
ABSTRACT

STAPLETON, JAMES ROBERT. Structures and Singularities in n-Symplectic Geometry.
(Under the direction of Larry Norris.)

Several non-standard situations in n-symplectic geometry are analyzed. Non-canonical dy-

namics introduced by Künzle are generalized to the frame bundle of a manifold M , LM , and

subsequently shown to be too restrictive to reproduce similar or generalized results. The n-

symplectic potential is altered in a generalization of the charged symplectic potential. Singu-

larities are discovered in the n-symplectic dynamics, and the role of the n-symplectic gauge

freedom in these singularities is discussed. Finally, attention is narrowed from the full frame

bundle of Rn to a coordinate slice B1 which exhibits both symplectic and n-symplectic prop-

erties. Tools are developed for working with general observables on B1. Dynamics not seen

on LRn or T ∗Rn, somewhat natural Kaluza-Klein-type structures, and more singularities are

revealed upon the slice.
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Chapter 1

Introduction

Symplectic geometry is a powerful and useful tool for studying Hamiltonian mechanics on a

smooth, n-dimensional manifold M . To every smooth (C∞) function or “observable” on the

cotangent bundle, ~f , a unique vector field X~f
is assigned using the canonical form ~θ via the

equation

d~f = −X~f
d~θ.

The integral curves of the Hamiltonain vector field X~f
are interpreted as the equations of

motion (or the dynamics) of a particle moving under the influence of the forces described by ~f .

n-symplectic geometry is a generalization of symplectic geometry introduced by Larry Norris

[11], where analysis takes place on the bundle of linear frames π : LM → M over a smooth

manifold M . The Rn-valued, tensorial soldering form θ̂ = θir̂i (where the r̂i form the natural

basis for Rn) takes the place of canonical form ~θ and Hamiltonian vector fields Xf̂ are assigned

to smooth functions f̂ by

df̂ = −Xf̂ dθ̂. (1.1)

Crucial differences between symplectic and n-symplectic geometry emerge from these structure

equations. First, the observables f̂ of n-symplectic geometry are Rn-valued functions, whereas

observables ~f of symplectic geometry are R-valued functions. Second, not every smooth Rn-

valued function f̂ can be assigned a Hamiltonian vector field via equation (1.1). Only certain

vector fields can satisfy equation (1.1), and these vector fields pick out only certain polynomial

observables f̂ [11]. To obtain a full polynomial algebra, the structure equation is expanded to

allow for
⊗k

s Rn-valued functions, where ⊗s is the symmetric tensor product, and

k⊗
s

Rn = Rn ⊗s Rn ⊗s . . .⊗s Rn︸ ︷︷ ︸
k copies

.
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This introduces not only a Z+ grading on the algebra of n-symplectic observables, but a non-

trivial kernel when determining Hamiltonian vector fields for the
⊗k

s Rn-valued functions where

k > 1. This kernel leads to studying equvalence classes of Hamiltonian vector fields, from which

a graded Poisson algebra of observables can be constructed.

We will begin by expanding this quick review of n-symplectic geometry in the following

section in order to make precise the structures with which we will be working. In this review,

we will also lay out notation that we will be using throughout the remaining chapters. We

will move from there to studying some features of non-canonical n-symplectic geometry. In

Chapter 2, we will generalize the work of Künzle from [8], and examine some of the new

dynamics that occur when the soldering form θ̂ = θir̂i is replaced with

φ̂ = φir̂i =
(
θi + γbia ω

a
b

)
r̂i

where ωab are the 1-forms of a connection on LM and γbia are constants. The addition of

the connection eliminates certain symmetries of the canonical n-symplectic potential. This

restricts the allowable observables further, and the related dynamics do not display a natural

contribution of spin as those of Künzle do.

In Chapter 3, we consider the charged n-symplectic observable in flat space and, equivalently,

the charged n-symplectic form in flat space

θ̂ĉ = θiĉr̂i =
(
θi + ηajA

iadxj
)
r̂i.

This definition is similar to the standard charged symplectic form in flat space [2]. Certain

standard and reasonable choices lead to the standard symplectic dynamics of a charged particle,

but with additional equations of motion that show a factor of 1
2 difference in equations of motion

in the momentum space [2]. We will show that these choices also lead to singularities in the

equations of motion that are able to be controlled by initial conditions. After a study of the

gauge freedom, the choice of representative from an equivalence class of Hamiltonian vector

fields, we will also show that the difference by a factor of 1
2 can be eliminated by proper choice

of gauge.

Finally in Chapter 4, we will shift our focus from non-canonical n-symplectic geometry

to the study of n-symplectic geometry restricted to a special submanifold B1 ⊂ LM . The

manifold B1 is a coordinate slice, chosen so that it is both a symplectic and an n-symplectic

manifold; that is, it has a natural symplectic structure, and the soldering form θ̂ pulls back onto

this submanifold. Being both symplectic and n-symplectic, the n-symplectic dynamics can be

very readily compared to standard symplectic dynamics on B1 itself. Being a submanifold of

LM , the algebra of observables turns out to be more limited. We will discuss how to overcome
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these limitations on observables on B1, examine new dynamics not seen in symplectic geometry,

show that there exist natural Kaluza-Klein-type structures encoded into the dynamics on B1,

and finally show some limitations of this slice by exploring the existence of singularities in the

equations of motion.

1.1 Review of n-Symplectic Geometry

This section is intended to provide only an overview of n-symplectic geometry and an introduc-

tion to much of the terminology used in this document The reader is referred to the literature

([11], [12], [13], [2], [3], [4], [1]) for the details. Let M be a smooth, n-dimensional manifold,

We denote by n the dimension of the manifold M if it has not been specified. Also we denote

by LM the bundle of linear frames (the frame bundle) over M . Every point u ∈ LM is a pair

(p, ei), where p ∈ M and ei := (e1, e2, . . . , en) is a linear frame at the point p (a basis for the

tangent space at p, TpM). LM is a principal fibre bundle with projection map π : LM → M

defined by π(p, ei) = p, and structure group the general linear group GL(n). If (U, xi) is a

coordinate chart on M , then we define local coordinates (xi, πjk) on π−1(U) ⊂ LM by

xi(u) = xi(p, ej) := xi(p)

πjk(u) = πjk(p, ei) := ej
(

∂

∂xk
∣∣
p

) (1.2)

where ej := (e1, e2, . . . , en) denotes the coframe dual to the linear frame ej . In these local

coordinates, vectors Y have the form

Y = Y s∂s + Y r
s

∂

∂πrs
(1.3)

Throughout, we will be using the notation ∂s for ∂
∂xs . Also, following convention, xi will refer

to coordinates both on the base manifold M and the frame bundle LM (specifically, on U ⊂M
and π−1(U) ⊂ LM). Note that, since the ei is a linear frame, the local coordinates πjk(u)

form a nonsingular matrix for every u ∈ LM . This will be an important fact when discussing

singularities in Chapters 3 and 4. In Chapter 2, we will also make use of coordinate functions

vkm dual to πjk in the sense that

(vkmπ
j
k)(u) = δjm(u)

(vrsπ
k
r )(u) = δks (u)

(1.4)

for every u ∈ LM , where δjm is the Kronecker delta function.

For each point u ∈ LM , we may also define [7] a linear isomorphism u : Rn → Tπ(u)M by
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u(ξir̂i) = (p, ej)(ξ
ir̂i) := ξiei, with inverse

u−1(Y ) = (p, ei)
−1(Y ) = ei(Y )r̂i (1.5)

where the r̂i form the standard basis for Rn. For any vector Y ∈ TuLM , we define the soldering

form θ̂ by

θ̂(Y ) := u−1(dπY ) (1.6)

In local coordinates,

θ̂ = θir̂i = πikdx
kr̂i (1.7)

The soldering form is a globally-defined, Rn-valued 1-form on LM , comparable to the R-valued

canonical 1-form ~θ = pkdq
k on the cotangent bundle T ∗M . Symplectic geometry is based upon

using ~θ to assign a unique Hamiltonian vector field X~f
to each observable function ~f : T ∗M →

R by the equation d~f = −X~f
d~θ. As a generalization to this construction, n-symplectic

geometry uses

df̂ = −Xf̂ dθ̂ (1.8)

as the basic equation which assigns Hamiltonian vector fields Xf̂ on LM to observables f̂ :

LM → Rn in a manner independent of coordinates. A key difference between symplectic and

n-symplectic observables is that not every smooth (C∞) function is compatible with equa-

tion (1.8). We will describe these observables shortly.

Equation (1.8) can also be extended and generalized to allow
⊗k

s Rn-valued functions on

LM , where
⊗k

s Rn is the totally-symmetric tensor product of k copies of Rn.

k⊗
s

Rn = Rn ⊗s Rn ⊗s . . .⊗s Rn︸ ︷︷ ︸
k copies

(1.9)

These
⊗k

s Rn-valued functions are determined by their coordinate functions in a basis for⊗k
s Rn. We write f̂ = f̂ i1i2...ik r̂i1 ⊗s r̂i2 ⊗s . . .⊗s r̂ik . The generalized n-symplectic equation is

df̂ i1i2...ik r̂i1 ⊗s . . .⊗s r̂ik = −
(
k!X

i1i2...ik−1

f̂
dθik

)
r̂i1 ⊗s . . .⊗s r̂ik (1.10)

Or in terms of the coordinate functions,

df̂ (i1i2...ik) = −k!X
(i1i2...ik−1

f̂
dθik), (1.11)
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the round brackets (parentheses) around indices indicating symmetrization on those indices1.

The functions f̂ = f̂ i1i2...ik r̂i1 ⊗s r̂i2 ⊗s . . .⊗s r̂ik are called rank k observables.

The generalized n-symplectic equation defines not just one but multiple Hamiltonian vector

fields for rank k > 1 observables. Only one Hamiltonian vector field is desired for the analysis

of dynamics, so there arises the question of how to choose one vector field from many. This

choice is made by first considering the distribution that is spanned by the multiple Hamiltonian

vector fields of a rank k > 1 observable, and then choosing a nonzero vector field from this

distribution. For this reason, we will refer to the Hamiltonian vector fields defined by a rank

k > 1 observable primarily as its Hamiltonian distribution.

The assignment of Hamiltonian distributions to rank k > 1 observables is, however, not

unique; the kernel of the right-hand side of equation (1.11) is nontrivial. The following lemma

shows this non-uniqueness and extends the similar result in [11].

Lemma 1.1 The set of equations Y (i1i2...ik−1 dθik) = 0, where θi are the coordinate functions

of the soldering form on LM , has as its solution vectors fields

Y i1i2...ik−1 = Y si1i2...ik−1∂s + Y
ri1i2...ik−1
s

∂

∂πrs

where Y s(i1i2...ik−1) = Y
(ri1i2...ik−1)
s = 0 but are otherwise arbitrary.

Proof: As noted in the lemma, we write, we write Y i1i2...ik−1 = Y si1i2...ik−1∂s +Y
ri1i2...ik−1
s

∂
∂πrs

,

as well as θi = πikdx
k in our local coordinates (xi, πjk) on LM [7]. Evaluating the interior

product Y (i1i2...ik−1 dθik) in these local coordinates, we see that

Y
(iki1i2...ik−1)
s dxs − Y s(i1i2...ik−1δik)r dπrs = 0 (1.12)

The linear independence of the 1-forms dxs and dπrs allows us to separate this set of equations

into two.

Y
(iki1i2...ik−1)
s = 0

Y s(i1i2...ik−1δik)r = 0
(1.13)

Contraction on indices r and s in the second set of equations completes the proof. �

This non-uniqueness of solution to equation (1.11), the vector fields described in the above

lemma, is interpreted as a gauge freedom on the bundle LM . For rank 2 observables, the gauge

1The symmetrization in equation (1.11) comes about due to considering our observables only to be
⊗k

s R
n-

valued functions on LM . With similar results and only slight changes to certain proofs, n-symplectic geometry
can also be built from functions which are

⊗k
a R

n-valued. Here,
⊗k

a R
n denotes the totally anti-symmetric tensor

product of k copies of Rn [11]. Anti-symmetric n-symplectic observables have not been as well-studied as the
symmetric observables we are considering.
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vector field is purely vertical, T i = T
[ji]
k

∂

∂πjk
(the square brackets indicating anti-symmetrization

on those indices). This is not the case for rank k > 2 observables. Usually, objects such as

X̂f̂ = X
i1i2...ik−1

f̂
r̂i1 ⊗s r̂i2 ⊗s . . .⊗s r̂ik−1

or αi1αi2 . . . αikX
i1i2...ik−1

f̂
(for some constants αj) are

what are studied. This symmetry on the indices of the vector fields removes the non-uniqueness

from the horizontal portion, and so the gauge is typically considered to be a vertical vector field

for any rank k > 1 observable [11]. This gauge freedom also means that each rank k > 2

observable defines an equivalence class of Hamiltonian distributions. Two distributions are

defined to be equivalent in this sense if they both satisfy equation (1.11), or equivalently if their

difference is a gauge vector field.

The local coordinate formula for the most general rank k observable F̂ is a polynomial

of degree at most k in the πij coordinate functions, and whose coefficients are smooth (C∞)

functions on M [11]. Explicitly,

F̂ (i1i2...ik) = fa1a2...akπi1a1π
i2
a2 . . . π

ik
ak

+B
a1a2...ak−1(i1
1 πi2a1π

i3
a2 . . . π

ik)
ak−1

+B
a1...ak−2(i1i2
2 πi3a1 . . . π

ik)
ak−2

+ . . .+B
(i1i2...ik)
k (1.14)

where fa1a2...ak = f (a1a2...ak), and f and each function Bi is a function of xs alone. Sometimes,

this dependence is written as f(u) = f(xi) := (f ◦ π)(u) for u ∈ LM , but we will suppress

this composition with the projection π : LM →M . In contrast to convention, we do allow the

leading coefficient function fa1a2...ak to be identically zero. It is cumbersome or not illustrative to

write out the Hamiltonian distribution defined by F̂ , so we will now review some less complicated

but important observables in order to demonstrate the Hamiltonian distributions.

Kobayashi and Nomizu defined the natural lift of a vector field on M to LM in [7]. This

definition was generalized by Norris in [11] to the natural lift of a symmetric tensor field on M

to LM . This natural lift to LM of any totally symmetric rank k contravariant tensor field ~t

on M is a vector field corresponding (by equation (1.11)) to a rank k tensorial observable t̂. If

~t = ta1...ik∂i1 ⊗s . . .⊗s ∂ik , then

t̂ = ta1...akπi1a1 . . . π
ik
ak
r̂i1 ⊗s . . .⊗s r̂ik . (1.15)

The corresponding Hamiltonian distribution, written without gauge terms, is then given by2

k!X
i1...ik−1

t̂
= kta1...ak−1sπi1a1 . . . π

ik−1
ak−1∂s − ta1...ak,s πi1a1 . . . π

ik−1
ak−1π

r
ak

∂

∂πrs
(1.16)

This means, in particular, that a metric tensor ~g = gab∂a⊗s∂b on M defines a rank 2 observable

2We follow a standard notation, denoting partial differentiation with respect to xi with a comma before the
index. As two examples, F k,i := ∂

∂xi
F k = ∂iF

k and F k,ij := ∂i∂jF
k.
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ĝ = gabπiaπ
j
b r̂i ⊗s r̂j on LM . Its Hamiltonian distribution is

Xi
ĝ = gasπia∂s −

1

2

(
gab,k π

i
aπ

j
b + T jik

) ∂

∂πjk
. (1.17)

The T jik term is the gauge freedom; it is a function where T
(ji)
k = 0 and is otherwise arbitrary.

Any choice of torsion-free linear connection will select a single Hamiltonian distribution from

the equivalence class containing Xi
ĝ; i.e. the choice of gauge T ijk will be fixed globally [13].

The choice of the Levi-Civita connection, in fact, will select a distribution that yields standard

geodesic motion plus parallel transport of the momentum frame [11]. Three other notably

useful observables are q̂ab := qar̂b, π̂b := πab r̂a, and r̂a. These are all rank 1 observables, and

their respective Hamiltonian vector fields can be found at the end of this section in Table 1.2

In order to cut down on the preponderance of indices that comes with n-symplectic observ-

ables and their Hamiltonian vector fields or distributions, we will often make use of multi-index

notation. Unless otherwise noted, capital Latin indices will represent multiple indices, and they

may be subscripted with an indication of how many indices they represent. Examples can be

seen in Table 1.1.

When all ranks of observables are considered, they form a graded algebra; addition is carried

out component-wise on observables of the same rank and the product is the symmetric tensor

product, usually written as juxtaposition. If F̂ is an observable of rank k and Ĝ is an observable

of rank m, then we may define a bracket of these two observables by

{F̂ , Ĝ} = k!X
(Ik−1

F̂
(ĜJm))r̂Ik−1

r̂Jm = −m!X
(Jm−1

Ĝ
(F̂ Ik))r̂Jm−1 r̂Ik (1.18)

This bracket is independent of gauge and choice of local coordinates, and it satisfies all the

properties of a Poisson bracket [11], making the space of all observables a graded Poisson

Table 1.1: Examples of Multi-Index Notation

Multi-Index Standard Notation

XIk Xi1i2...ik

f (Ik) f (i1i2...ik)

r̂Ik r̂i1 ⊗s r̂i2 ⊗s . . .⊗s r̂ik
r̂Ik r̂Jm r̂i1 ⊗s . . .⊗s r̂ik ⊗s r̂j1 ⊗s . . .⊗s r̂jm
X(Ik−1 dθik) X(i1i2...ik−1 dθik)

fJkπIkJk f j1j2...jkπi1j1π
i2
j2
. . . πikjk

αIX
I αi1αi2 . . . X

i1i2...

7



algebra. The Poisson bracket of a rank k observable and a rank m observable is seen to be a

rank k+m−1 observable. Furthermore, if F̂ and Ĝ are the natural lifts of contravariant tensor

fields ~F and ~G, then we use equations (1.15) and (1.16) to write explicitly

{F̂ , Ĝ}Ik+m−1 =

(
kF s(a2a3...akG

cb2b3...bm)
,s

−mGs(b2b3...bmF ca2a3...ak),s

)
π(i1c πi2a2 . . . π

ik
ak
π
ik+1

b2
. . . π

ik+m−1)
bm

(1.19)

This
⊗k+m−1

s Rn-valued function on LM corresponds to (is the natural lift of) the differential

concomitant of ~F and ~G on M , as given by Schouten and Nijenhuis [10][15].

Finally, n-symplectic Hamiltonian vector fields and distributions can be mapped to the

cotangent bundle in a very direct way, and in some cases be shown to then be equivalent

to related symplectic Hamiltonian vector fields. Consider T ∗M as the associated bundle

LM ×GL(n) Rn∗ as follows. Let the r̂i form the standard basis for Rn∗. For any point u ∈ LM
and α = αir̂

i ∈ Rn∗ \ {0}, the pair [u, α] is a point in LM ×GL(n) Rn∗ (specifically, it is a

representative of an equivalence class of points, hence the square brackets). For any arbitrary

but fixed α ∈ Rn∗, we define the map ψα : LM → T ∗M \ S̃0, where S̃0 is the zero section of

T ∗M , by

ψα(u) := [u, α] (1.20)

We also note that αiπ
i
j(u) = αie

i(∂j |π(u)) = pj(αie
i), where the pj := (p1, p2, . . . , pn) are the

standard momentum coordinates on T ∗M defined by the local coordinates xi on M . It is easy

to show, then, that

ψα∗(∂s) = ∂s

ψα∗

(
∂

∂πrs

)
= αs

∂

∂pr

(1.21)

Consider a rank k observable F̂ . We may map vectors in its Hamiltonian distribution X
Ik−1

F̂
to

vectors Xψα(F̂ ) on T ∗M \ S̃0 as follows.

Xψα(F̂ )(ψα(u)) := k!ψα∗(αIk−1
X
Ik−1

F̂
(u)), u ∈ LM (1.22)

Xψα(F̂ ) is a smooth vector field on T ∗M \ S̃0. Furthermore, if F̂ is a tensorial observable, then

Xψα(F̂ ) is equal to the symplectic Hamiltonian vector field X~F [12], where

~F ([u, α]) := αIk F̂
Ik(u) (1.23)

n-symplectic geometry has been studied extensively in the literature. As a few examples,

L. K. Norris developed the field of study [11][12][13], D. Cartin studied the charged particle in
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an n-symplectic setting [2], M. McLean investigated n-symplectic geometry’s relation to other

generalizations of symplectic geometry [3], and J. K. Lawson and J. D. Brown studied aspects

of quantization using n-symplectic geometry [4][1].

Table 1.2: Useful n-symplectic Observables and their Hamiltonian Vector Fields

Observable Hamiltonian Vector Fields

r̂a Xr̂a = 0

x̂ab Xx̂ab
= ∂

∂πba

π̂b Xπ̂b = −∂b
ĝ = gabπ̂aπ̂b Xi

ĝ = gasπia∂s − 1
2g
ab
,k π

i
aπ

j
b
∂

∂πjk
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Chapter 2

Künzle’s non-canonical spin

Consider a system with nonzero and fixed rest mass m and fixed spin magnitude s. Künzle

found in 1972 that if one chooses θ = m~θ1 + sω34 as a presymplectic potential on the Lorentz

bundle over space-time, where ωab are the 1-forms of a connection without torsion, then the

equations of motion are equivalent to those of Souriau and Dixon for a massive particle with spin

[8]. We will attempt to copy this construction and generalize it upon the frame bundle. Instead

of either using a presymplectic potential or defining and using a pre-n-symplectic potential,

we will add a general piece of a torsion-free linear connection to the soldering form to create

a new, non-canonical n-symplectic potential. In order to study the dynamics produced by

this new potential, we will find the Hamiltonian vector fields that are now allowable in the

modified structure equation. This will show what modifications have been made to the algebra

of n-symplectic observables, if any, and the combination of observables and Hamiltonian vector

fields will show the possible dynamics in this new scheme. In particular, we are concerned

with the allowable rank 2 observables and their Hamiltonian distributions, since the metric

observables are observables of this rank. It turns out that even the simple cases, where we add

in only one piece of a connection as Künzle did, produces results general enough from which to

draw strong conclusions.

2.1 Generalizing Künzle’s work on the Frame Bundle

Künzle essentially changed the symplectic potential ~θ by adding a piece of a connection. Let

ωab be the 1-forms of a torsion-free linear connection on LM and let γbia be constants. We define

1-forms

φi := θi + γbia ω
a
b (2.1)

It is important to note that one should not choose a connection ω and constants γbia such that

γbia ω
a
b = 0 identically.
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Theorem 2.1 The Rn-valued 2-form dφir̂i, with φi as defined above, is non-degenerate.

Proof: For a torsion-free connection on LM , we know that [7]

dθi = θj ∧ ωij
dωab = ωkb ∧ ωak + Ωa

bcdθ
c ∧ θd

where Ωa
bcd is the curvature tensor of the connection ω. This gives us the basic formula

dφi = dθi + γbia dωab = θj ∧ ωij + γbia ω
k
b ∧ ωak + γbiaΩ

a
bcdθ

c ∧ θd (2.2)

Contracting with an arbitrary vector field X, we obtain

X dφi = θj(X)ωij − ωij(X)θj + γbia

(
ωkb (X)ωak − ωak(X)ωkb + 2Ωa

bcdθ
c(X)θd

)
=
(

2γbia Ωa
bcdθ

c(X)− ωid(X)
)
θd +

(
θs(X)δir + γbir ω

s
b(X)− γsia ωar (X)

)
ωrs

Setting X dφi = 0 and using the linear independence of the 1-forms θi and ωab , we obtain the

two sets of equations

2γbia Ωa
bcdθ

c(X)− ωid(X) = 0 (2.3)

θs(X)δir + γbir ω
s
b(X)− γsia ωar (X) = 0 (2.4)

Contracting equation (2.4) on s and r gives θs(X) = 0. Using this in equation (2.3), we find

ωij(X) = 0. Thus, X = 0 and dφir̂i is non-degenerate. �

We saw that the 2-form dθir̂i has a non-zero kernel when contracted with higher-rank vector

fields XI . Let us contract the 2-forms dφj with arbitrary vector fields XI and symmetrize on

the upper indices. We obtain

X(I dφj) =
(

2Ωa
bcdθ

c(γb(ja XI))− ω(j
d (XI))

)
θd

+
(
θs(X(Iδj)r ) + ωsb(γ

b(j
r XI))− ωar (γs(ja XI))

)
ωrs

Again, setting this equal to 0 nets

2Ωa
bcdθ

c(γb(ja XI))− ω(j
d (XI)) = 0 (2.5)

θs(X(Iδj)r ) + ωsb(γ
b(j
r XI))− ωar (γs(ja XI)) = 0 (2.6)

Contracting (2.6) on s and r gives θ(j(XI)) = 0. Writing XI = XsI∂s + XrI
s

∂
∂πrs

, we see that

θ(j(XI)) = Xk(Iπ
j)
k = 0. Already, we see that we have a similar but more complicated kernel
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condition than the standard case shown in Lemma 1.1. For our current purposes, the kernel

does not need to be calculated explicitly; the invariant parts of the vector fields determined by

the n-symplectic equation

dF̂ = −k!XI
F̂

dφj r̂I r̂j (2.7)

will be sufficient. We begin by looking at a very simple case.

Theorem 2.2 Let φi be as defined in (2.1). If ωab are the 1-forms of a torsion-free flat linear

connection and if γbia = δb3δ
2
aδ
i
1, then rank k observables F̂ = F Ik r̂Ik that have the form

F (Ik) = fJkπIkJk +B
Jk−1(ik
1 π

Ik−1)
Jk−1

+B
Jk−2(ik−1ik
2 π

Ik−2)
Jk−2

+ . . .+B
(Ik)
k + γb(ika π

Ik−1)
Jk−1

vmb π
a
c f

cJk−1
,m

where each Bi is constant, fJk are functions of the xi alone and linear in xi, fJk = f (Jk)

satisfy (2.7), and vmb are coordinate functions dual to πbk as defined in equation (1.4). In

particular, the only allowable rank 1 observables are

F̂ =
(
fkπik + γbia v

m
b π

a
c f

c
,m + ξi

)
r̂i

and the only allowable rank 2 observables are

F̂ =
(
fabπiaπ

j
b + hd(iπ

j)
d + k(ij) + γb(ia π

j)
d v

m
b π

a
c f

cd
,m

)
r̂ir̂j .

It can be checked directly that there exists a collection of vector fields XI
F̂

corresponding to

any observable F̂ with the form given in the theorem such that equation (2.7) is satisfied, and

that equation (2.7) cannot be satisfied with an observable F̂ of the general form given in equa-

tion (1.14). The proofs of the specific claims of the rank 1 and rank 2 observables are long, and

are relegated to Appendix A. What is of particular importance to note from this theorem is

that the only tensor fields on the base manifold M that can be lifted to allowable observables

(particularly rank 2 observables) are constant tensor fields. This drastically restricts the pos-

sible classic Hamiltonians (or observables) that can be studied in this non-canonical setting;

furthermore, appendix equation (A.112) shows that the Hamiltonian distribution correspond-

ing to this rank 2 tensorial observable with constant coefficients would be no different than the

canonical Hamiltonian distribution given by equation (1.17) for the same observable.

Thinking that, perhaps, the n-symplectic form φir̂i defined by a flat connection is too

restrictive, we consider a simple case when φir̂i is defined using a general connection.

Theorem 2.3 Let φi be as in (2.1) and γbia as in Theorem 2.2. If ωab are the 1-forms of a

torsion-free linear connection, then there is no non-trivial rank 2 observable F̂ that can sat-

isfy (2.7) in general.
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The long proof can be found in Appendix B. The theorem and its proof are restricted to

rank 2 observables in this case because rank 2 observables are where the standard equations of

motion are to be found, and the techniques used in the proof generalize readily to any rank of

observable. The main difference between each rank of observable is the level of complexity and

number of equations to check, as can be seen in the two proofs of Appendix A.

We are left with the negative result that the non-canonical construction of Künzle cannot be

lifted directly to the frame bundle LM . The n-symplectic 2-form dφir̂i defined by φi = θi+γbia ω
a
b

is non-degenerate, but it is too restrictive when it comes to determining motions of rank k

observables by the equation dF̂ = −k!XI
F̂

dφj r̂I r̂j ; the only non-trivial solutions come about

from special values of the curvature of the torsion-free connection ω.
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Chapter 3

The Charged Particle and the

Charged Hamiltonian

Throughout our discussion of the n-symplectic charged particle, we will only concern ourselves

with the case of flat space-time; the metric used throughout will be the Minkowski metric η =

ηab∂a⊗ ∂b, where ηab = ηab = diag(−1, 1, 1, 1) in inertial coordinates on R4. The corresponding

rank 2 tensorial observable on the frame bundle has the local coordinate form η̂ = ηabπ̂aπ̂b.

We begin with the rank 2 observable

ĉ =
(
ηabπiaπ

j
b − 2Aiaπja + 2Bij

)
r̂ir̂j . (3.1)

We will interpret the functions Aia to be a collection of n vector potentials so as to create a

generalized Maxwell field tensor,

F iab := ηcbA
ic
,a − ηcaAic,b , (3.2)

thus we will require that the Aia not to be identically zero. The Hamiltonian vector fields

defined by ĉ are easily calculated to be, up to gauge freedom,

Xi
ĉ =

(
ηasπia −Ais

)
∂s +

(
Aia,kπ

j
a −B

ij
,k

) ∂

∂πjk
. (3.3)

We would like to study a single vector field in the distribution spanned by the Xi
ĉ so that we may

study its integral curves, from which we obtain equations of motion. This is accomplished by

choosing an arbitrary but fixed α = αir̂
i ∈ Rn∗ \ {0} to select the vector field αiX

i
ĉ. Using this

same α we are able to map the observable ĉ and its Hamiltonian distribution Xi
ĉ to an observable
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~c := ψα(αiαj ĉ
ij) and a symplectic Hamiltonian vector field1 X~c on the cotangent bundle via the

φα map described at the end of §1.1. Before we do that, however, we introduce some notation

that will be helpful throughout our discussion of the n-symplectic charged particle.

πs := αiπ
i
s

Aa := αiA
ia

Fab := αiF
i
ab.

Later, we will also make use of the momentum rest space. This is the vertical space orthogonal

to πs in the following sense: It was noted in §1.1 that πs(u) = ps(αie
i) for u = (p, ei) ∈ LM

and ps the standard momentum coordinates on M defined by the coordinates xi on M . This

is a single cotangent vector at π(u) ∈ M , and there are n − 1 more cotangent vectors at

this point that span the space of possible cotangent vectors at this point. The momentum

rest space is this n − 1 dimensional space at u ∈ LM linearly independent from πs(u). The

functions ⊥jk:= δjk −
1
α2α

jαk, where α2 = αaαa = ηabαaαb, act as a projection operator on the

coordinate functions πkm, projecting onto this momentum rest space. We now introduce the

related notations

⊥ πjk :=⊥ja πak
⊥ F jab :=⊥jc F cab.

Now, we return to the distribution in equation (3.3) and apply ψα∗ to see that the corresponding

(symplectic) Hamiltonian vector field on the cotangent bundle is

ψα∗(αiX
i
ĉ) = X~c = (ηasπa −As) ∂s +

(
Aa,kπa − αiαjB

ij
,k

) ∂

∂πk
(3.4)

We are using the notation πk = pk as they are, essentially, interchangeable so long as we

are careful about their domains. The integral curves of this vector field are governed by the

equations

ẋs = ηasπa −As (3.5)

π̇k = Aa,kπa − αiαjB
ij
,k (3.6)

These equations combine into

ẍk = Fkcẋ
c +Aa,kAa − αiαjB

ij
,k (3.7)

1Although we use the notation ~c and X~c, we cannot say that X~c is the symplectic Hamiltonian vector field
associated with ~c due to the nontensorial nature of ĉ [12].
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If we were to choose the particular form Bij = 1
2ηabA

iaAjb instead of leaving the functions Bij

arbitrary, then equation (3.7) simplifies to

ẍk = Fkcẋ
c (3.8)

which is the standard Lorentz Force Law in flat space-time [5]. Our observable

ĉ =
(
ηabπiaπ

j
b − 2Aiaπja + ηabA

iaAjb
)
r̂ir̂j = ηab

(
πia −Aikηka

)(
πjb −A

jmηmb

)
r̂ir̂j (3.9)

can be seen to be a straighforward generalization of

H =
1

2m
(pi − eAi)2 (3.10)

the standard Hamiltonian (or observable) for a massive, charged2 particle in flat space-time

[9]. We will call ĉ the charged n-symplectic Hamiltonian observable. It should be noted that

the analysis and the end observable are nearly the same when curved space-time is considered

(c.f. [2]).

Similarly, it has been shown [6] that one may instead modify the symplectic form in such

a way that the dynanics of the free particle are equivalent to the dynamics of the charged

particle under the standard symplectic form. We follow this method and define the charged

n-symplectic form to be

θ̂ĉ = θiĉr̂i =
(
πij + ηajA

ia
)

dxj r̂i (3.11)

where, as above, the Aia are functions on the base manifold. The charged n-symplectic form has

the same non-degeneracy conditions as the standard n-symplectic form [2], and the Hamiltonian

vector fields defined by the corresponding equation

dη̂ = −2X
(i
η̂ dθ

j)
ĉ r̂ir̂j (3.12)

are

Xi
η̂ = ηasπia∂s +

(
ηabπ(ia F

j)
kb + T ijk

) ∂

∂πjk
(3.13)

Here, we have included the gauge term T ijk , as it will be useful to consider in the next section.

2In our discussions, we make no mention of the mass of the particle m nor of its electric charge e. We are
considering particles in flat space-time with constant mass and constant electric charge. If these values are
constant, the analysis and conclusions are virtually identical to what is presented here. One may interpret these
results as being exactly correct for a particle in flat space-time with constant mass and electric charge, and unit
charge-to-mass ratio e

m
. A change in the charge-to-mass ratio will only change some results by a multiplicative

factor proportional to e
m

, and thus we choose to suppress mass and electric charge in our discussion.
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Mapping this distribution to the cotangent bundle gives the vector field

ψα∗(αiX
i
η̂) = X~η = ηasπa∂s + ηabFkbπa

∂

∂πk
(3.14)

whose integral curves are given by

ẋs = ηasπa (3.15)

π̇k = ηabFkbπa (3.16)

which again combine to give the Lorentz Force Law. As the two methods provide equivalent

results, we will primarily use the charged n-symplectic form in the calculations to follow.

3.1 General Equations of Motion

We would like to study the dynamics of the charged particle on the frame bundle to see what

additional information is available to us. We begin by choosing some constant α = αir̂
i ∈

Rn∗ \{0}. Then, αiX
i
η̂ is an arbitrary vector field in the Hamiltonian distribution. The integral

curves of this vector field are, from (3.13)

q̇s = ηasπa (3.17)

π̇jk = αi

(
ηabπ(ia F

j)
kb + T ijk

)
(3.18)

In order to allow these differential equations to combine as in the standard analysis and produce

a Lorentz Force-type equation, we must single out the linear combination of equations π̇k = αj π̇
j
k

from equation (3.18). This leaves n−1 equations from the set to be determined in order to fully

describe the integral curves. These equations must lie in the space orthogonal to πk, and so can

be calculated by ⊥ja π̇ak =⊥ π̇jk. Even though the numbering index j takes values 1, 2, . . . , n,

the set {⊥ π̇1k, . . . ,⊥ π̇
(n)
k } only spans an (n− 1)-dimensional space for any fixed k. So, the set

of equations describing the n2 +n degrees of freedom for the integral curves of the Hamiltonian

vector field αiX
i
η̂ are

ẋs = ηasπa

π̇k = ηabFkbπa

⊥ π̇rs =⊥rj αi
(
ηabπ(ia F

j)
sb + T ijs

) (3.19)

In practice, one is free to choose an appropriate basis of ⊥ π̇rs in order to calculate the integral

curves. The π̇ equations, in whatever linearly independent combination is chosen, define the
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motion of legs of the momentum frame. The leg defined by the π̇k equations will be known as

the primary leg of the momentum frame, and those defined by ⊥ π̇rs will be known as secondary

legs or the momentum rest space.

The ẋ and π̇a equations combine naturally in the same way as equations (3.16) to form a

Lorentz Force-type law on LM . The primary difference between equations (3.19) on LM and

equations (3.16) on T ∗M , then, is the equations defining the motion of the momentum rest

space. The equations exhibit two key features that we will explore: Gauge freedom, and an

explicit symmetry in the terms. The gauge term T ijs cannot be removed (i.e. a global choice

of gauge cannot be enforced) in the way shown in [11] or [13]; even though our observable η̂ is

tensorial, the charged n-symplectic form has caused the Hamiltonian distribution defined by η̂

not to have the correct transformation property in order to be the distribution of a connection

on the frame bundle. This can be seen most clearly in an examination of equation (3.12): The

left-hand side transforms tensorially, so in order for the right-hand side to transform tensorially

the vector fields Xi
η̂ must transform in a way to offset the non-tensorial transformation of the

charged n-symplectic form. This assures a non-tensorial transformation property of Xi
η̂.

As we will see in §3.3.2, the persistence of gauge freedom in the momentum rest space is

a natural property of n-symplectic geometry. A particular choice of gauge will be explored in

§3.3.3. The explicit symmetry, on the other hand, leads quickly to very interesting features in

the n-symplectic dynamics. The following section is devoted to a single example following [2]

exploring the effects of this symmetry.

3.2 The Oscillotron

In this section, we will study special features of the general charged n-symplectic equations of

motion (3.19). First, we will specify a generalized Maxwell field tensor F iab and direction α

such that the equations naturally lead one to the hopes of building a classical theory of spin 1
2

particles. Then, we will specialize from a general manifold to R4 in order to show explicitly the

major obstruction to such a theory; however, this obstruction also reveals interesting dynamics

not seen on the cotangent bundle. We have dubbed the particle or observer that follows these

motions an oscillotron. The dynamics of the oscillotron will be studied and some classical (non-

relativistic) conclusions drawn. In §3.3.3, we will revisit the oscillotron in order to show that it

may not be a realistic model.

For a simple example, we begin by choosing our generalized Maxwell field tensor F iab such

that it takes on non-zero values only when i = 1. The natural choice of direction within the

distribution is now α = r̂1. This means that the primary momentum leg is π1k, and a natural

basis for the momentum rest space is {πAs |A = 2, . . . , n}. Our vector field in the Hamiltonian
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distribution is

αiX
i
η̂ = ηasπ1a∂s + αi

(
ηabπ(ia δ

j)
1 F

1
kb + T ijk

)
(3.20)

The general equations of motion, equations (3.19), become

ẋs = ηasπ1a

π̇1k = ηabF 1
kbπ

1
a

π̇As = δAj δ
1
i η
abπ(ia δ

j)
1 F

1
sb + αiT

iA
s , A = 2, . . . , n

(3.21)

In order to examine the momentum rest space, we need to have some definite value for the gauge

term. A convenient choice is T ijk = 0. We emphasize that this choice is merely for convenience,

and not made following the methods described in [11] or [13]. We then expand the symmetry

in the momentum rest frame on the indices i and j to see that

π̇As =
1

2
ηabπ1aF

A
sb +

1

2
ηabπAa F

1
sb =

1

2
ηabπAa F

1
sb. (3.22)

The equations defining the primary and secondary legs of the momentum frame now have the

same form save the difference by a factor of 1
2 . This difference is intrinsic in the n-symplectic

geometry; it arises naturally from the symmetrization on two indices, which itself is due to the

use of a rank 2 observable defining the Hamiltonian vector field. We will also see in §3.3.1 that

the factor 1
2 cannot be changed arbitrarily via gauge choice.

The momentum rest space is shown to move with velocity naturally one half that of the pri-

mary leg. Such a strong result in a simple but general sample calculation would lend creedance

to the idea that a classical theory of spin 1
2 particles is encoded in n-symplectic dynamics. To

further this thought and pursuit, let us consider the simple circular motion of a charged particle

in a constant magnetic field, with underlying manifold R4. For this, we simply choose F 1
23 = B

where B is the strength of the magnetic field, and the remaining undetermined values of F iab to

be zero. In other words, we have

F 1
ab =


0 0 0 0

0 0 B 0

0 −B 0 0

0 0 0 0

 (3.23)
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The equations of motion are now

q̇s = ηasπ1a

π̇1k = ηabF 1
kbπ

1
a

π̇As =
1

2
ηabπAa F

1
sb, A = 2, 3, 4

(3.24)

The only non-trivial π̇ equations are π̇12 = Bπ13, π̇13 = −Bπ12, π̇A2 = 1
2Bπ

A
3 , and π̇A3 = −1

2Bπ
A
2 ,

leading to solutions

π(s) =


π11(0) π12(0) cos(Bs) + π13(0) sin(Bs) π13(0) cos(Bs)− π12(0) sin(Bs) π14(0)

π21(0) π22(0) cos
(
Bs
2

)
+ π23(0) sin

(
Bs
2

)
π23(0) cos

(
Bs
2

)
− π22(0) sin

(
Bs
2

)
π24(0)

π31(0) π32(0) cos
(
Bs
2

)
+ π33(0) sin

(
Bs
2

)
π33(0) cos

(
Bs
2

)
− π32(0) sin

(
Bs
2

)
π34(0)

π41(0) π42(0) cos
(
Bs
2

)
+ π43(0) sin

(
Bs
2

)
π43(0) cos

(
Bs
2

)
− π42(0) sin

(
Bs
2

)
π44(0)


(3.25)

We see explicitly that the primary and secondary legs of the momentum frame move along the

same circular path with velocities differing by a factor of 1
2 . This would mean that after one

orbit, the momentum rest space would be in a “negative” or “opposite” orientation to that

in which it began, and it would require an additional orbit in order to return to its original

orientation. Such an effect is often an illustration of or analogy for a spin 1
2 particle. This

intrinsic difference of 1
2 has a more sinister consequence, as the next lemma and its corollary

will show.

Lemma 3.1 The determinant of the π matrix in (3.25) can be written as C +A cos
(
Bs
2 + φ

)
,

where C, A, and φ are constants depending only on the initial conditions πjk(0).

Proof: Let Mi,j(K) be the (i, j)th minor of matrix K (the determinant of the matrix left

after removing row i and column j of matrix K). Expanding by minors along the first row, we

have

det(π(s)) = π11(s)M1,1(π(s))− π12(s)M1,2(π(s)) + π13(s)M1,3(π(s))− π14(s)M1,4(π(s)).

A quick calculation shows that π11(s)M1,1(π(s)) = π11(0)M1,1(π(0)) and π14(s)M1,4(π(s)) =

π14(0)M1,4(π(0)), whereas

M1,2(π(s)) = M1,2(π(0)) cos

(
Bs

2

)
−M1,3(π(0)) sin

(
Bs

2

)
= Ā cos

(
Bs

2
+ ψ

)
, and

M1,3(π(s)) = M1,3(π(0)) cos

(
Bs

2

)
+M1,2(π(0)) sin

(
Bs

2

)
= Ā sin

(
Bs

2
+ ψ

)
.
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Also, π12(s) = π12(0) cos(Bs) + π13(0) sin(Bs) = D̄ cos(Bs + δ) and π13(s) = π13(0) cos(Bs) −
π12(0) sin(Bs) = D̄ sin(Bs+ δ). It is then clear that det(π(s)) = C + ĀD̄ cos

(
Bs
2 + φ

)
, where

C = π11(0)M1,1(π(0))− π14(0)M1,4(π(0)),

Ā =
√
M1,2(π(0))2 +M1,3(π(0))2,

D̄ =
√
π12(0)2 + π13(0)2, and

φ = ψ − δ.

The only undetermined constants that appear above are the initial conditions πik(0); Ma,b(π(0))

is a function of the πij(0), and both ψ and δ are functions of Ma,b. �

Corollary 3.2 There exist initial conditions for which the path of a charged particle or observer

in a constant magnetic field leaves the frame bundle LR4 at a finite time.

3.3 Power of gauge freedom

In this section, we will review properties of totally symmetric indexed functions in order to gain

a better understanding of the equivalence classes of Hamiltonian distributions.

3.3.1 How to arrange indices

The n-symplectic observables of rank 2 or greater define certain totally symmetric parts of

their Hamiltonain distributions by (1.11), and the not-totally-symmetric parts are arbitrary.

An equivalence relation on Hamiltonian distributions is then defined by two distributions being

equal if these totally symmetric parts are equal. We are primarily interested in how these

arbitrary terms interact with and can affect the uniquely-defined terms of the vector fields,

thus characterizing different representatives of the same equivalence class.

We begin with a few lemmas.

Lemma 3.3 Let f Ik and T Ik be indexed collections of functions (using multi-index notation,

Ik = i1i2 . . . ik) on a common, arbitrary domain D with k ≥ 2, such that f Ik = f (Ik) and

T (Ik) = 0. For any point u ∈ D, the equation f Ik(u) + T Ik(u) = γf Ik(u) for some real number

γ implies either γ = 1 or T Ik = 0.

Proof: This equation can be rewritten as T Ik(u) = (γ − 1)f Ik(u). Let u ∈ D be a point such

that f Ik(u) 6= 0. Since T (Ik) = 0, we are left with (γ − 1)f Ik(u) = 0, and thus γ = 1. If, on the

other hand, u is chosen such that f Ik(u) = 0, then immediately T Ik(u) = 0. �
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This lemma shows us that the “intrinsic 1
2 difference” seen in the equations of motion for

the charged particle (equations (3.21) and (3.22)) is dependent upon the geometry and not the

gauge freedom. The factor of 1
2 appears primarily due to our choices of F iab and α, along with

the symmetry inherent in the vertical term. Between equations (3.21) and equation (3.22), a

choice of gauge was made. Lemma 3.3 shows that the 1
2 in equation (3.22) would remain 1

2 no

matter what choice of gauge was made. This also underscores the choice of gauge being made

out of convenience; it was convenient to let the gauge term disappear and the factor of 1
2 stand

alone.

Working with totally symmetric observables which are polynomial in the πs, symmetry

is enforced on each term individually. This symmetry, which is passed to the corresponding

Hamiltonian vector fields, can be affected by choice of gauge. The following lemma explains.

Lemma 3.4 Let f Ik and T Ik be indexed collections of functions on a common domain D (using

multi-index notation, Ik = i1i2 . . . ik) with k ≥ 2, such that T (Ik) = 0. For σ any permutation

of {1, 2, . . . , k}, there is a choice of functions T Ik such that f (Ik) + T Ik = f iσ(1)iσ(2)...iσ(k).

Proof: Let σ′ be another permutation of {1, 2, . . . , k}. Then

T Ik =
1

k!

(
f iσ(1)iσ(2)...iσ(k) − f iσ′(1)iσ′(2)...iσ′(k)

)
(3.26)

satisfies the condition T (Ik) = 0. The term f (Ik) can be written as the sum

1

k!

∑
τ

f iτ(1)iτ(2)...iτ(k) (3.27)

where τ ranges over all permutations of {1, 2, . . . , k}. Adding T Ik (as above) to this sum has the

effect of replacing the term f iσ′(1)iσ′(2)...iσ′(k) with the term f iσ(1)iσ(2)...iσ(k) . Repeating this process

for every choice of σ′ (or, equivalently, choosing T Ik = 1
k!

∑
τ

(
f iσ(1)iσ(2)...iσ(k) − f iτ(1)iτ(2)...iτ(k)

)
)

leaves in the sum k! copies of the single term f iσ(1)iσ(2)...iσ(k) . Thus, f (Ik) +T Ik = f iσ(1)iσ(2)...iσ(k)

as desired. �

Another way to view this lemma is that it makes concrete the idea presented previously

that any f Ik can be decomposed into a totally-symmetric term f (Ik) plus a term whose totally

symmetric part is zero, T Ik . These sums are exactly the ones encountered when dealing with

this n-symplectic gauge freedom.

3.3.2 Where gauge freedom exists, where it is limited

It has been discussed thoroughly that the structure equation (1.11) does not uniquely define

Hamiltonian vector fields XI
f̂

for observables f̂ of rank 2 or greater. The gauge freedom can be

22



removed by moving to the cotangent bundle by means of the ψα map [12]. Remaining on the

frame bundle, it has been shown [13] that the choice of gauge for the Hamiltonian distribution

of a tensorial observable can be fixed globally by the choice of a torsion-free linear connection.

If such a choice cannot be made, then there will always remain some level of gauge freedom

in the equations of motion on the frame bundle defined by the Hamiltonian vector fields of an

observable of rank 2 or greater.

Take, for example, the rank 3 tensorial observable f̂ = fabcπ̂aπ̂bπ̂c. The Hamiltonian vector

fields defined by this observable are

Xij

f̂
=

1

2

(
fabsπiaπ

j
b + T ijs

)
∂s −

1

3!

(
fabc,s πiaπ

j
bπ

r
c + T ijrs

) ∂

∂πrs
(3.28)

Selecting an arbitrary α = αir
i ∈ Rn∗ \ {0}, we then look at the integral curves of αiαjX

ij

f̂
;

they are defined by the equations

2ẋs = fabsπaπb (3.29)

3!π̇rs = −fabc,s πaπbπ
r
c − αiαjT ijrs (3.30)

The second set of equations can be split into two more sets of equations,

3!π̇s = −fabc,s πaπbπc

3! ⊥ π̇ks = −fabc,s πaπb ⊥ πkc − αiαj ⊥kr T ijrs ,
(3.31)

where again ⊥kr is the projection operator into the orthogonal subspace to πs, and we continue

to use the shorthand πa = πiaαi and ⊥ πkc =⊥kr πrc . The second set of these equations represents

n − 1 sets of equations; the exact equations depend upon what basis for the momentum rest

space is chosen. The sum αiαj ⊥kr T
ijr
s in these equations is nonzero for many choices of gauge

T ijrs . This may be more clearly seen by writing ⊥kr= δkr − 1
α2α

kαr, and then

αiαj ⊥kr T ijrs = αiαjT
ijk
s − 1

α2
αkαiαjαrT

ijr
s = αiαjT

ijk
s (3.32)

since T
(ijr)
s = 0.

This process can be carried out for any observable of rank 2 or greater with the same result.

Notice that if we had chosen two arbitrary constants α, β ∈ Rn∗ \ {0} such that α 6= β, then

there would be a gauge term included in the q̇s and π̇s equations of motion of the vector field

αiβjX
ij

f̂
in the Hamiltonian distribution. Furthermore, if we had separated equation (3.30)

in any different manner than equations (3.31), the gauge term would have remained in every

equation. Therefore, we see again what was seen in the construction of the ψα map: The classic
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equations of motion (those of xs and πs = ps on the cotangent bundle) are independent of this

n-symplectic gauge freedom. Moreover, we see that without some global choice of gauge, the

arbitrariness will persist in the equations of motion on the frame bundle (specificially, in the

momentum rest space).

Where this n-symplectic gauge freedom exists, the ability to manipulate the other (sym-

metric) terms is limited. Lemma 3.4 shows how one may use the gauge term to fix an order

of indices in these symmetric terms. The greatest limitation to the ability to arrange indices

comes from inherent symmetries in the functions to be considered. For any observable of rank

k ≥ 2, the kth degree term has a totally symmetric component function, and no assumption

of symmetry in the lower-degree component functions is made a priori. Consider the general

rank 2 observable f̂ =
(
fabπiaπ

j
b + 2Aaiπja + 2Bij

)
r̂ir̂j whose Hamiltonian distribution is

Xi
f̂

=
(
fasπia +Asi

)
∂s −

1

2

(
fab,k π

i
aπ

j
b + 2A

a(i
,k π

j)
a + 2B

(ij)
,k + T ijk

) ∂

∂πjk
(3.33)

Lemma 3.4 shows us that we can choose T ijk such that the vertical portion is equal to

−1

2

(
fab,k π

i
aπ

j
b + 2Aai,kπ

j
a + 2B

(ij)
,k

)
or to − 1

2

(
fab,k π

i
aπ

j
b + 2Aaj,k π

i
a + 2Bij

,k

)
.

The fact that fab = f ba precludes us from arranging that term’s indices with a choice of gauge

T ijk for two reasons: One, the terms fab,k π
i
aπ

j
b and fab,k π

j
aπib are equal. And two, the choice of

T ijk required by the lemma is equal to 0. It would appear that the highest-degree term (the

tensorial term) remains invariant under the n-symplectic gauge, but this is not entirely true.

Notice first that the sum fabπiaπ
j
b can be written equivalently as fabπcaπ

d
b δ
i
cδ
j
d. Next, let’s write

these terms out as the explicit sum

fabπ1aπ
1
b δ
i
1δ
j
1 + . . .+ fabπ1aπ

(n)
b δi1δ

j
(n) + fabπ2aπ

1
b δ
i
2δ
j
1 + . . .+ fabπ(n)a π

(n)
b δi(n)δ

j
(n). (3.34)

While the entire sum is symmetric in the indices i and j, most of the individual terms in the

sum (e.g. fabπ1aπ
2
b δ
i
1δ
j
2) are not. Then by Lemma 3.4, most of the terms in the sum can have

the positions of the i and j index swapped by gauge choice. The only terms in this sum which

are wholly independent of gauge are the terms fabπ
(k)
a π

(k)
b δi(k)δ

j
(k) for a fixed but arbitrary k.

The expansion (3.34) can be applied to any degree term of any rank observable, and can be

useful whenever there are symmetries inherent in the component functions. This does not mean

that the other terms can be entirely gauged away, only that their indices can be manipulated

by gauge choice; for example, fabπ1aπ
2
b δ
i
1δ
j
2 + fabπ1aπ

2
b δ
i
2δ
j
1 can be gauged to 2fabπ1aπ

2
b δ
i
1δ
j
2 or

2fabπ1aπ
2
b δ
i
2δ
j
1.
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3.3.3 Effect of arranging indices, charged particle example

We have just seen how and when we can arrange indices of terms in the n-symplectic Hamilto-

nian vector fields using the gauge freedom. Now, we will explore some of the consequences of

choices of orders of indices.

This first example has limited use and scope in the standard study of n-symplectic geometry,

but is illustrative nonetheless. Consider again the rank 3 tensorial observable with Hamiltonian

vector fields (3.28). Expand fabsπiaπ
j
b and fabc,s πiaπ

j
bπ

r
c in the same way as (3.34), and choose as

gauge terms T ijs = fabsπ1aπ
2
b

(
δi2δ

j
1 − δi1δ

j
2

)
and T ijrs = fabc,s π1aπ

2
bπ

r
c

(
δi2δ

j
1 − δi1δ

j
2

)
. Then, X12

f̂
=

0. There are three important things to note about this construction: First, only one vector field

in the distribution has been gauged to zero. The entire distribution cannot simultaneously be

gauged to zero in general. Second, it requires two upper indices on the Hamiltonian vector field,

and thus it cannot be performed for observables of rank 1 or 2. And third, the values for the

two upper indices must be different. This is not normally encountered by itself; in applications,

a single α ∈ Rn∗ \ {0} is chosen in order to select a vector field from the distribution, and

αiαjX
ij

f̂
6= X12

f̂
.

In §3.2, we showed that certain choices bring to light an intrinsic difference of a factor of
1
2 in the motion of the primary and secondary legs of the momentum frame of the charged

n-symplectic observable in flat space. While such a difference seems promising for the devel-

opment of a classical theory of spin, it also leads directly to singularities in the motion of the

particle/observer. Returning to equation (3.20) with our choice of the generalized Maxwell field

tensor given in equation (3.23), we use Lemma 3.4 to choose a gauge T jik other than zero such

that

αiX
i
η̂ = ηasπ1a∂s + πjaF

1
kbη

ab ∂

∂πjk
(3.35)

This choice of gauge eliminates the difference of 1
2 between the equations of motion of the

primary momentum π1s and the momentum rest space πAs . Furthermore, this choice of gauge

has eliminated the possibility of singularities in the motion on the frame bundle; the motion in

the πab is given by the solutions

π(s) =


π11(0) π12(0) cos(Bs) + π13(0) sin(Bs) π13(0) cos(Bs)− π12(0) sin(Bs) π14(0)

π21(0) π22(0) cos(Bs) + π23(0) sin(Bs) π23(0) cos(Bs)− π22(0) sin(Bs) π24(0)

π31(0) π32(0) cos(Bs) + π33(0) sin(Bs) π33(0) cos(Bs)− π32(0) sin(Bs) π34(0)

π41(0) π42(0) cos(Bs) + π43(0) sin(Bs) π43(0) cos(Bs)− π42(0) sin(Bs) π44(0)


The determinant of this matrix is constant. On the other hand, we may use Lemma 3.4 to
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choose a gauge such that

αiX
i
η̂ = ηasπ1a∂s + π1aF

j
kbη

ab ∂

∂πjk
(3.36)

The equations of motion on the frame bundle now become rather interesting again. The differ-

ential equations are

q̇s = ηasπ1a

π̇1s = π1aF
1
sbη

ab

π̇As = 0, A = 2, 3, 4.

(3.37)

The solution π(s) matrix is

π(s) =


π11(0) π12(0) cos(Bs) + π13(0) sin(Bs) π13(0) cos(Bs)− π12(0) sin(Bs) π14(0)

π21(0) π22(0) π23(0) π24(0)

π31(0) π32(0) π33(0) π34(0)

π41(0) π42(0) π43(0) π44(0)

 ,

and it is apparent once again that there can exist singularities in the equations of motion. As

an example, choose π13(0) = π22(0) = π32(0) = π42(0) = 0, and π12(0) = 1 for a singularity to occur

at s = π
2B . With singularities so closely tied to both gauge freedom and initial conditions, the

oscillotron would seem to be an appropriate model only in very specific instances.
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Chapter 4

A Symplectic Submanifold of LM

In this chapter, we will explore a special subbundle B1 ⊂ LM . The importance of this subbundle

was first mentioned in [14], where it was shown that B1 is both a symplectic and an n-symplectic

manifold. B1 is, in general, a local slice of LM . In order to realize B1 as a coordinate slice,

we shall now restrict our manifold M to be an n-dimensional Euclidean space Rn. After a

brief review of the definition of B1 and its algebra of n-symplectic observables b1, we will show

how one can examine the dynamics upon B1 of n-symplectic observables not in the algebra

b1, examine these dynamics to discover and interpret new structures not seen in symplectic

geometry, discover multiple Kaluza-Klein-type theories encoded naturally into the structure

of the Hamiltonian distributions on B1, and discover that standard motions on B1 develop

singularities in much the same way as we saw with the charged n-symplectic observable.

4.1 Definition of B1 and its Algebra of Observables

Norris and Brown defined B1 as the coordinate slice on LRn given by

πAb = δAb , A = 2, 3, . . . , n (4.1)

That is, all the points in u ∈ LRn such that πAb (u) = δAb for A = 2, . . . , n. The slice B1 is not

unique. There are n− 1 other slices Bk that can be defined similarly. Also, in the notation of

the previous sections, for any choice of α ∈ Rn∗ \{0} we can define the slice Bα as all the points

of LRn such that π̄Ab = δAb , where the π̄Ab form a basis for ⊥ πab , the vertical space orthogonal

to πs = αiπ
i
s. Any of these slices will behave equivalently to B1; the only notable feature

separating B1 from the other similar slices is the fact that we have chosen to use it explicitly.

Recall that every point u ∈ LM is written as a pair (p, ei) where the ei form a linear

frame for the tangent space at p ∈ M . This means that πij(u) is non-degenerate as a matrix.
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By identifying π1k with the standard momentum coordinates pk on T ∗Rn, we see that B1 is

naturally isomorphic to T ∗Rn minus all points where p1 = 0. This means that B1 is a manifold

of dimension 2n, and thus B1 has a natural symplectic structure. The soldering form θ̂ pulls

back to and dθ̂ is still non-degenerate on B1, so B1 is an n-symplectic submanifold of LRn as

well. It will be this combination of symplectic and n-symplectic character that produces rich

and interesting structures on B1.

As B1 is isomorphic to T ∗Rn minus the points where p1 = 0, we will not need to make use

of the ψα map described in and around equation (1.20) in order to examine our Hamiltonian

vector fields upon T ∗Rn. We still will want to select a single vector field from a Hamiltonian

distribution, so we can accomplish this by choosing constants CI and examining the vector field

CIX
I
f̂
. Often, however, we will forego mentioning CI and simply describe the vector field by

choices of indices (e.g. X112
f̂

).

A vector tangent to B1 ⊂ LRn must have the form X = Xs∂s + X1
s

∂
∂π1
s

in our local

coordinates (xi, πrs). We define b1 to be the algebra of observables of B1; that is, all the n-

symplectic observables defined on B1 such that for every Hamiltonian vector field defined by

the observable, some member of the equivalence class of that Hamiltonian vector field is tangent

to B1 (or, in the case of rank 1 observables, the single Hamiltonian vector field is tangent to

B1). This algebra does not contain every n-symplectic observable. A special choice was made

in defining B1, and only certain observables can have their Hamiltonian distributions gauged

to be tangent to the slice.

The Hamiltonian vector fields of the observables r̂1, x̂
a
1, and π̂b are easily seen to be tangent

to B1 (see Table 1.2), so they are in b1. Norris and Brown [14] use these three observables as the

basis of a polynomial algebra of observables they called b1, a “basic algebra” for quantization,

and then showed that every observable in b1 can have its Hamiltonian distribution gauged to be

tangent to B1. This basic algebra contains many observables whose Hamiltonian distributions

have useful properties, so we will generally restrict our consideration of observables in b1 to

those in b1.

4.2 Reduction To and Recovery From B1

The advantages of an explicit symplectic structure and a simplified algebra of observables make

working on the slice B1 an appealing option to working on all of LRn, but it becomes clear

quickly that b1 is a very restrictive algebra. An important observable in n-symplectic geomtery

is the metric observable, the rank 2 tensorial observable ĝ = gabπ̂aπ̂b on LRn determined by

the metric tensor ~g on Rn. ĝ will not, however, be in the subalgebra b1 unless the component

functions gab are constant. In this section, we will show how to reproduce the effects of ĝ

upon B1 using observables in b1. Several methods will be investigated, and utility of the
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corresponding Hamiltonian vector fields and with the Poisson bracket will be compared.

Consider a smooth metric tensor ~g whose component functions gab have a (convergent)

power series expansion gab = λab + λabc x
c + λabcdx

cxd + . . ., where each λabIr are real constants.

In practice, the vast majority of metrics considered are at least locally somewhere analytic (as

opposed to being nowhere analytic), so the methods described in this section will be generally

useful in practice, at least locally. We define

g0 := λabπ̂aπ̂b

g1 := λabc x
cπ̂aπ̂b

g2 := λabcdx
cxdπ̂aπ̂b

etc.

We also define the components1 gabr := λabIrx
Ir so that we may write2 ĝ =

∑
r
gr =

∑
r
gabr π̂aπ̂b.

To each of the rank 2 observables gr, there is a corresponding rank r + 2 observable ĝr ∈ b1:

ĝ0 := λabπ̂aπ̂b

ĝ1 := λabc x̂
c
1π̂aπ̂b

ĝ2 := λabcdx̂
c
1x̂
d
1π̂aπ̂b

etc.

Notice that we may also write ĝk = gkr̂1k (so ĝ0 = g0, ĝ1 = g1r̂1, ĝ2 = g2r̂1r̂1, etc.), and that

the two sequences of observables behave similarly under the Poisson bracket.

Lemma 4.1 Let ĥ be an arbitrary but fixed observable, and let gk and ĝk be defined as above.

Then, {ĝk, ĥ} = {gk, ĥ}r̂1k .

Proof: Since the Poisson bracket is a derivation[11], we may write

{ĝk, ĥ} = {gkr̂1k , ĥ} = {gk, ĥ}r̂1k + gk{r̂1k , ĥ}

The Poisson bracket of r̂1 with any observable is identically zero, so {ĝk, ĥ} = {gk, ĥ}r̂1k as

desired. �

If ĥ is a rank k observable, then {ĝr, ĥ} is an observable of rank k + r + 1 and {gr, ĥ}
is an observable of rank k + 1. By the lemma above, the only difference between the totally

1The gabr are referred to as components as they serve a similar purpose to the f̂Ir when we write f̂ = f̂Ir r̂Ir
for a general rank r observable.

2We leave the summations unadorned when applicable to note that the expansion gab = λab + λabc x
c + . . .

may be finite or infinite.
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symmetric functions {ĝr, ĥ}Ik+r+1 and {gr, ĥ}Ik+1 is r Kroneker δ’s. Explicitly,

{ĝr, ĥ}i1i2...ik+r+1 = {gr, ĥ}(i1i2...ik+1δ
ik+2

1 . . . δ
ik+r+1)
1

This means that each {ĝr, ĥ}Ik+11r = {ĝr, ĥ}Ik+111...1 is proportional to {gr, ĥ}Ik+1 ; however,

the constant of proportionality is different for different values of the multi-index Ik+1 =

(i1, i2, . . . , ik+1). As an example to show the difference,

{ĝr, ĥ}1k+r+1 = {gr, ĥ}1k+1

{ĝr, ĥ}21k+r = {ĝr, ĥ}211...1 =
k + 1

k + r + 1
{gr, ĥ}21k

(4.2)

If we write {ĝr, ĥ}Ik+11r = γ{gr, ĥ}1k+1 , then the constant of proportionality γ depends on the

values of r and the multi-index Ik+1, and it is a straight-forward counting argument to calculate

each γ(r, Ik+1). All of this leads to the following lemma.

Lemma 4.2 For an arbitrary observable ĥ and the metric observable ĝ with a series expansion,

we are able to calculate the action {ĝ, ĥ} using either the actions {ĝr, ĥ} or {gr, ĥ} of observables

ĝr and gr in b1.

Proof: From the fact that ĝ =
∑
r
gr and the linearity of the Poisson bracket, we have {ĝ, ĥ} =∑

r
{gr, ĥ}. The fact that {ĝr, ĥ}Ik+11r = γ(r, Ik+1){gr, ĥ}1k+1 allows us to write

{ĝ, ĥ} =
∑
r

1

γ(r, Ik+1)
{ĝr, ĥ}Ik+11r r̂Ik+1

thus completing the proof3.�

3One argument about this proof is that it seems to “sweep under the rug” the fact that the series expansion of
gab may be infinite, not a finite sum or polynomial expansion, and the Poisson bracket is not explicitly required

to be countably linear in its arguments. Assume gab has an infinite series expansion
∞∑
r=0

λabIrx
Ir . By definition of

the Poisson bracket,

{ĝ, ĥ} = −k!X
Ik−1

ĥ
(πj1a π

j2
b g

ab)r̂Ik−1J2

= −k!X
Ik−1

ĥ

(
∞∑
r=0

πj1a π
j2
b λ

ab
Irx

Ir

)
r̂Ik−1J2

=

(
∞∑
r=0

−k!X
Ik−1

ĥ
(πj1a π

j2
b λ

ab
Irx

Ir )

)
r̂Ik−1J2

=

∞∑
r=0

{gr, ĥ}
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The Hamiltonian vector fields X
Ir+1

ĝr
of each observable ĝr ∈ b1 are easily calculated to be

Xi
ĝ0 = λasπia∂s (4.3)

(r + 2)!X
Ir+1

ĝr
= 2gasr δ

(Ir
1r−1

πir+1)
a ∂s −

∂gabr
∂qs

δ
(Ir−1

1r
πira π

ir+1)
b

∂

∂π1s
(4.4)

Pieces of the (series expansion of) the metric ĝ and its Hamiltonian vector fields can be seen

in these vector fields, but in order to recover the dynamics of ĝ we must combine all of these

distributions in the proper way. We can relate the sum of the observables ĝ0 through ĝr for

some finite r to a sum of their Hamiltonian vector fields via the structure equation (1.11) if

each observable is raised to rank r + 2. This is accomplished by tensoring in (multiplying)

observables r̂1 ∈ b1. The resulting sum of structure equations is

d(ĝ0r̂1r+ĝ1r̂1r−1 + . . .+ ĝr)

= −(r + 2)!

(
Xĝr +

(r + 1)!

(r + 2)!
Xĝr−1 + . . .+

2

(r + 2)!
Xĝ0

)
dθ (4.5)

d
([
gab0 + gab1 + . . .+gabr

]
δ
(Ir
1r
πir+1
a π

ir+2)
b

)
= −

(
(r + 2)!X

(Ir+1

ĝr
+ (r + 1)!X

(Ir
ĝr−1

δ
ir+1

1 + . . .+ 2X
(i1
ĝ0
δIr1r

)
dθir+2)

(4.6)

From this, it would seem easier to create a single new rank r + 2 observable

g̃r :=

r∑
t=0

ĝtr̂1r−t (4.7)

with components g̃abr =
r∑
t=0

gabt . Using equations (4.6) and (4.4), the related Hamiltonian

distribution (without gauge terms) is

(r + 2)!X
Ir+1

g̃r
= 2g̃abr δ

(Ir
1r−1

πir+1)
a ∂s −

∂g̃abr
∂xs

δ
(Ir−1

1r
πira π

ir+1)
b

∂

∂π1s
. (4.8)

We might be led to conclude that the Hamiltonian distribution X
Ir+1

g̃r
is proportional to Xi

ĝ

using an argument similar to the discussion around equations (4.2). This is only true when the

gauge terms are neglected; if r > 0, then X
Ir+1

g̃r
will have a horizontal gauge term that Xi

ĝ lacks.

The vector field X
Ik−1

ĥ
is a differential operator, and it can be moved inside the infinite sum because a power

series is absolutely convergent in its radius of convergence. The proof follows.
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Explicitly,

(r + 2)!X
Ir+1

g̃r
= 2

(
g̃abr δ

(Ir
1r−1

πir+1)
a + T Ir+1s

)
∂s −

(
∂g̃abr
∂xs

δ
(Ir−1

1r
πira π

ir+1)
b + T 1Ir+1

s

)
∂

∂π1s
. (4.9)

Lemma 4.2 and its proof show us that, nevertheless, this single observable behaves under the

Poisson bracket very much like ĝ. The difference between {ĝ, ĥ} and {g̃, ĥ} will decrease as the

rank r of g̃ increases.

The single observable g̃ ∈ b1 contains all the information the (finite collection of) observables

ĝr ∈ b1 contain, and either can be used to approximate ĝ on B1 and b1 to any desired degree of

accuracy. At the moment, the primary advantage to using g̃ to approximate ĝ on B1 as opposed

to the collection of observables {ĝr} is that there is only one observable, so any information is

gleaned from a single source and not decoded from the sum of multiple calculations. We will

see in the next section that the Hamiltonian distribution of g̃ reproduces the dynamics of ĝ to

any desired degree of accuracy, prompting us to use g̃ in order to study dynamics on B1.

4.3 Gauging to B1

We have shown how to work with the polynomial algebra of observables b1 ⊂ b1 in order to

calculate the dynamics of many observables not in the algebra. We are able to accomplish this

because polynomials are dense in the set of smooth functions; however, working with large and

possibly infinite sums can become rather bothersome in practice. In this section, we present

two methods for starting with an observable not in b1 and being able to produce Hamiltonian

vector fields tangent to B1.

Our first method is more limited in application, as it generally provides only a single Hamil-

tonian vector field tangent to B1. Let ĝ be the rank 2 tensorial metric observable, ĝ = gabπ̂aπ̂b,

with Hamiltonian distribution

Xi
ĝ = gasπia∂s −

1

2

(
gab,k π

i
aπ

j
b + T ijk

) ∂

∂πjk
. (4.10)

Expand the term gab,k π
i
aπ

j
b as in (3.34), and let

T ijk = 2gab,k π
1
aπ

2
b δ

[j
1 δ

i]
2 + 2gab,k π

1
aπ

3
b δ

[j
1 δ

i]
3 + . . .+ 2gab,k π

1
aπ

(n)
b δ

[j
1 δ

i]
(n). (4.11)

This choice of gauge does not leave the entire distribution spanned by Xi
ĝ tangent to B1, but

we have

X1
ĝ = gasπ1a∂s −

1

2
gab,k π

1
aπ

1
b

∂

∂π1k
(4.12)
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which is tangent to B1. This same process can be repeated for any rank k > 1 tensorial

observable. For a non-tensorial observable, this process is expanded to first remove the sym-

metry forced upon the lower-degree terms appearing in the vertical portion of the Hamiltonian

distribution, and then each lower-degree term is expanded and gauge-altered as the tensorial

(highest-degree) term was.

Our second method is more general, but requires us to create a new observable again. Let

F̂ be a general rank 2 observable, F̂ =
(
F abπiaπ

j
b +Gaiπja +H ij

)
r̂ij . We define the rank 3

observable

F̂+ := F̂ r̂1 =
(
F abπiaπ

j
b +Gaiπja +H ij

)
r̂ij1 (4.13)

As the previous method primarily uses tensorial observables, we should note that no observable

formed this way will be tensorial. The Hamiltonian distribution defined by F̂+ is given by

3!Xij

F̂+
=
(

2F asπ(ia δ
j)
1 +Gs(iδ

j)
1 + T ijs

)
∂s

−
(
F ab,s π

(i
a π

j
bδ
r)
1 +Ga(i,s π

j
aδ
r)
1 +H(ij

,s δ
r)
1 + T ijrs

) ∂

∂πrs
(4.14)

By Lemma 3.4 we are able to select a gauge T ijr to fix the index r on the Kroneker δ in every

term in the vertical part of the distribution, thus making the entire distribution tangent to the

slice B1. This method generalizes: For any rank k observable Ĝ, the rank k + 1 observable

Ĝ+ = Ĝr̂1 can be gauged to be tangent to B1. We chose to present this method using a general

rank 2 observable so as to easily and explicitly show the Hamiltonian distribution.

4.4 New Dynamics on B1

Now, let us restrict our attention to a quadratic approximation of ĝ upon B1,

g̃2 = (λabr̂1r̂1 + λabc x̂
c
1r̂1 + λabcdx̂

c
1x̂
d
1)π̂aπ̂b, (4.15)

with Hamiltonian distribution

4!Xijk
g̃2

= 2
(
g̃as2 π

(i
a δ

j
1δ
k)
1 + T ijks

)
∂s −

(
g̃ab2,sπ

(i
a π

j
bδ
k)
1 + T 1ijk

s

) ∂

∂π1s
, (4.16)
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By varying the values of indices i, j, and k, the Hamiltonian distribution can be seen to split

naturally into four groups4 with gauge terms suppressed.

4!XABC
g̃2 = 0 (4.17)

4!XAB1
g̃2 = − 2

3!
g̃AB2,s

∂

∂π1s
(4.18)

4!XA11
g̃2 = 2

2

3!
g̃As2 ∂s −

4

3!
g̃Ab2,sπ

1
b

∂

∂π1s
(4.19)

4!X111
g̃2 = 2g̃as2 π

1
a∂s − g̃ab2,sπ1aπ1b

∂

∂π1s
(4.20)

where captial Roman indices here are single indices that do not take the value 1. There is only

one vector field in the final group, and it is independent of gauge5. The integral curves of this

vector field follow from the equations

4!ẋs = 2g̃as2 π
1
a

4!π̇1s = −g̃ab2,sπ1aπ1b
π̇As = 0, A = 2, . . . , n

(4.21)

Let’s assume the existence of a series approximation of gab, leading to the quadratic observable

g̃2ab ∈ b1 such that g̃ab2 g̃
2
bc ≈ δac . Then, the first two integral curve equations combine as usual

to give an approximation to the geodesic equation

ẍs ≈ −Γsabẋ
aẋb. (4.22)

Unlike the standard case (the equations of motion of ĝ on LM [11]), the remaining π̇ equations

in (4.21) do not show parallel transport of the remaining legs of the momentum frame. We have

recovered the symplectic dynamics of our metric observable ĝ after specializing it to the slice

B1, but not the full n-symplectic dynamics; this is due to the symplectic nature of the slice B1.

The vector fields in the remaining groups6 (and their integral curves) do not correspond

to the dynamics of the free particle observable in symplectic geometry; they are new, internal

dyamics. Specifically, the vector fields in the second group (equation (4.18)) produce purely

4Note that choosing the gauge so as to fix an order of the indices i, j, and k has but two effects. First, it
removes the numerical factor introduced by expanding the symmetrized terms to see which survive and which are
removed; choosing the gauge so that 4!Xijk

g̃2
= 2g̃as2 π

(i
a δ

j
1δ
k)
1 ∂s − g̃ab2,sπiaπ

j
bδ
k
1

∂
∂π1

s
gives 4!XAB1

g̃2 = −g̃AB2,s
∂
∂π1

s
. And

second, it sets the order of the indices to define each group; choosing the gauge so that 4!Xijk
g̃2

= 2g̃as2 π
(i
a δ

j
1δ
k)
1 ∂s−

g̃ab2,sπ
i
aπ

k
b δ
j
1
∂
∂π1

s
gives 4!XAB1

g̃2 = 0 but 4!XA1B
g̃2 = −g̃AB2,s

∂
∂π1

s
.

5It is, in fact, the only vector field in these groups to be explicitly independent of gauge
6This includes the trivial group described by equation (4.17), because gauge freedom still exists in those vector

fields.
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internal motion, a change in momentum without a change in position. The integral curves are

simple to write down:

ẋs = π̇As = 0

4!π̇1s = − 2

3!
g̃AB2,s

(4.23)

So, we see that the momentum (π1s = ps) is linear in time, while the rest of the momentum

frame as well as the position remain constant. Consider a particle or observer in free-fall

(travelling along a geodesic) for a time, then changing momentum, and then resuming its

previous free-fall motion (along a new geodesic depending on the position and new momentum

when it resumes). Classically, such a change in momentum could come from some external event

such as a collision or an internal event such as particle decay, situations in which the change

would occur (nearly) instantaneously. Groups of vector fields in the n-symplectic Hamiltonian

distribution Xijk
g̃2

contain these disparate dynamics, so we may model this change in motion not

by changing our observable over time but by changing over time the vector field chosen from the

Hamiltonian distribution, CijkX
ijk
g̃2

. Instead of choosing constants as was mentioned in §4.1,

allow the Cijk to be piecewise constant in time (the parameter along an integral curve). By

being piecewise constant in time, none of the dynamics (the integral curves, particularly from

equations (4.21) and (4.23)) are changed by Cijk, but the curve would be allowed to “follow

different paths” as it develops. This piecewise motion could allow the particle or observer

to seem to stop suddenly, change momentum over time without changing position, and then

continue moving along its new “natural” path. This does not follow what is seen in particle

decay, so we are lead to declare that these internal motions, seen only on the frame bundle,

should then be interpreted as following a different time parameter; a parameter to measure

travel along these vertical curves, but that is separate from and does not contribute to proper

time. Proper time should always be measured along the curves that can be mapped invariantly

(namely the fourth group, equation (4.20)).

Next, we should attempt to interpret the remaining nontrivial group of vector fields, (4.19).

We look again to the integral curves

4!ẋs = 2
2

3!
g̃As2

4!π̇1s = − 4

3!
g̃Ab2,sπ

1
b

π̇As = 0

(4.24)

In contrast to the second group, motion on the base (i.e. change in the xs) is now possible. The

dynamics of this group cannot be considered as purely internal. Let us consider an example
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similar to that in the previous paragraph: We choose constants Cijk piecewise constant in time

such that we travel along a geodesic (equations (4.21)) for a time, change to a curve defined

by this group of Hamiltonian vector fields, and then resume travel along some geodesic. The

time spent along an integral curve from this group would not contribute to proper time, so the

particle would appear to vanish from one point and then reappear at another. Such motion

could be used to model wormholes or quantum teleportation.

Finally, the trivial group XABC
g̃2

deserves some attention. These vector fields will be equal to

zero (up to gauge freedom) no matter the choice of metric. Any choice of Cijk that selects only

Hamiltonian vector fields from this group would, therefore, be equivalent to the choice Cijk = 0.

This stands in contradistinction to the choice of ψα map on LRn; we have no reason a priori to

require that Cijk 6= 0 like our choice of α for the ψα map. If we continue to demand that motion

along the constant integral curves of the vector fields in this group not contribute to proper

time, then this group would have no measurable effect upon a particle’s motion. Looking only

on the frame bundle, a choice of Cijk that begins non-zero and then, at some time, becomes and

stays zero would would show motion for a certain amount of time and then suddenly coming

to a stop.

The decision to examine only a quadratic approximation g̃ of ĝ on B1 was made merely for

convenience. For an order r ≥ 2 approximation, the Hamiltonian vector fields X
Ir+1

g̃r
will still

fall into four groups depending on the values of the indices Ir+1: At least 3 indices not equal to

1, two indices not equal to 1, one index not equal to 1, and no index not equal to 1, given by

(r + 2)!X
ABCIr−2

g̃r
= 0 (4.25)

(r + 2)!X
AB1r−1

g̃r
= −2

(r − 1)!

(r + 1)!
g̃ABr,s

∂

∂π1s
(4.26)

(r + 2)!XA1r
g̃r

= 2
r!

(r + 1)!

(
g̃Asr ∂s − g̃Abr,sπ1b

∂

∂π1s

)
(4.27)

(r + 2)!X
1r+1

g̃r
= 2g̃asr π

1
a∂s − g̃abr,sπ1aπ1b

∂

∂π1s
(4.28)

The fourth group, the single vector field X
1r+1

g̃r
= X111...1

g̃r
, will be the only group whose vector

fields are free of gauge. The integral curves of this Hamiltonian vector field will be approximately

the geodesics of the metric on M . This approximation will become more accurate as r increases.

The other three groups have the same features as the corresponding groups of the quadratic

approximation, namely purely internal motion, spatial and internal motion, and being trivial.
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4.5 Kaluza-Klein Structures

We have shown that we can approximate the metric observable ĝ on B1 (really, any observable

with a series expansion) to an arbitrary level of accuracy. We will now refer to working with

the metric observable ĝ on B1 directly, meaning that we can approximate these results to a

desired level of accuracy.

In the three non-zero groups of Hamiltonian vector fields for ĝ on B1 the metric appears in

three forms: The matrix gab, the vectors gAb, and the scalars gAB. One might be inclined to

rearrange these terms into a Kaluza-Klein-type theory, creating an (n+ 1)-dimensional metric

Gαβ =



g11 g12 . . . g1n −g1A

g21 g22 . . . g2n −g2A
...

...
...

...
...

gn1 gn2 . . . gnn −gnA

−gA1 −gA2 . . . −gAn gAB


(4.29)

with inverse

Gαβ =



g11 + kδ1Aδ
1
A g12 + kδ1Aδ

2
A . . . g1n + kδ1Aδ

n
A kδ1A

g21 + kδ2Aδ
1
A g22 + kδ2Aδ

2
A . . . g2n + kδ2Aδ

n
A kδ2A

...
...

...
...

...

gn1 + kδnAδ
1
A gn2 + kδnAδ

2
A . . . gnn + kδnAδ

n
A kδnA

kδ1A kδ2A . . . kδnA k


(4.30)

where gAB = 1
k + gAA. Each choice of A and B gives a different Kaluza-Klein-type metric, but

when A and B take the same value the metric is singular, so in the end we have (n− 1)(n− 2)

different Kaluza-Klein-type metrics from which to choose. The main difference between these

metrics and a standard Kaluza-Klein metric is that the scalar k will not be constant in general.

Interestingly enough, the choice of index B makes no difference in the geodesic equation. In 4

dimensions, the 4-dimensional part of the 5-dimensional geodesic equation becomes

ẍa + Γabcẋ
bẋc =

1

2
gabk,b(ẋ

5ẋ5 − 2ẋAẋ5) (4.31)

where a, b, c = 1, 2, 3, 4. The right-hand side contains only a term with a derivative on k (which

would be 0 in the standard theory) and no reference to a Maxwell field tensor. This is due to

the fact that the vector potential term Aa is built from the metric; Aa = gAa, so Aa = δAa and

Fab = Ab,a −Aa,b = 0.
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If instead we arrange the metric pieces as

Gαβ =



g11 g12 . . . g1n −g1A
g21 g22 . . . g2n −g2A
...

...
...

...
...

gn1 gn2 . . . gnn −gnA
−gA1 −gA2 . . . −gAn gAB


(4.32)

with inverse

Gαβ =



g11 + kδ1Aδ
1
A g12 + kδ1Aδ

2
A . . . g1n + kδ1Aδ

n
A kδ1A

g21 + kδ2Aδ
1
A g22 + kδ2Aδ

2
A . . . g2n + kδ2Aδ

n
A kδ2A

...
...

...
...

...

gn1 + kδnAδ
1
A gn2 + kδnAδ

2
A . . . gnn + kδnAδ

n
A kδnA

kδ1A kδ2A . . . kδnA k


(4.33)

and again gAB = 1
k + gAA, then the Maxwell field tensor is non-trivial (where the potential

Aj = gjA). If we were then to require k to be a constant, the metric above conforms exactly to

a standard Kaluza-Klein-type metric. This requirement restricts the possible choices of metric

gab, and the implications of these restrictions is an avenue for futher research.

4.6 Singularities on B1

In this section, we are motivated by the existence of singularities in the dynamics of the charged

n-symplectic observable to question whether or not similar singularities exist in the dynamics of

the free particle observable on B1. It was noted in Section § 4.1 that for any point u = (p, ei) ∈
B1, it is required that π11(u) 6= 0. If the integral curve of a Hamiltonian vector field on B1 were

to travel along a path such that π11 → 0, then not only would it leave the slice but it would leave

the entire space LM , just as was the case in §3.2. We will examine the dynamics of the free

particle observable upon B1 first with a specific metric, examining the three nontrivial classes of

Hamiltonian vector fields to show the explicit existence of singularities in the dynamics. Then,

we will discuss briefly the existence of singularities in the dynamics given by a general metric.

Consider the metric gab = diag(1, 1 + (x1)2, 1, 1). Since it is a quadratic metric it can be

represented exactly upon B1 by g̃ := g̃2 = (δabr̂1r̂1 + δa2δ
b
2x̂

1
1x̂

1
1)π̂aπ̂b. The vector fields spanning

the Hamiltonian distribution on B1 are, by equation (4.16),

4!Xijk
g̃ = (δas + δa2δ

s
2(x1)2)π(ia δ

j
1δ
k)
1 ∂s − 2x1π

(i
2 π

j
2δ
k)
1

∂

∂π11
(4.34)
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The only nontrivial vertical components of these vector fields occur when i, j, and k take values

1 or 2. We will use σ for the parameter along the integral curve γ of any of vector field in this

distribution. The explicit mention of γ will usually be suppressed, writing πij(σ) in place of

πij(γ(σ)), etc.

First, we examine the internal motions from the second group (equation (4.18)). The only

nontrivial vector field in this group is X221
g̃ , and the only nontrivial differential equation defining

γ is

4!
dπ11
dσ

= − 4

3!
x1 (4.35)

If the inital values of x1 and π11 have the same sign (e.g. π11(0) = 4, x1(0) = 4! · 3!), then this

curve will lead to (a point such that) π11(σs) = 0 at some finite time σs (in the example, σs = 1).

Next, we consider the vector field X211
g̃ from group (4.19). The relevant differential equations

are

4!
dπ11
dσ

= − 8

3!
x1π12 (4.36)

4!
dx1

dσ
= 4!

dπ12
dσ

= 0 (4.37)

The motion along π11 is, again, linear in time. If the initial values of π12, x1, and π11 are chosen

such that the product π12x
1 has the same sign as π11(0), there will be a finite time σs such that

π11(σs) = 0. For an explicit example, let π12 = −3!, x1 = −4!, and π11(0) = 8, leading to σs = 1.

This only leaves the standard geodesic motion of the vector field X111
g̃ . The relevant differ-

ential equations are

4!
dx1

dσ
= π11

4!
dπ11
dσ

= −2x1(π12)2

4!
dπ12
dσ

= 0

(4.38)

Once again, π12 is constant in time. This leads to sinusoidal motion in x1 and π11. Specifically,

x1(σ) = x1(0) cos(aσ) +
π11(0)

4!a
sin(aσ)

π11(σ) = π11(0) cos(aσ)− ax1(0) sin(aσ)

a =
π12
4!

√
2

(4.39)

Thus, any choice of initial conditions (so long as π11(0) 6= 0) will lead to π11(σs) = 0 at multiple
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finite times σs. As an explicit example: x1(0) = 0, π12 = 1√
2
, and π11(0) 6= 0 leads to singularities

at σs = 4!(2n+ 1)π for all n ∈ Z.

We have shown the existence of singularities in the dynamics of a quadratic metric observable

on B1. Are we then able to determine necessary or sufficient criteria for the existence of

singularities for a general metric gab? The general formulae for the groups of vector fields are

given by equations (4.25)-(4.28). Only from the second group can we discern both necessary

and sufficient conditions. We see again that
dπ1

1
dσ is constant. If and only if a choice of indices A

and B (each not equal to 1) can be made such that gAB,1 6= 0, one can choose initial conditions

π11(0) 6= 0 and xk(0) such that π11(σs) = −2 (r−1)!
(r+1)!·(r+2)!g

AB
,1 σs+π11(0) = 0. The ability to choose

indices A and B in this way is a condition on the metric gab.

The condition that gab,1 6= 0 for some choice of a and b is necessary in all three non-trivial

groups of vector fields for there to be a singularity. The third and fourth groups of Hamiltonian

vector fields (equations (4.27) and (4.28)), however, do not yield any more information as to

which metrics lead to singularities and which do not. Take the third group for example: If

g21 = x1 and g22 = g23 = g24 = 0, then π11(σ) will be exponential in σ and there will be no

singularity in finite time. On the other hand, g22 = x1, and g21 = g23 = g24 = 0 leads to π11
being linear in σ and π11(σs) = 0 for some finite σs. More complicated metrics only compound

the analysis, and the fourth group is even more obtuse7.

7The metrics mentioned in this example would only be valid (nondegenerate) locally, but nonetheless serve
to illustrate the point.
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Chapter 5

Conclusion and Future Work

We have examined the structures and dynamics in a number of non-canonical and non-standard

situations in n-symplectic geometry. We began by attempting to lift Künzle’s work to the

frame bundle in a general way by adding some combination of connection 1-forms ωab to the

soldering form. Even in the simplest of cases, however, the resulting n-symplectic dynamics

were too restrictive. The allowable observables are very simple, and the associated motions

do not contain a contribution from spin or that can be called spin. We then examined the

charged n-symplectic form obtained by adding a generalized electromagnetic vector potential

to the soldering form. While the noted 1
2 difference in the momentum rest space seemed

to be indicative of a natural setting in which to build a classical theory of spin-12 particles,

we were able to show that the same reasonable choices that lead to this difference also lead

to the possibility of introducing singularities in the equations of motion. We discussed the

gauge freedom inherent in many n-symplectic Hamiltonian vector fields that had largely been

swept aside in previous studies in favor of gauge-invariant techniques. It became clear, then,

that with the proper choice of gauge, the 1
2 difference and the associated singularities can be

removed. This conclusion does not invalidate Lemma 3.3, as the 1
2 difference only appears

(or disappears) after a particular choice of α for the mapping of the Hamiltonian distribution

to the cotangent bundle. From non-canonical n-symplectic geometry we moved to the non-

standard, investigating n-symplectic geometry on the symplectic submanifold B1. The algebra

b1 of observables on B1 is more limited than the algebra of observables on LM . We primarily

concerned ourselves with b1 ⊂ b1, a polynomial algebra. As polynomials are dense in the

space of smooth functions, we were able to demonstrate a number of methods by which many

observables on LM can be represented by observables in b1. With this detail out of the way,

we calculated the n-symplectic Hamiltonian vector fields associated with the free particle to

discover motions not seen in symplectic geometry. These motions were then classified into four

groups: One trivial, one purely internal (change in momentum, no change in position), one
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that presents change in momentum and position, and the classical motion. The two non-trivial,

non-classical groups of motions present motions that are not normally seen classically by free

particles, and are not inherently independent of gauge. We assert that there must be some

sort of impetus for a particle to travel along these integral curves. Furthermore, in order for

these motions to be reconcilled with classical observations, we assert that the time spent along

these integral curves not contribute to proper time. This would cause the change in position

or momentum to occur instantly, providing possible models of particle decay or wormholes. In

the classification of these new motions, we noted that specific pieces of the metric appear in

such a way as to be collected nicely to form Kaluza-Klein-type theories on B1. To finish our

discussion of B1, we noted that singularities can exist even in the motions of the free particle.

Each of the three preceeding chapters leaves certain questions unanswered. In Chapter 2,

we attempted to duplicate Künzle’s work on the entire frame bundle, whereas Künzle only

examined motions on the Lorentz subbundle. Would considering the Lorentz- or some other

subbundle of LM bring to light new symmetries that would allow for more interesting dynamics?

Also, we were able to determine the allowable Hamiltonian vector fields (and, thus, the allowable

observables) explicitly only in very simple cases. These gave general results, but the results

are not necessarily exhaustive. New methods of analyzing the n-symplectic structure equation

are needed in order to rule out the possibility of observables not covered in Theorem 2.2 or

Theorem 2.3.

In Chapter 3, we make use of gauge freedom to change what is seen on the frame bundle

without changing the classical motions seen on the cotangent bundle via the ψα map. One is led

to question how “physical” these gauge terms are. We chose a gauge term in order to remove

the 1
2 difference in the motion of the momentum rest space, and we showed that this choice of

gauge is not unique. Is it useful or even possible to classify gauge terms by the dynamics they

produce?

In Chapter 4, we considered using a time-dependent combination of Hamiltonian vector

fields CIX
I in order to produce a piecewise-smooth integral curve using more than one group

of motions on B1. Working on B1 affords us this luxury; normally, we must use the ψα map

in order to bring the n-symplectic motions to the cotangent bundle. Different choices of α for

the ψα map amount to linear changes of the ps coordinates on the cotangent bundle. This

is seen most easily by noting that there is a GL(n) matrix gab such that gabαiπ
i
a = βiπ

i
b, for

α, β ∈ Rn∗ \ {0}. If one were to consider a piecewise constant α ∈ Rn∗ \ {0}, then a particle

following the path of an integral curve of the vector field ψα∗(αIX
I) on T ∗M would essentially

appear to change its orientation from time to time. These dynamics would not be particularly

interesting. If the α were allowed to continuously change, however, rich new structures seem

to appear. Take, for example, the n-symplectic observable for the free particle in flat space,

η̂ = ηabπ̂aπ̂b. Its Hamiltonian distribution is Xi
η̂ = ηasπia∂s. We näıvely map this distribution

42



to the vector field ψα∗(αiX
i
η̂) = ηasπiaαi∂s. The integral curves of this vector field are given by

the differential equations

ẋs = ηasπiaαi

ṗs = 0

These equations even combine to produce the standard result of ẍs = 0. The key difference

lies in the momentum coordinates: We have αiπ
i
s = ps, and so the momentum coordinates

are changing over time, but they remain constant along the path of this particle. The particle

would appear to be a point of calm in this sea of momentum flux. Further research is necessary

to make sense of a variable α and what new dynamics it could bring.
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Appendix A

Proof of Theorem 2.2

We will prove the two specific claims made about observables in Theorem 2.2.

Recall that, in the local coordinates xi and πij we have θi = πijdx
j and ωab = πacdvcb . The

coordinates vjk are dual to the πij in the sense that

vjkπ
i
j = δik

vjkπ
k
m = δjm

Choosing γbia = δb3δ
2
aδ
i
1, equation (2.1) becomes

φi = πikdx
k + δi1π

2
cdv

c
3 (A.1)

and we calculate

dφi = dπik ∧ dxk + γbia dπac ∧ dvcb

= dπik ∧ dxk − δi1vcl vm3 dπ2c ∧ dπlm (A.2)

In the course of both proofs, we will let the use the Greek letters α, β, and γ to represent indices

whose value is never 1, 2, or 3, respectively. These Greek indices will be used to represent when

a choice of value for a particular Latin index is made. If the index is not to be summed, it will

be placed in parentheses. For example, Xα = X(α) and vaγπ
γ
b = δab − va3π3b 6= va(γ)π

(γ)
b .

A.1 Rank 1

Contracting dφi with a general vector field X = Xs∂s +Xr
s

∂
∂πrs

yields

X dφi = Xi
kdx

k −Xsdπis + Σsi
r dπrs (A.3)
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where Σsi
r = vcl v

m
3 δ

i
1

(
X l
mδ

2
rδ
s
c −X2

c δ
l
rδ
s
m

)
. Taking the exterior derivative of both sides of equa-

tion (2.7) leaves d(X dφi) = 0, and we calculate

d(X dφi) = Xi
k,ldx

l ∧ dxk −
(
∂Xi

k

∂πrs
+ δirX

s
,k − Σsi

r,k

)
dxk ∧ dπrs

− δir
∂Xs − Σsi

r

∂πpq
dπpq ∧ dπrs = 0 (A.4)

Using the linear independence of the 1-forms dxk and dπrs , we can separate this into three sets

of equations:

0 = Xi
k,l (A.5)

0 =
∂Xi

k

∂πrs
+ δirX

s
,k − Σsi

r,k (A.6)

0 = δir
∂Xs − Σsi

r

∂πpq
(A.7)

Equations (A.5) and (A.7) can be rewritten taking advantage of their natural antisymmetry.

Notice that A[bc] = 0⇒ Abc = Acb.

Xi
k,l = Xi

l,k (A.8)

δir
∂Xs − Σsi

r

∂πpq
= δip

∂Xq − Σqi
p

∂πrs
(A.9)

We begin our analysis with equations (A.9). Choosing the free index i = α 6= 1 gives

δαl
∂

∂πjk
Xm = δαj

∂

∂πlm
Xk (A.10)

In equation (A.10), l is a free index. Choosing l = α, we get

∂

∂πjk
Xm = δ

(α)
j

∂

∂π
(α)
m

Xk (A.11)

Notice that the choice of α was free; choosing α = 2 would imply

∂

∂πβk
Xm = 0 (A.12)
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Then choosing α = 3, equation (A.11) would imply

∂

∂π2k
Xm = 0 (A.13)

Together, equations (A.12) and (A.13) imply ∂

∂πjk
Xm = 0. Therefore, Xm is a function of the

xi alone, so we can write

Xm = fm(x) (A.14)

though the variable dependence of functions will be suppressed in general. Now choosing i = α

in equation (A.6), we see that
∂

∂πkl
Xα
j = −δαk f l,j (A.15)

Differentiating, we see that ∂2

∂πab ∂π
k
l

Xα
j = 0, which implies that Xα

j is linear in the πrs . We can

write Xα
j = Cαljk(x)πkl + gαj (x). Substituting this into equation (A.15), we see that C

(α)l
j k =

−δ(α)k f l,j . This implies

Xα
j = gαj (x)− παb f b,j (A.16)

Then by defining g1j := X1
j + π1bf

b
,j , we are able to write

Xi
j = gij − πibf b,j (A.17)

It is not known at this point if g1j is a function of the xk or πrs alone.

Using equation (A.17), we can rewrite equation (A.6) in the following way

∂Xi
j

∂πkl
= −δikf l,j − δi1vckvl3X2

c,j + δi1δ
2
kv
l
cv
m
3 g

c
m,j − δi1δ2kvm3 f l,mj (A.18)

Letting i = 1, we find

∂X1
j

∂πkl
= −δ1kf l,j − vckvl3X2

c,j + δ2kv
l
cv
m
3 g

c
m,j − δ2kvm3 f l,mj (A.19)

This will be useful in the future.

The term vmc v
d
3X

c
d occurs in Σsi

r . Expanding this using equation (A.17) gives

vmc v
d
3X

c
d = vd3(vmb g

b
d − vma πab f b,d) = vd3(vmb g

b
d − fm,d ) (A.20)
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Now equations (A.14), (A.17), and (A.20) allow us to rewrite equation (A.9) as

∂

∂πjk

[
vdl v

m
3 X

2
d − δ2l vd3(vmb g

b
d − fm,d )

]
=

∂

∂πlm

[
vdj v

k
3X

2
d − δ2j vd3(vkb g

b
d − fk,d)

]
(A.21)

Choosing l 6= 2 and j = 2 gives

∂

∂π2k

[
vd(β)v

m
3 X

2
d

]
=

∂

∂π
(β)
m

[
vdj v

k
3X

2
d − vd3(vkb g

b
d − fk,d)

]
(A.22)

Expanding both derivatives, the equation reduces to

vd(β)v
m
3 v

k
b g

b
d = vd3

(
vkb

∂gbd

∂π
(β)
m

− vk(β)v
m
b g

b
d

)
(A.23)

Using equation (A.18) and the fact that
∂gbd
∂πam

= δb1
∂g1d
∂πam

, we expand

∂gbd
∂πam

= δb1

(
∂X1

d

∂πam
+ δ1af

m
,d

)
= δb1

(
−vcavm3 X2

c,d + δ2av
m
c v

r
3g
c
r,d − δ2avr3fm,rd

)
(A.24)

in order to rewrite equation (A.23) as

vd(β)v
m
3 v

k
b g

b
d = −vd3vk1vc(β)v

m
3 X

2
c,d − vd3vk(β)v

m
b g

b
d (A.25)

Next, we multiply through by πakπ
b
m to obtain

vd(β)δ
b
3g
a
d = −vd3δa1vc(β)δ

b
3X

2
c,d − vd3δa(β)g

b
d. (A.26)

Choosing b 6= 3 gives

vd3g
(γ)
d = 0, (A.27)

and choosing a = 2 in (A.26) gives

vd(β)g
2
d = 0. (A.28)

Taking the derivative of equation (A.28) with respect to πrs and multiplying by πra yields

g2c = 0. (A.29)

Using equations (A.27) and (A.29), we can rewrite equation (A.26) as

δb3δ
a
(β2)

vd(β1)g
(β2)
d = δa1δ

b
3v
d
3v
c
(β1)

π2rf
r
,cd − δa(β1)δ

b
3v
d
3g

3
d (A.30)
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where β1 and β2 are two arbitrary but fixed numbers not equal to 2. No assumption is made a

priori as to whether or not β1 = β2. Our calculations will simplify if we let β1 = β2 = β, which

we are free to do. This leaves

δa(β)v
d
(β)g

(β)
d = δa1v

d
3v
c
(β)π

2
rf

r
,cd − δa(β)v

d
3g

3
d (A.31)

Selecting a = β and β = 3 reduces equation (A.31) to vd3g
3
d = 0, which along with equa-

tion (A.27) gives us vd3g
a
d = 0. For any choice a = α, differentiating and multiplying by π leads

to

gαc = 0 (A.32)

When a = 1, we have vd3g
1
d = 0. Differentiating and expanding gives

∂vd3g
1
d

∂πkl
= vd3

(
vckv

l
3π

2
rf

r
,cd − δ2kvr3f l,rd

)
− vl3vdkg1d = 0 (A.33)

Multiplying the right-hand equation by π3l π
k
s yields

g1s = vd3

(
π2rf

r
,sd − vr3π2sπ3l f l,rd

)
(A.34)

So by the definition of g1s ,

X1
s = vd3π

2
rf

r
,sd − vr3vd3π2sπ3l f l,rd − π1l f l,s (A.35)

Now,

∂X1
j

∂πkl
= δ2kv

d
3f

l
,jd − vdkvl3π2rf r,jd + vrkv

l
3v
d
3π

2
jπ

3
sf

s
,rd + vr3v

d
kv
l
3π

2
jπ

3
sf

s
,rd

− δ2kδljvr3vd3π3sfs,rd − δ3kvr3vd3π2j f l,rd − δ1kf l,j (A.36)

and equation (A.19) are both equations for
∂X1

j

∂πkl
. Equating them and simplifying, we see that

2vdkv
l
3π

2
rf

r
,dj − 2δ2kv

d
3f

l
,dj = (vrkv

l
3v
d
3π

2
jπ

3
s + vr3v

d
kv
l
3π

2
jπ

3
s − δ2kδljvr3vd3π3s − δ3kδlsvr3vd3π2j )f s,rd (A.37)

Multiplying equation (A.37) by πγl , this reduces to

2δ2kv
d
3π

γ
l f

l
,dj = (δ2kπ

γ
j v

r
3v
d
3π

3
s − δ3kvr3vd3π2jπ

γ
l )fs,rd (A.38)

Choosing k = 3 gives

vr3v
d
3π

(γ)
l f l,rd = 0, (A.39)
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and choosing k = 2 in (A.38) gives

vr3v
d
3π

3
sf

s
,rd = 2vd3v

j
(γ)π

(γ)
l f l,dj , (A.40)

which add together to become

vr3v
d
3π

a
sf

s
,rd = 2δa3v

d
3v
r
(γ)π

(γ)
l f l,rd. (A.41)

Multiplying by vca, equation (A.41) becomes

vr3v
d
3f

c
,rd = 2vc3v

d
3v
r
(γ)π

(γ)
l f l,rd (A.42)

Differentiating with respect to vab leads to

δb3v
r
3f

c
,ra = δcaδ

b
3v
d
3v
r
(γ)π

(γ)
l f l,rd + δb3v

c
3v
r
(γ)π

(γ)
l f l,ra + δb(γ)v

c
3v
r
3π

(γ)
l f l,ar − vc3vd3vr(γ)π

(γ)
a πbl f

l
,rd (A.43)

Choosing b 6= {γ, 3}, equation (A.43) becomes

0 = vd3v
c
(γ)π

(γ)
a π

(b6={γ,3})
l f l,cd (A.44)

Again, the choice of γ 6= 3 was free. If we had chosen γ = 2, then equation (A.44) would become

0 = vd3v
c
(γ)π

(γ)
a π

(b>3)
l f l,cd (A.45)

0 = vd3v
c
(γ)π

(γ)
a π1l f

l
,cd (A.46)

Additionally, γ = 1 would give us

0 = vd3v
c
(γ)π

(γ)
a π2l f

l
,cd (A.47)

These last three equations can be written together as

0 = vd3v
c
(γ)π

(γ)
a π

(γ)
l f l,cd (A.48)

Choosing b = γ, equation (A.43) becomes

vd3π
(γ)
l f l,ad = vd3v

c
(γ)π

(γ)
a π

(γ)
l f l,cd = 0 (A.49)

Using equations (A.48) and (A.49), we can rewrite equation (A.43) as

vr3f
c
,ra = δcav

d
3v
r
(γ)π

(γ)
l f l,rd + vc3v

r
(γ)π

(γ)
l f l,ra − vc3π(γ)a vd3v

r
(γ)π

3
l f

l
,rd (A.50)
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Differentiating with respect to vpγ gives

0 = vc3π
(γ)
l f l,pa − vc3vr(γ)π

(γ)
p π

(γ)
l f l,ra + vc3π

(γ)
p π(γ)a vd3v

r
(γ)π

3
l f

l
,rd − vc3π(γ)a vd3π

3
l f

l
,pd (A.51)

Contracting equation (A.51) on c = p, we get

0 = vp3v
d
3π

3
l f

l
,pd (A.52)

This lets us rewrite equation (A.41) as

vr3v
d
3π

a
sf

s
,rd = 0 (A.53)

Which then allows us to rewrite equation (A.42) as

vr3v
d
3f

a
,rd = 0 (A.54)

and upon differentiating twice, we see that

fa,bc = 0. (A.55)

This now says that g1c = 0, and so

gac = 0 (A.56)

We are now able to write
Xi = f i(x)

Xi
j = −πikfk,j(x)

(A.57)

Thus, equation (A.3) becomes

X dφi = −πikfk,jdxj +
[
−δijfk + δi1v

c
jv
k
3π

2
bf

b
,c − δi1δ2j vm3 fk,m

]
dπjk (A.58)

And we are able to solve the equation dF̂ i = −Xhookdφ
i for the rank 1 observable F̂ = F̂ ir̂i.

dF̂ i = F̂ i,jdx
j +

∂F̂ i

∂πjk

= πikf
k
,jdx

j +
[
δijf

k − δi1vcjvk3π2bf b,c + δi1δ
2
j v
m
3 f

k
,m

]
dπjk (A.59)
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Using linear independence of the 1-forms, we have the two sets of equations

F̂ i,j = πikf
k
,j (A.60)

∂F̂ i

∂πjk
= δijf

k − δi1vcjvk3π2bf b,c + δi1δ
2
j v
m
3 f

k
,m (A.61)

Equation (A.60) can be integrated, giving

F̂ i = πikf
k + hi(π) (A.62)

Differentiating equation (A.62) and comparing to equation (A.61), we see that

∂hi(π)

∂πjk
= −δi1vcjvk3π2bf b,c + δi1δ

2
j v
c
3f

k
,c =

∂

∂πjk

(
δi1v

c
3π

2
bf

b
,c

)
(A.63)

Thus the only rank 1 observables F̂ = F̂ ir̂i that can satisfy equation (2.7) are

F̂ i = πikf
k + γbia v

m
b π

a
c f

c
,m + ξi (A.64)

where fk are arbitrary linear functions of the xi, and ξi are constant functions. �

A.2 Rank 2

Before we begin the proof of the statement made concerning rank observables, we prove two

helpful lemmas.

Lemma A.1 If ∂
∂πeg

F abcd = 0 and vdbπ
c
aF

ab
cd = 0, then F abcd = 0.

Proof: This statement can be proved directly by differentiating multiple times with respec to

π, multiplying through by multiple πs, differentiating multiple more times with respect to π,

and finally contracting many of the indices and resubstituting. A more concise way to prove this

lemma is to take a Taylor series expansion of vdb in terms of πs at a point u0 where vdb (u0) = δdb .

This gives

vdb = δdb +
1

2
πdkπ

k
b + . . .

Distributing the multiplication through this sum, we have

vdbπ
c
aF

ab
cd = πcaF

ad
cd +

1

2
πcaF

ab
cd π

d
kπ

k
b + . . . = 0
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By the linear independence of the πab coordinates, each term in the sum must, individually, be

equal to 0. First, πcaF
ad
cd = 0. Differentiating with respect to πrs gives

F sdrd = 0

If, instead, we had taken a Taylor series expansion of πca in terms of the vs, the first term would

have yielded F dsdr = 0. Next, we have πcaπ
d
kπ

k
bF

ab
cd = 0. Differentiating with respect to πrs , π

t
u,

and then πvw gives

δuvF
sw
rt + δwt F

su
rv + δsvF

uw
tr + δstF

wu
vr + δwr F

us
tv + δurF

ws
vt = 0 (A.65)

Contracting on u and v gives

nF swrt + F swtr + δstF
wu
ur + δwr F

us
tu + Fwsrt = 0

Contracting this equation on s and t then w and r shows F abba = 0. Returning to (A.65) and

contracting on s and t then w and r leaves

Fwuvw + F uwwv = 0

Returning again to equation (A.65) and contracting on u and t gives

F swrv + Fwsvr = 0

These identities now reduce (??) to

F swrt = 0

the desired result. �

Lemma A.2 Consider a collection of functions F bqsAap where the lower-case indices take on

values 1, . . . , n and upper-case indices take on values 2, . . . , n. If F bqsAap satisfies

1. F
bqs(A
ap δ

B)
r = F

bsq(A
ar δ

B)
p

2. F bqsAap = F qbsApa

then n > 2⇒ F bqsAap = 0.

Proof: We have F
bqs(A
ap δ

B)
r = F

bsq(A
ar δ

B)
p . First, notice that p = 1 ⇒ F bqsAa1 = 0; similarly,

a = 1⇒ F bqsA1p = F qbsAp1 = 0. Now, sum all the terms in which r and A take on the same values.

nF bqsBap = δBp F
bsqA
aA + δAp F

bsqB
aA .
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If we were simply to write δAp F
bsqB
aA = F bsqBap , we would be incorrect; A cannot take on the value

1 and p can. The fact that F bsqBa1 = 0 allows us to perform this index trickery and write

nF bqsBap = δBp F
bsqA
aA + F bsqBap . (A.66)

Form the sum of the terms in which B and p take on the same values.

nF bqsBaB = nF bsqAaA ⇒ F bqsBaB = F bsqBaB . (A.67)

Return to equation (A.66) and sum the terms in which B and a take on the same values to get

nF bqsBBp = F bsqApA + F bsqBBp . (A.68)

Again, we are able to use the fact that F bsqA1A = 0 to allow us to write δBp F
bsqA
BA = F bsqApA . This

and equation (A.67) allow us to write

nF bsqBBp = F bsqBpB + F bqsBBp . (A.69)

Combine equations (A.68) and (A.69) to see that

n2F bqsBBp = nF bsqBpB + nF bsqBBp = (n+ 1)F bsqBpB + F bqsBBp

(n2 − 1)F bqsBBp = (n+ 1)F bsqBpB

(n− 1)F bqsBBp = F bsqBpB (A.70)

As F bsqBpB is symmetric in s and q, F bqsBBp must be as well. Now, let’s manipulate equation (A.70)

using the symmetries of F :

(n− 1)F bqsBBp = F bsqBpB = F sbqBBp = F sqbBBp = F qsbBpB = F qbsBpB

= F bqsBBp .

So long as n 6= 2, this implies F bqsBBp = 0 = F bqsBpB . This allows equation (A.66) to be written

nF bqsBap = F bsqBap ; (A.71)

which tells us that

nF bsqBap = F bqsBap . (A.72)
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Combining these last two equations (as before) shows

n2F bqsBap = F bqsBap ⇒ F bqsBap = 0

as desired. �

Returning now to equation (A.2), we contract this 2-form with the vector fields Xi =

Xsi∂s +Xji
k

∂

∂πjk
and symmetrize on the upper indices

X(i dφj) = X
(ij)
k dxk −

[
Xs(iδj)r − Σs(ij)

r

]
dπrs (A.73)

where Σsij
r = vcl v

m
3 δ

j
1

(
X li
mδ

2
rδ
s
c −X2i

c δ
l
rδ
s
m

)
. As before, we calculate the exterior derivative of

equation (2.7) and use the linear independence of the anti-symmetric 2-forms to arrive at three

sets of equations

X
(ij)
k,l = X

(ij)
l,k (A.74)

∂X
(ij)
k

∂πrs
= −Xs(i

,k δ
j)
r + Σ

s(ij)
r,k (A.75)

∂Xs(iδ
j)
r − Σ

s(ij)
r

∂πpq
=
∂Xq(iδ

j)
p − Σ

q(ij)
p

∂πrs
(A.76)

Notice that equations (A.76) can be expanded and rewritten as follows:

∂Xs(iδ
j)
r − δ2rvsl vm3 X

l(i
m δ

j)
1

∂πpq
+vmr v

s
3

∂X
2(i
m δ

j)
1

∂πpq
=
∂Xq(iδ

j)
p − δ2pv

q
l v
m
3 X

l(i
m δ

j)
1

∂πrs
+vmp v

q
3

∂X
2(i
m δ

j)
1

∂πrs
(A.77)

Choosing i = α1 and j = α2, where α1 and α2 are independent values other than 1, this then

collapses to

∂Xs(α1δ
α2)
r

∂πpq
=
∂Xq(α1δ

α2)
p

∂πrs
(A.78)

Taking the derivative of both sides, we get

∂

∂πab

∂Xs(α1δ
α2)
r

∂πpq
=

∂

∂πab

∂Xq(α1δ
α2)
p

∂πrs

By Lemma A.2, F bqsαap = ∂2Xsα

∂πab ∂π
c
d

= 0. We write Xsα = Absαa πab + gsα. Now, equation (A.78)

becomes

Aqs(α1
p δα2)

r = Asq(α1
r δα2)

p (A.79)
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Choosing α1 = α2 = α, we can then vary r and p to see the following:

r = 1⇒ Aqsα1 = 0

r = α, p = α⇒ A
qs(α)
(α) = A

sq(α)
(α)

r = α⇒ Aqsαp = δ(α)p A
qs(α)
(α)

Returning then to equation (A.79) and choosing r = α1, p = α2, and α1 6= α2, we see that

A
qs(α1)
(α1)

= A
qs(α2)
(α2)

This allows us now to write Aqsαa = f qsδαa , where f qs = fsq. Thus,

Xsα = fasπαa + gsα (A.80)

Next, return to equations (A.75) let i = α1 and j = α2 as before. We have

∂X
(α1α2)
k

∂πrs
= −Xs(α1

,k δα2)
r (A.81)

⇒
∂3X

(α1α2)
k

∂πab ∂π
c
d∂π

r
s

= 0.

Write X
(α1α2)
k = B

bd(α1α2)
ack πabπ

c
d + 2C

b(α1α2)
ak πab + D

(α1α2)
k . Noticing that B

bd(α1α2)
ack = B

db(α1α2)
cak ,

equation (A.81) can be written as

2B
sb(α1α2)
rak πab + 2C

s(α1α2)
rk = −f bs,k π

(α1

b δα2)
r − gs(α1

,k δα2)
r

Taking a derivative of this equation with respect to πcd we see that B
bd(α1α2)
ack = −1

2f
bd
,k δ

(α1
a δ

α2)
c ,

which says that C
b(α1α2)
ak = −1

2g
s(α1

,k δ
α2)
r . Now, we can write

X
(α1α2)
k = −1

2

(
fab,k π

α1
a πα2

b + 2g
b(α1

,k π
α2)
b + 2h

(α1α2)
k

)
Return to equation (A.77), and choosing i = 1 and j = α gives

∂Xs1δαr +Xsαδ1r − δ2rvsl vm3 X lα
m

∂πpq
+ vmr v

s
3

∂X2α
m

∂πpq
=
∂Xq1δαp +Xqαδ1p − δ2pv

q
l v
m
3 X

lα
m

∂πrs
+ vmp v

q
3

∂X2α
m

∂πrs
(A.82)
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Noticing that ∂
∂π1
q
X2α
m = ∂

∂π1
q
Xsα = 0, choose p = 1 and the equation becomes

∂Xs1δαr +Xsαδ1r − δ2rvsl vm3 X lα
m

∂π1q
=
∂Xqα

∂πrs
+ vm1 v

q
3

∂X2α
m

∂πrs

∂Xs1δαr +Xsαδ1r − δ2rvsl vm3 X lα
m

∂π1q
=
∂Xqα

∂πrs
− 1

2
vm1 v

q
3

(
Xs2
,mδ

α
r +Xsα

,mδ
2
r

)
(A.83)

Now, choosing r = α (the same α that was chosen for j) gives

∂Xs1 − δ2(α)v
s
l v
m
3 X

l(α)
m

∂π1q
=
∂Xq(α)

∂π
(α)
s

− 1

2
vm1 v

q
3

(
Xs2
,m +Xs(α)

,m δ2(α)

)
(A.84)

The index α can be any value other than 1. Choosing α to be any value other than 2, the

equation becomes

∂Xs1

∂π1q
= fsq − 1

2
vm1 v

q
3X

s2
,m (A.85)

This allows us to write

Xs1 = f bsπ1b +
1

2
vm3 X

s2
,m +Gs1, (A.86)

where ∂
∂π1
q
Gs1 = 0. Using equation (B.15), we simplify equation (A.84) to

−
∂vsl v

m
3 X

lα
m

∂π1q
= −1

2
vm1 v

q
3X

sα
,m (A.87)

Expanding the derivative on the left-hand side and multiplying through by πcs gives

vm3
∂Xcα

m

∂π1q
− δc1v

q
l v
m
3 X

lα
m − vm1 v

q
3X

cα
m =

1

2
vm1 v

q
3X

sα
,mπ

c
s. (A.88)

Choosing c = α1 and noticing that ∂
∂π1
q
Xα1α
m = 0, this simplifies to

vm1

(
gbα1
,m παb + 2hα1α

m

)
= 0 (A.89)

Taking the derivative with respect to vac , we see that

δc1π
α
b g

bα1
,a + 2δc1h

α1α
a − vm1 παaπcbgbα1

,m = 0.

Multiplying by vac gives

va1h
α1α
a = 0
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Since ∂
∂πbc

hα1α
a = ∂

∂vbc
hα1α
a = 0, this implies

hα1α
a = 0

Which by equation (A.89) and Lemma A.1 implies

gsα,r = 0

Return now to equations (A.75). Choosing i = 1 and j = α gives

2
∂X1α

k

∂πrs
= −Xs1

,k δ
α
r −Xsα

,k δ
1
r + vcl v

m
3

[
X lα
m,kδ

2
rδ
s
c −X2α

c,kδ
l
rδ
s
m

]
(A.90)

Then, choosing r = 1 and multiplying through by vk3 , we see that

2vk3
∂X1α

k

∂π1s
= −vk3Xsα

,k − vs3vm1 vk3X2α
m,k (A.91)

Choosing c = 1 in equation (A.88) gives another expression for vk3
∂X1α

k
∂π1
s

,

vk3
∂X1α

k

∂π1s
= vsl v

k
3X

lα
k + vk1v

s
3X

cα
k +

1

2
vk1v

s
3X

dα
,k π

c
d. (A.92)

Equating these last to expressions and multiplying through by πγs gives

2vk3X
γα
k = −vk3f bs,k παb πγs (A.93)

In particular, γ = 1 allows us to write

Xiα
k = −1

2
f bs,k π

i
sπ
α
b + χiαk , (A.94)

where χiαk = δi1χ
1α
k and vk3χ

1α
k = 0. Using this form, we can rewrite equation (A.90) as

2
∂χ1α

k

∂πrs
= δαr

(
1

2
vm3 X

s2
,mk +Gs1,k

)
− vcl vm3

[
X lα
m,kδ

2
rδ
s
c −X2α

c,kδ
l
rδ
s
m

]
(A.95)

Notice that
∂vk3χ

1α
k

∂πrs
= 0 = vk3

∂χ1α
k

∂πrs
− vkr vs3χ1α

k ;

therefore,

δd3χ
1α
c = πdsπ

r
cv
k
3

∂χ1α
k

∂πrs
.
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So we may use this to expand equation (A.95) to

4δd3χ
1α
c = πdaπ

α
c v

k
3v

m
3 f

ab
,mkπ

2
b + π2cv

k
3v

m
3 f

ab
,mkπ

d
aπ

α
b − δd3vk3fab,ckπ2aπαb + 2πdsπ

α
c v

k
3G

s1
,k (A.96)

Choosing d = γ and multiplying by vcr gives

0 = δαr π
γ
av

k
3v

m
3 f

ab
,mkπ

2
b + δ2rv

k
3v

m
3 f

ab
,mkπ

γ
aπ

α
b + 2δαr π

γ
s v

k
3G

s1
,k .

Choosing r = 2 and α = 3 shows

vk3v
m
3 f

ab
,mkπ

γ
aπ

3
b = 0, (A.97)

and choosing r = 3 = α we see that

πγav
k
3v

m
3 f

ab
,mkπ

2
b + 2πγs v

k
3G

s1
,k = 0. (A.98)

These two identities allow us to simplify equation (A.96) after choosing d = 3 and multiplying

by vc3.

vk3v
m
3 f

sb
,mkπ

2
b + 2vk3G

s1
,k = 0 (A.99)

This simplifies equation (A.96) to

4χ1α
c = vm3 v

k
3f

ab
,mkπ

3
aπ

α
b π

2
c − vk3fab,ckπ2aπαb . (A.100)

Equation (A.82) now reduces all the way down to

δαr
∂Gs1

∂πpq
= δαp

∂Gq1

∂πrs
(A.101)

Choosing r = α = 2, we get
∂Gs1

∂πpq
= δ2p

∂Gq1

∂π2s

Additionally choosing p = 2 gives
∂Gs1

∂π2q
=
∂Gq1

∂π2s
,

which implies
∂Gs1

∂πpq
= δ2p

∂Gs1

∂π2q
.

Choosing p = 2 and r = α = 3 in equation (A.101) gives

∂Gs1

∂π2q
= 0⇒ ∂Gs1

∂πpq
= 0 (A.102)
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Looking back to equations (A.99) and (A.100), notice that

vc3χ
1α
c = 0 = −vc3vk3fab,ckπ2aπαb ;

0 = παs

(
vk3v

m
3 f

sb
,mkπ

2
b + 2vk3G

s1
,k

)
= παs v

k
3G

s1
,k .

By Lemma A.1, Gs1,k = 0. Now equation (A.99) takes on the form

vk3v
m
3 f

sb
,mkπ

2
b = 0

Taking the derivative with respect to vac gives

2δc3v
m
3 f

sb
,maπ

2
b = vk3v

m
3 f

sb
,mkπ

2
aπ

c
b . (A.103)

Contracting on a and s, choosing c = 3, and equation (A.98) give vm3 f
bs
,msπ

2
b = 0. Using

Lemma A.1, this says that

f bs,ms = 0.

Next, taking the derivative of equation (A.103) with respect to vhi and multiplying through by

vjc , we see that

2vj3

(
δi3f

sb
,haπ

2
b − vm3 fsb,maπ2hπib

)
= 2δi3v

k
3f

sj
,hkπ

2
a −

(
π2hπ

i
aδ
j
b + δjhπ

2
aπ

i
b

)
vk3v

m
3 f

sb
,mk. (A.104)

Contracting on j and h and comparing to equation (A.103) gives

vk3v
m
3 f

sb
,mkπ

2
aπ

i
b = −nvk3vm3 fsb,mkπ2aπib, (A.105)

thus vk3v
m
3 f

sb
,mkπ

2
aπ

i
b = 0, which reduces equation (A.103) to vm3 f

sb
,maπ

2
b = 0, and Lemma A.1

shows us that

fsb,ma = 0. (A.106)

Returning to equations (A.75), choose i = j = 1.

∂X11
k

∂πrs
= −δ1rf bs,k π1b + δ2rv

s
l v
m
3 X

l1
m,k (A.107)

Noticing that X l1
m,k = δl1X

11
m,k, we can write

∂X11
k

∂πrs
= −δ1rf bs,k π1b + δ2rv

s
1v
m
3 X

11
m,k (A.108)
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Choosing r = 1 gives ∂
∂π1
s
X11
k = −f bs,k π1b . Write

Xij
k = −1

2
fab,k π

i
aπ

j
b + χijk , (A.109)

where χijk = δi1δ
j
1χ

11
k and ∂

∂π1
s
χ11
k = 0. This form changes equation (A.108) into

∂χ11
k

∂πrs
= δ2rv

s
1v
m
3 χ

11
m,k (A.110)

Choosing i = j = 1, we can now reduce equation (A.77) to

δ2p (vqrv
s
1v
m
3 + vq1v

m
r v

s
3)χ11

m = δ2r
(
vspv

q
1v
m
3 + vs1v

m
p v

q
3

)
χ11
m (A.111)

Multiplying by παq π
b
s, we get

δ2pδ
α
r δ

b
1v
m
3 χ

11
m = δ2rδ

b
1δ
α
3 v

m
p χ

11
m

When p = β, we see that vmβ χ
11
m = 0. Choosing p = α = 2 and r = 3, we see that vm2 χ

11
m = 0.

Thus vma χ
11
m = 0, and χ11

b = 0.

Finally, we can fully describe the vector fields Xi = Xij ∂
∂xj

+Xij
k

∂

∂πjk
.

Xij = faiπja + gij

Xij
k = −1

2
fab,k π

i
aπ

j
b

(A.112)

Where fai and gsα are functions on the base (functions of the xk alone), fai is linear in xk, gsα

is constant, and gs1 = 1
2v

m
3 f

as
,mπ

2
a +Gs1 where Gs1 is constant. It will be easier momentarily if

we write gsi = 1
2(δi1v

m
3 π

2
af

as
,m + hsi) where the hsi are all constant. We can also write

Σs(ij)
r = −1

2
π
(i
b δ

j)
1

∂(vm3 f
ab
,mπ

2
a)

∂πrs
.

As before, to solve the equation dF̂ (ij) = −2X(i dφj) for the unknown rank 2 observable

F̂ = F̂ ij r̂ir̂j , we begin by direct calculation.

dF̂ (ij) = F̂
(ij)
k dxk +

∂F̂ (ij)

∂πrs
dπrs

= −2X
(ij)
k dxk + 2

[
Xs(iδj)r − Σs(ij)

r

]
dπrs

= fab,k π
i
aπ

j
bdx

k + 2
[
fasπ(ia δ

j)
r + gs(iδj)r − Σs(ij)

r

]
dπrs (A.113)
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The linear independence of the 1-forms produces two sets of equations

F̂
(ij)
,k = fab,k π

i
aπ

j
b (A.114)

∂F̂ (ij)

∂πrs
= 2fasπ(ia δ

j)
r + 2gs(iδj)r − 2Σs(ij)

r (A.115)

Integrating equation (A.114), we get

F̂ (ij) = fabπiaπ
j
b + ξ(ij)(π)

and (A.115) tells us that
∂ξ

∂πrs
= 2gs(iδj)r − 2Σs(ij)

r

Notice that

∂gb(iπ
j)
b

∂πrs
= gs(iδj)r +

1

2
π
(j
b δ

i)
1

∂vm3 f
ab
,mπ

2
b

∂πrs
= gs(iδj)r − Σs(ij)

r

So, ξ(ij) = 2gb(iπ
j)
b + k(ij) where k(ij) are constant, and the only allowable rank 2 observables

are

F̂ (ij) = fabπiaπ
j
b + hd(iπ

j)
d + k(ij) + γb(ia π

j)
d v

m
b π

a
c f

cd
,m (A.116)

�
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Appendix B

Proof of Theorem 2.3

We will let the use the Greek letters α, β, and γ to represent indices whose value is never 1, 2,

or 3, respectively, as in the proof of Theorem 2.2. In the local coordinates xi and πij on LM ,

we have θi = πijdx
j and ωab = πac

(
dvcb + Γcdev

e
bdx

d
)
. The coordinates vjk are dual to the πij in

the sense that

vjkπ
i
j = δik

vjkπ
k
m = δjm

Choosing γbia = δb3δ
2
aδ
i
1, we have

dφj = dπjk ∧ dxk +
(
δj1v

c
l v
m
3

)
dπlm ∧ dπ2c +

(
∂Hj

k

∂πlm

)
dπlm ∧ dxk +

(
Hj
k,l

)
dxl ∧ dxk

where Hj
k = δj1Hk = δj1

(
π2cΓ

c
kmv

m
3

)
. Contracting this 2-form with the vector fields Xi =

Xsi∂s +Xri
s

∂
∂πrs

and symmetrizing, we have

X(i dφj) =

[
X

(ij)
k +X l(i

(
H
j)
k,l −H

j)
l,k

)
+X l(i

m

∂H
j)
k

∂πlm

]
dxk

−

[
Xs(iδj)r − Σs(ij)

r +Xk(i∂H
j)
k

∂πrs

]
dπrs (B.1)

where Σsij
r = vcl v

m
3 δ

j
1

(
X li
mδ

2
rδ
s
c −X2i

c δ
l
rδ
s
m

)
. From equation (2.7) we know that d(Xi dφj) =

0, and as before the linear independence of the 2-forms allows us to write out three sets of
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equations:

X
(ij)
k,l +

[
Xm(i(H

j)
k,m −H

j)
m,k) +X

a(i
b

∂H
j)
k

∂πab

]
,l

= X
(ij)
l,k +

[
Xm(i(H

j)
l,m −H

j)
m,l) +X

a(i
b

∂H
j)
l

∂πab

]
,k

(B.2)

∂

[
X

(ij)
k +Xm(i(H

j)
k,m −H

j)
m,k) +X

a(i
b

∂H
j)
k

∂πab

]
∂πrs

= −Xs(i
,k δ

j)
r + Σ

s(ij)
r,k −

[
Xm(i∂H

j)
m

∂πrs

]
,k

(B.3)

∂

[
Xs(iδ

j)
r − Σ

s(ij)
r +Xk(i ∂H

j)
k

∂πrs

]
∂πpq

=

∂

[
Xq(iδ

j)
p − Σ

q(ij)
p +Xk(i ∂H

j)
k

∂πpq

]
∂πrs

(B.4)

Notice that equation (B.4) can be expanded and rewritten as follows:

∂Xs(iδ
j)
r

∂πpq
− δ2r

∂vsl v
m
3 X

l(i
m δ

j)
1

∂πpq
+ vmr v

s
3

∂X
2(i
m δ

j)
1

∂πpq
+
∂Hk

∂πrs

∂Xk(iδ
j)
1

∂πpq

=
∂Xq(iδ

j)
p

∂πrs
− δ2p

∂vql v
m
3 X

l(i
m δ

j)
1

∂πrs
+ vmp v

q
3

∂X
2(i
m δ

j)
1

∂πrs
+
∂Hk

∂πpq

∂Xk(iδ
j)
1

∂πrs
(B.5)

Choosing i = α1 and j = α2, where α1 and α2 are independent values other than 1, this then

collapses to

∂Xs(α1δ
α2)
r

∂πpq
=
∂Xq(α1δ

α2)
p

∂πrs
(B.6)

Taking the derivative of both sides, we get

∂

∂πab

∂Xs(α1δ
α2)
r

∂πpq
=

∂

∂πab

∂Xq(α1δ
α2)
p

∂πrs
(B.7)

Lemma A.2 tells us that F bqsαap = ∂2Xsα

∂πab ∂π
p
q

= 0, and so we write

Xsα = fasπαa + gsα (B.8)

Next, return to equations (B.3) let i = α1 and j = α2 as before. We have

∂X
(α1α2)
k

∂πrs
= −Xs(α1

,k δα2)
r (B.9)

⇒
∂3X

(α1α2)
k

∂πab ∂π
c
d∂π

r
s

= 0.

Write X
(α1α2)
k = B

bd(α1α2)
ack πabπ

c
d + 2C

b(α1α2)
ak πab + D

(α1α2)
k . Noticing that B

bd(α1α2)
ack = B

db(α1α2)
cak ,
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equation (B.9) can be written as

2B
sb(α1α2)
rak πab + 2C

s(α1α2)
rk = −f bs,k π

(α1

b δα2)
r − gs(α1

,k δα2)
r (B.10)

Taking a derivative of this equation with respect to πcd we see that B
bd(α1α2)
ack = −1

2f
bd
,k δ

(α1
a δ

α2)
c ,

which says that C
b(α1α2)
ak = −1

2g
s(α1

,k δ
α2)
r . Now, we can write

X
(α1α2)
k = −1

2

(
fab,k π

α1
a πα2

b + 2g
b(α1

,k π
α2)
b + 2h

(α1α2)
k

)
(B.11)

Return to equation (B.5), and choosing i = 1 and j = α gives

∂Xs1δαr +Xsαδ1r
∂πpq

− δ2r
∂vsl v

m
3 X

lα
m

∂πpq
+ vmr v

s
3

∂X2α
m

∂πpq
+
∂Hk

∂πrs

∂Xkα

∂πpq

=
∂Xq1δαp +Xqαδ1p

∂πrs
− δ2p

∂vql v
m
3 X

lα
m

∂πrs
+ vmp v

q
3

∂X2α
m

∂πrs
+
∂Hk

∂πpq

∂Xkα

∂πrs
(B.12)

Noticing that ∂
∂π1
q
X2α
m = ∂

∂π1
q
Xsα = 0, choose p = 1 and the equation becomes

δαr
∂Xs1

∂π1q
− δ2r

∂vsl v
m
3 X

lα
m

∂π1q
= δαr f

sq + δαr
∂Hk

∂π1q
fsk

+
1

2

∂vm3
∂π1q

(δ2rf
as
,mπ

α
a + δαr f

as
,mπ

2
a + δ2rg

sα
,m + δαr g

s2
,m) (B.13)

Choosing r = α gives

∂Xs1

∂π1q
− δ2(α)

∂vsl v
m
3 X

lα
m

∂π1q
= fsq +

1

2

∂vm3
∂π1q

(δ2(α)f
as
,mπ

α
a + fas,mπ

2
a + δ2(α)g

sα
,m + gs2,m) +

∂Hk

∂π1q
fsk (B.14)

The index α can be any value other than 1. Choosing α to be any value other than 2, the

equation becomes
∂Xs1

∂π1q
= fsq +

1

2

∂vm3
∂π1q

(fas,mπ
2
a + gs2,m) +

∂Hk

∂π1q
fsk (B.15)

This allows us to write

Xs1 = fasπ1a +
1

2
vm3 X

s2
,m + fskHk +Gs1 (B.16)
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where ∂
∂π1
q
Gs1 = 0. We may also rewrite equation (B.13) as

−
∂vsl v

m
3 X

lα
m

∂π1q
=

1

2

∂vm3
∂π1q

(fas,mπ
α
a + gsα,m)

∂vsl v
m
3 X

lα
m

∂π1q
= −1

2

∂vm3
∂π1q

Xsα
,m (B.17)

Expanding the derivative on the left-hand side and multiplying through by πcs gives

vm3
∂Xcα

m

∂π1q
− δc1v

q
l v
m
3 X

lα
m − vm1 v

q
3X

cα
m =

1

2
vm1 v

q
3X

sα
,mπ

c
s. (B.18)

Choosing c = α1 and noticing that ∂
∂π1
q
Xα1α
m = 0, are able to simplify down to

vm1

(
gbα1
,m παb + 2hα1α

m

)
= 0 (B.19)

Taking the derivative with respect to vac , we see that

δc1π
α
b g

bα1
,a + 2δc1h

α1α
a − vm1 παaπcbgbα1

,m = 0. (B.20)

Multiplying by vac gives

va1h
α1α
a = 0 (B.21)

Since ∂
∂πbc

hα1α
a = ∂

∂vbc
hα1α
a = 0, this implies

hα1α
a = 0 (B.22)

Which by equation (B.19) and Lemma A.1 implies

gsα,r = 0 (B.23)

Choosing c = 1 in equation (B.18) gives

vm3
∂X1α

m

∂π1q
= −1

2

∂vm3
∂π1q

Xsα
,mπ

1
s + vql v

m
3 X

lα
m + vm1 v

q
3X

1α
m . (B.24)
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Return now to equations (B.3). Choosing i = 1 and j = α gives

2
∂X1α

k

∂πrs
+ (Hk,m −Hm,k)

∂Xmα

∂πrs
+Xmα∂Hk,m

∂πrs
+
∂Xaα

b

∂πrs

∂Hk

∂πab
+Xaα

b

∂2Hk

∂πrs∂π
a
b

= −Xs1
,k δ

α
r −Xsα

,k δ
1
r + vcl v

m
3

(
X lα
m,kδ

2
rδ
s
c −X2α

c,kδ
l
rδ
s
m

)
−Xmα

,k

∂Hm

∂πrs
(B.25)

Choosing r = 1 and multiplying through by vk3 , we can write

2vk3
∂X1α

k

∂π1s
+ vk3X

mα∂Hk,m

∂π1s
+ vk3

∂Xaα
b

∂π1s

∂Hk

∂πab
+ vk3X

aα
b

∂2Hk

∂π1s∂π
a
b

= −vk3Xsα
,k − vk3vm1 vs3X2α

m,k − vk3Xmα
,k

∂Hm

∂π1s
(B.26)

Using equation (B.24), this becomes

vk1v
s
3X

mα
,k π1m − vk3π2cΓckmvm1

(
1

2
vb1v

s
3X

eα
,b π

1
e + vsl v

b
3X

lα
b + vb1v

s
3X

1α
b

)
+ 2vsl v

k
3X

lα
k + 2vk1v

s
3X

1α
k

+ vk3X
mα∂Hk,m

∂π1s
+ vk3X

aα
b

∂2Hk

∂π1s∂π
a
b

= −vk3Xsα
,k − vk3vm1 vs3X2α

m,k − vk3Xmα
,k

∂Hm

∂π1s
(B.27)

Multiplying through by πγs gives

2vk3X
γα
k = −πγs vk3Xsα

,k (B.28)

In particular, γ = 1 allows us to write

Xiα
k = −1

2
fab,k π

i
aπ

α
b + J iαk , (B.29)

where J iαk = δi1J
1α
k and vk3J

1α
k = 0. We may now rewrite and simplify equation (B.12) as

δαr
∂Gs1

∂πpq
= δαp

∂Gq1

∂πrs
(B.30)

Choosing r = α = 2, we get
∂Gs1

∂πpq
= δ2p

∂Gq1

∂π2s
(B.31)

Additionally choosing p = 2 gives
∂Gs1

∂π2q
=
∂Gq1

∂π2s
, (B.32)
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which implies
∂Gs1

∂πpq
= δ2p

∂Gs1

∂π2q
. (B.33)

Choosing p = 2 and r = α = 3 in equation (B.30) gives

∂Gs1

∂π2q
= 0⇒ ∂Gs1

∂πpq
= 0 (B.34)

We next return to equation (B.25), which becomes

2
∂J1α

k

∂πrs
+ δαr π

2
cΓ

c
kl,mv

l
3f

sm + (f bmπαb + gmα)
(
δ2rΓ

s
kl,mv

l
3 − π2cΓckl,mvlrvs3

)
− vb3

∂J1α
b

∂πrs
π2dΓ

d
kmv

m
1

−1

2

(
Γbkmv

m
3 f

cs
,b δ

2
rπ

α
c + Γbkmv

m
3 f

cs
,b δ

α
r π

2
c

)
+

1

2
δαr π

2
l Γ

l
kmv

b
3f

ms
,b

+Jdαl π2cΓ
c
kmv

m
d v

l
rv
s
3 −

1

2
fmb,l παb π

2
cΓ

c
kmv

l
rv
s
3 +

1

2
δ2rf

mb
,l παb Γskmv

l
3

+
1

2
fab,l π

2
aπ

α
b Γlkmv

m
r v

s
3 = −1

2
δαr v

m
3 f

bs
,mkπ

2
b − δαr fsmπ2cΓcml,kvl3 − δαrGs1,k

−1

2
δ2rv

m
3 f

sb
,mkπ

α
b +

1

2
vmr v

s
3f

ab
,mkπ

2
aπ

α
b − δ2rf bm,k παb Γsmlv

l
3 + π2cΓ

c
mlv

l
rv
s
3f

bm
,k παb

(B.35)

Using the fact that

∂vb3J
1α
b

∂πrs
= 0 = vb3

∂J1α
b

∂πrs
− vbrvs3J1α

b

reduces this to

2
∂J1α

k

∂πrs
+ δαr π

2
cΓ

c
kl,mv

l
3f

sm + (f bmπαb + gmα)
(
δ2rΓ

s
kl,mv

l
3 − π2cΓckl,mvlrvs3

)
−1

2

(
Γbkmv

m
3 f

cs
,b δ

2
rπ

α
c + Γbkmv

m
3 f

cs
,b δ

α
r π

2
c

)
+

1

2
δαr π

2
l Γ

l
kmv

b
3f

ms
,b

−1

2
fmb,l παb π

2
cΓ

c
kmv

l
rv
s
3 +

1

2
δ2rf

mb
,l παb Γskmv

l
3

+
1

2
fab,l π

2
aπ

α
b Γlkmv

m
r v

s
3 = −1

2
δαr v

m
3 f

bs
,mkπ

2
b − δαr fsmπ2cΓcml,kvl3 − δαrGs1,k

−1

2
δ2rv

m
3 f

sb
,mkπ

α
b +

1

2
vmr v

s
3f

ab
,mkπ

2
aπ

α
b − δ2rf bm,k παb Γsmlv

l
3 + π2cΓ

c
mlv

l
rv
s
3f

bm
,k παb (B.36)
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Multiplying through by vk3π
d
s gives

2δd3v
k
rJ

1α
k + δαr π

2
cΓ

c
kl,mv

k
3v

l
3f

smπds + (f bmπαb + gmα)
(
δ2rπ

d
sΓskl,mv

k
3v

l
3 − δd3π2cΓckl,mvk3vlr

)
−1

2

(
Γbkmv

k
3v

m
3 f

cs
,b π

d
sδ

2
rπ

α
c + Γbkmv

k
3v

m
3 f

cs
,b π

d
sδ
α
r π

2
c

)
+

1

2
δαr π

2
l Γ

l
kmv

k
3v

b
3f

ms
,b πds

−1

2
δd3f

mb
,l παb π

2
cΓ

c
kmv

k
3v

l
r +

1

2
δ2rf

mb
,l παb π

d
sΓskmv

k
3v

l
3

+
1

2
δd3f

ab
,l π

2
aπ

α
b Γlkmv

k
3v

m
r = −1

2
δαr v

m
3 v

k
3f

bs
,mkπ

d
sπ

2
b − δαr f smπdsπ2cΓcml,kvk3vl3 − δαr πdsGs1,k vk3

−1

2
δ2rv

m
3 v

k
3f

sb
,mkπ

d
sπ

α
b +

1

2
δd3v

m
r v

k
3f

ab
,mkπ

2
aπ

α
b − δ2rvk3f bm,k παb π

d
sΓsmlv

l
3 + δd3π

2
cΓ

c
mlv

l
rv
k
3f

bm
,k παb (B.37)

Differentiating with respect to vyz and then multiplying by vyz reduces this to

2δd3v
k
rJ

1α
k = −gmα

(
δ2rπ

d
sΓskl,mv

k
3v

l
3 − δd3π2cΓckl,mvk3vlr

)
(B.38)

Choosing d = γ, we see that

πγsΓskl,mg
mαvk3v

l
3 = 0 (B.39)

After a series of derivatives, contractions, and resubstitutions similar to those used in the proof

of Lemma A.1, we end up with

Γskl,mg
mα = 0; (B.40)

Thus,

J1α
k = 0. (B.41)

Then equation (B.37) reduces enough to use Lemma A.1 to show that

Gs1,k = 0. (B.42)

So, we will write gs1 = Gs1, and Xsi = f bsπib + gsi + γbia
(
1
2v

m
3 f

bs
,mπ

2
b + f bsπ2cΓ

c
blv

l
b

)
. Looking to
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equation (B.3) and choosing i = j = 1, we have

∂X11
k

∂πrs
+Hk,m

(
δ1rf

sm +
1

2
δ2rf

sm
,l vl3 −

1

2
vlrv

s
3f

bm
,l π2b + δ2rf

bmΓsblv
l
3 − f bmπ2cΓcblvlrvs3

)
−Hm,k

(
1

2
δ2rf

sm
,l vl3 −

1

2
vlrv

s
3f

bs
,l π

2
b + δ2rf

bmΓsblv
l
3 − f bmπ2cΓcblvlrvs3

)
+Xm1∂Hk,m

∂πrs
+
∂Hk

∂πab

∂Xa1
b

∂πrs
+Xa1

b

∂2Hk

∂πrs∂π
a
b

= −δ1r
(
f bs,k π

1
b +

1

2
vm3 f

bs
,mkπ

2
b + fsb,k π

2
cΓ

c
blv

l
3

)
+vcl v

m
3

(
X l1
m,kδ

2
rδ
s
c +

1

2
fab,ckπ

2
aπ

1
b δ
l
rδ
s
m

)
If we write X11

k = −1
2f

ab
,k π

1
aπ

1
b + J11

k , then this becomes

∂J11
b

∂πrs

(
δbk +

∂Hk

∂π1b

)
= −∂X

m1

∂πrs
Hk,m −Xm1∂Hk,m

∂πrs

+Hm,k

∂ 1
2v

l
3f
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,l π2b + f bmHb

∂πrs
−Xa1

b

∂2Hk

∂πrs∂π
a
b

− δ1r
(

1

2
vm3 f

bs
,mkπ

2
b + fsb,k π

2
cΓ

c
blv

l
3

)
+δ2rv

s
l v
m
3 X

l1
m,k +

1

2
vmr v

s
3f
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,mkπ

2
aπ

1
b +

1

2

∂fab,mπ
l
aπ

1
b

∂πrs

∂Hk

∂πlm
(B.43)

We will return to this equation. Looking now at equation (B.5), we select i = j = 1 to see that

−2δ2r
∂vs1v

m
3 J

11
m

∂πpq
+
(
δ2rΓ

s
kmv

m
3 − π2cΓckmvmr vs3

) (
δ2pf

qk
,l v

l
3 − vlpv

q
3f

bk
,l π

2
b

)
= −2δ2p

∂vq1v
m
3 J

11
m

∂πrs
+
(
δ2pΓ

q
kmv

m
3 − π2cΓckmvmp v

q
3

) (
δ2rf

sk
,l v

l
3 − vlrvs3f bk,l π2b

)
(B.44)

or

δ2r
∂vs1v

m
3 J

11
m − 1

2
∂Hk
∂πrs

vm3 f
bk
,mπ

2
b

∂πpq
= δ2p

∂vq1v
m
3 J

11
m − 1

2
∂Hk
∂πpq

vm3 f
bk
,mπ

2
b

∂πrs
(B.45)

δ2r
∂vs1v

m
3 J

11
m

∂πpq
− 1

2

∂Hk

∂πrs

∂vm3 f
bk
,mπ

2
b

∂πpq
= δ2p

∂vq1v
m
3 J

11
m

∂πrs
− 1

2

∂Hk

∂πpq

∂vm3 f
bk
,mπ

2
b

∂πrs
(B.46)

Choosing r = p = 2 in equation (B.45) shows a symmetry in the s and q. Choosing, instead,
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r = 2 and p = β, we see

∂vs1v
m
3 J

11
m − 1

2
∂Hk
∂π2
s
vm3 f

bk
,mπ

2
b

∂πβq
= 0. (B.47)

Thus,

vs1v
m
3

∂J11
m

∂πβq
=
(
vsβv

q
1v
m
3 + vs1v

m
β v

q
3

)
J11
m −

1

2
Γsklf

bk
,mπ

2
b

(
vlβv

q
3v
m
3 + vl3v

m
β v

q
3

)
+

1

2
π2cΓ

c
klf

bk
,mπ

2
b

(
vlβv

q
2v
s
3v
m
3 + vl2v

s
βv

q
3v
m
3 + vl2v

s
3v
m
β v

q
3

)
(B.48)

Multiplying by π3qπ
2
s and choosing β = 3 gives

0 = π2sΓ
s
klf

bk
,mπ

2
bv
l
3v
m
3

Again, a number of derivatives, contractions, and resubstitutions leads to

Γsklf
bk
,m = 0 (B.49)

This now reduces equations (B.48) and (B.45) to

vs1v
m
3

∂J11
m

∂πβq
=
(
vsβv

q
1v
m
3 + vs1v

m
β v

q
3

)
J11
m (B.50)

δ2r
∂vs1v

m
3 J

11
m

∂πpq
= δ2p

∂vq1v
m
3 J

11
m

∂πrs
. (B.51)

As well as equation (B.43) to

∂J11
b
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2
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(B.52)
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Multiplying this equation by vq1v
k
3 , we see that
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(B.53)

Choosing r = β, we may use equation (B.50) to reduce this to(
vqβv

s
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m
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m
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c
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(B.54)

Choose β = 3 and multiply through by π3q to show

vs1v
m
3 J

11
m − vs1vm3 J11

m π
2
cΓ

c
klv

l
1v
k
3 = vs1v

m
3 J

11
m

(
1− π2cΓcklvl1vk3

)
= 0 (B.55)

As 1 − π2cΓcklvl1vk3 = 0 is never satisfied for any Γijk, we are left to conclude vm3 J
11
m = 0. This

renders equation (B.51) a triviality, and reduces equation (B.54) to
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(B.56)

Multiplying by πγs further simpiflies this to

0 = vk3v
l
3π

γ
sπ

2
c

(
2f smΓckl,m + f cs,kl − Γmklf

sc
,m

)
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which, after differentiation, contraction, and resubstitution, yields

fab,kl = Γmklf
ab
,m − 2famΓbkl,m (B.57)

If both equation (B.49) and equation (B.57) are to hold for a general torsion-free connection,

then fab = 0. This then makes the vector fields Xi trivial, and thus there are no non-trivial

solutions to equation (2.7). �
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