
ABSTRACT

WINTON, COREY W. Parameter Estimation in Groundwater Models Using Proper
Orthogonal Decomposition. (Under the direction of Dr. Carl T. Kelley.)

We develop a new Proper Orthogonal Decomposition (POD) reduced order model

for saturated groundwater flow, and apply that model to an inverse problem for the

hydraulic conductivity field. We use sensitivities as the POD basis. We compare the

reduced order model results to results obtained with a full finite element model. The

solutions generated using the POD reduced model are comparable in residual norm to the

solutions formed using only the full-scale model. The material parameters are similarly

comparable. The time to solution when using the reduced model is cut in half and the

number of calls to the full model are reduced by at least an order of magnitude. The

following thesis will give an overview of groundwater modeling, construction and usage

of POD, and demonstrate the results of our implementation. We also examine how the

inexactness of a reduced order model affects the convergence of the Levenberg-Marquardt

optimizer.

Parameter Estimation in Groundwater Models Using Proper Orthogonal Decomposition

by
Corey W. Winton

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2012

APPROVED BY:

Dr. Pierre Gremaud Dr. Stacy Howington

Dr. Cass T. Miller Dr. Ralph Smith

Dr. Carl T. Kelley
Chair of Advisory Committee

DEDICATION

To my parents and my wife. Thank you so much.

ii

BIOGRAPHY

Corey Winton was born September 19, 1981, in Titusville, PA, to Dennis and Rosemary

Winton. He graduated from Titusville High School in 2000 and went to Asbury College

for his undergraduate degree in Applied Mathematics. After four years in Wilmore, KY,

he left the bluegrass for Raleigh, NC, and a Ph.D. program in Applied Mathematics at

North Carolina State University.

iii

ACKNOWLEDGEMENTS

I cannot hope to thank everyone who has helped me achieve my degree. The following

will attempt to thank, in some sort of chronological order, some of those who have made

this possible.

• Obviously, I thank my parents Dennis and Rosemary Winton first. Without them

none of this would be possible.

• Mrs. Fitzgerald and those involved with the SEEK program. Thank you for giving

me an opportunity to learn and be challenged at an early age.

• Mr. and Mrs. Carrell and Betty Rainey and the many other teachers of Titusville

area schools who challenged generations of students to reach for their goals and

never settle for less than their absolute best. Thank you for preparing me so well

for college, graduate school, and beyond.

• I cannot hope to list everyone from Asbury College who I want to thank, but want

to mention Dr. Coulliette, Dr. Rietz, Dr. Charalambakis, Dr. Lee, and the rest

of the Asbury mathematics department for encouraging me to pursue a career in

mathematics.

• My fellow Asbury mathematicians, especially Skyler Speakman, Corey Robertson,

Ben Flannery, Joel Kilty, and my math weekend teammates. I’m so thankful you

all helped me finish my math degree from Asbury and inspired me to continue to

graduate school.

• My fellow graduate students, especially Brendan O’Connor, Steve and Lindsay May,

Ryan Siskind, and Teresa Selee. Thank you for helping me study, learn, and pass

graduate exams, not to mention survive and enjoy graduate school to the fullest.

• My team members and supervisors at ERDC in Vicksburg, especially Rob Wallace,

Dave Richards, Owen Eslinger, Amanda Hines, and Jeff Hensley. Thank you for

helping me balance the pursuit of this degree and my job.

• My thesis committee. Thank you for your insightful feedback and enduring what

turned out to be a much longer process than any of us anticipated.

iv

• Tim Kelley. It’s been an honor to learn from you and work with you the past years.

I look forward to many productive years of collaboration ahead.

• My wife, Christy Paine Winton. Your encouragement and endurance through this

process has been invaluable. Thank you for standing by me and encouraging me

all the way through.

This research was funded in part by the Army Research Office grants W911NF-06-1-0412

and W911NF-11-1-0367 and US Army Corps of Engineers contracts W912HZ-10-P-0221

and W912HZ-10-P-0256.

v

TABLE OF CONTENTS

List of Tables . ix

List of Figures . xi

Chapter 1 Introduction . 1

Chapter 2 Saturated Flow . 3
2.1 Model Development . 3

2.1.1 Introduction . 3
2.1.2 Derivation via Mass Conservation 3
2.1.3 General Mass-Flux Equation . 5
2.1.4 Darcy’s Law . 8
2.1.5 Complete Single Phase Flow Equation for Steady State Domains . 10

Chapter 3 Single-Phase Groundwater Model 11
3.1 2-D Model . 11
3.2 3-D Model . 12
3.3 Approximating the Hydraulic Conductivities 13
3.4 Comparison to Data . 14

Chapter 4 Total Flux Boundary Condition 15
4.1 Problem Statement . 15

4.1.1 Formulation . 15
4.1.2 Boundary Value Map . 17

Chapter 5 Proper Orthogonal Decomposition 20
5.1 POD Background . 20
5.2 Classic Proper Orthogonal Decomposition 21
5.3 POD For Saturated Groundwater Models 22

5.3.1 The POD basis . 24
5.3.2 Sensitivity Calculation . 25
5.3.3 POD Reduced Model . 28

Chapter 6 Parameter Estimation . 29
6.1 Inverse Problems in Hydrogeology . 29

6.1.1 Approximating the Hydraulic Conductivities 29
6.1.2 Optimization Methods . 30

6.2 Levenberg-Marquardt . 31
6.3 Optimization Algorithm . 32

6.3.1 Codes . 32

vi

6.3.2 Algorithm . 34

Chapter 7 Results . 37
7.1 2-D Results . 37
7.2 3-D Results . 43

7.2.1 Synthetic Column . 43
7.2.2 Laboratory Scale Synthetic Aquifer 51
7.2.3 SPE10 . 59

Chapter 8 Inexact Levenberg Marquardt with Reduced Order Models . 62
8.1 Solving the Linear System . 62

8.1.1 Iterative Linear Methods . 63
8.2 Modifications to Optimization Algorithm 64
8.3 Inexact Levenberg Marquardt with Reduced Order Models 65
8.4 Tolerance Results . 66

8.4.1 Synthetic Column . 66
8.4.2 Noise: 0% . 67
8.4.3 Noise: 1% . 69
8.4.4 Noise: 5% . 71
8.4.5 Noise: 10% . 73
8.4.6 Parameter Values . 74
8.4.7 Laboratory Scale Synthetic Aquifer 75
8.4.8 Noise: 0% . 75
8.4.9 Noise: 1% . 77
8.4.10 Noise: 5% . 79
8.4.11 Noise: 10% . 81
8.4.12 Parameter Values . 82
8.4.13 SPE10 . 83

8.5 Parameter Fit . 84
8.6 Results Discussion . 84

Chapter 9 Conclusions and Future Work 86

References . 88

Appendices . 96
Appendix A Finite Element Method . 97

A.1 General Dirichlet BVP . 97
A.1.1 Equivalence of Forms . 98

A.2 General Neumann BVP . 99
A.3 Mixed and Inhomogeneous Boundary Conditions 100

A.3.1 Mixed Boundary Conditions 100

vii

A.3.2 Inhomogeneous Boundary Conditions 100
A.4 Discretization . 102

A.4.1 Linear Functionals . 103
A.4.2 Existence and Uniqueness 103
A.4.3 Elliptic and Bounded . 105
A.4.4 Projection Theory . 107
A.4.5 The Galerkin Method . 108

Appendix B Functional Analysis . 110
B.1 Essential Functional Analysis Definitions 110

Appendix C ADH . 114
C.1 POD with ADH . 114
C.2 Relevant Codes . 116

Appendix D PEST . 118
D.1 PEST - POD Interaction . 118
D.2 Variables . 118

D.2.1 General PEST Settings . 119
D.2.2 Levenberg-Marquardt Settings 119
D.2.3 Output Settings . 121

Appendix E SCALAPACK . 122
E.1 Mesh Partition . 122
E.2 Speedup Analysis . 124

viii

LIST OF TABLES

2.1 Key REV Characteristics . 5

7.1 Analysis for Column . 47
7.2 Relative Log-Transformed Parameter Error for Column 48
7.3 Results for CSM Tank with Direct Solver . 54
7.4 Relative Log-Transformed Parameter Error for Tank 56
7.5 Relative Log-Transformed Parameter Error for SPE10 59
7.6 SPE10 Results for 1e− 6 Solver Tolerance 60

8.1 Time (sec) for each ADH solution (serial) . 62
8.2 Analysis of Time (s) for Domain: HET, Noise: Data 67
8.3 Analysis of Final Residual for Domain: HET, Noise: Data 67
8.4 Analysis of Parameter Error for Domain: HET, Noise: Data 68
8.5 Analysis of Model Calls for Domain: HET, Noise: Data 68
8.6 Analysis of Time (s) for Domain: HET, Noise: 1 % 69
8.7 Analysis of Final Residual for Domain: HET, Noise: 1 % 69
8.8 Analysis of Parameter Error for Domain: HET, Noise: 1 % 70
8.9 Analysis of Model Calls for Domain: HET, Noise: 1 % 70
8.10 Analysis of Time (s) for Domain: HET, Noise: 5 % 71
8.11 Analysis of Final Residual for Domain: HET, Noise: 5 % 71
8.12 Analysis of Parameter Error for Domain: HET, Noise: 5 % 72
8.13 Analysis of Model Calls for Domain: HET, Noise: 5 % 72
8.14 Analysis of Time (s) for Domain: HET, Noise: 10 % 73
8.15 Analysis of Final Residual for Domain: HET, Noise: 10 % 73
8.16 Analysis of Parameter Error for Domain: HET, Noise: 10 % 74
8.17 Analysis of Model Calls for Domain: HET, Noise: 10 % 74
8.18 Conductivity Values for Column . 75
8.19 Analysis of Time (s) for Domain: ALL, Noise: Data 75
8.20 Analysis of Final Residual for Domain: ALL, Noise: Data 76
8.21 Analysis of Parameter Error for Domain: ALL, Noise: Data 76
8.22 Analysis of Model Calls for Domain: ALL, Noise: Data 76
8.23 Analysis of Time (s) for Domain: ALL, Noise: 1 % 77
8.24 Analysis of Final Residual for Domain: ALL, Noise: 1 % 77
8.25 Analysis of Parameter Error for Domain: ALL, Noise: 1 % 78
8.26 Analysis of Model Calls for Domain: ALL, Noise: 1 % 78
8.27 Analysis of Time (s) for Domain: ALL, Noise: 5 % 79
8.28 Analysis of Final Residual for Domain: ALL, Noise: 5 % 79
8.29 Analysis of Parameter Error for Domain: ALL, Noise: 5 % 80
8.30 Analysis of Model Calls for Domain: ALL, Noise: 5 % 80

ix

8.31 Analysis of Time (s) for Domain: ALL, Noise: 10 % 81
8.32 Analysis of Final Residual for Domain: ALL, Noise: 10 % 81
8.33 Analysis of Parameter Error for Domain: ALL, Noise: 10 % 82
8.34 Analysis of Model Calls for Domain: ALL, Noise: 10 % 82
8.35 Conductivity Values for Tank . 83
8.36 SPE10 Results . 83
8.37 Conductivity Values for SPE10 . 84

E.1 Description of an array or vector in ScaLAPACK 124

x

LIST OF FIGURES

2.1 Representative Elementary Volume . 4
2.2 Explanation of Darcy’s Experiment . 8

5.1 Distribution of Singular Values . 23

6.1 Optimization Algorithm for Full Model - Reduced Model - PEST Interaction 34

7.1 2-D Domain with Sensors . 38
7.2 “Data” Solution with 4x4 Conductivity Grid 39
7.3 Initial Solution (Homogeneous Conductivity) 40
7.4 Gauss-Newton Convergence from Homogeneous Initial Iterate 41
7.5 Levenberg-Marquardt Iteration History . 42
7.6 Levenberg-Marquardt Solution . 43
7.7 Composition of Column . 44
7.8 Hydraulic Head of Column . 45
7.9 Location of Sensors . 46
7.10 Convergence of Optimizer for 0% noise . 49
7.11 Solutions of Column . 49
7.12 Solutions of Column With 10% Randomized Data 50
7.13 Colorado School of Mines Tank . 51
7.14 Packing Method . 52
7.15 Allocation of Materials . 53
7.16 Location of Sensors in Tank . 53
7.17 Convergence of Optimizer for 0% noise on CSM Tank 55
7.18 Exact Solution of Tank . 57
7.19 Solutions of Tank With 0% Noise . 57
7.20 Solutions of Tank With Measured Data . 58
7.21 Material Allocation for SPE10 . 59
7.22 Exact Solution of SPE10 . 60
7.23 SPE10 Solutions . 61

E.1 Partition of ScaLAPACK Matrix . 123
E.2 Speed Up Analysis . 126

xi

Chapter 1

Introduction

We describe an algorithm for model calibration of saturated flow codes using a reduced

order model, specifically Proper Orthogonal Decomposition (POD). We will recover the

hydraulic conductivity of materials in a domain from measurements of the hydraulic head

and the pumping rates of any wells. We will use a nonlinear least squares approach to

measure the quality of our approximation. We seek to minimize the sum of squared

differences between data points and our simulated results by adjusting the values of

hydraulic conductivity. We will develop models in both 2-D and 3-D and will demonstrate

results for both. We measure the quality of our process by accuracy of the solution and

computation time required to obtain that solution.

We begin our discussion with a brief outline of groundwater physics and equations.

Our research extends only to saturated groundwater models and our discussion will be

similarly limited. We will discuss the discretization of the groundwater equations for

implementation in a finite element mesh. In Chapter 5, we discuss the implementation

of Proper Orthogonal Decomposition (POD) in the optimization process. Our goal with

POD is to reduce the number of full, expensive model calls necessary for the optimizer

to find a minimizing solution. Chapter 6 describes the use of the Levenberg-Marquardt

code PEST to find a suitable suite of parameters to match data. Chapter 7 will detail

the results we have found by using POD in saturated groundwater models. In Chapter 8,

we explore how inaccuracies in the linear solver affect the solution speed and quality.

We also include several discussions for the sake of clarity in our investigations. Chap-

ter 4 describes the construction and implementation of the “Total Flux” boundary con-

dition. This boundary condition ensures a unique solution for saturated domains in the

1

absence of a well. Appendix A proves a discussion of finite element methods. Appendix B

should be read in conjunction with Appendix A as it details convergence properties of

finite element methods. Appendix C details exactly how we used the 3-D FEM code ADH

, including what routines had to be modified to extract the information used in POD.

Appendix D gives a brief overview of our use of PEST and the parameters we changed in

the process of optimization. Finally, Appendix E describes ScaLAPACK and how we used

it to solve for the SVD of a matrix in parallel.

2

Chapter 2

Saturated Flow

2.1 Model Development

2.1.1 Introduction

Our research focuses on parameter estimation in porous media with a single liquid phase.

In this chapter, we will derive the equations that govern steady-state, saturated flow

through an immobile (or non-deformable) porous medium. We are careful to note the

methods described later in this document hold only under these conditions. For the sake

of clarity, vectors will be represented in italicized boldface (v) and matrices or tensors

will be represented in bold (M).

2.1.2 Derivation via Mass Conservation

In our derivation, we begin with conservation of mass in a Representative Elementary

Volume (REV). A Representative Elementary Volume (REV) defines the scale at which

a given property is insensitive to changes in the length scale associated with an obser-

vation [46], [69]. Figure 2.1 gives a visual description of how material properties can be

misleading without a proper REV.

3

Figure 2.1: Representative Elementary Volume

In this work, we deal strictly with single phase flow in a saturated medium but for

the sake of completeness in the derivation we will note other phases with the notation α,

where α = s, l, or g for solid, liquid, or gas, respectively. The void space (also called the

pore space) is represented with α = p. Distinct species present in each phase–for instance

multiple gases–are represented with the superscript i.

Table 2.1 describes several characteristics for our REV.

We can balance several of these properties over the volume. We see∑
α

εα = 1 : Volume Fractions sum to 1,

∑
i

wα,i = 1 : Mass Fractions within each phase sum to 1,

∑
α 6=s

sα = 1 : Saturation of non-solid phases sum to 1.

We use mass-averaged velocity in our calculations so that macroscale properties are

directly related to conservation principles. That is,

vα =

∫
Ω
vαρα dr∫

Ω
ρα dr

, (2.1)

4

Table 2.1: Key REV Characteristics

Symbol Name Definition Units

n Porosity
V p

V
-

εα Volume Fraction
V α

V
-

sα Saturation
V α

V p
-

ρα Density
Mα

V α

M

L3

wα,i Mass Fraction
Mα,i

Mα
-

and we see

ραvα =

∫
Ω
ρα dr∫

Ω
dr
×
∫

Ω
vαρα dr∫

Ω
ρα dr

=

∫
Ω
vαρα dr∫
Ω
dr

.

2.1.3 General Mass-Flux Equation

We have established our properties across the REV and turn to conservation of mass to

develop our model [77], [51]:

[Change In Mass Rate] = [Mass Inflow Rate] - [Mass Outflow Rate] , (2.2)

or
[Accumulation of Mass] = [Net Advective Transport (Flow)]

+ [Non-Advective Transport]

+ [Reactions] + [Interphase Mass Exchange]

+ [Sources].

(2.3)

From this general statement of mass conservation, we will derive our elliptic boundary

5

value problem, following the derivation in [70]. We first describe accumulation of mass,

the change over time of a species i in phase α over volume V :

Accumulation of Mass = V
∂

∂t

(
εαραwα,i

)
. (2.4)

We next turn our attention to Net Advective Transport (Flow). We examine flow through

a sample cubic volume with vertices at x, x + ∆x, y, y + ∆y, z, z + ∆z. We define vαx as

the mass-averaged velocity of the α-phase in the positive x-direction and Ayz = ∆y∆z as

the area of the face where x is fixed. Total mass of the i species in the α phase passing

through that face into the volume V is given by

Mα,i
x = Ayzε

α ρα vαx w
α,i
∣∣
x
. (2.5)

Similarly, total mass passing through the opposite face, out of the volume is given by

Mα,i
x+∆x = Ayzε

α ρα vαx w
α,i
∣∣
x+∆x

. (2.6)

We expand (2.6) with a Taylor’s series at the initial face and keep only the first order

terms to see

Mα,i
x+∆x = Ayzε

α ρα vαx w
α,i + εαραwα,i∆x

∂vαx
∂x

∣∣∣∣
x

. (2.7)

Over our REV, we assume porosity (ε), density (ρ), and mass fraction (w) are constant

and need only expand velocity in (2.7). Thus, net advective transport of the i species in

the α phase in the x-direction is given by

Mα i
x −Mα i

x+∆x = −εαραwα i∆x∂v
α
x

∂x

∣∣∣∣
x

. (2.8)

We apply (2.8) to the x, y and z directions, recall that ∆x×∆y ×∆z = V and see

Net Advective Transport = −V∇ ·
(
εαραwα ivα

)
. (2.9)

We will characterize non-advective transport of the i species in the α phase for a volume

V with −V∇·j α,i. V ψα,i, V Rα,i, and V Sα,i represent change of mass due to phase change,

reactions, and sources for a volume V , respectively. As the generic volume coefficient is

6

present in all terms, we factor it away and have the general mass balance equation:

∂

∂t

(
εαραwα,i

)
= −∇ ·

(
εαραwα,ivα + j α,i

)
+ (ψα,i +Rα,i + Sα,i). (2.10)

We sum (2.10) over all species and note several terms can be simplified:

• Change in mass due to phase change across each species i is the total change in

mass for each phase α: ∑
i

ψα,i = ψα.

• Change in mass due to sources/sinks across each species i is the total change in

mass for each phase α: ∑
i

Sα,i = Sα.

• Mass-fractions (wα,i) for each species i in phase α sum to 1:∑
i

wα,i = 1.

Conservation of mass allows us to eliminate some terms:

• Total change of mass across all species due to reactions is zero:∑
i

Rα,i = 0.

• Sum of non-advective flux across all species within a single phase is zero:∑
i

j α,i = 0.

We only investigate movement of a single fluid phase in the following research, so we

eliminate the phase-change term ψα and drop the superscript α for all other terms. This

leaves our general equation for accumulation of mass of a single phase:

∂

∂t
(ερ) = −∇ · (ερv) + S. (2.11)

7

We turn to Darcy’s Law to describe the velocity of the liquid in our domain. As we

describe the fluid moving through the solid domain, we assume the solid is immovable

and has no velocity component.

2.1.4 Darcy’s Law

Henry Darcy, a civil engineer in Dijon, France, motivated by the concern over public

water supply was driven to investigate better designs for water purification through

filtered sands. This led him “to determine the laws of flow of water through sand” [32]

and his initial results were published in 1856. Darcy constructed an apparatus similar

to the one shown in Figure 2.2 [12]. The volumetric flow rate Q (units: L3/T) was

Figure 2.2: Explanation of Darcy’s Experiment

controlled by Darcy. The cross sectional area A (L2) was known, as was the length of the

sand column between sensors l (L). The readings h1, h2 (L) were taken from manometers

and represented the height to which water would rise in the absence of restrictive media

(ie – a length-scale representation of hydraulic head). From these measurements, Darcy

calculated the flow of water through the apparatus q = Q/A (L/T) which is called

“specific discharge” and a dimensionless quantity termed “hydraulic gradient” (h1−h2)/l,

which is the change in hydraulic head over distance. This dimensionless quantity is also

8

expressed ∂h/∂l. His calculations gave rise to Darcy’s Law:

Q

A
= q =

−k(h1 − h2)

l
= −k∂h

∂l
. (2.12)

The proportionality constant k (L/T) represents the hydraulic conductivity of the medium.

This value represents the ease or difficulty a fluid has passing through a porous medium.

The minus sign conveys that flow occurs in the direction of decreased head in the manome-

ters. For clarification, (2.12) can be stated as:

Rate of flow through a cross sectional area is proportional to hydraulic gradient.

(2.13)

This result is only valid for 1-D flow. To generalize the results for 3-D flow, we describe

an anisotropic material with the conductivity tensor K. The i, j coefficient entry of K

describes flow in the i direction in response to a unit gradient in the −j direction.

qx = −Kxx
∂h

∂x
−Kxy

∂h

∂y
−Kxz

∂h

∂z
,

qy = −Kyx
∂h

∂x
−Kyy

∂h

∂y
−Kyz

∂h

∂z
,

qz = −Kzx
∂h

∂x
−Kzy

∂h

∂y
−Kzz

∂h

∂z

and Darcy’s Law for 3-dimensions is given by:

q = −K · ∇h .

In our examples, we do not have anisotropic materials. Instead, the flow response for

any given gradient is only along the lines of that gradient and is uniform in all direc-

tions. Therefore, for any material the conductivity tensor can be replaced with a single

coefficient κ. We note the flux of a liquid is equivalent to the volume fraction (ε) of that

phase times the velocity. We see the Darcy flux can be represented

q = −κ∇h = εv . (2.14)

9

In later discussions, this isotropy is very important as it allows us to characterize the

hydraulic conductivity throughout the domain as a piecewise constant function where

each material has a single scalar conductivity value, not a tensor. This, along with the

linearity of the differential equation, allows us to recombine the matrix and vector as

shown in (3.13).

2.1.5 Complete Single Phase Flow Equation for Steady State

Domains

We substitute (2.14) in (2.11) and have:

∂

∂t
(ερ) = −∇ · (−κ ρ ∇h) + S. (2.15)

In the following examples, we will only examine steady state problems (∂
∂t

(ερ) ≡ 0).

While field systems are rarely at steady state, for conditions in which boundary conditions

and sources and sinks are invariant with time, heads will tend toward a steady value with

increasing time. We will assume steady state conditions in this work, but the methods

to be explored can be expended to the transient case.

These assumptions give us the following equation for the hydraulic head (h) of a fluid

in an isotropic, single fluid domain given a source term S, hydraulic conductivity κ, and

density ρ:

−∇ · (κρ∇h) = S.

We assume that spatial gradients in density of our fluid are small in comparison to

gradients in head of the fluid and conductivity of the materials. Therefore, we assume ρ

is constant and our final equation is:

−∇ · (κ∇h) = S. (2.16)

10

Chapter 3

Single-Phase Groundwater Model

We apply our method to both 2-D and 3-D domains. The 2-D domain serves only as a

proof-of-concept and is on a small scale to be run easily within Matlab. The parameters

in the 2-D example serve only to test our algorithm; they are not representative of actual

data or scenarios.

Our 3-D examples are a mix of simulations and actual data. When we use simulated

domains, the scale of the domain is intended to represent possible “real-world” scenarios

and all values approximate those we would experience (with the assumptions previously

described) in field tests.

3.1 2-D Model

In our 2-D example, we investigate a square domain with one kilometer length on each

side. We directly assign hydraulic head values with a Dirichlet condition on the left

and right sides of the domain. The top and bottom of the domain are restricted with

homogenous Neumann (“no flow”) conditions. The pumping wells in the domain are

represented with the term g(x, y), where (x, y) is the location of the well.

11

−∇ · (κ(x, y)∇h(x, y)) = g(x, y) (3.1)

h(0, y) = h0 (3.2)

h(1, y) = h1 (3.3)

∂h

∂n
(x, 0) = 0 (3.4)

∂h

∂n
(x, 1) = 0. (3.5)

We let h0 = .4 km, h1 = 1km. The conductivities of the sixteen equally spaced, isotropic

materials are in the range κ(x, y) ∈ [10−10, 10−2]. We place two wells g(x, y) that pump

at a rate of ≈ 6× 10−2 m3/s. These parameters are designed solely as a proof-of-concept

for our method and do not represent any real-world example.

To generate the hydraulic head h(x, y), we use the finite element implementation

coded by [38] to discretize and solve (3.1)-(3.5) with

Ah = f . (3.6)

3.2 3-D Model

Our 3-D examples are also saturated and in steady-state. The materials are all isotropic

and we still have only a single fluid phase. Unlike the 2-D example, we do not include any

wells. That is, g(x) ≡ 0 from (3.1). To ensure that the hydraulic head h are uniquely

defined by material conductivities κ, we must introduce a flow boundary condition. The

total flux boundary condition is stated here in (3.7c). The derivation and need for this

boundary condition is given in (§4). Our system is

−∇ · (κ(x)∇h(x)) = 0 (3.7a)

h(x) = α on ΓD (3.7b)∫
ΓQ

(κ(x)∇h(x)) · n dS = q, (3.7c)

12

where

x ∈ Ω ⊂ R3, (3.8a)

h ∈ RN , (3.8b)

∂Ω = ΓD ∪ ΓQ, (3.8c)

ΓD ∩ ΓQ = Ø. (3.8d)

To discretize and solve our 3-D model, we use ADH, developed at the United States

Army Corps of Engineers (USACE) lab in Vicksburg, MS. In Appendix C, we discuss

what steps were taken to extract the necessary information and the relevant model set-

tings we use. Just as in the 2-D example (albeit with significantly more complexity in

3-D), we build the matrix A and vector f to solve

Ah = f .

3.3 Approximating the Hydraulic Conductivities

We represent the conductivity field as a piecewise constant function. In our discussion

of the optimization process (§6) we investigate how this representation of the conductiv-

ities affects our solution. We let χi(x) be a characteristic function that indicates where

material i (and therefore hydraulic conductivity κi) appears in the domain and depict

the hydraulic conductivity in the domain as

κ(x) =
∑
i

κiχi(x) (3.9a)∑
i

χi(x) = 1 . (3.9b)

In both the 2-D and 3-D examples, we use finite elements to discretize the weak form

of the system of equations. Appendix A describes how the finite element method achieves

this task. In general, we multiply the flow equation by a test function v, integrate, and,

using Green’s identity, reach the weak form of the flow equation:∫
Ω

κ(x)∇h(x)∇v(x)dx =

∫
Ω

f(x)v(x)dx . (3.10)

13

The discretized form of (3.10) is represented as a linear system

Ah = f .

The isotropic, piecewise constant conductivity function allows us to separate the single

operator A, f into an operator on each material, seen by substituting (3.9) into (3.10):

∑
i

∫
Ω

χi(x)κi∇h(x)∇v(x)dx =

∫
Ω

f(x)v(x)dx . (3.11)

We let

Ai =
∫

Ω
χi(x)∇h(x)∇v(x)dx (3.12)

Dirichlet boundary conditions are implemented by directly changing the stiffness matrix

A. Those changes are contained in A0. In Appendix C, we describe the construction of

each sub vector f i. So, our matrix and vector can be described:

A = A0 +
∑
i

Aiκi (3.13a)

f = f 0 +
∑
i

f iκi. (3.13b)

3.4 Comparison to Data

The purpose of the methods described in later chapters of this document is to find a

set of hydraulic conductivities that best fit provided hydraulic head data. The residual

vector R contains the difference between the model approximation of hydraulic head h

given hydraulic conductivity κ and data d for M points is

R(κ)i = hi − di, i = 1, ...,M. (3.14)

Our methods will minimize the least-squares error:

1

2
min||R(κ)||22 =

1

2
min

(
R(κ)TR(κ)

)
. (3.15)

14

Chapter 4

Total Flux Boundary Condition

In this chapter, we discuss the formulation, construction, and solution of the “Total Flux”

boundary used in 3.7c. The experimental data that we wish to compare to consists of a

set of heads over a heterogeneous domain in which a known quantity of fluid flows across

one boundary and a Dirichlet condition is maintained at the opposite face with no flow

conditions on the other four boundaries. The ideas are similar in two dimensions with

two no flow boundaries. The flux boundary is specified in integral form as the total flux

over the face, or edge in two dimensions, of the domain. An additional constraint is that

the head is constant, but unknown, across the flux boundary.

Because this flux boundary condition is not known everywhere on the domain as

with typical second-kind boundary conditions, it is necessary to derive the appropri-

ate boundary conditions in a non-standard manner. Conceptually, we seek a constant

Dirichlet boundary condition such that the specified integral flux condition is met. The

linearity of the problem makes this a straightforward calculation.

4.1 Problem Statement

4.1.1 Formulation

We develop a strategy to solve the BVP in a domain that has mixed boundary conditions.

We consider

∇ · (κ(x)∇h(x)) = f(x), (4.1)

15

where x is considered in the domain Ω with boundary ∂Ω. The boundary has a mix of

three non overlapping boundary conditions, Dirichlet (D), Neumann (N), and Flux (Q).

So

x ∈ Ω ⊂ R3, (4.2)

h ∈ RN , (4.3)

∂Ω = ΓD ∪ ΓN ∪ ΓQ, (4.4)

ΓD ∩ ΓN ∩ ΓQ = Ø. (4.5)

In general, there may be several boundary conditions of each type

ΓD = Γd1 ∪ ... ∪ ΓdNd , (4.6a)

ΓN = Γn1 ∪ ... ∪ ΓnNn , (4.6b)

ΓQ = Γq1 ∪ ... ∪ ΓqNq . (4.6c)

Each type of boundary condition will be represented as shown below:

Γdi ⇒ h(x) = αdi , x ∈ Γdi , (4.7a)

Γni ⇒
∂h(x)
∂n

= βni , x ∈ Γni , (4.7b)

Γqi ⇒
∫

Γqi
(κ(x)∇h(x)) · n dS = φqi , x ∈ Γqi . (4.7c)

The solution to (4.1) is given by

h = hDN +
∑
Nq

γihqi ∈ RN , (4.8)

where hDN and hqi are solutions to (4.1) with boundary conditions modified as follows:

• To solve for hDN , we leave ΓD and ΓN as defined in (4.6), (4.7), but force h = 0

16

on ΓQ:

∇ · (κ(x)∇h(x)) = f(x)

Γdi ⇒ h(x) = αdi , x ∈ Γdi ,

Γni ⇒
∂h(x)
∂n

= βni , x ∈ Γni ,

Γqi ⇒ h(x) = 0

• To compute hqi , we set h = 0 on ΓD,
∂h

∂n
= 0 on ΓN , and h = 1 on ΓQ:

∇ · (κ(x)∇h(x)) = f(x)

Γdi ⇒ h(x) = 0,

Γni ⇒
∂h(x)
∂n

= 0,

Γqi ⇒ h(x) = 1

We fix γi to satisfy the flux boundary condition on each relevant boundary. The flux

through each boundary Γqj is given by

∫
Γqj

(κ(x)∇hDN(x)) · n dS +

Nq∑
i=1

γi

∫
Γqj

(κ(x)∇hqi(x)) · n dS = φqj , j = 1...Nq, (4.9)

and these Nq equations provide the relationship for γi.

4.1.2 Boundary Value Map

The following discusses how we compute the flux for the boundary condition in (4.7c).

For sake of clarity, the examples will be done in 1-D but can be expanded to 2-D and

3-D domains.

To calculate the boundary flux terms

(∫
Γqj

κ(x)∇h∗(x) dS

)
, we turn to the deriva-

tion in [4]. For all points x ∈ [0, `], we represent the flux at that point with

σ(x) = −κ(x)
dh(x)

dx
. (4.10)

In the absence of change in mass due to reactions and phase changes, flux must be

17

conserved through the boundaries. That is, all mass passes through a boundary or is

accounted for by an internal source of flux g(x). Over a 1-D domain x ∈ [0, `], the

conservation of flux demands

σ(`) + σ(0) =

∫ `

0

g(x) dx. (4.11)

At the boundaries of the domain, we denote the flux σ0, σ`. If we take any arbitrarily

small slice of the domain x ∈ [0, a], flux is conserved on that segment if

σ(a) + σ0 =

∫ a

0

g(x) dx.

As we take a → 0, we can see that σ(0) = σ0. Similarly, we can show σ(`) = σ`, where

σ` is the prescribed flux through the right hand boundary. Thus,

σ` + σ0 =

∫ `

0

g(x) dx.

Construction of Map

We construct a method that will explicitly compute the flux σ0, σ` through each Dirichlet

boundary using information constructed by the full model simulator. This can be done

with the information normally discarded in the finite element formulation of the load

matrix.

For the sake of clarity, we return to a simple 1-D domain and use linear shape functions

u. Each element e is bounded by two nodes and, locally, we can represent the equations

as

ae11u
e
1 + ae12u

e
2 = f e1 + σ(se1),

ae21u
e
1 + ae22u

e
2 = f e2 − σ(se2),

where σ(sei) is the flux at node sei and aeij are the contributions from element e to the

(local) matrix at location i, j. Extending this investigation to two adjacent nodes, one of

which is on the boundary x = 0, we see the following system of equations develop

18


a1

11u1 + a1
12u2 = f 1

1 + σ(0)

a1
21u1 + (a1

22 + a2
11)u2 + a2

12u3 = f 1
2 + f 2

1 − σ(x−1) + σ(x+
1)

a2
21u2 + a2

22u3 = f 2
2 − σ(x−2)


We represent the jump in flux at each node with [[σ(xi)]] = f̂i, where f̂i is zero except

in the case of a prescribed source. We see that the vector contains all of the boundary

flux information, as well as any interior sources.

For Dirichlet nodes, the information in the matrix is replaced by a one on the diagonal

and zero elsewhere in the corresponding row. Similarly, the vector entry that corresponds

to a Dirichlet node is replaced with the prescribed Dirichlet boundary value. This dis-

carded information provides the necessary equations to ascertain the flux through a given

boundary.

For example, in the 1-D case, the entries in the matrix and vector for a Dirichlet node

would be

A11u1 + A12u2 = F1 + σ(0), (4.12a)

AN,N1uN−1 + ANNuN = FN − σ(`). (4.12b)

We store this information separately. After we have solved the system of equations to

yield u1, u2, uN−1, uN , we return to (4.12) to obtain σ(0), σ(`). We note (4.12) can be

extended to the 2-D and 3-D cases by maintaining the corresponding matrix / vector

structure and equations for the boundary nodes.

Once we have solved for each of the sub-solutions in (4.8), the flux value on any

boundary Γqj is given by(∫
Γqj

κ(x)∇h∗(x) dS

)
=
∑

σh∗(xk), xk ∈ Γqj , (4.13)

where σh∗(xk) represents the flux at xk calculated from solution hqi .

19

Chapter 5

Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is one way to construct a reduced order model.

The purpose of such models is to replace an expensive simulation within an optimization

loop with a surrogate that is inexpensive to evaluate but still accurate enough to improve

the fit to data. A typical approach [11] is to perform an optimization based on the

surrogate and then evaluate the expensive simulation one or more times, both to decide

whether or not to terminate the optimization and to update the surrogate for the next

pass through the optimization loop.

5.1 POD Background

POD is a classical approach with roots in the control of fluids [50, 60, 63, 41]. POD has

been developed using several different techniques. The earliest development of POD was

under the name “Principal Component Analysis” (PCA) by Karl Pearson in 1901[74].

Using a different technique, Kari Karhunen and Michel Loéve developed the Karhunen-

Loéve Decomposition (KLD) in 1955 [61]. Another method of performing POD is through

use of the Singular Value Decomposition (SVD). The SVD was first introduced in 1873

and 1874 by Eugenio Beltrami [6, 10] and Camille Jordan [48, 49]. An excellent review

of the early history of the SVD is given by [82]. The current method of calculating the

SVD was presented by Gene Golub and William Kahan [39]. The three techniques for

deriving the POD are shown to be equivalent in [59].

There has been other work using POD in hydrology. In [86] the authors build a

two-dimensional POD model based on a time-dependent finite-difference simulator, and,

20

assuming knowledge of the conductivity tensor, use that model as a predictive tool.

One can also use the POD projection to construct useful preconditioners [64]. Control

applications have been reported in [85, 14, 63, 62, 3, 57]. POD has frequently been used

as a reduced order model in turbulent flows [18, 7].

POD is a surrogate for the simulator that uses the simulator’s own discretizations

and physics models. The advantages of POD over approaches that model the objective

function φ

φ(κ) =
1

2
‖R(κ)‖2, (5.1)

such as neural networks or interpolatory models [76, 20, 78, 43], is that POD directly

uses the finite element discretization in hand and can exploit the least-squares structure

via simple projections. The disadvantage is that, as with the sensitivity equations ap-

proach to computing the Jacobian, one must modify the finite element code to extract

information. We have done that with the ADH simulator.

5.2 Classic Proper Orthogonal Decomposition

In the applications of POD listed above, one begins with a set of snapshots. Snapshots

are solutions of the PDE corresponding to an array of parameter values and evaluated

at various times of the solution evolution [13]. There is currently no rigorous method

for constructing the set of snapshots [42]. However, it is very important that the full

solution can be well approximated in the span of the snapshot set [13]. If an aspect of

the true solution is not contained in the snapshot set, it cannot be approximated by the

POD model.

There will be much redundant information contained in the snapshot set. It is typical

to use the SVD [68, 27, 59] to reduce the basis and obtain a set of basis vectors that

contain most of the relevant information in the snapshot set. The following shows how

to approximate the error present in a truncated POD basis.

Error in POD Projection We start with the set of n snapshot vectors s i, i = 1...n

where each s i ∈ RN and form the matrix

S = [s1, ..., sn] ∈ RN×n.

21

The SVD of that matrix is

S = UΣVT ,

where Σ is a diagonal matrix with entries Σ = diag(σ1, ..., σn), σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.

U, the left hand singular matrix, is an orthogonal matrix with the same range as S. V

holds the right hand singular vectors.

The POD basis is formed from the d eigenvectors in U corresponding to the largest

d eigenvalues. To determine d, we note the following error approximation algorithm.

Let PUs i be the projection of the snapshot si onto the span of the POD basis from

U. The error of this approximation can be given by

εi = |si − PUsi|2 .

The total error for the approximations of each snapshot is given by the sum of the

discarded eigenvalues

ε =
n∑
i=1

εi =
n∑
i=1

|s i −PUs i|2 .

As shown in [42, 59, 56] and others, this error can also be represented

ε =
n∑

i=d+1

σ2
i .

Therefore, to find a basis with approximation error less than some prescribed error δ, we

must find the smallest d such that ∑d
i=1 σ

2
i∑n

i=1 σ
2
i

≥ 1− δ.

As shown in [42, 13, 17] and others, one normally chooses δ ≥ .9, signifying the reduced

basis is able to capture 90% of the physics contained in the snapshot set.

5.3 POD For Saturated Groundwater Models

We investigate saturated groundwater models at steady state, so there is no time progres-

sion in the simulation. Rather than run the full-model with several different parameters

to generate a snapshot set, we will use a single full-model solution and the sensitivity

22

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

Singular Value Index

S
in

g
u

la
r

V
a

lu
e

 (
L

o
g

)

Log Plot of Singular Values

Figure 5.1: Distribution of Singular Values

vectors of that solution to the parameters as a basis. We scale the basis by solving the

solution and sensitivities with log transfomed conductivities [15]. For our application, we

utilize the total flux boundary condition described in §4. As such, we will have at least

two sub-solutions and the sensitivities of those sub solutions in the basis.

To prune the size of our basis, we still utilize information provided by the SVD.

We do not analyze the projection error detailed in §5.2, but instead note there is a

natural gap in the magnitude of eigenvalues and discard those vectors corresponding

to eigenvalues smaller than 10−5. Figure 5.1 gives an example of the distribution of

magnitudes for singular values for the application in §7.2.2 after two iterations. This

distribution is typical of any moment in the optimization process. The implementation

of the SCALAPACK SVD is discussed in Appendix E.

23

5.3.1 The POD basis

The following will discuss the calculation of the 2N + 2 POD basis. We use the sub-

solutions of (4.8) and their sensitivities to the K material parameters (5.5) to form

B = span
(
hDN , {∂hDN/∂κk}Kk=1,hQ, {∂hQ/∂κk}Kk=1

)
. (5.2)

Unlike the use of POD for time-dependent problems, we need not create a basis by

applying a singular value decomposition to a sequence of “snapshots”. Instead, we apply

the singular value decomposition to this basis B and keep only those singular vectors

that correspond to singular values greater than 10−5. The orthonormal basis for the

significant singular vectors of B are stored in the columns of U.

Basis Expansion

As we perform the optimization algorithm described in §8, we do not discard the basis

information from one iteration to the next. Instead, the new vectors of (5.2) are added to

the previous basis and the entire system is orthogonalized. Vectors corresponding to small

singular vectors are discarded and the new, expanded basis is used in the optimization

routine.

By reusing the previous basis information, the reduced order model becomes more

accurate as we iterate and the basis becomes more robust. We note that additional basis

vectors increase the dimension of our reduced order model. Our parallel implementation

of the SVD (Appendix E) ensures that even for bases with ≈ 100 vectors, the reduced

order model is significantly faster than the full model.

Sensitivity Scaling

A basis consisting of solutions and sensitivities must be appropriately scaled, otherwise, a

singular value decomposition will arbitrarily return small singular values [15]. Our calcu-

lation of the sensitivities is scaled by solving against the log-transformed conductivities.

That is,

κk = epk ,

∂κk
∂pk

= epk ,

24

and our basis (5.2) is

B = span
(
hDN , {∂hDN/∂pk}Kk=1,hQ, {∂hQ/∂pk}Kk=1

)
. (5.3)

We note the vector norm for the log-transformed sensitivities are within an order of

magnitude of one another. Also, each sensitivity vector is within two orders of magnitude

of the solution vector. Due to the relative similarity in norm, we are assured the SVD

will not discard information from poor scaling.

5.3.2 Sensitivity Calculation

We are able to compute the sensitivity of the solution to the K material parameters

without significant additional computational effort. We recall the solution to our BVP

is given by (4.8) and shown again here:

h = hDN +

Nq∑
i=1

γihqi ∈ RN , (5.4)

We differentiate with respect to the log-transformed parameters pk to see the sensitivities

are

∂h

∂pk
=
∂hDN
∂κk

∂κk
∂pk

+

Nq∑
i=1

(
γi
∂hqi
∂κk

∂κk
∂pk

+
∂γi
∂κk

∂κk
∂pk

hqi

)
, (5.5)

or

∂h

∂pk
= epk · ∂hDN

∂κk
+

Nq∑
i=1

(
γie

pk · ∂hqi
∂κk

+ epk · ∂γi
∂κk

hqi

)
. (5.6)

Flux Coefficient Sensitivities

To compute
∂γj
∂κk

, we analyze the response each of the Nq equations that satisfy the flux

boundary condition (4.9) (shown again here) against the K material properties κk:

∫
Γqj

(κ(x)∇hDN(x)) · n dS +

Nq∑
i=1

γi

∫
Γqj

(κ(x)∇hqi(x)) · n dS = φqj , j = 1...Nq, (5.7)

25

to yield (5.8). Recall from §2 that we use zonation to represent the material conductivity

field. Thus,

κ(x) =
∑

k κkχk(x)

∂κ(x)

∂κk
= χk(x)

Also, the flux through the boundary is set as a boundary condition and does not respond

to perturbations in the material parameters:

∂φqj
∂κk

≡ 0.

Finally, we note the flux map in §4 can be applied to any vector in the solution space.

That is, we can apply our technique to∫
Γqj

(κ(x)∇h∗(x)) · n dS

as well as to ∫
Γqj

(
κ(x)∇∂h∗(x)

∂κk

)
· n dS.

The system of equations that must be solved for
∂γj
∂pk

is given by:

∂
∂pk

(∫
Γqj

(κ(x)∇hDN(x)) · n dS
)

+
∑Nq

i=1

(
γi

∂
∂pk

(∫
Γqj

(κ(x)∇hqi(x)) · n dS
)

+ ∂γ
∂pk

(∫
Γqj

(κ(x)∇hqi(x)) · n dS
))

= 0,

for j = 1...Nq.

We solve this system for
∂γj
∂pk

for each j = 1...Nq. It is noted that Nq is very small and

solving for these coefficient sensitivities does not significantly affect the time to solution

of the method.

26

Solution Sensitivities

We compute
∂h∗
∂pk

analytically (where h∗ represents both hDN and all solutions hqj). We

do this by exploiting zonation and the linearity of the problem. We note that all work

done to precondition and factor the matrix in the original solve need not be redone for

the sensitivity computation. We reuse the same matrix factorization, thus adding very

little computational effort to the process.

The finite element discretization of (4.1) for any of the boundary conditions in (4.7)

will yield

Ah∗ = f ∗. (5.8)

We note the structure and values in A(κ) are not changed, regardless of the values on the

boundary. We are not manipulating the structure of the problem when we solve h∗, only

the value of the boundary conditions. The boundary condition information is contained

in f ∗. Appendix C describes the derivation of the terms in (5.8) and how the boundary

information affects f ∗.

As previously described, we can represent the matrix A and each vector f ∗ as a linear

combination of sub matrices and vectors:

A = A0 +
∑

k Akκk (5.9a)

f ∗(κ) = f ∗0 +
∑

k f kκk. (5.9b)

Again, we note that the information for the boundaries is contained in f ∗0, each f k

is constant. A0 contains the information for the Dirichlet nodes and contains only the

entries 1 and 0 on the diagonal, depending on whether the corresponding node is con-

strained by a Dirichlet boundary condition. Similarly, the entries in f ∗0 hold the values

at those nodes.

We calculate the sensitivity of each solution h∗ to the parameters κk by differentiating

(5.8) and substituting the information from (5.9).

A
∂h∗
∂κk

= f k −Akh∗. (5.10)

It is important to note that (5.10) can be readily solved as A has not been changed. The

work done in assembly and factorization to solve (5.8) is not repeated in the multiple

solves required in (5.10).

27

5.3.3 POD Reduced Model

With coefficient and sub-solution sensitivities, we form the POD basis B. We orthogo-

nalize the basis with an SVD and keep only those d vectors corresponding to singular

values of magnitude greater than 10−5. Those orthogonal vectors are stored as the new

basis U ∈ RN×d. We let W ∈ RN×d be an orthonormal basis for AU . The reduced order

model for each sub-solution is

WTA0U u ` +
∑
i

κiWTAiU u ` =WT f
{`}
0 +

∑
i

κiWT f i, ` = DN, qi

or

WTAUu ` =WT f {`}, (5.11)

where

WTAU ∈ Rd×d,

WT f {`} ∈ Rd,

and the sub-matrices Ai are calculated as previously discussed. We note d << N and

the effort to solve this d × d system is significantly less than required to solve the full

model.

The reduced model solution for hydraulic head is compared to data via

h ` = Uu `, ` = DN, qi

and

h = U

(
uDN +

Nq∑
i

γiuqi

)
. (5.12)

The residual that we will minimize is our approximation of hydraulic head h against the

M data points di

R(κ)i = h(κ)i − di, i = 1, ...,M, h ∈ RN . (5.13)

28

Chapter 6

Parameter Estimation

6.1 Inverse Problems in Hydrogeology

We will approximate the material parameters by applying a Levenberg Marquardt op-

timization code to a reduced order model generated through Proper Orthogonal De-

composition. Ours is not the only approach to solve nor model the inverse problem

for groundwater problems. The survey of [67] categorizes methods by how the authors

parameterize the domain, how they model the forward problem, and which optimiza-

tion scheme is used to fit the parameters. Their conclusion is that the various inverse

methods — including those similar to our approach — all have merit but some are more

appropriate than others for a sample problem. They conclude a blocked approach to

parameterization such as ours is convenient for domains in which the boundaries are

distinct. In the following, we survey other approaches to construction and optimization

of the minimization problem.

6.1.1 Approximating the Hydraulic Conductivities

It is challenging to accurately model hydraulic conductivity in a domain, even for satu-

rated, single phase, steady examples [16]. Rather than attempt to construct a fine-scale

conductivity field, one approach is to generate an effective “block conductivity” through

upscaling [80, 47] or a stochastic approach [79]. The block homogeneity is often sufficient

to characterize general hydraulic properties such as flow or transport in a large domain.

We must ensure the blocks are significantly smaller than the entire domain else the model

29

will not faithfully represent flux. The authors in [5] recommend blocks at least one tenth

the size of the full domain.

Alternatively, one could parameterize the model with many small homogenous zones.

If more zones than data points are used, the system is under-determined and no unique

solution will exist. One can employ a regularization technique to move toward conver-

gence to a unique solution. In [84], the authors apply both Tikhonov regularization

[83, 87] and a singular value decomposition to approximate the material properties in an

under-determined system. In [71], an analysis of cost of these regularization schemes is

performed.

Both of the previous approaches create or assume some zones of uniform conductivity.

In [30] the authors describe the construction and limitations of the “zonation” approach.

They note that pilot points allow the modeler to avoid constructing the zones independent

of the optimization process. Instead, as part of the parameter estimation process the

location of the materials changes. In [55], the authors seek to discern which not only

best fit of parameters, but also how many parameters to optimize. They provide an

algorithm by which the complexity of the model is considered along with the fit to data

of the end result.

Our depiction of the conductivity field is in the form of a small number of homogenous

material zones. While we do not adjust the zone locations in the course of our optimiza-

tion nor do we adjust the number of zones present, our method could be included during

the parameter fitting phase of both of those techniques.

6.1.2 Optimization Methods

We construct a reduced order model with Proper Orthogonal Decomposition, then use

a Levenberg-Marquardt [58, 65, 72, 28, 52] (LM) code PEST [31] to optimize parameters

in that model. As noted in [45] and others, LM is widely used, but requires a large

number of function calls to be effective. They use the adjoint state method to compute

the derivatives of the objective function. Their approach allows them to compute the

jacobian matrix for an LM method at a cost independent of the number of parameters.

The construction of our reduced order model allows us to compute an analytic jacobian

with very little computational effort. As noted in [91], the computation and accuracy of

the jacobian vectors drive the success of the inverse problem.

Our method minimizes an objective function in order to calibrate parameters. Others

30

have approached the problem with stochastically and sample posterior distributions of pa-

rameters [40, 90]. Markov chain Monte Carlo (McMC) methods are a popular stochastic

approach to the optimization method [36]. McMC methods determine the next iteration

based on a random step from the current iterate. Stochastic approaches demand signif-

icantly more function evaluations than inverse modeling and [45] shows the final results

are often similar. Ensemble Kalman Filtering [35] has been suggested to improve the

sampling of Monte Carlo methods in groundwater optimization. When analyzing results

of Monte Carlo approximations, one must take care the optimization has converged to a

solution [2].

We use a Levenberg-Marquadt optimizer in our parameter estimation. Our discretiza-

tion permits us to compute analytic sensitivity vectors and we are thus able to take

advantage of gradient based methods without having to compute numerical approxima-

tions of the jacobian matrix. However, many use derivative-free techniques to explore

the parameter space. [34] compares derivative-free optimization techniques including ge-

netic algorithms (GA) [26] and stencil based methods such as implicit filtering [37]. [73]

benchmarks several derivative-free options with a variety of convergence tolerances for

noisy problems. Our construction of the gradient does not require additional full func-

tion evaluations and we will sample the full model significantly fewer times than these

derivative free options.

6.2 Levenberg-Marquardt

We minimize the error in model output versus gathered data (5.13) with PEST [31], a

nonlinear least squares solver that utilizes the Levenberg-Marquardt method.

The Levenberg-Marquardt method [58, 65, 72, 28, 52] is a standard iterative method

for nonlinear least squares problems. In the context of our applications, the iteration is

~κ+ = ~κc −
(
νI +R′(~κc)TR′(~κc)

)−1R′(~κc)TR(~κc), (6.1)

where ~κc is the current point, ~κ+ the next iteration, I is the identity matrix, R is the

error in model output against collected data, R′ is the response of that error to parameter

perturbation (derived in (6.3)) and ν is a parameter that is adjusted as the iteration

progresses [28, 52, 31]. In the small residual case, the Levenberg-Marquardt iteration is

locally rapidly convergent. We have used the PEST [31] nonlinear least squares solver for

31

the computations in our applications, and it has performed well.

Recall the difference R between our model h with parameters κ and the data d at

M points is represented in (5.13):

R(κ)i = h(κ)i − di, i = 1, ...,M, h ∈ RN . (6.2)

If we differentiate (6.2) with respect to the log transformed parameters pi we obtain

∂Rj

∂pi
=
∂Rj

∂κi

∂κi
∂pi

= epi
∂h(x j)

∂pi
. (6.3)

Hence the columns of the Jacobian are the scaled sensitivities ∂h/∂pi evaluated at the M

sampling points {x j}. We show in §5 that these sensitivities can be computed without

significant additional computational effort.

6.3 Optimization Algorithm

6.3.1 Codes

1. Mat_FEM: A 2-D finite element model in Matlab. In the algorithm detailed below,

this code is substituted for ADH on the 2-D example. It is not used at all in the 3-D

examples.

2. ADH: This is the full, high-resolution 3-D finite element model. Given a set of

material parameters, ADH returns the hydraulic head for a discretized domain.

We have modified ADH to also compute the matrices and vectors needed to run the

reduced POD model. ADH also generates, reduces, and orthogonalizes the basis each

time it is run.

3. SCALAPACK: We use SCALAPACK to compute the SVD inside of ADH . Also, the dense

system solves inside of POD_ROM are computed with SCALAPACK routines.

4. POD_ROM: The reduced order model. This model can only estimate behavior on the

basis produced by the full resolution finite element models. Given a set of material

properties, POD_ROM will approximate the hydraulic head on the space spanned by

the basis.

32

The POD_ROM code must be initialized each time there is new information from ADH

available. As the basis grows, this step becomes increasingly cumbersome as it is

accomplished via file I/O. We use a semaphore system to eliminate the need to

do this step more than once per ADH run. The user (or PEST) saves the material

properties to a file, then flips the semaphore to trigger POD_ROM to access that file

and produce an output for those properties. This process eliminates the need to

continually read in static basis and matrix information during the optimization

process.

5. PEST: The Levenberg-Marquardt least squares optimization code. PEST queries the

model with a set of parameters, computes the model residual against the data,

and updates the parameters based on (6.1). We discuss termination criteria and

parameter settings for PEST in Appendix D.

33

6.3.2 Algorithm

initial

parameters

run full

model

full model

error

< TOL

stop

initialize

POD_ROM

PEST

chooses new

parameters

evaluate

POD_ROM

has PEST

converged

update

full model

parameters

yes

no

yes
no

Figure 6.1: Optimization Algorithm for Full Model - Reduced Model - PEST Interaction

34

1.

initial

parameters
: The user must select the initial iterate. Our method has

been shown to work even for very poor initial iterates. There is a danger of the

Levenberg-Marquardt parameter estimation process finding a local minimum, but

in our results that has not been the case.

2.

run full

model
: We always run ADH or Mat_FEM first to generate the POD basis

and gather the finite element matrix information. When the PEST optimization

process has completed, we must rerun the full model to update the basis with the

new information.

3.

full model

error

< TOL

: We stop the parameter estimation process when the error

between the full model and the given data (R from (6.2)) has converged or is less

than some tolerance.

4.

initialize

POD_ROM
: We only need to read in the information from the full model once

for each PEST estimation loop. We use the same parallel partitioning in both ADH

and POD_ROM. This allows each processor to read in information simultaneously,

pseudo-parallelizing the I/O from the full model to the reduced model.

5.

PEST

chooses new

parameters
: Based on the residual from the output of POD_ROM, PEST selects

a new set of parameter values with the Levenberg-Marquardt algorithm.

35

6.

evaluate

POD_ROM
: We emphasize that PEST uses only the output from POD_ROM to

perform the optimization process. As such, a reduction in the POD_ROM residual

does not necessarily translate to a reduction in the residual from the full model. In

our results, the first solution from PEST often increases the residual from the full

model. When this new information is included in the POD basis, however, PEST

quickly converges to the correct solution.

7.

has PEST

converged

: We discuss in Appendix D exactly what termination criteria we

use in PEST. It is a mixture of iterations without sufficient improvement and absolute

tolerance on the residual. If PEST has not yet found a solution, the parameters are

updated and the reduced order model is again executed.

8.

update

full model

parameters
: Once the PEST algorithm has found a set of parameters, the full

model is run with the new conductivities. Only when the output from the full

model is within an acceptable tolerance of the data do we terminate the process.

Otherwise, the information from the full model is used to update the basis and we

reenter the PEST optimization loop.

The results [88] of this process are detailed in the following chapter.

36

Chapter 7

Results

7.1 2-D Results

Description of Problem

Our first implementation of POD on a groundwater system used a 2-D domain coded in

Matlab. We use a 2-D finite element code distributed by Gockenbach [38]. The domain

is a square kilometer partitioned into sixteen equal sized material zones. We placed two

pumping wells in the domain with a pumping rate set by the user. We implemented a

hydraulic gradient along the x-axis using dirichlet boundary conditions at the x = 0 and

x = 1km boundaries and no flow conditions in the y-direction at the y = 0 and y = 1km

boundaries. We constructed a data set using a specific conductivity field, then set about

attempting to recover that data from a homogeneous initial guess. The data was sampled

at M points, with those points being allocated to ensure each unique material zone would

contain a minimum of three data points. Additional data points were included near the

wells. An illustration of the domain with sampling points in shown in Figure 7.1.

37

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000
Location of Wells

x(m)

y(
m

)

Figure 7.1: 2-D Domain with Sensors

A sample data set is shown in Figure 7.2. In this solution, we can clearly see the

boundaries between the conductivity zones. Also, we can see drawdown surrounding the

two pumping wells. Drawdown is a phenomenon where the hydraulic pressure decreases

in the area immediately surrounding pumping wells.

38

0
200

400
600

800
1000

0

500

1000
400

500

600

700

800

900

1000

x(m)

Actual Solution

y(m)

Hy
dr

au
lic

 H
ea

d
(m

)

Figure 7.2: “Data” Solution with 4x4 Conductivity Grid

POD Solution

The purpose of the 2D investigation was as a “proof of concept” rather than a rigorous

trial of POD performance. To that end, our results are limited in scope as they were only

intended to demonstrate the potential of POD implementation on a saturated ground-

water problem. There are no timings associated with this domain nor was it run on the

HPC machines.

Our goal in this investigation is to recreate the synthetic data set from a homogeneous

initial iterate. We access the full-model simulation once with a homogeneous conductivity

field to create the POD basis. The homogeneous solution is shown in Figure 7.3. In this

solution, we can see the drawdown around the two wells distinctly and the hydraulic

gradient is nearly linear between the dirichlet boundary conditions. The gradient would

be completely linear if not for the influence of the wells.

39

0
200

400
600

800
1000

0

500

1000
400

500

600

700

800

900

1000

x(m)

Initial Solution

y(m)

Hy
dr

au
lic

 H
ea

d
(m

)

Figure 7.3: Initial Solution (Homogeneous Conductivity)

From this homogeneous solution, we extract the sensitivities
∂h

∂κi
as previously dis-

cussed and create the POD basis U =

[
h,
∂h

∂κi

]
. The wells negate any need for the total

flux boundary condition previously discussed. We project the dynamics of the full solu-

tion onto that basis and feed the reduced order problem to our least squares algorithm.

For these problems, we tested both a Gauss-Newton (GN) and Levenberg-Marquardt

(LM) code. We see the success of GN in Figure 7.4 and LM in Figure 7.5. In both cases,

the final solution is visually indistinguishable from the data solution as shown in Figure

7.6.

40

0 2 4 6 8 10 12 14 16 18
10−25

10−20

10−15

10−10

10−5

100

Iterations

Se
m

ilo
g

Gauss Newton Convergence

||! f(x)||
f(x)

Figure 7.4: Gauss-Newton Convergence from Homogeneous Initial Iterate

41

0 50 100 150 200 250 300 350
10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

Se
m

ilo
g

Levenberg−Marquardt Convergence

||! f(x)||
f(x)

Figure 7.5: Levenberg-Marquardt Iteration History

42

0
200

400
600

800
1000

0

500

1000
400

500

600

700

800

900

1000

x(m)

Lev−Mar Solution

y(m)

H
yd

ra
ul

ic
 H

ea
d

(m
)

Figure 7.6: Levenberg-Marquardt Solution

Upon examining the iteration histories, we notice the LM code takes significantly more

calls to the reduced function than GN. We are not concerned about this, however, as the

reduced model function calls are so inexpensive it is a small computational investment

to compute even several hundred iterations. What is significant is that both methods,

GN and LM, were able to successfully reduce the error between the approximated model

and the “data” solution to near zero.

From these results, we felt confident POD could be applied to more complex, 3-D

domains. The following section demonstrates how POD has performed with such models.

7.2 3-D Results

7.2.1 Synthetic Column

Our first application of POD with ADH is a ten meter high column containing three

separate materials. The materials are distributed unevenly throughout the column with

the third material (κ3) only located as a “lens” near the bottom of the column. The

43

location of the three materials in the column is shown in Figure 7.7. The column is

discretized with a finite element mesh with 5,881 nodes and 30,720 tetrahedral elements.

We create a hydraulic gradient with a Dirichlet condition at the bottom of the column

and a flux at the top of the column. The vertical sides of the column have no-flow

Neumann boundary conditions. These boundary conditions represent a thin column

where hydraulic head is driven by gravity and an influx from the top. We are careful to

ensure the flux through the boundary does not cause the column to become unsaturated.

Figure 7.7: Composition of Column

We synthesize the data by assigning conductivities and using ADH to create a solution.

The data set is created with conductivities

~κ = [1.1808e−1, 1.1808e−3, 1.1808e−5](m/s).

The third material (κ3 = 1.1808e−5) forms a “lens” and effectively controls the rate at

which the column drains. The steady-state solution to this column is shown in Figure 7.8.

From this solution, we sample the data at M = 18 points, located randomly throughout

44

the column as shown in Figure 7.9.

Figure 7.8: Hydraulic Head of Column

45

Figure 7.9: Location of Sensors

Our initial iterate is a homogeneous column, with ~κ = [1e−2, 1e−2, 1e−2]. Other

initial guesses were chosen with no significant change in the behavior of the optimization

process. The error between this iterate and the data is labelled as “Initial Residual”

in Table 7.1. From this iterate, we generate the initial POD basis and start the Levenberg-

Marquardt optimization process.

We must re-initialize the basis several times during the optimization process. That is,

once the parameter estimation software returns a result using the reduced POD model,

we re-run the full model using the optimized parameters and generate a new POD basis.

46

This increases the computational cost of POD as each full model access is expensive. Our

goal is to recover the data solution using fewer full-model calls than would be required if

the optimizer did not use the POD basis. When we display our results, we will show how

many times the POD basis had to be reinitialized – the number of full-model calls – as

well as how many times the optimizer used the reduced POD model. It should be noted

that the POD model has a negligible contribution to computational effort in comparison

to the cost of a full-model solve.

After we successfully recovered the solution for this synthetic column with zero-

residual data, we increased the complexity of the problem by adding random “noise”

to the data. We perturbed the data by a relative norm of 1%, 5%, and 10%. As shown in

Table 7.1, PEST reduced the objective function to a norm of similar magnitude when it

queried only the POD model and when it used the full model. However, the optimization

process with the POD model required significantly fewer full-model calls to obtain that

solution. We see in Table 7.2 that the optimization process was able to recover the exact

parameters when fed accurate data. With very noisy data, we see that PEST with both

the reduced model and the full model was only able to recover two to three digits of the

parameters. We also see in these results the clay “lens” (κ3) dominates the behavior of

the column and is most accurately recovered with respect to the other parameters even

with noisy data.

Table 7.1: Analysis for Column

Noise Model
Full POD Initial Final Time

Calls Calls Residual Residual (s)

0%
POD 9 249

3.47E+02
6.00E-08 28

Full 170 - 4.37E-10 286

1%
POD 7 268

3.49E+02
1.54E-02 31

Full 186 - 1.54E-02 352

5%
POD 4 153

3.48E+02
4.24E-01 15

Full 152 - 4.22E-01 289

10%
POD 6 187

3.61E+02
2.02 15

Full 178 - 2.03 337

47

Table 7.2: Relative Log-Transformed Parameter Error for Column

Noise Model
Relative Log-Parameter Error |ln(κi)−ln(κest)|

|ln(κi)|

κ1 κ2 κ3

0%
POD 2.37E-04 4.60E-07 2.93E-06

Full 2.46E-04 2.51E-07 3.73E-07

1%
POD 1.00E+00 8.61E-03 6.40E-04

Full 1.00E+00 8.61E-03 6.41E-04

5%
POD 1.00E+00 5.55E-02 1.62E-04

Full 9.78E-01 5.43E-02 7.80E-05

10%
POD 2.40E-01 5.67E-02 5.93E-04

Full 1.08E+00 3.32E-02 1.08E-03

Actual ln(κi): -2.14E+00 -6.74E+00 -1.13E+01

Figure 7.10 shows the performance of the optimizer when used in conjunction with just

the full model and with both the full model and the POD model. The x−axis is iterations

of the full model only, as the reduced model calls are computationally inexpensive in

comparison. We note these results use UMFPACK to perform an exact matrix inverse

for all solves. This is contrasted against the examples in Chapter 8 that approximate a

solution using an iterative solver.

48

0 20 40 60 80 100 120 140 160 180

10
−10

10
−5

10
0

10
5

10
10

Iterations

L
o

g
−

R
e

s
id

u
a

l

Convergence for Column, 0% Noise

Full
POD

Figure 7.10: Convergence of Optimizer for 0% noise

The solutions from the POD approximation are visually indistinguishable from the

generated data as shown in Figure 7.11.

(a) True Solution (b) Full Model Solution (c) POD Model Solution

Figure 7.11: Solutions of Column

49

The solution against noisy data shown in Figure 7.12 is very similar in behavior to

the zero-residual case. We notice the scale of the solution has changed from the non-

perturbed case.

(a) True Solution (b) Full Model, 10% Noise (c) POD Model, 10%

Noise

Figure 7.12: Solutions of Column With 10% Randomized Data

50

7.2.2 Laboratory Scale Synthetic Aquifer

Our second application is a tank packed with five materials by Tissa H. Illangasekare and

his team at the Colorado School of Mines (CSM) [81]. The container, pictured in Figure

7.13, is 208cm x 117cm x 57cm and divided into Cartesian blocks with 28,290 cells of

material. To fill the tank, a mesh was placed at each level and each hole was filled with

material. The mesh was then removed leaving a precisely packed domain. We can see

the packing method in Figure 7.14 and the allocation of materials in Figure 7.15.

Figure 7.13: Colorado School of Mines Tank

51

Figure 7.14: Packing Method

Flow through the domain was generated with Dirichlet boundaries on the two “short”

sides of the tank. Figure 7.13 shows the gap on the near edge where the water height is

maintained.

To model this tank, we created a mesh with 59,538 nodes and 339,480 tetrahedral

elements and assigned material ids to each element according to the packing information.

52

Figure 7.15: Allocation of Materials

Figure 7.16: Location of Sensors in Tank

The team at CSM measured the pressure at 98 points throughout the domain. Those

53

sample points are shown in Figure 7.16. Our comparison against their measurements is

labelled “Data” in Tables 7.3 - 7.4. We also synthesized data from the virtual represen-

tation of the tank to generate a zero residual problem. That zero residual solution was

perturbed by 1%, 5%, and 10% in order to test convergence with noisy data.

We see in Table 7.3 that PEST was able to recover a similar solution with both the

reduced model and the full model. When it used the POD model, the number of full

model calls was reduced by two orders of magnitude and the time to solution was reduced

by an order of magnitude. As the noise was increased in the problem, the quality of fit

deteriorated significantly. However, the reduced model provided a fit no worse in norm

or parameter fit than the fit found with the full model. Table 7.4 shows the parameter

fit was similar when the optimizer used either the reduced or full model for all noise

levels. For this example, unlike the column, there is no single material that dominates

the behavior of the domain. Figure 7.17 shows the optimizer behaves similarly for the

tank as it did for the column.

Table 7.3: Results for CSM Tank with Direct Solver

Noise Model
Full POD Initial Final Time

Calls Calls Residual Residual (s)

0%
POD 7 230

3.73E+03
1.34E-09 5.52E+03

Full 121 - 2.26E-05 7.92E+04

1%
POD 3 80

3.74E+03
9.63 2.20E+03

Full 98 - 9.63 6.48E+04

5%
POD 3 69

4.29E+03
2.55E+02 2.21E+03

Full 179 - 2.50E+02 1.18E+05

10%
POD 3 49

4.62E+03
1.16E+03 1.42E+03

Full 103 - 1.14E+03 6.95E+04

Data
POD 4 103

3.63E+03
2.67E-02 2.92E+03

Full 145 - 2.67E-02 9.28E+04

54

0 20 40 60 80 100 120
10

−10

10
−5

10
0

10
5

Iterations

L
o

g
−

R
e

s
id

u
a

l

Convergence for Tank, 0% Noise

Full
POD

Figure 7.17: Convergence of Optimizer for 0% noise on CSM Tank

55

Table 7.4: Relative Log-Transformed Parameter Error for Tank

Noise Model
Relative Log-Parameter Error |ln(κi)−ln(κest)|

|ln(κi)|

κ1 κ2 κ3 κ4 κ5

0%
POD 3.55E-06 7.47E-05 1.63E-06 6.27E-05 3.90E-04

Full 5.97E-04 6.27E-04 3.20E-03 1.67E-03 7.16E-03

1%
POD 6.38E-02 4.64E-01 3.08E-01 2.23E-01 4.42E+00

Full 6.05E-02 4.37E-01 2.94E-01 1.80E-01 5.11E+00

5%
POD 2.99E-01 6.72E-01 1.35E+00 7.97E-01 9.98E-01

Full 7.12E-01 2.38E+00 3.75E+00 8.54E-01 1.00E+00

10%
POD 2.99E-01 2.36E-01 2.50E-01 6.76E-01 1.16E+01

Full 1.32E+00 4.97E-03 5.75E-01 3.51E+00 1.43E+01

Data
POD 4.57E-01 5.06E-01 1.14E-01 8.50E-01 6.15E+00

Full 4.57E-01 5.06E-01 1.14E-01 8.50E-01 6.18E+00

Actual ln(κi): -5.01E+00 -3.89E+00 -2.76E+00 -1.64E+00 -5.16E-01

The following figures illustrate the hydraulic head profiles for the tank. Figure 7.18

shows the solution when the exact parameters are used in the model. Figure 7.19 demon-

strates the results of the optimization when compared against that zero residual data.

We see that PEST is able to recover the solution with both the full and POD reduced

model. Figure 7.20 displays the solutions when the optimizer minimizes against the data

measured in the lab.

56

Figure 7.18: Exact Solution of Tank

(a) Full Model, 0% Noise (b) POD Model, 0% Noise

Figure 7.19: Solutions of Tank With 0% Noise

57

(a) Full Model, Measured Data (b) POD Model, Measured Data

Figure 7.20: Solutions of Tank With Measured Data

58

7.2.3 SPE10

Our final example is from the Society of Petroleum Engineers Tenth Comparative Solution

Project (SPE10) [19]. The model is specifically designed to test the limits of any methods

attempting to use a fine grid implementaton due to its size and complexity. The domain

is 1200 × 2200 × 170 feet and is split into 85 layers with five materials. Our mesh of

the domain has 1.1 million nodes and 4.5 million elements. As shown in Table 8.1, it

takes a desktop computer nearly 45 minutes for one full-model solve of SPE10. This in

comparison to 40 seconds for the tank and just under two seconds for the column. The

material allocation is shown in Figure 7.21.

Figure 7.21: Material Allocation for SPE10

The size of SPE10 forces us to use an iterative solver instead of a direct solver as we

did with the previous examples. The effects of an iterative solver are explored in §8. We

use a L2 norm tolerance of 1e− 6 to achieve the following results.

Table 7.5: Relative Log-Transformed Parameter Error for SPE10

Solver Accuracy Model
Relative Log-Parameter Error |ln(κi)−ln(κest)|

|ln(κi)|

κ1 κ2 κ3 κ4 κ5

1e-6
POD 3.07e-01 2.57e-03 1.20e-03 1.60e-03 7.62e-03

Full 3.61e-01 1.25e-03 1.40e-02 2.21e-02 1.08e-01

Actual ln(κi): -1.58e+01 -1.32e+01 -8.68e+00 -5.75e+00 -1.14e+00

59

We see this table is consistent with the results of previous investigations; PEST with

POD is able to achieve similar fits to parameters as PEST with the full ADH model. We

see in Table 8.36 that the number of full model calls have been decreased by an order of

magnitude and the time to solution has been cut in half if PEST queries the POD model.

However, the final residual and parameter error are similar.

Table 7.6: SPE10 Results for 1e− 6 Solver Tolerance

POD Full

Time (s) 2.51e+04 5.26e+04

Final Residual 9.49e-04 9.31e-05

Parameter Error 2.10e-01 2.47e-01

ADH Calls 13 187

POD Calls 340 -

As in previous results, the solutions from PEST with POD and PEST with ADH are

nearly indistinguishable visually. Figure 7.22 displays the “true solution” of SPE10,

generated with the correct conductivity values. Figure 7.23 shows the POD solution and

the ADH solution. Due to the extreme size of SPE10, we used a different visualization

software to display the results. The column and tank results are displayed with GMS [1]

and SPE10 is visualized with ParaView [44].

Figure 7.22: Exact Solution of SPE10

60

(a) SPE10 Solution with ADH as Model (b) SPE10 Solution with POD as Model

Figure 7.23: SPE10 Solutions

61

Chapter 8

Inexact Levenberg Marquardt with

Reduced Order Models

8.1 Solving the Linear System

In this chapter, we examine how inaccuracy in the computation of the sensitivity vectors

(5.10) and the solution itself (5.8) affects the performance of the optimization process.

In our first two 3-D examples (7.2.1, 7.2.2), we are able to use a direct solver to solve the

linear system by computing the matrix inverse. ADH uses UMFPACK [22, 23, 24, 25] as its

sparse direct solver. However, as shown in Table 8.1, the time and memory investment

for larger problems can make UMFPACK prohibitive to use.

Table 8.1: Time (sec) for each ADH solution (serial)

Example Iterative Solver Direct Solver
column 1.98e+00 1.90e+00

tank 3.88e+01 4.64e+02
spe10 2.59e+03 –

62

8.1.1 Iterative Linear Methods

Instead of directly computing the matrix factorization, we can approximate a solution to

Ax = b with an iterative process. There are several methods available, but within ADH,

we use the Bi-conjugate gradient stabilized method (Bi-CGSTAB) [53] and precondition

the system with Jacobi’s method.

Jacobi splits the matrix A into

A = A1 + A2,

A1 = D,

A2 = L + U.

We precondition the system with the square root of the inverse diagonal D

D−1/2AD−1/2y = D−1/2b, (8.1)

where y = D1/2x . If any diagonal entry is less than a user-defined tolerance, it is replaced

by that tolerance to prevent division errors.

We solve this preconditioned system with Bi-CGSTAB. The algorithm in ADH is from

[53] and is copied below:

1. r = b −Ax , r̂ 0 = r̂ = r , ρ0 = α = ω = 1, v = p = 0, k = 0, ρ1 = r̂T0 r

2. Do While ||r ||2 > ε||b||2 and k < kmax

(a) k = k + 1

(b) β = (ρk/ρk−1)(α/ω)

(c) p = r + β(p− ωv)

(d) v = Ap

(e) α = ρk/(r̂
T
0 v)

(f) s = r − αv , t = As

(g) ω = tTs/||t ||22, ρk+1 = −ωr̂T0 t

(h) x = x + αp + ωs

(i) r = s − ωt

63

In our implementation, we allow Bi-CGSTAB a large number of linear iterations (≈
0.01 ∗ degrees of freedom) to reach the defined tolerance. If it has not converged at

that point, we accept the solution regardless of quality. It is important to note in the

following suite of results, the tolerance listed is the “best case” tolerance, but may not

always be achieved at all points in the process.

8.2 Modifications to Optimization Algorithm

We test how low accuracy solutions and sensitivities affect the optimization process.

With poor approximations to the solution, we expect the error between model output

and data to be large even for the correct parameters. For some low accuracy solves, an

improvement in the parameter set may not correlate with a reduction in error. Also, with

poor estimates for the sensitivities, we expect the optimizer to have difficulty resolving

the correct search direction. As shown in [21], we cannot expect Levenberg Marquardt

to reliably move in the correct direction when provided with poor approximations to the

jacobian calculations.

The low accuracy in the full model and sensitivities causes us to adjust the optimiza-

tion process described in Figure 6.1. The optimizer exhibits two behaviors against which

we guard with additional stopping criteria [29, 89]:

•

error

“jump”

: If a user-defined number of iterations have passed without any

reduction in the full model residual, we terminate the optimization process.

•

small

error

reduction

: If a user-defined number of iterations have passed without re-

ducing the full-model residual from one iteration to the next by a certain tolerance,

we terminate the process.

64

These two criteria are similar, but guard against two different behaviors. The first ensures

that, over a period of several iterations, the full model residual has decreased. That

is, if each residual at {xn,xn−1, ...,xn−(N−1)} is greater than the residual at xn−N , we

terminate the optimization process. The second criterion will terminate the process if N

iterations have passed without a reduction in residual between xn and xn−1.

It is important to note the Levenberg Marquardt process in the PEST optimizer only

reduces the error of the POD reduced model after each full ADH solve. PEST is unaware

of how each iteration’s error compares to the previous ADH error. For that reason, it is

not uncommon for PEST to find a set of parameters that decrease the error in the POD

model but are significantly worse in the ADH model. When a new basis is formed with

the poor parameters, the POD model residual includes an accurate portrayal of those

parameters. PEST is able to use the more accurate information to find a significantly

improved parameter set. As the POD basis expands over several iterations, this tendency

is reduced and the POD model becomes more accurate for all sets of parameters.

8.3 Inexact Levenberg Marquardt with Reduced Or-

der Models

We provide a tolerance for the solution (5.8) and the sensitivities (5.10) independent of

one another in order to gauge how each affects the behavior of the optimizer. We note

that the tolerance is not always achieved throughout the process, however. There are

times when the solver is not able to reach the prescribed tolerance; in those cases we

still accept the solution and continue the process. We know from [52] that the accuracy

of both the solution and gradient dictate the accuracy of the minimizer. As shown in

[54, 33], we expect our process to converge even with poor approximations to the jacobian.

To test this hypothesis, we examine the two smaller 3-D domains (7.2.1, 7.2.2). In the

results below, ADH Tol refers to the tolerance applied to the solution from ADH (5.8).

Sensitivity Tolerance is the tolerance applied to the solution of the sensitivity vectors

(5.10). We display four tables for each test:

1. Time: A simple measurement of time-to-solution as measured by the HPC ma-

chines. This is a comprehensive measure from when the process initiates to when

it terminates.

65

2. Final Residual: The error between the final ADH run and the actual data. For

the reduced order model, this means ADH must be run one additional time when

the process has completed to measure the final error. That run is included in the

above time estimates.

3. Parameter Error: The relative error in the log-transformed parameters. As the

entire process is completed with the log-conds, we measure our final accuracy in

those as well.

4. Model Calls: The total number of calls to the full model ADH . This includes the

final call necessary to compute the accuracy.

We apply our technique to data with various noise levels. For the synthetic column,

the “Data” represent a zero-residual problem. Random perturbations in that data are

added to achieve the 1%, 5%, and 10% noise level results. For the tank, the “Data”

represent actual laboratory measurements and are not a zero residual problem. Random

perturbations in that measured data are added for the 1, 5, and 10% examples. The

additional tables are not constructed for SPE10. Instead, a single solve with 1e − 6 as

both the solution and sensitivity tolerance is performed. The results of that run are given

in 8.4.13.

8.4 Tolerance Results

8.4.1 Synthetic Column

The following tables describe the results for the 3-D column (7.2.1). In all examples, the

runs were performed with 8 processors on the Garnet HPC machines at ERDC. These

are Cray XE6 machines and have 64-bit AMD Opteron chipsets running at 2.4 GHz.

Each node has 16 cores and 32 gigabytes of memory. The login nodes run SUSE Linux.

66

8.4.2 Noise: 0%

Table 8.2: Analysis of Time (s) for Domain: HET, Noise: Data

Time (s)

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 8.20e+01 4.90e+01 9.80e+01 7.80e+01 1.49e+02

1.0e-4 7.30e+01 7.50e+01 5.70e+01 6.30e+01 1.68e+02

1.0e-6 1.96e+02 2.11e+02 2.62e+02 1.77e+02 1.67e+02

1.0e-8 1.13e+02 1.06e+02 1.10e+02 1.21e+02 5.01e+02

Table 8.3: Analysis of Final Residual for Domain: HET, Noise: Data

Final Residual

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 5.58e+02 5.77e+02 5.58e+02 5.56e+02 5.76e+02

1.0e-4 2.78e+02 2.78e+02 3.55e+02 3.55e+02 2.93e+02

1.0e-6 9.59e-01 9.59e-01 6.82e-04 2.57e+01 2.59e+01

1.0e-8 4.95e-02 4.95e-02 8.80e-02 8.07e-02 5.50e-09

67

Table 8.4: Analysis of Parameter Error for Domain: HET, Noise: Data

Parameter Error

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full
A

D
H

T
ol

1.0e-2 9.98e-01 1.14e+00 1.00e+00 1.00e+00 4.06e-01

1.0e-4 5.27e-01 5.27e-01 5.60e-01 5.60e-01 6.37e-01

1.0e-6 6.45e-01 6.45e-01 5.22e-02 5.89e-01 5.69e-01

1.0e-8 8.34e-01 8.34e-01 5.03e-01 3.38e-01 1.60e-01

Table 8.5: Analysis of Model Calls for Domain: HET, Noise: Data

Model Calls

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 5 3 6 5 59

1.0e-4 4 4 3 3 72

1.0e-6 14 14 15 11 70

1.0e-8 8 8 7 7 245

68

8.4.3 Noise: 1%

Table 8.6: Analysis of Time (s) for Domain: HET, Noise: 1 %

Time (s)

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 6.60e+01 1.05e+02 8.20e+01 3.70e+01 1.56e+02

1.0e-4 1.04e+02 1.02e+02 7.00e+01 7.00e+01 1.32e+02

1.0e-6 1.22e+02 1.22e+02 3.97e+02 1.18e+02 2.01e+02

1.0e-8 1.11e+02 1.08e+02 1.32e+02 1.50e+02 3.83e+02

Table 8.7: Analysis of Final Residual for Domain: HET, Noise: 1 %

Final Residual

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 5.59e+02 5.21e+02 5.59e+02 5.59e+02 5.78e+02

1.0e-4 2.56e+02 2.56e+02 3.56e+02 3.56e+02 3.50e+02

1.0e-6 3.34e+01 3.34e+01 2.83e-02 5.17e+00 1.31e+01

1.0e-8 3.07e+01 3.07e+01 9.01e-02 8.94e-02 1.54e-02

69

Table 8.8: Analysis of Parameter Error for Domain: HET, Noise: 1 %

Parameter Error

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full
A

D
H

T
ol

1.0e-2 9.91e-01 1.21e+00 1.00e+00 5.60e-01 4.07e-01

1.0e-4 5.60e-01 5.60e-01 5.60e-01 5.60e-01 5.18e-01

1.0e-6 8.92e-01 8.92e-01 1.55e-01 2.71e-01 5.09e-01

1.0e-8 9.88e-01 9.88e-01 2.96e-01 3.17e-01 1.60e-01

Table 8.9: Analysis of Model Calls for Domain: HET, Noise: 1 %

Model Calls

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 4 7 5 2 59

1.0e-4 6 6 3 3 57

1.0e-6 8 8 19 6 84

1.0e-8 6 6 8 10 161

70

8.4.4 Noise: 5%

Table 8.10: Analysis of Time (s) for Domain: HET, Noise: 5 %

Time (s)

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 5.00e+01 8.00e+01 9.10e+01 5.50e+01 1.53e+02

1.0e-4 5.80e+01 5.80e+01 5.50e+01 5.20e+01 1.08e+02

1.0e-6 1.29e+02 1.32e+02 2.02e+02 1.37e+02 2.55e+02

1.0e-8 8.30e+01 7.40e+01 1.13e+02 1.29e+02 2.60e+02

Table 8.11: Analysis of Final Residual for Domain: HET, Noise: 5 %

Final Residual

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 5.59e+02 5.17e+02 5.58e+02 5.82e+02 5.77e+02

1.0e-4 3.55e+02 3.55e+02 3.55e+02 3.55e+02 3.55e+02

1.0e-6 6.04e+01 6.04e+01 4.23e-01 4.66e-01 1.80e+01

1.0e-8 6.63e+01 6.63e+01 4.38e-01 4.44e-01 4.22e-01

71

Table 8.12: Analysis of Parameter Error for Domain: HET, Noise: 5 %

Parameter Error

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full
A

D
H

T
ol

1.0e-2 1.00e+00 1.14e+00 1.00e+00 5.60e-01 4.02e-01

1.0e-4 5.60e-01 5.60e-01 5.60e-01 5.60e-01 7.32e-01

1.0e-6 6.10e-01 6.10e-01 5.39e-01 3.72e-02 5.31e-01

1.0e-8 5.09e-02 5.09e-02 5.60e-01 4.80e-02 5.23e-02

Table 8.13: Analysis of Model Calls for Domain: HET, Noise: 5 %

Model Calls

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 3 5 6 3 58

1.0e-4 3 3 3 3 44

1.0e-6 8 8 14 9 106

1.0e-8 4 4 8 9 105

72

8.4.5 Noise: 10%

Table 8.14: Analysis of Time (s) for Domain: HET, Noise: 10 %

Time (s)

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 6.80e+01 4.80e+01 7.70e+01 4.70e+01 1.28e+02

1.0e-4 5.70e+01 5.60e+01 5.10e+01 5.90e+01 3.49e+02

1.0e-6 1.61e+02 1.53e+02 6.90e+01 2.60e+02 3.11e+02

1.0e-8 3.59e+02 3.44e+02 5.70e+01 1.69e+02 2.46e+02

Table 8.15: Analysis of Final Residual for Domain: HET, Noise: 10 %

Final Residual

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 5.75e+02 5.94e+02 5.75e+02 5.99e+02 5.94e+02

1.0e-4 3.69e+02 3.69e+02 3.69e+02 3.69e+02 5.28e+01

1.0e-6 3.90e+01 3.90e+01 7.47e+01 2.01e+00 7.85e+00

1.0e-8 2.02e+00 2.02e+00 3.61e+02 2.02e+00 2.02e+00

73

Table 8.16: Analysis of Parameter Error for Domain: HET, Noise: 10 %

Parameter Error

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full
A

D
H

T
ol

1.0e-2 1.00e+00 1.17e+00 1.00e+00 9.98e-01 4.05e-01

1.0e-4 4.39e-01 4.39e-01 5.60e-01 5.60e-01 4.92e-01

1.0e-6 5.44e-01 5.44e-01 9.84e-02 1.13e+00 6.84e-01

1.0e-8 2.93e-01 2.93e-01 5.12e-01 5.02e-01 2.90e-04

Table 8.17: Analysis of Model Calls for Domain: HET, Noise: 10 %

Model Calls

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 5 3 6 3 59

1.0e-4 3 3 3 3 164

1.0e-6 9 9 4 15 139

1.0e-8 24 24 3 12 107

8.4.6 Parameter Values

Finally, we list the actual conductivity values found by our method for each noise level

in Table 8.18. We only list the conductivities for the instance when both solver and

sensitivity tolerance were set to 1e − 8. We note the optimizer often matches the value

of κ3 with high precision, but not κ1, κ2. Materials 1 and 2 are spread throughout the

column, but the third material is only located in the lens. This lens dominates the

behavior of the entire column.

74

Table 8.18: Conductivity Values for Column

Noise Model
Conductivity Values for Column

κ1 κ2 κ3

0%
POD 1.7556e-03 2.1913e-01 1.1826e-05

Full 1.1762e-01 1.1808e-03 1.1804e-05

1%
POD 2.8266e-03 1.5001e-02 1.1773e-05

Full 9.9999e-01 1.2503e-03 1.1717e-05

5%
POD 2.5831e-03 7.4080e-03 1.1896e-05

Full 1.4284e-02 1.7128e-03 1.1800e-05

10%
POD 7.0478e-02 8.0651e-04 1.1888e-05

Full 6.5855e-02 8.0429e-04 1.1896e-05

Actual κi: 1.1808e-01 1.1808e-03 1.1808e-05

8.4.7 Laboratory Scale Synthetic Aquifer

For the laboratory scale aquifer (7.2.2), we used 16 processors for each full ADH and

reduced model run. The runs were still performed on the Garnet machines.

8.4.8 Noise: 0%

Table 8.19: Analysis of Time (s) for Domain: ALL, Noise: Data

Time (s)

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 1.86e+02 7.85e+02 4.79e+02 4.98e+02 4.01e+02

1.0e-4 3.05e+02 5.27e+02 4.40e+02 5.59e+02 3.51e+03

1.0e-6 2.94e+02 6.15e+02 5.78e+02 5.32e+02 6.20e+02

1.0e-8 1.11e+03 5.75e+02 4.16e+02 4.19e+02 1.44e+03

75

Table 8.20: Analysis of Final Residual for Domain: ALL, Noise: Data

Final Residual

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full
A

D
H

T
ol

1.0e-2 2.71e+02 3.82e+00 3.30e+00 2.32e+01 4.30e-01

1.0e-4 5.69e-02 4.67e-02 3.99e-02 2.63e-02 3.11e-02

1.0e-6 5.07e-02 2.67e-02 2.66e-02 3.02e-02 2.67e-02

1.0e-8 2.69e-02 2.67e-02 2.67e-02 2.67e-02 2.67e-02

Table 8.21: Analysis of Parameter Error for Domain: ALL, Noise: Data

Parameter Error

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 7.63e-01 1.26e+00 7.39e-01 8.83e-01 7.63e-01

1.0e-4 6.77e-01 5.27e-01 6.98e-01 6.52e-01 8.21e-01

1.0e-6 6.78e-01 6.38e-01 6.50e-01 5.66e-01 6.51e-01

1.0e-8 6.43e-01 6.56e-01 6.55e-01 6.52e-01 6.53e-01

Table 8.22: Analysis of Model Calls for Domain: ALL, Noise: Data

Model Calls

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 3 8 6 6 52

1.0e-4 5 7 7 9 391

1.0e-6 5 9 8 7 67

1.0e-8 15 9 7 7 136

76

8.4.9 Noise: 1%

Table 8.23: Analysis of Time (s) for Domain: ALL, Noise: 1 %

Time (s)

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 3.00e+02 8.88e+02 1.03e+03 5.08e+02 1.10e+03

1.0e-4 3.22e+02 4.13e+02 4.38e+02 2.78e+02 1.23e+03

1.0e-6 2.63e+02 4.26e+02 3.66e+02 4.06e+02 1.00e+03

1.0e-8 2.14e+02 4.34e+02 3.85e+02 3.88e+02 7.72e+02

Table 8.24: Analysis of Final Residual for Domain: ALL, Noise: 1 %

Final Residual

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 1.80e+02 2.68e+01 1.94e+01 2.56e+01 1.08e+01

1.0e-4 9.62e+00 9.62e+00 9.63e+00 9.62e+00 9.68e+00

1.0e-6 9.71e+00 9.65e+00 9.63e+00 9.63e+00 9.63e+00

1.0e-8 9.73e+00 9.63e+00 9.63e+00 9.76e+00 9.64e+00

77

Table 8.25: Analysis of Parameter Error for Domain: ALL, Noise: 1 %

Parameter Error

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full
A

D
H

T
ol

1.0e-2 1.09e+00 1.22e+00 3.43e-01 1.25e+00 7.95e-01

1.0e-4 4.14e-01 4.50e-01 3.99e-01 4.25e-01 9.86e-01

1.0e-6 5.08e-01 4.92e-01 4.74e-01 4.81e-01 4.44e-01

1.0e-8 6.02e-01 4.15e-01 4.14e-01 6.95e-01 5.23e-01

Table 8.26: Analysis of Model Calls for Domain: ALL, Noise: 1 %

Model Calls

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 4 10 10 6 139

1.0e-4 6 7 7 5 144

1.0e-6 5 7 6 6 106

1.0e-8 4 7 6 6 71

78

8.4.10 Noise: 5%

Table 8.27: Analysis of Time (s) for Domain: ALL, Noise: 5 %

Time (s)

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 3.17e+02 4.43e+02 6.01e+02 2.67e+02 6.79e+02

1.0e-4 3.27e+02 5.67e+02 7.31e+02 2.66e+02 1.10e+03

1.0e-6 7.80e+01 4.47e+02 5.45e+02 1.04e+02 6.73e+03

1.0e-8 4.67e+02 6.45e+02 1.37e+02 5.08e+02 2.28e+03

Table 8.28: Analysis of Final Residual for Domain: ALL, Noise: 5 %

Final Residual

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 2.62e+02 2.68e+02 2.67e+02 2.84e+02 2.69e+02

1.0e-4 2.55e+02 2.55e+02 2.54e+02 2.55e+02 2.63e+02

1.0e-6 2.71e+02 2.55e+02 2.55e+02 2.67e+02 2.52e+02

1.0e-8 2.55e+02 2.55e+02 2.68e+02 2.55e+02 2.56e+02

79

Table 8.29: Analysis of Parameter Error for Domain: ALL, Noise: 5 %

Parameter Error

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full
A

D
H

T
ol

1.0e-2 8.11e-01 1.19e+00 6.17e-01 6.10e-01 7.70e-01

1.0e-4 6.97e-01 7.02e-01 7.02e-01 6.99e-01 8.70e-01

1.0e-6 8.56e-01 6.35e-01 6.98e-01 1.19e+00 1.74e+00

1.0e-8 7.02e-01 6.96e-01 7.28e-01 6.55e-01 1.47e+00

Table 8.30: Analysis of Model Calls for Domain: ALL, Noise: 5 %

Model Calls

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 5 7 8 4 91

1.0e-4 6 9 10 4 108

1.0e-6 1 7 8 1 177

1.0e-8 7 9 2 7 99

80

8.4.11 Noise: 10%

Table 8.31: Analysis of Time (s) for Domain: ALL, Noise: 10 %

Time (s)

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 2.70e+02 1.21e+02 3.59e+02 6.50e+02 5.49e+02

1.0e-4 1.67e+02 2.22e+02 1.40e+02 1.98e+02 1.06e+03

1.0e-6 2.23e+02 1.22e+02 3.09e+02 2.70e+02 6.13e+02

1.0e-8 1.83e+02 2.40e+02 1.05e+02 2.85e+02 9.11e+02

Table 8.32: Analysis of Final Residual for Domain: ALL, Noise: 10 %

Final Residual

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 1.18e+03 1.23e+03 1.16e+03 1.15e+03 1.17e+03

1.0e-4 1.16e+03 1.16e+03 1.18e+03 1.15e+03 1.16e+03

1.0e-6 1.15e+03 1.16e+03 1.16e+03 1.15e+03 1.15e+03

1.0e-8 1.16e+03 1.16e+03 1.16e+03 1.16e+03 1.15e+03

81

Table 8.33: Analysis of Parameter Error for Domain: ALL, Noise: 10 %

Parameter Error

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full
A

D
H

T
ol

1.0e-2 7.75e-01 1.06e+00 1.13e+00 5.18e-01 7.42e-01

1.0e-4 7.97e-01 5.77e-01 9.43e-01 1.06e+00 1.51e+00

1.0e-6 1.02e+00 5.44e-01 6.25e-01 9.28e-01 1.54e+00

1.0e-8 7.85e-01 5.87e-01 7.69e-01 6.33e-01 1.85e+00

Table 8.34: Analysis of Model Calls for Domain: ALL, Noise: 10 %

Model Calls

Sensitivity Tolerance

1.0e-2 1.0e-4 1.0e-6 1.0e-8 Full

A
D

H
T

ol

1.0e-2 5 2 6 9 73

1.0e-4 3 4 2 3 114

1.0e-6 4 2 5 4 56

1.0e-8 3 4 1 4 69

8.4.12 Parameter Values

In Table 8.35 we see the conductivity values found by the optimizer for the tank. We

again only list the solutions when tolerances for both the solution and sensitivities were

set to 1e − 8. Unlike in the column, there is no single material that dominates the

behavior of the solution.

82

Table 8.35: Conductivity Values for Tank

Noise Model
Conductivity Values for Tank

κ1 κ2 κ3 κ4 κ5

Data
POD 6.6061e-02 1.4687e-01 4.6006e-02 4.84085e-02 2.3676e-02

Full 5.9279e-02 1.3104e-01 4.1250e-02 4.3270e-02 2.1569e-02

1%
POD 1.6098e-02 2.4898e-03 2.8257e-01 6.9233e-03 5.1852e-02

Full 8.1799e-03 3.4399e-03 1.3249e-01 1.2409e-01 2.5559e-02

5%
POD 1.503e-03 3.0878e-03 1.5034e-03 7.3391e-01 9.7235e-01

Full 2.4810e-2 8.8000e-6 6.600e-5 5.2483e-01 1.0000e+00

10%
POD 8.0311e-03 1.5034e-03 1.7177e-03 3.4979e-01 8.9090e-01

Full 1.9999e-06 1.5049e-02 2.9987e-01 8.3000e-04 9.5000e-05

Actual κi: 6.7e-02 2.05e-02 6.31e-02 1.94e-01 5.97e-01

8.4.13 SPE10

This domain is significantly larger than our previous examples. We use 32 processors for

both the full and reduced model runs. While more processors would have accelerated the

process, the ratios between the full and reduced model timings remain similar. In Table

8.36, we see the results with the reduced order model were very similar to the results

when the optimizer queried the full model. As in previous results, we took just under

half the time and an order of magnitude fewer calls to the full model.

Table 8.36: SPE10 Results

POD Full

Time (s) 2.51e+04 5.26e+04

Final Residual 9.49e-04 9.31e-05

Parameter Error 2.10e-01 2.47e-01

Model Calls 13 187

83

In our comparison of the actual parametersin Table 8.37, we the optimizer performed

extremely well with both the full and reduced order model.

Table 8.37: Conductivity Values for SPE10

Solver Tolerance Model
Conductivity Values for SPE10

κ1 κ2 κ3 κ4 κ5

Data
POD 1.7498e-05 1.8931e-06 1.7116e-04 3.1979e-03 3.2342e-01

Full 4.1000e-05 1.7999e-06 1.4999e-04 2.7899e-03 2.8349e-01

Actual κi: 1.352e-07 1.8300e-06 1.6939e-04 3.1686e-03 3.2063e-01

8.5 Parameter Fit

8.6 Results Discussion

Several conclusions can be extracted from these results:

• All results were consistent between the tank and the column. That is, we realized

similar speed up and accuracy regardless of problem size.

• The reduced order model with few exceptions reduces the time-to-solution by at

least 50% versus PEST with ADH without sacrificing quality of result in either pa-

rameter error or model error.

• PEST with POD reduces the number of full model calls by approximately an order

of magnitude.

• For most cases, tolerances of 1e − 6 and 1e − 8 in the ADH Tolerance achieve a

similar final residual and parameter fit.

• An extremely precise sensitivity tolerance is never able to overcome low precision in

the ADH Tolerance. However, some instances of low precision sensitivities alongside

high precision ADH Tolerances were able to converge to a good solution.

84

• With few exceptions, more accuracy in the sensitivity vectors resulted in a faster

time to solution.

• Our stopping criteria were too conservative for small residual cases. The optimizer

with the reduced order model frequently exited before converging completely. In

our final example of SPE10, we allowed the full model residual to increase for 5

iterations instead of the 3 used in the tank and column. With additional leeway,

the optimizer with a reduced model was able to resolve the small residual problem

to a similar final accuracy as with the full model. We do not allow 5 iterations for

our investigations of low accuracy solves as the additional function evaluations do

not provide a better solution in those cases.

For the reasons listed above, we chose 1e−6 as the both the ADH Tolerance and Sensitivity

Tolerance to solve SPE10. The results with those tolerances are typical of what we

achieved with the smaller two domains.

From this investigation, we see the reduced order model generated by POD is viable

to be used in the Levenberg Marquardt optimization process. Despite poor accuracy in

both the jacobian evaluation and the actual function evaluation, the optimizer was able

to find similar solutions with both the reduced order model and the full model solve. Our

technique of evaluating termination criteria was shown to be viable in all three domains

and for several noise levels in the data. In all cases, it was more computationally efficient

to use the reduced order model in place of the full model in the optimization process.

The POD model reduced the time to solution without significantly reducing the accuracy

of the final parameters.

85

Chapter 9

Conclusions and Future Work

The previous results have clearly demonstrated the success of our method. Our goal is

to demonstrate the effectiveness of a reduced model in the process to approximate the

hydraulic conductivity of materials in a saturated domain. Our method reduces the time

and full model calls necessary to achieve that goal without sacrificing accuracy in the

parameter or model fit.

We explored four domains to test our model: a simple 2-D model with wells, a gener-

ated column, a laboratory scale aquifer, and a domain specifically designed to overwhelm

the capacity of a high fidelity model. For the column and tank, we examined the behavior

of our method with extremely noisy (up to 10% error) data.

We were able to test the limits of convergence for Inexact Levenberg Marquardt

by manually controlling the accuracy of the solution and the jacobian throughout the

optimization process.

In all of the previous scenarios, we reduced the time to solution by over 50% and

reduced the number of calls to the high-fidelity simulator by an order of magnitude. In

all cases, the solution from the reduced model is as accurate in both residual norm and

parameter fit to the solution from the full model.

For future work, we look to include the material boundaries in the optimization

process. We can generate several possibilities for the subsurface zonation scheme and

test which realizations best match the data. Our reduced order model allows us to

explore many more domains given the reduced time to solution.

We also seek to transfer the technology to thermal models. Several current projects at

ERDC focus on modeling surface temperatures for a domain. Our reduced model allows

86

us to test a wide range of subsurface parameters to match thermal imagery.

87

REFERENCES

[1] LLC Aquaveo. Gms 8.0 tutorials. Retrieved from Aquaveo Website (URL:
http://www. aquaveo. com/gms-learning), 2011.

[2] F. Ballio and A. Guadagnini. Convergence assessment of numerical monte carlo
simulations in groundwater hydrology. Water resources research, 40(4):W04603,
2004.

[3] H.T. Banks, R.C.H. del Rosario, and R.C. Smith. Reduced-order model feedback
control design: numerical implementation in a thin shell model. Automatic Control,
IEEE Transactions on, 45(7):1312 –1324, jul 2000.

[4] E. B. Becker, G. F. Carey, and J. T. Oden. Finite Elements: An Introduction,
volume 1. Prentice Hall, 1981.

[5] R. Beckie, A.A. Aldama, and E.F. Wood. The universal structure of the groundwater
flow equations. Water resources research, 30(5):1407–1419, 1994.

[6] Eugenio Beltrami. Sulle funzioni bilineari. Giornale di Matematiche ad Uso degli
Studenti Delle Universita, pages 98–106, 1873. English translation by Daniel Boley
available from 3rd Int’l Workshop on SVD and Signal Processing, pp. 5-18, 1995.

[7] Gal Berkooz, Philip Holmes, and John L. Lumley. The proper orthogonal decomposi-
tion in the analysis of turbulent flows. Annual Review of Fluid Mechanics, 25:539–75,
1993.

[8] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Wha-
ley. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1997.

[9] Susan Blackford. Scalapack tutorial. http://www.netlib.org/scalapack/

tutorial, 1998.

[10] Daniel Boley. On bilinear functions. 3rd International Workshop on SVD and signal
processing, pages 5–18, 1995.

[11] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W.
Trosset. A rigorous framework for optimization of expensive function by surrogates.
Structural Optimization, 17:1–13, 1999.

[12] Glenn Brown. Darcy’s law basics and more. http://biosystems.okstate.edu/

darcy/LaLoi/basics.htm, 2005.

88

[13] John Burkardt, Max Gunzburger, and Hyung-Chun Lee. Pod and cvt-based reduced-
order modeling of navier-stokes flows. Computer Methods in Applied Mechanics and
Engineering, 196(1-3):337 – 355, 2006.

[14] M. A. Cardoso, L. J. Durlofsky, and P. Sarma. Development and application of
reduced-order modeling procedures for subsurface flow simulation. International
Journal for Numerical Methods in Engineering, 77(9):1322–1350, 2009.

[15] Kevin Carlberg and Charbel Farhat. A compact proper orthogonal decomposition
basis for optimization-oriented reduced-order models. 12th AIAAISSMO Multidis-
ciplinary Analysis and Optimization Conference, (September), 2008.

[16] J. Carrera and S.P. Neuman. Estimation of aquifer parameters under transient and
steady state conditions: 3. application to synthetic and field data. Water Resour.
Res, 22(2):211–242, 1986.

[17] D. H. Chambers, R. J. Adrian, P. Moin, D. S. Stewart, and H. J. Sung. Karhunen–
loéve expansion of burgers’ model of turbulence. Physics of Fluids, 31(9):2573–2582,
1988.

[18] DH Chambers, RJ Adrian, P Moin, DS Stewart, and HJ Sung. Karhunen-loéve
expansion of burgers’ model of turbulence. Phys. Fluids, 31:2573–2582, 1988.

[19] M.A. Christie and M.J. Blunt. Tenth SPE comparative solution project: A compar-
ison of upscaling techniques. SPE Reservoir Evaluation & Engineering, 4, 2001.

[20] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. Introduction to Derivative-
Free Optimization. Society for Industrial and Applied Mathematics, Philadephia,
PA, 2009.

[21] Hiroshige Dan, Nobuo Yamashita, and Masao Fukushima. Convergence properties
of the inexact levenberg-marquardt method under local error bound conditions. Op-
timization Methods and Software, 17(4):605–626, 2002.

[22] T.A. Davis. Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software, 30(2):196–199, June 2004.

[23] T.A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multi-
frontal method. ACM Transactions on Mathematical Software, 30(2):165–195, June
2004.

[24] T.A. Davis and I.S. Duff. An unsymmetric-pattern multifrontal method for sparse
lu factorization. SIAM Journal on Matrix Analysis and Applications, 18(1):140–158,
January 1997.

89

[25] T.A. Davis and I.S. Duff. A combined unifrontal/multifrontal method for unsym-
metric sparse matrices. ACM Transactions on Mathematical Software, 25(1):1–19,
March 1999.

[26] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. Lecture notes in
computer science, 1917:849–858, 2000.

[27] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[28] J.E. Dennis. Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. Number 16 in Classics in Applied Mathematics. SIAM, Philadelphia,
1996.

[29] John E. Dennis, Jr., David M. Gay, and Roy E. Walsh. An adaptive nonlinear
least-squares algorithm. ACM Trans. Math. Softw., 7(3):348–368, September 1981.

[30] J. Doherty. Ground water model calibration using pilot points and regularization.
Ground Water, 41(2):170–177, 2003.

[31] J. Doherty. PEST: Model-Independent Parameter Estimation User Manual. Water-
mark Numerical Computing, 5 edition, 2004.

[32] Patrick A. Domenico and Franklin W. Schwartz. Physical and Chemical Hydrogeol-
ogy. John Wiley & Sons, Inc, 1990.

[33] Stanley C. Eisenstat and Homer F. Walker. Globally convergent inexact newton
methods. SIAM Journal on Optimization, 4(2):393–422, 1994.

[34] K.R. Fowler, J.P. Reese, C.E. Kees, J.E. Dennis, C.T. Kelley, C.T. Miller, C. Au-
det, A.J. Booker, G. Couture, R.W. Darwin, et al. Comparison of derivative-free
optimization methods for groundwater supply and hydraulic capture community
problems. Advances in Water Resources, 31(5):743–757, 2008.

[35] HJ Franssen and W. Kinzelbach. Ensemble kalman filtering versus sequential self-
calibration for inverse modelling of dynamic groundwater flow systems. Journal of
Hydrology, 365(3-4):261–274, 2009.

[36] J. Fu and J. Jaime Gómez-Hernández. Uncertainty assessment and data worth in
groundwater flow and mass transport modeling using a blocking markov chain monte
carlo method. Journal of Hydrology, 364(3-4):328–341, 2009.

[37] P. Gilmore and C.T. Kelley. An implicit filtering algorithm for optimization of
functions with many local minima. SIAM Journal on Optimization, 5:269, 1995.

90

[38] Mark S. Gockenbach. Understanding and implementing the finite element method.
Society for Industrial and Applied Mathematics, Philadelphia, 2006.

[39] Gene H. Golub and William Kahan. Calculating the singular values and pseudo-
inverse of a matrix. Journal of the Society for Industrial and Applied Mathematics,
2(2):205–224, 1965.

[40] J.J. Gómez-Hernánez, A. Sahuquillo, and J.E. Capilla. Stochastic simulation of
transmissivity fields conditional to both transmissivity and piezometric data–1. the-
ory. Journal of Hydrology(Amsterdam), 203(1):167–174, 1997.

[41] Max Gunzburger and Karen Wilcox. Reduced-order models of large scale computa-
tional systems. SIAM News, 38:11, 2005.

[42] Max D. Gunzburger, Janet S. Peterson, and John N. Shadid. Reduced-order mod-
eling of time-dependent pdes with multiple parameters in the boundary data. Com-
puter Methods in Applied Mechanics and Engineering, 196(4-6):1030 – 1047, 2007.

[43] Hans-Martin Gutmann. A radial basis function method for global optimization.
Journal of Global Optimization, 19:201–227, 2001.

[44] A. Henderson, J. Ahrens, and C. Law. The Paraview Guide. Kitware Clifton Park,
NY, 2004.

[45] HJ Hendricks Franssen, A. Alcolea, M. Riva, M. Bakr, N. Van Der Wiel, F. Stauffer,
and A. Guadagnini. A comparison of seven methods for the inverse modelling of
groundwater flow. application to the characterisation of well catchments. Advances
in Water Resources, 32(6):851–872, 2009.

[46] Edward C. Heyse. Envr 640 - groundwater hydrology and contaminant transport.
Class Notes, 1995. Florida State University.

[47] P. Indelman and G. Dagan. Upscaling of permeability of anisotropic heterogeneous
formations: 1. the general framework. Water Resources Research, 29(4):917–923,
1993.

[48] Camille Jordan. Mémoire sur les formes bilinéaires. Journal de Mathématiques Pures
et Appliquées, page 19:35, 1874.

[49] Camille Jordan. Sur la réduction des formes bilinéaires. Comptes Rendus de
l’Académie des Sciences, page 78:614, 1874.

[50] K. Karhunen. Zur Spektraltheorie stochastischer Prozesse. Annales Academiae
Scientiarum Fennicae, 37, 1946.

91

[51] Kathleen R. Kavanagh. Nonsmooth Nonlinearities in Applications from Hydrology.
Phd thesis, North Carolina State University, July 2003.

[52] C. T. Kelley. Iterative Methods for Optimization. Number 18 in Frontiers in Applied
Mathematics. SIAM, Philadelphia, 1999.

[53] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Number 16 in
Frontiers in Applied Mathematics. SIAM, Philadelphia, 1995.

[54] C.T. Kelley and E.W. Sachs. Truncated newton methods for optimization with in-
accurate functions and gradients. Journal of Optimization Theory and Applications,
116:83–98, 2003. 10.1023/A:1022110219090.

[55] G. Kourakos and A. Mantoglou. Inverse groundwater modeling with emphasis on
model parameterization. Water Resources Research, 48(5):W05540, 2012.

[56] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods
for parabolic problems. Numerische Mathematik, 90(1):117–148, 2001.

[57] K. Kunisch and S. Volkwein. Control of the burgers equation by a reduced-order
approach using proper orthogonal decomposition. Journal of Optimization Theory
and Applications, 102:345–371, August 1999.

[58] K. Levenberg. A method for the solution of certain nonlinear problems in least
squares. Quart. Appl. Math., 4:164–168, 1944.

[59] Y. C. Liang, H. P. Lee, S. P. Lim, W. Z. Lin, K. H. Lee, and C. G. Wu. Proper
orthogonal decomposition and its applications–part i: Theory. Journal of Sound and
Vibration, 252:527–544, May 2002.

[60] M. Loève. Functions aléatoire de second order. Compte Rend. Acad. Sci., 83:297–
310, 1945.

[61] Michel Loéve. Probability Theory. Von Nostrand, Princeton, NJ, 1955.

[62] H. Ly and H.T. Tran. Modeling and control of physical processes using proper
orthogonal decomposition. Computers and Mathematics with Applications, 33(1-
3):223–236, 2001.

[63] H. V. Ly and H. T. Tran. Proper orthogonal decomposition for flow calculation
and optimal control in a horizontal cvd reactor. Quart. J. Appl. Math., 60:631–656,
2002.

[64] R. Markovinović and J. D. Jansen. Accelerating iterative solution methods using
reduced-order models as solution predictors. International Journal for Numerical
Methods in Engineering, 68(5):525–541, 2006.

92

[65] D. W. Marquardt. An algorithm for least squares estimation of nonlinear parameters.
SIAM J., 11:431–441, 1963.

[66] Jerrold E. Marsden and Michael J. Hoffman. Elementary Classical Analysis. W.H.
Freeman and Company, 1993.

[67] D. McLaughlin and L.R. Townley. A reassessment of the groundwater inverse prob-
lem. Water Resources Research, 32(5):1131–1161, 1996.

[68] Carl D. Meyer, editor. Matrix analysis and applied linear algebra. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[69] Cass T. Miller. Envr 453 - groundwater hydrology. Class Notes University of North
Carolina at Chapel Hill, 2006.

[70] Cass T. Miller, George Christakos, Paul T. Imhoff, John F. McBride, Joseph A.
Pedit, and John A. Trangenstein. Multiphase flow and transport modeling in het-
erogeneous porous media: challenges and approaches. Advances in Water Resources,
21(2):77 – 120, 1998.

[71] C. Moore and J. Doherty. The cost of uniqueness in groundwater model calibration.
Advances in Water Resources, 29(4):605–623, 2006.

[72] J. More. The levenberg-marquardt algorithm: implementation and theory. Numer-
ical analysis, pages 105–116, 1978.

[73] J.J. Moré, S.M. Wild, et al. Benchmarking derivative-free optimization algorithms.
SIAM Journal on Optimization, 20(1):172, 2010.

[74] Karl Pearson. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science,
pages 559–572, 1901.

[75] J. S. Pettway, J. H. Schmidt, and A. K. Stagg. Adaptive meshing in a mixed regime
hydrologic simulation model. Computational Geosciences, 14(6):665–674, March
2010.

[76] M. J. D. Powell. UOBYQA: unconstrained optimization by quadratic approximation.
Math. Programming, 92:555–582, 2002.

[77] Jill Reese. Examining the Significance of Advective Acceleration to Single-Phase Flow
Through Heterogeneous Porous Media. Phd thesis, North Carolina State University,
November 2006.

93

[78] R. G. Regis and C. A. Shoemaker. Local function approximation in evolutionary
algorithms for the optimization of costly functions. IEEE Transactions on Evolu-
tionary Computation, 8:490–505, 2004.

[79] Y. Rubin and J.J. Gómez-Hernández. A stochastic approach to the problem of
upscaling of conductivity in disordered media: Theory and unconditional numerical
simulations. Water Resources Research, 26(4):691–701, 1990.

[80] D. Russo. Upscaling of hydraulic conductivity in partially saturated heterogeneous
porous formation. Water Resour. Res, 28(2):397–409, 1992.

[81] Toshihiro Sakaki, Christophe C. Frippiat, Mitsuru Komatsu, and Tissa H. Illan-
gasekare. On the value of lithofacies data for improving groundwater flow model
accuracy in a three-dimensional laboratory-scale synthetic aquifer. Water Resour.
Res., 45(11):18, 2009.

[82] G. W. Stewart. On the Early History of the Singular Value Decomposition. SIAM
Review, 35:551–566, December 1993.

[83] A.N. Tikhonov, V.I.A. Arsenin, and F. John. Solutions of ill-posed problems. page
258, 1977.

[84] M.J. Tonkin and J. Doherty. A hybrid regularized inversion methodology for highly
parameterized environmental models. Water Resources Research, 41(10):W10412,
2005.

[85] Jorn van Doren, R. Markovinović, and Jan-Dirk Jansen. Reduced-order optimal
control of water flooding using proper orthogonal decomposition. Computational
Geosciences, 10(1):137–158, 2006.

[86] P.T.M. Vermeulen, A.W. Heemink, and C.B.M. Te Stroet. Reduced models for
linear groundwater flow models using empirical orthogonal functions. Advances in
Water Resources, 27(1):57 – 69, 2004.

[87] C.R. Vogel. Computational methods for inverse problems, volume 23. Society for
Industrial Mathematics, Philadelphia, PA, 2002.

[88] Corey Winton, Jackie Pettway, C.T. Kelley, Stacy Howington, and Owen J. Es-
linger. Application of proper orthogonal decomposition (pod) to inverse problems
in saturated groundwater flow. Advances in Water Resources, 34(12):1519 – 1526,
2011.

[89] S. J. Wright and J. N. Holt. An inexact levenberg-marquardt method for large sparse
nonlinear least squres. The ANZIAM Journal, 26(04):387–403, 1985.

94

[90] T.C.J. Yeh, L.W. Gelhar, and A.L. Gutjahr. Stochastic analysis of unsaturated
flow in heterogeneous soils: 1. statistically isotropic media. Water Resour. Res,
21(4):447–456, 1985.

[91] WG Yeh. Review of parameter identification procedures in groundwater hydrology.
Water Resour. Res, 22(2):95–108, 1986.

95

APPENDICES

96

Appendix A

Finite Element Method

A.1 General Dirichlet BVP

We will begin with a Dirichlet problem:

−∇ · (κ∇u) = f in Ω, (A.1a)

u = 0 on ∂Ω. (A.1b)

Following the text in [38], we will derive the weak form of the BVP (A.1) and show the

solution of the weak form is equivalent. We first define the following Sobolev spaces (see

§ B for further information):

H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
. (A.2a)

H1(Ω) =

{
v ∈ L2(Ω) :

∂v

∂x
,
∂v

∂y
∈ L2(Ω)

}
. (A.2b)

L2(Ω) =

{
v : Ω→ R :

∫
Ω

v2 <∞
}
. (A.2c)

We assume u is a solution of (A.1) and multiply both sides of the equation by a test

function v ∈ H1
0 (Ω) and integrate over Ω to see

−
∫

Ω

∇ · (κ∇u)v =

∫
Ω

fv in Ω. (A.3)

97

We then use Green’s first identity

−
∫

Ω

v∆u =

∫
Ω

∇v · ∇u−
∫
∂Ω

v
∂u

∂n
, (A.4)

to the left side of (A.3) to see

−
∫

Ω

∇ · (κ∇u)v =

∫
Ω

κ∇u · ∇v −
∫
∂Ω

κv
∂u

∂n
. (A.5)

However, v ≡ 0 on ∂Ω, so

∫
∂Ω

κv
∂u

∂n
= 0. This leaves the weak formulation of (A.1):

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω),∫
Ω

κ∇u · ∇v =

∫
Ω

fv. (A.6)

A.1.1 Equivalence of Forms

To see that (A.6) and (A.1) are indeed equivalent, we once again use the analysis found

in [38]. We denote the ball of radius δ centered at (x0, y0) as Bδ(x0, y0) and is defined by

Bδ(x0, y0) = {(x, y) ∈ R2 : ||(x, y)− (x0, y0)|| < δ}. (A.7)

We then suppose (x0, y0) ∈ Ω and δ > 0 small enough to ensure Bδ(x0, y0) is entirely

within Ω. We construct v ∈ C2
D(Ω) with the following requirements:

1. v(x, y) > 0 ∀ (x, y) ∈ Bδ(x0, y0),

2. v(x, y) = 0 ∀ (x, y) /∈ Bδ(x0, y0),

3.

∫
Ω

v =

∫
Bδ(x0,y0)

v = 1.

Therefore, ∫
Ω

fv =

∫
Bδ(x0,y0)

fv, (A.8)

−
∫

Ω

∇ · (κ∇u)v = −
∫
Bδ(x0,y0)

∇ · (κ∇u)v, (A.9)

98

are both weighted averages of the integrands over Bδ(x0, y0). If we take the limit as

δ → 0, then we see ∫
Bδ(x0,y0)

fv = f(x0, y0), (A.10)

−
∫
Bδ(x0,y0)

∇ · (κ∇u)v = −∇ · (κ(x0, y0)∇u(x0, y0)). (A.11)

Thus, if the space of test functions encompasses all functions previously defined and u

satisfies (A.6), then the strong form of the BVP (A.1) must hold at every (x0, y0) ∈ Ω.

A.2 General Neumann BVP

We next derive the weak formulation of a general Neumann BVP:

−∇ · (κ∇u) = f in Ω, (A.12a)

κ
∂u

∂n
= 0 on ∂Ω. (A.12b)

We define the test function v ∈ H1(Ω). We once again multiply (A.12) by our test

function v and integrate over Ω.

−
∫

Ω

∇ · (κ∇u)v =

∫
Ω

fv for all v ∈ H1(Ω) (A.13)

We use Green’s identity and recall (A.12b) to zero the boundary integral. This leads us

to the weak formulation of the Neumann boundary problem: Find u ∈ H1(Ω) such that∫
Ω

κ∇u · ∇v =

∫
Ω

fv (A.14)

for all v ∈ H1(Ω).

Similar analysis can be done to show the weak form for the Neumann problem is equiv-

alent to the strong form.

99

A.3 Mixed and Inhomogeneous Boundary Conditions

A.3.1 Mixed Boundary Conditions

The mixed boundary value problem is stated:

−∇ · (κ∇u) = f in Ω, (A.15a)

u = 0 on Γ1, (A.15b)

κ
∂u

∂n
= 0 on ∂Γ2, (A.15c)

where ∂Ω = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. For this problem, we define the space of test

functions to be

V = {v ∈ H1(Ω) : v = 0 on Γ1}. (A.16)

Using a progression similar to that of the Dirichlet and Neumann problems, only this

time splitting the boundary integral into two separate integrals∫
∂Ω

κv
∂u

∂n
=

∫
Γ1

κv
∂u

∂n
+

∫
Γ2

κv
∂u

∂n
, (A.17)

we have similar results.

A.3.2 Inhomogeneous Boundary Conditions

The weak form of the inhomogeneous Neumann boundary value problem is straightfor-

ward to derive. We begin with

−∇ · (κ∇u) = f in Ω, (A.18a)

κ
∂u

∂n
= h on ∂Ω. (A.18b)

The derivation is the same as previously, except now the boundary integral remains a

part of the problem statement. That is:∫
∂Ω

vκ
∂u

∂n
=

∫
∂Ω

vh. (A.19)

100

Thus, the weak statement of the problem is: Find u ∈ H1(Ω) such that∫
Ω

κ∇u · ∇v =

∫
Ω

fv +

∫
∂Ω

vh (A.20)

holds for all v ∈ H1(Ω).

The Inhomogeneous Dirichlet problem is slightly different. We pose the problem

−∇ · (κ∇u) = f in Ω, (A.21a)

u = g on ∂Ω. (A.21b)

To construct the weak form of this equation, we assume there is a function G ∈ H1(Ω)

such that G = g on ∂Ω. Our space of test functions is H1
0 (Ω) from (A.2). However,

u = g 6= 0 on ∂Ω, so u /∈ H1
0 . We declare w = u − G = 0 on ∂Ω, so the solution to

(A.21) is u = w + G, where G is defined by (A.21b). We follow a similar progression to

the previous problems:

−∇ · (κ(∇w +∇G)) = f ∈ Ω (A.22a)

−
∫

Ω

∇ · (κ(∇w +∇G))v =

∫
Ω

fv ∀v ∈ H1
0 (Ω) (A.22b)∫

Ω

κ(∇w +∇G) · ∇v −
∫
∂Ω

κv

(
∂w

∂n
+
∂G

∂n

)
=

∫
Ω

fv ∀v ∈ H1
0 (Ω) (A.22c)∫

Ω

κ(∇w +∇G) · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω). (A.22d)

The boundary integral is zero since v ≡ 0 on ∂Ω. The weak formulation is thus: Find

u = w +G, w ∈ H1
0 (Ω) such that∫

Ω

κ∇w · ∇v =

∫
Ω

fv −
∫

Ω

κ∇G · ∇v (A.23)

for all v ∈ H1
0 (Ω).

101

The last BVP we examine has inhomogeneous, mixed boundary conditions:

−∇ · (κ∇u) = f in Ω, (A.24a)

u = g on Γ1, (A.24b)

κ
∂u

∂n
= h on Γ2. (A.24c)

We define G = g on Γ1 and the space

V = {v ∈ H1(Ω) : v = 0 on Γ1}. (A.25)

Our solution will once again be of the form u = w + G, where w ∈ V . We follow the

process in (A.22) with v ∈ V , but now the boundary integral will not be zero. Instead,

we see ∫
∂Ω

κv

(
∂w

∂n
+
∂G

∂n

)
=

∫
Γ1

κv

(
∂w

∂n
+
∂G

∂n

)
+

∫
Γ2

κv

(
∂w

∂n
+
∂G

∂n

)
,∫

Γ1

κv

(
∂w

∂n
+
∂G

∂n

)
≡ 0,∫

Γ2

κv

(
∂w

∂n
+
∂G

∂n

)
=

∫
Γ2

vh.

The weak formulation for a mixed, inhomogeneous boundary problem is: Find u =

w +G, w ∈ V such that∫
Ω

κ∇w · ∇v =

∫
Ω

fv −
∫

Ω

κ∇G · ∇v +

∫
∂Γ2

vh (A.26)

for all v ∈ V .

A.4 Discretization

In this section, we will outline how to discretize the weak formulation of a BVP into a

matrix equation using the Galerkin method. Again, this follows the discussion in [38].

102

A.4.1 Linear Functionals

We define a linear functional:

Definition A.4.1 In a normed linear space V , a linear functional ` is a real-valued

function that is linear:

`(αu+ βv) = α`(u) + β`(v) ∀u, v ∈ V, α, β ∈ R.

We define continuity for a linear functional:

Definition A.4.2 ` is continuous at u ∈ V if

lim
v→u

`(v) = `(u).

Equivalently,

|`(u)− `(v)| → 0 as ||u− v|| → 0.

We define the norm of the linear functional as the smallest nonnegative constant M such

that

|`(u)| ≤M ||u|| ∀u ∈ V.

The dual space of V , denoted V ∗ is the set of all continuous linear functionals defined on

V . The norm for the dual space is given by

||`||V ∗ = sup{|`(u)| : u ∈ V, ||u|| ≤ 1}.

A.4.2 Existence and Uniqueness

Now that we have defined linear functionals and the dual space of V , we can turn to

existence and uniqueness theory for our BVP. We begin with the Riesz representation

theorem:

Theorem A.4.3 (The Riesz Representation Theorem) Suppose V is a Hilbert space.

Then V ∗ can be identified with V in the following sense:

1. For each u ∈ V , the linear functional ` defined by `(v) =< u|v > belongs to V ∗ and

||`||V ∗ = ||u||V .

103

2. For each ` ∈ V ∗, there exists a unique u ∈ V such that

||`||V ∗ = ||u||V

and

`(v) =< u|v > ∀v ∈ V.

Examining some of the problems stated previously, we see the weak forms can be stated:

u ∈ H1
0 (Ω),

∫
Ω

κ∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω),

u ∈ H1(Ω),

∫
Ω

κ∇u · ∇v =

∫
Ω

fv ∀v ∈ H1(Ω),

u ∈ H1(Ω),

∫
Ω

κ∇u · ∇v =

∫
Ω

fv +

∫
∂Ω

vh ∀v ∈ H1(Ω).

We could rewrite these problems in the form:

u ∈ V, a(u, v) = `(v) ∀v ∈ V, (A.27)

where V is a Hilbert space. a(·, ·) is a symmetric bilinear form and satisfies the following

properties of an inner product:

1. a(u, v) = a(v, u) ∀u, v ∈ V.

2. a(αu+ βv, w) = αa(u,w) + β(v, w) ∀u, v, w ∈ V, ∀α, β ∈ R.

3. a(u, u) ≥ 0, u = 0⇒ a(u, u) = 0.

We also note:

4. If there exists α > 0 such that a(u, u) ≥ α||u||2 ∀u ∈ V , a(·, ·) is elliptic.

5. If there exists β > 0 such that a(u, v) ≤ β||u||||v|| ∀u, v ∈ V, a(·, ·) is bounded.

To demonstrate existence and uniqueness of our solution, we must establish V is complete

with the inner product defined by a(·, ·) (§B shows why a solution exists and unique if V

is complete). To accomplish this, we show the norm generated by a(·, ·) is equivalent to

the standard norm on V . We define the energy norm:

||v||E =
√
a(v, v).

104

If ` is a continuous linear functional, then there is a constant M ≥ 0 such that

|`(v)| ≤M ||v|| ∀v ∈ V.

Since our BVP’s are elliptic, we see

||v|| ≤ α−1/2||v||E,

and therefore ` is bounded with respect to the energy norm by

|`(v)| ≤
(
α−1/2M

)
||v||E ∀v ∈ V.

Similarly, if a(·, ·) is bounded, we can see

a(v, v) ≤ β||v||2 ⇒ ||v||E ≤
√
β||v|| ∀v ∈ V.

Thus, the energy norm is equivalent to the standard norm on V .

A.4.3 Elliptic and Bounded

As the previous section demonstrated, if our problem is elliptic and bounded then the

space V is still complete under the norm generated by a(·, ·) and thus the solution exists

and is unique. The next sections will discuss how to obtain that solution. In this section,

we show our problems are indeed elliptic and bounded. For sake of clarity, we will

examine the inhomogeneous dirichlet problem:

−∇ · (κ∇u) = f in Ω (A.28a)

u = g on ∂Ω. (A.28b)

The weak form, as derived earlier, is

u = w +G, w ∈ V, a(w, v) = `(v) ∀v ∈ V, (A.28c)

105

where

V = H1
0 (Ω), (A.28d)

a(w, v) =

∫
Ω

κ∇w · ∇v, (A.28e)

`(v) =

∫
Ω

fv −
∫

Ω

κ∇G · ∇v. (A.28f)

We recall the definition of an inner product on V and L2(Ω):

< u|v >V =

∫
Ω

(uv +∇u · ∇v)

< u|v >L2(Ω)=

∫
Ω

uv,

and notice

||∇u||2L2(Ω) =

∫
Ω

∇u · ∇u ≤
∫

Ω

(u2 +∇u · ∇u) = ||u||2V .

Using the Cauchy-Schwartz inequality

| < u|v > | ≤ ||u||||v|| ∀u, v ∈ V, (A.29)

and assuming there are constants k0, k1 such that

k0 ≤ κ ≤ k1,

we can show our problem is bounded:

a(u, v) =

∫
Ω

κ∇u · ∇v

≤ k1

∫
Ω

|∇u · ∇v|

≤ k1

∫
Ω

||∇u|| ||∇v|| (Cauchy-Schwartz)

≤ k1||∇u||L2(Ω)||∇v||L2(Ω) (Cauchy-Schwartz forL2(Ω))

≤ k1||u||V ||v||V .

Now we show that a(·, ·) is H1
0 (Ω)-elliptic. We will use Poincare’s Inequality [38]:

106

Definition A.4.4 (Poincare’s Inequality) There exists a positive constant C, depend-

ing only on the domain Ω, such that√∫
Ω

∇u · ∇u ≥ C||u||H1(Ω) ∀u ∈ H1
0 (Ω)

Therefore, given any u ∈ H1
0 (Ω),

a(u, u) =

∫
Ω

κ∇u · ∇u

≥ k0

∫
Ω

∇u · ∇u

≥ k0C
2||u||2H1(Ω)

and we see a(·, ·) is elliptic. Since a(·, ·) is both elliptic and bounded, we have shown it

generates an equivalent norm to the standard norm on V . Thus, V is complete with the

energy norm and the solution exists and unique.

It should be noted that Definition A.4.4 only holds for H1
0 . For the case of mixed

boundary conditions, we have to use a slightly different definition [38]:

Definition A.4.5 √∫
Ω

∇u · ∇u ≥ C||u||H1(Ω) ∀u ∈ V.

Other specific cases will require further definitions. However, the procedure is similar

throughout for showing a problem is elliptic in the space.

A.4.4 Projection Theory

We begin with the the projection theorem:

Theorem A.4.6 Suppose V is an inner product space, W is a finite-dimensional sub-

space of V , and u ∈ V . Then

1. there is a unique vector w ∈ W satisfying

||u− w|| < ||u− z|| ∀z ∈ W, z 6= w.

107

The vector w is called the “best approximation to u from W” or the “projection of

u onto W” and is denoted projWu.

2. a vector w is the best approximation to u from W if and only if it satisfies the

following orthogonality condition:

w ∈ W, < u− w|z >= 0 ∀z ∈ W.

Since W is finite-dimensional, it has a basis {w1, ..., wn} and any element w ∈ W can be

represented as a linear combination of the basis elements:

w =
n∑
j=1

αjwj.

Thus, if we assume w is the projection of u onto W (that is, w = projWu =
n∑
j=1

αjwj),

then we see the following hold for any z ∈ W and specifically for wi:(
u−

n∑
j=1

αjwj, wi

)
= 0, i = 1, ...n

⇒< u|wi > −
n∑
j=1

αj < wj|wi >= 0, i = 1, ...n

⇒
n∑
j=1

αj < wj|wi >=< u|wi >, i = 1, ...n.

We can see that w = projWu is determined by a system of linear equations with unknown

α = α1, ..., αn, where Dij =< wj|wi >, bi =< u|wi > and Dα = b.

A.4.5 The Galerkin Method

As shown previously, we can represent a BVP in the form:

find u ∈ V, such that a(u, v) = `(v) ∀v ∈ V,

108

where a(·, ·) is symmetric bilinear on the Hilbert space V and ` is a continuous linear func-

tional. We also showed in a finite dimensional subspace W of V , the best approximation

to the true solution u is given by the solution of Dα = b, where

Dij =< wj|wi >, i, j = 1, ..., n

bi =< u|wi >, i = 1, ...n.

The matrix D is able to be constructed as we have the basis vectors wi. However, without

the exact solution u, we cannot construct bi. We see that if we are dealing with an elliptic

BVP, then a(·, ·) defines an inner product on V since

a(v, v) ≥ α||v||2 ∀v ∈ V (α > 0)

a(w, v) ≤ β||w|| ||v|| ∀w, v ∈ V (β > 0).

The Galerkin method computes the best approximation to u using the inner product

defined by the bilinear form a(·, ·). To find the best approximation to u, we solve KU =

F , where the stiffness matrix K is defined:

Kij = a(wj, wi), i, j = 1, ..., n

and the load vector F is defined

Fi = a(u,wi) = `(wi), i = 1, ..., n.

The vector U defines the approximate solution:

w =
n∑
i=1

Uiwi.

109

Appendix B

Functional Analysis

B.1 Essential Functional Analysis Definitions

We first define what it is to be a vector space [68]:

Definition B.1.1 The set V is called a vector space over F when the vector addition

and scalar multiplication operations satisfy the following properties:

1. x + y ∈ V for all x,y ∈ V.

2. (x + y) + z = x + (y + z) ∀x,y, z ∈ V .

3. x + y = y + x ∀x,y ∈ V .

4. There is an element 0 ∈ V such that x+ 0 = x ∀x ∈ V .

5. For each x ∈ V , there is an element (−x) ∈ V such that x + (−x) =0.

6. αx ∈ V for all α ∈ F and x ∈ V .

7. (αβ)x = α(βx) ∀α, β ∈ F and ∀x ∈ V .

8. α(x + y) = αx + αy ∀α ∈ F and ∀x,y ∈ V .

9. (α + β)x = αx + βx ∀α, β ∈ F and ∀x ∈ V .

10. 1x = x ∀x ∈ V .

110

We also define a general inner product [68]:

Definition B.1.2 An inner product on a vector space V is a function that maps each

ordered pair of vectors x, y to a real or complex scalar < x|y > such that the following

hold:

1. < x|x > is real with < x|x > ≥ 0,

2. < x|x >= 0 ⇐⇒ x = 0,

3. < x|αy >= α < x|y > for all scalars α,

4. < x|y + z >=< x|y > + < x|z >,

5. < x|y >= < y|x >

Any real or complex space where Definition B.1.2 holds is called an inner-product space.

We define a general vector norm as well [68]:

Definition B.1.3 A norm for a vector space V is a function || · || mapping V into R
that satisfies the following:

1. ||x|| ≥ 0,

2. ||x|| = 0 ⇐⇒ x = 0,

3. ||αx|| = |α| ||x|| for all scalars α,

4. ||x + y|| ≤ ||x||+ ||y||.

There may be many norms defined on a vector space. We define if norms are equivalent

by [27]:

Definition B.1.4 Let || · ||α and || · ||β be two norms. There are constants c1, c2 > 0 such

that, for all x,

c1||x||α ≤ ||x||β ≤ c2||x||α.

We say that norms || · ||α and || · ||β are equivalent with respect to constants c1 and c2.

111

We can see that if a sequence converges with respect to a specific norm, then it will also

converge with respect to any equivalent norm. We can now define a Cauchy sequence

[66]:

Definition B.1.5 A sequence xn is called a Cauchy sequence if for every ε > 0, there

exists and integer N such that ||xn − xm|| < ε if n ≥ N,m ≥ N .

Finally, we define completeness by [66]:

Definition B.1.6 A normed vector space V is said to be complete if every Cauchy

sequence in V converges to an element of V .

A good example of a space that is not complete is the rational numbers. We can use the

example of the real number π to demonstrate. There is a cauchy sequence of rational

numbers that will converge to π:

3, 3.1, 3.14, 3.141, 3.1415, ...

however π is not in the rational numbers so this cauchy sequence of rational numbers

will not converge to an element in the space. Therefore, we see the rational numbers are

not complete. This leads to the concept of a dense subspace:

Definition B.1.7 Suppose V is a normed vector space. A subset W is said to be dense

in V if, given any v ∈ V and any ε > 0, there exists w ∈ W with ||v − w|| < ε.

We can see that the rational numbers are dense in the reals because any real number can

be approximated by a rational. This brings us to the discussion of Sobolev spaces and

why they are used in § A [38].

Definition B.1.8 The following are some of the dense subspaces of the Sobolov spaces:

1. C(Ω) is dense in L2(Ω) (that is, L2(Ω) is the completion of C(Ω) under the L2

norm).

2. C∞0 (Ω) is dense in L2(Ω).

3. C1(Ω) is dense in H1(Ω).

4. C1
0(Ω) is dense in H1

0 (Ω).

112

5. C∞0 (Ω) is dense in H1
0 (Ω).

So, from this we can see why Sobolov spaces are used as our test-spaces. First, the

bounded integrals ensure that the weak formulation of the problem is well defined. Sec-

ond, we can see that any convergent sequence of solutions in the Sobolov space will

converge to a unique solution in that space.

113

Appendix C

ADH

The following discussion is broken into two parts. In § C.1, we will discuss the methods

used to use POD with ADH. in § C.2, we will discuss the specific subroutines altered in

the ADH code to achieve that purpose.

C.1 POD with ADH

We must alter the original ADH code as it does not generate the “classic” finite element

matrix and load vector analogous to those used in (3.6). Instead, ADH calculates the

residual R in the Richards equation

R =
∂θ

∂t
− ∂

∂x

[
k(h)

(
∂h

∂x
+ 1

)]
, (C.1)

where

θ = water content,

k(h) = hydraulic conductivity,

h = hydraulic head.

So, for a given value of h, ADH computes the necessary parameters in (C.1) and then

finds the residual R that will result if h does not satisfy the conditions set forth by the

114

conductivity k and the boundary conditions. Using R, ADH then builds the matrix

A = R′ =
∂R

∂h
=
R(h+ ε)−R(h− ε)

2ε
. (C.2)

ADH then solves the update equation

∂R

∂h
∂h = R, (C.3a)

h = h0 + ∂h. (C.3b)

From the matrix A and vector R used in ADH, we wish to extract the “classic” finite

element matrix and vector. Fortunately, we are able to still use zonation and create the

submatrices

A = A0 +
∑
i

Aiκi,

R = R0 +
∑
i

Riκi.

We note that, since we are solving a saturated flow problem, R will be linear and can be

represented

R(h) = f − Ah. (C.4)

As we know R(h0), we will evaluate (C.2) at h0 to find A. Furthermore, we see that if

we can find A, f then solving the equation

Ah = f, (C.5)

will set the residual R to zero and thus the matrix equation we are developing will yield

the same solution as ADH.

We can extract the vector f easily as we know all the components in (C.4) except f at

our initial head value h0 (recall R,A both are based on the head value h):

f = R(h0) + Ah0. (C.6)

We still must generate the fi in order to solve for the sensitivities. We do this by noting

h0 is the initial guess and therefore unaffected by the conductivity k(x). Thus, we can

115

perturb k(x) in each zone individually

k̃(x)` =
M∑
i 6=`

κiχi + (κ` + ε)χ`. (C.7)

We assume

f =
M∑
i

fiκi, (C.8)

and thus see

R̃(h0)` =
M∑
i 6=`

κifi + (κ` + ε)f` −
M∑
i 6=`

κiAih0 − (κ` + ε)A`h0

= f + εf` − Ah0 − εA`h0.

Therefore,

f` =
R̃(h0)` −R(h0) + εA`h0

ε
. (C.9)

Because h0 is unaffected by the conductivity, this does not require any more iterations of

ADH, all we must do is generate an additional residual R for the M different zones in the

region. By doing this, we extract the data from ADH to solve the matrix-vector equation.

We recall (C.4) and see that[
A0 +

∑
i

Aiκi

]
h = f0 +

∑
i

fiκi −R. (C.10)

It should be noted the magnitude of R is a user-defined parameter in ADH. We normally

set R ≈ 1e−6, but because R 6= 0, we must include R in (C.10).

C.2 Relevant Codes

We must make several adjustments to the ADH code in order to use our POD technique:

• fe_gw_resid.c: This code generates the residual R from (C.1). We must modify

this to break the residual into material-specific vectors.

• fe_gw_elem_resid.c: This code goes element by element and forms the residual

116

that will be combined in fe_gw_resid.c. We must remove the conductivity from

the calculation and instead substitute a 1. We must do this so we can recombine

the matrix as shown in (C.10).

• fe_gw_load.c: This generates the matrix A from the previously computed R. The

routine computes the contribution to a reference element, then adds that reference

element to the full matrix structure. We make two modifications:

1. Create a reference element for each material. If the element is not the active

material, a set of zeros are added to the non-active material matrices.

2. If the element has boundary information, the corresponding information in the

non-active material matrices must be eliminated. All Dirichlet information is

stored in one non-material-specific matrix.

• fe_assmb_matrix.c: Typically this routine takes the reference element and in-

cludes that information in the full matrix. As we have a matrix specific to each

material, we alter the routine to accommodate several matrices and several incom-

ing reference elements.

117

Appendix D

PEST

In this section, we will discus the use of PEST and which variables we altered from the

default settings to improve convergence of the optimizer.

D.1 PEST - POD Interaction

PEST interacts with the POD reduced model through simple file I/O. It writes the current

set of parameters to a text file, then executes a simple bash script. This script flips a

semaphore that triggers a POD run, then waits for POD to flip the semaphore back

indicating completion. When the semaphore has been flipped, the bash script exits and

PEST evaluates the error and adjusts the parameters. This process repeats until PEST

has found a satisfactory solution. At this point, the full model is run with the new

parameters, POD updates the basis and other information, and PEST starts anew.

D.2 Variables

We list each of the variables in the PEST header, the value we assign to it, and a brief

explanation of what the variable indicates. If the parameters change for the synthetic

column vs. the tank, they are listed as an ordered pair with the column first. All

descriptions are referenced from the PEST user manual [31].

118

D.2.1 General PEST Settings

• RSTFILE: restart – Allows PEST to restart in case of a crash.

• PESTMODE: estimation – Set PEST to parameter estimation mode.

• NPAR: (3, 5) – Number of parameters (material conductivities) to be optimized

• NOBS: (32, 92) – Number of observation points

• NPARGP: 1 – Number of parameter groups.

• NPRIOR: 0 – Number of articles of prior information.

• NOBSGP: 1 – Number of observation groups.

• NTPLFLE: 1 – Number of template files.

• NINSFLE: 1 – Number of instruction files.

• PRECIS: single – Single precision output

• DPOINT: point – Include the decimal point in output

• NUMCOM: 1 – Number of command lines used to run the model.

• JACFILE: 1 – A 1 denotes we supply the jacobian information. When using PEST

with the full model only, JACFILE is set to 0 and a difference jacobian must be

used.

• MESSFILE: 0 – Tells PEST it need not right a message file to the model.

D.2.2 Levenberg-Marquardt Settings

• RLAMBDA1: 10.0 – Initial Marquardt λ value. The default range is 1.0 - 10.0. High

values for RLAMBDA1 force the algorithm to approximate steepest descent, necessary

for very poor initial iterates.

• RLAMFAC: 2.0 – The factor by which lambda is adjusted. 2.0 is a recommended

value and works well for our examples.

119

• PHIRATSUF: 0.3 – PEST uses the variable Φ for the error in the model versus data.

PHIRATSUF is the value such that Φi/Φi−1 ≤ PHIRATSUF will terminate that Mar-

quardt iteration and select a new value for λ. Low values for PHIRATSUF will force

more iterations but perhaps waste function calls in search of a minimum that is

unobtainable. High values will cause the iteration to cease before a reachable min-

imum is found. The manual suggests a value of 0.3, which we found has worked

well in our examples.

• PHIREDLAM: 0.003 – The ratio of Φ for successive λ values. This allows PEST to

evaluate the current error based on the error for the previous λ value. The manual

suggests a value of 0.01, however we found this value too large and iterations would

terminate before finding an available minimum value.

• NUMLAM: 10 – The upper limit on number of λ test during an optimization iteration.

Values of 5-10 are suggested and we chose a higher value to more thoroughly test

the problem space.

• RELPARMAX: 2 – The maximum relative change any parameter is allowed to undergo

between optimization iterations. This value is not used in our examples as we use

the next parameter (only one can be used for each variable).

• FACPARMAX: 2 – The maximum factor change that a parameter is allowed to undergo.

So, a parameter can only change by 2 times its original value. Values lower than 5

are recommended for nonlinear cases.

• FACORIG: .001 – If the parameter falls below a factor of this value times the original

value, FACORIG is used as the denominator when determining the relative change

in parameter. As we use a factored comparison, this variable is not used.

• PHIREDSWH: 0.1 – PEST will switch to a centered difference differentiation scheme

when the relative reduction in Φ drops below this value. We provide a full jacobian

and do not use numerical differentiation, so this variable is not used.

• NOPTMAX: 30 – Maximum number of optimization iterations. This is the upper

bound on the suggested range. Our function evaluations are very inexpensive with

the POD reduced order model, so we allow PEST more iterations to find a minimum

value.

120

• PHIREDSTP: 0.01 – This variable and NPHISTP work together. This is the ratio of

the current residual Φ and the lowest Φ achieved during the optimization process.

The recommended value is 0.005, but we found this to be too low as many of our

parameters lie near the defined bounds.

• NPHISTP: 7 – The number of iterations since the lowest optimization has been

achieved. If there have been NPHISTP iterations for which (Φi − Φmin)/Φi ≤
PHIREDSTP, the process will terminate. A value of 4 is recommended, but we

needed more optimizations to avoid settling on an extremely local minimum.

• NPHINORED: 7 – The number of iterations since PEST has reduced Φ. While 3-4 is

recommended, we need more iterations to avoid a local minimum.

• RELPARSTP: 0.01 – The maximum relative parameter change between iterations.

This works in conjunction with the next parameter. The default value of 0.01 is

used.

• NRELPAR: 3 – Number of iterations to gauge maximum relative parameter change.

The default value of 3 is used.

D.2.3 Output Settings

• ICOV: 1 – Output the covariance matrix for the parameter values.

• ICOR: 1 – Output a correlation coefficient matrix for the parameter values.

• IEIG: 1 – Output the eigenvectors and eigenvalues of the covariance matrix.

121

Appendix E

SCALAPACK

To perform any dense-matrix computations, including the SVD of the basis (5.2), we

use the “Scalable Linear Algebra Package” ScaLAPACK [8, 9]. ScaLAPACK is essentially

LAPACK implemented in parallel. To use ScaLAPACK , we had to manage two distinct

partitioning schemes. ADH partitions the mesh by geospatial properties and attempts

to keep nodes near each other in the mesh on the same processor [75]. ScaLAPACK , as

discussed in the following sections, partitions the information in an effort to distribute

work equally among the processors.

E.1 Mesh Partition

ScaLAPACK uses a block cyclic distribution of a matrix. The user defines a maximum

block size (in nodes) per processor and ScaLAPACK partitions the matrix as shown in

Figure E.1. To utilize the SVD tools in ScaLAPACK , the blocks must be square. To

construct this partitioning, ADH must transmit a non-trivial amount of data between

processors as the ADH and ScaLAPACK partitioning of the matrix do not overlap. For-

tunately, this communication only need happen once per full-model run. On exit, each

processor writes their own suite of data to a unique text file. The POD reduced model

then reads each processor’s data individually and does not do any re-distribution of in-

formation inside the reduced model. This effectively parallelizes the I/O stream and

removes a key bottleneck in the optimization process.

122

Figure E.1: Partition of ScaLAPACK Matrix

The following table describes how ScaLAPACK partitions an array or vector on each

processor. This nine-entry integer array is referenced by each subroutine in ScaLAPACK

[8]. With this information, our POD code can read in the data from ADH without any

repartitioning or reallocation of the matrix. We note LOCr(K) denotes the number of

elements of K that a process would receive if K were distributed over the p processes of

its process column.

123

Table E.1: Description of an array or vector in ScaLAPACK

DTYPE A(global) The descriptor type. In this case,

DTYPE A = 1.

CTXT A (global) The BLACS context handle, indicating the BLACS

process grid A is distributed over. The context itself

is global, but the handle (the integer value) may vary.

M A (global) The number of rows in the global array A.

N A (global) The number of columns in the global array A.

MB A (global) The blocking factor used to distribute

the rows of the array.

NB A (global) The blocking factor used to distribute

the columns of the array.

RSRC A (global) The process row over which the first

row of the array A is distributed.

CSRC A (global) The process column over which the first column

of the array A is distributed.

LLD A (local) The leading dimension of the local array.

LLD A ≥ MAX(1,LOCr(M A)).

E.2 Speedup Analysis

We perform a brief analysis of how the time-to-solution for both the full and reduced

model are affected by increased processor counts. We should expect that as the processor

count doubles the time is cut in half. In the plots below, we see that both the full model

(ADH) and the reduced POD model achieve excellent speedup for both domains as the

processor count grows. It should be noted that the timings for the reduced POD model

include the I/O step as well as the solve step. The I/O must only be done once for each

full-model solve, while the reduced order solve is done tens or hundreds of times. While

the POD run may appear to take more time than an individual ADH run, that is not

the case. In Figure E.2, the “Ideal” curve demonstrates the slope of an ideal speedup

curve. If the code were perfectly optimal, doubling the number of processors would halve

the solution time. Unfortunately, communication between processors limits the ability

124

of any code to achieve this standard. For the synthetic column, the problem is too small

to truly exploit full parallelism. Therefore, the speedup curves for both ADH and POD

are less steeply sloped than the “Ideal” curve. For the larger tank domain, however, the

codes scale very well and are similar in slope to the “Ideal” curve.

125

Figure E.2: Speed Up Analysis

1 2 4 8 16

100

101

102

Number of Processors

T
im

e
(s

)

Ideal
ADH
POD

(a) Speed Up for Synthetic Column

1 2 4 8 16

101

102

103

Number of Processors

T
im

e
(s

)

Ideal
ADH
POD

(b) Speed Up for Tank

126

We note that the speed up is much closer to ideal for the larger domain. Sixteen

processors are far too many for the trivial column. The processors do not have signifi-

cant amounts of data and therefore excessive communication is required. For the tank,

however, we see the speed up curves are nearly linear as we add processors.

From this analysis, we run the column with four (4) processors and the tank with

sixteen (16). We did not perform a speed up analysis for SPE10 but decided to run with

thirty-two (32) processors for all runs.

127

