
ABSTRACT

SPAYD, KIMBERLY RENEE. Two Phase Flow in Porous Media: Traveling Waves and
Stability Analysis. (Under the direction of Michael Shearer.)

The Buckley-Leverett equation for two phase flow in a porous medium is modified

by including dependence of the capillary pressure on the time derivative of saturation.

This model, due to Hassanizadeh and Gray, results in a nonlinear pseudoparabolic partial

differential equation that includes a mixed third order derivative representing dispersion.

Both quadratic and fractional relative permeability functions are considered in the model.

Phase plane analysis, including a separation function to measure the distance between

invariant manifolds, is used to determine when the equation supports traveling waves

corresponding to undercompressive shocks. The Riemann problem for the underlying

conservation law is solved in the case of each relative permeability constitutive equation.

The structures of the various solutions are confirmed with numerical simulations of the

partial differential equation. Specific effects of the mixed third order derivative are in-

vestigated in the context of the Benjamin-Bona-Mahony equation modified with a cubic

flux function and Burgers term.

Further, the Saffman-Taylor viscous fingering instability is examined and a generalized

criterion given for variable saturations. Two dimensional stability of plane wave solutions

is governed by the hyperbolic/elliptic system obtained by ignoring capillary pressure,

which is diffusive. The growth rate of perturbations of unstable waves is linear in the

wave number to leading order. This gives a sharp boundary in the state space of upstream

and downstream saturations separating stable from unstable waves. The role of this

boundary, derived from the linearized hyperbolic/elliptic system, is verified by numerical

simulations of the full nonlinear parabolic/elliptic equations.
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2(ū− + ū+),
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Chapter 1

Introduction

A porous medium is a solid mass containing void spaces called pores. Natural and

manufactured examples are ubiquitous, ranging from bones and rocks such as granite

and limestone to paper, concrete and cloth. Quantitative measures of porous media

include porosity and permeability. Porosity, represented by φ, is the volume fraction of

pore space in the medium:

φ =
pore volume

total volume
.

Granite, for example, typically has a low porosity as it has a small amount of void space

while cloth, with large pores, has a high porosity. A medium’s pore structure determines

its permeability: a measure of the ease with which fluids and gases are transmitted

through it. The units of measurement are those of area, such as square meters, square

centimeters, darcy (approximately 10−14 square meters) or millidarcy, as permeability

can be determined experimentally by using Darcy’s law, Eq. (2.3) [15].

When two fluids, or phases, flow through a porous medium, one of them is more likely

to make contact with the solid surface of the medium. This fluid is known as the wetting
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phase and the other as the non-wetting phase. Contaminant flow in groundwater is an

application of two phase flow in a porous medium [42], the water and pollutant being the

two fluid phases and the surrounding solid ground being the porous medium. Another

example is the passage of hydrogen and oxygen through a porous filter in a fuel cell.

Arguably, the most historically significant application of two phase flow in porous

media is that of secondary oil recovery by water flood, in which water is the wetting

phase and oil is the non-wetting phase [15, 49]. Primary oil recovery, relying on high

pressures underground, accounts for only approximately fifteen percent of the original

oil in the reservoir. Another fifteen to twenty percent can be recovered via secondary

methods such as water-flooding, first introduced in the 1940s.

In this process, water is pumped into the porous medium of the reservoir through

injection wells, displacing some of the remaining oil, which is forced out of a production

well. See Figure 1.1 for an illustration. This method is best suited for crude oil having

a relatively low viscosity, since otherwise water breaks through to the production well at

an early stage. When the proportion of water in the production fluid eventually becomes

too high for profitability, the reservoir is abandoned. It is estimated that approximately

a third of the original oil is recovered from primary and secondary methods. Tertiary

methods, also known as enhanced oil recovery, include thermal, solvent-based and other

chemical approaches [43].

The Buckley-Leverett equation for two phase flow in a homogeneous and isotropic

porous medium was formulated in the 1940s to model the dynamics of water and oil,

or more generally two immiscible fluids, in porous rock or compacted sand [12]. In its

original form, the equation is a first order nonlinear scalar conservation law expressing

the unidirectional nonlinear transport of the two phases through a medium with uniform

porosity. The variable used to quantify the flow is the saturation of the wetting phase, a
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Figure 1.1: Illustration of secondary oil recovery in one dimension; taken from
http://www.amerexco.com/recovery.html

volume fraction of the pore space filled by the wetting fluid. Solutions include rarefactions

and shock waves which correspond to jumps in the saturation across an interface. In fact,

a combination of a rarefaction and shock connect an initial upstream saturation of one

and an initial downstream saturation of zero. More recently, versions of the Buckley-

Leverett equation have included capillary pressure as a dissipative term [49, 55] which

smooths the solutions of the conservation law. This pressure has typically been treated

as though interfacial forces equilibrate on a fast time scale, an assumption brought into

question by Hassanizadeh and Gray, who formulated a dynamic capillary pressure law [30,

31]. Dynamic capillary pressure is given as the difference between equilibrium capillary

pressure and a rate dependent correction involving the time derivative of saturation.

Experimental results from DiCarlo, described in [22], have led to renewed interest in

the Buckley-Leverett equation modified by the inclusion of dynamic capillary pressure.
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Non-monotonic saturation profiles in the gravity driven infiltration experiments from

[22] were unexplained in the regime of classically understood capillary pressure models.

Even though DiCarlo’s experiments are more suitably modeled by Richards equation for

unsaturated flow [25], the results motivated much interest in modifying the Buckley-

Leverett equation by including dynamic capillary pressure in the derivation. The rate

dependence introduces an additional time derivative, resulting in a dispersive third order

derivative that is a nonlinear version of the dispersive term in the Benjamin-Bona-Mahony

(BBM) equation [9]. A detailed derivation is given in chapter two. It is interesting to

note that in [23], DiCarlo uses further experimental results to debate the role of dynamic

capillary pressure, as defined by Hassanizadeh and Gray, in the saturation overshoot

observed in [22].

Much of the recent effort has focused on characterizing traveling wave solutions of

the so-called modified Buckley-Leverett equation under various simplifications and con-

stitutive assumptions [17, 18, 34, 38, 47, 62, 63]. In [63], the authors study a linearized

version of the modified Buckley-Leverett equation; the nonlinearity of the regularization

terms is neglected in an effort to understand existence and uniqueness properties. In

contrast here, traveling wave solutions of the fully nonlinear modified Buckley-Leverett

equation are carefully considered in chapter three.

Other works [18, 38, 62] examine the full equation and degeneracies resulting from

the use of specific constitutive equations. In [18, 62], existence and non-existence re-

sults are given for traveling wave solutions when the model incorporates general relative

permeability functions, contrary to the linearized analysis in [63] for which the relative

permeability functions are taken to be quadratic. Further, the existence of “sharp” trav-

eling waves is introduced in [62], unique to the regime in which relative permeability

functions are fractional instead of quadratic or higher. These sharp fronts are travel-
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ing wave solutions between an upstream saturation of one and a nonzero downstream

saturation. The topics of fractional relative permeabilities, sharp traveling waves and

their impact on the Riemann problem for the modified Buckley-Leverett equation are

all addressed in detail in chapter four. Further, numerical codes from [37, 65] are used

to illustrate boundaries between solution regions for the Riemann problem and simulate

sharp traveling waves.

A striking novel feature of the recent analysis is the presence of traveling waves that

are undercompressive in the sense of shock waves [33, 39, 46]. Undercompressive shock

waves are discontinuous solutions of hyperbolic conservation laws with non-convex non-

linear fluxes that fail to satisfy the Lax entropy condition [44], but instead require an ad-

ditional condition known as a kinetic relation [1]. Typically the kinetic relation describes

when the shock can be approximated by smooth traveling waves of the conservation law

enhanced by additional dissipative and dispersive terms that smooth solutions. Under-

compressive traveling waves and their role in the theory of hyperbolic conservation laws

have been explored in various contexts [8, 46, 57], both for scalar equations and for sys-

tems. It is the presence of undercompressive shocks that captures the non-monotonicity

observed in [22].

In addition, other theoretical arguments [5, 6, 59] and experimental results [45, 56, 68]

suggest that capillary pressure as well as relative permeability functions depend on time

through the saturation rate of change. It is argued, along the same lines as Hassanizadeh

and Gray, that there are significant non-equilibrium effects in the process of spontaneous

imbibition, introducing a need for relaxation terms in the model. With this hypothesis,

Barenblatt et al. [5, 6] derive the Buckley-Leverett equation with time dependent dissi-

pation and dispersion. Existence and uniqueness results for traveling wave solutions of

their model are presented in [5]. Comparisons between experimental data and simula-
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tions in [56] show improved matching when all constitutive equations are rate dependent

as opposed to not. There does not appear to be any work which compares experimental

results to both types of models: one which only includes rate dependence through cap-

illary pressure and one which includes rate dependence through relative permeabilities

and capillary pressure.

While there are many works that address the role of dynamic capillary pressure in

the context of the Buckley-Leverett equation, it is difficult to understand the effects ana-

lytically due to the complex nonlinearity. To this end, a treatment of the BBM equation

is given in chapter five with the amendments of cubic flux and dissipation given by a

Burgers term. Jacobs et al. [39] provide a detailed and thorough treatment of traveling

wave solutions of the modified Korteweg-de Vries-Burgers (KdVB) equation, which is

similar to the modified BBM-Burgers equation in all aspects except the rate dependent

dispersion. With a cubic flux function, they are able to analytically characterize the

existence of undercompressive shocks. When the dispersion term is given by a mixed

partial derivative, reflecting the influence of dynamic capillary pressure on the Buckley-

Leverett model, it is still possible to describe the existence of undercompressive shocks

completely analytically. The resulting formulae are used to solve the Riemann problem

for the corresponding conservation law in chapter five.

Early experiments and analysis of stability of fronts in water flood date back to

the work of Chouke et al. [14], Engelberts and Klinkenberg [26] as well as Hill [35] in

the 1950s. Most famously, Saffman and Taylor [52] provide a stability criterion in the

circumstance of a less viscous fluid such as water displacing a more viscous fluid such as

oil in a Hele-Shaw cell. The criterion states that a sharp front between the fluids suffers

a fingering instability (see Figure 1.2) if the mobility of the displacing fluid is less than

that of the displaced fluid. Since they consider flow in a Hele-Shaw cell, the effects of
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porosity are not included in their analysis. For a thorough review of early work in this

area, see [36].

Figure 1.2: Development of the Saffman-Taylor viscous fingering instability for interface
between air and glycerine in a Hele-Shaw cell, taken from [52]

In [52], the mobilities are assumed to be constants, since only a sharp front between

pure water and pure oil is considered. This condition is realized in a Hele-Shaw cell,

in which the fluid displacement involves only uniform saturations (i.e. pure immiscible

fluids). However, in a porous medium, while the fluids may reasonably be assumed to

remain pure and unmixed in individual pores, the arrangement of the fluids is complex,

and saturations, defined as local averages, provide a natural and simple description of

the flow.

The sharp interface studied by Saffman and Taylor [52] is a weak solution of the

Buckley-Leverett equation, but it is unphysical in the sense that it gives way in one
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space dimension to the Buckley-Leverett rarefaction-shock, and is therefore unstable to

one-dimensional perturbations. In fact, the Saffman-Taylor front fails to satisfy the Lax

entropy condition.

Yortsos and Hickernell perform linearized stability analysis of smooth traveling waves

for the full two-dimensional system of equations for conservation of mass and incompress-

ibility [66]. Matched asymptotic expansions lead to formulae for the first two terms in

the long-wave expansion of the growth rate. Aiming to simplify the stability analysis in

[66], Daripa and Pasa [20] make far-field assumptions on the base states of saturation

and pressure that substantially simplify the equations of the model. The new approach

taken in chapter six yields the same leading order term as in [66] but is considerably sim-

pler than their asymptotic analysis and highlights the hyperbolic nature of the long-wave

instability.

Other stability analysis of the two phase flow equations varies widely in method and

interest. Barenblatt et al. [4] also consider long wave stability analysis in the absence

of capillary effects. Their generalized stability criterion is dependent on the total mo-

bilities ahead of and behind the sharp front, as is the result from [66] and chapter six;

however, the approach used in [4] relies on solving an equation for the amplitude of a

single mode sinusoidal perturbation and does not exploit the hyperbolic properties of

the two-dimensional system as in chapter six. With the inclusion of capillary pressure,

approximations and numerical investigations appear in [13, 29, 40, 67]. Particular at-

tention is given to the dissipation of short wavelength perturbations in [3] and radial

displacement in [10]. The shape and width of viscous fingers is characterized analytically

by DiCarlo and Blunt in [24] in a regime for which capillary pressure depends on the

velocity of the interface, in this way being dynamic, but not on the time derivative of

saturation as in [30, 31].
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Simulations of unstable waves, in the context of two phase flow, have been studied by

Riaz and Tchelepi [50, 51]. In [50], the authors investigate the roles of viscous, capillary

and gravitational forces in generating the fingering instability. Several parameter studies

for the widths of the dispersion curves and maximum growth rates are given in [51]. The

numerical simulations presented in chapter six confirm analytical results for stable and

unstable waves in the case of quadratic relative permeabilities. Additionally in chapter

six, comparison plots are given for the growth and decay rates with those predicted by

the linear approximation of the dispersion relation and with the prediction of Yortsos

and Hickernell in [66].
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Chapter 2

Preliminaries

This chapter introduces the model equations in the context of both the two-dimensional

hyperbolic/elliptic system and the one-dimensional pseudoparabolic partial differential

equation. Traveling waves and their role in the analysis of the one-dimensional model

are introduced. Finally, weak solutions of scalar conservation laws are reviewed, along

with necessary conditions on shocks pertaining to analysis that follows in later chapters.

2.1 Two Dimensional Flow Equations

The saturation of either phase is defined as the fraction of the pore volume occupied by

the phase. It is denoted by uj where j = w, n is an index for wetting and non-wetting

phases, respectively. Assuming that the void space is completely filled by the two phases

so that uw +un = 1, the saturation of the non-wetting phase can be represented in terms

of the saturation of the wetting phase: un = 1− uw. With this in mind, the indices are

dropped from the previous notation in favor of u and 1− u representing the saturations

of the wetting and non-wetting phases, respectively.
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Mass conservation of the wetting phase is represented by the equation

ϕ
∂u

∂t
+∇ · vw = 0 (2.1)

where φ is the porosity of the porous medium and vw is the velocity of the wetting

phase; the rate of change in the wetting phase saturation is balanced by the spatial flux.

Incompressibility of the fluids, i.e. the inability of a representative amount of either fluid

to change volume as it moves through the porous medium, is expressed by

∇ · vT = 0, (2.2)

in which vT = vw + vn is the total velocity. See [2] for a derivation of Eq. (2.2).

Next, Darcy’s law for two phase flow relates the phase velocity and pressure gradient

by

vj = −Kkj

µj
∇pj, (2.3)

where K is the absolute permeability of the porous medium, kj is a relative permeability

function depending on the phase saturation, µj is the phase viscosity and pj is the phase

pressure. The relative permeability functions kw(u), kn(1−u) describe how the presence

of one phase inhibits the flow of the other. Figure 2.1 from [49] shows experimentally

measured relative permeability curves as functions of the wetting saturation u. Note

that kw(u) and kn(1 − u) are both increasing functions of their respective arguments.

It is clear that quadratic functions are reasonable approximations [34, 49, 63], although

fractional exponents are also used frequently [11, 18, 21, 28, 58, 60]. In much of this

analysis (specifically chapters three and six), quadratic relative permeabilities are used

to generate specific functional forms. In chapter four, smaller fractional exponents are

11



used in order to satisfy a specific integrability condition from [18]. For ease of notation,

let

λw(u) =
Kkw(u)

µw
, λn(u) =

Kkn(1− u)

µn
, (2.4)

referred to as phase mobility functions. Then λT = λw + λn is the total mobility of the

two phases.

u

k

k
n

w

(a)

U-tube manometer

U-tube manometer

water out!ow 

reservoir

water in!ow

(b)

Figure 2.1: (a) Experimentally measured relative permeability curves as functions of
wetting phase saturation; taken from [49] (b) Darcy’s experimental design showing
column of packed sand, water inflow and outflow reservoir, U-tube manometers at top
and bottom to measure flow rates and pressures; taken from [7]

Henri Darcy was the water engineer in Dijon, France in the middle of the 19th century.
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He performed various experiments regarding single phase flow, specifically water through

a vertical column filled with homogeneous packed sand. His experimental set-up is illus-

trated in Figure 2.1 by his own sketch [7]. After injecting water into the column from

the top, he measured the flow rate and pressures at the top and bottom using U-tube

manometers. From the data collected, he formulated an empirical law stating that the

fluid velocity is linearly dependent on the pressure difference. Formally, on a continuum

scale, Darcy’s law for single phase flow, v = −K

µ
∇p, is derived from the Navier-Stokes

equations [7] and is a momentum balance equation. Darcy’s law for two phases, Eq. (2.3),

includes relative permeability functions, kj, since the two phases affect each other’s flow.

At the microscopic level, consider an individual pore in the medium which contains

an interface between the wetting and non-wetting phases. The curvature of such an in-

terface and the resulting surface tension yield different pressures in each phase. Capillary

pressure, pc, is defined as the difference of the phase pressures and is related to surface

tension and curvature through the Young–Laplace equation

pc = pn − pw =
2γ

R
, (2.5)

where γ is the interfacial (surface) tension of the interface between the two phases and

R is the radius of curvature of the surface. Averaging over many local pores introduces

saturation of the wetting phase as a natural measure of fluid flow at the continuum level.

In this way, capillary pressure becomes a function of saturation and has a dissipative

effect on sharp solutions of the governing equations, Eq. (2.1) and Eq. (2.2).

Substituting Eq. (2.3) into both Eq. (2.1) and Eq. (2.2), then factoring out a negative

13



sign gives

ϕ
∂u

∂t
−∇ · (λw(u)∇pw) = 0 (2.6)

∇ · (λw(u)∇pw + λn(u)∇pn) = 0. (2.7)

Adding and subtracting λn(u)∇pw to Eq. (2.7) then factoring appropriately allows pn to

be eliminated from Eq. (2.7) (using Eq. (2.5)):

∇ ·
�
λT (u)∇pw + λn(u)∇pc(u)

�
= 0. (2.8)

Now pn is not an additional variable in the model and pc is a function of saturation, u.

Thus the two dimensional system for two phase flow in a porous medium that will be

considered throughout this work is comprised of Eq. (2.6), a hyperbolic PDE for mass

conservation, and Eq. (2.8), an elliptic PDE for incompressibility. Stability analysis of

this two dimensional system is given in chapter six while the one dimensional model

(developed in the next section) is considered in chapters three and four.

2.2 The Modified Buckley-Leverett Equation

In one dimension, Eq. (2.1), Eq. (2.2), Eq. (2.3) and Eq. (2.5) combine into a scalar PDE

known as the Buckley-Leverett equation. Starting with capillary presssure, the spatial

derivative of Eq. (2.5) is pc(u)x = pn

x
− pw

x
. Then Eq. (2.3) is used to replace the phase

pressures:

pc(u)x = − vn

λn(u)
+

vw

λw(u)
. (2.9)
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The velocity of the nonwetting phase is eliminated by using the total velocity vT , a

constant parameter which sets the velocity scale from Eq. (2.2). Now, in one dimension,
d

dx
vT = 0 and so vT is a scalar. Then vn = vT − vw and Eq. (2.9) becomes

pc(u)x = −vT − vw

λn(u)
+

vw

λw(u)

= − vT

λn(u)
+

λw(u) + λn(u)

λw(u)λn(u)
vw

Thus the velocity of the wetting phase is expressed in terms of the phase mobilities, total

velocity and capillary pressure:

vw =
λw(u)

λT (u)
vT +

λn(u)λw(u)

λT (u)
pc

x
. (2.10)

Now Eq. (2.10) is substituted into the one-dimensional version of Eq. (2.1)

φut +

�
λw(u)

λT (u)
vT +

λn(u)λw(u)

λT (u)
pc

x

�

x

= 0

to obtain the Buckley-Leverett equation

φut + vT f(u)x = −
�

K

µn
H(u)pc

x

�

x

. (2.11)

In this equation, the flux, f(u), is a fractional flow rate given by

f(u) =
λw(u)

λT (u)
=

kw(u)

kw(u) + mkn(1− u)
, (2.12)
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in which m = µw/µn and the function

H(u) =
kw(u)kn(1− u)

kw(u) + mkn(1− u)
(2.13)

is known as the capillary induced diffusion coefficient [18].

In [30, 31], Hassanizadeh and Gray propose a macroscopic constitutive equation for

capillary pressure that is rate dependent. Instead of averaging microscopic quantities

from Eq. (2.5) over a representative elementary volume, they use balance equations for

energy, mass and momentum at the macroscopic level to develop a constitutive theory

that explicitly includes saturation of the wetting phase along with other intrinsic prop-

erties of the porous medium. Specifically, they provide a non-equilibrium equation for

capillary pressure, known as dynamic capillary pressure

pc(u, ut) = pc

e
(u)− 1

Πw

∂u

∂t
(2.14)

in which pc

e
(u) is the equilibrium capillary pressure and Πw is a positive material coeffi-

cient. This linear rate dependence on saturation is the lowest order correction to include

dynamic effects; note that, at equilibrium, Eq. (2.14) is equivalent to an averaged macro-

scopic version of Eq. (2.5).

In 2004, DiCarlo observed non-monotonic saturation profiles, as seen in Figure 2.2, in

infiltration experiments described in [22]. This unexplained behavior was the impetus for

van Duijn, Peletier, Pop and others to incorporate dynamic capillary pressure, as given

by Eq. (2.14), into two phase flow models [17, 18, 34, 38, 47, 63, 62].

With the introduction of dynamic capillary pressure, the derivation of the Buckley-
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Figure 2.2: Experimentally determined saturation profiles for varying applied flux val-
ues, q (related to initial water saturation and velocity), at the top boundary; taken from
[22]
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Leverett equation is altered. Now, Eq. (2.9) is replaced by

pc

e
(u)x −

1

Πw
uxt = − vn

λn(u)
+

vw

λw(u)

so that Eq. (2.10) becomes

vw =
λw

λT
vT +

λwλn

λT

�
pc

e
(u)− 1

Πw
ut

�

x

. (2.15)

Next, Eq. (2.15) is substituted into Eq. (2.1):

φut +

�
λw

λT
vT

�

x

= −
�
λwλn

λT

�
pc

e
(u)− 1

Πw
ut

�

x

�

x

. (2.16)

Note that Eq. (2.16) differs from Eq. (2.11) with the presence of the nonlinear dispersion

term on the right hand side. Thus the rate dependence in the constitutive equation for

dynamic capillary pressure influences the Buckley-Leverett equation through the regu-

larization.

To nondimensionalize Eq. (2.16) (as in [47]), characteristic time and length scales are

introduced: x = Lx̄ and t = T t̄, where the bar notation denotes a dimensionless variable.

Then Eq. (2.16) becomes

φ

T
ut̄ +

vT

L
f(u)x̄ = − K

µnL2

�
H(u)

�
pc

e
(u)− 1

ΠwT
ut̄

�

x̄

�

x̄

.

The following equalities are obtained by balancing coefficients:

φ

T
=

vT

L
=

K

µnL2
.
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The characteristic time scale is thus determined to be T = Lφ

vT = φµ
n
L

2

K
. Now, the

dimensionless dispersion coefficient is denoted by τ = 1
ΠwT

= K

ΠwL2φµn and is included in

the modified Buckley-Leverett equation (bars omitted):

ut + f(u)x = − [H(u) (pc

e
(u)− τut)x

]
x
, (2.17)

which will be considered in depth in chapters three and four. The equilibrium capillary

pressure pc

e
has been scaled by a typical pressure p̄ = v

T
Lµ

w

K
, and is now dimensionless.

As previously mentioned, the relative permeability functions kw(u), kn(1 − u) are

often assumed to be quadratic in the work presented here. Specifically, let kj(u) = κju2,

where κj > 0 is constant. Then f(u) and H(u) have the functional forms

f(u) =
u2

u2 + M(1− u)2
, H(u) =

κnu2(1− u)2

u2 + M(1− u)2
, M =

κn

κw
m.

The flux function, f(u), is convex-concave with a single inflection point at some uI ∈ (0, 1)

[27]. The shape of f(u) is significant when describing the hyperbolic wave structure of

solutions, as in [46]. Graphs of these functions are shown in Figure 2.3 for κn = 1 and

various values of M . In their original paper [12], Buckley and Leverett use M = 0.5.

However, M = 2 can be regarded as a representative choice [63] and is used throughout

chapters three and four. In this case, uI = 0.613.

The equilibrium capillary pressure, pc

e
(u), is generally taken to be a smooth and

decreasing function of saturation [49]. For simplicity, it is taken to be linear here: pc

e
(u) =

−u. Then Eq. (2.17) becomes

ut + f(u)x = [H(u) (ux + τuxt)]x . (2.18)
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Figure 2.3: (a) Fractional flow rate f(u) (b) Capillary induced diffusion coefficient H(u)
in Eq. (2.17)

Linearizing about a constant u = ue, a linear PDE is obtained for the perturbation v(x, t)

of ue :

vt + f �(ue)vx = H(ue)(vxx + τvxxt). (2.19)

Solutions of Eq. (2.19) of the form v = eλt eikx are specified by the dispersion relation

λ + ikf �(ue) = −k2H(ue)− λk2τH(ue).

Thus,

λ = −ik
f �(ue)

1 + k2τH(ue)
− k2H(ue)

1 + k2τH(ue)
.

Let c(k) =
f �(ue)

1 + k2τH(ue)
and µ(k) =

k2H(ue)

1 + k2τH(ue)
. Then

v = eik(x−c(k)t) e−µ(k)t.
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Thus the solution has wave speed c(k) bounded above by the characteristic speed f �(ue)

for all k. Moreover, µ(k) → 1/τ as k → ∞, suggesting that τ is akin to a relaxation

time.

2.3 Traveling Waves

A traveling wave solution of Eq. (2.18) is of the form u(x, t) = ũ(η), η = x− st. Substi-

tution into Eq. (2.18) gives the third order ODE (omitting tildes)

−su� + (f(u))� = [H(u)u�]� − sτ [H(u)u��]� (2.20)

where � = d/dη. Integrating Eq. (2.20) with boundary conditions

u(±∞) = u±, u�(±∞) = 0, u��(±∞) = 0, (2.21)

leads to the second order ODE

−s(u− u−) + f(u)− f(u−) = H(u)u� − sτH(u)u��, (2.22)

together with the Rankine-Hugoniot condition

−s(u+ − u−) + f(u+)− f(u−) = 0. (2.23)
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As in [63], it is convenient to write û(ξ) = u(η) where ξ = η/
√

sτ . Then Eq. (2.22)

becomes (hats omitted)

H(u)u�� − H(u)√
sτ

u� − s(u− u−) + f(u)− f(u−) = 0, (2.24)

where � = d/dξ. Equation (2.24) is written as a first order system of ODEs:

u� = v (2.25a)

v� =
1√
sτ

v +
1

H(u)
[s(u− u−)− f(u) + f(u−)] . (2.25b)

Traveling waves correspond to heteroclinic orbits between equilibria (u±, 0) of system

(2.25), analyzed in detail in chapter three.

2.4 Rarefactions and Shocks

A scalar conservation law is obtained when the right hand side of Eq. (2.17) is set to

zero:

ut + f(u)x = 0. (2.26)

The two types of weak solutions of Eq. (2.26) are reviewed in this section.

Definition A rarefaction wave is a continuous weak solution of Eq. (2.26) and has the

form

u(x, t) =






u− if x < f �(u−)t

r(x

t
) if f �(u−)t ≤ x ≤ f �(u+)t

u+ if x > f �(u+)t
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where u± are the initial downstream and upstream saturations, respectively, and u = r(ξ)

is defined by f �(u) = ξ. Note that this makes sense if f �(u) is increasing from f �(u−) to

f �(u+).

Definition A shock wave from u− to u+ with speed s is a discontinuous weak solution

of Eq. (2.26) and has the form

u(x, t) =






u− if x < st

u+ if x > st,

where s is defined by the Rankine-Hugoniot condition (Eq. (2.23)) as the slope of the

chord connecting the points (u−, f(u−)) and (u+, f(u+)) on the flux curve.

Only constant values of u± and s are considered here; more generally, u± would be

one-sided limits at a discontinuity x = x̃(t) with speed s(t) = x̃�(t).

Definition A shock from u− to u+ with speed s is admissible if there exists a solution

(u, v)(ξ) of Eq. (2.25) such that (u, v)(±∞) = (u±, 0).

Two types of shock solutions are analyzed throughout this work: Lax and undercom-

pressive. A Lax shock satisfies the Lax entropy condition [44]

f �(u+) ≤ s ≤ f �(u−), (2.27)

so that characteristics x(t) = f �(u±)t+x0 converge on the shock from each side. This type

of shock is illustrated in Figure 2.4a. Because the flux function f(u) changes concavity,

there are admissible shocks which violate Eq. (2.27). See Figure 2.4b. Such a shock is

known as undercompressive [39] since characteristics converge on the shock only from
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ahead of the wave. The presence of these undercompressive shocks is the novel feature

of the one-dimensional model and is discussed in detail in the following chapter.
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Figure 2.4: (a) Shock solution of Eq. (2.26) which satisfies the Lax entropy condition,
Eq. (2.27) (b) Undercompressive shock solution of Eq. (2.26)
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Chapter 3

The Modified Buckley-Leverett

Equation with Quadratic Relative

Permeabilities

The focus of this chapter is on the one-dimensional model with dynamic capillary pressure

and quadratic relative permeability functions. Under these assumptions, the modified

Buckley-Leverett equation has the form

ut + f(u)x = [H(u) (ux + τuxt)]x , (3.1)

with

f(u) =
u2

u2 + M(1− u)2
, H(u) =

κnu2(1− u)2

u2 + M(1− u)2
.
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Without loss of generality, κn ≡ 1 throughout this chapter. Recall from chapter two that

the corresponding ODE system for a traveling wave, u(η) with η = x− st, is

u� = v (3.2a)

v� =
1√
sτ

v +
1

H(u)
[s(u− u−)− f(u) + f(u−)] . (3.2b)

In what follows, system (3.2) is analyzed in depth as a means to solving the Riemann

problem for the hyperbolic conservation law associated with Eq. (3.1). In particular,

phase portraits of system (3.2) are studied and used to determine when there is a hetero-

clinic orbit between saddle equilibria. The values of u± for which there is such an orbit

form a curve in the u± plane; certain properties of these curves are proven rigorously. Fi-

nally, solutions of the Riemann problem are presented, along with numerical simulations

to verify the theoretical findings.

3.1 Equilibria and Phase Portraits

Equilibria for system (3.2) are points (u, v) = (u, 0), where s(u − u−) = f(u) − f(u−);

these correspond to points of intersection between the graph of f(u) and the line with

slope s through (u−, f(u−)). In particular, for the shock wave

u(x, t) =






u− if x < st

u+ if x > st,

(u±, 0) are equilibria. When there are three equilibria, they will be denoted with the

notation ubot < umid < utop.
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The Jacobian of Eq. (3.2),

J(u, 0) =





0 1

s− f �(u)

H(u)

1√
sτ



 ,

has eigenvalues

λ± =
1

2

�
1√
sτ

±

�
1

sτ
+ 4

s− f �(u)

H(u)

�
. (3.3)

Consequently, the outside equilibria, u = ubot and u = utop, are saddle points since

f �(u) < s. The middle equilibrium umid is an unstable node or spiral since f �(umid) > s.

Definition A saddle-saddle connection from u− to u+ is a heteroclinic orbit from (u−, 0)

to (u+, 0) when (u±, 0) are saddle point equilibria of system (3.2).

When ubot = u− < utop = u+, this saddle-saddle connection occurs in the upper half

plane. On the other hand, when ubot = u+ < utop = u−, the connection lies in the lower

half plane. Note that homoclinic orbits are possible only as τ = ∞ since the system is

conservative only in this limit.

For each u− ∈ [0, 1], consider the equation

f �(u) =
f(u)− f(u−)

u− u−
, 0 < u < 1. (3.4)

Lemma 3.1.1. Suppose f : [0, 1]→ [0, 1] is continuous and C4 on (0, 1). Suppose further

that f �(0) = f �(1) = 0, (u − uI)f ��(u) < 0 for u �= uI and f ���(uI) < 0. Then there is a
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continuous function uα : [0, 1] → [0, 1] that is C4 on (0, 1) such that for each u− �= uI ,

u = uα(u−) is the unique solution of Eq. (3.4); moreover, uα(uI) = uI , and u�
α
(uI) = −1

2 .

Proof. Let

g(u−, y) := f �(y)(y − u−)− f(y) + f(u−) (3.5)

with u−, y ∈ (0, 1). Without loss of generality, assume u− < uI ≤ y. The existence

of uα(u−) will be shown first. By the Mean Value Theorem, f �(z) =
f(y)− f(u−)

y − u−
for

some z depending on y with u− < z < y. Letting y = u−, then f �(z) < f �(uI) for all

z, u− < z < uI so that f �(uI) >
f(uI)− f(u−)

uI − u−
. Thus g(u−, uI) > 0. On the other hand,

if y = 1, then f �(z) > f �(1) = 0 so that g(u−, 1) < 0. By continuity, there is a value

uα(u−) ∈ (uI , 1) such that g(u−, uα(u−)) = 0. Uniqueness follows from the inequality

∂g

∂y
= (y − u−)f ��(y) < 0 for y > uI . (3.6)

Repeatedly differentiating Eq. (3.5) and evaluating at u− = y = uI leads to u�
α
(uI) = −1

2
.

Regularity follows from Eq. (3.6) and the Implicit Function Theorem except at u− = uI

where the proof involves taking limits. This completes the proof of Lemma 3.1.1.

The range of the continuous function uα is an interval Iα = {uα(u−) : u− ∈ [0, 1]}.

Let uγ : Iα → [0, 1] be the inverse of uα. Then u+ = uγ(u−) gives the intersection of

the tangent through (u−, f(u−)) with the graph of f(u) (where this intersection is in the

unit interval):

f �(u−) =
f(uγ(u−))− f(u−)

uγ(u−)− u−
. (3.7)

Figure 3.1b shows the curves A and B defined by A = {(uα(u+), u+) : u+ ∈ [0, 1]},

B = {(u−, uα(u−)) : u− ∈ [0, 1]}. The regions between these curves represent pairs

(u−, u+) for which system (3.2) has three equilibria and u± are the saddle points.
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Figure 3.1: Values of u± for which there are three equilibria of Eq. (3.2); (a) Definitions
of uα(u−), uγ(u−) on flux function curve, (b) Graphs A, B of functions uγ(u−), uα(u−),
respectively.

Various phase portraits for which system (3.2) has two or three equilibria are illus-

trated in Figure 3.2. The first three portraits in Figure 3.2 show three equilibria; the

outside two are saddles while the middle is an unstable node. The trajectories connect-

ing umid to ubot and umid to utop in Figure 3.2a correspond to admissible Lax shocks

with u− = umid. However, in Figure 3.2b, there is no trajectory from umid to utop, even

though u− = umid, u+ = utop satisfy the Lax entropy condition, Eq. (2.27). Figure 3.2c

illustrates a saddle-saddle connection corresponding to an admissible undercompressive

shock between ubot = u− and utop = u+. This case separates those shown in Figure 3.2a

and Figure 3.2b.

Given a pair (u−, u+ = uγ(u−)) on curve A, system (3.2) has only two equilibria:

a degenerate saddle-node at u− and a saddle at u+. The two possible phase portraits

for such a pair with u− < uI are shown in Figures 3.2d, 3.2e. As ubot = u− and umid
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approach each other, Figure 3.2a becomes Figure 3.2d, with the connection between umid

and utop = u+ being preserved, and Figure 3.2b transforms into Figure 3.2e. Between

these two cases is a limiting version of Figure 3.2c in which umid = ubot. In contrast to

Figure 3.2d there are no trajectories from (ubot, 0) above the stable manifold of (utop, 0).

3.2 Separation Function

In this section, a separation function R(ν) is defined for each value of the parameters ν =

(β, s, u−, M) where β = 1/
√

sτ . Zeroes of the separation function determine parameters

for which there is a saddle-saddle trajectory from u− to u+, where u+ �= u− depends on

u− and s through the Rankine-Hugoniot condition, Eq. (2.23). The separation function

R, defined in [33, 54], measures a distance between the unstable manifold emanating

from (u−, 0) and the stable manifold entering (u+, 0).

Let φ = (u, v). The notation ν0 = (β0, s0, u0
−, M0) and φ0 = (u0, v0) is used to

represent specific values of the parameters and variables. Let K(φ; ν) denote the vector

field in system (3.2):

K(φ; ν) =




v

βv + 1
H(u)(s(u− u−)− f(u) + f(u−))



 .

Suppose that for a particular β0 and pair u0
± (with u0

− < u0
+), there is a saddle-saddle

connection from u0
− to u0

+ and let φ0(ξ) = (u0, v0)(ξ) be the corresponding trajectory.

That is, φ0(ξ) is a solution of system (3.2) with boundary values φ0(±∞) = (u0
±, 0). For

parameter values ν near ν0, there are saddle points (u±, 0) near (u0
±, 0); the solution of

system (3.2) along the unstable manifold of the saddle equilibrium at u− is represented

by φ−(ξ; ν) and similarly φ+(ξ; ν) is the solution along the stable manifold of (u+, 0). It

30



0.4 0.6 0.8

−0.5

0

0.5

u

v
=
uv u

bot
mid topu u

(a)

0.4 0.6 0.8 1

−0.5

0

0.5

u

v
=
u

v

(b)

0.4 0.6 0.8 1

−0.5

0

0.5

u

v
=
u

v

(c)

0.4 0.5 0.6 0.7 0.8
−0.4

−0.2

0

0.2

0.4

u

v

(d)

0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

u

v
=
u

v

(e)

Figure 3.2: Phase portraits of system (3.2) with M = 2, τ = 0.1 for various pairs (u−, u+)
in the region marked “3 equilibria” in Figure 3.1b, with u− < uI . (a) The unstable
manifold from u− = ubot is above the stable manifold at u+ = utop. (b) The unstable
manifold from u− is below the stable manifold into u+. (c) Saddle-saddle connection
from u− to u+. (d) A single trajectory from the degenerate saddle-node at u− connects
to the saddle at u+. (e) There is no connection between the degenerate saddle-node at
u− and the saddle at u+.
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is required that φ± ∈ C1 in both ξ and ν (near ν0) and that φ± satisfy:

φ−(ξ, ν0) = φ0(ξ), ξ ∈ (−∞, 0]; φ+(ξ, ν0) = φ0(ξ), ξ ∈ [0,∞);

φ−(−∞; ν) = (u−, 0); φ+(∞; ν) = (u+, 0).

Let y(ξ) = K(φ−(ξ; ν), ν)× ∂θφ−(ξ; ν) where θ = β, s, u− or M. (The product U ×V

means the 2 × 2 determinant formed from column vectors U, V .) Then, using the fact

that K = ∂ξφ,

dy

dξ
=

�
∂K(φ−, ν)

∂φ−

∂φ−(ξ; ν)

∂ξ

�
× ∂φ−(ξ; ν)

∂θ
+ K × ∂2φ−(ξ; ν)

∂θ∂ξ
(3.8)

= ∂φ−K∂ξφ− × ∂θφ− + K ×
�
∂φ−K∂θφ− + ∂θK

�
(3.9)

= ∂φ−K∂ξφ− × ∂θφ− + ∂ξφ− × ∂φ−K∂θφ− + K × ∂θK (3.10)

=
�
tr∂φ−K

�
(K × ∂θφ−) + K × ∂θK (3.11)

= βy + r(ξ) (3.12)

where r(ξ) = K(φ−(ξ; ν), ν) × ∂θK(φ−(ξ; ν), ν). Equation (3.12) is a linear differential

equation and is solved by using the integrating factor e−βξ:

y(0) =

� 0

−∞
e−βξr(ξ)dξ. (3.13)

The separation function is defined as R(ν) = K(φ0(0), ν0) × (φ−(0; ν) − φ+(0; ν)); then

Eq. (3.13) and the corresponding formula for φ+ give

∂R

∂θ
(ν0) =

� ∞

−∞
e−βξ

�
K(φ0(ξ), ν0)× ∂K

∂θ
(φ0(ξ), ν0)

�
dξ (3.14)
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for each parameter θ.

Next, Eq. (3.14) is used to calculate the sign of each of the derivatives of R(ν) with

respect to the parameters β, u−, s. First, let θ = β. Then

∂K

∂β
=




0

v



 , K × ∂K

∂β
= v2.

Consequently,
∂R

∂β
(ν0) =

� ∞

−∞
e−βξ(v0)2dξ > 0. (3.15)

Next consider θ = u−. Since

∂K

∂u−
=




0

1

H(u)
(−s + f �(u−))



 , K × ∂K

∂u−
=

v

H(u)
(f �(u−)− s),

Eq. (3.14) takes the form:

∂R

∂u−
(ν0) =

� ∞

−∞
e−βξ

v0

H(u0)
(f �(u0

−)− s0)dξ < 0. (3.16)

Finally, for θ = s,

∂K

∂s
=




0

1
H(u)(u− u−)



 , K × ∂K

∂s
=

v

H(u)
(u− u−).

Thus,
∂R

∂s
(ν0) =

� ∞

−∞
e−βξ

v0

H(u0)
(u0 − u0

−)dξ > 0. (3.17)

For a fixed ν = (β, s, u−, M), trajectories φ±(ξ; ν), from ξ = ±∞ respectively, are
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computed until they cross the vertical line u = umid at the middle equilibrium. Let vm

± (ν)

denote the corresponding values of v. The function R̃(u+) = vm

− (ν) − vm

+ (ν), in which

s varies with u+, is used to compute values of the separation function R numerically.

Specifically, R̃(u+) = 0 is solved for fixed values of τ, M and u−. Note that this is

equivalent to computing zeroes of R(ν).

The first step is to choose two values of u+ for which R̃(u+) has opposite signs; for

u− < uI , this is the case for u(1)
+ = uα(u−) + δ and u(2)

+ = uγ(u−) − δ if u− ∈ Iα or

u(2)
+ = 1 − δ if u− /∈ Iα, where the small parameter δ > 0 is needed to avoid degenerate

equilibria. The process of interval division continues until a zero of R̃(u+) is obtained.

From Eq. (3.17) and the monotonic dependence of s on u+, the zero u+ = uΣ(u−, τ) of

R̃(u+) is unique; this will be shown in the next section.

3.3 Στ Curves

The points (u−, uΣ(u−, τ)) lie on a curve Στ , in the u−, u+ plane of Figure 3.3; Στ has

two connected components that terminate at points (u, u+), (ū, ū+) on the curve. In

Figure 3.3, they are labeled only for the case τ = 0.1.

As τ > 0 varies, the Στ curves change as suggested in Figure 3.3. The curves fill

a region bounded by the Σ∞ curve, the curve labeled A and either the u− axis or the

horizontal line u+ = 1. In particular, each Στ curve approaches a corner (u−, u+) = (0, 1)

or (u−, u+) = (1, 0). As observed in [18], for quadratic relative permeabilities there can

be no traveling wave connected to an equilibrium with u± = 0 or 1. Although there is

not a saddle-saddle connection from u− = 0 to u+ = 1, or from u− = 1 to u+ = 0, the

limits of the Στ curves can be regarded as representing these connections.

The structure seen in Figure 3.3 is established in two steps: first with τ = ∞ and
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Figure 3.3: (a) Στ curves for τ = 0.1, 1,∞. The Στ curves are contained in the region
between curves A and B. (b) Region 0 ≤ u+ ≤ uI ≤ u− of (a) with only curves A and
Σ0.1 shown. The labels a-e refer to corresponding phase portraits in Figure 3.2.

then 0 < τ < ∞. In both cases, an identity is used that involves integrating system

(3.2) along a saddle-saddle trajectory from u− to u+ = uΣ(u−) with speed s = s(u−, u+)

given by the Rankine-Hugoniot condition, Eq. (2.23). Along a saddle-saddle trajectory,

v = v(u) is a function of u. Then

v
dv

du
= βv +

s(u− u−)− f(u) + f(u−)

H(u)
.

Let

G(u; u−, s) =
s(u− u−)− f(u) + f(u−)

H(u)
. (3.18)

Then integrating from u− to u > u−:

1

2
v2(u) = β

�
u

u−

v(y) dy +

�
u

u−

G(y; u−, s) dy. (3.19)
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For definiteness, suppose u− < u+. Then, letting u = u+ and since v(u) = u� ≥ 0,

�
u+

u−

G(y; u−, s) dy = −β

�
u+

u−

v(y) dy ≤ 0, (3.20)

with equality only for β = 0. Let

h(u−, u+) =

�
u+

u−

G(y; u−, s) dy.

The equation h(u−, u+) = 0 gives pairs (u−, u+) for which there is a saddle-saddle con-

nection from u− to u+ for β = 0, i.e., in the limit τ →∞.

In what follows, it is useful to record the signs of
∂s

∂u−
and

∂s

∂u+
when u± correspond

to saddle point equilibria.

Lemma 3.3.1. For u− < uI and u+ > uα(u−),
∂s

∂u+
< 0 and

∂s

∂u−
> 0.

Proof. First consider
∂s

∂u+
, calculated from Eq. (2.23):

∂s

∂u+
=

1

u+ − u−
(f �(u+)− s) < 0,

since u− < u+ and f �(u+) < s. Similarly,

∂s

∂u−
=

1

u+ − u−
(s− f �(u−)) > 0.

The asymptotic behavior of the functions f(u) and H(u) will also be necessary in the

proof of the following proposition; thus formulae are given in the next two lemmas.
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Lemma 3.3.2. For u− < uI , as u− → 0+,

f(u) ∼ u2

M
+ O(u3), H(u) ∼ u2

M
+ O(u3).

Proof. The flux function f(u) is expressed using the sum of a geometric series with

−1 < 1

1+ u2

M(1−u)2

< 1:

f(u) =
u2

M

�
1

1− u

�2 1

1 + u2

M(1−u)2

∼ u2

M

�
1 + u + u2 + . . .

�2
�

1− u2

M(1− u)2
+

u4

M2(1− u)4
− . . .

�

∼ u2

M
+ O(u3).

Now H(u) is written in terms of f(u):

H(u) = (1− u)2f(u) ∼ u2

M
+ O(u3)

as u→ 0+.

Lemma 3.3.3. For u− < uI , as u+ → 1−,

f(u) ∼ 1−M(1− u)2 + O((1− u)3), H(u) ∼ (1− u)2 + O((1− u)4).

Proof. The flux function f(u) is expanded about u = 1 and again expressed as the sum
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of a geometric series, as in Lemma 3.3.2:

f(u) = 1− M(1− u)2

u2
+

M2(1− u)4

u4
− . . .

= 1 +
1

(1− (1− u))2

�
−M(1− u)2 +

M2(1− u)4

u2
− . . .

�

= 1 +
�
1 + (1− u) + (1− u)2 + . . .

�2
�
−M(1− u)2 +

M2(1− u)4

u2
− . . .

�

∼ 1−M(1− u)2 + O((1− u)3).

Then

H(u) ∼ (1− u)2
�
1−M(1− u)2 + O((1− u)3)

�

∼ (1− u)2 + O((1− u)4)

as u→ 1−.

Proposition 3.3.1. (τ = ∞) The level curve {(u−, u+) : h(u−, u+) = 0} is a smooth

monotonic curve u+ = u∞(u−) joining (u−, u+) = (0, 1) to (u−, u+) = (1, 0). Moreover,

u∞(u−) ∼ 1− uM

− as u− → 0+ and u∞(u−) ∼ (1− u−)1/M as u− → 1−.

Proof. The existence of the function u+ = u∞(u−) such that h(u−, u∞(u−)) = 0 is

established first. In the following lemma, u− is restricted to the interval (0, uI), without

loss of generality.

Lemma 3.3.4. For every u− < uI , there exists a unique u+ = u∞(u−) > uI such that

h(u−, u+) = 0. Moreover, lim
u−→uI−

u∞(u−) = uI and lim
u−→0+

u∞(u−) = 1.

Proof. It is first shown that as u+ → 1− with fixed u− < uI , h(u−, u+) → −∞. Using
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Lemma 3.3.3,

G(u; u−, s) = G(u; u+, s) =
s(u− u+)− f(u) + f(u+)

H(u)
(3.21)

=
s(1− u+)

(1− u)2
− s

1− u
+ F1(u, u+, s) (3.22)

where F1(u, u+, s) has the property that
�

u+

u−
F1(u, u+, s) du has a finite limit as u+ → 1−.

Consequently,

h(u−, u+) =

�
u+

u−

G(u; u+, s) du ∼ s ln(1− u+), as u+ → 1− . (3.23)

On the other hand, for u+ = uI , the area between the chord joining u− and u+ and the

curve f(u) is positive (since the chord lies above the graph of f); thus h(u−, uI) > 0.

Since h(u−, u+) changes sign, there is a value of u+ such that h(u−, u+) = 0. Uniqueness

is established by the calculation

∂h

∂u+
=

�
u+

u−

u− u−
H(u)

∂s

∂u+
du < 0. (3.24)

Now consider the case near the inflection point; suppose that u− is close to uI . Then

G(u; u−, s) < 0 for u ∈ (u−, uγ(u−)). Thus h(u−, uγ(u−)) < 0. Since h(u−, uI) > 0 (as

observed above), then uI < u∞(u−) < uγ(u−). But uγ(u−) → uI as u− → uI , so that

lim
u−→uI−

u∞(u−) = uI .

To show lim
u−→0+

u∞(u−) = 1, first observe that G(u), as in Eq. (3.18), can be expressed
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asymptotically as (using Lemma 3.3.2)

G(u; u−, s) ∼
(u− u−)[s− 1

M
(u + u−) + O(u2 + u2

−)]
u2

M
+ O(u3)

∼ sM

u
− sMu−

u2
+ O(u2 + u2

−)

as u and u− approach zero. Thus h(u−, u+) for fixed u+ < 1 has the asymptotic form

�
a

u−

G(u; u−, s) du ∼ −sM ln u− as u− → 0 + . (3.25)

Consequently, since h(u−, u∞(u−)) = 0, it must be that u+ → 1 as u− → 0+ to avoid

the singularity in Eq. (3.25). (This idea is pursued more quantitatively below.) This

completes the proof of the lemma.

Next, it is shown that u∞(u−) ∼ 1 − uM

− as u− → 0+. Express h(u−, u+) with

u+ = u∞(u−) as a sum of three integrals:

h(u−, u+) =

�
a

u−

G(u; u−, s) du +

�
b

a

G(u; u−, s) du +

�
u+

b

G(u; u−, s) du = 0, (3.26)

where a and b are chosen such that
�

b

a
G(u; u−, s) du = 0. Then the first and third terms

in Eq. (3.26) must balance each other as u− → 0+ and u+ → 1−. As in Eq. (3.23) and

Eq. (3.25), respectively,

�
u+

b

G(u; u−, s) du ∼ s ln(1− u+) as u+ → 1− (3.27)

�
a

u−

G(u; u−, s) du ∼ −sM ln u− as u− → 0 + .

The terms from these two integrals must add to zero which gives u+ = u∞(u−) ∼ 1−uM

−
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as u− → 0 + .

To show monotonicity of u∞(u−), the identity h(u−, u∞(u−)) = 0 is differentiated

with respect to u−:
∂h

∂u−
+

∂h

∂u+
u�∞(u−) = 0.

From Eq. (3.24),
∂h

∂u+
< 0 and

∂h

∂u−
is calculated using Eq. (3.21) and Lemma 3.3.1 with

s = s(u−, u+):
∂h

∂u−
=

�
u+

u−

u− u+

H(u)

∂s

∂u−
du < 0.

Therefore, u�∞(u−) < 0. Defining u∞(0) = 1 and u∞(uI) = uI , the smooth curve

Σ∞ = {(u−, u∞(u−)) : 0 ≤ u− ≤ uI}

decreases monotonically from (0, 1) to (uI , uI).

A similar argument for u− > uI shows that Σ∞ extends monotonically from (uI , uI)

to (1, 0) with u∞(u−) ∼ (1− u−)1/M as u− → 1−. This completes the proof of Proposi-

tion 3.3.1.

In defining the separation function R, it is natural to have it depend on parameters

u−, s, β. However, in the following proposition, properties of the Στ curves are established

in the (u−, u+) plane. It is thus convenient to express zeroes of R in terms of parameters

u±, τ ; let

R̂(u−, u+, τ) = R(u−, s(u−, u+), β), in which β = 1/
�

s(u−, u+)τ .

Note that R̂ is not the same as the function R̃(u+) used to calculate zeroes of R. The
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proof of the next proposition uses the inequality

∂R̂

∂u+
(u−, uΣ(u−, τ), τ) < 0, u− �= uI . (3.28)

That is, R̂ is strictly decreasing in u+ at the zero u+ = uΣ(u−, τ) of R̂. Numerical results

show clearly that R̂(u−, u+, τ) is strictly decreasing as a function of u+, but proving this

property is problematic for extreme values of the parameters (specifically large values of

τ). Consequently, Eq. (3.28) is an assumption in the proposition.

Proposition 3.3.2. (0 < τ < ∞) For each τ > 0, there is u = u(τ) with the property

that, for each u− ∈ (0, u), the equation R̂(u−, u+, τ) = 0 has a solution u+ = uΣ(u−, τ).

Moreover, assuming Eq. (3.28),

1. u+ = uΣ(u−, τ) is unique and uΣ(u−, τ) is a C∞ function;

2.
∂uΣ

∂τ
< 0 and

∂uΣ

∂u−
< 0.

Remark: In this proposition, τ > 0 is fixed and pairs (u−, u+) are identified for

which there is a traveling wave from u− to u+. This is a slightly different approach

from that in [62], where for each fixed pair (u−, u+) with u− < u+, h(u−, u+) < 0, and

u+ > uα(u−), the existence of a traveling wave from u− to u+ is established for some

(unique) value of τ.

Proof. Let u− < uI . From Proposition 3.3.1, let u0
+ > u0

− satisfy h(u0
−, u0

+) = 0. Then�
u
0
+

u
0
−

G(y; u0
−, s0) dy = 0 and

�
u

u
0
−

G(y; u0
−, s0) dy > 0 for u0

− < u < u0
+. The point (u0

+, 0)

is an equilibrium with s0 = s(u0
−, u0

+). Then from Eq. (3.19), with u− = u0
−, v(u) > 0

for u0
− < u < u0

+. Consequently, note that R̂(u0
−, u0

+, τ 0) > 0 by comparing the unstable

manifold from (u0
−, 0) to the stable manifold entering (u0

+, 0). This corresponds to the

phase portrait shown in Figure 3.2a.
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Let u∗ be defined by Eq. (3.7) when uγ(u∗) = 1. It is argued next that R̂(u0
−, u+, τ 0) <

0 for u0
− < u∗ and u+ near 1. Suppose for a contradiction that v(u) > 0 for u ∈ (u0

−, u+]

and so R̂(u0
−, u+, τ 0) > 0. From Eq. (3.27),

�
u+

u
0
−

G(u; u0
−, s(u0

−, u+)) du→ −∞, as u+ → 1−.

However,

�
u

u−

v(u) du is uniformly bounded. Thus the right hand side of Eq. (3.19) is

negative for u+ close enough to 1 while the left hand side of Eq. (3.19) is positive for all

u. This contradiction implies v(u) = 0 for some u < u+, as in Figure 3.2b.

For (u−, u+) on the curve A, (u−, 0) is a saddle-node equilibrium. In fact, the equilib-

rium has a positive eigenvalue λ+ = β and a well defined eigenvector with corresponding

unstable manifold. For this reason, as in [53], the separation function R̂(u−, u+, τ) is well

defined on A and continuous on U ∪A∪Σ∞, where U is the open region bounded by A,

Σ∞ and the line u+ = 1.

For (u−, u+) on A near (u∗, 1), R̂ < 0 since
�

u+

u−
G(u; u−, s) du → −∞ as u+ → 1.

Also observe that R̂(u−, u+, τ) → 0 as (u−, u+) → (uI , uI). Setting R̂(uI , uI , τ) = 0, let

u = min{u− : R̂(u−, uγ(u−), τ) = 0, u∗ < u− ≤ uI}. Consequently, R̂(u−, uγ(u−), τ) < 0

for u∗ < u− < u.

For each u−, 0 < u− < u, values of u+ at which R̂ has opposite signs have been iden-

tified. Thus, by continuity, there exists a value of u+ = uΣ(u−, τ) for which R̂ = 0. With

existence established, note that uniqueness follows directly from assuming Eq. (3.28).

It follows from Eq. (3.28) and the Implicit Function Theorem that uΣ is a C∞ function.

Differentiating R̂(u−, uΣ(u−, τ), τ) = 0 with respect to τ gives

∂R̂

∂u+

∂uΣ

∂τ
+

∂R̂

∂τ
= 0. (3.29)
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But
∂R̂

∂τ
=

∂R

∂β

∂β

∂τ
< 0 from Eq. (3.15) and β = 1/

√
sτ . It now follows from Eq. (3.28)

and Eq. (3.29) that
∂uΣ

∂τ
< 0.

Similarly differentiating R̂(u−, uΣ, τ) = 0 with respect to u− gives

∂R̂

∂u−
+

∂R̂

∂u+

∂uΣ

∂u−
= 0. (3.30)

But

∂R̂

∂u−
=

∂R

∂u−
+

∂R

∂s

∂s

∂u−
+

∂R

∂β

∂β

∂s

∂s

∂u−

<

� ∞

−∞
e−βξ

v0

H(u0)

f �(u−)− s

u+ − u−
(u+ − u)dξ < 0,

where Eq. (3.16) and Eq. (3.17) have been combined and Eq. (3.15) has been used together

with Lemma 3.3.1. Now it follows from Eq. (3.28) and Eq. (3.30) that
∂uΣ

∂u−
< 0. This

completes the proof of Proposition 3.3.2.

3.4 The Riemann Problem

In this section, solutions of the Riemann problem

ut + f(u)x = 0 (3.31a)

u(x, 0) =






ul if x < 0

ur if x > 0

(3.31b)

are presented.

Solutions of Eq. (3.31) are leading order approximations to solutions of Eq. (3.1) with
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jump initial data. The discontinuity is propagated as combinations of shock and rarefac-

tion waves, suggesting the decomposition of solutions of general initial value problems

for Eq. (3.1) into combinations of traveling waves approximating shocks and smooth

waves approximating rarefaction waves. The solution of Eq. (3.31) relies crucially on

the description of undercompressive shocks, since these represent the boundary between

admissible and inadmissible Lax shocks.

In Figure 3.4, the solution of the Riemann problem is presented for all data given

by Eq. (3.31b). The structure of the solution is independent of τ > 0, so for definite-

ness the solution is shown schematically for τ = 1. In Figure 3.4a, open regions are

labeled according to the combination of shock and rarefaction waves appearing in the

solution: classical rarefaction and shock waves are denoted by R and S, respectively,

while nonclassical undercompressive shocks are denoted by Σ. The horizontal dashed

line is located at ur = uI , the inflection point of f(u). The horizontal lines at ur = u+

and ur = ū+ form the boundaries between the regions labeled RS and RΣ. The curve

separating regions RΣ and SΣ is the set of points (u�, ur) for which there is an under-

compressive shock from u� to ur (as in Figure 3.3a). The curves separating the S and

SΣ regions represent the middle equilibria of undercompressive shocks: they consist of

pairs (umid, ur), for which umid = umid(u−) is the middle equilibrium for some u− and

ur = uΣ(u−) is the right state of an undercompressive shock. Notice that these curves

intersect the axes ur = 0, 1 in Figure 3.4 at the same value of umid = 2/3 for M = 2. Since

they are monotonic, it is convenient to parameterize these curves by ur. Accordingly, let

uo(ur) = u−1
mid

(ur), uσ(ur) = u−1
Σ (ur). The short curve through the point (uI , uI) consists

of the points (uα(ur), ur). It is part of the curve labeled ‘A’ in Figure 3.1b.

Solutions of the Riemann problem are described by fixing ur < uI in two cases (the

construction for ur > uI is similar) and varying u�. This approach is simpler than fixing
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Figure 3.4: Solution of the Riemann problem for τ = 1, M = 2: (a) solutions for all
values of u�, ur, (b) classical solutions as u� varies and ur is fixed, (c) classical and
nonclassical solutions as u� varies and ur is fixed
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u�, as in [33], which involves many more cases and is more complicated because of the

shape of the curves separating regions S and SΣ.

• For ū+ < ur < uI (Figure 3.4b), the Riemann problem has only classical solutions

as u� varies between 0 and 1. When u� < ur, a rarefaction wave joins the two states

as, in this region, characteristic speeds are increasing from u� to ur. An admissible

Lax shock from u� to ur exists when u� ∈ (ur, uα(ur)). For uα(ur) < u� < 1,

the solution is a rarefaction-shock, a combination of a rarefaction wave from u� to

uα(ur) and an admissible Lax shock between uα(ur) and ur with speed f �(uα(ur)).

• For 0 < ur < u+ (Figure 3.4c), solutions are either classical or a combination of clas-

sical and nonclassical waves, depending on the value of u�. As in the previous case,

a rarefaction wave joins u� to ur when u� < ur. Recall that uo = uo(ur), uσ = uσ(ur)

are the middle and top equilibria for the undercompressive shock from uσ to ur. The

graphs of these functions form the boundaries between the regions S, SΣ, RΣ. For

u� ∈ (ur, uo), the solution to Eq. (3.31) is an admissible Lax shock. Once u� > uo,

an admissible Lax shock connects u� to uσ and then an admissible undercompres-

sive shock joins uσ and ur. This structure persists as long as u� < uσ. Finally, for

uσ < u� < 1, the solution is a combination of a rarefaction wave from u� to uσ and

an admissible undercompressive shock from uσ to ur.

It is worth pointing out that by construction, even though double shock solutions SΣ

of the Riemann problem are not monotonic, the values of u remain in the physically valid

interval 0 ≤ u ≤ 1. As seen in the construction of traveling waves for undercompressive

shocks, this is a consequence of the degeneracy of H(u) at u = 0, 1. Positive invariance

of the unit interval has been proven in [48] for the fully nonlinear equation with regular-

ization; however, it is unknown how this result exactly relates to the observed behavior
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of the double shock solutions for the conservation law.

As τ → 0, note that β = 1/
√

sτ →∞ since 1 ≤ s ≤ f �(uI). To understand this limit,

let ξ = βζ so that Eq. (2.24) becomes

1

β2
u�� = u� +

1

H(u)
[s(u− u−)− f(u) + f(u−)] ,

in which � = d/dζ. In the limit β →∞, this ODE reduces to

u� = − 1

H(u)
[s(u− u−)− f(u) + f(u−)] .

Consequently, the traveling waves connect only adjacent equilibria u−, u+ satisfying the

Rankine-Hugoniot condition (Eq. (2.23)), corresponding to Lax shocks. The solution of

the Riemann problem is therefore entirely classical. This is manifested in Figure 3.4a by

the Στ curves (separating regions RΣ and SΣ in the figure) approaching the horizontal

lines u+ = 0 and u+ = 1, thereby collapsing the regions indicating undercompressive

shocks.

For fluxes with different dependence of relative permeability on saturation, the Στ

curves of traveling wave pairs (u−, u+) can fail to include the corners (0, 1), (1, 0) of

the saturation domain [62]. In this case, non-smooth traveling waves emerge that have

corners at u = 0 or at u = 1, and connect to a value of u in the open interval 0 < u < 1;

this issue is addressed in detail in the next chapter.

3.5 PDE Simulations

To verify the solution structures obtained in the previous section, numerically simulated

solutions of Eq. (2.18) with jump initial data (3.31b) are included here. The parameter τ
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is taken to be one for simplicity while M is taken to be two, following [63]. Computations

are performed on the interval −2 ≤ x ≤ 4, with ∆x = h = 0.002 for the rarefaction and

rarefaction-undercompressive shock solutions and h = 0.005 in other cases. All solutions

are shown at time t = 1, with ∆t = k = 0.1 (∆x)2. The pairs (u�, ur) are chosen in

each case by consulting Fig. 3.4a; for example, the pair (u�, ur) = (0.8, 0.2) is chosen to

generate the shock-undercompressive shock solution so that the size of the jumps and

separation between shocks are clear in the plots.

−2 0 2 40

0.2

0.4

0.6

0.8

1

x

u

(a)

−2 0 2 40

0.2

0.4

0.6

0.8

1

x

u

(b)

Figure 3.5: (a) Rarefaction wave solution for u� = 0.2, ur = 0.4, � = 0.01, τ = 1, M = 2.
(b) Admissible Lax shock for u� = 0.6, ur = 0.4, � = 0.05, τ = 1, M = 2.

By scaling x and t by a small parameter �, the effects of the regularization terms are

controlled in Eq. (2.18). Specifically, let u(x, t) = û(ψ) with ψ =
x− st

�
. Traveling waves

then have width on the order of �. With this scaling, Eq. (2.18) becomes

∂u

∂t
+

∂f(u)

∂x
=

∂

∂x

�
H(u)

�
�
∂u

∂x
+ �2τ

∂2u

∂x∂t

��
.
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Figure 3.6: (a) Admissible Lax shock trailing the undercompressive shock for u� =
0.8, ur = 0.2, � = 0.05, τ = 1, M = 2. (b) Rarefaction wave trailing the undercompressive
shock for u� = 0.9, ur = 0.4, � = 0.01, τ = 1, M = 2.

The corresponding finite difference scheme is:

u
n

j
− u

n−1
j

k
+

gj+1/2 − gj−1/2

h
=

�

h2

�
H

�
ū

n

j+
1
2

�
(un

j+1 − u
n

j )−H

�
ū

n

j−1
2

�
(un

j − u
n

j−1)
�

+

+
�
2
τ

h2k

�
H

�
ū

n

j+
1
2

�
(un

j+1 − u
n

j − u
n−1
j+1 + u

n−1
j

)−H

�
ū

n

j−1
2

�
(un

j − u
n

j−1 − u
n−1
j

+ u
n−1
j−1 )

�

(3.32)

where ū
j+

1
2

= 1
2(uj + uj+1), and gj+1/2 = 1

12(−f(uj+2) + 7f(uj+1) + 7f(uj)− f(uj−1)) is

a high order approximation of the flux function, f(u) [33]. Specifically, it has truncation

error that is O(h3) and so is higher order than the truncation error from the right hand

side of Eq. (3.32), which is O(�h2), provided h� �. Even though H(u) is nonlinear, the

modified equation has the same form as in [33]:

ut + f(u)x = �(H(u)ux)x + �2τ(H(u)uxt)x + O(h3) + O(�h2).
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The initial condition (3.31b) is smoothed slightly to avoid spurious small oscillations:

uj(0) = − tanh(δxj)
u� − ur

2
+

u� + ur

2
,

with δ = 250 in these simulations. It is worth noting that discontinuities in initial data

are likely to persist and decay, as shown in [16] for a related equation.

In Figure 3.5a, a smooth rarefaction wave connects u� = 0.2 to ur = 0.4. The classical

Lax shock from u� = 0.6 to ur = 0.4 is shown in Figure 3.5b. In Figure 3.6a, there is

a Lax shock from u� = 0.8 to the plateau value of uσ, and a faster undercompressive

shock from uσ to ur = 0.2. Both shock solutions have exponentially decaying oscillations

behind the Lax shock due to the complex eigenvalues at u�. The oscillation wavelengths

can be computed from the coefficients of the eigenvalues’ imaginary parts. In the case of

Figure 3.5b, Eq. (3.3) with u = u� = 0.6, ur = 0.4 and � = 0.05 gives Im(λ±) = 1.598.

Then the wavelength of the oscillation is calculated to be
2π

1.598
0.05

= 0.196. This value

compares well with the observed distance between successive maxima, approximately

0.2. For the two simulations involving shocks only, � = 0.05 in order to show the oscil-

lations clearly. When the simulations are done with � = 0.01, the predicted oscillations

are too compressed to be seen clearly. Finally, Figure 3.6b illustrates the rarefaction-

undercompressive shock solution. The rarefaction wave connects u� = 0.9 to uσ and the

undercompressive shock takes uσ to ur = 0.4.

The numerical simulation of solutions of these equations is notoriously difficult; thus

attention has been restricted here to a specific numerical scheme that is consistent and

stable for the carefully chosen parameters and data selected. Issues surrounding the use

of numerical schemes to compute undercompressive shocks and their traveling waves are

discussed in [32]. In particular, Hayes and LeFloch provide conditions under which an

51



undercompressive shock is generated numerically. They also compute kinetic functions

for various schemes and compare them to continuous traveling wave solutions.
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Chapter 4

The Modified Buckley-Leverett

Equation with Fractional Relative

Permeabilities

The relative permeability functions in this chapter are generalized from the previous

chapter; now let kw(u) = κwup, kn(u) = (1−u)q where p, q are allowed to vary. Particular

attention is given to values of p and q between one and two. Unlike in the previous

chapter, it is assumed throughout this chapter that 0 ≤ u+ < u−. Phase portraits are

used to understand the appearance of so-called “sharp” traveling waves [62] in this new

context. These waves offer a new solution structure for the Riemann problem which is

verified with numerical simulations.
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4.1 Previous Results

In [18, 62], the authors provide an integrability condition for the existence of traveling

waves of system (3.2) between a nonzero upstream saturation u− and zero downstream

saturation u+, provided that the exponent of the wetting phase relative permeability

function is strictly between one and two. Namely, the integrability of the function G(u)

defined in Eq. (3.18) is a necessary condition for the existence of traveling waves between

u− ∈ (0, 1) and u+ = 0. This is in contrast to the results from chapter three in which

there are no connections to u± = 0 except in the limiting cases discussed in the context

of Eq. (3.26) and seen in Figure 3.3 as the Στ curves approach the corners (u−, u+) =

(0, 1), (1, 0). The integrability result from [18, 62] is reproduced here for thoroughness,

with the notation previously introduced. It is noteworthy that the exponents need not

be equal; the following non-existence result is generalized for variable exponents in the

open interval (1, 2). If either exponent is less than or equal to one, the flux function loses

its characteristic S shape. On the other hand, if either exponent is greater than or equal

to two, G(u) is no longer integrable for u+ = 0.

Proposition 4.1.1. [18, 62] Let 0 ≤ u+ < u− with u− fixed. Consider Eq. (2.22) with

boundary conditions given in Eq. (2.21).

1. If a traveling wave solution exists, then

0 ≤
�

u−

u+

G(y; u+, s)dy <∞ (4.1)

where G(u; u+, s) is given by Eq. (3.18).

2. If p ≥ 2, then there is no solution with u+ = 0 and 0 < u− ≤ 1.
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Proof. Suppose there exists a traveling wave from u+ to u−. Then v = u� can be expressed

as a function of u and is negative. Recall Eq. (3.20):

�
u+

u−

G(y; u−, s)dy = −β

�
u+

u−

v(y)dy ≤ 0. (4.2)

Reversing u± gives �
u−

u+

G(y; u+, s)dy ≥ 0

since β = 1√
sτ
≥ 0. Further, v(u) is continuous on the compact interval [u+, u−]. Thus

v(u) is bounded. Then

�
u+

u−

G(y; u−, s)dy = −β

�
u+

u−

v(y)dy <∞.

Combining this with Eq. (4.2) yields

0 ≤
�

u−

u+

G(y; u+, s)dy <∞.

To prove the second part of the proposition, recall the asymptotic expansions given

in Lemmas 3.3.2, 3.3.3. For general p, q,

f(u) ∼ up

M
, H(u) ∼ up

M
, G(u) ∼ sMu1−p (4.3)

as u→ 0+ and

f(u) ∼ 1−M (1− u)q , H(u) ∼ (1− u)q , G(u) ∼ −s (1− u)1−q (4.4)
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as u→ 1−. Then, using Eq. (4.3),

�
u−

u+

G(y; u+, s)dy ∼
�

u−

u+

sMy1−pdy →∞

as u+ → 0+ since p ≥ 2. Thus, using the first part of the proposition, no traveling wave

solutions exist with u+ = 0.

In this chapter, for simplicity, the representative exponent value of p = q = 3
2 is

used for the relative permeability of both wetting and non-wetting phases. Then the

conditions of Proposition 4.1.1 are satisfied with

f(u) =
u3/2

u3/2 + M(1− u)3/2
, H(u) =

κnu3/2(1− u)3/2

u3/2 + M(1− u)3/2
(4.5)

in Eq. (3.1). In comparison to Figure 2.3, the fractional exponents elongate the convex

portion of the flux curve by increasing the location of the inflection point to uI ≈ 0.6926

when M = 2. The capillary induced diffusion coefficient curve has a larger maximum

value than in Figure 2.3 for M = 2 but is still weighted to the right. See Figure 4.1.

Still in the larger context of fractional exponents, van Duijn et al. [62] consider sharp

traveling waves which satisfy system (3.2) with u− = 1, u+ > 0 but have a discontinuity

in u� at the transition from u = 1 to u < 1. Specifically, the traveling wave has a corner

there. Proposition 4.1.1 is satisfied with the single degenerate value, albeit at u− = 1

instead of u+ = 0. The authors provide a result for the existence of such sharp fronts

as well as numerical simulations but offer nothing pertaining to their role in solutions of

the Riemann problem. In the work presented in this chapter, phase portraits are used to

understand the mechanism underlying the sharp profiles. Further, a new type of solution

of the Riemann problem is described for an upstream saturation of one and a downstream
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Figure 4.1: (a) Flux f(u) (b) Capillary induced diffusion coefficient H(u) given by
Eq. (4.5) with M = 2

saturation near zero.

4.2 Phase Portraits

In this integrable regime, the phase portraits in Figure 3.1 are still applicable. However,

there is an additional phase portrait, seen in Figure 4.2, that accounts for the sharp

traveling wave between u− = 1 and u+ near zero. In the figure, (u−, u+) = (1, 0.025),

M = 2 and τ = 10. The bottom equilibrium, ubot = u+ is a saddle while the middle

equilibrium, umid, is an unstable spiral. Using Eq. (3.3), the top equilibrium utop =

u− = 1 has eigenvalues ±∞ with eigenvectors (±1 0), respectively. This is visualized in

Figure 4.2 as the stable and unstable manifolds are vertical at u = 1. Also notice that

the stable and unstable manifolds of u+ = 0.025 intersect the line u = 1 in finite time.

It is specifically the stable manifold from u− = 1 to u+ = 0.025 that corresponds to the
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sharp traveling wave previously discussed. The corner of the traveling wave is a result of

the jump discontinuity in v = u� at u = 1, as is seen in Figure 4.2.

0 0.2 0.4 0.6 0.8 1−3

−2

−1

0

1

2

3

u

v

Figure 4.2: Phase portrait of system (3.2) with f(u) and H(u) given by Eq. (4.5), M = 2
and τ = 10

4.3 Στ Curves

The Στ curves in Figure 4.3 now intersect the lines u− = 1 and u+ = 1 for nonzero

u+ and u−, respectively. In the previous chapter, the non-integrability of G(u; u+, s)

with quadratic relative permeabilities prevented this scenario. Recall that the Στ curves

in Figure 3.3 approach the corners (0, 1) and (1, 0) only in the limit through a balance

of leading order terms for u− near 0 and u+ near 1 (see Proposition 3.3.1). The same

asymptotic analysis is not necessary in the case of fractional exponents. Traveling waves

58



exist between pairs u− = 1, u+ > 0 and u− > 0, u+ = 1 for τ > 0 and Eq. (4.1) is

satisfied.

u−

u +

 

 

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 4.3: Στ curves for p = q = 3
2 , M = 2, τ = 1 (blue dashed), τ = 10 (red

dot-dashed), τ =∞ (green solid)

While the constitutive equations differ between this context and the former in chapters

two and three, the separation function, R(ν), described in Section 3.2 remains applica-

ble here with ν = (β, s, u−, M) and the assumption that u− < u+. In fact, the results

obtained in that section regarding the derivatives of R, specifically Eqs. (3.15), (3.16),

(3.17), remain unchanged as they do not depend on the exponents of the relative per-

meability functions. Note that the inequality f �(u0
−) < s0 used in Eq. (3.16) still holds

because the fractional exponents in the relative permeability functions are greater than

one; thus the flux function f(u) retains its convex-concave shape, ensuring that, for sat-
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urations in the region for which saddle-saddle connections exist, the slope of the chord

connecting u± is larger than the slope of the tangent at either value.

Figure 4.4 shows Στ curves in cases for which p �= q: p = 3
2 , q = 2 in Figure 4.4a

while p = 2, q = 3
2 in Figure 4.4b. These specific values are chosen with an aim of

better understanding the condition on p given in Proposition 4.1.1, for which a quadratic

exponent is a boundary between existence and non-existence of traveling wave solutions.

Observe that the curves in Figure 4.4a intersect the lines u± = 0 for u∓ �= 1 even though

q = 2. Likewise, the Στ curves in Figure 4.4b intersect the lines u± = 1 for u∓ �= 0.
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Figure 4.4: Στ curves when M = 2, τ = 1 (blue), τ = 10 (red), τ = ∞ (green) and
(a) p = 3

2 , q = 2, inset shows behavior of Στ curves near corner (u−, u+) = (0, 1) (b)
p = 2, q = 3

2

The behavior of these curves near the boundaries u± = 0 and u± = 1 can be under-

stood in the context of Proposition 4.1.1, specifically Eq. (4.1), by considering for what
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values of u± the function G(u; u+, s) remains integrable. As in Eq. (3.26), let

�
u−

u+

G(y; u+, s)dy =

�
a

u+

G(y; u+, s)dy +

�
b

a

G(y; u+, s)dy +

�
u−

b

G(y; u+, s)dy

where a, b ∈ (0, 1) are fixed and chosen such that
�

b

a
G(y; u+, s)dy <∞.

Let p ∈ (1, 2), q ≥ 2 (as in Figure 4.4a) and consider u+ near zero, u− near one. Then,

using Eq. (4.3),

�
a

u+

G(y; u+, s)dy ∼ sM

2− p

�
a2−p − u2−p

+

�
<∞ as u+ → 0 + . (4.6)

On the other hand, using Eq. (4.4),

�
u−

b

G(y; u+, s)dy ∼ s

2− q

�
(1− u−)2−q − (1− b)2−q

�
as u− → 1−, (4.7)

which becomes infinite for q ≥ 2. In order for saddle-saddle connections to exist and

G(u; u+, s) to remain integrable, u− must not reach one when u+ = 0. In the specific

case of q = 2, shown in Figure 4.4a, Eq. (4.7) is replaced by

�
u−

b

G(y; u+, s)dy ∼ s [ln(1− u−)− ln(1− b)] as u− → 1−,

so that
�

u−
u+

G(y; u+, s)dy < ∞ for u− < 1 again. Thus the Στ curves avoid the corner

(u−, u+) = (1, 0) in Figure 4.4a, instead intersecting the horizontal line u+ = 0 for some

u− < 1.

Now consider u− near zero and u+ near one with p ∈ (1, 2), q ≥ 2 again. Notice that,
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by using Eq. (4.4),

�
a

u+

G(y; u+, s)dy ∼ s

2− q

�
(1− a)2−q − (1− u+)2−q

�
as u+ → 1−, (4.8)

blows up but

�
u−

b

G(y; u+, s)dy ∼ sM

2− p

�
u2−p

− − b2−p
�

<∞ as u− → 0+ (4.9)

with the leading order terms given in Eq. (4.3). Thus G(u; u+, s) remains integrable for

u− near zero as long as u+ < 1. Taking q = 2 specifically, as in Figure 4.4a,

�
a

u+

G(y; u+, s)dy ∼ s [ln(1− a)− ln(1− u+)] as u− → 1−

is finite as long as u+ < 1. Thus it is clear that the Στ curves intersect the vertical line

u− = 0 for some u+ < 1 instead of approaching the corner (u−, u+) = (0, 1).

The Στ curves in Figure 4.4b, for which p = 2, q = 3
2 , behave similarly to those in

Figure 4.3 with p = q = 3
2 . This can be explained by investigating where G(u; u+, s)

becomes non-integrable again. Now, for p ≥ 2, q ∈ (1, 2), Eq. (4.6) is not finite as

u+ → 0+ while Eq. (4.7) is finite as u− → 1−. Thus traveling waves exist near u− = 1

with u+ > 0, illustrated by the Στ curve in Figure 4.4b intersecting the vertical line

u− = 1 for u+ > 0. Similarly, as u+ → 1−, Eq. (4.8) is finite but Eq. (4.9) increases

to infinity as u− → 0+. Therefore, G(u; u+, s) remains integrable and the Στ curves

continue as u+ → 1− as long as u− > 0.
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4.4 The Riemann Problem: New Solution Structure

In this section, solutions of Eq. (3.31) are considered again but now with p = q = 3
2

throughout and with the Στ curves shown in Figure 4.3. The value τ = 10 is used to

illustrate the various solution types in Figure 4.5. It is clear that the same classical

(R, S,RS) and nonclassical (SΣ, RΣ) solutions appear in this integrable context as in

the non-integrable case considered in chapter three. As previously addressed, the Στ

curves intersect the line u� = 1, opening a new region of solutions that incorporate a

shock corresponding to the sharp traveling wave from u− = 1 to u+ = ur. This region

is denoted by SΣ∗ since the solutions are comprised of a Lax shock (S) from u� to 1,

followed by a sharp shock (Σ∗) from 1 to ur. The sharp shock is not a Lax shock since

it does not satisfy Eq. (2.27). Additionally, it is not an undercompressive shock since it

is not admissible; there is not a corresponding traveling wave with (u, v)(−∞) = (1, 0)

and (u, v)(∞) = (ur, 0).

Notice that there is not a similar region for u� near zero and ur near 1 even though

the Στ curves intersect the line ur = 1. For pairs (u�, ur) in this region, a rarefaction

connects u� to the left state of an undercompressive shock. Then the undercompressive

shock connects the middle state to ur = uΣ. Symmetry of the solution regions about the

diagonal u� = ur is not expected because the modified Buckley-Leverett equation is not

symmetric itself.

Recall from chapter three that the curves separating the S and SΣ regions consist of

pairs (umid, ur) where umid is the middle equilibrium between some u− and ur = uΣ on

the Στ curve. In Figure 4.5, the short curve between regions S and SΣ∗ represents the

middle equilibria of the sharp shocks between 1 and ur. For a fixed value of ur small

enough to generate such sharp fronts, the speeds of the Lax and sharp shocks become
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Figure 4.5: Riemann problem solutions for p = q = 3
2 , M = 2 and using Σ10 from

Figure 4.3

closer as u� decreases until the speeds equal each other and the two shocks degenerate

into a single Lax shock.

4.5 PDE Simulations

Numerical simulations of Eq. (3.5), the full PDE with a scaling parameter �, are presented

in this section in order to confirm and visualize the new solution structure (SΣ∗) for the

Riemann problem. The approach used is based on the explicit scheme in [19] for a

pseudoparabolic adaptation of Burgers equation. Eq. (3.5) is rewritten as

ut = F (u, wx)x
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for

F (u, wx) = −f(u) + �H(u)wx, (4.10)

w = u + �τut. (4.11)

Then w satisfies the elliptic equation

u− �τf(u)x − w + �2τ (H(u)wx)x
= 0. (4.12)

Eq. (4.11) and Eq. (4.12) are discretized on x = [−2, 38] using an explicit first order

upwinding scheme as in [19]. A nonlinear multigrid method originally developed for

Cahn-Hilliard equations by Kim et al. [41] is modified to solve the discretized equations

simultaneously at each iteration. See [61, 41, 64] for further details about the nonlinear

full approximation storage (FAS) multigrid scheme.

Instead of the jump initial conditions used in [19], with either the upstream or down-

stream saturation being set equal to one, the initial condition here is a hyperbolic tangent

function which approximates the discontinuity between u� = 0.9 and ur = 0.025. It is in-

teresting to note that the simulation detects the increase to u = 1 without the prescribed

initial condition as in [19]. Dirichlet boundary conditions are used for both variables

u, w. The other parameter values used are p = q = 3
2 , M = 2, τ = 1 and � = 0.2.

Figure 4.6 illustrates the new solution structure in which a Lax shock from u� = 0.9

to 1 trails behind a large shock corresponding to a sharp traveling wave between 1

and ur = 0.025. The oscillations in Figure 4.6a are due to the unstable spiral seen

in Figure 4.2. In this integrable context, the plateau at u = 1 is possible and the leading

sharp traveling wave has a corner at the transition from u = 1 to u < 1. Figure 4.6b only
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includes the sharp traveling wave of Figure 4.6a so that the corner from u = 1 to u < 1

can be seen more clearly. It is also possible to see the traveling wave’s smooth transition

from u > 0.025 to u = 0.025. Finally, Figure 4.6c shows the extremely close agreement

between the PDE simulation and the traveling wave generated from simulating the ODE

system (3.2). The oscillations present in the traveling wave simulation are also due to

the unstable spiral at the middle equilibrium shown in Figure 4.2.
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Figure 4.6: (a) Admissible Lax shock trailing a large shock corresponding to a sharp
traveling wave for u� = 0.9, ur = 0.025, � = 0.2, τ = 1, M = 2 (b) Traveling wave from
u− = 1 to u+ = ur = 0.025 in (a) with a sharp corner at the transition from u = 1 to
u < 1 and a smooth corner at the transition from u > 0.025 to u = 0.025 (c) ODE
simulation overlaid on PDE simulation from (b)
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Chapter 5

Rate Dependent Regularization in

the Modified

Benjamin-Bona-Mahony-Burgers

Equation

In this chapter, the Benjamin-Bona-Mahony (BBM) equation is considered with the

modification of a cubic flux and Burgers dissipation term. This particular study is moti-

vated by the mixed third order dispersion term arising in the modified Buckley-Leverett

equation, due to dynamic capillary pressure. With a simpler flux function and linear

regularization terms in this present context, it is possible to analytically characterize the

existence of saddle-saddle connections as well as the dependence of the middle equilib-

rium on the speed of the traveling wave and the balance of dissipation and dispersion

terms.
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5.1 Introduction

The BBM equation is a third order PDE,

ut +

�
1

2
u2

�

x

= µuxxt, (5.1)

in a moving frame and with µ a constant. With the modification of a cubic (thus non-

convex) flux function and a Burgers term, Eq. (5.1) becomes the modified BBM-Burgers

equation

ut +
�
u3

�
x

= βuxx + µuxxt. (5.2)

The constant β is required to be positive so that the second order term is dissipative.

Through Eq. (5.2), the role of the time derivative in the regularization is more simply

elucidated than in the preceding chapters since the flux function here is less complicated

than the Buckley-Leverett flux and the nonlinearity of the dissipation and dispersion

terms in Eq. (2.17) is removed.

Jacobs, McKinney and Shearer [39] consider in detail traveling waves for the modified

Korteweg-de Vries-Burgers (KdVB) equation in which f(u) = u3,

ut +
�
u3

�
x

= βuxx − µuxxx. (5.3)

While both positive and negative cases for µ are considered in [39], admissible under-

compressive shocks arise in the case µ < 0. However, undercompressive shocks appear

with µ > 0 in Eq. (5.2) because of the sign difference of the third order terms.
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5.2 Traveling Waves

As in [39], Eq. (5.2) is transformed into a third order ODE by considering traveling wave

solutions of the form u(x, t) = ũ(η), η = x− st,

−su� + (u3)� = βu�� + µsu��� (5.4)

where s ≥ 0 represents the speed of the wave and � = d/dη. Integrating Eq. (5.4) with

the same boundary conditions as in Eq. (2.21) gives the second order ODE

−s(u− u−) + u3 − u3
− = βu� + µsu��. (5.5)

Then Eq. (5.5) is rescaled such that û(ξ) = u(η) where ξ = η/
√

µs, following the treat-

ment in Section 2.3, and becomes (hats omitted)

u�� = − β
√

µs
u� + u3 − u3

− − s(u− u−), (5.6)

where now � = d/dξ. Finally, Eq. (5.6) is expressed as a first order system of ODEs:

u� = v (5.7a)

v� = − β
√

µs
v + u3 − u3

− − s(u− u−). (5.7b)

Equilibria for system (5.7) are points (u, v) = (u, 0), where u3 − u3
− − s(u− u−) = 0;

these correspond to points of intersection between the graph of f(u) = u3 and the line

with slope s through the point (u−, u3
−).
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The Jacobian of system (5.7), evaluated at an equilibrium point, is

J(u, 0) =





0 1

3u2 − s − β
√

µs





with eigenvalues

λ± =
1

2

�
− β
√

µs
±

�
β2

µs
+ 4(3u2 − s)

�
.

In the case of three equilibria, the outside equilibria u = u± are saddles since λ± are

real and of opposite sign as f �(u) = 3u2 > s. In what follows, let u0 denote the middle

equilibrium such that u+ < u0 < u− with u+ < 0 and u− > 0. This assumption breaks

down when the chord through the point (u−, u3
−) is tangent to the curve f(u) = u3 at

u = u+. In this case, u+ = u0 = −u−
2

and s =
3

4
u2
−, so there are only two equilibria.

Similarly, there are two equilibria when the chord is tangent to f(u) at u−, when s = 3u2
−.

Thus the speed of a traveling wave must satisfy
3

4
u2
− < s < 3u2

− in order to have three

non-degenerate equilibria.

5.3 Parameter Dependencies

Mimicking the development in [39], the saddle-saddle connection between (u±, 0) is ex-

pressed as an invariant parabola

v = k(u− u−)(u− u+) (5.8)

with k a constant. Note that the function c(u) = u3 − u3
− − s(u− u−) in Eq. (5.7b) is a

cubic polynomial; since c(u) has zeros at the equilibria u±, u0, it can then be expressed
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in factored form:

u
3 − u

3
− − s(u− u−) = (u− u−)(u− u0)(u− u+) (5.9)

= u
3 − (u− + u0 + u+)u2 + (u−u+ + u0u+ + u−u0)u− u−u0u+. (5.10)

By matching coefficients of the quadratic, linear and constant terms in Eq. (5.10), it is

required that

0 = u− + u0 + u+, (5.11)

−s = u−u+ + u0u+ + u−u0, (5.12)

−u3
− + su− = −u−u0u+, (5.13)

respectively.
Now Eq. (5.7), Eq. (5.8) and Eq. (5.9) are combined as follows to determine the

constant k in Eq. (5.8):

v
dv

du
= −

β
√

µs
v + u

3 − u
3
− − s(u− u−) (5.14)

[k(u− u−)(u− u+)] [k(2u− u− − u+)] = −
β
√

µs
k(u− u−)(u− u+) + (u− u−)(u− u0)(u− u+) (5.15)

k
2(2u− u− − u+) = −

βk
√

µs
+ (u− u0). (5.16)

Again equating the coefficients of the linear terms in Eq. (5.16), 2k2 = 1 so k = ± 1√
2
.

With the assumption that u+ < u−, k must be positive in order for the invariant parabola

to lie below the horizontal axis in the phase plane. Specifically, then, k =
1√
2
. The

constants in Eq. (5.16) are now equated to obtain an expression for the middle equilibrium
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u0 in the case of a saddle-saddle connection (using Eq. (5.11) to eliminate u±):

u0 = −
√

2

3
√

s
δ (5.17)

where δ = β√
µ

> 0. In [39], the equation obtained for u0 does not depend on s; that is,

u0 = u0(δ) = −
√

2
3 δ only. The dependence of u0 on the wave speed s in this context is

due to the time dependent dispersion term µuxxt.

To determine the relationship between u− and δ, Eq. (5.17) is rewritten as

�
u2

+ + u−u+ + u2
− (u+ + u−) =

√
2

3
δ (5.18)

by using Eq. (5.11) and Eq. (5.12). In the limiting case of a degenerate equilibrium at

u+, let u+ = −u−
2

in Eq. (5.18),

u2
− =

4
√

2

3
√

3
δ; (5.19)

thus δ is a quadratic function of u−. By comparison, in [39], u− =
2
√

2

3
δ which is linear

in u−.

5.4 Saddle-Saddle Connections

In this section, two results pertaining to values of u± for which there is a saddle-saddle

connection (i.e., Eq. (5.18) is satisfied) are stated and proven.

Proposition 5.4.1. Suppose δ = β√
µ

> 0 and u2
− > 4

√
2

3
√

3
δ for some fixed u− > 0. Then

there exists a unique solution u+ = u+(u−, δ) of Eq. (5.18) with −u− < u+ < −u−
2 ; that

is, there is a unique saddle-saddle connection from (u−, 0) to (u+, 0).
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Proof. Suppose that u+ = −u− < 0. Then

�
u2

+ + u−u+ + u2
−(u+ + u−)−

√
2

3
δ < 0.

On the other hand, if u+ = −u−
2 , then

�
u2

+ + u−u+ + u2
−(u+ + u−)−

√
2

3
δ > 0

since u2
− > 4

√
2

3
√

3
δ. By the Intermediate Value Theorem, there exists a solution u+ =

u+(u−, δ) ∈ (−u−,−u−
2 ) of Eq. (5.18).

In order to demonstrate uniqueness, Eq. (3.15), Eq. (3.16) and Eq. (3.17) from chapter

three are revisited in the current context. The separation function, R(u−, s, γ), is zero

when a saddle-saddle connection from u− to u+ exists. The signs of the derivatives

establish the uniqueness of a saddle-saddle connection. First, the vector field in system

(5.7) is written as

K(φ; ν) =




v

−γv + s(u− u−)− u3 + u3
−





where γ = β√
µs

. Here, ν = (δ, s, u−) and the notation ν0 represents specific parameter

values. As in chapter three, the parameters in ν are treated as being independent from

each other.

Then

∂K

∂u−
=




0

3(u−)2 − s



 , K × ∂K

∂u−
= v(3(u−)2 − s),
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so that
∂R

∂u−
(ν0) =

� ∞

−∞
eγ

0
ξv0(3(u0

−)2 − s0)dξ < 0.

Note that v0 < 0 since u− > u+ and the saddle-saddle connection is in the lower half

plane. Next, consider the parameter s:

∂K

∂s
=




0

u− u−



 , K × ∂K

∂s
= v(u− u−)

and
∂R

∂s
(ν0) =

� ∞

−∞
eγ

0
ξv0(u0 − u0

−)dξ > 0. (5.20)

Finally,

∂K

∂γ
=




0

−v



 , K × ∂K

∂γ
= −v2.

Then the dependence of the separation function on γ is expressed as

∂R

∂γ
(ν0) = −

� ∞

−∞
eγ

0
ξ(v0)2dξ < 0. (5.21)

As in chapter three, let R̂(u−, u+, δ) = R(u−, s(u−, u+), γ) in which δ = β√
µ

and

γ = δ√
s
. Then

∂R̂

∂u+
=

∂R

∂s

∂s

∂u+
+

∂R

∂γ

∂γ

∂s

∂s

∂u+
.

Note that
∂s

∂u+
is negative since u+ < −u−

2 in the region of saddle-saddle connections.

Further,
∂γ

∂s
=

∂

∂s

�
β
√

µs

�
= − β

2
√

µ
s−3/2 < 0 (5.22)

since β and s are strictly positive. Thus, uniqueness follows from Eq. (5.20), Eq. (5.21)
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and Eq. (5.22) so that ∂R̂

∂u+
< 0.

Proposition 5.4.2. Suppose u+ = u+(u−, δ) < u− is a solution of Eq. (5.18) with fixed

u−. Then, u2
− >

4
√

2

3
√

3
δ if and only if u+ < u0.

Proof. First note that Eq. (5.18) is monotonic in u+ since

∂

∂u+

��
u

2
+ + u−u+ + u

2
−(u+ + u−)

�
=

�
u

2
+ + u−u+ + u

2
− + (u+ + u−)

2u+ + u−

2
�

u
2
+ + u−u+ + u

2
−

=
4u

2
+ + 5u−u+ + 3u

2
−

2
�

u
2
+ + u−u+ + u

2
−

�= 0.

Now assume that u2
− > 4

√
2

3
√

3
δ. In order to prove u+ < u0, it suffices to show that u+ <

−u−
2

since there are three equilibria and u± are saddles in this region (so u0 > −u−
2

).

The argument proceeds by contradiction; suppose that u+ ≥ −
u−
2

. Then

�
u2

+ + u−u+ + u2
−(u+ + u−) ≥

√
3 u2

−
4

.

Thus,
�

u2
+ + u−u+ + u2

−(u+ + u−) >

√
2

3
δ

since
4√
3

> 1. This is a contradiction to the assumption that u+ is a solution of Eq. (5.18).

Now suppose that u+ < u0. Since there are three equilibria, it is known that u+ <

−u−
2

. Then
�

u2
+ + u−u+ + u2

−(u+ + u−) <

√
3u2

−
4

.

Using Eq. (5.18), √
2

3
δ <

√
3u2

−
4
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and thus
4
√

2

3
√

3
δ < u2

−.

5.5 The Riemann Problem

The Riemann problem associated with both Eq. (5.2) and Eq. (5.3) is:

ut + (u3)x = 0 (5.23a)

u(x, 0) =






u� if x < 0

ur if x > 0.

(5.23b)

Classical and nonclassical solutions of Eq. (5.23) are presented using Σδ curves to separate

the regions of nonclassical solutions as in chapter three. The parameter δ is taken to be

one for simplicity. Recall from chapters three and four that rarefactions, Lax shocks and

undercompressive shocks are denoted by R, S and Σ, respectively.

In Figure 5.5, the solution regions are separated by various curves similarly appearing

in Figure 3.4 and Figure 4.5. For clarity, the curves are described again but in the current

context. The long diagonal black line between the region of rarefactions and Lax shocks

is the line ur = u�. The short black curve separating the S and SR regions is the set of

points (u�, uα) such that the chord between u� and uα is tangent to f(u) = u3 at u = uα.

In the case δ = 1, the value of u� for which saddle-saddle connections no longer exist

is

�
4
√

2

3
√

3
, from Eq. (5.19); thus the vertical green line at u� =

�
4
√

2

3
√

3
is the boundary

between regions of classical and nonclassical solutions, SR and ΣR. The red Σ1 curve

separates the nonclassical solution regions as it represents pairs (u�, ur) for which there is

a saddle-saddle connection and thus a single admissible undercompressive shock solution

to Eq. (5.23). Finally, the blue curve between the S and ΣS regions represents the middle
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equilibria of the saddle-saddle connections on Σ1.
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Figure 5.1: Solutions of Eq. (5.23) for various initial conditions (u�, ur) such that u� >
0, δ = 1

Two general solution sets are obtained by fixing u� and letting ur vary. First, if u� <�
4
√

2

3
√

3
, the classical solutions of a rarefaction, Lax shock and combination rarefaction-

Lax shock are observed as ur decreases. However, if u� >

�
4
√

2

3
√

3
, then the nonclassical

solutions appear for negative values of ur. Specifically, a rarefaction connects the left

and right states if ur > u�. As ur decreases, a Lax shock is obtained as long as ur is

larger than the middle equilibrium of the saddle-saddle connection between u� and uΣ

on the Σ1 curve. Once ur is small enough, it is connected to u� by a combination of

an admissible undercompressive shock trailing behind a leading Lax shock. Finally, for

even more negative ur, the solution of Eq. (5.23) consists of a rarefaction followed by

an admissible undercompressive shock. Notice that the order of solutions in the SR, ΣR
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and ΣS regions is reversed from those in Figure 3.4 and Figure 4.5. This is due to the

opposite concavity between the Buckley-Leverett flux and the current cubic flux function.

Even though the formulae obtained here for Eq. (5.2) differ from those in [39], the

regions of solutions are very similar. The values of (u�, ur) which separate them differ be-

tween these two accounts due to the time dependent regularization; however, the general

structure for solutions of the Riemann problem is preserved.
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Chapter 6

Stability of Plane Waves

The stability of a planar sharp front is analyzed for a simplified system in which capillary

pressure is ignored. The analysis is based on linearizing the equations about the front

solution, which includes linearization of suitable jump conditions. Solutions of the lin-

earized system are calculated to leading order in the wave number α << 1 of long-wave

transverse perturbations of the front. Perturbations grow or decay exponentially with

rate σ(α) which has a dispersion relation of the form σ(α) ∼ σ1α as α → 0, just as

in Saffman and Taylor’s original paper [52]. Numerical simulations of both stable and

unstable waves support the analytical results.

6.1 Simplified Equations and Plane Waves

In the limit of vanishing capillary pressure, Eq. (2.6) and Eq. (2.8) become

ϕ
∂u

∂t
−∇ · (λw(u)∇p) = 0 (6.1)

∇ ·
�
λT (u)∇p

�
= 0. (6.2)
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Here, pw is written as p for simplicity. In what follows, ϕ = 1 without loss of generality,

since it can be absorbed into the time variable. These simplified equations admit solutions

with sharp interfaces, i.e. jump discontinuities in the saturation u and the pressure

gradient ∇p.

Since perturbations are about a sharp planar interface x = V t moving with speed V ,

sharp curved interfaces of the form x = x̂(y, t) are considered. Then the normal vector

to the surface F (x, y, t) ≡ x − x̂(y, t) = 0 is n = (∂xF, ∂yF, ∂tF ) = (1,−x̂y,−x̂t). Both

Eqs. (6.1), (6.2) are in divergence form (in space-time), so that jump conditions are

−x̂t[u]− [λw(u)px] + x̂y[λ
w(u)py] = 0 (6.3)

[λT (u)px]− x̂y[λ
T (u)py] = 0. (6.4)

In what follows, Eq. (6.1) and Eq. (6.2) are considered with a single interface satisfying

Eq. (6.3) and Eq. (6.4).

Plane waves depend on a single spatial variable and time; consequently, the phase

velocities are scalar in the direction of propagation of the plane wave. Taking the direction

to be parallel to the x - axis, plane wave solutions u = u(x, t), p = p(x, t) of Eq. (2.6),

Eq. (2.7) are independent of y. The incompressibility condition Eq. (2.2) reduces to

∂xU = 0, where U is the (scalar) total velocity. In principle, this velocity could depend

on time, but it can be taken to be constant by adjusting the time scale accordingly. In

terms of u, p we find from Eq. (2.7),

λT (u)px + λn(u)pc(u)x = −U = const. (6.5)

Now px can be eliminated, resulting in a scalar equation which is the one-dimensional
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version of Eq. (6.1):

ut + f(u)x = − (H(u)pc(u)x)x
(6.6)

where f(u) and H(u) are given by Eq. (2.12) and Eq. (2.13), respectively. Eq. (6.6)

has smooth traveling wave solutions that can be analyzed directly. Sharp interfaces are

realized when the capillary pressure is taken to be negligible: pc(u) ≡ 0. The associated

saturations and pressures can be interpreted as far-field states for the smooth traveling

waves.

Consider a planar interface x = V t moving with speed V. Let u = ū±, p = p̄± denote

the saturation and pressure on either side of the interface. Then ū± are constant, and p̄±

are linear. Letting pc(u) ≡ 0 in Eq. (6.6) the equation reduces to the scalar conservation

law

ut + f(u)x = 0.

An alternative form of the flux function,

f(u) = −λw(u)px = U
λw(u)

λT (u)
, (6.7)

and its derivative

f �(u) = U
λw(u)

λT (u)

�
(λw(u))�

λw(u)
− (λT (u))�

λT (u)

�
(6.8)

will be useful in the following analysis.

The jump in u is a shock wave

u(x, t) =






ū−, x < V t

ū+, x > V t
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that necessarily satisfies the Rankine-Hugoniot condition

V =
f(ū+)− f(ū−)

ū+ − ū−
.

The total velocity, U , and the speed of the interface, V , are not necessarily equal when

the saturations are variable; using Eq. (6.7),

V = U

λ
w(ū+)

λT (ū+) −
λ

w(ū−)
λT (ū−)

ū+ − ū−
.

In the case of pure fluids, as considered by Saffman and Taylor, ū+ = 0 and ū− = 1 so

that V = U .

Associated with this shock wave are pressure fields p̄± on either side, that are cal-

culated from Darcy’s law (Eq. (2.3)). This is contained in the jump condition Eq. (6.4)

involving the pressures, which together with Eq. (6.5) gives

λT (ū+)(p̄+)x = λT (ū−)(p̄−)x = −U. (6.9)

Thus, expressions for p̄± are obtained by integrating (p̄±)x = −U

λT (ū±) :

p̄± =
−U

λT (ū±)
x + c±(t)

where c±(t) are arbitrary functions. Continuity of pressure at the interface x = V t

determines c±(t):

c+(t)− c−(t) =
−U

λT (ū+)
V t− −U

λT (ū−)
V t.
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Then let c+(t) = −U

λT (ū+)V t and c−(t) = −U

λT (ū−)V t so that

p̄± =
−U

λT (ū±)
(x− V t). (6.10)

To summarize, the planar interface whose stability is studied in the next section involves a

jump in u, whereas the pressure is linear on each side and continuous across the interface.

6.2 Long Wave Stability Analysis

Investigated here is the long wave stability of the sharp interface solution presented in

the previous section. To start, the equations and jump conditions are linearized. Let

x = x̂(y, t) = V t + ẑ(y, t) denote the perturbed interface. Consider a discontinuous

saturation function

u =






u−(z, y, t), z < ẑ(y, t)

u+(z, y, t), z > ẑ(y, t),

in which z = x − V t. Corresponding pressures are denoted p±(z, y, t) on either side of

the interface. Specifically, we choose perturbations with transverse wave number α ≥ 0

and temporal growth rate σ :

u±(z, y, t) = ū± + W±(z), W±(z, y, t) = w±(z)eiαy+σt (6.11)

p±(z, y, t) = p̄±(z) + Q±(z), Q±(z, y, t) = q±(z)eiαy+σt (6.12)

ẑ(y, t) = aeiαy+σt, (6.13)

where a is constant and the functions W±(z), Q±(z) are required to be bounded as z →

±∞ (respectively).
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The goal is to determine the leading order dependence of the functions w±, q± on

small values of α (long waves). The leading order behavior of the growth rate σ is linear

in α :

σ = σ1α + σ2α
2 + . . . , as α→ 0.

The coefficient σ1 controls stability of the front to transverse perturbations; if σ1 > 0,

then the plane wave is unstable to long waves, and if σ1 is negative, then the front is

stable, assuming that σ(α) < 0 also at larger wave numbers.

Substituting Eq. (6.11) and Eq. (6.12) into Eq. (6.1) and Eq. (6.2) and linearizing

gives the ODE system

(W±)t − (λw(ū±))�p̄±(W±)x − λw(ū±)∆Q± = 0 (6.14)

(λT (ū±))�p̄±(W±)x + λT (ū±)∆Q± = 0. (6.15)

Next it is argued that W±(z) ≡ 0 if Re(σ) ≥ 0. From Eq. (6.15),

∆Q± = −(λT (ū±))�p̄±(W±)x

λT (ū±)
.

Using this in Eq. (6.14) gives

(W±)t − p̄±(W±)xλ
w(ū±)

�
(λw(u))�

λw(u)
− (λT (u))�

λT (u)

�
= 0,

which reduces to

σw± − V w�± − p̄±w�±
f �(ū±)λT (ū±)

U
= 0 (6.16)

after substituting W±(z, y, t) = w±(z)eiαy+σt and using Eq. (6.8). Notice that px =
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(p̄±)x = − U

λT (ū±) from Eq. (6.7) and Eq. (6.10). Then Eq. (6.16) simplifies to

σw± = w�±(V − f �(ū±))

and indicates that w±(z) = γ±e
σ

V −f �(ū±)
z

. In the absence of capillary pressure, all shocks

are Lax shocks so that if z > 0, then V − f �(ū+) > 0. Assuming that Re(σ) ≥ 0, w±

grows exponentially so that W± is not bounded as z → ∞ as required. On the other

hand, if z < 0, then V − f �(ū−) < 0 and w± again grows exponentially as z → −∞ if

Re(σ) ≥ 0. Again, W± is not bounded. Thus, if Re(σ) ≥ 0, then W± ≡ 0 as claimed.

With W± ≡ 0, system (6.14), (6.15) reduces to the same equation for q± :

q��± − α2q± = 0.

Thus, 




q−(z) = b−eα(z−ẑ), z < ẑ

q+(z) = b+e−α(z−ẑ), z > ẑ.

(6.17)

Next, the coefficients b± are related to the amplitude a of the perturbed interface

and the coefficient σ1. This calculation is simplified by the result w± ≡ 0. The linearized

jump conditions then reduce to leading order to

σ1αa[ū] + [λw(ū)q�] = 0 from Eq. (6.3) (6.18)

�
λT (ū)q�

�
= 0 from Eq. (6.4). (6.19)

Here, quadratic and higher order terms in α have been dropped. Using Eq. (6.17) in
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Eq. (6.19) at the interface z = ẑ, a linear equation is obtained for the constants b±:

λT (ū−)b− + λT (ū+)b+ = 0. (6.20)

Similarly, Eq. (6.18) becomes

σ1a(ū+ − ū−)− λw(ū+)b+ − λw(ū−)b− = 0. (6.21)

Now λw(u) = f(u)λT (u)/U, from Eq. (6.7), so that Eq. (6.21) becomes

σ1a(ū+ − ū−)− f(ū+)λT (ū+)

U
b+ −

f(ū−)λT (ū−)

U
b− = 0. (6.22)

Finally, continuity of pressure, p+(z) = p−(z), is used at the interface z = ẑ = aeiαy+σt

with Eq. (6.17) to arrive at a third linear equation for the coefficients a, b±:

− U

λT (ū+)
a + b+ = − U

λT (ū−)
a + b−. (6.23)

Nontrivial solutions for the constants a, b± can be determined from the linear system of

Eq. (6.20), Eq. (6.22) and Eq. (6.23) precisely when the coefficient matrix is singular.

After some manipulation, an expression for the coefficient σ1 is obtained:

σ1 = V
λT (ū−)− λT (ū+)

λT (ū−) + λT (ū+)
. (6.24)

This relation governs the growth or decay of perturbations, to leading order in the

wave number. In particular, it controls whether the sharp interface is stable or unstable:

when the total mobility upstream, λT (ū−), is larger than that downstream, λT (ū+), then
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σ1 > 0, so that for long waves, the growth rate is positive and the interface between the

phases is susceptible to the Saffman-Taylor fingering instability.

When the variable saturations are restricted to constant states ū− = 1, ū+ = 0, in the

context of pure fluids considered by Saffman and Taylor in [52],

λT (ū−) = λw(1) =
Kκw

µw
,

λT (ū+) = λn(0) =
Kκn

µn

using Eq. (2.4) and the associated notation from chapter two. Now Eq. (6.24) becomes

σ1 = V
κ

w

µw − κ
n

µn

κw

µw + κn

µn

which reduces to

σ1 = V
κwµn − κnµw

κwµn + κnµw
. (6.25)

Recalling the viscosity ratio M = κ
n
µ

w

κwµn , the general result of Eq. (6.24) is reduced to

σ1 = V
1−M

1 + M
(6.26)

after multiplying both the numerator and denominator of Eq. (6.25) by 1
κwµn . Eq. (6.26)

is the original result from [52]; it states that the viscous fingering instability develops

when M < 1, i.e. the viscosity of the displacing fluid (e.g. water) is less than the viscosity

of the fluid displaced (e.g. oil).
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6.3 Stable and Unstable Lax Shocks

The boundary between regions of stable and unstable shocks is the curve

λT (ū−) = λT (ū+) (6.27)

in the (ū−, ū+) plane. How this relates to the Lax entropy condition, f �(ū+) < V <

f �(ū−), is elucidated below. In the case of quadratic relative permeabilities, Eq. (6.27)

becomes

ū2
− + M(1− ū−)2 = ū2

+ + M(1− ū+)2.

Factoring ū+ − ū− �= 0 gives the linear equation

ū+ + ū− =
2M

1 + M

for ū− > ū+. This line is shown in Figure 6.1 and separates the region of stable Lax

shocks from the region of unstable Lax shocks. The right boundary of the region of

unstable Lax shocks represents the pairs ū± for which the chord between them is tangent

to the flux curve f at ū+; for values of ū± past this curve, the Lax entropy condition is

no longer satisfied. The inflection point of the flux function (ui, f(ui)) is marked in the

figure.

6.4 Numerical Calculations

Equations (2.6), (2.8) are solved numerically with the simplifying assumption pc(u) = −u

as in chapters two and three. The domain is a rectangle given by [−L, L] × [−H,H].
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Figure 6.1: Regions of stable (S) and unstable (U) Lax shocks for quadratic relative
permeabilities and M=0.2. The stars are representative points used in the numerical
simulations.

With ∇pc(u) = −∇u, Eq. (2.6) and Eq. (2.8) become

φ
∂u

∂t
−∇ · (λw(u)∇p) = 0 (6.28)

∇ ·
�
λT (u)∇p− λn(u)∇u

�
= 0. (6.29)

As previously mentioned, the system has traveling wave solutions with the same speed

as the sharp planar interface satisfying Eq. (6.1) and Eq. (6.2). Since any instability is

localized around the sharp interface x = V t, Eq. (6.29) is transformed into a moving

frame with speed V :

ϕ
∂u

∂t
− V

∂u

∂x
−∇ · (λw(u)∇p) = 0. (6.30)

The boundary conditions in the transverse y-direction are periodic in both u and p
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while those in the x-direction are

u(−L) = u−, u(L) = u+, p(−L) = 0,
∂p

∂x
(L) = − U

λT (u(L))
,

the final condition derived from Eq. (6.9).

The y direction is scaled by 2H, the width of the domain, to allow for better illustra-

tions of the long wavelength profile. As earlier, ϕ = 1, effectively choosing a timescale

based on the porosity ϕ. Then Eq. (6.30) and Eq. (6.15) become

∂u

∂t
− V

∂u

∂x
− ∂

∂x

�
λw(u)

∂

∂x
p

�
− 1

4H2

∂

∂y

�
λw(u)

∂

∂y
p

�
= 0 (6.31)

∂

∂x

�
λT (u)

∂

∂x
p− λn(u)

∂

∂x
u

�
+

1

4H2

∂

∂y

�
λT (u)

∂

∂y
p− λn(u)

∂

∂y
u

�
= 0. (6.32)

These equations are solved using a fully implicit Crank-Nicolson time step, a centered

difference discretization for second-order spatial derivatives and upwinding for the con-

vective term V
∂u

∂x
in Eq. (6.31). The nonlinear multigrid method from [41], mentioned

in chapter four, efficiently solves the discrete system at the implicit time level.

Representative values of ū± are used in the simulations in order to confirm the stability

boundary discussed in the previous section. The initial saturation is represented by

a hyperbolic tangent function with its interface perturbed by a sinusoidal wave and

superimposed random noise:

u0(x, y) =
ū+ − ū−

2

�
1− tanh

�
x− η(x, y)− 0.01 sin(2πy)

2M

��
+ ū−,

where η(x, y) is a random number at (x, y) satisfying −0.01 ≤ η(x, y) ≤ 0.01. Note

that the perturbation is chosen to be consistent with the longest wavelength for the
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chosen domain. Specifically, the wave number is related to the width by α =
π

H
. In both

simulations, M = 0.2, L = 4 and H = 6.

To visualize solutions in the stable region of Figure 6.1, let ū− = 0.25 and ū+ = 0.

Additionally, let U = 1. The saturation contour u = 1
2 (ū− + ū+) is plotted in Figure 6.2a-

f at various times. The amplitude of the perturbed interface decays in time, as expected.

Figure 6.2g shows the amplitude of the saturation contour compared with the linear

(Eq. (6.24)) and the quadratic (from [66]) approximations to the growth rate σ(α). In

the latter case,

σ(α) ≈ σ1α + σ2α
2, (6.33)

with σ1 given by Eq. (6.24) and

σ2 = −4λ
T (ū+)λT (ū−)

(ū−−ū+)(λT (ū+)+λT (ū−))2

�
ū−
ū+

λ
n(u)λw(u)

λT (u) du

+ 2
(ū−−ū+)(λT (ū+)+λT (ū−))2

�
ū−
ū+

λ
n(u)λw(u)

λT (u)(f(u)−f(ū+)−V (u−ū+))I du,
(6.34)

where I = λT (ū−)(λT (u)−λT (ū+))(f(ū−)−f(u))+λT (ū+)(λT (ū−)−λT (u))(f(u)−f(ū+)).

The flux function f(·) in Eq. (6.34) is calculated by using quadratic relative permeabilities

as in chapters two and three. The original version of Eq. (6.34) appearing in [66] includes

the derivative of the equilibrium capillary pressure with respect to the wetting saturation

in the first integral; taking pc

e
(u) = −u (as mentioned previously) gives dp

c
e

du
= −1 and

produces the negative coefficient in the first term. Also, Yortsos and Hickernell integrate

along the traveling wave in the second term of Eq. (6.34) whereas it has been re-expressed

here much more simply as an integral with respect to u. With the given parameter values

stated above (ū− = 0.25, ū+ = 0, U = 1, M = 2, L = 4, H = 6), σ1 = −0.09524 and

σ2 = −0.01431.

While the saturation contour and approximations are nearly indistinguishable, it can
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be seen that the linear approximation slightly under-predicts the decay rate. As expected,

the quadratic approximation matches the simulation values better. However, there is not

a significant difference between the two approximations in this stable case.

The advantage of the quadratic approximation is much clearer when (ū−, ū+) is taken

from the unstable region in Figure 6.1. Specifically, let ū− = 0.25, ū+ = 0.15 and U = 2.

Now σ1 = 0.05203 and σ2 = −0.04212. Figure 6.3a-f illustrate the development of

the Saffman-Taylor fingering instability with the aforementioned parameter values. In

early times (Figure 6.3a-c), the short wavelength perturbations decay quickly, as they

correspond to high, and thus stable, amplitudes. On the other hand, the long wavelength

perturbations grow slowly, as seen in Figure 6.3d-f. Figure 6.3g is another comparison

plot but now in the unstable case. As in Figure 6.2g, the quadratic approximation very

closely agrees with the simulation. There is a significant difference between the accuracies

of the linear and quadratic approximations now; the former dramatically over-predicts

the growth rate from the contour plot.

It has been shown, through exploitation of the underlying hyperbolic structure in the

model, that stability of planar fronts in two phase immiscible flow in a porous medium is

governed by the mobility difference between the two phases. The interpretation is that,

with realistic relative permeability ratios, to stabilize a front in which water is displacing

oil, the displacing fluid should be an oil-rich mixture of oil and water. While such a

mixture may not be achievable in practice, nonetheless the analysis here is indicative of

how these fronts can be analyzed. In particular, the Saffman-Taylor analysis of sharp

fronts can be extended to allow for variable saturations, demonstrating that stability

depends on the interplay between the hyperbolic conservation law derived by Buckley

and Leverett and the elliptic equation that expresses incompressibility of the two phase

mixture.
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Figure 6.2: Simulation results in the stable case. (a)-(f) Contours of the saturation at
u = 1

2(ū− + ū+) at various times. (g) Amplitude versus time. Black circles: numerical
amplitude calculated at u = 1

2(ū− + ū+), blue dashed line: amplitude predicted by
Eq. (6.24), and red solid line: amplitude predicted by Eq. (6.33)
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Figure 6.3: Simulation results of unstable case. (a)-(f) Contours of the saturation at
u = 1

2(ū− + ū+) at various times. (g) Amplitude versus time. Black circles: numerical
amplitude calculated at u = 1

2(ū− + ū+), blue dashed line: amplitude predicted by
Eq. (6.24), and red dashed-dotted line: amplitude predicted by Eq. (6.33)
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Chapter 7

Conclusions

The results described in the previous chapters elucidate how solutions to the modified

Buckley-Leverett equation evolve. New solution structures are considered in chapters

three and four while the impact of time dependent dispersion is investigated in chapter

five. The stability of sharp planar fronts is analyzed and characterized in chapter six.

The remainder of the current chapter is a summary of the work and aforementioned

conclusions.

In chapter three, a new perspective is offered in the analysis of the Buckley-Leverett

equation with time dependent regularization, specifically in the case of quadratic relative

permeability functions. By considering traveling wave solutions to the PDE, the equation

is transformed into a first order system of ODEs. Regions are identified for which the

ODE system has three equilibria; that is, the upstream and downstream saturations are

connected by undercompressive shocks. Phase portraits, as in Figure 3.2, and a separa-

tion function described in Section 3.2 are used to identify when a saddle-saddle connection

exists between an upstream saturation u− and a downstream saturation u+. These pairs

lead to the Στ curves illustrated in Figure 3.3 with the specific properties addressed in
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Propositions 3.3.1, 3.3.2: namely the smoothness and asymptotic behavior of Σ∞ as well

as existence, uniqueness, smoothness and monotonicity of Στ (τ finite) in τ and u−. Clas-

sical and nonclassical solutions of the Riemann problem are then presented in Figure 3.4

with a Στ curve as the boundary between the two nonclassical solution structures involv-

ing undercompressive shocks. Finally, numerical simulations of the full PDE verify the

theoretical results. In particular, simulation of the Lax shock-undercompressive shock

combination produces the same qualitative non-monotonic behavior of the saturation

front as in physical experiments described in [22].

With the general framework established in chapter three, sharp traveling wave solu-

tions of the modified Buckley-Leverett equation are investigated in chapter four. The

integrability condition from [18] and reproduced in Proposition 4.1.1 is satisfied when

the relative permeability functions are no longer both quadratic. Fractional exponents,

specifically p = q = 3
2 , are used to establish a new context in which sharp traveling waves

are possible. Figure 4.2 illustrates the mechanism behind the sharp traveling wave; the

unstable manifolds leaving u+ intersect the line u = 1 in finite time and provide the

discontinuity in u� which accounts for the corner in the traveling wave at the transition

from u = 1 to u < 1. The Στ curves now intersect the lines u± = 1 for nonzero u∓. This

is significantly different from the case considered in chapter three, in which the Στ curves

approach the corners (u−, u+) = (0, 1), (1, 0) in a limiting sense only. Solutions to the

Riemann problem now include a combination of an admissible Lax shock and a leading

shock corresponding to a sharp traveling wave between an upstream saturation of one

and a downstream saturation close to zero. Numerical simulations are provided again to

validate and visualize solutions from the SΣ∗ region in Figure 4.5.

In an effort to better understand the role of time dependent regularization on solu-

tions of the modified Buckley-Leverett equation, the modified BBM-Burgers equation is
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considered in chapter five. The flux is now only a cubic function, much simpler and easier

to analyze than the Buckley-Leverett flux, and the dissipation and dispersion terms are

linear. A completely analytical characterization (Eq. (5.18)) of saddle-saddle connections

is possible with these amendments. Existence and uniqueness of such a connection are

given in Proposition 5.4.1 and shown by using Eq. (5.18) and the separation function in-

troduced in chapter three. Proposition 5.4.2 describes the required relationship between

the three equilibria u−, u0, u+ and the balance between dissipation and dispersion coeffi-

cients in the case of a saddle-saddle connection. Finally, the Riemann problem is solved

for u� > 0 with the boundary between ΣR and ΣS regions in Figure 5.5 determined from

Eq. (5.18). The same types of solutions are obtained as those in chapter three.

In chapter six, the two-dimensional stability of plane waves in two phase flow is

analyzed in a broader context than the single Buckley-Leverett equation. The governing

equations used are conservation of mass, Darcy’s law and incompressibilty. The analysis

presented in chapter six is for variable saturations and is based on Saffman and Taylor’s

original approach for constant saturations from [52]. The long wave stability analysis

determines the sign of the growth rate to leading order (σ1). The hyperbolic nature of

the equations is exploited here as opposed to the asymptotic analysis from [66]. The

expression for σ1 given by Eq. (6.24) provides a boundary between regions of stable

and unstable Lax shocks in the case of quadratic relative permeabilities. Once again,

numerical simulations illustrate and verify the theoretical results. Values of ū± are chosen

according to the stability boundary in Figure 6.1. Then Figure 6.2 and Figure 6.3 show

how the perturbations to the planar front either decay or grow, respectively.

All of the work presented here offers new insights into two phase flow in porous

media: understanding new and physically relevant solutions of the modified Buckley-

Leverett equation, clarifying the impact of time dependent regularization and providing
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a new approach to stability analysis that relies heavily on the structure of two phase flow

governing equations. One area of future research is to compare the modified Buckley-

Leverett equation of chapters two, three and four with the model of Barenblatt et al.

[5, 6]. Several sources of experimental data [45, 56, 68] provide a physical baseline with

which the models can be measured. Another future project is to investigate the Cauchy

problem using the solutions of the Riemann problems included in chapters three and four

and wave front tracking, modifying the analysis in [46].
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Appendix A

Numerical Code

A.1 Phase Portraits

%%%% Generate phase portrait of ODE system for Buckley-Leverett equation

close all; clear all;

format long;

%%%%Setting parameters: p and q are exponents of relative permeability

%%%%functions, T is tau parameter

uminus=1;

uplus=.025;

M=2;

p=1.5;

q=1.5;

T=1;

fminus=uminus^p/(uminus^p+M*(1-uminus)^q);

fplus=uplus^p/(uplus^p+M*(1-uplus)^q);
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s=(fminus-fplus)/(uminus-uplus);

epsilon=.000001;

%%%%Forwards in time with tspan1, backwards in time with tspan2

tspan1=[0 30];

tspan2=[0 -30];

%%%%Initial conditions for ode45 solver are small perturbations to uplus

%%%%and uminus along the horizontal axis

uazero=[uplus+epsilon; 0];

ubzero=[uplus-epsilon; 0];

uczero=[uminus+epsilon; 0];

udzero=[uminus-epsilon; 0];

%%%%Options command allows parameters to pass to BL function

options=odeset(’AbsTol’, 1e-7, ’RelTol’, 1e-4);

[ta1, ua1]=ode45(@BL, tspan1, uazero, options, s, T, p, M, q, uminus,

fminus);

[ta2, ua2]=ode45(@BL, tspan2, uazero, options, s, T, p, M, q, uminus,

fminus);

[tb1, ub1]=ode45(@BL, tspan1, ubzero, options, s, T, p, M, q, uminus,

fminus);

[tb2, ub2]=ode45(@BL, tspan2, ubzero, options, s, T, p, M, q, uminus,

fminus);

[tc1, uc1]=ode45(@BL, tspan1, uczero, options, s, T, p, M, q, uminus,

fminus);

[tc2, uc2]=ode45(@BL, tspan2, uczero, options, s, T, p, M, q, uminus,

fminus);
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[td1, ud1]=ode45(@BL, tspan1, udzero, options, s, T, p, M, q, uminus,

fminus);

[td2, ud2]=ode45(@BL, tspan2, udzero, options, s, T, p, M, q, uminus,

fminus);

plot(ua1(:,1), ua1(:,2), ua2(:,1), ua2(:,2), ub1(:,1), ub1(:,2),...

ub2(:,1), ub2(:,2), uc1(:,1), uc1(:,2), uc2(:,1), uc2(:,2), ...

ud1(:,1), ud1(:,2), ud2(:,1), ud2(:,2))

axis([01 1 -3 3])

%%%BL function is ODE system from traveling wave solutions to Buckley-

%%%%Leverett PDE

function uprime=BL(t, u, s, T, p, M, q, uminus, fminus)

uprime=[u(2); (1/(.2*sqrt(s*T)))*u(2)+(u(1)^p+M*(1-u(1))^q)/((.2^2)*...

u(1)^p*(1-u(1))^q)*(s*(u(1)-

uminus)-u(1)^p/(u(1)^p+M*(1-u(1))^q)+fminus)];

end

A.2 Finding Saddle-Saddle Connections

%%%%This script calculates the values of u_alpha and u_gamma as

%%%%functions of Uminus

Uminus=0:.04:1;

l=length(Uminus);

for g=1:l
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syms a

solveforalpha=double(solve(fprime(a)*(a-Uminus(g))-f(a)+f(Uminus(g))));

done=0;

while ~done

for h=1:length(solveforalpha)

if solveforalpha(h)>0 && solveforalpha(h)~=Uminus(g)

alpha(g)=solveforalpha(h);

done=1;

end

end

end

end

gamma=zeros(length(Uminus),1);

for r=1:(length(Uminus)+1)/2

gamma(r)=1;

end

tol=10^-8;

for m=2:l-1

syms b

solveforgamma=double(solve(fprime(Uminus(m))*(b-Uminus(m))-f(b)+...

f(Uminus(m))));

for n=1:length(solveforgamma)

if solveforgamma(n)<1 && abs(solveforgamma(n)-Uminus(m))>tol...

&& solveforgamma(n)>0

gamma(m)=solveforgamma(n);
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end

end

end

%%This script uses MATLAB’s contour command to calculate the values

%%of uplus and uminus that satisfy h=0, i.e. when tau=infinity.

uminusvector=0:.005:1;

uplusvector=0:.005:1;

hmatrix=zeros(length(uplusvector), length(uminusvector));

for j=1:length(uplusvector)

for k=1:length(uminusvector)

hmatrix(j,k)=integral(uminusvector(k), uplusvector(j));

end

end

v=[0 0];

contour(uminusvector, uplusvector, hmatrix, v);

axis([0 1 0 1]);

%%%%This script finds a saddle-saddle connection between uplus and

%%%%fixed uminus for tau<infinity.

Uminus=sparse(30,1);

Uplus=sparse(30,1);

tau=1;
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tol=.0001;

for j=1:length(Uminus)

uminus=.05+.01*j

uplus1=.0000000001

s1=(f(uminus)-f(uplus1))/(uminus-uplus1);

d1=distbt(uplus1, uminus, tau)

uplus2=.9999999999

s2=(f(uminus)-f(uplus2))/(uminus-uplus2);

d2=distbt(uplus2, uminus, tau)

if d1>0 && d2>0

disp(’No saddle-to-saddle connection exists in the interval of...

uplus values’)

elseif d1<0 && d2<0

disp(’No saddle-to-saddle connection exists in the interval of ...

uplus values’)

else disp(’There exists a saddle-to-saddle connection between these...

values of uplus’)

end

done=0;

while ~done

if d1>0 && d2>0

done=1;

elseif d1<0 && d2<0

done=1;

elseif abs(d1)<=tol
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done=1;

elseif abs(d2)<=tol

done=1;

else uplusave=.5*(uplus1+uplus2)

dave=distbt2(uplusave, uminus, tau)

if dave<0

uplus1=uplusave

d1=dave

elseif dave>0

uplus2=uplusave

d2=dave

end

end

end

if abs(d1)<abs(d2)

Uplus(j)=uplus1

else Uplus(j)=uplus2

end

Uminus(j)=uminus

end

filedate=datestr(now,30)

save(filedate, ’Uminus’, ’Uplus’)

%%%%dist function calculates distance between stable and unstable
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%%%%manifolds for uplus and uminus

function dist=distbt(uplus, uminus, tau)

format long;

s=(f(uplus)-f(uminus))/(uplus-uminus);

p=s*tau;

%Solve for middle equilibrium um by solving linear equation of y-f(uplus)

%=s(x-uplus) with y=f(um) and x=um

syms a

umlist=sort(double(solve(f(a)-s*a+s*uminus-f(uminus))));

um=umlist(2);

%Set up system of first-order ODEs symbolically so we can determine

%Jacobian later

syms U1 U2;

U=[U1, U2];

Uprime=[U2; (1/sqrt(p))*U2+(1/H(U1))*(s*(U1-uminus)-f(U1)+f(uminus))];

%Determine Jacobian evaluated at (uminus,0) and (uplus,0) then find

%slopes of eigenvectors corresponding to unstable and stable manifolds

J=jacobian(Uprime, U);

Jplus=subs(J, {U1, U2}, {uplus, 0});

[~,D]=eig(Jplus);

mplus=D(1,1);

Jminus=subs(J, {U1, U2}, {uminus, 0});

[~,E]=eig(Jminus);

mminus=E(2,2);

%Use (uminus+.00001,0) and (uplus-.00001) to get trajectories
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upluspert=mplus*.00001;

uminuspert=mminus*.00001;

%Set tolerances for ode solver

options= odeset(’AbsTol’, 1e-10, ’RelTol’, 1e-10);

%xif goes forward to generate unstable manifold from (uminus,0)

xif=0:.001:80;

uminus0=[uminus+.0001; uminuspert];

%xib goes backward to generate stable manifold into (uplus,0)

xib=80:-.001:0;

uplus0=[uplus-.0001; -upluspert];

%ODE SOLVERS

[~, uminustraj]=ode15s(@PS, xif, uminus0, options, p, s, uminus,...

f(uminus));

[~, uplustraj]=ode15s(@PS, xib, uplus0, options, p, s, uminus,...

f(uminus));

%Find trajectory value (vertical axis) on unstable manifold closest to

%u=um; uplush is vector of values along horizontal axis (u) from ODE

%solver; uplusv is vector of values along vertical axis (v=uprime) from

% ODE solver

uplush=uplustraj(:,1);

uplusv=uplustraj(:,2);

j=1;

vplus=uplusv(1);

while uplush(j)>=um

vplus=uplusv(j+1);
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j=j+1;

end

%Find trajectory value (vertical axis) on stable manifold closest to

%u=um; uminush, uminusv are horizontal and vertical components,

%respectively, of trajectory from ODE solver

uminush=uminustraj(:,1);

uminusv=uminustraj(:,2);

k=1;

vminus=uminusv(1);

while uminush(k)<=um

vminus=uminusv(k+1);

k=k+1;

end

%Calculate vertical distance between uplus and uminus trajectories at

%u=um

dist=vminus-vplus;

end

% %%%f function calculates the value of the flux function for a given

%%%%value of u

function y = f(u)

M=2;

p=2;

q=2;
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y=u.^p./(u.^p+M*(1-u).^q);

end

%%%% fprime function calculates the value of the derivative of the

%%%%flux function for a given value of u in the case of quadratic relative

%%%%permabilities

function y = fprime(u)

M=2;

y=((u.^2+M*(1-u).^2).*(2*u)-(u.^2).*(2*u-2*M*(1-u)))./((u.^2+M*(1-u).^2).^2);

%y=0*u;

end

A.3 Numerical Simulations from Chapter Three

%%%%This script is the master file for 1-d PDE simulations of modified

%%%%Buckley-Leverett equation

close all; clear all;

format long

N=200;

h=1/N;

a=-2;

b=4;

X=a:h:b;

k=.1*h^2;
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ul=.9;

ur=.4;

tau=1;

M=2;

epsilon=.05;

%IC

gamma=250;

for j=1:length(X)

Uo(j,1)=(ul-(ur+ul)/2)*-tanh(gamma*X(j))+(ur+ul)/2;

end

%P is an empty matrix with 1s on superdiagonal, M is an empty matrix with

%1s on subdiagonal

P=diag(ones(length(X)-1,1),1);

Mmatrix=diag(ones(length(X)-1,1),-1);

eps_step=1e-8;

NN=10;

%%%%updating U

%%%%U_old is previous time step, define new variable Uo to be update

%%%%but U_old doesn’t change

T=400000;

for n=1:T

U_old=Uo;

U_old_p=P*U_old;

U_old_p(length(X))=U_old(length(X));

U_old_pp=P*U_old_p;
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U_old_pp(length(X))=U_old_p(length(X));

U_old_m=Mmatrix*U_old;

U_old_m(1)=Uo(1);

U_old_mm=Mmatrix*U_old_m;

U_old_mm(1)=U_old_m(1);

for nn=1:NN

Up=P*Uo;

Upp=P*Up;

Um=Mmatrix*Uo;

Umm=Mmatrix*Um;

%%Boundary conditions - set for Um and Up

Um(1)=Uo(1);

Umm(1)=Um(1);

Umm(2)=Um(2);

Up(length(X))=Uo(length(X));

Upp(length(X))=Up(length(X));

Upp(length(X)-1)=Up(length(X)-1);

Jacob=jacob(Upp,Up,Uo,Um,Umm,U_old_pp,U_old_p,U_old,U_old_m,...

U_old_mm,epsilon,h,tau,k);

GG=G(Upp,Up,Uo,Um,Umm,U_old_pp,U_old_p,U_old,U_old_m,U_old_mm,...

epsilon,k,h,tau);

U_new=Uo-Jacob\GG;

if norm(Uo-U_new,inf)<eps_step

break;

elseif nn==NN
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error(’Newtons method did not converge’);

end

Uo=U_new;

end

%%%Create new matrix UU to store only every mod n time step output

if mod(n,100000)==0

UU(:,n/100000)=Uo;

end

end

filedate=datestr(now,30)

save(filedate, ’UU’, ’ul’, ’ur’, ’h’)

%%%%G function is right hand side of discritization for modified Buckley-

%%%%Leverett PDE

function rhs=G(Upp,Up,Uo,Um,Umm,U_old_pp,U_old_p,U_old,U_old_m,...

U_old_mm,epsilon,k,h,tau)

format long

lr=length(U_old);

Grhs=zeros(lr,1);

%Complete discritization

Grhs=Uo-U_old+(k/(12*h))*(-1*f(Upp)+8*f(Up)-8*f(Um)+f(Umm))-...

(epsilon*k/(h^2))*(H(.5*(Up+Uo)).*(Up-Uo)-H(.5*(Um+Uo)).*(Uo-Um))-...

(epsilon^2*tau/(h^2))*(H(.5*(Uo+Up)).*(Up-Uo-U_old_p+U_old)-...

H(.5*(Um+Uo)).*(Uo-Um-U_old+U_old_m));
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rhs=Grhs;

%%%%jacob function is Jacobian of discritization in G function

function J=jacob(Upp,Up,Uo,Um,Umm,U_old_pp,U_old_p,U_old,U_old_m,...

U_old_mm,epsilon,h,tau,k)

format long

lr=length(U_old);

jac=sparse(length(U_old),length(U_old));

%%Derivative of G with respect to Umm

Ju(:,1)=(k/(12*h))*(fprime(Umm));

%%Derivative of G with respect to Um

Ju(:,2)=(k/(12*h))*-8*fprime(Um)-epsilon*k/(h^2)*-1*(H(.5*(Um+Uo))*-1+...

(Uo-Um).*Hprime(.5*(Um+Uo))*.5)-...

epsilon^2*tau/(h^2).*-1*(H(.5*(Um+Uo))*-1+(Uo-Um-U_old+U_old_m)...

.*Hprime(.5*(Um+Uo))*.5);

%%Derivative of G with respect to Uo

Ju(:,3)=1-...

epsilon*k/(h^2)*(H(.5*(Up+Uo))*-1+(Up-Uo).*Hprime(.5*(Up+Uo))*.5-...

(H(.5*(Um+Uo))*1+(Uo-Um).*Hprime(.5*(Um+Uo))*.5))-...

epsilon^2*tau/(h^2)*(H(.5*(Uo+Up))*-1+(Up-Uo-U_old_p+U_old)...

.*Hprime(.5*(Uo+Up))*.5-...

(H(.5*(Um+Uo))*1+(Uo-Um-U_old+U_old_m).*Hprime(.5*(Um+Uo))*.5));

%%Derivative of G with respect to Up
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Ju(:,4)=(k/(12*h))*8*fprime(Up)-epsilon*k/(h^2)*(H(.5*(Up+Uo))*1+(Up-Uo)...

.*Hprime(.5*(Up+Uo))*.5)-...

epsilon^2*tau/(h^2)*(H(.5*(Uo+Up))*1+(Up-Uo-U_old_p+U_old)...

.*Hprime(.5*(Uo+Up))*.5);

%%Derivative of G with respect to Upp

Ju(:,5)=(k/(12*h))*-1*fprime(Upp);

%For implicit flux, leave top 2 and bottom 2 rows empty

for j=2:lr-3

jac(j+1,j-1:j+3)=Ju(j+1,:);

end

%Reassign diagonal values at top and bottom when using implicit flux

jac(1,1)=Ju(1,3);

jac(1,2)=Ju(1,4);

jac(1,3)=Ju(1,5);

jac(2,1)=Ju(2,2);

jac(2,2)=Ju(2,3);

jac(2,3)=Ju(2,4);

jac(2,4)=Ju(2,5);

jac(lr-1,lr-3)=Ju(lr-1,1);

jac(lr-1,lr-2)=Ju(lr-1,2);

jac(lr-1,lr-1)=Ju(lr-1,3);

jac(lr-1,lr)=Ju(lr-1,4);

jac(lr,lr-2)=Ju(lr,1);

jac(lr,lr-1)=Ju(lr,2);

jac(lr,lr)=Ju(lr,3);
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J=jac;

%%%%H function calculates the value of the nonlinear dispersion

%%%%coefficient for a given value of u

function y = H(u)

M=2;

y=(u.^2.*(1-u).^2)./(u.^2+M*(1-u).^2);

end

%%%% Hprime function is the derivative of the nonlinear dispersion

%%%%coefficient for a given value of u

function y = Hprime(u)

M=2;

y=((u.^2+M*(1-u).^2).*(u.^2.*-2.*(1-u)+(1-u).^2.*2.*u)-u.^2.*(1-u).^2...

.*(2*u-2*M*(1-u)))./((u.^2+M*(1-u).^2).^2);

end
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