a good rate function I∞ρ , namely, for

each a > 0,

(a) lim supn→∞
1
n logµ

(3)
n ((Ba(ρ

N))c) ≤ −J(a−), where J(a−) = limε↓0 J(a− ε).

(b) lim infn→∞
1
n logµ

(3)
n ((Ba(ρ

N))c) ≥ −J(a).

1.5 Large Deviations for Dependent Random Variables

In the preceding section, we discussed the large deviation behavior of i.i.d. random variables.

In this section, we investigate the large deviation behavior of non-i.i.d. cases. We first introduce

the Gartner-Ellis theorem, which is an important theorem in the non-i.i.d. scenario. By using

the Gartner-Ellis theorem, one can acquire a level-1 large deviation result for a discrete-time,

irreducible, finite state space Markov chains. For level-2 and level-3 large deviations, we provide

corresponding results for a discrete-time Markov chain that satisfies some strong uniformity as-

sumption.
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Let Z1, Z2, Z3, · · · be a sequence of Rd-valued random variables, where Zn possesses the prob-

ability law µn with logarithmic moment generating function

Λn(λ) = logE[e〈λ,Zn〉],

where 〈λ, Zn〉 =
∑d

i=1 λi(Zn)i is the inner product of λ and Zn in Rd.

Assumption (*) For each λ ∈ Rd, the logarithmic moment generating function, defined as

the limit

(1) Λ(λ) = limn→∞
1
nΛn(nλ) ∈ [−∞,∞] exists.

(2)
−→
0 ∈ D◦Λ, the interior of DΛ, where DΛ = {λ ∈ Rd : Λ(λ) <∞}.

Let Λ∗ denote the Fenchel-Legendre transformation of Λ, i.e.,

Λ∗(x) = sup
λ∈Rd

[〈x, λ〉 − Λ(λ)] for x ∈ Rd.

In order to discuss Gartner-Ellis theorem, we need some definitions, and they are given below.

Definition 1.5 (Exposed Point)

A point x ∈ Rd is called an exposed point of Λ∗, if there exists a point λ ∈ Rd such that

〈λ, x〉 − Λ∗(x) > 〈λ, y〉 − Λ∗(y) for all y 6= x.

Such λ is called an exposing hyperplane for x.

Definition 1.6 (Essential Smoothness)

A convex function Λ : Rd → (−∞,∞] is essentially smooth, if

(a) D◦Λ is non-empty,

(b) Λ is differentiable on D◦Λ, and

(c) Λ is steep, namely, limn→∞|∇Λ(λn)| =∞, whenever {λn} is a sequence in D◦Λ converging

to a boundary point of D◦Λ.

Now let us state Gartner-Ellis theorem.

Theorem 1.11 (Gartner-Ellis Thorem)

Let the assumption (*) hold.
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(a) For any closed subset F of Rd,

lim sup
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
Λ∗(x).

(b) For any open subset G of Rd,

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G∩F
Λ∗(x),

where F is the set of exposed points of Λ∗ whose exposing hyperplane belongs to D◦Λ.

(c) If Λ is an lower semi-continuous, essentially smooth function, then G ∩ F in (b) may be

replaced by G. Consequently, {µn} satisfies the large deviation principle with a good rate

function Λ∗.

Gartner-Ellis theorem is now applied to a level-1 large deviation for a discrete-time, irreducible,

finite state space Markov chain. Let Y1, Y2, Y3, · · · be a discrete-time, irreducible Markov chain

taking values in a finite state space Σ. Assume that |Σ| = N . Let Π = {π(i, j)}|Σ|i,j=1 be the

stochastic matrix for the Markov chain. Let P πy0 be the Markov probability measure associated

with the stochastic matrix Π and the initial state y0 ∈ Σ, i.e.,

P πy0(Y1 = y1, Y2 = y2, · · · , Yn = yn) = π(y0, y1)

n−1∏
i=1

π(yi, yi+1).

We now establish the level-1 large deviation principle for additive functionals of Markov Chain

Y1, Y2, Y3, · · · . Let g : Σ → Rd be a deterministic function. Let Xk = g(Yk) for all k ∈ Z+.

Define the empirical mean of X1, X2, · · · , Xn to be

Zn :=
1

n

n∑
k=1

Xk.

We would like to establish the large deviation principle for the empirical mean, {Zn}. For any

λ ∈ Rd, consider a non-negative matrix Πλ whose elements are

πλ(i, j) = π(i, j)e〈λ,g(j)〉 for i, j ∈ Σ.

Let ρ(Πλ) denote the Perron-Frobenius eigenvalue of the matrix Πλ. Define

I(z) = sup
λ∈Rd

[〈λ, z〉 − logρ(Πλ)] for each z ∈ Rd. (1.6)

Theorem 1.12 {Zn} satisfies the large deviation principle with a convex, good rate function I
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given in (1.6). More precisely, for any subset Γ of Rd and any initial state y0 ∈ Σ,

(a) Upper Bound:

lim sup
n→∞

1

n
logP πy0(Zn ∈ Γ) ≤ − inf

z∈Γ̄
I(z).

(b) Lower Bound:

lim inf
n→∞

1

n
logP πy0(Zn ∈ Γ) ≥ − inf

z∈Γ◦
I(z).

In the same setting, we now establish the level-2 large deviation principle for this discrete-

time, irreducible, finite state space Markov chain Y1, Y2, Y3, · · · . Define the empirical measure

associated with Y1, Y2, · · · , Yn as

LYn = (LYn (1), LYn (2), · · · , LYn (|Σ|)) : Ω→M1(Σ),

where LYn (i) = 1
n

∑n
k=1 δYk(i), i = 1, · · · , |Σ|.

Suppose that Π is the stochastic matrix for the Markov chain Y1, Y2, Y3, · · · that is irreducible.

Suppose that µ = (µ1, µ2, · · · , µ|Σ|) is the stationary distribution of the Markov chains, i.e. the

unique left eigenvector associated with the eigenvalue 1 of Π, whose entries are non-negative

and sum to 1, that satisfies the equation

µ = µΠ.

By ergodic theorem, the sequence {LYn }∞n=1 converges to µ in probability as n→∞. Therefore,

{LYn } is a good candidate for a large deviation principle.

By identifying g : Σ → [0, 1]|Σ| defined by g(Yk) = Xk = (δYk(1), δYk(2), · · · , δYk(|Σ|)), we can

apply the previous theorem to obtain the large deviation principle for {LYn } as the following

theorem indicates.

Theorem 1.13 {LYn } satisfies the large deviation principle with a rate function I defined as

I(ν) = sup
λ∈Rd

[〈λ, ν〉 − logρ(Πλ)] for each ν ∈M1(Σ),

where Πλ is a non-negative matrix whose elements are

πλ(i, j) = π(i, j)e〈λ,g(j)〉 = π(i, j)eλj for i, j ∈ Σ.

Explicitly, for any subset Γ of M1(Σ) and any initial state y0 ∈ Σ,
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(a) upper bound:

lim sup
n→∞

1

n
logP πy0(LYn ∈ Γ) ≤ − inf

ν∈Γ̄
I(ν), and

(b) lower bound:

lim inf
n→∞

1

n
logP πy0(LYn ∈ Γ) ≥ − inf

ν∈Γ◦
I(ν).

Now we consider an extension from a finite state space to a general Polish state space. We first

establish a level-2 large deviation principle in this setting and then move into a level-3 large

deviation principle in the same setting.

Let Σ be a Polish space. Let Y1, Y2, Y3, · · · be a discrete-time Markov chain with a state space

Σ. Let M1(Σ) denote the space of probability measures on Σ equipped with the Levy metric,

which makes it into a Polish space with convergence compatible with the weak convergence.

Let π(y0, ·) be a transition probability measure, i.e., π(y0, ·) ∈ M1(Σ) for any y0 ∈ Σ. Let

Pn,y0 ∈ M1(Σn) denote the probability measure which assigns to any Borel measurable set

Γ ⊆ Σn the value

Pn,y0(Γ) =

∫
Γ

n−1∏
i=1

π(yi, dyi+1)π(y0, dy1).

Define the empirical measure of Y1, Y2, · · · , Yn as

LYn :=
1

n

n∑
k=1

δYk .

Let µn,y0 denote the probability law of LYn . We would like to establish the large deviation prin-

ciple for {µn,y0}. In order to reach our goal for the discrete-time Markov chains Y1, Y2, Y3, · · ·
with state space Σ, we need the following uniformity condition.

Assumption (**) There exists an integer m (between 0 and some integer N) and a constant

M ≥ 1 such that

πm(y0, ·) ≤
M

N

N∑
k=1

πk(σ, ·) for any y0, σ ∈ Σ,

where πk(σ, ·) is the k-step transition probability measure with the initial state σ, i.e.,

πk(σ, ·) =

∫
Σ
πk−1(τ, ·)π(σ, dτ).

The following theorem shows the large deviation principle for {µn,y0}.

Theorem 1.14 Suppose the assumption (**) holds. Then for any f ∈ Cb(Σ), the following
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limit exists:

Λ(f) = lim
n→∞

1

n
logEy0 [exp(

n∑
i=1

f(Yi))],

where Ey0 denotes the expectation conditioned on the initial state y0.

Furthermore, {µn,y0} satisfies the large deviation principle with a convex good rate function Λ∗,

where

Λ∗(ν) = sup
f∈Cb(Σ)

[〈f, ν〉 − Λ(f)]

is the Fenchel-Legendre transformation of Λ for ν ∈M1(Σ).

Explicitly, for any subset Γ of M1(Σ) and any initial state y0 ∈ Σ,

(a) upper bound:

lim sup
n→∞

1

n
logµn,y0(Γ) ≤ − inf

ν∈Γ̄
I(ν), and

(b) lower bound:

lim inf
n→∞

1

n
logµn,y0(Γ) ≥ − inf

ν∈Γ◦
I(ν).

We then study the level-3 large deviation behavior in the same setting. Let Σ be a Polish space.

Let Y1, Y2, Y3, · · · be a discrete-time Markov chain with a state space Σ. Let θ be the left-shifting

mapping on ΣZ+ defined by (θy)j = yj+1 for j ∈ Z+, y ∈ ΣZ+ and θi = θ(θi−1) for i = 1, 2, · · · .
Define the empirical process as

RYn :=
1

n

n∑
i=1

δθi(Y ),

where Y = (Y1, Y2, Y3, · · · ).

Notice that RYn : Ω → M1(ΣZ+) is a random probability measure, where M1(ΣZ+) de-

notes the space of probability measures on ΣZ+ . Equipped with the weak topology, M1(ΣZ+)

is a Polish space. Let pk : ΣZ+ → Σk denote the projection of ΣZ+ onto Σk defined by

pk(y) = (y1, y2, · · · , yk) for y ∈ ΣZ+ and pkµ = µ ◦ p−1
k for µ ∈ M1(ΣZ+). We need the

following definitions.

Definition 1.7 A measure µ ∈M1(Σk) is said to be shift invariant if, for any Γ ∈ BΣk−1,

µ({τ ∈ Σk : (τ1, · · · , τk−1) ∈ Γ}) = µ({τ ∈ Σk : (τ2, · · · , τk) ∈ Γ}).

Moreover, for any ν ∈ M1(Σk−1) and any transition kernel π ∈ M1(Σ), define the probability

measure ν ⊗ π ∈M1(Σk) by

(ν ⊗ π)(Γ) =

∫
Σk−1

ν(dx)

∫
Σ
π(xk−1, dy)1{(x,y)∈Γ} for any Γ ∈ BΣk .
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Definition 1.8 (Shift Invariance)

A measure ν ∈ M1(ΣZ+) is said to be shift invariant if pkν is shift invariant in M1(Σk) for

all k ∈ Z+.

The next theorem is the large deviation result for the sequence {RYn }.

Theorem 1.15 Suppose the assumption (**) holds. Then {RYn } satisfies the large deviation

principle with a good rate function

I∞π (ν) =

supk≥2H(pkν|pk−1ν ⊗ π) if ν ∈M1(ΣZ+) is shift invariant,

∞ otherwise,

where H(·|·) is the relative entropy.

1.6 Sample Path Large Deviations

So far we have focused on the large deviation behavior of the collections of random elements

at some fixed time points instead of the whole timeline, i.e., the realizations of those random

elements are not considered a function of time. Given an ω ∈ Ω, a realization of an empirical

mean Sn is a real number; that of an empirical measure Ln is a probability measure on some

space; and that of an empirical process Rn is a probability measure on another space. None of

these random elements take values in a space of functions evolving in time. It would be more

interesting to investigate the large deviation behavior of the random elements taking values in

the space of the functions of time. This is the purpose of this section.

In many situations, the matter of interest is some rare events that depend on time and it

often touches the probability that the path of certain random process hits some special set.

To introduce the sample path large deviations, we first provide the case of a random walk,

which is the simplest case in the sample path large deviations. We then state the Brownian

motion sample path large deviations as an application of the sample path large deviations of

the random walk. Finally, we give an extension of the sample path large deviations of Brownian

motion to that of the diffusion processes which are strong solutions of some stochastic differen-

tial equations.

Let X1, X2, · · · be a sequence of i.i.d. Rd-valued random variables. Assume that the logarithmic

moment generating function Λ(λ) = logE(e〈λ,X1〉) be finite for all λ ∈ Rd. Let bac denote the
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integer part of a. Define

Zn(t) :=
1

n

bntc∑
i=1

Xi, 0 ≤ t ≤ T,

where Zn : Ω → D([0, T ]), the space of functions continuous from right and having left limits

that defined on [0, T ] with values in Rd.

Let νn be the probability law of Zn. Let Λ∗(x) = supλ∈Rd [〈λ, x〉 − Λ(λ)] denote the Fenchel-

Legendre transformation of λ and AC0 denote the space of absolutely continuous functions that

vanish at the origin. Notice that Zn is a random walk in Rd with lifetime T for each n ∈ N. The

following theorem is the large deviation result for this sequence {νn} obtained by Mogulskii.

Theorem 1.16 {νn} satisfies the large deviation principle with a good rate function

I(f) =


∫ T

0 Λ∗(ḟ(t))dt if f ∈ AC0,

∞ otherwise.

More specifically,

(a) for any closed subset F of D([0, T ]),

lim sup
n→∞

1

n
log νn(F ) ≤ − inf

f∈F
I(f), and

(b) for any open subset G of D([0, T ]),

lim inf
n→∞

1

n
log νn(G) ≥ − inf

f∈G
I(f).

It is obvious that for all large deviation results, we can replace the countable index n by a

continuous index ε and treat ε = 1
n as a special case. Therefore, the above theorem could be

extended to the following setting.

Let µε be the probability law of

Yε(t) := ε

b t
ε
c∑

i=1

Xi, 0 ≤ t ≤ T.

Then the case of νn and Zn(t) becomes the special case of µε and Yε(t) with ε = 1
n . Hence the

above theorem could be extended to the following general theorem.
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Theorem 1.17 {µε} satisfies the large deviation principle with a good rate function

I(f) =


∫ T

0 Λ∗(ḟ(t))dt if f ∈ AC0

∞ otherwise.

More specifically,

(a) for any closed subset F of D([0, T ]),

lim sup
ε→0

εlogµε(F ) ≤ − inf
f∈F

I(f), and

(b) for any open subset G of D([0, T ]),

lim inf
ε→0

εlogµε(G) ≥ − inf
f∈G

I(f).

We now provide the large deviation result for a Brownian motion, which is obtained by Schilder.

Let Bt be a d− dimentional standard Brownian motion. Define the process

Bε(t) :=
√
εBt, 0 ≤ t ≤ T,

where Bε : Ω → C0([0, T ] : Rd), the space of Rd-valued continuous functions defined on [0, T ]

that vanish at the origin.

Recall that a standard Brownian motion could be constructed as a scaling limit of a symmetric

random walk. More precisely,

Bt = lim
n→∞

1√
n

bntc∑
i=1

Xi,

where Xi, i = 1, 2, · · · , are i.i.d. random variables with common mean 0 and variance 1, and

the limit of this convergence is in distribution sense.

Alternatively, in the ε setting,

Bt = lim
ε→0

√
ε

b t
ε
c∑

i=1

Xi.

Define the process

B̂ε(t) := Bε(εb
t

ε
c).

20



Then

B̂ε(t) = Bε(εb
t

ε
c)

=
√
εBεb t

ε
c

=
√
ε(
√
ε

b t
ε
c∑

i=1

Xi) in distribution

= ε

b t
ε
c∑

i=1

Xi

= Yε(t),

where Xi, i = 1, 2, · · · , are i.i.d. standard Gaussian random variables taking values in Rd.

Therefore, B̂ε(·) is simply a process Yε(·) with the special choice of Xi, i = 1, 2, · · · . Through

this observation, we then can provide a large deviation result for a Brownian motion as an

application of the above theorem concerning that for a random walk.

Let H1 denote the space of absolutely continuous function with a square integrable deriva-

tive, i.e., H1 := {
∫ t

0 f(s)ds : f ∈ L2([0, T ])}, where L2([0, T ]) is the space of square integrable

functions defined on [0, T ] with values in Rd. Let pε be the probability law of Bε.

Theorem 1.18 {pε} satisfies the large deviation principle with a good rate function

I(g) =

1
2

∫ T
0 |ġ(t)|2dt if g ∈ H1

∞ otherwise.

More specifically,

(a) for any closed subset F of C0([0, T ] : Rd),

lim sup
ε→0

εlog pε(F ) ≤ − inf
g∈F

I(g), and

(b) for any open subset G of C0([0, T ] : Rd),

lim inf
ε→0

εlog pε(G) ≥ − inf
g∈G

I(g).
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With the understanding of a large deviation result for a Brownian motion, we can now move

onto that for diffusion processes. First, we consider the simplest case as an instructive example.

For each ε, let {xε(t)} be a diffusion process which is the unique solution of the following

stochastic differential equation,

dxε(t) = b(xε(t))dt+
√
εdBt, 0 ≤ t ≤ T, xε(0) = 0,

where b : R→ R is a uniformly Lipschitz continuous function.

Let p̃ε denote the probability law of xε. Notice that xε : Ω → C0([0, T ] : R), the space of

R-valued continuous functions defined on [0, T ] that vanish at the origin. Let F be a function

from C0([0, T ] : R) to C0([0, T ] : R) defined by F (g) = h, where h is the unique continuous

solution of

h(t) =

∫ t

0
b(h(s))ds+ g(t), 0 ≤ t ≤ T.

It is clear that F is a continuous function. Notice that p̃ε = pε ◦F−1, where pε is the probability

law of Bε. Therefore, the large deviation principle for {xε(t)} here is a simple application of the

contraction principle.

Theorem 1.19 {p̃ε} satisfies the large deviation principle with a good rate function

I(h) =

1
2

∫ T
0 |ḣ(t)− b(h(t))|2dt if h ∈ H1

∞ otherwise.

More specifically,

(a) for any closed subset F of C0([0, T ] : R),

lim sup
ε→0

εlog p̃ε(F ) ≤ − inf
h∈F

I(h), and

(b) for any open subset G of C0([0, T ] : R),

lim inf
ε→0

εlog p̃ε(G) ≥ − inf
h∈G

I(h).

Our second example of a large deviation result for diffusion processes is described below. Let

C([0, T ] : Rd) denote the space of Rd-valued continuous functions defined on [0, T ]. Let {xε(t)}
be the diffusion process which is the unique solution of the following stochastic differential
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equation,

dxε(t) = b(xε(t))dt+
√
εσ(xε(t))dBt, 0 ≤ t ≤ T, xε(0) = x,

where all entries of b : Rd → Rd and all entries of σ : Rd → Rd × Rd are bounded, uniformly

Lipschitz continuous functions.

Let µε be the probability law of xε. Define

Ix(h) := inf{1

2

∫ T

0
|ġ(t)|2dt

∣∣∣g ∈ H1 : h(t) = x+

∫ t

0
b(h(s))ds+

∫ t

0
σ(h(s))ġ(s)ds}.

The large deviation principle for {xε(t)} is an application of the contraction principle.

Theorem 1.20 {µε} satisfies the large deviation principle with a good rate function Ix.

More specifically,

(a) for any closed subset F of C([0, T ] : Rd),

lim sup
ε→0

εlogµε(F ) ≤ − inf
h∈F

Ix(h), and

(b) for any open subset G of C([0, T ] : Rd),

lim inf
ε→0

εlogµε(G) ≥ − inf
h∈G

Ix(h).
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Chapter 2

Branching Processes

2.1 Branching Processes Overview

Branching processes is one of the classical areas in applied probability and is by now still an

active area of research. Generally, they may be thought of as mathematical models for the

evolution of stochastic systems whose dynamics consist of components reproducing new mem-

bers according to some probability laws. There are two major differences between branching

processes and deterministic population models. For one thing, the dynamics of the former are

described by randomness through some probabilistic laws on the number of offspring and on

the life spans, whereas the the evolution of the latter is non-random. For the other, the former

are individual-based models for the growth of populations because the propagation mechanisms

of the former are described by microscopic behavior of the systems. Besides the mathematical

interest on these, it is not surprising that there are many fruitful applications of this stochastic

process in physics, biology, chemistry and elsewhere. For example, neutron fluctuations and

cosmic ray cascade in physics, polymerase chain reaction and cell kinetics in biology, spread of

surnames in genealogy, chemical chain reactions in chemistry have been studied through various

branching processes. Although the term “branching processes” was coined by Kolmogorov and

Dmitriev [24] in 1974, the study of this subject has a much longer history. The first research

in this process was about the probability of extinction of the surnames in the British peerage,

which was conducted by Francis Galton [18] in 1873. Later on, he and Henry Watson success-

fully solved the problem (see [34] and [35]). The model they used is called the Galton-Watson

branching process, which is the simplest and oldest branching process among all. Since the

success of the investigation into the Galton-Watson branching process, the study of this area

has been growing extensively.

In the following section, the Galton-Watson branching process will be mathematically defined
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and explained in more details. Here we give a rough idea of branching processes for example.

Consider a population model that consists of human, animal species, or particles in general.

Suppose that an ancestor of the population has a life span of length one and gives birth to its

children at the end of that unit of time and then dies immediately. One can include the case that

there is a positive probability that no birth is given. The number of children is non-negative

integer-valued following to a law of certain offspring distribution. The ancestor is at the 0th

generation and his children are of the first generation and so on. They live for a unit amount

of time and give birth to some number of children according to the same probability law at the

end of the unit time right before they die. The procedure continuous in this manner. For each

of the individuals, the number of children is independent of that of the other individuals. This

property is called the branching property in some literature. If the size of population reaches

zero at some point, then the procedure stops. This could be regarded as extinction of the popu-

lation. If the process does not become extinct in finite time, then the process will go on forever.

The Galton-Watson branching process is the simplest branching process among all the others

because it has a discrete-time framework and because the number of children of each individual

is independent of the others. This simple branching process has three major features:

1. All individuals in the same generation have identical offspring distribution.

2. Individuals do not affect each other’s number of children.

3. The offspring distribution remains the same in the dynamics.

The first characteristic says that there is no difference among different individuals with respect

to their reproduction distribution. The second property says that their reproduction are inde-

pendent. The third feature means there is no difference between reproduction distribution in

different generations. It is these three basic features that make the Galton-Watson branching

process mathematically easier to handle than other more sophisticated branching processes.

Nowadays there are many variants of the Galton-Watson branching process. One generalization

is to consider several types of individuals in the process. The type of a particle is considered as

a fixed attribute throughout its life span. The type, for instance, could be its genotype, mutant

type, or any other characters of interest. The offspring distribution may be affected by the type.

Particles of the same type have the same offspring distribution, however, individuals of different

types may have different offspring distributions. The branching process that has several types

of individuals is called a multi-type branching process. Other than having several types in the

systems, a multi-type branching process has the same reproduction mechanism as a single-type

Galton-Watson branching process. Particles live for one unit of time and give birth to their

children according to a fixed probability law determined by their type and with no influence
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on each other. The first study of multi-type processes appears to be tackled by Kolmogrov and

Dmitriev [24] in 1947. They considered a process in a continuous-time framework.

Another generalization is by relexing the assumption that particles reproduce independently

from one another. In this direction, the most common dependence is population-size dependence

in the process. In a population-size dependent branching process, the offspring distributions de-

pend on the size of the whole population. It is often assumed that the reproduction reduces as

the population increases to fit the real-world phenomenon due to the limitations of resources,

although it is not mathematically motivated. The first research in a discrete-time, population-

size dependent branching process was conducted by Klebaner [22] in 1983. Boiko [8] studied

a population-size dependent branching process in a continuous-time framework. Another im-

portant dependence is considered as interaction between particles. Notice that population-size

dependence is a global dependence because the population as a whole affects the reproduction

behavior. On the other hand, interaction between particles is a local dependence because it

is often assumed that the interactions occur between type-attractive particles, type-repulsive

particles, sibling particles, or neighborhood particles under spatial settings. This kind of inter-

active dependence between particles makes the system complex and the study of this area is

active and still developing.

One of the unrealistic assumptions in the Galton-Watson branching processes is the fixed off-

spring distribution throughout different generations. This assumption implies that the environ-

ment for reproduction is unchanged throughout the time. In the branching processes discussed

above, the law governing the number of descendants is unchanged for all generations, however,

in the real world, reproduction will be affected by many factors either inside or outside the

system. Let us think of a population model of plants having a life cycle of one year. When the

weather conditions are good for the growth of the plants, the population of the plants has a

higher probability of growth. Since the weather conditions may differ from year to year, the

probabilities of reproduction rate of the plants will be different each year. In this case, the

weather conditions are the environment and they are not fixed throughout the lifetime of the

plants. Therefore, a natural generalization of the Galton-Watson branching process may be

by considering a process living in a changing environment. If the environment changes in a

deterministic manner, then the branching process is said to be in a deterministically varying

environment, while if the environments are chosen to be random, then the branching process is

said to be in random environments. The latter is obviously more complicated to analyze than

the former because in the latter case the changes in offspring distribution is not determinis-

tic, and a variety of scenarios from different laws are possible. In fact, we can view branching

process in a deterministically varying environment as a special case of branching process in
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random environments, for which a particular realization of offspring distributions under certain

environment occurs with probability one. Furthermore, if the environment is based on i.i.d.

random variables, then it is called a branching process in the i.i.d. random environment. This

process was first studied by Smith and Wilkinson [32]. Athreya and Karlin generalized it to a

non-i.i.d. case in [2] and [3]. Since then, the branching process in a random environment has

been an extensively growing research subject due to the extra randomness from environment

and increased flexibility for applied purposes.

In the previous branching processes, the systems are considered to be closed or isolated be-

cause the population only consists of particles generated inside the system and they cannot

move in and out of the system. Therefore, a generalization may be done through allowing mi-

gration into the system. In a branching process with immigration, a random number of particles

may immigrate into the system during each reproduction period. The number of immigrants

follows a probabilistic law and it is often assumed that the immigrants have the same offspring

distribution as that of those original particles in the system. It is worth mentioning that since

immigration does not stop, the branching process cannot be assumed extinct although the pro-

cess might have temporary periods of extinction. The other type of migration is emigration. In

a branching process with emigration, the particles could choose to leave the system according

to a probabilistic law right after their births. If their choice of leaving is independent of one

another, then this does not introduce any added complicition mathematically because in this

case the emigration could be viewed as an immediate death and hence we could ignore the

emigrants as if they are not offspring and are not to be counted. If the choice of emigration is

independent of one another but is dependent on the size of the population, then the process

could be treated as a population-size dependent branching process. The more difficult, but

somewhat more interesting, case may be that the decision of leaving is dependent on each other

in the same generation.

Another direction for a variant is in the aspect of a time framework in which the process

is defined. The preceding branching processes all live in a discrete-time framework. In the

Galton-Watson branching process, each individual lives one unit of time, however, a natural

extension is to allow the life span of the individuals to be a continuous random variable. The

counterpart of the Galton-Watson branching process is the so-called continuous-time Markov

branching process, which is the simplest branching process in a continuous-time framework.

More specifically, individuals now live in a continuous-time frame and the life span is a random

variable following identical and independent exponential distributions, which makes the process

Markovian. If we relax the assumption of exponential lifetime, then we obtain a so-called age-

dependent branching process, in which the lifetime is not necessarily exponentially distributed,
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and hence the resulting process may not be Markovian. Another more general continuous-time

branching process is the Sevastyanov process, in which not only the life span is arbitrarily dis-

tributed but also the offspring distribution depends on the age of the individuals. Much of the

early study on a continuous-time branching process was done by Kolmogrov and Dmitriev [24]

and Sevastyanov [31].

There are some other variations of the Galton-Watson branching process. In a two-gender

branching process, which was introduced by Daley [11], the reproduction only happens through

mating of the male and female individuals. In this process, it is convenient to represent the

size of population by the number of couples instead of the number of individuals. And the

formation of couples is via a so-called mating function, which specifies the total number of

couples deterministically. In a continuous-state branching process, the number of offsprings is

a non-negative real number instead of a non-negative integer. This process was first invented

by Jirina [21]. It is worth noting that the class of continuous-state branching processes with

immigration coincides with the class of affine processes, which has some important applications

in finance.

2.2 Preliminaries of the Galton-Watson Branching Processes

This section provides some well-known results on the Galton-Watson branching processes. Most

of these results are needed in this dissertation and some others are listed for completeness.

A Galton-Watson branching process is a discrete-time Markov chain {Zn}∞n=0 on the space

of non-negative integers. Let the offspring distribution be

{pk}∞k=0, pk ≥ 0,

∞∑
k=0

pk = 1.

The branching mechanism follows the offspring distribution that does not vary from individual

to individual nor from generation to generation. More specifically, the process begins at time

0 with Z0 ancestors, after one unit of time, each of them splits independently of each other

into a random number of individuals according to the common probability law {pk}∞k=0, i.e., an

individual gives no birth with probability p0 and he has one child with probability p1, and so

on. The total number of children from all the ancestors is denoted as Z1, which is the sum of

Z0 independent random variables, each with probability law {pk}∞k=0. The ancestors are said

to be in the 0th generation and their children constitute the first generation. The particles in

the first generation also have a unit life span. After one unit of time, each of them splits inde-
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pendently of each other and of the history into a random number of individuals following the

same probability law {pk}∞k=0. The total number of their children is denoted as Z2. And these

children is said to be in the second generation. This way, the number of particles in the n-th

generation is denoted as Zn. The procedure continues unless Zn = 0 for some positive integer

n. If Zn = 0 for some n, the branching process is said to be extinct. Apparently, Zn′ = 0 for all

n′ ≥ n if Zn = 0. Thus, 0 is an absorbing state of the Markov chain {Zn}∞n=0.

In the literature, when the number of original ancestors needs to be emphasized, a Galton-

Watson branching process with Z0 = j many original ancestors would be written as {Z(j)
n }∞n=0.

And usually if Z0 = 1, then it is customary to denote the process as {Zn}∞n=0 instead of

{Z(1)
n }∞n=0. In most of this study, we assume that Z0 = 1. Hence in the remaining part of this

dissertation, when there is no confusion, a Galton-Watson branching process with only one

ancestor will be written as {Zn}∞n=0.

An important feature of the Galton-Watson branching process is that the number of children

of each individual at any given generation is independent of the other individuals existing in

the same generation and of the whole history of the process. This fundamental feature of the

Galton-Watson branching process leads to the following additive property. Suppose that there

are Z0 = j many ancestors, then the process {Z(j)
n }∞n=0 is the sum of j independent copies of

the Galton-Watson branching process {Zn}∞n=0.

The transition mechanism of the Galton-Watson branching process is given by the following

transition probabilities

p(i, j) = P (Zn+1 = j|Zn = i) =


p∗ij if i ≥ 1 and j ≥ 0,

1 if i = 0 and j = 0,

0 if i = 0 and j > 0,

where {p∗ij }∞j=0 is the i-fold convolution of the offspring distribution {pk}∞k=0, i.e., it is the prob-

ability distribution of the sum of i many independent probability distributions {pk}∞k=0.

Another formulation of the Galton-Watson branching process may be done through the fol-

lowing recurrence equation

Zn+1 =

Zn∑
j=1

Xn,j , n = 0, 1, 2, · · · and j = 1, 2, · · · , Zn,

29



where Xn,j is the number of children of the j-th individual in the n-th generation and all Xn,j

are i.i.d. random variables over all n and j. Notice that since the offspring distribution does not

vary over the different generations, in this dissertation, we use the ease notionXj instead ofXn,j .

Let the probability generating function of the Galton-Watson branching process be

f(s) = E(sZ1 |Z0 = 1) =
∞∑
k=0

pks
k, |s| ≤ 1.

In general, s can be negative and complex, however, in this dissertation, we focus on the case

that s ∈ [0, 1]. It is a very useful tool in the study of branching processes. Also note that since

in this study we assume Z0 = 1 most of the time, we use the ease notation E(sZ1) to replace

E(sZ1 |Z0 = 1) sometimes when there is no confusion. Define the iterated compositions of the

probability generating function by

fn+1(s) = f [fn(s)], n = 1, 2, · · ·, and f0(s) = s.

It follows that fn+m(s) = fn[fm(s)], n,m = 0, 1, · · ·, and in particular,

fn+1(s) = fn[f(s)]. (2.1)

Notice that by the branching property and the identical distribution, when the process starts

with Z0 = j many ancestors, we have

∞∑
k=0

p(j, k)sk = E(sZ1 |Z0 = j)

= E(sX1+X2+···+Xj )

= [E(sZ1 |Z0 = 1)]j

= (f(s))j . (2.2)
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Let pn(i, k) denote the n-step transition probability from the state i to the state k. By Chapman-

Kolmogorov equation, Fubini’s Theorem, and (2.2),

E(sZn |Z0 = 1) =

∞∑
k=0

pn(1, k)sk

=
∞∑
k=0

∞∑
l=0

pn−1(1, l)p(l, k)sk

=
∞∑
l=0

pn−1(1, l)
∞∑
k=0

p(l, k)sk

=
∞∑
l=0

pn−1(1, l)[f(s)]l,

where Fubini’s Theorem can be applied because of the fact that the terms pn−1(1, l)p(l, k)sk

are non-negative for all l, k ∈ N ∪ {0}.

Note that by applying the above procedure repeatedly and induction,

∞∑
l=0

pn−1(1, l)[f(s)]l =
∞∑
l=0

∞∑
j=0

pn−2(1, j)p(j, l)(f(s))l

=

∞∑
j=0

pn−2(1, j)

∞∑
l=0

p(j, l)(f(s))l

=

∞∑
j=0

pn−2(1, j)[f(f(s))]j

=
∞∑
i=0

p(1, i)[fn−1(s)]i

= f [fn−1(s)]

= fn(s).

Therefore, this shows that fn(s) is the probability generating function of Zn, i.e.,

fn(s) = E(sZn |Z0 = 1). (2.3)

Combing (2.2) and (2.3), we have

[fn(s)]i =

∞∑
k=0

pn(i, k)sk, i ≥ 1.
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Since all the information for the transition probabilities is contained in fn(s), the probability

generating function of Zn, the study of this function is essential. In fact, the moments, if exist,

of a Galton-Watson branching process could be calculated by taking left-sided derivatives of

fn at s = 1. For example, the mean of the offspring distribution {pk}∞k=0, i.e., the expected

number of children of each particle, is denoted by m and could be calculated as m = E(Z1) =∑∞
k=0 p(1, k)k =

∑∞
k=0 p(1, k)k1k−1 =

∑∞
k=0 lims→1− p(1, k)ksk−1 = lims→1−

∑∞
k=0 p(1, k)ksk−1

= lims→1−
∑∞

k=0
d
ds [p(1, k)sk] = lims→1−

d
ds [
∑∞

k=0 p(1, k)sk] = lims→1− f
′(s) = f ′(1−), where

the calculation above is justified by uniform convergence in the interval of convergence of

the power series, and by dominated convergence theorem since |p(1, k)ksk−1| ≤ p(1, k)k for

s ∈ [−1, 1] and
∑∞

k=0 p(1, k)k is finite by the assumption that the first moment exists. The

Galton-Watson branching process is said to be sub-critical if m < 1, critical if m = 1, and

super-critical if m > 1. The expected size of generation n is E(Zn) = mn, which can be com-

puted by the calculation similar to the above one and differentiating 2.1 at s = 1.

Suppose that p0 + p1 < 1 and pk 6= 1 for any k ∈ N ∪ {0}. Let q be the smallest root of

the equation, f(s) = s in [0, 1]. Clearly, q = 0 when p0 = 0. The following gives some elemen-

tary properties of f(s), the probability generating function of the offspring distribution.

(1) f is strictly convex and monotone increasing.

(2) f(0) =
∑∞

k=0 p(1, k)0k = p(1, 0) = p0 and f(1) =
∑∞

k=0 p(1, k)1k = 1.

(3) If m ≤ 1, then f(s) > s for all 0 ≤ s < 1.

(4) If m > 1, then f(s) > s for all 0 ≤ s < q and f(s) = s for s = q and f(s) < s for all

q < s < 1.

(5) If m ≤ 1, then q = 1.

(6) If m > 1, then q < 1.

2.3 Asymptotic Behavior of the Galton-Watson Branching Pro-

cesses

The study of the asymptotic behavior of the probability generating function of a Galton-Watson

branching process is important since that can provide much information on the limit theorems

about the process {Zn}∞n=0. Therefore, in this section, we provide some asymptotic results con-

cerning {fn}∞n=0 and {Zn}∞n=0. Since these results will be used in our main theorems in the

latter chapters, we provide the proofs here. Note that since in this study, the branching process
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is assumed to be super-critical, hence we mostly focus on the results regarding super-critical

branching processes. The reader may find more results in [1] and [4].

The following result shows the convergence of fn to q in an monotonic manner in two dif-

ferent regimes.

Proposition 2.1

(a) For s = q or s = 1, fn(s) = s for all n.

(b) For 0 ≤ s < q, fn(s) ↑ q as n→∞.

(c) For q < s < 1, fn(s) ↓ q as n→∞.

Proof. Clearly, fn(q) = q for all n because f(q) = q. It is also obvious that fn(1) = 1 for all n

because f(1) = 1. Thus, (a) is shown.

For (b), let 0 < s < q. Then by properties (3) and (4) in the section 2.2, s < f(s). Since f

is monotone increasing, f(s) < f(q). Therefore, s < f(s) < f(q), hence By monotonicity of f,

we have

f(s) < f(f(s)) < f(f(q)), i.e., f(s) < f2(s) < f2(q).

Similarly, we obtain the following relationship

s < f(s) < f2(s) < f3(s) < · · · < fn(s) < fn(q) = q.

Hence, for 0 ≤ s < q, fn(s) converges increasingly to a finite number U, as n → ∞, since it is

an increasing sequence that is bounded above by q. Note that f is continuous at least on [0, 1)

since the power series f has the radius of convergence at least 1 and hence we have uniform

convergence to f for s ∈ [0, 1). Thus, for any fixed s ∈ [0, q),

U = lim
n→∞

fn(s) = lim
n→∞

f(fn−1(s)) = f( lim
n→∞

fn−1(s)) = f(U).

Therefore, U = q since f(U) = U ≤ q and q is the smallest root of f(s) = s in [0, 1]. This shows

(b).

For (c), let q < s < 1. Then by the property (4) in section 2.2, f(s) < s. Since f is mono-

tone increasing, f(q) < f(s), hence q < f(s) < s < 1. By monotonicity of f, we have

f(q) < f(f(s)) < f(s) < f(1), i.e., q < f2(s) < f(s) < 1.

33



Similarly, we obtain the following relationship

q < fn(s) < · · · < f2(s) < f(s) < 1.

Hence, for q < s < 1, fn(s) converges decreasingly to a non-negative number L, as n → ∞,

since it is an decreasing sequence that is bounded below by q. Note that fn(s) = f(fn−1(s))

and that f is a continuous function because it is a power series. Thus, for any fixed s ∈ (q, 1],

L = lim
n→∞

fn(s) = lim
n→∞

f(fn−1(s)) = f( lim
n→∞

fn−1(s)) = f(L).

Therefore, L = q since f(L) = L ≤ q and q is the smallest root of f(s) = s in [0, 1] and there

is no root in (q, 1). This shows (c).

2

Recall that the original problem proposed by Galton was to find the probability of ultimate

extinction, i.e., no particle exists after some finite number of generations. This is always a central

question in the theory of branching processes. The probability of extinction of a Galton-Watson

branching process is

P (Zj = 0 for some j ≥ 1) = lim
n→∞

P (Zj = 0 for some j ≤ n) = lim
n→∞

P (Zn = 0) = lim
n→∞

fn(0) = q.

Thus, the smallest root the equation, q of f(s) = s in [0, 1] is the probability of extinction for

the process.

Note that if there are Z0 = l ≥ 1 ancestors, then by the branching property, the extinction

probability of a Galton-Watson branching process is

P (Z
(l)
j = 0 for some j ≥ 1) = ql.

From proposition 2.1, we know that {fn}∞n=1 converges to q, however, it does not tell us the rate

of convergence. The information about convergence rate is useful in the study of some finer limit

theorems concerning {Zn}∞n=0. The following result gives the geometric rate of convergence of

fn(s) for a super-critical process by analyzing Qn(s) defined as

Qn(s) :=
fn(s)− q
(f ′(q))n

for 0 ≤ s < 1. (2.4)
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Theorem 2.1 Assume that m > 1, then there exist real numbers {qj}∞j=0 such that

lim
n→∞

fn(s)− q
(f ′(q))n

=
∞∑
j=0

qjs
j = Q(s) <∞ for 0 ≤ s < 1,

where Q(s) = limn→∞Qn(s) for 0 ≤ s < 1.

Moreover,

lim
n→∞

Q′n(s) = Q′(s) <∞ with Q′(s) > 0 for 0 ≤ s < 1 and lim
s→q

Q′(s) = 1.

Furthermore, Q(s) is the unique solution of the functional equation

Q(f(s)) = f ′(q)Q(s) for 0 ≤ s < 1, with Q(q) = 0.

Remark 2.1 When p0 = 0, q = 0 and f ′(q) = p1, and hence this theorem gives the following:

Assume that m > 1 and p1 6= 0, then there exist real numbers {q̂j}∞j=1 such that

lim
n→∞

fn(s)

(p1)n
=
∞∑
j=1

q̂js
j = Q̂(s) <∞ for 0 ≤ s < 1,

where Q̂(s) = limn→∞ Q̂n(s) for 0 ≤ s < 1 and Q̂n(s) = fn(s)
(p1)n for 0 ≤ s < 1.

Moreover,

lim
n→∞

Q̂′n(s) = Q̂′(s) <∞ with Q̂′(s) > 0 for 0 ≤ s < 1 and lim
s→0

Q̂′(s) = 1.

Furthermore, Q̂(s) is the unique solution of the functional equation

Q̂(f(s)) = p1Q̂(s) for 0 ≤ s < 1, with Q̂(0) = 0. (2.5)

Proof. By the chain rule, the derivative of Qn(s) could be expressed as

Q′n(s) =
f ′n(s)

(f ′(q))n

=
f ′(fn−1(s))f ′(fn−2(s))f ′(fn−3(s)) · · · f ′(s)

(f ′(q))n

=

n−1∏
j=0

f ′(fj(s))

f ′(q)
(2.6)

=

n−1∏
j=0

{1 + [
f ′(fj(s))− f ′(q)

f ′(q)
]}.
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Recall that a result on infinite products says that if the series
∑∞

j=1 |aj | is convergent, then the

infinite products
∏∞
j=1(1+aj) is convergent. That is,

∏∞
j=1(1+aj) is finite and non-zero. Thus,

now we want to show that
∑∞

j=0 |
f ′(fj(s))−f ′(q)

f ′(q) | < ∞, i.e.,
∑∞

j=0 |f ′(fj(s)) − f ′(q)| < ∞, be-

cause this implies that Q′(s) = limn→∞Q
′
n(s) =

∏∞
j=0{1+[

f ′(fj(s))−f ′(q)
f ′(q) ]} is finite and non-zero.

Fix s in [0, 1). Let ε > 0 be such that q < q + ε < 1 and that f ′(q + ε) < 1. Recall that

fn(s) converges to q, therefore, we can choose j0 to be such that fj(s) < q + ε for all j ≥ j0.

By mean value theorem,
|f ′(fj+j0(s))− f ′(q)|
|fj+j0(s)− q|

≤ f ′′(q + ε),

i.e., |f ′(fj+j0(s))− f ′(q)| ≤ f ′′(q + ε)|fj+j0(s)− q|.

By using mean value theorem again,

|fj+j0(s)− q|
|fj+j0−1(s)− q|

=
|fj+j0(s)− fj+j0(q)|
|fj+j0−1(s)− fj+j0−1(q)|

=
|f(fj+j0−1(s))− f(fj+j0−1(q))|
|fj+j0−1(s)− fj+j0−1(q)|

≤ f ′(q + ε),

i.e., |fj+j0(s)− q| ≤ f ′(q+ ε)|fj+j0−1(s)− q|. Therefore, |f ′(fj+j0(s))− f ′(q)| ≤ f ′′(q+ ε)f ′(q+

ε)|fj+j0−1(s)− q|.
Similarly,

|f ′(fj+j0(s))− f ′(q)| ≤ f ′′(q + ε)(f ′(q + ε))j |fj0(s)− q|

< f ′′(q + ε)(f ′(q + ε))j |q + ε− q|

= εf ′′(q + ε)(f ′(q + ε))j .

Thus,

∞∑
j=0

|f ′(fj+j0(s))− f ′(q)| ≤ εf ′′(q + ε)

∞∑
j=0

(f ′(q + ε))j

= εf ′′(q + ε)
1

1− f ′(q + ε)
< ∞.
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Therefore,

∞∑
j=0

|f ′(fj(s))− f ′(q)| =

j0−1∑
j=0

|f ′(fj(s))− f ′(q)|+
∞∑
j=j0

|f ′(fj(s))− f ′(q)|

< ∞.

This implies that

lim
n→∞

Q′n(s) = Q′(s) is finite and non-zero for 0 ≤ s < 1. (2.7)

It is clear that Q′n(s) > 0 for 0 ≤ s < 1. We now show that lims→q Q
′(s) = 1. By monotonicity

of fn and f ′, we have

−logQ′(s) = −
∞∑
j=0

log
f ′(fj(s))

f ′(q)

=
∞∑
j=0

log
f ′(q)

f ′(fj(s))

≤
∞∑
j=0

log
f ′(q)

f ′(fj(0))

≤
∞∑
j=0

[
f ′(q)

f ′(fj(0))
− 1]

≤
∞∑
j=0

f ′(q)− f ′(fj(0))

f ′(f0(0))

=
∞∑
j=0

f ′(q)− f ′(fj(0))

p1

=
1

p1

∞∑
j=0

|f ′(fj(0))− f ′(q)| <∞.

Notice that by the continuity of f ′, lims→q −log
f ′(fj(s))
f ′(q) = −log

f ′(fj(q))
f ′(q) = 0. Also note that

−log
f ′(fj(s))
f ′(q) ≤ log f ′(q)

f ′(fj(0)) and that
∑∞

j=0 log f ′(q)
f ′(fj(0)) < ∞. Hence by dominated convergence
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theorem,

lim
s→q
−logQ′(s) = lim

s→q

∞∑
j=0

−log
f ′(fj(s))

f ′(q)

=
∞∑
j=0

lim
s→q
−log

f ′(fj(s))

f ′(q)

= 0.

This implies that lims→q Q
′(s) = 1.

Note that

Q(s) =

∫ s

q
Q′(t)dt for 0 ≤ s < 1.

From Qn(q) = 0,

Qn(s) = Qn(s)−Qn(q) =

∫ s

q
Q′n(t)dt.

Note that

Q′n(t) ≤

Q′(t) if q < t < 1

1 if 0 ≤ t ≤ q
for all n ∈ N

and that 
∫ s
q Q

′(t)dt = Q(s) <∞∫ s
q 1dt = s− q <∞.

Hence by dominated convergence theorem,

lim
n→∞

Qn(s) = lim
n→∞

∫ s

q
Q′n(t)dt

=

∫ s

q
lim
n→∞

Q′n(t)dt

=

∫ s

q
Q′(t)dt

= Q(s)−Q(q)

= Q(s).
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Notice that

Qn(s) =
fn(s)− q
(f ′(q))n

=
(
∑∞

j=0 P (Zn = j|Z0 = 1)sj)− q
(f ′(q))n

=

∑∞
j=0[P (Zn = j|Z0 = 1)− bj ]sj

(f ′(q))n

=
∞∑
j=0

[P (Zn = j|Z0 = 1)− bj ]
(f ′(q))n

sj ,

where bj = q if j = 0 and bj = 0 otherwise. Thus, Qn(s) is a power series for 0 ≤ s < 1. Since

Q(s) is a limit of a sequence of power series, it is also a power series, say,

Q(s) =
∞∑
j=0

qjs
j <∞ for 0 ≤ s < 1.

Now we want to show that Q(f(s)) = f ′(q)Q(s) for 0 ≤ s < 1.

Qn(f(s)) =
fn(f(s))− q

(f ′(q))n

=
fn+1(s)− q

(f ′(q))n

= f ′(q)
fn+1(s)− q
(f ′(q))n+1

= f ′(q)Qn+1(s).

Thus, limn→∞Qn(f(s)) = limn→∞ f
′(q)Qn+1(s) and hence Q(f(s)) = f ′(q)Q(s).

To prove uniqueness, we assume that Q1(s) and Q2(s) are two of such solutions. Then by
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repeated using Qi(f(s)) = f ′(q)Qi(s), i = 1, 2, and by the triangle inequality,

0 ≤ |Q1(s)−Q2(s)|

=
1

f ′(q)
|Q1(f(s))−Q2(f(s))|

=
1

(f ′(q))2
|Q1(f2(s))−Q2(f2(s))|

=
1

(f ′(q))n
|Q1(fn(s))−Q2(fn(s))|

=
Qn(s)

fn(s)− q
|Q1(fn(s))−Q2(fn(s))|

= |Qn(s)|
∣∣∣Q1(fn(s))−Q2(fn(s))

fn(s)− q

∣∣∣
≤ |Qn(s)|

(∣∣∣Q1(fn(s))

fn(s)− q
− 1
∣∣∣+
∣∣∣1− Q2(fn(s))

fn(s)− q

∣∣∣).
Since limn→∞

Qi(fn(s))
fn(s)−q = lims→q

Qi(s)
s−q = lims→q(Q

i)′(s) = 1 by L’Hopital’s Rule rule, we have,

by taking limits on both sides of the inequality above,

|Q1(s)−Q2(s)| = 0 for 0 ≤ s < 1.

Therefore, Q(s) is the unique solution of the functional equation

Q(f(s)) = f ′(q)Q(s) for 0 ≤ s < 1.

2

Since the sequence of probability generating functions {fn}∞n=1 of a super-critical Galton-Watson

branching process decays geometrically and fn(s) =
∑∞

j=0 pn(i, j)sj , it is expected that the se-

quence of transition probabilities {pn(i, j)}∞n=1 also has a geometric rate of decay.

Theorem 2.2 Assume that m > 1, then

for all i, j ≥ 1, lim
n→∞

pn(i, j)

(f ′(q))n
= iqi−1qj , and

for all i ≥ 1 and j = 0, lim
n→∞

pn(i, j)− qi

(f ′(q))n
= iqi−1qj .

Remark 2.2 In particular, if p0 = 0, then q = 0 and f ′(q) = p1. Hence this theorem translates

to the following:
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Assume that m > 1 and p1 6= 0, then

for j ≥ 0, lim
n→∞

pn(i, j)

pn1
=

 qj if i = 1,

0 if i > 1,

and moreover, for i ≥ 1 and j ≥ 1,

lim
n→∞

pn(i, j)

(pn1 )i
= qij , where qij satisfies

∞∑
j=1

qijs
j = (

∞∑
k=1

qks
k)i for 0 ≤ s < 1.

Proof. From a series expansion, we have

(fn(s))i − qi

(f ′(q))n
=
fn(s)− q
(f ′(q))n

[(fn(s))i−1 + (fn(s))i−2q + (fn(s))i−3q2 + · · ·+ qi−1].

If we take limit on both sides, we reach

lim
n→∞

(fn(s))i − qi

(f ′(q))n
= lim

n→∞

fn(s)− q
(f ′(q))n

[(fn(s))i−1 + (fn(s))i−2q + (fn(s))i−3q2 + · · ·+ qi−1]

= Q(s)[qi−1 + qi−2q + qi−3q2 + · · ·+ qi−1]

= Q(s)iqi−1

= (
∞∑
j=0

qjs
j)iqi−1

=
∞∑
j=0

iqi−1qjs
j <∞ for 0 ≤ s < 1,

since
∑∞

j=0 qjs
j <∞ 0 ≤ s < 1.

On the other hand, from the power series expansion of fn(s), we see that

lim
n→∞

(fn(s))i − qi

(f ′(q))n
= lim

n→∞

∑∞
j=0 pn(i, j)sj − qi

(f ′(q))n

= lim
n→∞

∑∞
j=0[pn(i, j)− cj ]sj

(f ′(q))n

= lim
n→∞

∞∑
j=0

pn(i, j)− cj
(f ′(q))n

sj

=
∞∑
j=0

lim
n→∞

pn(i, j)− cj
(f ′(q))n

sj ,
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where cj =

 qi if j = 0,

0 otherwise.

Note that the interchange of summation and limit above is justified by the uniform convergence

of power series in the interval of convergence. By comparing coefficients, we obtain that

for i ≥ 1 and j ≥ 1, lim
n→∞

pn(i, j)

(f ′(q))n
= iqi−1qj , and

for i ≥ 1 and j = 0, lim
n→∞

pn(i, j)− qi

(f ′(q))n
= iqi−1qj .

2

The next result indicates that when p0 and p1 are both zero, the rate of convergence of fn(s)

is super-geometric. Note that we use the notation “≈” to denote the approximation.

Theorem 2.3 Let p0 = p1 = 0 and l = inf{j : j ≥ 2, pj 6= 0}. Then

fn(s) = sl
n
pl

∑n−1
j=0 l

j

(Rn(s))l
n
, (2.8)

where Rn(s) =
∏n−1
j=0 (1 + γg(fj(s)))

1

lj+1 uniformly converges to R(s) on [0, 1] with R(0) = 1

and R(1) <∞, where γ = 1−pl
pl

and g(s) =
∑∞

j=l+1
pj

1−pl s
j−l.

Moreover,

lim
n→∞

(Rn(s)

R(s)

)ln
= 1 for 0 ≤ s < 1 (2.9)

and hence

fn(s) ≈ pl
−1
l−1
(
pl

1
l−1 sR(s)

)ln
for large n.

Furthermore, R(s) is the unique solution of the functional equation

f(s)R(f(s)) = pl(sR(s))l,

subject to the conditions R(0) > 0 and R is continuous on [0, 1].

Proof. Define γ := 1−pl
pl

and g(s) :=
∑∞

j=l+1
pj

1−pl s
j−l. Then probability generating function

f(s) could be written as

f(s) =

∞∑
j=0

pjs
j = pls

l(1 + γg(s)).

Apparently, g is a probability generating function and 0 < γ <∞. Thus,

fn(s) = f(fn−1(s)) = pl(fn−1(s))l(1 + γg(fn−1(s))). (2.10)
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Let hn(s) = (fn(s))
1
ln , then by iterating the identity,

hn(s) = (fn(s))
1
ln

= [pl(fn−1(s))l(1 + γg(fn−1(s)))]
1
ln

= [pl(1 + γg(fn−1(s)))]
1
ln hn−1(s)

= [pl(1 + γg(fn−1(s)))]
1
ln [pl(1 + γg(fn−2(s)))]

1
ln−1 hn−2(s)

= s
n−1∏
j=0

[pl(1 + γg(fj(s)))]
1

lj+1 .

Thus,

fn(s) = (hn(s))l
n

= sl
n
pl

∑n−1
j=0 l

j

(Rn(s))l
n
,

where Rn(s) =
∏n−1
j=0 (1 + γg(fj(s)))

1

lj+1 . Clearly, Rn(s) is increasing in n for 0 ≤ s ≤ 1 and

g(1) = 1. Let

R(s) =
∞∏
j=0

(1 + γg(fj(s)))
1

lj+1 for 0 ≤ s ≤ 1.

Note that the infinite product R(s) exists since

logR(s) =

∞∑
j=0

1

lj+1
log(1 + γg(fj(s)))

≤ log(1 + γ)

∞∑
j=0

1

lj+1

< ∞.

We want to show that limn→∞ sup0≤s≤1 |Rn(s)−R(s)| = 0 because this implies Rn(s) converges

uniformly to R(s) for 0 ≤ s ≤ 1. This is equivalent to show that limn→∞ sup0≤s≤1 log R(s)
Rn(s) = 0.

Notice that

0 ≤ log
R(s)

Rn(s)

=

∞∑
j=n

1

lj+1
log(1 + γg(fj(s)))

≤ log(1 + γ)
∞∑
j=n

1

lj+1

and hence

lim
n→∞

sup
0≤s≤1

log
R(s)

Rn(s)
= 0,
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since l ≥ 2 by definition. Therefore, Rn(s) converges uniformly to R(s) for 0 ≤ s ≤ 1.

To show that limn→∞
(Rn(s)
R(s)

)ln
= 1 for 0 ≤ s < 1, we first realize that

0 ≤ lnlog
R(s)

Rn(s)

= ln
∞∑
j=n

1

lj+1
log(1 + γg(fj(s)))

=

∞∑
r=0

1

lr+1
log(1 + γg(fn+r(s))).

Secondly, g(0) = 0 and g is continuous since it is a power series. Observe that, for 0 ≤ s < 1,

g(s) < 1 and 1 ≤ 1 + γg(fn+r(s)) < 1 + γ. Then, for 0 ≤ s < 1, | 1
lr+1 log(1 + γg(fn+r(s)))| <

1
lr+1 log(1+γ) for all n and

∑∞
r=0

1
lr+1 log(1+γ) = 1

l−1 log(1+γ) <∞. Since g and f are continuous

and g(0) = 0, limn→∞
1

lr+1 log(1 + γg(fn+r(s))) = 0. Hence by dominated convergence theorem,

lim
n→∞

lnlog
R(s)

Rn(s)
= lim

n→∞

∞∑
r=0

1

lr+1
log(1 + γg(fn+r(s)))

=
∞∑
r=0

lim
n→∞

1

lr+1
log(1 + γg(fn+r(s)))

= 0.

Therefore, limn→∞
(Rn(s)
R(s)

)ln
= 1 for 0 ≤ s < 1. Hence, limn→∞

fn(s)s−l
n
p
−(1+l+···+ln−1)
l

(R(s))ln
= 1.

Therefore,

fn(s) ≈ pl
−1
l−1
(
pl

1
l−1 sR(s)

)ln
for large n.

Clearly, R(0) > 0. R is continuous on [0, 1] since it is a uniform limit of a sequence of con-

tinuous functions {Rn}∞n=1 on [0, 1]. Below we see that R(s) satisfies the functional equation
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f(s)R(f(s)) = pl(sR(s))l, since

f(s)R(f(s)) = f(s)
∞∏
j=0

(1 + γg(fj+1(s)))
1

lj+1

= f(s)
∞∏
i=1

(1 + γg(fi(s)))
1

li

= slpl(1 + γg(s))
∞∏
i=1

(1 + γg(fi(s)))
1

li

= pls
l
∞∏
j=0

(1 + γg(fj(s)))
1

lj .

On the other hand,

pl(sR(s))l = pls
l[

∞∏
j=0

(1 + γg(fj(s)))
1

lj+1 ]l

= pls
l
∞∏
j=0

(1 + γg(fj(s)))
1

lj .

We now show that solution to the functional equation is unique. Let R1 and R2 be two such

solutions. Then they are continuous on [0, 1] and are both positive at 0. Define r(s) = R2(s)
R1(s)

for

0 ≤ s ≤ 1. Then r is continuous on [0, 1] and by plugging it into the functional equation, we

have r(f(s)) = (r(s))l and hence by iterating, for 0 ≤ s ≤ 1,

r(s) = (r(f(s)))
1
l

= ((r(f(f(s))))
1
l )

1
l

= (r(f2(s)))
1
l2

= (r(fn(s)))
1
ln .

Since r is continuous at 0, limn→∞ r(fn(s)) = r(0) > 0 and hence r(s) = limn→∞ r(s) =

limn→∞(r(fn(s)))
1
ln = 1 for 0 ≤ s < 1. Since r is continuous at 1 and r(1−) = 1, we have

r(1) = 1. Therefore, R1(s) = R2(s) for 0 ≤ s ≤ 1. This proves the uniqueness.

2

Note that in general we allow the probability generating function f(s) to be defined on [0,∞).

Besides the probability generating function f(s), its inverse function g(s) for 0 ≤ s < ∞, is

quite useful in the analysis of a Galton-Watson branching process. Notice that the n-th repeated

self-composition gn(s) of g(s) is the inverse function of fn(s) for all n. In particular, g0(s) = s

because f0(s) = s. Since gn(s) is the inverse function of fn(s) for all n, the properties of gn(s)
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could be inferred from fn(s). Let s0 > 1 be such that f(s0) <∞. The following are some of the

properties of gn(s):

(1) g is strictly concave and monotone increasing.

(2) g(p0) = 0 and g(1) = 1.

(3) If m ≤ 1, f(s) > s for 0 ≤ s < 1.

(4) If m > 1, then g(s) > s for q < s < 1 and g(s) = s for s = q or s = 1 and g(s) < s for

0 < s < q and 1 < s ≤ f(s0) if f(s0) <∞.

(5) gn(s) ↑ 1 as n→∞ for q < s < 1 and gn(s) ↓ 1 as n→∞ for 1 < s ≤ f(s0) if f(s0) <∞.

Assume that p0 = 0 and that f(s0) <∞ for some s0 > 1. Define

Q̃n(s) := mn(gn(s)− 1) for 1 ≤ s ≤ f(s0). (2.11)

The next theorem indicates that the rate of convergence of {gn}∞n=0 is geometric, which makes

sense since that of {fn}∞n=0 is also geometric.

Theorem 2.4 Assume that p0 = 0 and that f(s0) <∞ for some s0 > 1. Then

Q̃n(s) ↓ Q̃(s) as n →∞ for 1 ≤ s ≤ f(s0),

where Q̃(s) is the unique solution of the functional equation

Q̃(f(s)) = mQ̃(s) for 1 ≤ s ≤ f(s0)

with 0 < Q̃(s) <∞ for 1 < s ≤ f(s0), Q̃(1) = 0, and Q̃′(1) = 1.

Proof. Fix s in [1, f(s0)]. Since g′(1) = 1
f ′(g(1)) = 1

m and by the chain rule, the derivative of

Q̃n(s) could be expressed as

Q̃′n(s) = mng′n(s)

= mng′(gn−1(s))g′(gn−2(s))g′(gn−3(s)) · · · g′(s)

=
n−1∏
j=0

mg′(gj(s)) (2.12)

=

n−1∏
j=0

{1 +m[g′(gj(s))− g′(1)]}.
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Recall that in the proof of proposition 2.2, we mention that a result on infinite products says

that if the series
∑∞

j=1 |aj | is convergent, then the infinite products
∏∞
j=1(1 +aj) is convergent,

i.e.,
∏∞
j=1(1 + aj) 6= 0 <∞. Thus, now we want to show that

∑∞
j=0 |m[g′(gj(s))− g′(1)]| <∞

because this implies that Q̃′(s) = limn→∞ Q̃
′
n(s) =

∏∞
j=0{1 +m[g′(gj(s))− g′(1)]} is finite and

non-zero.

Let ε > 0 be such that 1 < 1 + ε ≤ f(s0) and that β = g′(1 + ε) < 1. Choose j0 to be

such that gj(s) < 1 + ε for all j ≥ j0. By mean value theorem,

|g′(gj+j0(s))− g′(1)|
|gj+j0(s)− 1|

≤ |g′′(1 + ε)|,

i.e., |g′(gj+j0(s))− g′(1)| ≤ |g′′(1 + ε)||gj+j0(s)− 1|.

Using mean value theorem again,

|gj+j0(s)− 1|
|gj+j0−1(s)− 1|

=
|gj+j0(s)− gj+j0(1)|
|gj+j0−1(s)− gj+j0−1(1)|

=
|g(gj+j0−1(s))− g(gj+j0−1(1))|
|gj+j0−1(s)− gj+j0−1(1)|

≤ |g′(1 + ε)|

= β,

i.e., |gj+j0(s)− 1| ≤ β|gj+j0−1(s)− 1|. Thus, |g′(gj+j0(s))− g′(1)| ≤ |g′′(1 + ε)|β|gj+j0−1(s)− 1|.
Similarly,

|g′(gj+j0(s))− g′(1)| ≤ |g′′(1 + ε)|βj |1 + ε− 1|

= ε|g′′(1 + ε)|βj .

Thus,

∞∑
j=0

|g′(gj+j0(s))− g′(1)| < ε|g′′(1 + ε)|
∞∑
j=0

βj

= ε|g′′(1 + ε)| 1

1− β
< ∞.

47



Therefore,

∞∑
j=0

|m[g′(gj(s))− g′(1)]| = m{
j0−1∑
j=0

|g′(gj(s))− g′(1)|+
∞∑
j=j0

|g′(gj(s))− g′(1)|}

< ∞.

This implies that

lim
n→∞

Q̃′n(s) = Q̃′(s) 6= 0 <∞ for 1 ≤ s ≤ f(s0). (2.13)

Note that

Q̃(s) =

∫ s

1
Q̃′(t)dt for 1 ≤ s ≤ f(s0).

Since Q̃n(1) = 0,

Q̃n(s) = Q̃n(s)− Q̃n(1) =

∫ s

1
Q̃′n(t)dt.

Note that since
g′(gj(s))
g′(1) ≤ 1 for 1 ≤ s ≤ f(s0),

Q̃′n(t) =

n−1∏
j=0

g′(gj(t))

g′(1)
≤ 1 for 1 ≤ t ≤ f(s0) and for all n.

Hence by dominated convergence theorem,

lim
n→∞

Q̃n(s) = lim
n→∞

∫ s

1
Q̃′n(t)dt

=

∫ s

1
lim
n→∞

Q̃′n(t)dt

=

∫ s

1
Q̃′(t)dt

= Q̃(s)− Q̃(1)

= Q̃(s).

In fact, Q̃n(s) ↓ Q̃(s) as n → ∞ for 1 ≤ s ≤ f(s0). This can be seen from the fact that
g′(gj(s))
g′(1) ≤ 1 for 1 ≤ s ≤ f(s0). Hence, Q̃′n(s) =

∏n−1
j=0

g′(gj(s))
g′(1) is non-increasing in n for

1 ≤ s ≤ f(s0). Consequently, Q̃n(s) =
∫ s

1 Q̃
′
n(t)dt is non-increasing in n for 1 ≤ s ≤ f(s0).

Since Q̃n(s) ↓ Q̃(s) as n → ∞ for 1 ≤ s ≤ f(s0) and Q̃n(s) < ∞ for all n, Q̃(s) < ∞ for

1 ≤ s ≤ f(s0). Notice that Q̃(s) > 0 for 1 < s ≤ f(s0) because Q̃(s) =
∫ s

1 Q̃
′(t)dt and Q̃′(t) > 0

for 1 ≤ t ≤ f(s0). Since Q̃′(s) = limn→∞ Q̃
′
n(s) =

∏∞
j=0{1 + m[g′(gj(s)) − g′(1)]}, it is clear

that Q̃′(1) = 1.
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Note that we have

Q̃n(f(s)) = mn(gn(f(s))− 1)

= mn(gn−1(s)− 1)

= mQ̃n−1(s).

Thus, limn→∞ Q̃n(f(s)) = limn→∞mQ̃n−1(s) and hence Q̃(f(s)) = mQ̃(s). To prove unique-

ness, we assume that Q̃1(s) and Q̃2(s) are two of such solutions. Then by iterating and by the

triangle inequality,

0 ≤ |Q̃1(f(s))− Q̃2(f(s))|

= m|Q̃1(s)− Q̃2(s)|

= m2|Q̃1(g(s))− Q̃2(g(s))|

= mn+1|Q̃1(gn(s))− Q̃2(gn(s))|

=
Q̃n+1(s)

gn+1(s)− 1
|Q̃1(gn(s))− Q̃2(gn(s))|

= Q̃n+1(s)|Q̃
1(gn(s))− Q̃2(gn(s))

gn+1(s)− 1
|

≤ Q̃n+1(s){| Q̃
1(gn(s))

gn+1(s)− 1
− 1|+ |1− Q̃2(gn(s))

gn+1(s)− 1
|}.

Since limn→∞
Q̃i(gn(s))
gn+1(s)−1 = lims→1

Q̃i(s)
s−1 = lims→1(Q̃i)′(s) = 1 by L’Hopital’s Rule rule, we have,

by taking limits on both sides of the inequality above,

|Q̃1(f(s))− Q̃2(f(s))| = 0 for 1 ≤ s ≤ f(s0).

Hence, Q̃1(f(s)) = Q̃2(f(s)) for 1 ≤ s ≤ f(s0). Consequently, Q̃1(s) = Q̃2(s) for 1 ≤ s ≤ f(s0).

Therefore, Q̃(s) is the unique solution of the functional equation

Q̃(f(s)) = mQ̃(s) for 1 ≤ s ≤ f(s0).

2

The following two theorems regarding limiting behavior of {Zn}∞n=0 are well-known and essential

in our study. The first is about the ratio of successive population sizes of generations.

Theorem 2.5 Assume that p0 = 0 and m <∞. Then limn→∞
Zn+1

Zn
= m almost surely.
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Proof. Let {Xi}ki=1 denote i.i.d. copies of Z1 with a finite mean m <∞. Then by the branching

property

Zn+1

Zn
=

1

Zn

Zn∑
i=1

Xi.

Notice that since p0 = 0, Zn 6= 0 for all n ∈ N and limn→∞ Zn = ∞ almost surely. By law of

large numbers,

lim
n→∞

1

Zn

Zn∑
i=1

Xi = m almost surely.

2

Define Wn = Zn
mn , n = 0, 1, 2, · · ·. Then the following theorem is a result on convergence of

{Wn}∞n=0.

Theorem 2.6 Assume that m <∞. Let {Fn}∞n=0 be the filtration where Fn = σ(Z0, Z1, · · · , Zn)

for all n ∈ N. Then {Wn}∞n=0 is a non-negative martingale with respect to {Fn}∞n=0. Conse-

quently, by the martingale convergence theorem, there exists some random variable W such that

limn→∞Wn = W almost surely.

Proof. It is clear that by branching property

E(Zn+1|Zn) = E(

Zn∑
i=1

Xi|Zn)

= ZnE(X1)

= mZn almost surely.

Since {Zn}∞n=0 is a Markov chain, so is {Wn}∞n=0. Therefore, by conditioning and induction, we

have

E(Zn+k|Zn, Zn−1, · · · , Z0) = E(Zn+k)|Zn)

= E(E(Zn+k|Zn+k−1, Zn+k−2, · · · , Zn)|Zn)

= E(E(Zn+k|Zn+k−1|Zn)

= E(mZn+k−1|Zn)

= mE(Zn+k−1|Zn)

= mkZn for all n, k = 0, 1, 2, · · · .

Dividing both sides by mn+k we get

E(
Zn+k

mn+k
|Zn, Zn−1, · · · , Z0) =

mkZn
mn+k

,
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i.e., E(Wn+k|Zn, Zn−1, · · · , Z0) = Wn. We obtain E(Wn+k|Wn,Wn−1, · · · ,W0) = Wn since

E(Wn+k|Zn, Zn−1, · · · , Z0) = E(Wn+k|Wn,Wn−1. Clearly, E(|Wn|) < ∞ for all n and Wn

is Fn-measurable for all n since Zn is. Therefore, {Wn}∞n=0 is a martingale with respect to

{Fn}∞n=0. It is obvious that Wn ≥ 0 for all n. Since {Wn}∞n=0 is a non-negative martingale, by

the martingale convergence theorem, it converges to some random variable W almost surely.

2

2.4 Motivations

In the present study, we consider a randomly indexed branching process, an extension of the

classical Galton-Watson branching process in which the subordinator is a Poisson process, pro-

posed by Epps in [14]. In his work, the model with four particular mixture offspring distributions

was applied to study the evolution of stock prices. The statistical investigation on various es-

timates and some parameters of the process were done in [13], which indicated this process is

a particular case of the branching process in a random environment of i.i.d. type. Recently,

this randomly indexed branching process has been brought to attention in both theoretical and

applied sense. On theoretical side, [27] and [26] considered a critical branching process subor-

dinated by a general renewal process. They investigated the probability of non-extinction, the

asymptotic behavior of the moments, and also limiting distributions under normalization. In

a more applied direction, [25] derived a formula for the fair price of an European call option

based on modeling the underlying stock price by this process with a Poisson subordinator and

with a geometric offspring distribution. Later on, a formula for the fair price of an up-and-out

call option, a particular form of a barrier option, was derived in [28].

In this study, we investigate a large deviation rate concerning an interesting quantity - the

ratio of successive generation sizes Zn+1/Zn. As pointed out in [1], viewed from a statistical

inference pint of view, this ratio is a reasonable estimate of the expected number of children of

each individual. Hence, it is meaningful to study the asymptotic behavior of its deviation from

m. Athreya has intensely studied this aspect for various Galton-Watson branching processes

(See [1], [5], [6], and [7]). In [1], he considered a super-critical Galton-Watson branching process

with the probability of giving no birth being zero. Under some finite moment hypothesis, it

was shown that the rate of decay of large deviation probabilities is geometric if the probability

of having one child is positive and is super-geometric, if the probability of having one child is

zero. Other than the ratio of successive generation sizes, two related quantities were studied.

One is the ratio conditioned on the limiting random variable W of a sequence of normalized

population sizes Zn
mn being non-degenerate at zero. The other is the difference between the as-

sociated martingale sequence Zn
mn and this limiting random variable W to which the sequence
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converges. The results showed that the rates of decay of the large deviation probabilities are

super-geometric for these two quantities. In [6], Athreya and Vidyashankar generalized these

results to a multi-type case. In [5], they extended these results to the critical scenario.

A natural question may be: would these large deviation results still hold for continuous-time

Markov branching processes? A useful tool for studying continuous-time Markov branching pro-

cesses is Kingman’s theorem in [23]. All results for a Galton-Watson branching process carry

over to continuous-time Markov branching processes by Kingman’s theorem. Since these large

deviation results were obtained in a Galton-Watson branching process, they should hold for a

continuous-time Markov branching process.

Then what is the point to study these large deviation results for a randomly indexed branching

process? For one thing, in a randomly indexed branching process, all individuals existing in

a given generation have the same life span and simultaneously give births to their children.

That is, for individuals in a given generation the numbers of their children are independent of

each other while the lifetimes are not. However, in a continuous-time Markov branching pro-

cess, both the lifetime and the number of children of each individual are independent. Thus,

a randomly indexed branching process lives in continuous time and evolves synchronously. It

is this characteristic which makes this process a bridge of a Galton-Watson branching process

and a continuous-time Markov branching process and allows us to study synchronic evolution

in a continuous-time set-up. What is more, there is no such handy device as Kingman’s the-

orem carrying over the results on a Galton-Watson branching process to a randomly indexed

branching process. Thus, they are not done by using Kingman’s theorem. One final point is that

there is no study that has ever tried to investigate a large deviation dynamic on a randomly

indexed branching process. Therefore, this study contributes to the literature of randomly in-

dexed branching processes in that the large deviation behavior is explored for the first time.

Our main target is the ratio of the successive generation sizes of a randomly indexed branching

process subordinated by a Poisson process. The branching process in this study is assumed to

be super-critical with either trivial or non-trivial probability of giving no birth. This setting

generalizes the model considered in [1]. We mainly deal with the ratio of successive generation

sizes. Under a moment condition, we examine this behavior from three perspectives. First, for

the unconditional case (Theorem 4.1), the rate of decay is exponential. Second, for the case

conditioned on the present generation being non-extinct (Theorem 4.2), the rate of decay is

also exponential with the limit different from that of the unconditional case. Third, for the

case conditioned on the next generation being non-extinct (Theorem 4.3), the rate of decay

is still exponential with the limit different from the limit in Theorem 4.2. It is worth men-
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tioning that the limit in the third case is less than or equal to that of the second case. The

result of this comparison is in agreement with our intuition since conditioned on the future

generation being non-extinct implies the current generation being non-extinct and hence the

process survives longer. Consequently, by law of large numbers, the deviation from the mean

should be smaller when conditioned on the next generation being non-extinct. Furthermore,

under certain conditions weaker than the moment condition assumed in the first three the-

orems, the result of Theorem 4.1 is obtained in Theorem 4.4 and Corollary 4.1. In order to

prove Theorem 4.6, we build a finite uniform exponential moment result for a martingale in

Theorem 4.5. In Theorem 4.6, we obtain a super-exponential decay rate for the martingale used

in Theorem 4.5. Under the same moment condition used in the first three theorems, Theorem

4.7 shows that the rate of decay of the ratio conditioned on the limiting random variable of a

sequence of normalized population sizes being non-degenerate at zero is super-exponential no

matter whether the probability of having one child is zero or not. In addition to these main

theorems, we also obtain some limit results on a randomly indexed branching process. Limit

theorems about the probability generating function and other related function are established

in proposition 3.1 to proposition 3.3; limit results related to two martingales, {e−u′(1)tZN(t)}t≥0

and {ZN(t)m
−N(t)}t≥0, are established in proposition 3.4 and proposition 3.5.

We present a summary of the present study. Chapter 3 investigates some limit results on

a Poisson randomly indexed branching process and provides preliminary lemmas as well as

propositions needed to establish the theorems in the next chapter. Chapter 4 is devoted to a

large deviation behavior of the process. The main result of this study is Theorem 4.2, which is

included in chapter 4. Applications of our results to finance and physics are explored in chapter

5. Chapter 6 gives the conclusion of this study and outlines the directions of future research.
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Chapter 3

Limit Theorems about Poisson

Randomly Indexed Branching

Processes

In this chapter, we first define a Poisson randomly indexed branching process and then prove

some propositions concerning the asymptotic behavior of a Poisson randomly indexed branch-

ing process. These results are the building blocks for our theorems in the next chapter.

Let {Zn}∞n=0 and {N(t)}t≥0 be two independent stochastic processes on the same probabil-

ity space (Ω,F , P ) with the following characters (1) and (2).

(1) {Zn}∞n=0 is a Galton-Watson branching process with an offspring distribution {pi}∞i=0 and

hence for each n ∈ N, the probability generating function (p.g.f.) of Zn is fn(s) = E(sZn)

for |s| ≤ 1, which is the n-fold iteration of f(s) = E(sZ1) =
∑∞

i=0 pis
i, |s| ≤ 1, the p.g.f. of

Z1. Throughout the first part of the study, we assume that our branching process starts

from one ancestor, i.e., Z0 = 1 a.s., and that it is super-critical with a finite mean, i.e.,

1 < m =
∑∞

i=0 pii <∞.

(2) {N(t)}t≥0 is a Poisson process with intensity λ. Hence, N(0) = 0 and limt→∞N(t) =∞
a.s..

Definition 3.1 The continuous time process {ZN(t)}t≥0 is called a Poisson randomly indexed

branching process (PRIBP).

Remark 3.1 PRIBP is a continuous time Markov chain. Let FN (s, t) := E(sZN(t)) be the p.g.f.

of ZN(t). Define u(s) := λ(f(s) − s). Taking partial derivative of FN (s, t) with respect to s at
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s = 1 gives the expectation of ZN(t). In other words,

E(ZN(t)) =
∂

∂s
[FN (s, t)]

∣∣
s=1

=
∂

∂s
[E(sZN(t))]

∣∣
s=1

=
∂

∂s
[

∞∑
n=0

fn(s)P (N(t) = n)]
∣∣
s=1

=
∞∑
n=0

d

ds
[fn(s)]

∣∣
s=1

P (N(t) = n)

=
∞∑
n=0

mnP (N(t) = n)

= E(mN(t))

= eλ(m−1)t

= eu
′(1)t,

where the interchange of summation and differentiation is justified by the uniform convergence

of the series.

Lemma 3.1 below provides a useful device for bridging some asymptotic results from ordinarily

indexed stochastic processes to those for randomly indexed stochastic processes. Note that the

subordinators are commonly taken to be counting processes but not necessarily. Thus, if we

want to investigate the limiting behavior for a randomly indexed stochastic process, then we can

study the limiting behavior for an ordinarily indexed stochastic process. Lemma 3.2 indicates

that if an ordinarily indexed stochastic process is a martingale, then the corresponding randomly

indexed process is also martingales.

Lemma 3.1 Let {Yn}∞n=0 be a sequence of random variables and {M(t)}t≥0 be a non-negative

integer-valued process that is independent of {Yn}∞n=0 with limt→∞M(t) =∞ a.s.. Assume that

limn→∞ Yn = Y a.s. for some random variable Y. Then limt→∞ YM(t) = Y a.s..

Proof. Let A = {ω : limt→∞M(t, ω) = ∞}, B = {ω : limn→∞ Yn(ω) = Y (ω)}, and C =

{ω : limt→∞ YM(t,ω)(ω) = Y (ω)}. By the assumptions, P (A) = 1 = P (B). Since A ∩ B ⊆ C,

P (C) ≥ P (A ∩B) = 1. Therefore, P (C) = 1, i.e., limt→∞ YM(t) = Y a.s..

2

Lemma 3.2 Let {Yn}∞n=0 be a martingale with respect to the filtration {Fn}∞n=0 where Fn =

σ(Ym;m ≤ n). Let {M(t)}t≥0 be an increasing, non-negative integer-valued process independent
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of {Yn}∞n=0. Let Gt = σ(M(s), YM(s); s ≤ t), i.e., the filtration generated by M(·) and YM(·) up

to time t. Assume that E|YM(t)| <∞ for all t. Then {YM(t)}t≥0 is a martingale with respect to

{Gt}t≥0.

Proof. Let A = {Mt0 = m0, Mt1 = m1, ... , Mtk = mk} and B = {Ym0 ∈ B0, Ym1 ∈ B1, ... ,

Ymk ∈ Bk}, where Bi is a Borel set for i and tk = t. We need to show that E
(
YM(t+s)|Gt

)
= YM(t)

for any s ≥ 0. This is equivalent to show that
∫
A∩B YM(t+s)dP =

∫
A∩B YM(t)dP . First, let us see

that ∫
A∩B

YM(t+s)dP = E
(
1{A}1{B}YM(t+s)

)
=

∞∑
j=0

E
(
1{A}1{B}1{M(t+s)=j}Yj

)
=

∞∑
j≥mk

E
(
1{A}1{B}1{M(t+s)=j}Yj

)
=

∞∑
j≥mk

E
(
1{A}1{M(t+s)=j}

)
E
(
1{B}Yj

)
since 1{A}1{M(t+s)=j} ⊥ 1{B}Yj . In addition,

∞∑
j≥mk

E
(
1{A}1{M(t+s)=j}

)
E
(
1{B}Yj

)
=

∞∑
j≥mk

E
(
1{A}1{M(t+s)=j}

)
E
(
1{B}Ymk

)
=

∞∑
j≥mk

E
(
1{A}1{M(t+s)=j}1{B}Ymk

)
since 1{A}1{M(t+s)=j} ⊥ 1{B}Ymk . Moreover,

∞∑
j≥mk

E
(
1{A}1{M(t+s)=j}1{B}Ymk

)
=

∞∑
j≥mk

E
(
1{A}1{M(t+s)=j}1{B}YM(t)

)
= E

(
1{A}1{B}YM(t)

)
=

∫
A∩B

YM(t)dP.

Therefore, {YM(t)}t≥0 is a martingale with respect to {Gt}t≥0.
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2

As the key for studying asymptotic behavior of a Galton-Watson branching process is the

p.g.f. fn(s) = E(sZn), the key for that of a randomly indexed branching process (RIBP) is

FN (s, t) = E(sZN(t)). Proposition 3.1 shows that the convergence of FN (s, t) to q ,the probability

of extinction, as t → ∞, for 0 ≤ s < 1. Proposition 3.2 indicates an exponential rate of

convergence to a power series satisfying a functional equation.

Proposition 3.1 limt→∞ FN (s, t) = q for all 0 ≤ s < 1.

Remark 3.2 In particular, if p0 = 0, then q = 0, and hence limt→∞ FN (s, t) = 0 for all

0 ≤ s < 1.

Proof. First, let us note that

FN (s, t) = E(sZN(t))

= E
[
E[sZN(t) |N(t)]

]
=

∞∑
n=0

E[sZN(t) |N(t) = n]P (N(t) = n)

=

∞∑
n=0

E(sZn)P (N(t) = n)

=
∞∑
n=0

fn(s)P (N(t) = n)

= E(fN(t)(s)).

Since limn→∞ fn(s) = q for all 0 ≤ s < 1, it is clear that limt→∞ fN(t)(s) = q a.s. for all

0 ≤ s < 1. Since |fN(t)(s)| ≤ 1 for all 0 ≤ s < 1 for all t and limt→∞N(t) = ∞ a.s., by

dominated convergence theorem, we have

lim
t→∞

FN (s, t) = lim
t→∞

E(fN(t)(s))

= E(q)

= q.

2

Proposition 3.2 Assume that m 6= 1. If p0 6= 0, then

lim
t→∞

e−u
′(q)t[FN (s, t)− q] = Q(s) =

∞∑
k=0

qks
k <∞ for all 0 ≤ s < 1.
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Moreover, Q(s) is the unique solution of the functional equation,

Q(f(s)) = f ′(q)Q(s) for all 0 ≤ s < 1.

Remark 3.3 In particular, if p0 = 0 and p1 6= 0, then limt→∞ e
−λ(p1−1)tFN (s, t) = Q̂(s) =∑∞

k=1 q̂ks
k < ∞ for all 0 ≤ s < 1. Moreover, Q̂(s) is the unique solution of Q̂(f(s)) = p1Q̂(s)

for all 0 ≤ s < 1.

Proof. Define A(s, t) := e−u
′(q)t[FN (s, t)− q] = e−u

′(q)t[E(fN(t)(s))− q]. Then

∂

∂s
A(s, t) =

∂

∂s
{e−u′(q)t[E(fN(t)(s))− q]}

= e−u
′(q)t ∂

∂s
{[
∞∑
n=0

fn(s)P (N(t) = n)]− q}

= e−u
′(q)t ∂

∂s
[
∞∑
n=0

fn(s)P (N(t) = n)]

= e−u
′(q)t

∞∑
n=0

∂

∂s
[fn(s)P (N(t) = n)],

where the interchange of derivative and summation is justified by the uniform convergence of

the series as the following argument shows.

We want to show that limk→∞ sups∈[0,1) |
∑∞

n=0 fn(s)P (N(t) = n) −
∑k

n=0 fn(s)P (N(t) =

n)| = 0. Note that 0 ≤ sups∈[0,1) |
∑∞

n=0 fn(s)P (N(t) = n) −
∑k

n=0 fn(s)P (N(t) = n)| =

sups∈[0,1)

∑∞
n=k+1 fn(s)P (N(t) = n) ≤

∑∞
n=k+1 P (N(t) = n) and limk→∞

∑∞
n=k+1 P (N(t) =

n) = 0 since it is the tail of the convergent series
∑∞

n=0 P (N(t) = n) = 1.

Now let us see that

e−u
′(q)t

∞∑
n=0

∂

∂s
[fn(s)P (N(t) = n)] = e−u

′(q)t
∞∑
n=0

P (N(t) = n)

n−1∏
j=0

f ′(fj(s))

= e−λ[f ′(q)−1]t
∞∑
n=0

e−λt(λt)n

n!

n−1∏
j=0

f ′(fj(s))

=

∞∑
n=0

e−λf
′(q)t(λf ′(q)t)n

n!
· 1

(f ′(q))n

n−1∏
j=0

f ′(fj(s))

=

∞∑
n=0

P (N(f ′(q)t) = n)

n−1∏
j=0

f ′(fj(s))

f ′(q)
,
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where N(f ′(q)t)) is a Poisson distributed random variable with parameter λf ′(q)t. Recall the

definition of Qn(s) in (2.4). Define Vn(s) := Qn(s) + C for some constant C ∈ R for s ∈ [0, 1).

Then V ′n(s) = Q′n(s) which is expressed in (2.6). We note that

∞∑
n=0

P (N(f ′(q)t) = n)
n−1∏
j=0

f ′(fj(s))

f ′(q)
=

∞∑
n=0

P (N(f ′(q)t) = n)V ′n(s)

= E[V ′N(f ′(q)t))(s)].

This yields ∂
∂sA(s, t) = E[V ′N(f ′(q)t))(s)] for 0 ≤ s < 1. Recall that we have the result (2.7).

Hence this gives limt→∞Q
′
N(f ′(q)t))(s) = Q′(s) a.s. for 0 ≤ s < 1. Therefore, for 0 ≤ s < 1,

lim
t→∞

∂

∂s
A(s, t) = lim

t→∞
E[V ′N(f ′(q)t))(s)]

= E[ lim
t→∞

V ′N(f ′(q)t))(s)]

= E[V ′(s)]

= V ′(s).

Note that the interchange of the limit and the expectation is legitimate due to dominated

convergence theorem. Since f ′ is increasing in s, f ′(fj(s)) ≤ f ′(q) for 0 ≤ s ≤ q and f ′(fj(s)) >

f ′(q) for q < s < 1. Consequently, V ′n(s) = Q′n(s) ≤ 1 for 0 ≤ s ≤ q and V ′n(s) = Q′n(s) < Q′(s)

for q < s < 1. Let

ψ(s) =

1 if 0 ≤ s ≤ q,

Q′(s) if q < s < 1.

Then V ′N(f ′(q)t))(s) ≤ ψ(s) a.s. for all t ≥ 0. Also note that E[ψ(s)] = E(1) = 1 < ∞ for

0 ≤ s ≤ q and E[ψ(s)] = E[Q′(s)] = Q′(s) < ∞ for q < s < 1 and thus E[ψ(s)] < ∞ for all

0 ≤ s < 1.

Since limn→∞Qn(s) = Q(s) =
∑∞

k=0 qks
k 6≡ 0 for 0 ≤ s < 1, Q(q) = 0. Notice that

limn→∞ Vn(s) = limn→∞[Qn(s) + C] = Q(s) + C = V (s). Since A(s, t) = A(s, t) − A(q, t) =∫ s
q

∂
∂vA(v, t) dv, by an argument of dominated convergence similar to the above argument, we
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can see

limt→∞A(s, t) = lim
t→∞

∫ s

q

∂

∂v
A(v, t) dv

=

∫ s

q
lim
t→∞

∂

∂v
A(v, t) dv

=

∫ s

q
V ′(v) dv

= V (s)− V (q)

= [Q(s) + C]− [Q(q) + C]

= Q(s).

Therefore,

lim
t→∞

e−u
′(q)t[FN (s, t)− q] = Q(s) =

∞∑
k=0

qks
k <∞ for 0 ≤ s < 1.

The proof of Q(s) being the unique solution of Q(f(s)) = f ′(q)Q(s) for 0 ≤ s < 1 is proved in

Theorem 2.1.

Notice that when p0 = 0, we need the condition that p1 6= 0. Since if p0 = 0, then q = 0,

and hence f ′(q) = f ′(0) = p1. Thus, if p0 = 0 and p1 = 0, then f ′(q) = f ′(0) = p1 = 0, and

hence Qn and Q′n are undefined. In this case, the proof follows the similar lines as that in the

case of p0 6= 0.

2

Let g(s) be the inverse function of f(s). Thus, the n-fold iteration gn(s) of g(s) is [fn(s)]−1.

Proposition 3.3 shows that E(gN(t)(s)) converges at an exponential rate as t→∞.

Proposition 3.3 Assume that f(s1) <∞ for some s1 > 1. Let

Q̃N(t)(s) = eλ(1−g′(1))t[E(gN(t)(s))− 1].

Then for 1 ≤ s ≤ f(s1),

E(gN(t)(s)) ↓ 1 as t→∞.

Moreover,

lim
t→∞

Q̃N(t)(s) = Q̃(s),
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where Q̃(s) is the unique solution of the functional equation,

Q̃(f(s)) = mQ̃(s) for 1 ≤ s ≤ f(s1)

with 0 < Q̃(s) <∞ for 1 < s ≤ f(s1) with Q̃(1) = 0 and Q̃′(1) = 1.

Proof. Since gn(s) ↓ 1 as n→∞ for 1 ≤ s ≤ f(s1), gN(t)(s) ↓ 1 as t→∞ a.s. for 1 ≤ s ≤ f(s1).

Hence, E
[
gN(t)(s)

]
↓ 1 as t→∞ for 1 ≤ s ≤ f(s1) by dominated convergence theorem, because

|gN(t)(s)| ≤ s for 1 ≤ s ≤ f(s1) for all t ≥ 0 and E(s) = s <∞ and gN(t)(s) ↓ 1 as t→∞ a.s.

for 1 ≤ s ≤ f(s1).

Define B(s, t) := eλ(1−g′(1))t[E(gN(t)(s))− 1] = eλ(1− 1
m

)t[E(gN(t)(s))− 1]. Then it follows that

∂

∂s
B(s, t) = eλ(1− 1

m
)t ∂

∂s
{[
∞∑
n=0

gn(s)P (N(t) = n)]− 1}

= eλ(1− 1
m

)t ∂

∂s
[

∞∑
n=0

gn(s)P (N(t) = n)]

= eλ(1− 1
m

)t
∞∑
n=0

∂

∂s
[gn(s)P (N(t) = n)],

where the interchange of derivative and summation is justified by the uniform convergence of

the series as the following argument shows.

We want to show that limk→∞ sups∈[0,1) |
∑∞

n=0 fn(s)P (N(t) = n) −
∑k

n=0 fn(s)P (N(t) =

n)| = 0. Note that 0 ≤ sups∈[1,f(s1)] |
∑∞

n=0 gn(s)P (N(t) = n) −
∑k

n=0 gn(s)P (N(t) = n)| =

sups∈[0,1)

∑∞
n=k+1 gn(s)P (N(t) = n) =

∑∞
n=k+1 gn(f(s1))P (N(t) = n) since gn is an increasing

function of s. It is clear that
∑∞

n=k+1 gn(f(s1))P (N(t) = n) <
∑∞

n=k+1 gk+1(f(s1))P (N(t) = n)

since gn(s) is decreasing in n for s > 1. Hence

lim
k→∞

sup
s∈[0,1)

|
∞∑
n=0

fn(s)P (N(t) = n)−
k∑

n=0

fn(s)P (N(t) = n)|

≤ lim
k→∞

∞∑
n=k+1

gk+1(f(s1))P (N(t) = n)

= lim
k→∞

gk+1(f(s1)) lim
k→∞

∞∑
n=k+1

P (N(t) = n)

= 0,
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because limk→∞ gk+1(f(s1)) = 1 and limk→∞
∑∞

n=k+1 P (N(t) = n) = 0. Therefore, we have

the uniform convergence. Now we see that

eλ(1− 1
m

)t
∞∑
n=0

∂

∂s
[gn(s)P (N(t) = n)] = eλ(1− 1

m
)t
∞∑
n=0

P (N(t) = n)
n−1∏
j=0

g′(gj(s))

= eλ(1− 1
m

)t
∞∑
n=0

e−λt(λt)n

n!

n−1∏
j=0

g′(gj(s))

=
∞∑
n=0

e−
1
m
λt( 1

mλt)
n

n!
mn

n−1∏
j=0

g′(gj(s))

=

∞∑
n=0

P (N(
1

m
t) = n)

n−1∏
j=0

mg′(gj(s)),

where N( 1
m t) is a Poisson random variable with parameter 1

mλt. Recall the definition of Q̃n(s) in

(2.11). Define Ṽn(s) := Q̃n(s)+C for some constant C ∈ R for s ∈ [1, f(s1)]. Then Ṽ ′n(s) = Q̃′n(s)

which is expressed in (2.12). We note that

∞∑
n=0

P (N(
1

m
t) = n)

n−1∏
j=0

mg′(gj(s)) =

∞∑
n=0

P (N(
1

m
t) = n)Ṽ ′n(s)

= E[Ṽ ′N( 1
m
t)(s)].

This yields ∂
∂sB(s, t) = E[Ṽ ′N( 1

m
t)(s)] for 1 ≥ s ≤ f(s1). Recall that we have the result (2.13).

Hence this yields limt→∞ Q̃
′
N( 1

m
t)

(s) = Q̃′(s) a.s. for 1 ≤ s ≤ f(s1). Therefore, for 1 ≤ s ≤ f(s1),

lim
t→∞

∂

∂s
B(s, t) = lim

t→∞
E[Ṽ ′

N( 1
m
t)

(s)]

= E[ lim
t→∞

Ṽ ′
N( 1

m
t)

(s)]

= E[Ṽ ′(s)]

= Ṽ ′(s).

Note that the interchange of the limit and the expectation is justified by dominated con-

vergence theorem. Since gj(s) ≥ 1 for s ≥ 1 and gj increasing in s and g′ is decreasing

in s, g′(gj(s)) ≤ g′(1) = 1
m and hence

∏n−1
j=0 mg

′(gj(s)) ≤
∏n−1
j=0 m

1
m = 1. Also note that

E(1) = 1 <∞. Therefore, |Ṽ ′
N( 1

m
t)

(s)| ≤ 1 a.s. for s ≥ 1 for all t ≥ 0.

From Theorem 2.4, we know that Q̃(1) = 0, Q̃′(1) = 1, and Q̃(s) is the unique solution of the
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functional equation Q̃(f(s)) = mQ̃(s) for 1 ≤ s ≤ f(s1) with 0 < Q̃(s) <∞ for 1 < s ≤ f(s1).

Notice that limn→∞ Ṽn(s) = limn→∞[Q̃n(s) + C] = Q̃(s) + C = Ṽ (s). Since B(s, t) = B(s, t)−
B(1, t) =

∫ s
1

∂
∂vB(v, t) dv, by an argument of dominated convergence similar to the above argu-

ment, we get

limt→∞B(s, t) = lim
t→∞

∫ s

1

∂

∂v
B(v, t) dv

=

∫ s

1
lim
t→∞

∂

∂v
B(v, t) dv

=

∫ s

1
Ṽ ′(v) dv

= Ṽ (s)− Ṽ (1)

= [Q̃(s) + C]− [Q̃(1) + C]

= Q̃(s).

Therefore,

lim
t→∞

eλ(1−g′(1))t[E(gN(t)(s))− 1] = Q̃(s) for 1 ≤ s ≤ f(s1).

2

Let Wn := Zn
mn . Recall that {Wn}∞n=0 is a non-negative martingale and hence converges a.s. to a

random variable W. When we deal with the RIBP, we can consider tow analogues results. First

of all, let WN(t) := e−u
′(1)tZN(t). It is worth mentioning that this quantity is essential when

applying RIBP to option pricing because it enables us to identify the equivalent martingale

measure. Proposition 3.4 shows that it is a martingale and a proof can be found in [28]. On the

other hand, let W ∗N(t) := ZN(t)m
−N(t). Proposition 3.5 indicates that it is a martingale and a

proof can be found in [36]. We provide these two martingale results for completeness.

Proposition 3.4 Let Gt = σ(N(s),WN(s); s ≤ t). Then {WN(t)}t≥0 where WN(t) := e−u
′(1)tZN(t)

is a non-negative martingale with respect to the filtration {Gt}t≥0 and

lim
t→∞

WN(t) = W ′ a.s..

Proof. Let t ≥ 0 and v ≥ 0. We need to show that

E
(
e−u

′(1)(t+v)ZN(t+v) | e−u
′(1)tZN(t)

)
= e−u

′(1)tZN(t).

This is equivalent to show that

E
(
ZN(t+v) |ZN(t)

)
= eu

′(1)vZN(t)
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because we know that

E
(
e−u

′(1)(t+v)ZN(t+v) | e−u
′(1)tZN(t)

)
= E

(
e−u

′(1)(t+v)ZN(t+vs) |ZN(t)

)
and because

E
(
ZN(t+v) |ZN(t)

)
= eu

′(1)vZN(t)

is equivalent to

E
(
e−u

′(1)(t+v)ZN(t+v) |ZN(t)

)
= e−u

′(1)tZN(t).

Recall that for a Poisson process {N(t)}t≥0,N(t+v)−N(t) andN(v) have the same distribution.

Let Z
(j)
N(t)−N(v) denote the number of offspring of the j-th of the ZN(t) particles existing at time

t which are alive at time t+ v. We can see that

E
(
ZN(t+v)|ZN(t)

)
= E

( ZN(t)∑
j=1

Z
(j)
N(t+v)−N(t) |ZN(t)

)

= E
( ZN(t)∑
j=1

Z
(j)
N(v) |ZN(t)

)

=

ZN(t)∑
j=1

E
(
Z

(j)
N(v)

)
= ZN(t)E(ZN(v))

= ZN(t)e
u′(1)v.

Therefore, {WN(t)}t≥0 is a martingale with respect to {Gt}t≥0. Clearly, {WN(t)}t≥0 is non-

negative for all t. Since {WN(t)}t≥0 is a non-negative martingale, limt→∞WN(t) = W ′ a.s.

exists by martingale convergence theorem.

2

Proposition 3.5 Let W ∗N(t) := ZN(t)m
−N(t). Then {W ∗N(t)}t≥0 is a non-negative martingale

with respect to {Gt}t≥0 and

lim
t→∞

W ∗N(t) = W ∗ a.s. for some random variable W ∗.

Furthermore, W ∗ has the same distribution as W.
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Proof. Fix t ≥ 0. It is clear that

E
(
W ∗N(t)

)
= E

(
ZN(t)m

−N(t)
)

= E
[
E
(
ZN(t)m

−N(t)
∣∣N(t)

)]
= E

[
m−N(t)E

(
ZN(t)

∣∣N(t)
)]

= E
(
m−N(t)mN(t)

)
= 1 <∞.

Since E
∣∣W ∗N(t)

∣∣ < ∞ for all t ≥ 0 and {W ∗n}∞n=0 is a martingale with respect to {Fn}∞n=0,

{W ∗N(t)}t≥0 is a martingale with respect to {Gt}t≥0 by Lemma 3.2. Clearly, W ∗N(t) is non-negative

for all t ≥ 0. Since {W ∗N(t)}t≥0 is a non-negative martingale, limt→∞W
∗
N(t) = W ∗ a.s. and the

random variable W ∗ exists by martingale convergence theorem. Since limn→∞Wn = W a.s.,

limt→∞W
∗
N(t) = W a.s. by lemma 3.1. Therefore, W ∗ and W have the same distribution.

2
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Chapter 4

Large Deviation Results on Poisson

Randomly Indexed Branching

Processes

We mainly consider the large deviation behavior for the ratio of successive generation sizes

ZN(t)+1/ZN(t) deviating from the expected number of offspring m. Under a finite exponential

moment condition on the offspring distribution, when p0 = 0 and p1 > 0, Theorem 4.1 shows

that the rate of decay is exponential.

Theorem 4.1 Assume that p0 = 0 and p1 > 0. Assume that E(exp(α0Z1)) < ∞ for some

α0 > 0. Then for any ε > 0,

lim
t→∞

e−λ(p1−1)tP
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
)

=
∞∑
k=1

φ(k, ε)q̂k <∞,

where φ(k, ε) = P
(∣∣1
k

k∑
i=1

Xi −m
∣∣ > ε

)
and {Xi}ki=1 are i.i.d. copies of Z1.

Proof. Let us see that

φ(k, ε) ≤ P
( k∑
i=1

Xi ≥ k(m+ ε)
)

+ P
( k∑
i=1

Xi ≤ k(m− ε)
)

= P
(
γ
∑k
i=1Xi ≥ γk(m+ε)

)
+ P

(
β
∑k
i=1Xi ≥ βk(m−ε)),
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for some 1 < γ < eα0 and 0 < β < 1. In addition,

P
(
γ
∑k
i=1Xi ≥ γk(m+ε)

)
+ P

(
β
∑k
i=1Xi ≥ βk(m−ε))

≤ E
[
γ
∑k
i=1Xi

]
γ−k(m+ε) + E

[
β
∑k
i=1Xi

]
β−k(m−ε),

by Markov’s inequality. Moreover,

E
[
γ
∑k
i=1Xi

]
γ−k(m+ε) + E

[
β
∑k
i=1Xi

]
β−k(m−ε)

=
[
E(γXi)

]k
γ−k(m+ε) +

[
E(βXi)

]k
β−k(m−ε)

because of {Xi}ki=1 are i.i.d.. Furthermore,

[
E(γXi)

]k
γ−k(m+ε) +

[
E(βXi)

]k
β−k(m−ε)

= [f(γ)γ−(m+ε)]k + [f(β)β−(m−ε)]k

≤ 2
[
max{f(γε)γ

−(m+ε)
ε , f(βε)β

−(m−ε)
ε }

]k
.

Notice that for each ε > 0, there exists 1 < γε < eα0 and 0 < βε < 1 such that 0 <

f(γε)γ
−(m+ε)
ε < 1 and 0 < f(βε)β

−(m−ε)
ε < 1. Define δε := max{f(γε)γ

−(m+ε)
ε , f(βε)β

−(m−ε)
ε },

then φ(k, ε) ≤ 2(δε)
k. It is obvious that 0 < δε < 1. This can been seen from the Taylor

expansion of f about 1. Let us identify that

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
)

=
∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε,ZN(t) = k
)

=
∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) = k

)
P
(
ZN(t) = k

)
=

∞∑
k=1

P
(∣∣1
k

k∑
i=1

Xi −m
∣∣ > ε

)
P
(
ZN(t) = k

)
=

∞∑
k=1

φ(k, ε)P
(
ZN(t) = k

)
.

We need the following generalization of Lebesgue’s dominated convergence theorem (***) (See

p.270 in [30]):

Let {µn} be a sequence of measures that converges to a measure µ on a measurable space.

Let {vn} and {un} be two sequences of measurable functions that converge pointwise to v

and u, respectively. If |vn| ≤ un for all n ∈ N and limn→∞
∫
undµn =

∫
udµ < ∞, then

limn→∞
∫
vndµn =

∫
vdµ <∞.
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In order to apply (***), let us define ht(k) := e−λ(p1−1)tφ(k, ε)P
(
ZN(t) = k

)
and rt(k) :=

2(δε)
ke−λ(p1−1)tP

(
ZN(t) = k

)
. Then for each k ≥ 1, ht(k) ≤ rt(k) for all t ≥ 0. By remark 5.3,

it follows that

lim
t→∞

ht(k) = φ(k, ε) lim
t→∞

e−λ(p1−1)tP
(
ZN(t) = k

)
= φ(k, ε)q̂k and

lim
t→∞

rt(k) = 2(δε)
k lim
t→∞

e−λ(p1−1)tP
(
ZN(t) = k

)
= 2(δε)

kq̂k.

Since

∞∑
k=1

rt(k) = 2e−λ(p1−1)t
∞∑
k=1

(δε)
kP
(
ZN(t) = k

)
= 2e−λ(p1−1)tFN (δε, t),

it follows, by remark 3.3, that

lim
t→∞

∞∑
k=1

rt(k) = 2Q̂(δε) <∞.

Therefore, we have

∞∑
k=1

lim
t→∞

rt(k) = 2

∞∑
k=1

(δε)
kq̂k

= 2Q̂(δε)

= lim
t→∞

∞∑
k=1

rt(k) <∞.

Therefore, by (***),

lim
t→∞

∞∑
k=1

ht(k) =

∞∑
k=1

lim
t→∞

ht(k) =

∞∑
k=1

φ(k, ε)q̂k <∞.

It is clear that

lim
t→∞

∞∑
k=1

ht(k) = lim
t→∞

∞∑
k=1

e−λ(p1−1)tφ(k, ε)P
(
ZN(t) = k

)
= lim

t→∞
e−λ(p1−1)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
)
.
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Therefore, we reach

lim
t→∞

e−λ(p1−1)tP
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
)

=
∞∑
k=1

φ(k, ε)q̂k <∞.

2

Under the same finite exponential moment condition on the offspring distribution, when p0 6= 0

and conditional on ZN(t) > 0, Theorem 4.2 shows that the rate of decay is also exponential.

Theorem 4.2 Assume that p0 6= 0. Assume that E(exp(α0Z1)) < ∞ for some α0 > 0. Then

for any ε > 0,

lim
t→∞

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
=

∑∞
k=1 ϕ(k, ε)qk

1− q
<∞,

where ϕ(k, ε) = P
(∣∣ 1
k

∑k
i=1Xi −m

∣∣ > ε
)
.

Remark 4.1 Since Xi’s in Theorem 4.2 have different offspring distributions as they have in

Theorem 4.1, we use the notations ϕ(k, ε) and φ(k, ε), respectively.

Proof. By the same estimate in Theorem 4.1, ϕ(k, ε) ≤ 2(δε)
k. It is clear that

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
=

∞∑
k=0

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε, ZN(t) = k
∣∣ZN(t) > 0

)
=

∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε, ZN(t) = k
)

P (ZN(t) > 0)

since {ZN(t) = k, ZN(t) > 0 ; k ≥ 0} = {ZN(t) = k ; k ≥ 1}. It is obvious that

∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε, ZN(t) = k
)

P (ZN(t) > 0)

=

∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) = k

)
P (ZN(t) = k)

P (ZN(t) > 0)

=

∞∑
k=1

P
(∣∣ 1
k

∑k
i=1Xi −m

∣∣ > ε
)
P (ZN(t) = k)

P (ZN(t) > 0)

=

∞∑
k=1

ϕ(k, ε)P (ZN(t) = k)

1− P (ZN(t) = 0)
.
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In order to apply (***), let us define ht(k) :=
e−u
′(q)tϕ(k,ε)P (ZN(t)=k)

1−P (ZN(t)=0) and rt(k) :=

e−u
′(q)t2(δε)kP (ZN(t)=k)

1−P (ZN(t)=0) . Then for each k ≥ 1, ht(k) ≤ rt(k) for all t ≥ 0. Note that

P (ZN(t) = 0) = FN (0, t), (4.1)

a consequence of FN (·, t) being the probability generating function of ZN(t). By proposition 5.3,

proposition 3.1 and (4.1), we have

lim
t→∞

ht(k) =
ϕ(k, ε) limt→∞ e

−u′(q)tP (ZN(t) = k)

limt→∞[1− P (ZN(t) = 0)]
=
ϕ(k, ε)qk

1− q
and

lim
t→∞

rt(k) =
2(δε)

k limt→∞ e
−u′(q)tP (ZN(t) = k)

limt→∞[1− P (ZN(t) = 0)]
=

2(δε)
kqk

1− q
.

Summing rt(k) over k,

∞∑
k=1

rt(k) =
2e−u

′(q)t

1− P (ZN(t) = 0)

∞∑
k=1

(δε)
kP (ZN(t) = k)

=
2e−u

′(q)t

1− P (ZN(t) = 0)

[ ∞∑
k=0

(δε)
kP (ZN(t) = k)− (δε)

0P (ZN(t) = 0)
]

=
2e−u

′(q)t

1− P (ZN(t) = 0)

[
FN (δε, t)− P (ZN(t) = 0)

]
=

2e−u
′(q)t

1− P (ZN(t) = 0)

[
FN (δε, t)− FN (0, t)

]
.

Hence, in the limit, we have, by proposition 3.2, that

lim
t→∞

∞∑
k=1

rt(k) = lim
t→∞

2e−u
′(q)t

1− P (ZN(t) = 0)
{[FN (δε, t)− q]− [FN (0, t)− q]}

=
2
{

limt→∞ e
−u′(q)t[FN (δε, t)− q]− limt→∞ e

−u′(q)t[FN (0, t)− q]
}

limt→∞[1− P (ZN(t) = 0)]

=
2[Q(δε)−Q(0)]

1− q

=
2[Q(δε)− q0]

1− q
<∞.
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Therefore,

∞∑
k=1

lim
t→∞

rt(k) =
2

1− q

∞∑
k=1

(δε)
kqk

=
2

1− q
[ ∞∑
k=0

(δε)
kqk − (δε)

0q0

]
=

2

1− q
[
Q(δε)− q0

]
= lim

t→∞

∞∑
k=1

rt(k) <∞.

By (***), we have

lim
t→∞

∞∑
k=1

ht(k) =

∞∑
k=1

lim
t→∞

ht(k) =

∑∞
k=1 ϕ(k, ε)qk

1− q
<∞.

It is clear that

lim
t→∞

∞∑
k=1

ht(k) = lim
t→∞

∞∑
k=1

e−u
′(q)tϕ(k, ε)P (ZN(t) = k)

1− P (ZN(t) = 0)

= lim
t→∞

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
.

Therefore,

lim
t→∞

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
=

∑∞
k=1 ϕ(k, ε)qk

1− q
<∞.

2

The motivation of Theorem 4.3 is to see the behavior of the consecutive generation ratio con-

ditioned on ZN(t)+1 > 0 instead of conditioned on ZN(t) investigated in Theorem 4.2. The rate

of decay in Theorem 4.3 is still exponential, however, the deviation from the mean is less than

or equal to that of Theorem 4.2.

Theorem 4.3 Assume that p0 6= 0 and that E(exp(α0Z1)) < ∞ for some α0 > 0. Then for

any ε > 0,

lim
t→∞

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t)+1 > 0

)
=


∑∞
k=1[ϕ(k,ε)−pk0 ]qk

1−q <∞, if 0 < ε < m,∑∞
k=1 ϕ(k,ε)qk

1−q <∞, if ε ≥ m.
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Proof. We already know that ϕ(k, ε) ≤ 2(δε)
k from Theorem 4.2. We can see that

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t)+1 > 0

)
=

∞∑
k=0

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε, ZN(t) = k
∣∣ZN(t)+1 > 0

)
,

since {ZN(t) = k, ZN(t) > 0 ; k ≥ 0} = {ZN(t) = k ; k ≥ 1}. In addition,

∞∑
k=0

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε, ZN(t) = k
∣∣ZN(t)+1 > 0

)
=

∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε, ZN(t) = k, ZN(t)+1 > 0
)

P (ZN(t)+1 > 0)

=

∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) = k, ZN(t)+1 > 0

)
P
(
ZN(t) = k, ZN(t)+1 > 0

)
P (ZN(t)+1 > 0)

=
∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) = k, ZN(t)+1 > 0

)
P
(
ZN(t)+1 > 0

∣∣ZN(t) = k
)
P
(
ZN(t) = k

)
P (ZN(t)+1 > 0)

=
∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) = k, ZN(t)+1 > 0

)
P
(
Z1 > 0

∣∣Z0 = k
)
P
(
ZN(t) = k

)
P (ZN(t)+1 > 0)

,

by the time homogeneity of the Markov chain {Zn}∞n=0. Moreover,

∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) = k, ZN(t)+1 > 0

)
P
(
Z1 > 0

∣∣Z0 = k
)
P
(
ZN(t) = k

)
P (ZN(t)+1 > 0)

=

∞∑
k=1

P
(∣∣ 1
k

∑k
i=1Xi −m

∣∣ > ε
∣∣ ∑k

i=1Xi > 0
)
P
(
Z1 > 0

∣∣Z0 = k
)
P
(
ZN(t) = k

)
P (ZN(t)+1 > 0)

=

∞∑
k=1

P
(∣∣ 1
k

∑k
i=1Xi −m

∣∣ > ε,
∑k

i=1Xi > 0
)
P
(
ZN(t) = k

)
P
(
Z1 > 0

∣∣Z0 = k
)

P (
∑k

i=1Xi > 0)P (ZN(t)+1 > 0)

=

∞∑
k=1

P
(∣∣ 1
k

∑k
i=1Xi −m

∣∣ > ε,
∑k

i=1Xi > 0
)
P
(
ZN(t) = k

)
1− P (ZN(t)+1 = 0)

.

Let A :=
{
| 1k
∑k

i=1Xi −m| > ε
}

and B :=
{∑k

i=1Xi > 0
}

. Here we consider two different

cases depending on the magnitude of ε relative to m.

Case 1: 0 < ε < m.
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In this case, Bc ⊂ A and hence A ∪B = Ω, therefore,

P
(
|1
k

k∑
i=1

Xi −m| > ε,

k∑
i=1

Xi > 0
)

= P (A) + P (B)− 1

= ϕ(k, ε) + P (
k∑
i=1

Xi > 0)− 1

= ϕ(k, ε)− P (
k∑
i=1

Xi = 0)

= ϕ(k, ε)− pk0.

Case 2: ε ≥ m.

In this case, Bc ⊂ Ac and hence A ⊂ B and thus A ∩B = A, therefore,

P
(
|1
k

k∑
i=1

Xi −m| > ε,
k∑
i=1

Xi > 0
)

= P (A) = ϕ(k, ε).

Thus, the conditional probability,

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t)+1 > 0

)
=

∞∑
k=1

P
(∣∣ 1
k

∑k
i=1Xi −m

∣∣ > ε,
∑k

i=1Xi > 0
)
P
(
ZN(t) = k

)
1− P (ZN(t)+1 = 0)

=


∑∞

k=1
[ϕ(k,ε)−pk0 ]P (ZN(t)=k)

1−P (ZN(t)+1=0) if 0 < ε < m,∑∞
k=1

ϕ(k,ε)P (ZN(t)=k)

1−P (ZN(t)+1=0) if ε ≥ m.

Now we apply (***) and the rest of the proof follows similar lines as that of Thereom 4.2 and

hence we skip it here. Therefore, we reach

lim
t→∞

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t)+1 > 0

)
=


∑∞
k=1[ϕ(k,ε)−pk0 ]qk

1−q <∞ if 0 < ε < m,∑∞
k=1 ϕ(k,ε)qk

1−q <∞ if ε ≥ m.

2

In fact, the result in Theorem 4.1 can be attained by other conditions weaker than the finite

exponential moment condition. Theorem 4.4 and Corollary 4.1 serve for this purpose.
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Theorem 4.4 Assume that p0 = 0 and p1 > 0. Assume that there exist constant η > 0 and

Cε > 0 such that p1m
η > 1 and φ(k, ε) ≤ Cε

kη for each k. Then the result of Theorem 4.1 holds.

Remark 4.2 The condition in this theorem is actually weaker than the finite exponential mo-

ment condition. Recall that if we have the finite exponential moment condition, then we have

a Chernoff type bound (an exponential upper bound), i.e., φ(k, ε) ≤ De−kI(ε) for some positive

constant D and some positive function I. On the other hand, the condition in this theorem is

merely a polynomial upper bound.

Proof. Let hN(t)(k) := e−λ(p1−1)tφ(k, ε)P (ZN(t) = k) and h′N(t)(k) := e−λ(p1−1)t C(ε)
kη P (ZN(t) =

k). Since φ(k, ε) ≤ Cε
kη by the assumption, hN(t)(k) ≤ h′N(t)(k). By equation (5.1) in re-

mark 5.3, we have limt→∞ hN(t)(k) = q̂kφ(k, ε) = h(k) and limt→∞ h
′
N(t)(k) = q̂k

Cε
kη . Thus,

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
)

=
∑∞

k=1 φ(k, ε)P (ZN(t) = k) =
∑∞

k=1 hN(t)(k)eλ(p1−1)t. If we show that

limt→∞
∑∞

k=1 h
′
N(t)(k) =

∑∞
k=1 q̂k

Cε
kη <∞, then, by (***), we obtain

lim
t→∞

e−λ(p1−1)tP
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
)

= lim
t→∞

∞∑
k=1

hN(t)(k)

=
∞∑
k=1

lim
t→∞

hN(t)(k)

=
∞∑
k=1

h(k)

=
∞∑
k=1

φ(k, ε)q̂k <∞.

Let us recall that for any non-negative random variable Y and 0 < η <∞,

E(Y −η) = E
( 1

Γ(η)

∫ ∞
0

e−tY tη−1 dt
)

=
1

Γ(η)

∫ ∞
0

E(e−tY )tη−1 dt,

where Γ is the gamma function. We proceed to

∞∑
k=1

1

kη
e−λ(p1−1)tP (ZN(t) = k)

= e−λ(p1−1)tE(Z−ηN(t))

=
1

Γ(η)

∫ ∞
0

e−λ(p1−1)tFN (e−v, t)vη−1 dv
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by the above recall. Moreover,

1

Γ(η)

∫ ∞
0

e−λ(p1−1)tFN (e−v, t)vη−1 dv

=
1

Γ(η)

∫ 1

0
e−λ(p1−1)tFN (s, t)κ(s) ds,

by letting κ(s) := |log s|η−1

s . Therefore, we obtain

Γ(η)e−λ(p1−1)tE(Z−ηN(t)) =

∫ 1

0
e−λ(p1−1)tFN (s, t)κ(s) ds. (4.2)

Recall that limt→∞ e
−λ(p1−1)tFN (s, t) = Q̂(s) =

∑∞
k=1 q̂ks

k by remark 3.3. First let us show

that e−λ(p1−1)tFN (s, t) is increasing in t for fixed value of s. We can see that

∂

∂t
[e−λ(p1−1)tFN (s, t)] =

∂

∂t
[e−λ(p1−1)t

∞∑
n=0

fn(s)
e−λt(λt)n

n!
]

=
∂

∂t
[e−λp1t]

∞∑
n=0

fn(s)
(λt)n

n!
+ e−λp1t

∞∑
n=0

fn(s)
∂

∂t
[
(λt)n

n!
],

where the interchange of the derivative and the summation is justified by the uniform conver-

gence in the interval of convergence of the series. Now we have

∂

∂t
[e−λp1t]

∞∑
n=0

fn(s)
(λt)n

n!
+ e−λp1t

∞∑
n=0

fn(s)
∂

∂t
[
(λt)n

n!
]

= −λp1e
−λp1t

∞∑
n=0

fn(s)
(λt)n

n!
+ e−λp1tλ

∞∑
j=0

fj+1(s)
(λt)j

j!

> −λp1e
−λp1t

∞∑
n=0

fn(s)
(λt)n

n!
+ e−λp1tλ

∞∑
j=0

p1fj(s)
(λt)j

j!

= 0,

since fn(s)
pn1

is strictly increasing in n and thus implies that fn+1(s) > p1fn(s). Therefore,

e−λ(p1−1)tFN (s, t) is increasing in t.

Since from remark 3.3 we know limt→∞ e
−λ(p1−1)tFN (s, t) = Q̂(s) for 0 ≤ s < 1 and from

above we know ∂
∂t [e

−λ(p1−1)tFN (s, t)] > 0, we obtain

e−λ(p1−1)tFN (s, t) ↑ Q̂(s) as t→∞ for 0 ≤ s < 1. (4.3)
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Since we have (4.2) and (4.3), by Monotone Convergence Theorem, we reach

Γ(η)e−λ(p1−1)tE(Z−ηN(t)) ↑
∫ 1

0
Q̂(s)κ(s) ds as t→∞.

Now the proof will be complete if we show that
∫ 1

0 Q̂(s)κ(s) ds < ∞. Let g be the inverse

function of f for 0 ≤ s ≤ 1. Recall that gn(s) ↑ 1 as n→∞ for 0 < s < 1. Let 0 < s0 < 1, then

sn = gn(s0) ↑ 1 as n → ∞. By (2.5) in Remark 2.1, we have Q̂(f(s)) = p1Q̂(s) for 0 ≤ s < 1.

Define Jn :=
∫ sn+1

sn
Q̂(s)κ(s)ds. Then, by replacing f(s) by u, in the second equality below, we

see that

Jn =

∫ sn+1

sn

Q̂(f(s))

p1
κ(s)ds

=

∫ sn

sn−1

Q̂(u)
κ(g(u))g′(u)

p1
du

=

∫ sn

sn−1

Q̂(u)κ(u)
κ(g(u))g′(u)

p1κ(u)
du.

Notice that Jn <∞ for all n ∈ N and that

lim
u↑1

κ(g(u))g′(u)

p1κ(u)
=

1

p1mη
.

Since p1m
η > 1 by assumption, for any 0 < 1

p1mη
< α < 1, there exists an n0 such that

κ(g(u))g′(u)
p1κ(u) ≤ α for u ≥ sn0 since limn→∞ sn = 1. Therefore, for all n ≥ n0 + 2,

Jn =

∫ sn+1

sn

Q̂(s)κ(s)ds

=

∫ sn

sn−1

Q̂(u)κ(u)
κ(g(u))g′(u)

p1κ(u)
du

≤
∫ sn

sn−1

Q̂(u)κ(u)αdu

= αJn−1.

76



Note that since Jn ≤ αJn−1 foe all n ≥ n0 + 2, we have Jn ≤ αn−n0−1Jn0+1 foe all n ≥ n0 + 2.

Thus, ∫ 1

sn0+2

Q̂(s)κ(s)ds =

∞∑
n=n0+2

Jn

≤
∞∑

n=n0+2

αn−n0−1Jn0+1

= Jn0+1

∞∑
j=1

αj

= Jn0+1
α

1− α
<∞

and hence we see that∫ 1

0
Q̂(s)κ(s)ds =

∫ sn0+2

0
Q̂(s)κ(s)ds+

∫ 1

sn0+2

Q̂(s)κ(s)ds <∞.

2

Corollary 4.1 Assume that p0 = 0 and p1 > 0. Assume that E(Z2η+δ
1 ) < ∞ for some δ > 0

and η ≥ 1 such that p1m
η > 1. Then the result of Theorem 4.1 holds.

Proof. Since E(Z2η+δ
1 ) <∞ for some δ > 0 and η ≥ 1, sup

k
E
∣∣√k(X̄k−m)

σ

∣∣2η <∞. Let us denote

sup
k
E
∣∣√k(X̄k−m)

σ

∣∣2η by C(η). By Markov’s inequality,

φ(k, ε) = P
(∣∣X̄k −m

∣∣ > ε
)

≤ P
(∣∣√k(X̄k −m)

σ

∣∣2η ≥ (√kε
σ

)2η)
≤ E

∣∣√k(X̄k −m)

σ

∣∣2η/kηε2η

σ2η

≤ C(η)σ2η

kηε2η

=
Cε
kη
,

by letting Cε := C(η)σ2η

ε2η
. By applying Theorem 4.4, the result is obtained.

2

Under a finite exponential moment assumption about the offspring distribution, Theorem 4.5

establishes a finite uniform exponential moment result for WN(t) which is needed in the proof

of Theorem 4.6.
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Theorem 4.5 Assume that E(exp(α0Z1)) < ∞ for some α0 > 0. Then there exists α1 > 0

such that

D1 = sup
t≥0

E(exp(α1WN(t))) <∞.

Proof. By the assumption, f(eα0) = E(exp(α0Z1)) <∞. If f(s) ≤ eα0 , then f2(s) ≤ f(eα0),

i.e., if s ≤ g(eα0), then f2(s) ≤ f(eα0) from the monotonicity of f. Further, if f(s) ≤ g(eα0),

then f3(s) ≤ f(eα0), i.e., if s ≤ g2(eα0), then f3(s) ≤ f(eα0). Thus, inductively, if s ≤ gn−1(eα0),

then fn(s) ≤ f(eα0) for all n ≥ 1.

For any fixed t ≥ 0, observe that

E(exp(αWN(t))) = E(exp(αe−u
′(1)tZN(t)))

= E(fN(t)(e
θe−u

′(1)t
))

=
∞∑
n=0

fn(eαe
−u′(1)t

)P (ZN(t) = n)

≤ f(eα0),

if fn(eαe
−u′(1)t

) ≤ f(eα0) for all n ≥ 0. Notice that fn(eαe
−u′(1)t

) ≤ f(eα0) for all n ≥ 0 if

eαe
−u′(1)t ≤ gn−1(eα0) for all n ≥ 0. Moreover, eαe

−u′(1)t ≤ gn−1(eα0) for all n ≥ 0 if and only

if α ≤ eu
′(1)t log gn−1(eα0) for all n ≥ 0. Furthermore, α ≤ eu

′(1)t log gn−1(eα0) for all n ≥ 0 is

equivalent to α ≤ inf
n
eu
′(1)t log gn−1(eα0). Let us observe that since u′(1) is negative,

inf
n
eu
′(1)t log gn−1(eα0) = eu

′(1)t log g−1(eα0)

= eu
′(1)t log f(eα0)

≥ eu
′(1)0 log f(eα0)

= log f(eα0) <∞.

Thus, for each fixed t, E(exp(αWN(t))) ≤ f(eα0) if α ≤ log f(eα0). Now choose α1 = log f(eα0),

then for each fixed t, E(exp(α1WN(t))) ≤ f(eα0) < ∞. Therefore, sup
t≥0

E(exp(α1WN(t))) ≤

f(eα0) <∞.

2

Theorem 4.6 gives the super-exponential rate of decay for P (|WN(t) −W ′| > ε). This result is

used in the proof of Theorem 4.7.

Theorem 4.6 Assume that E(exp(α0Z1)) < ∞ for some α0 > 0. Then for any given ε > 0,
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there exist positive constants, D3 > 0 and β > 0 such that

P (|WN(t) −W ′| > ε) ≤ D3exp(−βε2/3e
1
3
u′(1)t).

Proof. Since E(exp(α0Z1)) < ∞ for some α0 > 0 by the assumption, there exists α1 > 0

such that D1 = sup
t≥0

E(exp(α1WN(t))) < ∞ by Theorem 4.5. Also from the proof of Theorem

4.5, we know that we can choose α1 = log f(eα0). Let Ψ(α) = E(exp(αW ′)) for α ≤ α1. Then

Ψ(α) <∞ for α ≤ α1. This could be seen from the following by Fatou’s Lemma,

E(exp(α1W
′)) = E( lim

t→∞
exp(α1WN(t)))

≤ lim inf
t→∞

E((exp(α1WN(t)))

≤ sup
t≥0

E((exp(α1WN(t)))

< ∞.

Let Sk =
∑k

i=1(W (i) − 1) where {W (i)}∞i=1 are i.i.d. copies of W ′. Let α2 := min{α1, 1}. We

need to establish an upper bound for E
(
exp(α2Sk/

√
k)
)
.

from [1] First, note that since V ar(W ) = 2V ar(X1)
m2−m , by L’Hospital’s Rule, limu→0

Ψ(u)e−u−1
u2

=
V ar(W )

2 < ∞, therefore, we have supu≤α1
|Ψ(u)e−u−1

u2
| < ∞. Let us denote this supremum by d.

Now we observe that

sup
α≤α2

[Ψ(
α√
k

)e
− α√

k ]k ≤ sup
α≤α2

[1 + |Ψ(
α√
k

)e
− α√

k − 1|]k by triangle inequality

≤ sup
α≤α2

[
1 +
|Ψ( α√

k
)e
− α√

k − 1|
α2

]k
=

[
1 +

1

k
sup
α≤α2

|Ψ( α√
k
)e
− α√

k − 1|
α2

k

]k
≤ exp

(
sup
α≤α2

|Ψ( α√
k
)e
− α√

k − 1|
α2

k

)
since (1 +

x

k
)k ≤ ek for x > 0

≤ ed.
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Let us denote ed by D2. Therefore,

E
(
exp(α2Sk/

√
k)
)

= E
(
exp(

α2√
k

k∑
i=1

(W (i) − 1))
)

=
(
E(exp(

α2√
k

(W ′ − 1)))
)k

=
(
Ψ(

α2√
k

)e
− α2√

k
)k

≤ D2 by the estimate above. (4.4)

With that, we have established an upper bound D2 for E
(
exp(α2Sk/

√
k)
)
. Now turning to the

difference,

W ′ −WN(t) = lim
v→∞

(WN(t+v) −WN(t)) almost surely

= lim
v→∞

e−u
′(1)(t+v)ZN(t+v) − e−u

′(1)tZN(t)

= e−u
′(1)t[ lim

v→∞
e−u

′(1)vZN(t+v) − ZN(t)]

= e−u
′(1)t[ lim

v→∞
e−u

′(1)v

ZN(t)∑
j=1

Z
(j)
N(t+v)−N(t) − ZN(t)] by conditioning on ZN(t)

= e−u
′(1)t

ZN(t)∑
j=1

(W (j) − 1). (4.5)

It follows that

P (W ′ −WN(t) > ε |Z0, Z1, ..., ZN(t))

= P (W ′ −WN(t) > ε |ZN(t)) by Markov property

= P (e−u
′(1)t

ZN(t)∑
j=1

(W (j) − 1) > ε |ZN(t)) by (4.5)

= P (SZN(t)
> eu

′(1)tε |ZN(t)).

We see that

P (Sk > ζ) = P (
Sk√
k
>

ζ√
k

)

= P (eα2Sk/
√
k > eα2ζ/

√
k)

≤ E(eα2Sk/
√
k)e−α2ζ/

√
k by Markov’s inequality

≤ D2exp
(
− α2ζ√

k

)
, (4.6)
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where the last equality is due to (4.4). We see the probability

P (W ′ −WN(t) > ε) = E[P (W ′ −WN(t) > ε |ZN(t))]

= E[P (SZN(t)
> eu

′(1)tε |ZN(t))]

≤ E[D2exp
(
− α2e

u′(1)tε√
ZN(t)

)
] by (4.6)

= D2E
(
exp
(
− α2ε

√
eu′(1)t

1√
WN(t)

))
.

Hence, the expectation

E
(
exp
(
− τ
( 1√

WN(t)

)))
=

∫ ∞
0

P
(
exp
(
− τ
( 1√

WN(t)

))
≥ v
)
dv

= τ

∫ ∞
0

e−τuP
( 1√

WN(t)

≤ u
)
du

= τ

∫ ∞
0

e−τuP
(
exp(α1WN(t)) ≥ exp(

α1

u2
)
)
du

≤ τ

∫ ∞
0

e−τuE
(
exp(α1WN(t))

)
exp(−α1

u2
) du by Markov’s inequality

≤ τ

∫ ∞
0

e−τuD1exp(−
α1

u2
) du by Theorem 4.6

= D1

∫ ∞
0

e−rexp
(
− α1τ

2

r2

)
dr.

Therefore,

P (W −WN(t) > ε) ≤ D2D1 ·
∫ ∞

0
e−rexp

(
− α1τ

2
t

r2

)
dr, (4.7)

where τt denote the quantity α2ε
√
eu′(1)t. Let I(τ) :=

∫∞
0 e−re−

τ2

r2 dr. Then by choosing k(τ) =

τ
2
3 , we can see that

I(τ) =

∫ ∞
0

e−re−
τ2

r2 dr

=

∫ k(τ)

0
e−re−

τ2

r2 dr +

∫ ∞
k(τ)

e−re−
τ2

r2 dr

≤ exp
(
− τ2

(k(τ))2

)
+ e−k(τ)

≤ 2exp(−τ
2
3 ). (4.8)
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Consequently, by (4.7) and (4.8), we have

P (W ′ −WN(t) > ε) ≤ 2D2D1exp
((
−
√
θ1α2ε[e

u′(1)t]
1
2
) 2

3
)

= D3exp
(
− β[eu

′(1)t]
1
3 ε

2
3
)

= D3exp
(
− βe

1
3
u′(1)tε

2
3
)
,

where D3 := 2D2D1 and β := (
√
α1α2)

2
3 . The argument for P (WN(t) −W ′ > ε) is essentially

identical. Therefore, the result is obtained.

2

Theorem 4.7 shows a super-exponential rate of decay for the ratio of successive generation sizes

conditioned on the limiting random variable W ′ staying positive.

Theorem 4.7 Assume that E(exp(α0Z1)) < ∞ for some α0 > 0. Then there exists positive

constants, D5 > 0 and τ > 0 such that for any ε > 0 and d > 0, we can find some 0 < I(ε) <∞
such that

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣W ′ ≥ d) ≤ αd[D5exp

(
−dγI(ε)eu

′(1)t
)

+D3exp
(
− τ
[
d(1−γ)

] 2
3 e

1
3
u′(1)t

)]
for any 0 < γ < 1, where αd = 1

P (W ′≥d) .

Proof. First of all, we start with

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣W ′ ≥ d)

= P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε,W ′ ≥ d
) 1

P (W ′ ≥ d)

= αd
[
P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε,WN(t) < dγ,W ′ ≥ d
)

+P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε,WN(t) ≥ dγ,W ′ ≥ d
)]
.

Let I1 denote P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε,WN(t) < dγ,W ′ ≥ d
)

and similarly let I2 denote P
(∣∣ZN(t)+1

ZN(t)
−

m
∣∣ > ε,WN(t) ≥ dγ,W ′ ≥ d

)
.
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Let us estimate I2 first. It is clear that

I2 ≤ P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε,WN(t) ≥ dγ
)

= P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) ≥ dγeu

′(1)t
)
P
(
ZN(t) ≥ dγeu

′(1)t
)

≤ P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) ≥ dγeu

′(1)t
)

=
∞∑

k=ddγeu′(1)te

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε,ZN(t) = k
∣∣ZN(t) ≥ dγeu

′(1)t
)
.

Then we see that

∞∑
k=ddγeu′(1)te

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε,ZN(t) = k
∣∣ZN(t) ≥ dγeu

′(1)t
)

=
∞∑

k=ddγeu′(1)te

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣∣ZN(t) = k, ZN(t) ≥ dγeu

′(1)t
)

P
(
ZN(t) = k

∣∣ZN(t) ≥ aγeu
′(1)t
)

=
∞∑

k=ddγeu′(1)te

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) = k

)
P
(
ZN(t) = k

∣∣ZN(t) ≥ aγeu
′(1)t
)

≤
∞∑

k=ddγeu′(1)te

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) = k

)

=

∞∑
k=ddγeu′(1)te

P
(∣∣1
k

k∑
i=1

Xi −m
∣∣ > ε

)

=
∞∑

k=ddγeu′(1)te

P
(∣∣1
k

k∑
i=1

Yi
∣∣ > ε

)
,

by letting Yi := Xi −m. Notice that Yi’s are i.i.d..

Since Y1 has finite exponential moment, we have a Chernoff type bound, i.e., an exponential
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upper bound that decays in the number of the empirical mean. Therefore, we obtain

∞∑
k=ddγeu′(1)te

P
(∣∣1
k

k∑
i=1

Yi
∣∣ > ε

)
≤

∞∑
k=ddγeu′(1)te

D4

eI(ε)k
for someD4 > 0 and I(ε) > 0

≤ D4
e−I(ε)dγe

u′(1)t

1− e−I(ε)
since dγeu

′(1)t ≤ ddγeu′(1)te
.
= D5exp

(
− I(ε)dγeu

′(1)t
)

for someD5 > 0.

Hence, we obtain

I2 ≤ D5exp
(
− I(ε)dγeu

′(1)t
)
. (4.9)

Finally, by Theorem 4.6, one can see that

I1 ≤ P (WN(t) < dγ,W ′ ≥ d)

= P (W ′ −WN(t) > d(1− γ))

≤ D3exp(−τ(d(1− γ))
2
3 e

1
3
u′(1)t), (4.10)

for some τ > 0 and D3 > 0. Therefore, combining (4.9) and (4.10), we reach

P
(
|
ZN(t)+1

ZN(t)
−m| > ε |W ′ ≥ d) ≤ αd

[
D5exp(−I(ε)dγeu

′(1)t)

+D3exp(−τ(d(1− γ))
2
3 e

1
3
u′(1)t)

]
.

2
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Chapter 5

Applications to Finance and Physics

5.1 An Application to Finance - Mean Reversion

In [14], Epps proposed a PRIBP to model the short-term behavior of stock price. He provided

an empirical study for U.S. stocks markets and found that this model worked well. In his work,

he explains the reasons for using a PRIBP to model stock prices. First of all, although stock

price is not integer-valued, it is the multiple of tick size such as multiple of $1
8 , $ 1

16 , or $0.01 in

primary U.S. stock markets. That is, stock price takes values in a discrete space. In the Black-

Scholes model, the stock price is assumed to follow a geometric Brownian motion, which takes

positive real values, and hence the movement of stock price is continuous. Although nowadays

this assumption is widely used by many researchers and practitioners, it fails to capture the dis-

creteness of stock prices. On the other hand, PRIBP successfully captures this discrete nature

of the discrete stock price fluctuation. Secondly, this model allows the possibility of bankruptcy

of a firm. Under the geometric Brownian motion assumption, stock price cannot reach zero.

However, in the PRIBP, the stock price is allowed to attain zero and this situation is viewed

as the bankruptcy of the firm. Finally, the model shows the inverse relationship between the

variance of return and the initial stock price that is suggested in the literature.

To understand the mechanism of a stock price as a PRIBP, let us assume that the tick size in a

stock market is $1
8 . Then all stocks in this market take values in the space {j ∗ 1

8 | j ∈ N∪{0}}.
Then we translate the price of a stock {S(t)}t≥0 into the number of individuals {ZN(t)}t≥0

by ZN(t) = S(t) ∗ 8. For example, if a stock price is $241
4 at the initial time 0, then ZN(0) =

S(0) ∗ 8 = 241
4 ∗ 8 = 194. In this case, the PRIBP starts from Z0 = 194 many ancestors.

The subordinator is a Poisson process which represents the occurrence of price fluctuations.

This assumption implies that the shock of the information about a given stock is modeled by

a Poisson process. Since in the model of a stock price as a PRIBP, the initial price is usually
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not 1, we need to adjust the results about a PRIBP starting from one ancestor to those start-

ing from an arbitrary positive integer number of ancestors. That is, Z0 = l, where l ≥ 1. Let

FN,l(s, t) = E(sZN(t) |Z0 = l) be the p.g.f. of ZN(t) when Z0 = l ≥ 1, i.e., when there are l many

ancestors. Note that when Z0 = l, E(ZN(t)) = leu
′(1)t = leλ(m−1)t.

We now phrase some adjusted results for a PRIBP with Z0 taking an arbitrary positive integer.

Proposition 5.1 is an extension version of proposition 3.1 in the previous chapter; Proposition

5.2 is an extension of proposition 3.2.

Proposition 5.1 limt→∞ FN,l(s, t) = ql for all 0 ≤ s < 1.

Remark 5.1 When p0 = 0, then q = 0 and hence limt→∞ FN,l(s, t) = 0 for all 0 ≤ s < 1.

Proof. Let us start with

FN,l(s, t) = E(sZN(t) |Z0 = l)

=
∞∑
n=0

E(sZn |Z0 = l)P (N(t) = n)

=

∞∑
n=0

(fn(s))lP (N(t) = n)

= E[(fN(t)(s))
l].

Since limn→∞ fn(s) = q for 0 ≤ s < 1, limt→∞ fN(t)(s) = q a.s. for 0 ≤ s < 1. By dominated

convergence theorem, for 0 ≤ s < 1,

lim
t→∞

FN,l(s, t) = lim
t→∞

E[(fN(t)(s))
l]

= E[ lim
t→∞

(fN(t)(s))
l]

= ql.

2

Proposition 5.2 Assume that m 6= 1. If p0 6= 0, then

lim
t→∞

e−u
′(q)t[FN,l(s, t)− ql] = lql−1Q(s) = lql−1

∞∑
k=0

qls
l <∞ for all 0 ≤ s < 1.

Moreover, Q(s) is the unique solution of a functional equation

Q(f(s)) = f ′(q)Q(s) for all 0 ≤ s < 1.
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Remark 5.2 In particular, when p0 = 0 and p1 6= 0, then the theorem becomes

lim
t→∞

e−λ(p1−1)tFN,l(s, t) =

0 if l > 1,

Q̂(s) =
∑∞

k=1 q̂ks
k if l = 1,

for all 0 ≤ s < 1.

Moreover, Q̂(s)is the unique solution of Q̂(f(s)) = p1Q̂(s) for all 0 ≤ s < 1.

Proof. Define A(s, t) := e−u
′(q)t[FN,l(s, t)− ql] = e−u

′(q)t[E[(fN(t)(s))
l]− ql]. First, note that

∂

∂s
A(s, t) = e−u

′(q)t ∂

∂s
[
∞∑
n=0

(fn(s))lP (N(t) = n)]

= e−u
′(q)t

∞∑
n=0

∂

∂s
[(fn(s))lP (N(t) = n)],

where the interchange of derivative and summation is justified as showed in the proof of propo-

sition 3.2. Recall Vn(s) defined in proposition 3.2. We can see that

e−u
′(q)t

∞∑
n=0

∂

∂s
[(fn(s))lP (N(t) = n)]

= e−u
′(q)t

∞∑
n=0

P (N(t) = n)l(fn(s))l−1f ′n(s)

= e−u
′(q)t

∞∑
n=0

P (N(t) = n)l(fn(s))l−1
n−1∏
j=0

f ′(fj(s))

= e−λf
′(q)t

∞∑
n=0

(λt)n

n!
l(fn(s))l−1

n−1∏
j=0

f ′(fj(s))

=
∞∑
n=0

P (N(f ′(q)t) = n)l(fn(s))l−1
n−1∏
j=0

f ′(fj(s))

f ′(q)

=
∞∑
n=0

P (N(f ′(q)t) = n)l(fn(s))l−1V ′n(s)

= E[l(fN(f ′(q)t))(s))
l−1V ′N(f ′(q)t))(s)],

whereN(f ′(q)t)) is a Poisson random variable with parameterλf ′(q)t.
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The rest of the proof follows similar lines to that for proposition 3.2. Hence we only give the

parts with some difference here. First, note that

lim
t→∞

∂

∂s
A(s, t) = E[ lim

t→∞
l(fN(f ′(q)t))(s))

l−1V ′N(f ′(q)t))(s)]

= lql−1V ′(s) for all 0 ≤ s < 1.

Since A(s, t) = A(s, t)−A(q, t) =
∫ s
q

∂
∂vA(v, t) dv,

lim
t→∞

A(s, t) = lim
t→∞

∫ s

q

∂

∂v
A(v, t) dv

=

∫ s

q
lim
t→∞

∂

∂v
A(v, t) dv

=

∫ s

q
lql−1V ′(v) dv

= lql−1[V (s)− V (q)]

= lql−1{[Q(s) + C]− [Q(q) + C]}

= lql−1Q(s).

Therefore, lim
t→∞

e−u
′(q)t[FN,l(s, t)− ql] = lql−1Q(s) = lql−1

∞∑
k=0

qks
k <∞ for all 0 ≤ s < 1.

Notice that when p0 = 0, we need the condition that p1 6= 0. Since if p0 = 0, then q = 0, and

hence f ′(q) = f ′(0) = p1. Thus, if p0 = 0 and p1 = 0, then f ′(q) = f ′(0) = p1 = 0, and hence

Qn and Q′n are undefined. Therefore, under the assumptions that p0 = 0 and p1 6= 0, if l = 1,

then limt→∞ e
−λ(p1−1)tFN,l(s, t) = Q̂(s), which is the case in remark 3.3. Following the similar

lines of this proof, we can see that under the assumptions that p0 = 0 and p1 6= 0, if l > 1, then

∂

∂s
{e−λ(p1−1)t[E[(fN(t)(s))

l]} = E[l(fN(f ′(q)t))(s))
l−1V̂ ′N(f ′(q)t))(s)].

Hence, by taking limit in t on both sides, we have

lim
t→∞

∂

∂s
{e−λ(p1−1)t[E[(fN(t)(s))

l]} = lim
t→∞

E[l(fN(f ′(q)t))(s))
l−1V̂ ′N(f ′(q)t))(s)]

= l0l−1V̂ ′(s)

= 0 if l 6= 1.

Consequently, limt→∞ e
−λ(p1−1)tFN,l(s, t) = 0 if l > 1.

2
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Proposition 5.3 Assume that m 6= 1. Let Z0 = l. If p0 6= 0, then

lql−1qk =

limt→∞ e
−u′(q)tP (ZN(t) = k |Z0 = l) if k ≥ 1,

limt→∞ e
−u′(q)t[P (ZN(t) = k |Z0 = l)− ql] if k = 0.

Remark 5.3 In particular, if p0 = 0 and p1 6= 0, then for any k ≥ 1

lim
t→∞

e−λ(p1−1)tP (ZN(t) = k |Z0 = l) =

0 if l > 1,

q̂k if l = 1.
(5.1)

Proof. First, consider the case that p0 6= 0. By proposition 5.2, for 0 ≤ s < 1, on one hand,

lim
t→∞

e−u
′(q)t[FN,l(s, t)− ql] = lql−1Q(s)

= lql−1
∞∑
k=0

qks
k

=
∞∑
k=0

lql−1qks
k. (5.2)

On the other hand,

lim
t→∞

e−u
′(q)t[FN,l(s, t)− ql]

= lim
t→∞

e−u
′(q)t[

∞∑
n=0

(fn(s))lP (N(t) = n)− ql]

= lim
t→∞

e−u
′(q)t[

∞∑
n=0

( ∞∑
k=0

pn(1, k)sk
)l
P (N(t) = n)− ql]

= lim
t→∞

e−u
′(q)t[

∞∑
n=0

∞∑
k=0

pn(l, k)skP (N(t) = n)− ql]

= lim
t→∞

e−u
′(q)t[

∞∑
k=0

∞∑
n=0

pn(l, k)skP (N(t) = n)− ql],
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where the interchange of two summations is justified by Fubini’s Theorem because of non-

negative terms. Moreover,

lim
t→∞

e−u
′(q)t[

∞∑
k=0

∞∑
n=0

pn(l, k)skP (N(t) = n)− ql]

= lim
t→∞

e−u
′(q)t[

∞∑
k=0

P (ZN(t) = k|Z0 = l)sk − ql]

= lim
t→∞

e−u
′(q)t

∞∑
k=0

[P (ZN(t) = k|Z0 = l)− ck]sk,

where ck =

0 if k ≥ 1,

ql if k = 0.

Furthermore, since we have the uniform convergence in the interval of convergence of the power

series, we can interchange of the limit and summation. Therefore,

lim
t→∞

e−u
′(q)t

∞∑
k=0

[P (ZN(t) = k |Z0 = l)− ck]sk

=
∞∑
k=0

lim
t→∞

e−u
′(q)t[P (ZN(t) = k |Z0 = l)− ck]sk.

Therefore,

lim
t→∞

e−u
′(q)t[FN,l(s, t)− ql] =

∞∑
k=0

lim
t→∞

e−u
′(q)t[P (ZN(t) = k |Z0 = l)− ck]sk. (5.3)

By comparing the coefficients in the equations (5.2) and (5.3),

lql−1qk = lim
t→∞

e−u
′(q)t[P (ZN(t) = k |Z0 = l)− ck]

=

limt→∞ e
−u′(q)tP (ZN(t) = k |Z0 = l) if k ≥ 1,

limt→∞ e
−u′(q)t[P (ZN(t) = k |Z0 = l)− ql] if k = 0.

(5.4)

Now we turn to the case p0 = 0 and p1 6= 0. By proposition 5.2, on one hand,

lim
t→∞

e−λ(p1−1)tFN,l(s, t) =

0 if l > 1,

Q̂(s) =
∑∞

k=1 q̂ks
k if l = 1.

(5.5)
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On the other hand,

lim
t→∞

e−λ(p1−1)tFN,l(s, t) = lim
t→∞

e−λ(p1−1)t
∞∑
n=0

(fn(s))lP (N(t) = n)

= lim
t→∞

e−λ(p1−1)t
∞∑
n=0

( ∞∑
k=1

pn(1, k)sk
)l
P (N(t) = n)

= lim
t→∞

e−λ(p1−1)t
∞∑
n=0

∞∑
k=1

pn(l, k)skP (N(t) = n)

= lim
t→∞

e−λ(p1−1)t
∞∑
k=1

∞∑
n=0

pn(l, k)skP (N(t) = n),

where the interchange of two summations is justified by Fubini’s Theorem because of non-

negative terms. In addition,

lim
t→∞

e−λ(p1−1)t
∞∑
k=1

∞∑
n=0

pn(l, k)skP (N(t) = n)

= lim
t→∞

e−λ(p1−1)t
∞∑
k=1

P (ZN(t) = k |Z0 = l)sk

=
∞∑
k=1

lim
t→∞

e−λ(p1−1)tP (ZN(t) = k |Z0 = l)sk,

where the interchange of the limit and summation is justified by the uniform convergence in

the interval of convergence of the power series. Therefore,

lim
t→∞

e−λ(p1−1)tFN,l(s, t) =

∞∑
k=1

lim
t→∞

e−λ(p1−1)tP (ZN(t) = k |Z0 = l)sk. (5.6)

By comparing the coefficients in the equations (5.5) and (5.6), we conclude that

lim
t→∞

e−λ(p1−1)tP (ZN(t) = k |Z0 = i) =

0 if l > 1,

q̂k if l = 1,
for any k ≥ 1.

2

Theorem 5.1 Assume that p0 6= 0. Let Z0 = l. Assume that E(exp(α0Z1)) < ∞ for some
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α0 > 0. Then for any ε > 0,

lim
t→∞

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
=

∑∞
k=1 ϕ(k, ε)lql−1qk

1− ql
<∞,

where ϕ(k, ε) = P
(∣∣1
k

k∑
i=1

Xi −m
∣∣ > ε

)
.

Proof. By the same estimate as in Theorem 4.1, ϕ(k, ε) ≤ 2(δε)
k. Now we begin with the

conditional probability,

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
=

∞∑
k=0

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε, ZN(t) = k
∣∣ZN(t) > 0

)
=

∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε, ZN(t) = k
)

P (ZN(t) > 0)

=

∞∑
k=1

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) = k

)
P
(
ZN(t) = k

)
P (ZN(t) > 0)

by independence

=

∞∑
k=1

P
(∣∣ 1
k

∑k
k=1Xi −m

∣∣ > ε
)
P
(
ZN(t) = k

)
P (ZN(t) > 0)

=
∞∑
k=1

ϕ(k, ε)P
(
ZN(t) = k

)
1− P (ZN(t) = 0)

.

Let us define ht(k) :=
e−u
′(q)tϕ(k,ε)P (ZN(t)=k)

1−P (ZN(t)=0) and let rt(k) :=
e−u
′(q)t2(δε)kP (ZN(t)=k)

1−P (ZN(t)=0) . Then for

each k ≥ 1, ht(k) ≤ rt(k) for all t ≥ 0. Note that P (ZN(t) = 0) = FN,l(0, t). By proposition 5.3,

taking limits in t, we have

lim
t→∞

ht(k) =
ϕ(k, ε) limt→∞ e

−u′(q)tP (ZN(t) = k)

limt→∞[1− P (ZN(t) = 0)]

=
ϕ(k, ε)lql−1qk

1− ql
and

lim
t→∞

rt(k) =
2(δε)

k limt→∞ e
−u′(q)tP (ZN(t) = k)

limt→∞[1− P (ZN(t) = 0)]

=
2(δε)

klql−1qk
1− ql

.
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On the otehr hand, the sum of rt(k) in k gives

∞∑
k=1

rt(k) =
2e−u

′(q)t

1− P (ZN(t) = 0)

∞∑
k=1

(δε)
kP (ZN(t) = k)

=
2e−u

′(q)t

1− P (ZN(t) = 0)

[ ∞∑
k=0

(δε)
kP (ZN(t) = k)− (δε)

0P (ZN(t) = 0)
]

=
2e−u

′(q)t

1− P (ZN(t) = 0)

[
FN,l(δε, t)− P (ZN(t) = 0)

]
=

2e−u
′(q)t

1− P (ZN(t) = 0)

[
FN,l(δε, t)− FN,l(0, t)

]
.

By proposition 5.2, taking limit on
∑∞

k=1 rt(k) in t, we have

lim
t→∞

∞∑
k=1

rt(k) = lim
t→∞

2e−u
′(q)t

1− P (ZN(t) = 0)

{
[FN,l(δε, t)− ql]− [FN,l(0, t)− ql]

}
=

2
{

limt→∞ e
−u′(q)t[FN,l(δε, t)− ql]− limt→∞ e

−u′(q)t[FN,l(0, t)− ql]
}

limt→∞[1− P (ZN(t) = 0)]

=
2
{

limt→∞ e
−u′(q)t[FN,l(δε, t)− ql]− limt→∞ e

−u′(q)t[FN,l(0, t)− ql]
}

1− ql

=
2lql−1[Q(δε)− q0]

1− ql
<∞.

Also note that

∞∑
k=1

lim
t→∞

rt(k) =
2

1− ql
∞∑
k=1

(δε)
klql−1qk

=
2

1− ql
[ ∞∑
k=0

(δε)
klql−1qk − (δε)

0lql−1q0

]
=

2lql−1

1− ql
[ ∞∑
k=0

(δε)
kqk − (δε)

0q0

]
=

2lql−1

1− ql
[
Q(δε)− q0

]
= lim

t→∞

∞∑
k=1

rt(k) <∞.
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By (***), it follows that

lim
t→∞

∞∑
k=1

ht(k) =
∞∑
k=1

lim
t→∞

ht(k) =

∑∞
k=1 ϕ(k, ε)lql−1qk

1− ql
<∞. (5.7)

Note that

lim
t→∞

∞∑
k=1

ht(k) = lim
t→∞

∞∑
k=1

e−u
′(q)tϕ(k, ε)P (ZN(t) = k)

1− P (ZN(t) = 0)

= lim
t→∞

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
. (5.8)

Therefore, from equations (5.7) and (5.8) above, we conclude that

lim
t→∞

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
=

∑∞
k=1 ϕ(k, ε)lql−1qk

1− ql
<∞.

2

Our large deviation behavior is the large-time asymptotics since we let time t goes to infi-

nite. However, the empirical study by Epps [14] is for short-term stock price as a PRIBP.

Therefore, before further evidence of empirical study of long-term stock price as a PRIBP, we

would better strict ourself to short-term dynamics of the stock price. Based on this reason, we

need to adjust our large-time asymptotics to a small one. A method that allows us to study

asymptotics in a short fixed time horizon is to fix a time horizon [0, t] for some small positive

t. and then let the intensity λ of the Poisson process goes to infinity. As λ goes to infinity,

the number of occurrences of an event goes to infinity in the interval [0, t]. This corresponds to

infinitely many changes in the stock prices in the time horizon [0, t].

It is not hard to see that proposition 5.1 becomes

lim
λ→∞

FN,l(s, t) = ql for all 0 ≤ s < 1.

Proposition 5.2 turns out to be

lim
λ→∞

e−u
′(q)t[FN,l(s, t)− ql] = lql−1Q(s) = lql−1

∞∑
k=0

qls
l <∞ for all 0 ≤ s < 1.
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Proposition 5.3 translates to

lql−1qk =

limλ→∞ e
−u′(q)tP (ZN(t) = k |Z0 = l) if k ≥ 1,

limλ→∞ e
−u′(q)t[P (ZN(t) = k |Z0 = l)− ql] if k = 0.

We then have the following theorem that is analogous to Theorem 5.1. Since the proof is almost

identical to that for Theorem 5.1, we are not going to supply it here.

Theorem 5.2 Assume that p0 6= 0. Let Z0 = l. Assume that E(exp(α0Z1)) < ∞ for some

α0 > 0. Then for any ε > 0,

lim
λ→∞

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
=

∑∞
k=1 ϕ(k, ε)lql−1qk

1− ql
<∞,

where ϕ(k, ε) = P
(∣∣1
k

k∑
i=1

Xi −m
∣∣ > ε

)
.

2

Financial Interpretation of Theorem 5.2:

There is an interesting phenomenon called mean reversion, in the study of financial market.

The essence of the concept is that the extreme high or low values for the price of a stock are

just temporary and that the price does have a tendency to hang around the long-term average

price over time. In the literature, some research also discusses this phenomenon in the sense

of the stock returns. For example, auto-correlation of stock returns is a well-known attribute

of certain discrete-time stock price models that are often referred to as mean reversion. Some

researchers model it as

Rt = a(Rt−1 − µ) + µ+ σWt,

where Rt is the return of a stock in the period t, µ the mean stock return, σ the volatility,

Wt a standard Brownian motion, and a < 1 the auto-correlation coefficient which is assumed

negative. More precisely, the model with mean reversion can be formulated as

dSt
St

= µdt+ θ
S∗t − St
St

dt+ σdWt,

where St is the stock price at time t, S∗t = S0e
µt is the theoretical price, and θ > 0 is the rate

which controls the speed of mean reversion.
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Now notice that we can rewrite the following probability

e−u
′(q)tP

(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
= e−u

′(q)tP
(∣∣ZN(t)+1 − ZN(t)

ZN(t)
− (m− 1)

∣∣ > ε
∣∣ZN(t) > 0

)
.

In this setting,
ZN(t)+1−ZN(t)

ZN(t)
is the tick-by-tick rate of return and m−1 is viewed as the average

tick-by-tick rate of return. Since we take λ → ∞, this is a result of “high-frequency stock in

a finite time horizon”. This is because the Poisson intensity goes to ∞. Therefore, for a fixed

time horizon [0, t], where t is not too large, Theorem 5.2 says that the probability that the

high-frequency tick-by-tick rate of return deviating from the average rate of return decays at

an exponential rate asymptotically. Therefore, Theorem 5.2 suggests a special form of mean

reversion in a stock market – short-term mean reversion for high-frequency tick-by-tick rate of

return.

5.2 An Application to Physics - Neutron Fluctuations

A model for neutron fluctuation via a branching process has been studied since 1960s. In the lit-

erature, neutron fluctuation is often modeled using a continuous-time Markov branching process

(see [29]). In the most classical model in this direction, Z(t) presents the number of neutrons

at time t in the system. p0 is the probability of absorption in a reaction process and it includes

the event of capture by other material and the case when a fission leads to zero neutron. p1

is the probability of renewal in a reaction process and it includes the event of scattering and

a fission leading to one neutron. pk, where k ≥ 2, is the probability of multiplication, i.e., a

fission reaction that results in more than one neutrons. Here we would like to apply our large

deviation results to study on the fluctuation in neutron count. Therefore, in order to study large

deviation behavior of neutron fluctuations, we need to extend our results to a continuous-time

Markov branching process.

Recall that in a continuous-time Markov branching process {Z(t)}t≥0, the particles alive have

the i.i.d. life-time distribution with a common exponential distribution with some parameter

a > 0. They have the same offspring distribution {pk}∞k=0 and the numbers of their children

are independent of each other and of the whole history. At any given time t, Z(t) represents

the number of particles existing in the branching process at time t. A continuous-time Markov

branching process is a continuous-time counterpart of a Galton-Watson branching process. They

share certain features. For instance, they are both Markovian and the reproduction of particles

in both processes are not effected by one another and by the history. Consequently, they both
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have the branching property, i.e., a process starting from l many ancestors is the same as l

independent copies of the process starting from only one ancestor. The difference between a

continuous-time Markov branching process and a Galton-Watson branching process is that in

the latter, the particles in the same generation give births together at the end of their common

one unit of life-time, whereas in the former the particles have their own life-times that are i.i.d.

exponentially distributed random variables and hence the particles may give births at different

times. Notice that by the branching property, the transition probability pij(t) satisfies

∞∑
j=0

pij(t)s
j = [

∞∑
j=0

p1j(t)s
j ]i.

As in a Galton-Watson branching process, the probability generating function plays a key role

in a continuous-time Markov branching process. Let

f(s) =

∞∑
j=0

pjs
j be the p.g.f. of the offspring distribution.

Define u(s) := a[f(s) − s], where a is the parameter in the life-time exponential distribution.

Suppose Z(0) = 1. Define

F (s, t) := E(SZ(t)|Z(0) = 1) =
∞∑
k=0

p1k(t)s
k.

Some of the classical preliminary results on this can be found in [4] and [20]. First of all,

the extinction probability is q, the smallest root of f(s) = s in [0, 1]. Secondly, the first mo-

ment of Z(t) is E(Z(t)) = eu
′(1)t = ea(m−1)t. Thirdly, F (s, t) converges to q as t → ∞ for all

0 ≤ s < 1. Finally, under the assumption that m 6= 1, there exist real numbers {ak}∞k=0 such

that limt→∞ e
−u′(q)t[F (s, t)− q] =

∑∞
k=0 aks

k = A(s) < ∞ for all 0 ≤ s < 1. Notice that some

of the properties about a continuous-time Markov branching process are quite similar to those

on a Galton-Watson branching process.

Since a continuous-time Markov branching process has the branching property, the results

mentioned above can be naturally extended to the situation when Z(0) = l, where i is arbitrary

positive integer. Define

Fl(s, t) := E(SZ(t)|Z(0) = l) =
∞∑
k=0

plk(t)s
k.
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It is clear that Fl(s, t) = [F (s, t)]l from independence. The extinction probability is now ql

and Fl(s, t) converges to ql as t → ∞ for all 0 ≤ s < 1. The expected number of particles

at time t is now E(Z(t)) = leu
′(1)t = lea(m−1)t. Also, under the assumption that m 6= 1, now

limt→∞ e
−u′(q)t[Fl(s, t)−ql] = lql−1

∑∞
k=0 aks

k = lql−1A(s) <∞ for all 0 ≤ s < 1. The following

result is necessary in proving our large deviation result stated later. Since the proof is essentially

identical to the proof for the case of the PRIBP in the previous chapter, we only state the result.

Proposition 5.4 Assume that m 6= 1. Let Z0 = l. If p0 6= 0, then

lql−1ak =

limt→∞ e
−u′(q)tP (Z(t) = k |Z(0) = l) if k ≥ 1,

limt→∞ e
−u′(q)t[P (Z(t) = k |Z(0) = l)− ql] if k = 0.

2

Notice that for any v ≥ 0,

Z(t+ v) =


∑Z(t)

i=1 Z
(i)
t (v) if Z(t) > 0,

0 if Z(t) = 0,

where Z
(i)
t (v) is the number of particles alive at time t+ v that are offspring of the i-th particle

existing at time t. Note that Z
(i)
t (v) for i = 1, 2, · · · , Z(t) are i.i.d. with a common probability

law, {p1k(v)}∞k=0, i.e. Z
(i)
t (v) are i.i.d. copies of Z(v). The next theorem shows a large deviation

behavior for the probability that the ratio of population sizes between any two time points

deviating away from the corresponding expectation. Since the proof is not too different from

that for the case of the PRIBP, we state it without supply the proof.

Theorem 5.3 Assume that p0 6= 0. Let Z(0) = l. Assume that E(exp(α0Z(v))) <∞ for some

α0 > 0 and v ≥ 0. Then for any ε > 0,

lim
t→∞

e−u
′(q)tP

(∣∣Z(t+ v)

Z(t)
− ea(m−1)v

∣∣ > ε
∣∣Z(t) > 0

)
=

∑∞
k=1 ϕv(k, ε)lq

l−1ak
1− ql

<∞,

where ϕv(k, ε) = P
(∣∣1
k

k∑
i=1

Z
(i)
t (v)− ea(m−1)v

∣∣ > ε
)
.

2

In a nuclear chain reaction, the number of neutrons is a main concern because it provides

information about how far the reaction has progressed. For example, it is especially useful

to know the joint distribution of the number of neutrons at different time points and the

auto-correlation function for the number of neutrons. In the study of neutron fluctuation as a

branching process, the extinction and survival probabilities and the expectation and variance
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of the number of neutrons have received intensive attention under various setting of the models

they use. Therefore, the ratio of the number of neutrons at different time points holds the most

essential and relevant information in asymptotic sense. Here the result of Theorem 5.3 can

explain the behavior of the ratio of the number of neutrons at two arbitrary time instants. It is

known that since the typical neutron’s lifetime in the reactor is as short as on the order of 10−7

to 10−4 seconds, the large-time asymptotic behavior is quite suitable under the time scales of

the reaction in real time. Therefore, asymptotic results are useful, for example, when we need

to control the growth rate of the neutrons in nuclear fission between some specific time interval

due to security issues and technical aspects. In this regard, Theorem 5.3 says that, for instance,

if we want to avoid the ratio between a given time interval being larger than, say k, then by

solving ea(m−1)v = k for v, where the parameters a and m are known from various estimates

based on experiments, we obtain the estimated time interval that we need to check or to apply

some actions to the system periodically.
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Chapter 6

Conclusion and Future Research

In the literature, to the best knowledge of the author, large deviation aspects of a RIBP has

never been formally investigated. In this dissertation, we have studied various large deviation

rates and other related issues concerning the ratio of successive numbers of generations for a

PRIBP. We investigate not only the case in which the probability of giving no birth is zero but

also extend to the case which allows non-trivial probability for no birth. Under various moment

conditions, the decay rates are exponential for all conditional and unconditional cases although

the limiting probabilities are slightly different. Besides, our results are applied to finance and

physics. The application to finance relates to the asymptotics for high-frequency stock return

in a short time horizon. The results applied to the physics direction suggest a possible scenario

that may be useful in the estimation of neutron fluctuation control problems.

6.1 Theoretical Research

There are some direct extensions of a PRIBP that are worth considering. First of all, instead of

the large deviation behavior of the ratio of consecutive generation sizes ZN(t)+1/ZN(t), we can

study that of other meaningful quantities. For example, the tail behavior of W ′ in both right

extreme and right extreme, i.e, large deviations for

P (W ′ ≥ x) as x→∞ and P (W ′ ≤ x) as x→ 0.

Another one is about a large deviation behavior of normalized random sums defined by

RN(t) :=
SZN(t)

ZN(t)
=

∑ZN(t)

i=1 Xi

ZN(t)
,
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where {Xn}∞n=1 is a sequence of i.i.d. real-valued random variables with zero mean. Notice

that on the event {ZN(t) > 0}, the random variable RN(t) is well-defined. RN(t) has also found

many applications, for example, it arise in applications of polymerase chain reactions with

mutations. Inspired by [17], we are curious about the large deviations of RN(t), especially, the

large deviation behavior of the probability

P (RN(t) ≥ εt |ZN(t) > 0) as t→∞,

for some sequence {εt}t≥0 that converges to 0. It is worth mentioning that if X1 coincides in law

with Z1−m, then RN(t) coincides in law with
ZN(t)+1

ZN(t)
−m. Also notice that if {εt}t≥0 := {ε}, i.e.,

independent of time and if RN(t) coincides in law with
ZN(t)+1

ZN(t)
−m, then it is exactly the case

studied in this dissertation. That is, the study of P (RN(t) ≥ εt |ZN(t) > 0) is a generalization of

the large deviation study about the ratio away from its mean for our PRIBP. Another possible

large deviation study regarding RN(t) is the asymptotic behavior of

P (RN(t) ∈ · |ZN(t) > vt) as t→∞,

for some sequence {vt}t≥0 that goes to ∞.

Secondly, in fact, RIBP includes PRIBP as a special case in which the indexing process is

a Poisson process. Thus, we could consider a more general renewal process as the subordinator

process and then investigate the large deviation behavior of the ratio ZN(t)+1/ZN(t) and that

of other quantities mentioned above. In the study of RIBP, [27] and [26] have focused on some

critical RIBPs and have studied the asymptotic formulas for the moments, V ar(ZN(t)), that

for the probability of non-extinction P (ZN(t) > 0), and limiting distributions of properly nor-

malized ZN(t). All these results are restricted in the critical case, therefore, more thorough and

general results for non-critical cases are necessary to provide a complete picture mathematically.

Thirdly, we can consider a PRIBP with immigration. Let

Zn+1 =

Zn∑
i=1

Xi + Yn+1 with Z0 = 1,

where {Xi} are i.i.d. with a p.g.f. f(s) and {Yn} are i.i.d. with a p.g.f. h(s) and X’s and Y’s are

independent. That is, at the birth time of the n-th generation, there is an immigration of Yn

particles into the system. Suppose that E(X1) = m and E(Y1) = µ. Notice that the expectation

E(Z1) = m+µ. For a super-critical branching process, Zn+1/Zn converges to m a.s. as n→∞
when conditioning on the event {ZN(t) > 0}. Therefore, we can study the large deviation rates
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for the probability

P
(∣∣ZN(t)+1

ZN(t)
−m

∣∣ > ε
∣∣ZN(t) > 0

)
.

Fourthly, we can consider a PRIBP in a random environment. Let Z0 = 1. Assume that all

Zn particles in the n-th generation reproduce according to a common offspring distribution

with p.g.f. fξn(s), where fξn(s) is chosen randomly from a collection Φ of environmental p.g.f.s

according to some law. Assume that {fξn(s)} are i.i.d.., i.e., i.i.d. environment. Let m(ξ·) =∑∞
i=1(

∑∞
k=1 kpk(ξi))pi where pk(ξi) is the probability of having k children under the offspring

distribution fξi(s) and pi is the probability of the offspring distribution of which p.g.f. is fξi(s).

We can study the large deviation rate for

P
(∣∣ZN(t)+1

ZN(t)
−m(ξ·)

∣∣ > ε
∣∣ZN(t) > 0

)
.

Fifthly, we can consider a multi-type super-critical PRIBP inspired by the work of Athreya

and Vidyashankar in [6]. Let {Zn}∞n=0 be a super-critical 2-type Galton-Watson branching

process with type-dependent offspring generating functions f (i)(s), i = 1, 2, and the mean

matrix M = ((∂f
(i)(s)
∂sj

∣∣
s=(1,1)

)ij)2×2. Assume that f(0, 0) = 0, i.e., the probability of having

no child is zero. Let ρ be the maximal eigenvalue of M with the corresponding left and right

eigenvectors v(1) and u(1), respectively. Let l = (l1, l2) be any non-zero vector with l1 6= l2.

Under some assumptions, we would like to study the large deviation rates for

P
(∣∣ l · ZN(t)+1

1 · ZN(t)
−
l · (ZN(t)M)

1 · ZN(t)

∣∣ > ε
∣∣Z0 = ei

)
and

P
(∣∣ l · ZN(t)

1 · ZN(t)
− l · v(1)

1 · v(1)

∣∣ > ε
∣∣Z0 = ei

)
.

6.2 Applied Research

For financial applications, we consider the pricing of exotic options when the price of the

underlying asset is modeled by a PRIBP. For example, we can study the pricing of lookback

option. It is path dependent and the payoff depends on the maximum or minimum underlying

asset’s prices over the life of the option. The holder of this option is allowed to look back over

the lifetime of the option to determine the payoff. We consider the lookback option with a fixed

strike. The payoff functions for the fixed strike lookback call and the fixed strike lookback put

are, respectively, given by:

LCfix(T ) = max(Smax −K, 0) and LPfix = max(K − Smin, 0),

102



where K is the the fixed strike price, Smax is the maximum underlying asset’s price during the

lifetime of the option, and Smin is the minimum underlying asset’s price during the lifetime of

the option.

We would like to derive analytic formulas for pricing this call and put options. Applying mar-

tingale pricing, the prices of the call and put options at the current moment are

LCfix(0) = e−rTE[LCfix(T )] = e−rTE[max(Smax −K, 0)]

and

LPfix(0) = e−rTE[LPfix(T )] = e−rTE[max(K − Smin, 0)].

Therefore, we need to derive the exact formulas for LCfix(0) and LPfix(0) in terms of PRIBP.

Notice that in order to obtain the exact formulas, we need to calculate the probabilities of

maximum and minimum population size up to each generation. After obtaining the formulas,

we would like to give numerical results to compare the prices of the options whose underlying

asset is modeled by a PRIBP with the prices of those whose underlying asset is modeled by a

lognormal distribution.
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