ABSTRACT

STAPLETON, JAMES ROBERT. Structures and Singularities in n-Symplectic Geometry.
(Under the direction of Larry Norris.)

Several non-standard situations in n-symplectic geometry are analyzed. Non-canonical dy-
namics introduced by Kiinzle are generalized to the frame bundle of a manifold M, LM, and
subsequently shown to be too restrictive to reproduce similar or generalized results. The n-
symplectic potential is altered in a generalization of the charged symplectic potential. Singu-
larities are discovered in the n-symplectic dynamics, and the role of the n-symplectic gauge
freedom in these singularities is discussed. Finally, attention is narrowed from the full frame
bundle of R™ to a coordinate slice B; which exhibits both symplectic and n-symplectic prop-
erties. Tools are developed for working with general observables on Bi. Dynamics not seen
on LR™ or T*R", somewhat natural Kaluza-Klein-type structures, and more singularities are

revealed upon the slice.
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Chapter 1

Introduction

Symplectic geometry is a powerful and useful tool for studying Hamiltonian mechanics on a
smooth, n-dimensional manifold M. To every smooth (C*°) function or “observable” on the
cotangent bundle, f, a unique vector field X 7 is assigned using the canonical form 0 via the
equation

df = - X p dé.

The integral curves of the Hamiltonain vector field X F are interpreted as the equations of
motion (or the dynamics) of a particle moving under the influence of the forces described by f.
n-symplectic geometry is a generalization of symplectic geometry introduced by Larry Norris
[11], where analysis takes place on the bundle of linear frames = : LM — M over a smooth
manifold M. The R™-valued, tensorial soldering form 0 = 0'r; (where the 7; form the natural
basis for R™) takes the place of canonical form 6 and Hamiltonian vector fields X j are assigned

to smooth functions f by
df = —X;1 dé. (1.1)

Crucial differences between symplectic and n-symplectic geometry emerge from these structure
equations. First, the observables f of n-symplectic geometry are R™-valued functions, whereas
observables f of symplectic geometry are R-valued functions. Second, not every smooth R™-
valued function f can be assigned a Hamiltonian vector field via equation (1.1). Only certain
vector fields can satisfy equation (1.1), and these vector fields pick out only certain polynomial
observables f [11]. To obtain a full polynomial algebra, the structure equation is expanded to

allow for ®I; R™-valued functions, where ®; is the symmetric tensor product, and

k
®R":R"®SR"®S...®S]R”.

k copies



This introduces not only a Z, grading on the algebra of n-symplectic observables, but a non-
trivial kernel when determining Hamiltonian vector fields for the ®’; R"-valued functions where
k > 1. This kernel leads to studying equvalence classes of Hamiltonian vector fields, from which
a graded Poisson algebra of observables can be constructed.

We will begin by expanding this quick review of m-symplectic geometry in the following
section in order to make precise the structures with which we will be working. In this review,
we will also lay out notation that we will be using throughout the remaining chapters. We
will move from there to studying some features of non-canonical n-symplectic geometry. In
Chapter 2, we will generalize the work of Kiinzle from [8], and examine some of the new

dynamics that occur when the soldering form 0 = 0'7; is replaced with
b= o't = (0" +but) 7y

where wj' are the 1-forms of a connection on LM and 7Y are constants. The addition of
the connection eliminates certain symmetries of the canonical n-symplectic potential. This
restricts the allowable observables further, and the related dynamics do not display a natural
contribution of spin as those of Kiinzle do.

In Chapter 3, we consider the charged n-symplectic observable in flat space and, equivalently,

the charged n-symplectic form in flat space

A~

0c = 047 = (0" + 1g; A"*da?) ;.

This definition is similar to the standard charged symplectic form in flat space [2]. Certain
standard and reasonable choices lead to the standard symplectic dynamics of a charged particle,
but with additional equations of motion that show a factor of % difference in equations of motion
in the momentum space [2]. We will show that these choices also lead to singularities in the
equations of motion that are able to be controlled by initial conditions. After a study of the
gauge freedom, the choice of representative from an equivalence class of Hamiltonian vector
fields, we will also show that the difference by a factor of % can be eliminated by proper choice
of gauge.

Finally in Chapter 4, we will shift our focus from non-canonical n-symplectic geometry
to the study of n-symplectic geometry restricted to a special submanifold By € LM. The
manifold B; is a coordinate slice, chosen so that it is both a symplectic and an n-symplectic
manifold; that is, it has a natural symplectic structure, and the soldering form 6 pulls back onto
this submanifold. Being both symplectic and n-symplectic, the n-symplectic dynamics can be
very readily compared to standard symplectic dynamics on Bj itself. Being a submanifold of

LM, the algebra of observables turns out to be more limited. We will discuss how to overcome



these limitations on observables on Bj, examine new dynamics not seen in symplectic geometry,
show that there exist natural Kaluza-Klein-type structures encoded into the dynamics on By,
and finally show some limitations of this slice by exploring the existence of singularities in the

equations of motion.

1.1 Review of n-Symplectic Geometry

This section is intended to provide only an overview of n-symplectic geometry and an introduc-
tion to much of the terminology used in this document The reader is referred to the literature
([11], [12], [13], [2], [3], [4], [1]) for the details. Let M be a smooth, n-dimensional manifold,
We denote by n the dimension of the manifold M if it has not been specified. Also we denote
by LM the bundle of linear frames (the frame bundle) over M. Every point u € LM is a pair
(p,€;), where p € M and e; := (e1,€e9,...,€,) is a linear frame at the point p (a basis for the
tangent space at p, T,M). LM is a principal fibre bundle with projection map 7= : LM — M
defined by 7(p,e;) = p, and structure group the general linear group GL(n). If (U, x') is a

coordinate chart on M, then we define local coordinates (z°,77) on 71 (U) C LM by

z'(u) = 2'(p, ¢j) := 2" (p)

0

m(u) = 7h(p, e;) = €’ (W’P) (1.2)

where e/ := (e!,e?,...,e") denotes the coframe dual to the linear frame e;. In these local

coordinates, vectors Y have the form

d
on’

Y =Y%0;+Y, (1.3)
Throughout, we will be using the notation 0y for %. Also, following convention, ¢ will refer
to coordinates both on the base manifold M and the frame bundle LM (specifically, on U C M
and 7~ }(U) C LM). Note that, since the e; is a linear frame, the local coordinates Wi(u)
form a nonsingular matrix for every w € LM. This will be an important fact when discussing
singularities in Chapters 3 and 4. In Chapter 2, we will also make use of coordinate functions

vk dual to Wi in the sense that

() (u) = 67, ()

(i) (u) = 6 (u)

for every w € LM, where &, is the Kronecker delta function.

For each point u € LM, we may also define [7] a linear isomorphism u : R" — Ty(,)M by



u(&7;) = (p, ej)(E4F;) = E'e;, with inverse
uTH(Y) = (pe) (V) = €' (V)i (1.5)

where the 7; form the standard basis for R". For any vector Y € T,,LM , we define the soldering
form 6 by
0(Y) := u”H(drY) (1.6)

In local coordinates,
0 = 0'¢; = widaPi; (1.7)

The soldering form is a globally-defined, R™-valued 1-form on LM, comparable to the R-valued
canonical 1-form 6 = prdg® on the cotangent bundle 7% M. Symplectic geometry is based upon
using 0 to assign a unique Hamiltonian vector field X P to each observable function f T*M —
R by the equation df = —X 1 df. As a generalization to this construction, n-symplectic

f
geometry uses

df =-X;1df (1.8)

as the basic equation which assigns Hamiltonian vector fields X jon LM to observables f :
LM — R™ in a manner independent of coordinates. A key difference between symplectic and
n-symplectic observables is that not every smooth (C°°) function is compatible with equa-
tion (1.8). We will describe these observables shortly.

Equation (1.8) can also be extended and generalized to allow ®]§ R™-valued functions on

LM, where ®§ R"™ is the totally-symmetric tensor product of k£ copies of R™.

k
QR =R"@,R"®, ... ®,R" (1.9)

k copies

These ®§ R"-valued functions are determined by their coordinate functions in a basis for

®I; R"™. We write f = fili?mikf’il ®s Tiy D ... Qs Ti,,. The generalized n-symplectic equation is
dfiliz“ikfil Qs -+ Qs f'ik = <k!X}1i2mik_1_, delk) ’f;il Qs+ - Qs f'ik (1'10)
Or in terms of the coordinate functions,

dfinizein) = —pLx Ry dgi), (1.11)



the round brackets (parentheses) around indices indicating symmetrization on those indices!.
The functions f = f“i?"'ikﬂl R Tiy Ds ... Qg T, are called rank k observables.

The generalized n-symplectic equation defines not just one but multiple Hamiltonian vector
fields for rank £ > 1 observables. Only one Hamiltonian vector field is desired for the analysis
of dynamics, so there arises the question of how to choose one vector field from many. This
choice is made by first considering the distribution that is spanned by the multiple Hamiltonian
vector fields of a rank k > 1 observable, and then choosing a nonzero vector field from this
distribution. For this reason, we will refer to the Hamiltonian vector fields defined by a rank
k > 1 observable primarily as its Hamiltonian distribution.

The assignment of Hamiltonian distributions to rank & > 1 observables is, however, not
unique; the kernel of the right-hand side of equation (1.11) is nontrivial. The following lemma

shows this non-uniqueness and extends the similar result in [11].

Lemma 1.1 The set of equations Y (12-ik—1_| dgix) = 0, where ' are the coordinate functions

of the soldering form on LM, has as its solution vectors fields

0199 0p_ §0109... 05— ri1%2...0k—1
Y2 tk—1 — yStt2 k1as+ys -
on?

where Y5(ii2ik-1) — ﬂ(miz"'ik*l) = 0 but are otherwise arbitrary.

Proof: As noted in the lemma, we write, we write Y12-th-1 = Y sitia-ib—19 4 Y112 k-1 B‘ZT,
as well as §° = 7idz* in our local coordinates (z%,m) on LM [7]. Evaluating the interior

product Y (1i2-ik-1_| dg%) in these local coordinates, we see that
n(ikilil--ik—l)dxs _ YS(leQZk_ldik)dﬂg — O (112)

The linear independence of the 1-forms dz® and dn allows us to separate this set of equations
into two.
Y(ikiliQ'nik—l) -0
; =

1.13
Ys(iliQ...ik_l(Sik) -0 ( )
T

Contraction on indices r and s in the second set of equations completes the proof. [J
This non-uniqueness of solution to equation (1.11), the vector fields described in the above

lemma, is interpreted as a gauge freedom on the bundle LM . For rank 2 observables, the gauge

!The symmetrization in equation (1.11) comes about due to considering our observables only to be ®§ R™-
valued functions on LM . With similar results and only slight changes to certain proofs, n-symplectic geometry
can also be built from functions which are ®Z R"-valued. Here, ®§ R"™ denotes the totally anti-symmetric tensor
product of k copies of R” [11]. Anti-symmetric n-symplectic observables have not been as well-studied as the
symmetric observables we are considering.



= T,Ej g 3%?; (the square brackets indicating anti-symmetrization

on those indices). This is not the case for rank k& > 2 observables. Usually, objects such as

vector field is purely vertical, T

A

Xf = X}liQ'”i"'*lml Rs Tig D - .. Qs Tiy_, OF iy Gy . . .aikX;liQ”'ik’l (for some constants «;) are
what are studied. This symmetry on the indices of the vector fields removes the non-uniqueness
from the horizontal portion, and so the gauge is typically considered to be a vertical vector field
for any rank k& > 1 observable [11]. This gauge freedom also means that each rank k > 2
observable defines an equivalence class of Hamiltonian distributions. Two distributions are
defined to be equivalent in this sense if they both satisfy equation (1.11), or equivalently if their
difference is a gauge vector field.

The local coordinate formula for the most general rank k observable Fis a polynomial
of degree at most k in the 7r§- coordinate functions, and whose coefficients are smooth (C')
functions on M [11]. Explicitly,

L o . e (i i s .
Flrieie) — porazangin pia | i g guiozakalilpia pis | i)
ay...ap—2(i192 g ir) (1102...1%)

+ B, T oo T 4.+ By (1.14)

where fo192--ak — flara2.ak) and f and each function B; is a function of z* alone. Sometimes,
this dependence is written as f(u) = f(2') := (f o7)(u) for u € LM, but we will suppress
this composition with the projection 7 : LM — M. In contrast to convention, we do allow the
leading coefficient function f*1%2-% to be identically zero. It is cumbersome or not illustrative to
write out the Hamiltonian distribution defined by F , so we will now review some less complicated
but important observables in order to demonstrate the Hamiltonian distributions.

Kobayashi and Nomizu defined the natural lift of a vector field on M to LM in [7]. This
definition was generalized by Norris in [11] to the natural lift of a symmetric tensor field on M
to LM. This natural lift to LM of any totally symmetric rank k contravariant tensor field ¢
on M is a vector field corresponding (by equation (1.11)) to a rank k tensorial observable ¢. If
f=t1"%0; ®Rs...R 0, then

E=t9 %l Tk R R @ T (1.15)

The corresponding Hamiltonian distribution, written without gauge terms, is then given by?

. ) . , . o)
|yl te—1 ay...ap_18,.11 1k—1 Q1.0 11 1k—1 7
kX, =kt Ty - Tay_y Os — L4 0wl o oy T, o
s

(1.16)

This means, in particular, that a metric tensor § = ¢**9, ®,0, on M defines a rank 2 observable

2We follow a standard notation, denoting partial differentiation with respect to x* with a comma before the

index. As two examples, F’f = 6?” F¥ = §;F* and Fljj = 0;0;FF.




§ = g®mimlf; @5 7; on LM. Tts Hamiltonian distribution is
7 as,_i 1 ab_1__J Ji 9
Tk

The Tgi term is the gauge freedom; it is a function where T,gj ) — 0 and is otherwise arbitrary.
Any choice of torsion-free linear connection will select a single Hamiltonian distribution from
the equivalence class containing Xé; i.e. the choice of gauge T, lij will be fixed globally [13].
The choice of the Levi-Civita connection, in fact, will select a distribution that yields standard
geodesic motion plus parallel transport of the momentum frame [11]. Three other notably
useful observables are ¢ := ¢%, 7, := w7y, and 7,. These are all rank 1 observables, and
their respective Hamiltonian vector fields can be found at the end of this section in Table 1.2

In order to cut down on the preponderance of indices that comes with n-symplectic observ-
ables and their Hamiltonian vector fields or distributions, we will often make use of multi-index
notation. Unless otherwise noted, capital Latin indices will represent multiple indices, and they
may be subscripted with an indication of how many indices they represent. Examples can be
seen in Table 1.1.

When all ranks of observables are considered, they form a graded algebra; addition is carried
out component-wise on observables of the same rank and the product is the symmetric tensor
product, usually written as juxtaposition. If F' is an observable of rank k and G is an observable
of rank m, then we may define a bracket of these two observables by

{F,G} = k!ng‘l(GJm))ffk_lme = —m!Xé‘]’"‘l(FI’v))me_lfj (1.18)

k

This bracket is independent of gauge and choice of local coordinates, and it satisfies all the

properties of a Poisson bracket [11], making the space of all observables a graded Poisson

Table 1.1: Examples of Multi-Index Notation

Multi-Index Standard Notation

Xlk Xilig...ik

f(fk) f(iliz...ik)

7T, Tiy Qs Tig Qs - .. D Ty,

f]kfjm 'ﬁil R ... Qg flk Xg fjl Rg ... Rg fjm
X1y dgiw) X (i1 | dgin)

s L B

ar X! Uy Oy o X102




algebra. The Poisson bracket of a rank k observable and a rank m observable is seen to be a
rank k+m — 1 observable. Furthermore, if F and G are the natural lifts of contravariant tensor
fields F and G, then we use equations (1.15) and (1.16) to write explicitly

(i1, 12 i tk+1 Thtm—1)
Ty T Ty (1.19)

o kFS(azag..ACLkGif?bii---b’m)
{7, Gyt = (_mGs(begu.bmE§a2a3“'ak)>ﬂ-
This @™~ ! R™-valued function on LM corresponds to (is the natural lift of) the differential
concomitant of F and G on M, as given by Schouten and Nijenhuis [10][15].

Finally, n-symplectic Hamiltonian vector fields and distributions can be mapped to the
cotangent bundle in a very direct way, and in some cases be shown to then be equivalent
to related symplectic Hamiltonian vector fields. Consider T*M as the associated bundle
LM Xgrm) R™ as follows. Let the 7 form the standard basis for R™*. For any point v € LM
and a = o' € R™ \ {0}, the pair [u,a] is a point in LM Xgr,) R™ (specifically, it is a
representative of an equivalence class of points, hence the square brackets). For any arbitrary
but fixed @ € R™, we define the map ¢, : LM — T*M \ So, where Sy is the zero section of
T*M, by

Yo (u) = [u,q] (1.20)

We also note that oam}(u) = aiei(8j|7r(u)) = pj(aie’), where the pj := (p1,p2,...,pn) are the

standard momentum coordinates on T*M defined by the local coordinates z* on M. It is easy
to show, then, that

wa*(as) = as
0 9 (1.21)
Yax <87T§> = asaipr

Consider a rank k observable F. We may map vectors in its Hamiltonian distribution X;f’l to

vectors X,y on T*M \ Sy as follows.

X, 7y Wa(w) = Fae(ar, X7 (), uwe LM (1.22)

Vol E) is a smooth vector field on T*M \ So. Furthermore, if F is a tensorial observable, then

alle

Ya(F) is equal to the symplectic Hamiltonian vector field Xz [12], where
F(lu,a]) == oy F*(u) (1.23)

n-symplectic geometry has been studied extensively in the literature. As a few examples,
L. K. Norris developed the field of study [11][12][13], D. Cartin studied the charged particle in



an n-symplectic setting [2], M. McLean investigated n-symplectic geometry’s relation to other
generalizations of symplectic geometry [3], and J. K. Lawson and J. D. Brown studied aspects

of quantization using n-symplectic geometry [4][1].

Table 1.2: Useful n-symplectic Observables and their Hamiltonian Vector Fields

Observable Hamiltonian Vector Fields
Ta Xz =0
A o]
h Xag = gup
p Xz, = —0p
A bar 4 i } 1 abi.J 0O
§= ga Faft X}y — g“sﬂéas — igf}c Wéﬂbﬂ




Chapter 2
Kiunzle’s non-canonical spin

Consider a system with nonzero and fixed rest mass m and fixed spin magnitude s. Kiinzle
found in 1972 that if one chooses 6 = mf! + Sws3q4 as a presymplectic potential on the Lorentz
bundle over space-time, where wg;, are the 1-forms of a connection without torsion, then the
equations of motion are equivalent to those of Souriau and Dixon for a massive particle with spin
[8]. We will attempt to copy this construction and generalize it upon the frame bundle. Instead
of either using a presymplectic potential or defining and using a pre-n-symplectic potential,
we will add a general piece of a torsion-free linear connection to the soldering form to create
a new, non-canonical n-symplectic potential. In order to study the dynamics produced by
this new potential, we will find the Hamiltonian vector fields that are now allowable in the
modified structure equation. This will show what modifications have been made to the algebra
of n-symplectic observables, if any, and the combination of observables and Hamiltonian vector
fields will show the possible dynamics in this new scheme. In particular, we are concerned
with the allowable rank 2 observables and their Hamiltonian distributions, since the metric
observables are observables of this rank. It turns out that even the simple cases, where we add
in only one piece of a connection as Kiinzle did, produces results general enough from which to

draw strong conclusions.

2.1 Generalizing Kiinzle’s work on the Frame Bundle

Kiinzle essentially changed the symplectic potential g by adding a piece of a connection. Let
wf be the 1-forms of a torsion-free linear connection on LM and let 4 be constants. We define

1-forms
¢ =0 + bl (2.1)

It is important to note that one should not choose a connection w and constants 4% such that

ygiwg = 0 identically.

10



Theorem 2.1 The R"-valued 2-form dp'+;, with ¢ as defined above, is non-degenerate.
Proof: For a torsion-free connection on LM, we know that [7]
4o’ = 67 A )
dwf! = wff A w4 Q.0 A 67
where QF_, is the curvature tensor of the connection w. This gives us the basic formula
d¢' = do" + 5wy = 07 Aw) +Awp A wfl + YbiaQ.0° A 67 (2.2)
Contracting with an arbitrary vector field X, we obtain

X1 i = 07 (X)wh — wh(X)09 + 98 (wh(X)wf — wf(X)eof +2008,46°(X)0°)

= (2080848°(X) — wi(X) ) 07 + (6°(X)0F + P (X) = 7w (X)) i

Setting X_1 d¢' = 0 and using the linear independence of the 1-forms #° and wy, we obtain the

two sets of equations

25108 10°(X) — wj(X) =0 (2.3)
0°(X)5. + Pwi (X) — vwi(X) = 0 (2.4)

Contracting equation (2.4) on s and r gives #°(X) = 0. Using this in equation (2.3), we find
w;'- (X) =0. Thus, X =0 and d¢'#; is non-degenerate. [J

We saw that the 2-form df'7; has a non-zero kernel when contracted with higher-rank vector
fields X!. Let us contract the 2-forms d¢/ with arbitrary vector fields X! and symmetrize on

the upper indices. We obtain

XU agh = (205,0°(10 X D) - wff (X)) 6

+ (0(xX"8)) + Wi (U XD) —wi (30 X)) i

Again, setting this equal to 0 nets

208 ,0°(20 x 1) — Wi (x1) = 0 (2.5)
0°(XU6D) + wi (RUXD) — w (150 x 1) = 0 (2.6)

Contracting (2.6) on s and 7 gives 8U (X)) = 0. Writing X! = X519, + X7! 82” we see that

0l (X! )) = XU ﬂi) = 0. Already, we see that we have a similar but more complicated kernel

11



condition than the standard case shown in Lemma 1.1. For our current purposes, the kernel
does not need to be calculated explicitly; the invariant parts of the vector fields determined by
the n-symplectic equation

dF = —kIX[ 1 d¢/7 7 (2.7)

will be sufficient. We begin by looking at a very simple case.

Theorem 2.2 Let ¢' be as defined in (2.1). If wy are the 1-forms of a torsion-free flat linear

connection and if Y2 = 586261, then rank k observables F= FI#1_ that have the form

k) — kaﬂ.ﬁlz + B{kﬂ(ikﬂ_gizj) + Bé]k—Q(ik—likﬂ_ﬁlz:QQ) +o+ B](ka) _‘_,yg(ikwtljlzj)vgwwgf,%kq
where each B; is constant, f’¢ are functions of the z* alone and linear in x*, f’* = f(r)
satisfy (2.7), and v are coordinate functions dual to m% as defined in equation (1.4). In

particular, the only allowable rank 1 observables are
F = (foa + Ao fo, + €)
and the only allowable rank 2 observables are
F= (fabwéﬂg + hd(iﬁg) + k) 4 ’yg(iﬂg)vgh‘wgf%) it

It can be checked directly that there exists a collection of vector fields X 1{7 corresponding to
any observable F' with the form given in the theorem such that equation (2.7) is satisfied, and
that equation (2.7) cannot be satisfied with an observable F' of the general form given in equa-
tion (1.14). The proofs of the specific claims of the rank 1 and rank 2 observables are long, and
are relegated to Appendix A. What is of particular importance to note from this theorem is
that the only tensor fields on the base manifold M that can be lifted to allowable observables
(particularly rank 2 observables) are constant tensor fields. This drastically restricts the pos-
sible classic Hamiltonians (or observables) that can be studied in this non-canonical setting;
furthermore, appendix equation (A.112) shows that the Hamiltonian distribution correspond-
ing to this rank 2 tensorial observable with constant coefficients would be no different than the
canonical Hamiltonian distribution given by equation (1.17) for the same observable.
Thinking that, perhaps, the n-symplectic form ¢'#; defined by a flat connection is too

restrictive, we consider a simple case when ¢'7; is defined using a general connection.

Theorem 2.3 Let ¢' be as in (2.1) and Y% as in Theorem 2.2. If wy are the 1-forms of a
torsion-free linear connection, then there is no non-trivial rank 2 observable F that can sat-

isfy (2.7) in general.
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The long proof can be found in Appendix B. The theorem and its proof are restricted to
rank 2 observables in this case because rank 2 observables are where the standard equations of
motion are to be found, and the techniques used in the proof generalize readily to any rank of
observable. The main difference between each rank of observable is the level of complexity and
number of equations to check, as can be seen in the two proofs of Appendix A.

We are left with the negative result that the non-canonical construction of Kiinzle cannot be
lifted directly to the frame bundle LM . The n-symplectic 2-form d¢'+; defined by ¢* = Hi—i—’ygiwg
is non-degenerate, but it is too restrictive when it comes to determining motions of rank k
observables by the equation dF = —kIX {%J d¢? 717j; the only non-trivial solutions come about

from special values of the curvature of the torsion-free connection w.
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Chapter 3

The Charged Particle and the
Charged Hamiltonian

Throughout our discussion of the n-symplectic charged particle, we will only concern ourselves
with the case of flat space-time; the metric used throughout will be the Minkowski metric n =
n™0, @ By, where % = 1y, = diag(—1,1,1, 1) in inertial coordinates on R*. The corresponding
rank 2 tensorial observable on the frame bundle has the local coordinate form 7 = n®7,y,.
We begin with the rank 2 observable
¢ = (ntmim] — 2417 + 2BY) iy, (3.1)

We will interpret the functions A% to be a collection of n vector potentials so as to create a

generalized Maxwell field tensor,
Fay = nep A% — neaA's, (3:2)

thus we will require that the A’ not to be identically zero. The Hamiltonian vector fields

defined by ¢ are easily calculated to be, up to gauge freedom,

X} = (*smi — A) 9, + (A’,‘jw{l - BY) . (3.3)

’ "/ o,
We would like to study a single vector field in the distribution spanned by the Xg so that we may
study its integral curves, from which we obtain equations of motion. This is accomplished by
choosing an arbitrary but fixed a = ;7" € R™ \ {0} to select the vector field a; X:. Using this

same « we are able to map the observable ¢ and its Hamiltonian distribution X}; to an observable
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¢ = o (;a;6¥) and a symplectic Hamiltonian vector field! Xz on the cotangent bundle via the
¢ map described at the end of §1.1. Before we do that, however, we introduce some notation

that will be helpful throughout our discussion of the n-symplectic charged particle.

R

T i= QT
a._ ... Ata

A% = ;A

Fab = aiFaZLb-

Later, we will also make use of the momentum rest space. This is the vertical space orthogonal
to 7, in the following sense: It was noted in §1.1 that ms(u) = ps(aze?) for u = (p,e;) € LM
and ps the standard momentum coordinates on M defined by the coordinates ! on M. This
is a single cotangent vector at m(u) € M, and there are n — 1 more cotangent vectors at
this point that span the space of possible cotangent vectors at this point. The momentum
rest space is this n — 1 dimensional space at v € LM linearly independent from 7s(u). The

2 = a%a, = n®agap, act as a projection operator on the

functions J_i:: 5% — éoﬂ' ay, where «a
coordinate functions an, projecting onto this momentum rest space. We now introduce the

related notations

J._|J ra
Lomy =1y m

Now, we return to the distribution in equation (3.3) and apply 14« to see that the corresponding

(symplectic) Hamiltonian vector field on the cotangent bundle is

0

(3.4)

We are using the notation 7, = pi as they are, essentially, interchangeable so long as we

are careful about their domains. The integral curves of this vector field are governed by the

equations
% =n%n, — A® (3.5)
iy = A% — cvio; BY (3.6)
These equations combine into
F = Frei® + A%Aq — 0ja BY (3.7)

! Although we use the notation & and Xz, we cannot say that Xz is the symplectic Hamiltonian vector field
associated with ¢ due to the nontensorial nature of & [12].
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If we were to choose the particular form BY = %nabAwAjb instead of leaving the functions B%

arbitrary, then equation (3.7) simplifies to
g = Frod® (3.8)
which is the standard Lorentz Force Law in flat space-time [5]. Our observable
(n“bwl m — 24" + nabAwA]b> 7t =n® ( - Aiknm) (71'1]) - Ajmnmb) rit;  (3.9)

can be seen to be a straighforward generalization of

H= %(pi —eA;)? (3.10)
the standard Hamiltonian (or observable) for a massive, charged? particle in flat space-time
[9]. We will call ¢ the charged n-symplectic Hamiltonian observable. It should be noted that
the analysis and the end observable are nearly the same when curved space-time is considered
(c.f. [2]).

Similarly, it has been shown [6] that one may instead modify the symplectic form in such

a way that the dynanics of the free particle are equivalent to the dynamics of the charged

particle under the standard symplectic form. We follow this method and define the charged
n-symplectic form to be

é@ = 07A’Z = (ﬂ'; + ﬁaina) dxjﬂ (3.11)

X3
c

where, as above, the A are functions on the base manifold. The charged n-symplectic form has
the same non-degeneracy conditions as the standard n-symplectic form [2], and the Hamiltonian

vector fields defined by the corresponding equation
dij = —2X "1 A2 77 (3.12)

are
o . o
Xz _ as za +( a, 7T¢(1ZF1£+T]2]) — (3.13)
oy,

Here, we have included the gauge term TV , as it will be useful to consider in the next section.

2In our discussions, we make no mention of the mass of the particle m nor of its electric charge e. We are
considering particles in flat space-time with constant mass and constant electric charge. If these values are
constant, the analysis and conclusions are virtually identical to what is presented here. One may interpret these
results as being exactly correct for a particle in flat space-time with constant mass and electric charge, and unit
charge-to-mass ratio -=. A change in the charge-to-mass ratio will only change some results by a multiplicative
factor proportional to =, and thus we choose to suppress mass and electric charge in our discussion.
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Mapping this distribution to the cotangent bundle gives the vector field

; 0
Yo (azX;7> = X5 = n**ma0s + nakabﬂaTﬂ_k (3.14)

whose integral curves are given by

% =n"m, (3.15)
e = P Fyma (3.16)

which again combine to give the Lorentz Force Law. As the two methods provide equivalent

results, we will primarily use the charged n-symplectic form in the calculations to follow.

3.1 General Equations of Motion

We would like to study the dynamics of the charged particle on the frame bundle to see what
additional information is available to us. We begin by choosing some constant o = a;7* €
R™\ {0}. Then, aiX% is an arbitrary vector field in the Hamiltonian distribution. The integral

curves of this vector field are, from (3.13)

q® =n%n, (3.17)
# = ai (nl B + 1Y) (3.18)

In order to allow these differential equations to combine as in the standard analysis and produce
a Lorentz Force-type equation, we must single out the linear combination of equations 7y, = ozjfri
from equation (3.18). This leaves n— 1 equations from the set to be determined in order to fully

describe the integral curves. These equations must lie in the space orthogonal to 7, and so can

be calculated by 17 7y =L ﬂ'i Even though the numbering index j takes values 1,2,...,n,
the set {L 7f,..., L 7'r,(€n)} only spans an (n — 1)-dimensional space for any fixed k. So, the set

of equations describing the n? 4+ n degrees of freedom for the integral curves of the Hamiltonian

vector field a,-X}] are

e = 1" Frpma (3.19)
Lt =15 o (0l FY + T3

S

In practice, one is free to choose an appropriate basis of L 7% in order to calculate the integral

curves. The 7 equations, in whatever linearly independent combination is chosen, define the
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motion of legs of the momentum frame. The leg defined by the 73 equations will be known as
the primary leg of the momentum frame, and those defined by L 7, will be known as secondary
legs or the momentum rest space.

The & and 7, equations combine naturally in the same way as equations (3.16) to form a
Lorentz Force-type law on LM. The primary difference between equations (3.19) on LM and
equations (3.16) on T*M, then, is the equations defining the motion of the momentum rest
space. The equations exhibit two key features that we will explore: Gauge freedom, and an
explicit symmetry in the terms. The gauge term TY cannot be removed (i.e. a global choice
of gauge cannot be enforced) in the way shown in [11] or [13]; even though our observable 7 is
tensorial, the charged n-symplectic form has caused the Hamiltonian distribution defined by 7
not to have the correct transformation property in order to be the distribution of a connection
on the frame bundle. This can be seen most clearly in an examination of equation (3.12): The
left-hand side transforms tensorially, so in order for the right-hand side to transform tensorially
the vector fields X}? must transform in a way to offset the non-tensorial transformation of the
charged n-symplectic form. This assures a non-tensorial transformation property of X}].

As we will see in §3.3.2, the persistence of gauge freedom in the momentum rest space is
a natural property of n-symplectic geometry. A particular choice of gauge will be explored in
§3.3.3. The explicit symmetry, on the other hand, leads quickly to very interesting features in
the n-symplectic dynamics. The following section is devoted to a single example following [2]

exploring the effects of this symmetry.

3.2 The Oscillotron

In this section, we will study special features of the general charged n-symplectic equations of
motion (3.19). First, we will specify a generalized Maxwell field tensor FY, and direction «
such that the equations naturally lead one to the hopes of building a classical theory of spin %
particles. Then, we will specialize from a general manifold to R?* in order to show explicitly the
major obstruction to such a theory; however, this obstruction also reveals interesting dynamics
not seen on the cotangent bundle. We have dubbed the particle or observer that follows these
motions an oscillotron. The dynamics of the oscillotron will be studied and some classical (non-
relativistic) conclusions drawn. In §3.3.3, we will revisit the oscillotron in order to show that it
may not be a realistic model.

For a simple example, we begin by choosing our generalized Maxwell field tensor Féb such
that it takes on non-zero values only when ¢ = 1. The natural choice of direction within the
distribution is now a = #!. This means that the primary momentum leg is W]i, and a natural

basis for the momentum rest space is {744 = 2,...,n}. Our vector field in the Hamiltonian
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distribution is
aiX% = n%7lo, + oy (n“bﬂéiéi)Fklb + T,ﬁj> (3.20)

The general equations of motion, equations (3.19), become

.I"S — nasﬂl
a
i = nPEFL ! (3.21)

it = 5345i1n“b7r((1i5{)F31b + T4, A=2,...,n

In order to examine the momentum rest space, we need to have some definite value for the gauge
term. A convenient choice is T,ij = 0. We emphasize that this choice is merely for convenience,
and not made following the methods described in [11] or [13]. We then expand the symmetry
in the momentum rest frame on the indices ¢ and j to see that

R R (3:22)
The equations defining the primary and secondary legs of the momentum frame now have the
same form save the difference by a factor of % This difference is intrinsic in the n-symplectic
geometry; it arises naturally from the symmetrization on two indices, which itself is due to the
use of a rank 2 observable defining the Hamiltonian vector field. We will also see in §3.3.1 that
the factor % cannot be changed arbitrarily via gauge choice.

The momentum rest space is shown to move with velocity naturally one half that of the pri-
mary leg. Such a strong result in a simple but general sample calculation would lend creedance
to the idea that a classical theory of spin % particles is encoded in n-symplectic dynamics. To
further this thought and pursuit, let us consider the simple circular motion of a charged particle
in a constant magnetic field, with underlying manifold R*. For this, we simply choose F213 =B
where B is the strength of the magnetic field, and the remaining undetermined values of F éb to

be zero. In other words, we have

0 0 0 0
0 0 B 0

Fl = 0 B 0 0 (3.23)
0 0 0 0
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The equations of motion are now

qs — nasﬂ_;
.1 bl 1
T = 0" FiyT, (3.24)
1
A A
Ty = iﬂab% Fslb, A=23,4
The only non-trivial 7 equations are 73 = B7r31), 7'731) = —Bni, 7%54 = %Bﬂg‘, and 7'7{{‘ = —%Bﬂf‘,

leading to solutions

71(0)  73(0) cos(Bs) + 73(0)sin(Bs)  7i(0) cos(Bs) — ma(0)sin(Bs) w4(0)
(s) = 73(0) 73(0)cos (B2) + 72(0)sin (82) 73(0) cos (82) — 73(0)sin (52) 73(0)
73(0) 73(0) cos (%) + 73(0) sin (%) 73(0) cos (%) — 73(0) sin (%) 73(0)
m(0) 75(0) cos (B2) + 75(0)sin (82)  75(0) cos (£2) — 73(0) sin (82) 74(0)

We see explicitly that the primary and secondary legs of the momentum frame move along the
same circular path with velocities differing by a factor of % This would mean that after one
orbit, the momentum rest space would be in a “negative” or “opposite” orientation to that
in which it began, and it would require an additional orbit in order to return to its original
orientation. Such an effect is often an illustration of or analogy for a spin % particle. This
intrinsic difference of % has a more sinister consequence, as the next lemma and its corollary

will show.

Lemma 3.1 The determinant of the m matriz in (3.25) can be written as C + A cos (% + gb),

where C', A, and ¢ are constants depending only on the initial conditions Wi(O).

Proof: Let M; j(K) be the (i,3)*® minor of matrix K (the determinant of the matrix left
after removing row ¢ and column j of matrix K). Expanding by minors along the first row, we

have
det(m(s)) = m ()M, (m(s)) — my(s)Mia(m(s)) + m3(s) My s(m(s)) — mi(s) Ma(m(s)).
A quick calculation shows that mf(s)Mi1(7m(s)) = 71 (0)My1(7(0)) and 7i(s)Mya(m(s)) =

75(0) My 4((0)), whereas

MLQ(T('(S)) = MLQ (71'(0)) COS <B28
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Also, mi(s) = 73(0)cos(Bs) + m3(0)sin(Bs) = Dcos(Bs + §) and 73(s) = m3(0) cos(Bs) —
73(0) sin(Bs) = Dsin(Bs + §). It is then clear that det(m(s)) = C + AD cos (£ + ¢), where

C = w1 (0)My,1(m(0)) — 74 (0) M1,4(7(0)),
A= /My (m(0)) + My 5(m(0))2,

D= \/77 0)2 + 71(0)2, and

b= -

The only undetermined constants that appear above are the initial conditions 7% (0); M,,(7(0))
is a function of the 71';- (0), and both ¢ and ¢ are functions of M, ;. [

Corollary 3.2 There exist initial conditions for which the path of a charged particle or observer

in a constant magnetic field leaves the frame bundle LR* at a finite time.

3.3 Power of gauge freedom

In this section, we will review properties of totally symmetric indexed functions in order to gain

a better understanding of the equivalence classes of Hamiltonian distributions.

3.3.1 How to arrange indices

The n-symplectic observables of rank 2 or greater define certain totally symmetric parts of
their Hamiltonain distributions by (1.11), and the not-totally-symmetric parts are arbitrary.
An equivalence relation on Hamiltonian distributions is then defined by two distributions being
equal if these totally symmetric parts are equal. We are primarily interested in how these
arbitrary terms interact with and can affect the uniquely-defined terms of the vector fields,
thus characterizing different representatives of the same equivalence class.

We begin with a few lemmas.

Lemma 3.3 Let f and T™ be indexed collections of functions (using multi-index notation,
I, = iyiy...i ) on a common, arbitrary domain D with k > 2, such that f'* = %) and
TUx) = 0. For any point u € D, the equation f™(u) 4+ T (u) = vf*(u) for some real number
v implies either vy =1 or T = 0.

Proof: This equation can be rewritten as T'%(u) = (v — 1) f’*(u). Let v € D be a point such
that £k (u) # 0. Since TUx) = 0, we are left with (v — 1) f(u) = 0, and thus v = 1. If, on the
other hand, u is chosen such that f’(u) = 0, then immediately 7% (u) = 0. O
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This lemma shows us that the “intrinsic % difference” seen in the equations of motion for
the charged particle (equations (3.21) and (3.22)) is dependent upon the geometry and not the
gauge freedom. The factor of % appears primarily due to our choices of Féb and «, along with
the symmetry inherent in the vertical term. Between equations (3.21) and equation (3.22), a
choice of gauge was made. Lemma 3.3 shows that the % in equation (3.22) would remain % no
matter what choice of gauge was made. This also underscores the choice of gauge being made
out of convenience; it was convenient to let the gauge term disappear and the factor of % stand
alone.

Working with totally symmetric observables which are polynomial in the 7s, symmetry
is enforced on each term individually. This symmetry, which is passed to the corresponding

Hamiltonian vector fields, can be affected by choice of gauge. The following lemma explains.

Lemma 3.4 Let f' and T+ be indexed collections of functions on a common domain D (using
multi-index notation, Iy, = iyis... i) with k > 2, such that TUr) = 0. For o any permutation
of {1,2,...,k}, there is a choice of functions T™ such that fUx) 4+ TTk = flo)io@)iot),

Proof: Let ¢/ be another permutation of {1,2,...,k}. Then

1 (fivu)iv(z)mia(k) — fia/<1)ia/<2>~-~ia'<k>) (3.26)

I _
Tk_k:!

satisfies the condition TU¥) = 0. The term f¥) can be written as the sum

% Z firir@ i) (3.27)
T

where 7 ranges over all permutations of {1,2,...,k}. Adding 7' (as above) to this sum has the
effect of replacing the term f'’ (1%’ @%’' (k) with the term fie(Wi @k Repeating this process
for every choice of o’ (or, equivalently, choosing T'* = % > (fia(l)iﬂ?)"'iff(k) — fi7(1>if<2)"'if<k)))
leaves in the sum k! copies of the single term fia(l)iff@)“'iff(’v).T Thus, fUk) 4 Tl = flomio@-lok)
as desired. [J

Another way to view this lemma is that it makes concrete the idea presented previously
that any f%* can be decomposed into a totally-symmetric term f¥) plus a term whose totally
symmetric part is zero, Tk, These sums are exactly the ones encountered when dealing with

this n-symplectic gauge freedom.

3.3.2 Where gauge freedom exists, where it is limited

It has been discussed thoroughly that the structure equation (1.11) does not uniquely define

Hamiltonian vector fields X ]{ for observables f of rank 2 or greater. The gauge freedom can be
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removed by moving to the cotangent bundle by means of the ¢, map [12]. Remaining on the
frame bundle, it has been shown [13] that the choice of gauge for the Hamiltonian distribution
of a tensorial observable can be fixed globally by the choice of a torsion-free linear connection.
If such a choice cannot be made, then there will always remain some level of gauge freedom
in the equations of motion on the frame bundle defined by the Hamiltonian vector fields of an
observable of rank 2 or greater.

Take, for example, the rank 3 tensorial observable f = focq wtpite. The Hamiltonian vector
fields defined by this observable are

0

T be i i . 1 be i _j ij
XY = 5 (1] + 1) 0, = 3 (5w + 1)

; (3.28)

Selecting an arbitrary a = a;7* € R™ \ {0}, we then look at the integral curves of ozian}j;

they are defined by the equations

2&° = [ m,my (3.29)

3lrl = —ff;bcﬂawbwz — a;a; TI" (3.30)
The second set of equations can be split into two more sets of equations,

3l = —fibcwaﬂbﬂc

) (3.31)
311 Ak = —f’ibcﬂaﬂ’b Lk — oy LF T,

where again ¥ is the projection operator into the orthogonal subspace to 7, and we continue
to use the shorthand 7, = 7ia; and L 7% = 1% 77, The second set of these equations represents
n — 1 sets of equations; the exact equations depend upon what basis for the momentum rest
space is chosen. The sum o;a; 1k TY" in these equations is nonzero for many choices of gauge

1k

TY". This may be more clearly seen by writing L¥= 6% — —z@"ay, and then

k k k k
oo Ly TP = o TP — —3Q oo, T = oo TY (3.32)

since Ts(ijr) =0.

This process can be carried out for any observable of rank 2 or greater with the same result.
Notice that if we had chosen two arbitrary constants «, 5 € R™ \ {0} such that a # (3, then
there would be a gauge term included in the ¢° and 75 equations of motion of the vector field
a,ﬂjX}j in the Hamiltonian distribution. Furthermore, if we had separated equation (3.30)
in any different manner than equations (3.31), the gauge term would have remained in every

equation. Therefore, we see again what was seen in the construction of the ¥, map: The classic
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equations of motion (those of z® and w4 = ps on the cotangent bundle) are independent of this
n-symplectic gauge freedom. Moreover, we see that without some global choice of gauge, the
arbitrariness will persist in the equations of motion on the frame bundle (specificially, in the
momentum rest space).

Where this n-symplectic gauge freedom exists, the ability to manipulate the other (sym-
metric) terms is limited. Lemma 3.4 shows how one may use the gauge term to fix an order
of indices in these symmetric terms. The greatest limitation to the ability to arrange indices
comes from inherent symmetries in the functions to be considered. For any observable of rank
k > 2, the kth degree term has a totally symmetric component function, and no assumption
of symmetry in the lower-degree component functions is made a priori. Consider the general
rank 2 observable f = < f“bﬂflﬂg + 2A4%i7] 4+ 2B > 7;7; whose Hamiltonian distribution is

= (o + A%) 0, (f mim) +2450n) + 2B + 1) = (3.33)

f J

oy,

Lemma 3.4 shows us that we can choose T,ij such that the vertical portion is equal to
—= ( W m + 2A% T+ 23(23)) orto —g ( o m +24% 78 + 2B’Ig> :

The fact that f% = % precludes us from arranging that term’s indices with a choice of gauge
Ty “J for two reasons: One, the terms fabﬁ’ 7r5 and f“bmmb are equal. And two, the choice of
Ty " required by the lemma is equal to 0. It would appear that the highest-degree term (the
tensorial term) remains invariant under the n-symplectic gauge, but this is not entirely true.
Notice first that the sum fe7? 7rb can be written equivalently as fo7¢ 56’57 Next, let’s write
these terms out as the explicit sum

FOrLmisisl + .+ fOrlaMsi 8 + FUmemoho] L+ fam st 8l

e (3.34)

While the entire sum is symmetric in the indices ¢ and j, most of the individual terms in the
sum (e.g. f%n} T2ot 5]) are not. Then by Lemma 3.4, most of the terms in the sum can have
the positions of the ¢ and j index swapped by gauge choice. The only terms in this sum which
are wholly independent of gauge are the terms f“bm(ﬁ) Wék>5fk)5fk) for a fixed but arbitrary k.
The expansion (3.34) can be applied to any degree term of any rank observable, and can be
useful whenever there are symmetries inherent in the component functions. This does not mean
that the other terms can be entirely gauged away, only that their indices can be manipulated
by gauge choice; for example, f“bﬂ;wgéiég + f“bﬁ;ﬂgééé{ can be gauged to 2f“b7rﬂlb7rg(5§5% or
9 fab g 51 5]
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3.3.3 Effect of arranging indices, charged particle example

We have just seen how and when we can arrange indices of terms in the n-symplectic Hamilto-
nian vector fields using the gauge freedom. Now, we will explore some of the consequences of
choices of orders of indices.

This first example has limited use and scope in the standard study of n-symplectic geometry,
but is illustrative nonetheless. Consider again the rank 3 tensorial observable with Hamiltonian
vector fields (3.28). Expand fabswgwi and fgbcﬂéﬁgﬂg in the same way as (3.34), and choose as
gauge terms 798 = fabsyly2 (535{ - 5{5%) and T = fgb%r;wgwg (555{ — 515%) Then, X}z =
0. There are three important things to note about this construction: First, only one vector field
in the distribution has been gauged to zero. The entire distribution cannot simultaneously be
gauged to zero in general. Second, it requires two upper indices on the Hamiltonian vector field,
and thus it cannot be performed for observables of rank 1 or 2. And third, the values for the
two upper indices must be different. This is not normally encountered by itself; in applications,
a single a € R™ \ {0} is chosen in order to select a vector field from the distribution, and
aian}j #* X}Q.

In §3.2, we showed that certain choices bring to light an intrinsic difference of a factor of
% in the motion of the primary and secondary legs of the momentum frame of the charged
n-symplectic observable in flat space. While such a difference seems promising for the devel-
opment of a classical theory of spin, it also leads directly to singularities in the motion of the
particle/observer. Returning to equation (3.20) with our choice of the generalized Maxwell field
tensor given in equation (3.23), we use Lemma 3.4 to choose a gauge ng’ other than zero such
that

a; X}, = 1" m0s + ng,gbnabij (3.35)

om,
This choice of gauge eliminates the difference of % between the equations of motion of the
primary momentum 7} and the momentum rest space 7724. Furthermore, this choice of gauge
has eliminated the possibility of singularities in the motion on the frame bundle; the motion in

the 7y is given by the solutions

71(0) 73(0) cos(Bs) + 73(0) sin(Bs) m3(0) cos(Bs) — w3 (0)sin(Bs) 71(0)
(s) = 72(0) 73(0) cos(Bs) + m3(0) sin(Bs) 73(0) cos(Bs) — 73(0) sin(Bs) 73(0)
73(0)  73(0) cos(Bs) + 73(0) sin(Bs) m3(0) cos(Bs) — w3 (0) sin(Bs) 73(0)
7$(0)  75(0) cos(Bs) + 73(0) sin(Bs) m5(0) cos(Bs) — m5(0)sin(Bs) 74(0)

The determinant of this matrix is constant. On the other hand, we may use Lemma 3.4 to
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choose a gauge such that
, . B
a; X} = n*mwh0s + o Fln™—— (3.36)
om,
The equations of motion on the frame bundle now become rather interesting again. The differ-

ential equations are

qs — nas 71_£1L
ity = ma Fopn™ (3.37)

The solution 7(s) matrix is

71(0) 73(0) cos(Bs) + 73(0) sin(Bs) m3(0) cos(Bs) — w3 (0)sin(Bs) 71(0)
o | HO 73(0) w3(0) 73(0)

m1(0) m3(0) m3(0) mi(0) |

1(0) 3(0) m35(0) 1 (0)

and it is apparent once again that there can exist singularities in the equations of motion. As
an example, choose 73(0) = 72(0) = 73(0) = m5(0) = 0, and 73(0) = 1 for a singularity to occur
at s = 5. With singularities so closely tied to both gauge freedom and initial conditions, the

oscillotron would seem to be an appropriate model only in very specific instances.
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Chapter 4

A Symplectic Submanifold of LM

In this chapter, we will explore a special subbundle B; C LM. The importance of this subbundle
was first mentioned in [14], where it was shown that Bj is both a symplectic and an n-symplectic
manifold. Bj is, in general, a local slice of LM. In order to realize By as a coordinate slice,
we shall now restrict our manifold M to be an n-dimensional Euclidean space R"™. After a
brief review of the definition of B; and its algebra of n-symplectic observables by, we will show
how one can examine the dynamics upon B; of n-symplectic observables not in the algebra
by, examine these dynamics to discover and interpret new structures not seen in symplectic
geometry, discover multiple Kaluza-Klein-type theories encoded naturally into the structure
of the Hamiltonian distributions on Bj, and discover that standard motions on B;j develop

singularities in much the same way as we saw with the charged n-symplectic observable.

4.1 Definition of B; and its Algebra of Observables

Norris and Brown defined B; as the coordinate slice on LR" given by
=61 A=23,....n (4.1)

That is, all the points in v € LR™ such that W?(U) = (5{74 for A=2,...,n. The slice B; is not
unique. There are n — 1 other slices Bj, that can be defined similarly. Also, in the notation of
the previous sections, for any choice of a € R\ {0} we can define the slice B, as all the points
of LR™ such that 7’7{74 = 6, where the 7?,;4 form a basis for L 7, the vertical space orthogonal
to my = amé. Any of these slices will behave equivalently to Bjp; the only notable feature
separating Bj from the other similar slices is the fact that we have chosen to use it explicitly.
Recall that every point v € LM is written as a pair (p,e;) where the e; form a linear

frame for the tangent space at p € M. This means that 7r§ (u) is non-degenerate as a matrix.
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By identifying W,i with the standard momentum coordinates pr on T*R", we see that Bj is
naturally isomorphic to T*R™ minus all points where p; = 0. This means that B, is a manifold
of dimension 2n, and thus B; has a natural symplectic structure. The soldering form 0 pulls
back to and dé is still non-degenerate on Bi, so By is an n-symplectic submanifold of LR™ as
well. It will be this combination of symplectic and n-symplectic character that produces rich
and interesting structures on Bj.

As Bj is isomorphic to T*R™ minus the points where p; = 0, we will not need to make use
of the 1, map described in and around equation (1.20) in order to examine our Hamiltonian
vector fields upon T*R™. We still will want to select a single vector field from a Hamiltonian
distribution, so we can accomplish this by choosing constants C; and examining the vector field
CrX Jf Often, however, we will forego mentioning C; and simply describe the vector field by
choices of indices (e.g. X}lg).

A vector tangent to By C LR"™ must have the form X = X°0, + Xg% in our local
coordinates (x%,77). We define by to be the algebra of observables of Bi; tha‘z is, all the n-
symplectic observables defined on B; such that for every Hamiltonian vector field defined by
the observable, some member of the equivalence class of that Hamiltonian vector field is tangent
to Bj (or, in the case of rank 1 observables, the single Hamiltonian vector field is tangent to
By). This algebra does not contain every n-symplectic observable. A special choice was made
in defining Bi, and only certain observables can have their Hamiltonian distributions gauged
to be tangent to the slice.

The Hamiltonian vector fields of the observables 71, 2{, and 7}, are easily seen to be tangent
to Bj (see Table 1.2), so they are in by. Norris and Brown [14] use these three observables as the
basis of a polynomial algebra of observables they called b1, a “basic algebra” for quantization,
and then showed that every observable in b; can have its Hamiltonian distribution gauged to be
tangent to By. This basic algebra contains many observables whose Hamiltonian distributions
have useful properties, so we will generally restrict our consideration of observables in by to

those in by.

4.2 Reduction To and Recovery From B;

The advantages of an explicit symplectic structure and a simplified algebra of observables make
working on the slice By an appealing option to working on all of LR", but it becomes clear
quickly that by is a very restrictive algebra. An important observable in n-symplectic geomtery
is the metric observable, the rank 2 tensorial observable § = g% 7,7 on LR" determined by
the metric tensor § on R™. § will not, however, be in the subalgebra b; unless the component
functions ¢® are constant. In this section, we will show how to reproduce the effects of §

upon Bj using observables in bj. Several methods will be investigated, and utility of the
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corresponding Hamiltonian vector fields and with the Poisson bracket will be compared.
Consider a smooth metric tensor § whose component functions g% have a (convergent)
power series expansion g% = A% 4 \%z¢ 4 )\Zgajcxd + ..., where each )\%f are real constants.
In practice, the vast majority of metrics considered are at least locally somewhere analytic (as
opposed to being nowhere analytic), so the methods described in this section will be generally

useful in practice, at least locally. We define

g0 = A%
g1 = )\mecfrafrb
g2 i = \0aCaln 7y

ete.

We also define the components! g% := )\?fxl’“ so that we may write? § = > g, = 3 g®#, 7.

T T
To each of the rank 2 observables g, there is a corresponding rank r 4+ 2 observable g, € bi:

do = Xttty

A baca -
g1 := AT

s yabscada -
G2 = AogZ{ 2y T T

etc.

Notice that we may also write gy = gr71, (S0 Jo = go, §1 = G171, G2 = 927171, etc.), and that

the two sequences of observables behave similarly under the Poisson bracket.

Lemma 4.1 Let h be an arbitrary but fived observable, and let g, and g be defined as above.
Then, {gx, h} = {gk, h}i1,.-

Proof: Since the Poisson bracket is a derivation[11], we may write

{gka iL} = {gkf.lkv i:L} = {gk7 il}flk + gk{flgw iL}

The Poisson bracket of #; with any observable is identically zero, so {gx,h} = {gx, h}71, as
desired. [
If h is a rank k observable, then {g,,h} is an observable of rank k + r + 1 and {g,,h}

is an observable of rank k 4+ 1. By the lemma above, the only difference between the totally

The ¢2° are referred to as components as they serve a similar purpose to the fIT when we write f = fITfIT
for a general rank r observable.

2We leave the summations unadorned when applicable to note that the expansion g% = X% + \2z¢ 4 ...
may be finite or infinite.
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symmetric functions {gy, ﬁ}]k+T+1 and {gr, lAL}I’f+1 is » Kroneker §’s. Explicitly,
{gT’ il}il’ig...ik+r+1 — {97‘7 il}(il’ig...ikJrl 5?@-}—2 . 5ik+r+1)

This means that each {Qr,ﬁ}fkﬂh = {QT,iL}I’C+111"'1 is proportional to {gr,ﬁ}lkﬂ; however,
the constant of proportionality is different for different values of the multi-index Iy =

(41,92, ...,ik+1). As an example to show the difference,

{gr, ﬁ}1k+r+1 — {gr7 il}lk"'l

k+1 (4.2)

{gm IA_L}ZlkJ,»'r — {gh iL}Qll...l _ Pa— {gr’ B}Qlk

If we write {g,, IAz}IkHlT = v{gr, iz}lk+1, then the constant of proportionality v depends on the
values of r and the multi-index Iy 1, and it is a straight-forward counting argument to calculate

each y(r, Ix11). All of this leads to the following lemma.

Lemma 4.2 For an arbitrary observable h and the metric observable g with a series expansion,
we are able to calculate the action {§, h} using either the actions {gr, h} or {g,,h} of observables

gr and g, in by.

Proof: From the fact that § = 3 g, and the linearity of the Poisson bracket, we have {g, h} =

T
> Ao, iL} The fact that {g,, iL}IHllT =(r, I+1){gr, IA”L}l’C+1 allows us to write
"

~ 1 ~
5 — ) Ti1lp g
{g, } Zr: 7(7"7 Ik+1){g ) } Tl

thus completing the proof3.[]

30ne argument about this proof is that it seems to “sweep under the rug” the fact that the series expansion of
¢®® may be infinite, not a finite sum or polynomial expansion, and the Poisson bracket is not explicitly required

OO

to be countably linear in its arguments. Assume ¢“° has an infinite series expansion > )\?fxlr. By definition of
r=0

the Poisson bracket,

P I—1 J1__J2 abya
{g,n} = *k!X;L (ma' w2 g™ )P ry 1 1
oo
_ Iy g1 d2yab Ir | o
= _k!XiL E T TP | Try g,
r=0
oo
_ In—1,_j1_jayab I, .
= E —RIXC P (! w2 AL ) | Py s
r=0

= Z{gm iL}
r=0
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The Hamiltonian vector fields XQI:“ of each observable g, € by are easily calculated to be

X1 = Ao (4.3)

(T+2)!ng:+1 a55(1r1 rirt1) g — %gr 5(Ir 1 zrﬂér+1)aaﬂ_81 (4.4)
Pieces of the (series expansion of) the metric § and its Hamiltonian vector fields can be seen
in these vector fields, but in order to recover the dynamics of § we must combine all of these
distributions in the proper way. We can relate the sum of the observables gy through g, for
some finite 7 to a sum of their Hamiltonian vector fields via the structure equation (1.11) if
each observable is raised to rank r + 2. This is accomplished by tensoring in (multiplying)

observables 71 € by. The resulting sum of structure equations is

~

d(got1,+9171,_, + -+ 3gr)
(r+1)!
(r+2)!

2
f(r + 2)! (Xg,, + ngl + ...+ Xﬁo) _1 deo (4.5)

(r+2)!
a([gg + g + . +get ol mire myr )

- ((7“ FIXI (o DIXST 67T 2Xéf)15f:> 1 dir+?)
(4.6)

From this, it would seem easier to create a single new rank r + 2 observable
T
Gr o= Gif1,_, (4.7)
t=0

,
with components G2 = 3 g#. Using equations (4.6) and (4.4), the related Hamiltonian
distribution (without gauge terms) is

(r+ 21X+ = 2500 pire)g, — %gr sl %w}jﬂ’%. (4.8)

S

We might be led to conclude that the Hamiltonian distribution X g:“ is proportional to Xé
using an argument similar to the discussion around equations (4.2). This is only true when the

gauge terms are neglected; if » > 0, then X Ir“ will have a horizontal gauge term that Xé lacks.

The vector field X' *~! is a differential operator, and it can be moved inside the infinite sum because a power
series is absolutely convergent in its radius of convergence. The proof follows.

31



Explicitly,

s S (49)

4 05
(r +2)1x;7 :2(ﬁ?”éﬁiﬁé””JrT”HS) 05 — ( 9 §{Ir= e i) +Tm+1) 9

Lemma 4.2 and its proof show us that, nevertheless, this single observable behaves under the
Poisson bracket very much like §. The difference between {j, h} and {g, h} will decrease as the
rank 7 of g increases.

The single observable g € by contains all the information the (finite collection of) observables
gr € by contain, and either can be used to approximate § on B; and b; to any desired degree of
accuracy. At the moment, the primary advantage to using § to approximate § on By as opposed
to the collection of observables {g,} is that there is only one observable, so any information is
gleaned from a single source and not decoded from the sum of multiple calculations. We will
see in the next section that the Hamiltonian distribution of § reproduces the dynamics of § to

any desired degree of accuracy, prompting us to use ¢ in order to study dynamics on Bj.

4.3 Gauging to B,

We have shown how to work with the polynomial algebra of observables by C by in order to
calculate the dynamics of many observables not in the algebra. We are able to accomplish this
because polynomials are dense in the set of smooth functions; however, working with large and
possibly infinite sums can become rather bothersome in practice. In this section, we present
two methods for starting with an observable not in b; and being able to produce Hamiltonian
vector fields tangent to Bj.

Our first method is more limited in application, as it generally provides only a single Hamil-
tonian vector field tangent to B;. Let § be the rank 2 tensorial metric observable, § = ¢®#, 7,

with Hamiltonian distribution
7 as z 1 ab_1__J ij 9
X} 19, —7<gk7r7rb—|—Tk)—.. (4.10)
awi

Expand the term g¢7, ) as in (3.34), and let

T]z] =2g k7r 7r2(5[J(5Z] + 29k7r17rg(5[ (5] .+ 29a,f7r17rl() )5£j5i]

)" (4.11)

This choice of gauge does not leave the entire distribution spanned by Xé tangent to By, but
we have

1 0
XA = g"rlo, — fgakbwlwba (4.12)
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which is tangent to Bj. This same process can be repeated for any rank k > 1 tensorial
observable. For a non-tensorial observable, this process is expanded to first remove the sym-
metry forced upon the lower-degree terms appearing in the vertical portion of the Hamiltonian
distribution, and then each lower-degree term is expanded and gauge-altered as the tensorial
(highest-degree) term was.
Our second method is more general, but requires us to create a new observable again. Let
F be a general rank 2 observable, ' = (F abﬂ'Zﬂ'Z + Goig) + H ) 7ij. We define the rank 3
observable
By = Fpy = (F“bw;wg + G HJ) Pt (4.13)

As the previous method primarily uses tensorial observables, we should note that no observable

formed this way will be tensorial. The Hamiltonian distribution defined by F+ is given by

3!X§:f;r = <2Fa877((1i5{) + Gs(z‘(;{') + Tijs) B,
P ENA PG er o .. 0
~ (Elga) + ot} 4 B 1) 2

(4.14)

By Lemma 3.4 we are able to select a gauge 7%" to fix the index r on the Kroneker § in every
term in the vertical part of the distribution, thus making the entire distribution tangent to the
slice By. This method generalizes: For any rank k observable G, the rank k + 1 observable
G+ — G can be gauged to be tangent to By. We chose to present this method using a general

rank 2 observable so as to easily and explicitly show the Hamiltonian distribution.

4.4 New Dynamics on B

Now, let us restrict our attention to a quadratic approximation of § upon B,

g2 = (X®P1f + NPRT + A a] ) RaTo, (4.15)

with Hamiltonian distribution

9

oy (4.16)

a

axJ* =2 (g5 nliolay) + ) o, — (gshrlin]ay) + TI)
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By varying the values of indices i, j, and k, the Hamiltonian distribution can be seen to split

naturally into four groups? with gauge terms suppressed.

AX1PC =0 (4.17)
2 )
AB1 __ ~AB
2 4 )
ly)lel_.23'g§sa 3'g§§wba 1 (4.19)
o

4Lx§gl =255 wlo, — gQS o (4.20)

8
where captial Roman indices here are single indices that do not take the value 1. There is only
one vector field in the final group, and it is independent of gauge®. The integral curves of this

vector field follow from the equations

4'$S — 29(18 1
At = —ggbrlmy (4.21)
=0, A=2....n

Let’s assume the existence of a series approximation of g,3, leading to the quadratic observable
ggb € by such that ggbggc ~ 02. Then, the first two integral curve equations combine as usual

to give an approximation to the geodesic equation
~ I, i (4.22)

Unlike the standard case (the equations of motion of § on LM [11]), the remaining 7 equations
in (4.21) do not show parallel transport of the remaining legs of the momentum frame. We have
recovered the symplectic dynamics of our metric observable § after specializing it to the slice
Bi, but not the full n-symplectic dynamics; this is due to the symplectic nature of the slice Bj.

The vector fields in the remaining groups® (and their integral curves) do not correspond
to the dynamics of the free particle observable in symplectic geometry; they are new, internal

dyamics. Specifically, the vector fields in the second group (equation (4.18)) produce purely

4Note that choosing the gauge so as to fix an order of the indices 4,7, and k has but two effects. First, it
removes the numerical factor introduced by expanding the symmetrized terms to see which survive and which are

removed; choosing the gauge so that 4'Xijk = 2g§s7r[<11576k)8 — g%bsﬂawbdl 5aT gives 4'XAB1 = —g;‘f 681 And
second, it sets the order of the indices to define each group; choosing the gauge so that 4'X”k =2g5°™ (26] 5k)(9 -
gg"swawb 51 FnT gives 4'XAB1 =0 but 4'XAlB —g?f 62 .

5Tt is, in fact the only vector field in these groups to be explicitly independent of gauge
5This includes the trivial group described by equation (4.17), because gauge freedom still exists in those vector
fields.
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internal motion, a change in momentum without a change in position. The integral curves are

simple to write down:

it =7t =0
. 9 (4.23)
Alirg = —ggﬁf

So, we see that the momentum (7! = p;) is linear in time, while the rest of the momentum
frame as well as the position remain constant. Consider a particle or observer in free-fall
(travelling along a geodesic) for a time, then changing momentum, and then resuming its
previous free-fall motion (along a new geodesic depending on the position and new momentum
when it resumes). Classically, such a change in momentum could come from some external event
such as a collision or an internal event such as particle decay, situations in which the change
would occur (nearly) instantaneously. Groups of vector fields in the n-symplectic Hamiltonian
distribution X 5]2 ¥ contain these disparate dynamics, so we may model this change in motion not
by changing our observable over time but by changing over time the vector field chosen from the
Hamiltonian distribution, Ciijg *_ Instead of choosing constants as was mentioned in §4.1,
allow the Cjj; to be piecewise constant in time (the parameter along an integral curve). By
being piecewise constant in time, none of the dynamics (the integral curves, particularly from
equations (4.21) and (4.23)) are changed by Cjj;i, but the curve would be allowed to “follow
different paths” as it develops. This piecewise motion could allow the particle or observer
to seem to stop suddenly, change momentum over time without changing position, and then
continue moving along its new “natural” path. This does not follow what is seen in particle
decay, so we are lead to declare that these internal motions, seen only on the frame bundle,
should then be interpreted as following a different time parameter; a parameter to measure
travel along these vertical curves, but that is separate from and does not contribute to proper
time. Proper time should always be measured along the curves that can be mapped invariantly
(namely the fourth group, equation (4.20)).

Next, we should attempt to interpret the remaining nontrivial group of vector fields, (4.19).

We look again to the integral curves

2
158 — ~As
4l 2—3!92

4
4rl = —ggg}‘;ng (4.24)

Tt =0

In contrast to the second group, motion on the base (i.e. change in the x*) is now possible. The

dynamics of this group cannot be considered as purely internal. Let us consider an example
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similar to that in the previous paragraph: We choose constants Cj;; piecewise constant in time
such that we travel along a geodesic (equations (4.21)) for a time, change to a curve defined
by this group of Hamiltonian vector fields, and then resume travel along some geodesic. The
time spent along an integral curve from this group would not contribute to proper time, so the
particle would appear to vanish from one point and then reappear at another. Such motion
could be used to model wormholes or quantum teleportation.

Finally, the trivial group X 5‘230 deserves some attention. These vector fields will be equal to
zero (up to gauge freedom) no matter the choice of metric. Any choice of Cjj;, that selects only
Hamiltonian vector fields from this group would, therefore, be equivalent to the choice Cj;;, = 0.
This stands in contradistinction to the choice of 1, map on LR™; we have no reason a priori to
require that Cyj; # 0 like our choice of « for the ¢, map. If we continue to demand that motion
along the constant integral curves of the vector fields in this group not contribute to proper
time, then this group would have no measurable effect upon a particle’s motion. Looking only
on the frame bundle, a choice of Cj;;, that begins non-zero and then, at some time, becomes and
stays zero would would show motion for a certain amount of time and then suddenly coming
to a stop.

The decision to examine only a quadratic approximation g of § on B; was made merely for
convenience. For an order r > 2 approximation, the Hamiltonian vector fields X ;:H will still
fall into four groups depending on the values of the indices I,11: At least 3 indices not equal to

1, two indices not equal to 1, one index not equal to 1, and no index not equal to 1, given by

(r + 2)!XL(1£BCL*2 =0 (4.25)
(r+ 21X 2P = 2 E: N Big,f}f ai; (4.26)
(r+2)1x" = 2(Tf1)! (gfsas — g,f}ﬁﬁ%) (4.27)
(r+2)1X,7" = 2g8°m1 0, — gg};w}bw;;} (4.28)

The fourth group, the single vector field X g:“ =X g1T11...1, will be the only group whose vector
fields are free of gauge. The integral curves of this Hamiltonian vector field will be approximately
the geodesics of the metric on M. This approximation will become more accurate as r increases.
The other three groups have the same features as the corresponding groups of the quadratic

approximation, namely purely internal motion, spatial and internal motion, and being trivial.
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4.5 Kaluza-Klein Structures

We have shown that we can approximate the metric observable § on B; (really, any observable
with a series expansion) to an arbitrary level of accuracy. We will now refer to working with
the metric observable § on B; directly, meaning that we can approximate these results to a
desired level of accuracy.

In the three non-zero groups of Hamiltonian vector fields for § on By the metric appears in
three forms: The matrix g%, the vectors g°, and the scalars gZ. One might be inclined to

rearrange these terms into a Kaluza-Klein-type theory, creating an (n + 1)-dimensional metric

gl giz . gin _glA
g% g2 .. g A
g =1 S : (4.29)
gnl gn2 o gnn _gnA
_gAl _gA2 | _gAn AB
with inverse
g1+ kS4SY  gi2 +k6L0L ... gin + kOYSY koY
g21 + k(5124(5114 g22 + kfﬁéi cov Gon t+ kdidg k(5124
Gap = : : : : : (4.30)
Gn1 + k60N g2 + kO%OY ... Gun + KORO% KT
l{:6}4 kcﬁ . ko' k

where g48 = % + g44. Each choice of A and B gives a different Kaluza-Klein-type metric, but
when A and B take the same value the metric is singular, so in the end we have (n —1)(n —2)
different Kaluza-Klein-type metrics from which to choose. The main difference between these
metrics and a standard Kaluza-Klein metric is that the scalar k& will not be constant in general.
Interestingly enough, the choice of index B makes no difference in the geodesic equation. In 4

dimensions, the 4-dimensional part of the 5-dimensional geodesic equation becomes
1
i+ T8 abi¢ = 3 9"k (P35 — 243P) (4.31)

where a,b,c = 1,2,3,4. The right-hand side contains only a term with a derivative on k (which
would be 0 in the standard theory) and no reference to a Maxwell field tensor. This is due to
the fact that the vector potential term A® is built from the metric; A% = g%, so A, = 64 and
Fopy = Apq — Agp = 0.
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If instead we arrange the metric pieces as

gi1 gi12 <o Gin —g1A
921 g2 ... Qo —924
Gap = : : : : : (4.32)
dnl gn2  ---  Gnn  —GnA
—gAl —gA2 ... —JAn YAB
with inverse
g F kYL g2 KNSR ... g™ kSLOT KGY
gH + k6A6Y 9P+ k6ASL ... gP + k630 k%
Gof = : : : : : (4.33)
g ROYSY g RSO, .. g™ RORST kST
kol k% . kon k

and again gap = % + gaa, then the Maxwell field tensor is non-trivial (where the potential
Aj = gja). If we were then to require &k to be a constant, the metric above conforms exactly to
a standard Kaluza-Klein-type metric. This requirement restricts the possible choices of metric

Jab, and the implications of these restrictions is an avenue for futher research.

4.6 Singularities on B,

In this section, we are motivated by the existence of singularities in the dynamics of the charged
n-symplectic observable to question whether or not similar singularities exist in the dynamics of
the free particle observable on Bj. It was noted in Section § 4.1 that for any point u = (p, ;) €
By, it is required that 7i(u) # 0. If the integral curve of a Hamiltonian vector field on B; were
to travel along a path such that w — 0, then not only would it leave the slice but it would leave
the entire space LM, just as was the case in §3.2. We will examine the dynamics of the free
particle observable upon Bj first with a specific metric, examining the three nontrivial classes of
Hamiltonian vector fields to show the explicit existence of singularities in the dynamics. Then,
we will discuss briefly the existence of singularities in the dynamics given by a general metric.

Consider the metric g® = diag(1,1 + (2!)%,1,1). Since it is a quadratic metric it can be
represented exactly upon By by § := §o = (6%#171 + 036541 41) 7, 7. The vector fields spanning
the Hamiltonian distribution on B; are, by equation (4.16),

) 0

AXIF = (69 + 8303 (1)) 1610, 0, — 20 my oy o
1

(4.34)
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The only nontrivial vertical components of these vector fields occur when %, j, and k take values
1 or 2. We will use o for the parameter along the integral curve v of any of vector field in this
distribution. The explicit mention of « will usually be suppressed, writing 775»(0) in place of
i (3(0)), ete:

First, we examine the internal motions from the second group (equation (4.18)). The only
nontrivial vector field in this group is X 521, and the only nontrivial differential equation defining
v is

dml 4
gLt = 4!
do 3!
If the inital values of 2! and 7{ have the same sign (e.g. 71(0) = 4,2%(0) = 4!- 3!), then this

curve will lead to (a point such that) 71 (o) = 0 at some finite time o5 (in the example, o5 = 1).

(4.35)

Next, we consider the vector field X 311 from group (4.19). The relevant differential equations

are
dr 8 11
da! dmd
4!—;; - 4!—d7;2 -0 (4.37)

The motion along 77} is, again, linear in time. If the initial values of W%, z!, and w% are chosen
such that the product miz! has the same sign as 7{(0), there will be a finite time o such that
71 (0s) = 0. For an explicit example, let 73 = —3!, ' = —4!, and 7}(0) = 8, leading to o5 = 1.

This only leaves the standard geodesic motion of the vector field X 9111. The relevant differ-

ential equations are

1
4!% =}
1
4!% = —2z'(m)? (4.38)
dmd
41—2 =
do 0

Once again, 7} is constant in time. This leads to sinusoidal motion in ! and 7}. Specifically,

7l
z'(0) = 21(0) cos(ac) + 411'(2) sin(ao)
71 (o) = m1(0) cos(ac) — az'(0) sin(ac) (4.39)

1
_m
a—4!\/§

Thus, any choice of initial conditions (so long as 71 (0) # 0) will lead to 71 (o) = 0 at multiple
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finite times 0. As an explicit example: z'(0) = 0, 74 = -, and 7} (0) # 0 leads to singularities

at o5 = 41(2n + 1)7 for all n € Z. v

We have shown the existence of singularities in the dynamics of a quadratic metric observable
on Bj. Are we then able to determine necessary or sufficient criteria for the existence of
singularities for a general metric ¢g*®? The general formulae for the groups of vector fields are
given by equations (4.25)-(4.28). Only from the second group can we discern both necessary
and sufficient conditions. We see again that Cii—ﬂj is constant. If and only if a choice of indices A
and B (each not equal to 1) can be made such that gﬁ‘B # 0, one can choose initial conditions
71(0) # 0 and 2*(0) such that 7 (o) = —2%97‘?305 +m1(0) = 0. The ability to choose
indices A and B in this way is a condition on the metric g?.

The condition that gf‘lb = 0 for some choice of a and b is necessary in all three non-trivial
groups of vector fields for there to be a singularity. The third and fourth groups of Hamiltonian
vector fields (equations (4.27) and (4.28)), however, do not yield any more information as to
which metrics lead to singularities and which do not. Take the third group for example: If
g = r! and ¢?? = ¢?3 = ¢g?* = 0, then 7} (o) will be exponential in o and there will be no
singularity in finite time. On the other hand, g*?> = x!, and ¢*' = ¢® = ¢** = 0 leads to 7}
being linear in ¢ and W%(US) = 0 for some finite ;. More complicated metrics only compound

the analysis, and the fourth group is even more obtuse’.

"The metrics mentioned in this example would only be valid (nondegenerate) locally, but nonetheless serve
to illustrate the point.
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Chapter 5

Conclusion and Future Work

We have examined the structures and dynamics in a number of non-canonical and non-standard
situations in n-symplectic geometry. We began by attempting to lift Kiinzle’s work to the
frame bundle in a general way by adding some combination of connection 1-forms wj to the
soldering form. Even in the simplest of cases, however, the resulting n-symplectic dynamics
were too restrictive. The allowable observables are very simple, and the associated motions
do not contain a contribution from spin or that can be called spin. We then examined the
charged n-symplectic form obtained by adding a generalized electromagnetic vector potential
to the soldering form. While the noted % difference in the momentum rest space seemed
to be indicative of a natural setting in which to build a classical theory of spin—% particles,
we were able to show that the same reasonable choices that lead to this difference also lead
to the possibility of introducing singularities in the equations of motion. We discussed the
gauge freedom inherent in many n-symplectic Hamiltonian vector fields that had largely been
swept aside in previous studies in favor of gauge-invariant techniques. It became clear, then,
that with the proper choice of gauge, the % difference and the associated singularities can be
removed. This conclusion does not invalidate Lemma 3.3, as the % difference only appears
(or disappears) after a particular choice of « for the mapping of the Hamiltonian distribution
to the cotangent bundle. From non-canonical n-symplectic geometry we moved to the non-
standard, investigating n-symplectic geometry on the symplectic submanifold B;. The algebra
by of observables on Bj is more limited than the algebra of observables on LM. We primarily
concerned ourselves with by C by, a polynomial algebra. As polynomials are dense in the
space of smooth functions, we were able to demonstrate a number of methods by which many
observables on LM can be represented by observables in b;. With this detail out of the way,
we calculated the n-symplectic Hamiltonian vector fields associated with the free particle to
discover motions not seen in symplectic geometry. These motions were then classified into four

groups: One trivial, one purely internal (change in momentum, no change in position), one
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that presents change in momentum and position, and the classical motion. The two non-trivial,
non-classical groups of motions present motions that are not normally seen classically by free
particles, and are not inherently independent of gauge. We assert that there must be some
sort of impetus for a particle to travel along these integral curves. Furthermore, in order for
these motions to be reconcilled with classical observations, we assert that the time spent along
these integral curves not contribute to proper time. This would cause the change in position
or momentum to occur instantly, providing possible models of particle decay or wormholes. In
the classification of these new motions, we noted that specific pieces of the metric appear in
such a way as to be collected nicely to form Kaluza-Klein-type theories on By. To finish our
discussion of Bi, we noted that singularities can exist even in the motions of the free particle.

Each of the three preceeding chapters leaves certain questions unanswered. In Chapter 2,
we attempted to duplicate Kiinzle’s work on the entire frame bundle, whereas Kiinzle only
examined motions on the Lorentz subbundle. Would considering the Lorentz- or some other
subbundle of LM bring to light new symmetries that would allow for more interesting dynamics?
Also, we were able to determine the allowable Hamiltonian vector fields (and, thus, the allowable
observables) explicitly only in very simple cases. These gave general results, but the results
are not necessarily exhaustive. New methods of analyzing the n-symplectic structure equation
are needed in order to rule out the possibility of observables not covered in Theorem 2.2 or
Theorem 2.3.

In Chapter 3, we make use of gauge freedom to change what is seen on the frame bundle
without changing the classical motions seen on the cotangent bundle via the 1, map. One is led
to question how “physical” these gauge terms are. We chose a gauge term in order to remove
the % difference in the motion of the momentum rest space, and we showed that this choice of
gauge is not unique. Is it useful or even possible to classify gauge terms by the dynamics they
produce?

In Chapter 4, we considered using a time-dependent combination of Hamiltonian vector
fields C7. X! in order to produce a piecewise-smooth integral curve using more than one group
of motions on Bj. Working on B; affords us this luxury; normally, we must use the 1, map
in order to bring the n-symplectic motions to the cotangent bundle. Different choices of « for
the 1, map amount to linear changes of the ps coordinates on the cotangent bundle. This
is seen most easily by noting that there is a GL(n) matrix g7 such that §§am§ = ﬁﬂrg, for
a,p € R™\ {0}. If one were to consider a piecewise constant o € R™ \ {0}, then a particle
following the path of an integral curve of the vector field 1o« (ar X') on T*M would essentially
appear to change its orientation from time to time. These dynamics would not be particularly
interesting. If the a were allowed to continuously change, however, rich new structures seem
to appear. Take, for example, the n-symplectic observable for the free particle in flat space,

i = n™#,7y,. Its Hamiltonian distribution is X}] = n®7’ds. We naively map this distribution
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to the vector field . (aiX}]) = ! a;0s. The integral curves of this vector field are given by

the differential equations

* ="l

pszo

These equations even combine to produce the standard result of £* = 0. The key difference
lies in the momentum coordinates: We have a;7% = ps, and so the momentum coordinates
are changing over time, but they remain constant along the path of this particle. The particle
would appear to be a point of calm in this sea of momentum flux. Further research is necessary

to make sense of a variable o and what new dynamics it could bring.
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Appendix A

Proof of Theorem 2.2

We will prove the two specific claims made about observables in Theorem 2.2.

Recall that, in the local coordinates z* and 7r§- we have 6 = 7r§-da:j and wy = 7wgdvy. The

coordinates vi are dual to the 7r§- in the sense that

Joi _ si
var]—(;k

ik _ sj
VT, = 07,

Choosing 7% = §5626%, equation (2.1) becomes

a
¢! = mida® 4 i m2dvs (A1)
and we calculate

d¢' = dri A da® + A% dn? A dof
= dri A da® — slufultda? Adal, (A.2)

In the course of both proofs, we will let the use the Greek letters «, £, and « to represent indices
whose value is never 1, 2, or 3, respectively. These Greek indices will be used to represent when
a choice of value for a particular Latin index is made. If the index is not to be summed, it will

be placed in parentheses. For example, X® = X(® and viﬂg =0y — ’Ugﬂ'g #* v?,y)wl(ﬁ).

A.1 Rank 1

Contracting d¢® with a general vector field X = X359, + X7 -2 yields

s on’

X1 d¢' = Xida® — X5drn + ¥sidnT” (A.3)
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where Y5 = vagnéi (X L5255 — X26L58 ) Taking the exterior derivative of both sides of equa-

m-r-c crr-m

tion (2.7) leaves d(X_J d¢') = 0, and we calculate

, . oX? . A
d(X_ d¢®) = X} ,da! A da® — < 5 ksixs — k) dz® A dn”
) 7-(-;‘ ) )
1 0X° — By r
— 57,8771_5(1775 A d7TS =0 (A4)

Using the linear independence of the 1-forms dz* and dr?, we can separate this into three sets

of equations:

aXZ T YVS st
0= aﬁg’? + 6, X5 — 5% (A.6)
OXS — Esi
0=0———"— A7
T 877'5 ( )

Equations (A.5) and (A.7) can be rewritten taking advantage of their natural antisymmetry.
Notice that A[bc] =0= Ap. = Awp.

Xio =X (A.8)

10D G . N) C I 54
St =4 P A9
" onh P onr (A-9)

We begin our analysis with equations (A.9). Choosing the free index i = a # 1 gives

@ 0 m __ s« 0 k
X" =0 X (A.10)

In equation (A.10), [ is a free index. Choosing | = a, we get

K3 B 0

0 xm _ s 9
871'% / 87‘('7(7?)

Xk (A.11)

Notice that the choice of o was free; choosing o = 2 would imply

%X’” =0 (A.12)
om,
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Then choosing a = 3, equation (A.11) would imply

0
— XM= Al
on? 0 (A-13)

Together, equations (A.12) and (A.13) imply %Xm = 0. Therefore, X™ is a function of the
k

z' alone, so we can write

though the variable dependence of functions will be suppressed in general. Now choosing i = «

in equation (A.6), we see that

a a (6%
l

Differentiating, we see that X5 ¢ = 0, which implies that X5 & is linear in the w,. We can

aa k
write X7 = CF ()l + 95 (). Substltutmg this into equation (A.15), we see that Cj(.a)lk =
(o) fl] This implies

X9 = g¥(x) —ng £ (A.16)

Then by defining g} =X Jl + ﬂ'; Z-, we are able to write
. . -
X;=g; —mf; (A.17)

It is not known at this point if g} is a function of the z* or 77 alone.

Using equation (A.17), we can rewrite equation (A.6) in the following way

aXZ _ l 2 1 i ¢2.m pl
ok 5k;f vkv3X Y 5kv vy gmj 010505 f nj (A.18)
l
Letting ¢ = 1, we find
X l )
8 _6kf 'Uk 3X + (Sk'U ’U3 gm] (Sk’U:)) (Alg)
”l

This will be useful in the future.

The term vg%ng occurs in X5, Expanding this using equation (A.17) gives

mngccl = Ug(”z?lgg - mﬂbfd) = U3 (Ub gd fd) (A.20)
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Now equations (A.14), (A.17), and (A.20) allow us to rewrite equation (A.9) as

0 d . m m _ 0 d k 2 k
onl vilos XG — 673 (] g — 1 )} = ol [ijBXd 570§ (v5 95 — fd)} (A.21)

Choosing | # 2 and j = 2 gives

0 0
ﬁ {’U(ﬁ)% Xd} = W [U?UZISCXCZI - Ug(vz’fgfz - f,’il)] (A.22)
Tm

Expanding both derivatives, the equation reduces to

m 09 m
vg@)v:; vk gl = s <v{fa(% — ’U?ﬁ)’ub gﬁ) (A.23)
s

m

0
gd =& af;l , we expand

gy b (90X 1
=4 o
877'?” 1 07_[_%1 + af,d

= 07 (—0guR' X2 + 03uivsgr g — 0av5 f 1) (A.24)

Using equation (A.18)

in order to rewrite equation (A.23) as

v?g)v?vz’fgf} = —vgv’fvfﬁ)vanid - ”g”?5)9?93 (A.25)
Next, we multiply through by ﬂgwffn to obtain
Choosing b # 3 gives
vggc(iy) =0, (A.27)
and choosing a = 2 in (A.26) gives
vgﬂ)gg =0. (A.28)

Taking the derivative of equation (A.28) with respect to 7 and multiplying by =, yields
go =0, (A.29)

Using equations (A.27) and (A.29), we can rewrite equation (A.26) as

08005, 01052 = 0985ugues 2 frg — 005, 0] (A.30)
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where 81 and 9 are two arbitrary but fixed numbers not equal to 2. No assumption is made a
priori as to whether or not 81 = B2. Our calculations will simplify if we let 81 = 82 = 3, which

we are free to do. This leaves

5(B)U(B)g((i ) = 611)31) 71' f 5(1 )USQd (A?)l)

Selecting a =  and 8 = 3 reduces equation (A.31) to vggg = 0, which along with equa-
tion (A.27) gives us vggg = 0. For any choice a = «, differentiating and multiplying by 7 leads
to

g =0 (A.32)

When a = 1, we have Uggcll = 0. Differentiating and expanding gives

avg gall
87le

= of (vfvhm Sy — 0205 f1y) — vholgh = 0 (A.33)

Multiplying the right-hand equation by 7T137T§ yields

gs = 3 < il v37T27Tl3frd> (A.34)
So by the definition of g},
Xy = v [l — v5o§mam) flrg — i [ (A.35)
Now,
0X ]1 d_2_3 l_2_3prs
ok = 0p08 flq — ook fliq + vpuumind g + viviui il £
—%%%@ﬁﬁd Sjosvss [l — Okt (A.36)
and equation (A.19) are both equations 885;5 . Equating them and simplifying, we see that
2vk1)37r2 " gfd] (vkvévg ™+ v3vkvé 273 5k61v3v37r (5k5103v3772) va  (A3T)

Multiplying equation (A.37) by 7', this reduces to
251%”:?”1 fd] (5 £ U:ﬂ’gﬂ 5k”3“37r2 DI rd (A.38)

Choosing k = 3 gives
v3v37rl(7) ra =0, (A.39)
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and choosing k = 2 in (A.38) gives
vvdm Sfrd = 21131) 7r fd], (A.40)
which add together to become
v3v37raf d = 2531131) 7)frd. (A.41)
Multiplying by v¢, equation (A.41) becomes
ofus fa = 2e50fulym” frg (A.42)
Differentiating with respect to vy leads to
53115 = 6¢6%08 ’Y)f L+ 0% 500y )77( ”) ot 5(7)1}51%771(7) ,lar - v3v§lv 7 h fl (A.43)
Choosing b # {7, 3}, equation (A.43) becomes

0= 'Ug'l)c )WL(I’Y)Wl(b#{’WB})f’ZCd (A44)

Again, the choice of v # 3 was free. If we had chosen v = 2, then equation (A.44) would become

0= U3’U( )Ta ) (b>3)fl (A.45)
0 — Ugv Myl f (A.46)

Additionally, v = 1 would give us
0= Ugv 72 f (A.47)

These last three equations can be written together as
0= vgva)w((ﬂ)wlh)f,lcd (A.48)
Choosing b = 7, equation (A.43) becomes
vdn| fl wd = V3U(NT C(L’Y)Wl(’”f,lcd =0 (A.49)
Using equations (A.48) and (A.49), we can rewrite equation (A.43) as

V5 fe = ocudulym Ly + vsol m ) £, — gl mR fL, (A.50)
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Differentiating with respect to vl gives
0= vgwl(” ,lpa — vgva)wéﬂ)ﬂlm ra T 'l)37r(’Y) () i f — Vg, 7)1)377[ f

Contracting equation (A.51) on ¢ = p, we get

0= ,Ugvglﬂ-lgf,lpd
This lets us rewrite equation (A.41) as

v3v§l7r a=0
Which then allows us to rewrite equation (A.42) as

vsv§ £ =0

and upon differentiating twice, we see that

fe=0.
This now says that g} = 0, and so
ge =0
We are now able to write '
= f'(z)

Xi = —ri /()

Thus, equation (A.3) becomes

X de' =~ fhda? + |87 + Sjvsulad £ — o0%uy 5, | an

And we are able to solve the equation dFi=—X hookd®® for the rank 1 observable F=

OF"
oy

_ i rk j i rk ) k_2rb 152 m rk J
= mpfida? + |05 f7 — Sjvjusmy, £+ 010505 [, | Ay,

dF! = Fida? +
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(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

'y

(A.59)



Using linear independence of the 1-forms, we have the two sets of equations

Fi = m f* (A.60)

ZF = 85 f* = StoSulmy O + 8165y £, (A.61)

Equation (A.60) can be integrated, giving
F' = b f% + hi(r) (A.62)

Differentiating equation (A.62) and comparing to equation (A.61), we see that

8hz(7r) b ) k (9 ; 2 rb
= v b2 fo 4 6i62usfk = — (tusa2 sl A.63
ol 1Vjv3 bf 10505 f] ol ( 13 bf,) ( )

Thus the only rank 1 observables ' = Ff; that can satisfy equation (2.7) are
Fr = ff gl fi + € (A.64)

where f* are arbitrary linear functions of the z*, and ¢* are constant functions. [J

A.2 Rank 2

Before we begin the proof of the statement made concerning rank observables, we prove two

helpful lemmas.

Lemma A.1 If 2. F% = 0 and vinlF% =0, then F2% = 0.
g9

Proof: This statement can be proved directly by differentiating multiple times with respec to
7, multiplying through by multiple 7s, differentiating multiple more times with respect to m,
and finally contracting many of the indices and resubstituting. A more concise way to prove this
lemma is to take a Taylor series expansion of vff in terms of 7s at a point ug where Uﬁ(uo) = 55.
This gives

1
vlﬁl:5§l+§7rg7r{f+...

Distributing the multiplication through this sum, we have

vinC FY = n¢ Fod 4 7TCFd7Tk7Tb +...=0
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By the linear independence of the 7} coordinates, each term in the sum must, individually, be
equal to 0. First, mCF fdd = 0. Differentiating with respect to m gives

sd __
Frd_

If, instead, we had taken a Taylor series expansion of 7§ in terms of the vs, the first term would

have yielded F(jlf = 0. Next, we have ﬂgng{ngf = 0. Differentiating with respect to n”, w’,
and then 7}, gives
Oy F + 0L Fr + 00 FLY + 0f Fot + 00 Fiy + 00 FoP =0 (A.65)

Contracting on u and v gives
nE: Y + Fo + 00 Ft 4+ 07 Fol + Fri® =0

Contracting this equation on s and ¢ then w and r shows Fb“ab = 0. Returning to (A.65) and

contracting on s and ¢ then w and r leaves
EXr 4+ Fod =0

Returning again to equation (A.65) and contracting on u and ¢ gives
FX'+ F)° =0

These identities now reduce (?7) to

sSw __
rt =0

the desired result. [J

Lemma A.2 Consider a collection of functions FCZZ;,ISA where the lower-case indices take on

values 1,...,n and upper-case indices take on values 2,...,n. If F%SA satisfies
1. FreAsD) - phaaldsh)
9, FiisA _ pubsA

thenn > 2 = F,%SA =0.

Proof: We have ngs(Aéf) = Ff{fq(Aéf). First, notice that p = 1 = Fé’fSA = 0; similarly,

a=1= Flbg‘SA = FngA = 0. Now, sum all the terms in which  and A take on the same values.

bgsB __ (B ybsqA A bsqB
nF@p _510 FaA +6p FaA :
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If we were simply to write 5;)4F£f4qB = Fé’;qB, we would be incorrect; A cannot take on the value

1 and p can. The fact that F (fqu = 0 allows us to perform this index trickery and write
0 e T e (A.66)
Form the sum of the terms in which B and p take on the same values.

nFYSE = Pt = pRsB — gl (A.67)

a.

Return to equation (A.66) and sum the terms in which B and a take on the same values to get
bgsB bsqA bsqB
nFB‘fj = pzq + FBS[? . (A.68)

Again, we are able to use the fact that FlquA =0 to allow us to write 67 F ?XA = F;qu. This

and equation (A.67) allow us to write
nFpi? = FUP 4 Fpeb. (A.69)
Combine equations (A.68) and (A.69) to see that

nQFngSB = nFﬁquB +nF ngB =(n+ 1)F£]‘;QB + Fng
(n? = DFREP = (n+ 1) EH°
(n— 1) Fpel = proiP (A.70)

As F;EqB is symmetric in s and ¢, Fng must be as well. Now, let’s manipulate equation (A.70)

using the symmetries of F':

bgsB __ pbsqB _ 1sbgB _ 1sqbB _ 12qsbB  qbsB
(n— V) FisP = FrP = ppiP = P = PP = Y

= FpeP.
So long as n # 2, this implies Fg,fB =0= F;)J?B. This allows equation (A.66) to be written
nFasB = plsib; (A.71)

which tells us that
nFpsal = FLash. (A.72)
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Combining these last two equations (as before) shows

nQFClL)qu — ngsB FggsB =0

as desired. [J
Returning now to equation (A.2), we contract this 2-form with the vector fields X? =

X510, + X7 and symmetrize on the upper indices

k or ]
X0y agh) = X agh [Xs(iag) — 236 dn? (A.73)
where ¥57 = vjvg (5] (Xli5265 — X216L65,). As before, we calculate the exterior derivative of

equation (2.7) and use the linear independence of the anti-symmetric 2-forms to arrive at three

sets of equations

x4 =x (A.74)

ax (1) o »
—E-= ~x5080) 4 2 (A.75)
orh - onr (A.76)

Notice that equations (A.76) can be expanded and rewritten as follows:

3Xs(i5£) . 531);”?)(71#'5{) . §8X73§i5{) B an(z(;J) _ 52Ul oY jr(Li(;{) . quanl(i(;{)

= —— = (A.T7
orl o orl on’ Up 3 on’ ( )

Choosing i = a1 and j = «ag, where a; and as are independent values other than 1, this then
collapses to
oxs(gr2)  pxalo gy

T o (A.78)

Taking the derivative of both sides, we get

o axsig) 9 gxule sy
ong  Omy - omd O

By Lemma A.2, Fgf*® = 5255 = 0. We write X* = Alomf + ¢**. Now, equation (A.78)
becomes
Ags(ongee) = gsalen go) (A.79)
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Choosing a; = as = «, we can then vary r and p to see the following:

r=1= AP =0
r=a,p=a= AR = g0
)

r=a= AP = o) AT

Returning then to equation (A.79) and choosing r = a1, p = ag, and «a; # ag, we see that

Aq&(oq) —

gs(acs)
() =4

(a2)

This allows us now to write A& = f9§%, where f° = f%¢. Thus,
o fas,]_raa 4 gsa (ASO)

Next, return to equations (A.75) let i = @ and j = ag as before. We have

ax o2 s(a
— = — X5 o) (A.81)
(o1 c2)
aSXk 102 _
ompomion’;

Write X[ = BYAC ) nore 4 2001 n 1 DI Noticing that BiA*12) = p&ie102)

ack ack cak ’

equation (A.81) can be wrltten as

2Bsb(a1a2) g+ 205]5:0110[2) _ _fﬁfﬂl()alde) _ gZSk(OQ(SgZ)

rak

bd(a1a2) — _%fl;jdgm&?ﬁ,

Taking a derivative of this equation with respect to 75 we see that B,

which says that C, (a1a2) = —%gsk(ald?ﬂ. Now, we can write

[e5Ke% 1 (03 a a1
X,E 1a2) _ -5 (f(zbﬂ'alﬂb +2gb( 1,_2) +2h( 1 2))

Return to equation (A.77), and choosing i = 1 and j = « gives

6X81(5a + Xsa(;l _ 52,Ul Xla N 8 an%@a _ 8XQI53 + an&; _ 512)U;ZU§1X104 N v v aX%oc
ot "8 b onT 8 onr
(A.82)
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Noticing that 5 X 2o %X 8¢ =0, choose p = 1 and the equation becomes
q

OX°1op + X*06) — Sruojvi Xy 90X oy oX2e
on, on’ LS onr
OX 5152 + Xso§) — 52l mxle _oX 1y
= —= X5262 + X5052 A.83
aw(} 87T§ 2”1 U3( mYr + m r) ( )
Now, choosing r = a (the same « that was chosen for j) gives
XL — 52 wsom XK 55 L
(a)“1 73 *m _ L (st _|_Xs( )52 ) (A.84)
o} ol 2" (a)
q Ts

The index a can be any value other than 1. Choosing « to be any value other than 2, the

equation becomes

0xst 1
o = 51/1%;{)(;% (A.85)
q
This allows us to write
sl — fbs,n_b + = 5 me2 + Gsl (A86)

where %GSI = 0. Using equation (B.15), we simplify equation (A.84) to

dvsv Xle 1

Expanding the derivative on the left-hand side and multiplying through by 7¢ gives

o 8X7§? Xla . cha _ 1 qua c (A 88)
3 7877(} [vvs vt 2”1 U3A mTs- :

Choosing ¢ = a1 and noticing that X"‘lo‘ = 0, this simplifies to

o ( bouy rox 2h°‘1°‘> =0 (A.89)
Taking the derivative with respect to v%, we see that
5f7ragbaa1 + 207hot — ol'm 71'bgbo‘1 =0.

Multiplying by v gives
vihot* =0
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Since a%hgla = a%hgla = 0, this implies
h'* =0
Which by equation (A.89) and Lemma A.1 implies
g7 =0
Return now to equations (A.75). Choosing i = 1 and j = « gives

oX
on’

S

2

_ sl ca sa sl c..m lae ¢2¢s 2ae 5l ¢s
- _X,k 6r - X,k 57“ + Vv Xm,k(sr(sc - Xc,k(srém]

Then, choosing r = 1 and multiplying through by v§, we see that

la
9 kan: _ sza_ s, m kX2a
U3 onl V3A ) — U3V UsAn k
S

la
Choosing ¢ = 1 in equation (A.88) gives another expression for véf a;fr b

§OX,°

1
_ s, kvia k. s yveca k syvdo__c
’U3787T1 _Ulv3Xk‘ +’U17}3 k +§UIU3X7/§ UrE
s

Equating these last to expressions and multiplying through by 7y gives
25X = o e
In particular, v = 1 allows us to write

. 1 . .
Xjo = — feming + 07,

where X}f =4 X}CO‘ and v’:.fx}ﬁa = 0. Using this form, we can rewrite equation (A.90) as

8)(,160‘

2
on’

1
—or (o) - o [Xinote: - X2

Notice that

k. la la
87}3Xk —0= kaxk ks 1o,
onr 0 Bgqr T Xk
S s
therefore,
axla
5d la 7rd7rr’uk k
Xc shc¥3 onr
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So we may use this to expand equation (A.95) to
459xte = rdpapkym ;’Lm? + w2vkol abkﬂ'dﬂ'b ’gf%Zﬂ'Qﬂ'? + 2nr §G31 (A.96)
Choosing d = v and multiplying by v¢ gives

O = (SQW’YUSUS f k7Tb —+ (SQUSUS f k'ﬂ"yﬂ—b —+ 2606777 Gf],}

Choosing r = 2 and « = 3 shows

v3os fomemam = 0, (A.97)
and choosing r = 3 = a we see that
ml vkl f“b T2+ 271'71)3(} =0. (A.98)

These two identities allow us to simplify equation (A.96) after choosing d = 3 and multiplying
by vs3.
vE vy bekﬂ'b +2v Gskl =0 (A.99)

This simplifies equation (A.96) to
4y lo =yl f“bkw T2 — vl f“k7r . (A.100)

Equation (A.82) now reduces all the way down to

oGt oG
o =0y A.101
o orl % on’ (4.101)
Choosing r = a = 2, we get
oGSt oG

Additionally choosing p = 2 gives

oGs! OGI
o2 om2’
which implies
8G81 5 8G51
=4
orP P Or2

Choosing p = 2 and r = a = 3 in equation (A.101) gives

aGsl B aGsl

il A A.102
on?2 - onh 0 (4.102)
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Looking back to equations (A.99) and (A.100), notice that

— c,k pab,_2__«,
0= —v3v3 f opmamy;
0=

T (113113 beka + 2v3 Gf,i)

= W?U]ng]g.

c. la
U3Xc

By Lemma A.1, G5! = 0. Now equation (A.99) takes on the form
k
V308" fomemi = 0

Taking the derivative with respect to v gives

26505 31 mp = vEuy 0 i (A.103)
Contracting on a and s, choosing ¢ = 3, and equation (A.98) give vj" bs 2 = 0. Using
Lemma A.1, this says that
bs
f7ms -

Next, taking the derivative of equation (A.103) with respect to vlh and multiplying through by

v?, we see that

2v§ (5%]0:73171'2 —v3' fon sb 7T}2L7Tb> = 26} véffhkw (whw 5j + 537r ) U§U3 sb . (A.104)

;mk

Contracting on j and h and comparing to equation (A.103) gives

Vi Sbkﬂ27rb —nokol Sbk7r27rb, (A.105)
thus vivy bekT('27Tb = 0, which reduces equation (A.103) to v} 3% 72 = 0, and Lemma A.1
shows us that

b =0. (A.106)

,ma

Returning to equations (A.75), choose i = j = 1.

X1
on’,

= =0} fEm) + ORvf vy X (A.107)

Noticing that Xf% = Stx m.ks We can write

oxX}!
on’,

félf Sip 4 0205l Xm i (A.108)

61



Choosing r = 1 gives %X;l = —fl;fwg. Write
X7 =-= f‘;j’ﬂ’ ™+ XY, (A.109)
where XU =6 & Ixi! and 8 BT X+t = 0. This form changes equation (A.108) into

X"
o ]fn = 0 v ka (A.110)

Choosing i = j = 1, we can now reduce equation (A.77) to

82 (uf 0" + oo705) bt = 67 (3ol + vivg o) X (A.111)

Multiplying by ﬂgwg, we get
5262 0YvT X = G203 05V X

When p = 3, we see that v}}”x},% = 0. Choosing p = a = 2 and r = 3, we see that vJ'yLl = 0.
Thus v™xL = 0, and X = 0.
Flnally, we can fully describe the vector fields X* = X?j -2 &BJ + X4 K 50 j

1] — falﬂ_é +glj

XU — ab_i_j (A-112)
k= "5 kT

Where f* and ¢g** are functions on the base (functions of the z* alone), f% is linear in 2, g®

_1

is constant, and g*! 3 fon 72 + G where G%! is constant. It will be easier momentarily if

we write g% = 1(§iv'r2 ff;,i hs") where the k% are all constant. We can also write

O(vg fonma)

)
5 on’,

»5() —

As before, to solve the equation dF@) = —2x0_| d¢?) for the unknown rank 2 observable

F=Fi 7;7j, we begin by direct calculation.

QE (i)
on’

= —2xDdgh 1 9 [XSU(S,J;) - zi@'j)} dr’

dF( 7)) F(Zj)d + dn”

S

= fitmimdat 4+ 2 [ fonlio]) + g*g) — w30 dr (A.113)
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The linear independence of the 1-forms produces two sets of equations

(’Lj f(;;:bﬂ-l 7Tb (A.114)
(w) .y . iy

%ﬂ = 2f*7{i5)) + 2¢°057) — 23:309) (A.115)
ﬂ—S

Integrating equation (A.114), we get

D= frmm, + €D (m)

and (A.115) tells us that

05 _ ggeligh) — gxstid
on’
Notice that
b(iJ) ab
09"'m _ s e 51)6 $Tm ™ _ sigi) _ so(i)
87T§ r a g T T

So, W) = 2gb(i7rg) + k() where k() are constant, and the only allowable rank 2 observables

are

= f3rl 7Tb hd(le) + K 4 5 7Td vy 7raf0d (A.116)
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Appendix B

Proof of Theorem 2.3

We will let the use the Greek letters «, 8, and vy to represent indices whose value is never 1, 2,
or 3, respectively, as in the proof of Theorem 2.2. In the local coordinates z’ and 7r;- on LM,
we have 0 = F;dl’j and wy = m¢ (dvg + Fgev,fdxd). The coordinates vi are dual to the 7% in

J
the sense that

Jo i _ st
,Uk:ﬂ-]_ék
ik _ sj
,Ulgﬂ-m_ém

Choosing 7% = 6”(52(5Z we have

o - O
d¢f = drd A dak + (5{115@5”) drl A dr? + (

= '>d7r Adat 4+ (Hf,) do A da®

where Hj = 5{Hk = 5{ (720, v5"). Contracting this 2-form with the vector fields X* =
X519 + Xt

. 871” and symmetrizing, we have

. , .y Sl 4 OH] Yok
X0y dg) = [X,ﬁ”+Xl( (), — ml)) + X6 = ]dxk

)
_ [XS(i(;Z) _ Ei(ij) Xk(zaaH ] dr r (B.l)
7TT

where ¥57 = vjUy 53 (XL6265 — X216L65,). From equation (2.7) we know that d(X°_ d¢/) =

0, and as before the linear independence of the 2-forms allows us to write out three sets of
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equations:

ij — j o(i OH]) ij S~ j o(i OH]
Xlg,?) + | xm (Hljg)m - Hgn),k) + Xb( ol = Xl(,lcj) + | xm (Hﬁn - 53,1) + Xb( G
ony ony N
(B.2)
@] m(i j j a Z'aHj) ]
= = X" 4 x| T B.
87r§ kT + rk aﬂ.g ( 3)
&
o |:XS(Z(5;Z) _ Ei(”) + Xk(zaaljé B [Xq(15133) _ Zg(ll) + Xk(zéj(;[ré]
orl T onr (B4)
Notice that equation (B.4) can be expanded and rewritten as follows:
axstg) 52 ovporxis)  axAis)  oH, 9xkis)
orly " orl TS nb o onl
oxXi)  ovfoy Xy ., 0Xi'6) | OHL9X*g) B5)
=—— 00—+ v .
on’ P on’ P3O orl  ont

Choosing i = a1 and j = ag, where a7 and ag are independent values other than 1, this then

collapses to
pxs(ngr?)  pxalen gy

= B.6
onh on’ (B6)
Taking the derivative of both sides, we get
9 axsg) g gxule sy
a p . = a r z (B?)
ony oy ony on?
bqsa o 82XS(X o .
Lemma A.2 tells us that Fgp™ = rionT = 0, and so we write
XSOC — fas,n_gt _|_gSOC (B.S)
Next, return to equations (B.3) let i« = o and j = « as before. We have
oxo1o2) o(a
ko xSee) (B.9)
on’ L
(c1c2)
PE XkOéIOQ _
Oy om§ony;

Write X (122 = ghilenoz)aze | goblonez)ra | pleio2) Noticing that BXU™2) — glblenaz)

ack ack cak
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equation (B.9) can be written as

2By 4+ 2057 = — flem ™) — g o) (B.10)
Taking a derivative of this equation with respect to 7§ we see that BZ‘Z,(CMQZ) =—1 ff;fdé‘”é? 2),
which says that Cb(alaz) = %gs(al&?‘z). Now, we can write
1
X0 = = (g + 205w 4 2n(°) (B.11)
Return to equation (B.5), and choosing i = 1 and j = « gives
OX*15¢ + X5t dujvyxle LOX2 9, 9Xke
orly " oY 5 ont " Ont Onl)
_ OXTop 4+ X9, 5281);1@31)(;3 ,0X2%  OH, 0X*e (B.12)
onT P ont 3 onr orll onr ’
Noticing that ng‘ = %X 5% = (), choose p = 1 and the equation becomes
q
oxsl  LoviurXle OHy, ..
"o al BRI =l
1dv gn 2 as oz o ras, 2 2 a  S2
+ 5 (07 + 6 f e + 0r9om + 0 g5m) (B.13)
Tq
Choosing r = « gives
oxst v Xl 1 0v
_ 52 173 “*m :fsq 2331 (5(04) as a+fas7r2+6(2) sa+gs2) fsk (B.14)

8%5 (@) 8%5

The index a can be any value other than 1. Choosing « to be any value other than 2, the

equation becomes
oxst

orn

1
q

This allows us to write

1 0v%* 8H
— 59 Y3 as,_2 52 k rsk
f + 2 871'(} ( mTa + g, ) f
1
sl fasﬂ_; + 5,Ugn)(’srzb + fska + Gsl
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where %GSI = 0. We may also rewrite equation (B.13) as
q

CQujup Xy 10vg

(fimma + 9im)

87r1 D) 8771
ovjvy Xla 1 8113 so
673} T2 87r1

Expanding the derivative on the left-hand side and multiplying through by 7 gives

X
om

1
la ca __ s c
1”1 PX — ol XS = —of ’U3X

v 2

m

3 1

q

Choosing ¢ = a1 and noticing that 5 X M@ — (), are able to simplify down to
of" (gha g + 2h3) = 0

Taking the derivative with respect to vZ, we see that

oimy g bal + 207hGY — o' wbgl’ﬁfbl =

Multiplying by v gives
vThgt* =0

Since 22 hore = I p1e — () this implies
ornb"a vt 'ra ’ b
hgla =0

Which by equation (B.19) and Lemma A.1 implies

gy =0
Choosing ¢ = 1 in equation (B.18) gives
OX 10
ot — vs” - X s+ ol Xl pymed X e

871'(} 2 Or}
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Return now to equations (B.3). Choosing i = 1 and j = « gives

2
= — X3l — X0l + vful (Xl 0207 — X200L85, ) - Xpe %ﬁ’f
s
Choosing r = 1 and multiplying through by v§ , we can write
20l X | scma OHim ok oX g BHk shxse 0% Hj,
orl orl orl 87rg omlomy
= —USXSO‘ vk v3X vlng”]jo‘ %}7{?

Using equation (B.24), this becomes

(B.25)

(B.26)

1
U] U3Xm°‘ L okn?rs o <2U1U3X€b°‘7r1 + iUl X} 4+ hus X} > + 25 0E X1 4 20kus X

OHj m, 0% H;,

s orl 870 gnlomg

Multiplying through by 77 gives
05X = Wzvé“kaa
In particular, v = 1 allows us to write

Xia:— fkﬂ- 7rb +J]’éa,

+ vh X0 = —vngfa v3v1 U3X20‘ véfo,gw‘

OH,,
orl

(B.27)

(B.28)

(B.29)

where Ji® = §t.J1* and v§Jl® = 0. We may now rewrite and simplify equation (B.12) as

a8G51 L OG

o orl P onr
Choosing r = o = 2, we get
aGs! _ oG
orl P o2
Additionally choosing p = 2 gives
oGt G
or2 — om?’
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which implies
aGsl 5 8Gsl
= . B.33
orl P o2 ( )

Choosing p = 2 and r = a = 3 in equation (B.30) gives

oG*! 0G*!
= 0= — = B.34
on?2 0 onh 0 (B-34)

We next return to equation (B.25), which becomes

8J
(97r

&]
a2 sm bm,__« mao 218 l 21¢ l.s 21d m
+ opme m”:sf + (f""my 4+ g™e) (5rrkl,mv3 - Trcrkl,mvrv?)) - 7)3 ot Tl 01

1
—5( P U8 O + T, 08 f 00 2) +§5?771kavgffbns

s

1
IR o — o FTOmE T oo + 50T RS Tt
1
+*f,‘zlb7Tg7T§Tl v Vg = —*5 f,?ik”g — O fm ey, lk”3 50@81
—55 g f s + vs fomkmams — 02 fimp T, vl + me Ly, ks frag!
(B.35)
Using the fact that
b
aU3Jb1a —0= vba‘]bla . vaJloé
omr 3 omr 3
reduces this to
ajlia 2 b 2 2 1
2 On” + 6wy mU3fsm (f7"my +g™m) <5 ki mU3 Wcril,mer§>
S
1 1
_5( f 527TO‘+I‘ f 504 2>+75a7T2Fl Ugfms
—ffmbwz“wfrz PU5 + 52f7“’ ks
4z fclLb I():ul—\ _ _76a m mkﬂ-b . 6afsm 2FC lkv?) 5aGsl
1
—752 2 fgkwb + - 5 v w3 “bk7r27rb — 52fl}€m7rg‘l“mlv3 + 2T, lvlvgfbm . (B.36)
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Multiplying through by vlgwg gives

2050 Jy® + 67wy 3oy £ G + (fO g 4 g™ ) (52 T3 mv s — 0§mCT, mvéf”i)

(kavg U3 f%sﬂg@%?'i‘r U3U3 f%sﬂd‘sa 2) +*5?7r52r U3 3fms d

d pmb 2 d l
—*53f,z Tl V5L + 57" ,l mrdTy v
ab,_2__« a, m bs a psm,_d,_21c o, _d
+3 55fz g, kam 3” *5 U3 U3 kﬂ 7Tb i e lkUSUS opm Gk”?)
@ d, m, k 2 bm dps 21e 0,k
_751” 3 'U3f ﬂ-b + (53'0 'U3f k.']T 7Tb (STU k 7Tb7r F lU3+(537T F l'U 'Ugfk ﬂ-b (B37)

Differentiating with respect to v{ and then multiplying by v¥ reduces this to
200k Jlo = —gme (537rgfkl VNl — 64T, mvgvl) (B.38)
Choosing d = v, we see that
ﬂ'zlemgmavéﬁvé =0 (B.39)

After a series of derivatives, contractions, and resubstitutions similar to those used in the proof

of Lemma A.1, we end up with
g =0; (B.40)

Thus,
Jie =o. (B.41)

Then equation (B.37) reduces enough to use Lemma A.1 to show that
G% =0. (B.42)

So, we will write g°' = G*!, and X = fbswl + g%+ ( 7 bswb + fosx QFClvb) Looking to
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equation (B.3) and choosing i = j = 1, we have

oXH 1
o i +Hkm<571=fsm+ 52fl ’U3—§’UZ’U§fbm 2+52fme‘bv fbm 2FclU U3>
1
—Hp i (2572~f,slm”§ - 5”5«”:?]0?8”13 + 0Rfr T b — Tl U3)
+Xm13Hk,m OHy, 0XM! a1 O*Hy
ont awg ont b onromg
— _51 bs, 1 l
= —0p fkﬁb‘f' 5V f T +fk7T bIV3
+vful (X” L0205 + fckﬂa tolss )
If we write X} = fabw mp + J1, then this becomes
oM OHj, oxm™ OHj,
50 = Hypp — X™ 00
on’ ( k 877&) on’ Fom on’
fbm fbme 82Hk
+Hm,k p - X3! DT -4, (2 o fhepmi + frm blvé>
s b

iy 1055wl my OH,

2 87T§ ok, (B43)

+52Ul U3 Xll k + U U3fmk’ o™

We will return to this equation. Looking now at equation (B.5), we select i = j = 1 to see that

281}11) Jrlnl 21s m 21¢ m._ s 2 pqk 1 q pbk__2
—26; o + (57' kmU3 — Telgm Uy Us) <5pf7l V3 — Y U3fl Wb)
q
261’1 JH 21q ,m 21¢ 2 1 s bk _2
—26 T (5kamU3 —Wcrkm ) (6 f ’U3 — U3fl 7Tb> (B44)
or
R R ¥ - A A WAL R A 515)
" orl P on’ '

O Ta 1OH, OV flnm L dvful il 1 OH, OvE fm

o orly 29t or P ont 200 onr

(B.46)

Choosing r = p = 2 in equation (B.45) shows a symmetry in the s and ¢. Choosing, instead,
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r=2and p = 3, we see

11 _ 10Hg ,m bk, 2
ovivy*J,, ~ 2 a2 V3 f,me

67rq
Thus,

aJll

va?ﬁ = (v3vivy" + vivgg) b — stlfbkﬂ'b (1}50303 + v3vﬁ 113)

Tq

+ 7T2F fkarb (v5v2v3v3 +1)2’UBU3’U3 —|-112113vﬁ 213)

Multiplying by ﬂg’ﬁg and choosing 8 = 3 gives
0= ﬂ?Fsz,Z’iﬂivév?
Again, a number of derivatives, contractions, and resubstitutions leads to
wt % =

This now reduces equations (B.48) and (B.45) to

s.m m s,..q9,.m s, m,q
V13 F (7)61)1'1)3 + vjvg 1)3) I
q
s,m 711 11
52 ovivy*Jy, 282111)3 Im
onh P ont

As well as equation (B.43) to

Ot 2pc 1. b ox™ 10H}
ey (00— e = =5 Hin — X7 S5
bl 1
+(52vl v Xl1 kT v v§f 1 1 0f“ Ty OHy,
r

AT ¥ 5 G oal,
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Multiplying this equation by v{v¥, we see that

vivg %ﬁl gﬁaj T moTvivs = —vfvl 6;(’”1 Hpy — vio§ X™ ag:fgm
+0f v Hyp, g f7 (?)Z? - Uizvngglaiggig - % vivsoy fon
+02vivkoior X1 kTt ;vlvé“v U4 ‘ff;k 2n + % v §8 C(;’ng o gﬂHi (B.53)
Choosing r = 8, we may use equation (B.50) to reduce this to
(v%v‘fvg” + v‘fvglvg) b~ (vgvlv?) + vivg v3> JHR2T¢ vl ok
- _vi’v'gfa;i;;lHk —viv vh Xmt ag‘:f?m
+o{vs Hy, kfbmgfg - UgvngglaiZZ; - %‘%0%303 fbskﬂ'b
+;vlv§vﬁ UgfakaF27Tb + 21)1 3 8f‘;b7réj Wb gﬂHj (B.54)
Choose g = 3 and multiply through by 773 to show
V3T T — o TS vtk =y gt ( 2Fklv103) =0 (B.55)

As 1 — 72T¢vtvh = 0 is never satisfied for any F;k, we are left to conclude v§*JL! = 0. This

renders equation (B.51) a triviality, and reduces equation (B.54) to

11 21e 1.k
Uﬁvsj (1 =7 Cyuivg) =

1
— <5éf8m - Qvfavzifﬁ — [ 2Fbl”5”3) § Hy, o + 05 X ™ 2T, mvﬁv?)
—/Uér m kfbm 2Fblvﬁ1)3 + '1)3 <52Fkl?}6v3 Zrkl [U 1)31)3 + UIB'US'Ug]>
51 m pbs 2 ab 6 58 (S S5 8Hk B.56
505v305 f k7Tb+ v3vﬂv3f k,7r7rb+ v3f 3 71'—}—5 8l (B.56)

Multiplying by 74 further simpiflies this to

0 = vivhnlm? (2 TGy + 55 — THfe)
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which, after differentiation, contraction, and resubstitution, yields
ab __ meab _ 2famrb (B 57)
kl = Skl m kl,m .

If both equation (B.49) and equation (B.57) are to hold for a general torsion-free connection,
then f% = 0. This then makes the vector fields X? trivial, and thus there are no non-trivial

solutions to equation (2.7). O
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