
ABSTRACT

ATTARIAN, ADAM R. Patient Specific Subset Selection, Estimation and Validation of an
HIV-1 Model with Censored Observations under an Optimal Treatment Schedule. (Under the
direction of Hien T. Tran.)

This work centers around several analyses of an in-vivo human immunodeficiency virus

(HIV)-1 dynamic model. We first consider the model in an inverse problem context, performing

model validation and verification using clinically collected data. After calibration, we then

investigate the optimal control problem of designing patient specific treatment schedules for the

administration of drug therapy.

Within the model calibration problem, we perform a sensitivity analysis to determine

which parameters contribute most to model output. Because sensitivity may not constitute

identifiability, we explore different methods of computing identifiable subsets of parameters,

including QR and sensitivity based methods before settling on a subspace selection algorithm to

find the identifiable parameters. The model validation problem is complicated by the presence

of censored clinical data due to quantification methods. Statistical methods are employed to

estimate the truth observations so that the parameter estimates can be further refined. The

inverse problem is in turn solved on a patient specific basis, without the use of population

averages.

Finally, we consider the construction of patient specific treatment strategies using optimal

control methodologies, including the installation of a feedback control mechanism through

receding horizon control. We discuss structured treatment interruptions in the context of the

optimal control and demonstrate how customized treatment protocols can be designed through

the variation of control parameters on a patient specific basis.
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CHAPTER 1

Introduction

There are few diseases in our society today that are more polarizing, politicized, and personal

than human immunodeficiency virus/acquired immune deficiency syndrome, or HIV/AIDS. The

story of HIV/AIDS in America is a story that touches on race, social class, sexuality, morality,

and the political climate of the 1980’s through today. In the nearly 30 years since being identified,

tens of millions have died, and millions more are infected every year. It is a disease that seemingly

came from nowhere; before we knew what it was, it was already with us. Everyone was taken off

guard, and the scientific community has been playing catch up ever since.

According to UNAIDS, there were 34 million people living with HIV/AIDS in 2010, 22.9

million of which live in sub-Saharan Africa. Advances in treatment protocols have seen annual

HIV infections decrease from nearly 3.1 million new infections in 2001 to 2.7 million new

infections in 2010 (WHO, 2011). The first treatment, AZT (zidovudine) wasn’t released until

1987, nearly six years after the effects of HIV were first being identified. Tolerance of this drug

was mixed at best throughout the infected community, and the first combination therapy that

would go on to constitute the new standard of care was not introduced until 1996. The effect
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of these drugs were so dramatic for the chronically infected that it was soon referred to as the

“Lazarus Syndrome” (Andriote, 1999).

Despite the prevalence and availability of effective treatment of HIV, even as late as 2010 the

best practices for management of acute HIV infection are still unknown (Bell et al., 2010). The

time to initiate treatment, and the manner of treatment are still the subject of many ongoing

clinical trials that are investigating the treatment benefits versus risks.

Throughout the last few decades, mathematical models have been developed to further

the understanding of the progression of the virus as it replicates in-host. These models focus

on the interaction between the virus and the CD4+ cells of the immune system, one of the

virus’ primary targets (Perelson et al., 1996; Perelson and Nelson, 1999; Callaway and Perelson,

2002). The early models of progression were critical in the understanding of the virus and the

development of early treatments, as the science and understanding were lagging behind the

impact of the spreading epidemic.

The models of in-vivo dynamics are most often formulated as a system of nonlinear ordinary

differential equations, though recently several size structured partial differential equation models

have been developed. These models allow for variations in viral production rates as a function

of time, since it is thought that as infected cells age their overall fitness decreases (Nelson

et al., 2004; Rong et al., 2007). The ordinary differential equation models that we utilize are

based on a compartmental and mass-balance analysis of the biological system. These models are

developed to incorporate as much relevant physiological principles as possible, though at the

cost of increased model complexity.

A primary goal of using modern models of HIV is to influence treatment decisions and

construct better treatment protocols for infected patients. The construction of optimal control

methodologies has been investigated by many authors, (Brandt and Chen, 2001; Joshi, 2002;

Adams et al., 2004; Ge et al., 2005; David et al., 2008), however in almost all of these cases

the authors worked with simulated data and were not patient specific in nature. To use these

dynamic models in a patient specific capacity the models must first be calibrated to each
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individual patient. While much attention has been paid to the forward simulation problem over

the years, less attention has been focused on the so-called inverse problem. Inverse problems

are formulated when we wish to determine the parameters that characterize the system using

measurements. One of the main obstacles in solving the inverse problem is that biological and

physiological models are often nonlinear and contain many parameters. Additionally, the data

for validation is often sparse, or possibly representative of only a portion of the model. Before

parameter estimation methods can be applied to an ODE model, an investigation into the

identifiability of the parameters, given available data, must be performed.

The investigation into parameter identifiability is not unique to the mathematical sciences,

and many papers in engineering, statistics, and biomedical engineering have shed light into

this area (Burth et al., 1999; Audoly et al., 2001). Identifiability in an HIV model context has

been examined in (Xia and Moog, 2003; Xia, 2003) where structural and observer perspectives

were used with a less complex model and in (Guedj et al., 2007), where the methodologies were

heavily statistical in nature. In this work we study the parameter identifiability of a seven state,

twenty two parameter HIV-1 model based on clinically obtained measurements of both CD4+

count and viral load. We utilize both sensitivity analysis and identifiability analysis methods

to compute patient specific best-estimatable subsets of parameters. In (Adams et al., 2007)

an identifiability analysis was conducted on an identical model, however the authors used a

different, ad-hoc subset selection procedure.

An additional component of this work is the handling of clinical data that are censored

below. To obtain robust parameter estimates, the censored data must be estimated in a reliable

manner, rather than ignored which is commonplace. The data used in validation consists of both

CD4+ count as well as viral load statistics collected through clinical trials at Massachusetts

General Hospital. Specifically, the viral load measurements have a lower limit of quantification,

and so these data have a lower threshold value. For robust estimates, the censored data can

not be ignored. This data set was first analyzed in (Adams, 2005) where the methodology for

accounting for the censored viral load measurements was developed.
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Finally in this work we investigate the construction of optimal control and treatment therapies

in a patient specific context. We develop treatments known as structured treatment interruptions,

wherein the effective treatment is terminated at specified times and then restarted in an attempt

to increase an in-host immune response and provide a drug holiday for the patient. These

treatment methods have been studied in detail, though a lack of double-blind, randomized

clinical trials has lead to a lack of consensus on the effectiveness of these types of treatments

(Lisziewicz and Lori, 2002; Lisziewicz et al., 1999; Lori et al., 2000; Lori and Lisziewicz, 2001).

This manuscript is organized as follows. In chapter 2 we introduce the biology of HIV and

the different avenues of treatment, and then describe a variety of HIV models before offering a

detailed analysis of the model used throughout this work. We also describe the data that has

been collected by our collaborators at Massachusetts General Hospital, noting the censored

nature of the viral load observations and their impact on the inverse problem methodology.

Chapter 3 describes the methodologies for model validation and calibration, wherein we discuss

the process for solving the inverse problem. Included here is a discussion of sensitivity analysis

and subset selection, the two procedures for determining which parameters can be estimated

from the clinical data. In chapter 4 the results from the model validation are presented, and

we show how the model can well-fit both the CD4+ count and viral load. We also list the

patient specific identifiable subsets and note the similarities in subsets between each patient.

The control problem is considered in chapter 5, where background on both linear and nonlinear

feedback control is provided before offering the control formulation used in this work to compute

treatment strategies of an STI type. We provide computed optimal control simulations along

side the clinical data and discuss the differences. Finally, we look forward in chapter 6 and

discuss where this research can be taken next.
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CHAPTER 2

Model and Data Discussion

Models consisting of systems of ordinary differential equations have been widely used to model

physical and biological phenomena. Recently, ODE models have played a significant role in

modeling the in-host dynamics and epidemics of infectious diseases, including HIV, hepatitis,

and influenza. These models are used to investigate the puzzling features of infection as well as

model different treatment protocols. Models of HIV have changed and shifted the way that HIV

is treated and thought of. It was through modeling that it was discovered HIV replication occurs

on the order of 1010 viral particles per day, leading to the realization that HIV evolution and

mutation occurs so rapidly that a monothearpy was doomed to fail (Perelson and Nelson, 1999).

Modeling has also illustrated that HIV occurs on multiple time scales, from hours to weeks; the

half life of HIV in plasma is on the order of minutes to days (Brandt and Chen, 2001). This

was in contrast to the original prevailing paradigm that because AIDS can take on average 10

years to develop that all of the underlying dynamics were slow. In this chapter we provide a

brief history of HIV modeling before analyzing the model that we have chosen to work with.
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2.1 HIV Biology and Drug Therapy

HIV is an RNA based virus, part of a larger class of viruses called retroviruses. The primary

target of HIV are the CD4+ cells in the immune system, though other classes of cells are also

infected and contribute to viral progression. The CD4+ cells are those that identify foreign

bodies or antigens; they have no cytotoxic ability on their own. When an HIV particle infects a

cell, the enzyme reverse transcriptase (RT), which HIV carries, makes a DNA copy of the HIV

RNA genome. This DNA copy is then integrated into the cellular DNA through the enzyme

integrase. This new DNA is then reproduced in every new generation of the cell, and so the cell

remains infected for life. The viral DNA is termed provirus, and can remain latent for months,

even years showing no evidence of its presence. While we do not model these latently infected

cells, a model that incorporates the so called “latent reservoir” is given in (Rong and Perelson,

2009). When new virus is being formed, the viral DNA is read and viral RNA is created. The

new viral RNA must be cut into different parts by way of an enzyme called protease.

Current drug therapies operate by inhibiting some combination of the actions of protease,

integrase, and reverse transcriptase. If RT is inhibited, then HIV will be able to enter a cell but

not infect the cell. The conversation of RNA to DNA will not occur, and the cell will not produce

any new HIV particles. The introduced viral RNA is unstable, and will ultimately degrade and

be cleared from the cell. If protease is inhibited, then the viral copies that are produced by the

infected CD4+ cell will not be infectious. Insights from research and mathematical modeling have

led to the prevailing paradigm of HIV treatment consisting of highly active antiretroviral therapy

(HAART). In HAART treatment two or more anti-retroviral agents are taken in combination by

the patient upwards up three times per day. It wasn’t until 1996 that these drugs were prescribed

in combination, and truly marked a turning point in the AIDS epidemic. There are currently

six available combination so called “fixed-dose combinations” where the individual drugs are

combined into a single pill, alleviating some of the burdens of HAART treatment. These drugs

are broadly classified by the phase of the HIV life-cycle that the drug inhibits. Some examples of

these drugs include entry inhibitors, reverse transcriptase inhibitors (RTI), protease inhibitors
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(PI), and integrase inhibitors, among others. In our work, we will model both RTIs and PIs. A

more detailed description of treatment in the context of our model is given in section 2.3.

2.2 Survey of Prior and Existing Mathematical Models

In modeling HIV, or any other complex biological system a modeler must first decide which

biologic processes are suitable and able to be modeled. A survey of the development of en-vivo

mathematical models is best presented in (Perelson et al., 1993), which we follow here. When the

HIV epidemic first started, there were no mathematical models in place, and both clinicians and

mathematical biologists were constantly refining their modeling techniques. The data showed

that under effective anti-retroviral therapy the viral load would decrease exponentially. This

suggested a simple model of the form

V̇ = P − cV, (2.2.1)

where the viral production V (t) is governed by some function P (t), and is cleared at rate c. If

the therapy completely blocked viral production, then P (t) = 0 and V will fall exponentially,

i.e. V (t) = V0e
−ct. To account for viral production and inter-cellular infection, an uninfected

population T is introduced. Despite the population dynamics of T cells not being well understood,

a reasonable model is given by

Ṫ = s+ pT

(
1− T

Tmax

)
− dTT, (2.2.2)

where s is the rate at which new T cells are produced, and have a natural death rate of dT . The

generation of T cells are governed by a logistic function in which p governs the production rate

up to the saturation point Tmax, where proliferation shuts off. The simplest and most common

method to model infection is through mass-action dynamics, where the rate of infection is given

as kV T , with k being the rate of infection. With the addition of the mass-action term, a simple
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model of HIV infection is given by

Ṫ = s+ pT

(
1− T

Tmax

)
− dTT − kV T (2.2.3)

Ṫ ∗ = kV T − δT ∗ (2.2.4)

V̇ = NδT ∗ − cV. (2.2.5)

A full stability analysis of this model is given in (Perelson et al., 1993), including the identification

and discussion of the associated steady states. This is a simple model that does not include

treatment terms (addressed later in (Perelson et al., 1993), and in the next section), nor immune

response. The dynamics represented here are what most other ODE models are based upon,

and eventually extend.

The simple nonlinear compartment model is extended further in (Bailey et al., 1992; Perelson

et al., 1993). For an excellent review of the various types of models developed, see (Callaway

and Perelson, 2002; Culshaw et al., 2004; Perelson and Nelson, 1999). More recently several size

structured partial differential equation models have been developed (Rong et al., 2007; Nelson

et al., 2004), based on the idea that viral fitness is dependent on age of the viral particles. There

have also been delay differential equation models developed (Culshaw and Ruan, 2000; Nelson

and Perelson, 2002) to account for the delay between initial infection and viral reproduction

through the process of reverse transcription, integration, and production of new viral particles.

An over-arching focus in the development of recent models has been to investigate the lag

between initial infection and the onset of AIDS. The reason for this is still unknown, but appears

to be tied to the number of CD4+ cells in the patient. To this end, models have been developed

to describe the immune system, the affecting dynamics of HIV, and the corresponding decline in

CD4+ cells. These have included a wealth of deterministic models as well as stochastic models

(Tan and Wu, 1998; Yuan and Allen, 2011); the latter able model very well early infection

dynamics when there are few viral particles and infected cells, or when population statistics are

required.

8



The first HIV models were aimed on the CD4+ dynamics as the virus progressed, and

focused on explaining the CD4+ decline. Some models incorporated treatment strategies, but

were limited to monotherapy RTI treatments as these were the first drugs developed. Additionally

the early models were linear approximations to the nonlinear cell decay (Wei et al., 1995; Ho

et al., 1995; Perelson et al., 1996) and couldn’t capture the biological realities beyond short

time initial time periods. To model longer term behavior, especially long term viral decay, a

nonlinear model is needed (Bonhoeffer et al., 1997).

The models described so far have not included any in-host HIV activated immune response.

From early on in clinical trials and observations from the medical community it was noticed that

individuals that retain a high level of CD8 CTLs remained healthier longer (Carr et al., 1996),

and this motivated the development of models that included a stimulated immune response.

Early models (Menezes Campello de Souza, 1999) for CD8 populations were based on very

simple predator prey relationships which were mathematically convenient but couldn’t accurately

produce observed dynamics. The immune response compartment is expanded in (Adams et al.,

2005), which constructs the immune effector state based on comments and observations made in

(Bonhoeffer et al., 2000), utilizing Michaelis-Menten nonlinearity saturations and a non-zero

steady state. Other immune response models such as those presented in (Wodarz, 2001; Wodarz

and Nowak, 1999) model a more complicated process, tracking not only lysing CTL cells, but

also their immature precursor cells that are incapable of lysing.

2.3 Model Development and Analysis

For the purposes of this work, we settle on a model developed in (Adams et al., 2005), and then

later modified in (Adams, 2005) and elsewhere. The dynamics of the HIV model are described

by the system of nonlinear ordinary differential equations
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Ṫ1 = λ1 − d1T1 − (1− ε1)k1VIT1 (2.3.1a)

Ṫ2 = λ2 − d2T2 − (1− fε1)k2VIT2 (2.3.1b)

Ṫ ∗1 = (1− ε1)k1VIT1 − δT ∗1 −m1T
∗
1E (2.3.1c)

Ṫ ∗2 = (1− fε1)k2VIT2 − δT ∗2 −m2T
∗
2E (2.3.1d)

V̇I = (1− ε2)NT δ(T
∗
1 + T ∗2 )−

(
c+ (1− ε1)ρ1k1T1 + (1− fε1)ρ2k2T2

)
VI (2.3.1e)

V̇NI = ε2NT δ(T
∗
1 + T ∗2 )− cVNI (2.3.1f)

Ė = λE + bE
T ∗1 + T ∗2

T ∗1 + T ∗2 +Kb
E − dE

T ∗1 + T ∗2
T ∗1 + T ∗2 +Kd

E − δEE, (2.3.1g)

with an initial condition vector

[
T1(0) T2(0) T ∗1 (0) T ∗2 (0) VI(0) VNI(0) E(0)

]>
.

The model compartments are denoted by T1 (type 1 target cells, e.g. CD4+ T-cells, cells/µl

blood), T2 (type 2 target cells, e.g. macrophages, cells/µl blood), VI (infectious free viron

particles, RNA copies/µl blood), VNI (non-infectious free viron particles, RNA copies/µl blood)

and E (CD8 cytotoxic T-lymphocytes (CTL), cells/µl blood). Infection occurs readily in a

well-mixed environment through interaction between free viral particles and uninfected target

cells. We denote the infected cell populations with asterisks, e.g. T ∗1 and T ∗2 . A summary of the

model states are given in Table 2.1.

The two target cell populations have possibly different source rates λ1, λ2 with natural death

rates d1, d2. The populations are infected at different rates k1, k2, and is proportional to the

amount of virus in the system. Having two different infection rates could account for the different

activation rates between CD4+ population and macrophage population. The presence of a second

target cell type, T2 satisfies a modeling requirement suggested in (Callaway and Perelson, 2002)

and others: a reasonable HIV model predicts a non-zero steady-state viral load even in the
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Table 2.1: Summary of state variables used in the HIV model.

Variable Description Units

T1 Uninfected type 1 target cells (e.g CD4+ T-cells) cells
µl

T2 Uninfected type 2 target cells (e.g macrophages) cells
µl

T ∗1 Infected type 1 target cells cells
µl

T ∗2 Infected type 2 target cells cells
µl

VI Infectious free virus RNA copies
ml

VNI Non-infectious free virus RNA copies
ml

E Cytotoxic T-lymphocytes (e.g CD8 cells) cells
µl

presence of effective therapy. Because of this, even in the best case with ideal treatment one can

not expect the viral load to be driven to zero, only to be reduced significantly. Infected cells are

removed either by natural death or by a cell-mediated immune response E, described below.

The original Callaway-Perelson model describes several states that we do not include in

our model. These states include a quiescent cell population, chronically infected cells, and a

state representing follicular dendritic cells, which reside in secondary lymphoid organs and have

been found to impede HIV clearance. We omit these model states, as the essential qualitative

behaviors are preserved without these extra states. The important features of the model, such

as a low steady state viral dominated equilibrium and high viral load sensitivities to treatment

are retained even when the other states are removed.

During the primary infection of HIV, large numbers of cells are affected, leading to high

concentrations of free viral particles in blood plasma as well as other cells. These concentrations

can be as high as 107 copies/ml. Free virus particles are produced by both types of infected

cells at a rate that we assume to be matched, though this could easily be generalized. In the

original Callaway-Perelson model, virus only leaves the V compartment through natural death

at rate c. In our model, we assume virus also is removed from V due to infection of the cell

populations. The lack of this clearance mechanism is justified in (Perelson and Nelson, 1999): in

a normal HIV patient the term kiTiV is small compared to cV . They further state that if Ti is
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near constant, then cV accounts for nearly all of the viral clearance from V .

A second important aspect of the model is the immune response state E. This HIV specific

immune response consists of CTLs lysing antigens to HIV infected cells, killing them at rates

m1 and m2 for each class of target cell. The immune response model used in this work does not

directly clear viral particles, and so there is no interaction between the immune compartment

and the virus compartments. In (Banks et al., 2008) the authors extended the model by adding

a second immune effector state that represents CTL cells with memory. While that model

incorporates a greater degree of HIV dynamics, it has been shown in (Adams et al., 2007) that

the model used in this work is sufficient for clinical data fitting and model prediction. A systems

level overview of the model is given in Figure 2.1.

Figure 2.1: Overview schematic of the compartment based HIV model.

External mechanisms by which the virus is controlled (e.g. treatment) are incorporated

into the model. We allow for treatment by reverse transcriptase inhibitors (RTIs) and protease
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inhibitors (PIs). AZT, one of the very first drugs prescribed for the treatment of HIV is an

RTI. PIs cause infected cells to produce non-infectious virions, hence the noninfectious viral

state VNI . Thus when considering treatment that includes PIs, we consider both infectious and

noninfectious viral particles. We note however that even in the absence of a PI there can exist

noninfectious viral particles.

Recently however these multiple drugs have been combined into a single drug, alleviating

some of the stresses of HAART. These treatment factors are given as ε1(t) = ε1u(t) and

ε2(t) = ε2u(t), consisting of efficacy ε1 ∈ [0, 1] corresponding to a reverse transcriptase inhibitor

and ε2 ∈ [0, 1] modeling the effectiveness of a protease inhibitor with a time dependent function

u(t), 0 ≤ u(t) ≤ 1. Because treatment has a reduced efficacy on the second target cell type, we

model treatment for the population of T2, as fε1(t), f ∈ (0, 1). Treatment protocols are always

considered as a combination of both PIs and RTIs, so monotherapy is not considered.

2.4 Nominal Parameters and Model Stability Analysis

The model (2.3.1) contains 22 biologically relevant parameters that must be specified before

numerical simulations can be performed. We evaluate the model at a nominal parameter value

that is justified through literature and past clinical studies; these values are given in Table 2.2.

The parameter values are taken primarily from work done by (Callaway and Perelson, 2002;

Bonhoeffer et al., 2000). Several of the parameters are not available from human or animal data.

The nominal values for λ1, k1, λ2, and k2 are chosen so that several conditions on viral load

and target cell equilibria are satisfied. These conditions are actually not reflected in our model

since we have omitted the chronically infected state from the Callaway-Perelson model, though

it is believed that small adjustments to the parameter values will obtain the same qualitative

behavior (Adams et al., 2005).

The parameters used in the immune response state are not well known, and are chosen

primarily to exhibit expected model behavior in the simulations. The parameters m1,m2 represent

the effectiveness that the immune response E clears the infected cells of the target populations.
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The commonly used value is taken from (Callaway and Perelson, 2002), who noted they obtained

the value from (Nowak and Bangham, 1996).

We proceed by analyzing the three primary aspects of any dynamic system: existence,

uniqueness, and stability. These three aspects have been discussed in depth for the nominal

model parameter in (Adams, 2005; David, 2007) and we will summarize the key results here. In

a later section we discuss the stability of the model equations for the patient specific parameter

estimates.

Table 2.2: Nominal parameter values for the HIV model.

Parameter Value Units Description
λ1 10 cells/mm3 day Target cell type 1 source rate
λ2 0.03198 cells/mm3 day Target cell type 2 source rate
d1 0.01 1/day Target cell type 1 death rate
d2 0.01 1/day Target cell type 2 death rate
k1 8.0× 10−4 mm3/virions day Population 1 infection rate
k2 0.1 mm3/virions day Population 2 infection rate
m1 0.01 mm3/cells day Immune-induced clearance rate for population 1
m2 0.01 mm3/cells day Immune-induced clearance rate for population 2
ρ1 1 virions/cell Average number virions infecting a type 1 cell
ρ2 1 virions/cell Average number virions infecting a type 2 cell
δ 0.7 1/day Infected cell death rate
c 13 1/day Virus natural death rate
f 0.34 ∈ (0, 1) Treatment efficacy reduction in population 2
NT 100 virions/cell Virions produced per infected cell
λE .001 cells/mm3 day Immune effector production (source) rate
δE 0.1 1/day Natural death rate for immune effectors
bE 0.3 1/day Maximum birth rate for immune effectors
dE 0.25 1/day Maximum death rate for immune effectors
Kb 100 cells/ml Saturation constant for immune effector birth
Kd 500 cells/ml Saturation constant for immune effector death
ε1 .7 ∈ (0, 1) RTI efficacy
ε2 .3 ∈ (0, 1) PI efficacy
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2.4.1 Existence and Uniqueness

Showing existence and uniqueness for a set of differential equations ẋ = f(t, x; q) generally

involves showing that the right hand side is Lipschitz continuous in x. By showing existence

here, it allows us to justify the existence of sensitivity equations used later.

Due to product nonlinearities such as k1T1VI , the right hand side of (2.3.1) does not

satisfy Lipschitz continuity. To show existence, these nonlinear terms are replaced by piecewise

differentiable terms that reach a saturation point once viral and cell populations reach a certain

level. To incorporate this saturation, we consider a saturated model ẋs = fs(t, xs), where product

terms of the form axixj , a ∈ R are replaced with a saturation term

asm(xm) =


0, xm < 0

√
axm, xm ∈ [0, xMm ]

√
axMm , xMm < xm.

(2.4.1)

Introducing this term allows us to bound any product nonlinearity in the saturated model

ẋs = fs(t, xs) by axMi x
M
j , and we note that this term is globally bounded and piecewise

differentiable. Whenever the model states are below the saturation limit, the dynamics are

determined by the original equations ẋ = f(t, x; q). To complete the proof, we follow (Adams

et al., 2005) and rewrite the system as

ẋ = S + L(t)x+ h(t, x), (2.4.2)

where S = [λ1, λ2, 0, 0, 0, 0, λE ] are the source terms, L(t)x the terms that are linear in x, and

h(t, x) are the remaining nonlinearities, including the saturation dynamics. There is only one

other nonlinear term in the original dynamics, b T ∗

T ∗+KE, where T ∗ = T ∗1 +T ∗2 . This term, however,

is bounded above by

b
T ∗

T ∗ +K
E ≤ bE. (2.4.3)
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Its derivative with respect to the state is also bounded above by

b
K

(T ∗ +K)2
E ≤ bE

K
, (2.4.4)

for T ∗ ≥ 0. These bounds directly imply that the derivative of the saturated nonlinear term is

bounded above,

‖Dxh(t, x)‖ <∞, (2.4.5)

and thus global Lipschitz continuity can be shown for the modified model

ẋs = f s(t, xs) = S + L(t)xs + h(t, xs) (2.4.6)

as the right side satisfies a global Lipschitz condition:

‖fs(t, ϕ)− fs(t, ψ)‖ = ‖L(t)(ϕ− ψ) + h(t, ϕ)− h(t, ψ)‖ (2.4.7)

=

∥∥∥∥L(t)(ϕ− ψ) +

∫ 1

0
Dxh

(
t, y + s(ϕ− ψ)

)
(ϕ− ψ)ds

∥∥∥∥ (2.4.8)

≤ ‖L(t)‖ ‖ϕ− ψ‖+ ‖Dxh(t, x)‖ ‖ϕ− ψ‖ (2.4.9)

= KL ‖ϕ− ψ‖ . (2.4.10)

Since the dynamics are Lipschitz continuous, the solutions exist and are unique (Perko, 2001).

While the analysis has considered a saturated system, in simulation we use the original dynamics

(2.3.1). Through all of the simulations a situation was never encountered where the state variables

would grow without bound.
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2.4.2 Stability Analysis

There are several steady states that exist for the HIV model under the nominal parameters.

To find the equilibria, we set the treatment to off, ε1 ≡ 0 ≡ ε2 and set the VNI ≡ 0 as it is

uncoupled from the other model states. Equilibrium values are found by solving the system

f(x; q) = 0, where f(x; q) is the right hand side of our model equations. Solving this nonlinear

system of equations symbolically is normally not possible, and numeric root finding methods

must be employed to determine the equilibrium values.

Table 2.3: Steady state values under the nominal parameter with no treatment.

EQ1 EQ2 EQ3

T1 1000 163.57 967.84
T2 3.198 0.005 0.6205
T ∗1 0 11.945 0.0760
T ∗2 0 0.0456 0.0061
VI 0 63919 415.38
VNI 0 0 0
E 0.01 0.0235 353.11

local stability unstable stable stable

For the nominal parameters given in Table 2.2, three physically relevant steady states exist

and are given in Table 2.3. There are other steady states, but are non-physical due to negative

or complex equilibrium values. EQ1 is a healthy, uninfected patient with zero virus. This is

an unstable steady state. The stability of each steady state is determined by a linear stability

analysis, wherein we analyze the eigenvalues of the system Jacobian matrix evaluated at the

steady state value.

When a small amount of virus is introduced, the system will converge to EQ2, where a high

viral load is maintained over time and the immune response is depleted. The model under the

nominal parameters also admits a third steady state EQ3, where an effective immune response
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has developed and successfully suppresses the virus while regaining a healthy level of CD4+

target cells. A more thorough treatment of the different steady states, as well as their sensitivities,

is given in (Adams, 2005).

This third steady state is important because it represents a patient successfully controlling

the virus in the absence of external HAART treatment. A central part of (David, 2007) is

developing an optimal control methodology that would move a patient from EQ2 to EQ3 by

way of a properly chosen control function. For each of the patients in our data set we perform

a stability analysis using the resulting calibrated parameters and determine whether or not a

treatment could be applicable in a clinical setting.

2.5 Numerical Solutions

Because the range of both the state variables and parameter values can vary over several

orders of magnitude, the model is solved and calibrated using a log10 transformed system. We

define the new state variable xi(t, q) = log10 xi(t, q), where xi represents the original, non-log

transformed state. We also log-transform the parameters, q → log10 q, as they also varying

widely in magnitude. The new system of equations are then given by

ẋi(t, q) =
10−xi

ln 10
f(10xi(q), 10q) (2.5.1)

where f is the right hand side of (2.3.1). Performing this substitution puts both the states

and parameters within an order of (log) magnitude of each other, allowing for a more robust

estimation procedure. This transformation also resolves issues of physically unrealistic negative

solutions that occur due to round-off error. These solutions are more likely to happen during an

optimization routine when the optimizer uses ill-chosen parameter values.

Model solutions are calculated with MATLAB’s ode15s integrator with a relative error

tolerance of 10−7. The MATLAB integrator is a BDF-based stiff solver with variable tolerances

(Shampine and Reichelt, 1997). A simulation of an early acute infection is shown in Figure
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2.2. A small number of virus is introduced at t = 0, and the virus replicates to a peak before

converging in a damped oscillation to a steady state. We see the delayed immune response E

peak and damp out; a sustained and effective immune response does not develop.

2.6 Clinical Data Description

The data available has come from a clinical study at Massachusetts General Hospital of over

100 adults with acute HIV infection between 1996 and 2004. The central goal of the study was

to determine the impact and consequences of early treatment initiation in the acute regime;

the researchers wish to understand the role of early treatment in long term viral suppression.

The data collected consists of CD4+ T-lymphocyte count (cells/µl) and RNA viral load (RNA

copies/ml). With respect to the model, the data represents y1 = T1 +T ∗1 for the CD4+ count, and

y2 = VI + VNI for the viral load. The viral load is quantified through different assay techniques;

the standard assay can detect viral loads in the range of 400 to 750,000 copies/ml, while a high

sensitivity assay has a detection range of 50 to 100,000 copies/ml. The high sensitivity assay is

used when a measurement is below the 400 copies/ml lower detection limit for the standard

assay, which can be the case when patients are successfully suppressing the virus.

Each patient in the study underwent combination HAART therapy consisting of three or

more antiretroviral drugs; each specific patient protocol was determined by a qualified physician.

Seven of the fourteen patients in our cohort underwent structured treatment interruptions

according a study protocol. Other patients simply discontinued treatment on their own.

Due to the range sensitivity limits of the assays, the clinical viral load have upper and lower

limits of quantification. The upper limit of quantification is handled through repeatedly diluting

the sample until it falls within a detection range. The lower limit, or left censoring point, directly

affects the observed data and a methodology is required to be able to use this data in the model

calibration. When a data point is returned at a censor point, L1 = 400 copies/ml or L2 = 50

copies/ml, the only available knowledge is that the true measurement is between zero and the

left quantification limit.
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Figure 2.2: Model solutions under the nominal parameter given in Table 2.2. Note the differing
logarithmic scales in each of the plots, and the quick transition to a steady state.
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Data sets for patients 1 and 10 are shown in Figures 2.3, 2.4, respectively. The quantification

limits have been highlighted by horizontal lines. The data points appearing directly on the

horizontal reference lines are said to be censored. In the plots of collected data, the red bars

on the bottom of the plot indicate non-adherence to the treatment regimen, whereas the green

indicates the period of time the patient was on treatment. We collectively refer to this treatment

as the “clinical control.”
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Figure 2.3: Patient 1 data set, with the censor points indicated by horizontal lines, L1 =
log10 400, L2 = log10 50.

In addition to the data being censored at certain time values, the data are also collected at

different time intervals. These intervals also differ between patients. This is visible in Figure

2.3 as well; the observations of viral load and CD4+ may not have been made at the same
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Figure 2.4: Patient 10 data set, with the censor points indicated by horizontal lines, L1 =
log10 400, L2 = log10 50.
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time points. In general for patient j (pt j), we have CD4+ data pairs (tij1 , y
ij
1 ), i = 1, . . . , N j

1

and possibly different viral RNA pairs (tij2 , y
ij
2 ), i = 1, . . . , N j

2 . Given the data available, we

consequently have only reduced observations of the the model solutions.

2.7 Desired Research Outcomes

To this point we have described both the mathematical model and the clinical data at our

disposal. Over the next few chapters, we combine the model and the data to form a calibrated,

patient specific model. In doing so, we build a patient predictive model that can be used with a

variety of different control methodologies, or treatment strategies, that can be used to investigate

the best way to treat a patient to guarantee a certain outcome. In summary:

1. Calibrate the HIV model (2.3.1) parameters to the clinical datasets through an inverse

problem based methodology.

2. Use the calibrated model in conjunction with optimal control theory to develop new,

patient specific treatment strategies.

3. Compare the optimal strategies with the clinical control.
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CHAPTER 3

Methodology of Model Calibration & Validation

Our first goal is model calibration and validation; this occurs when we fit the model parameters

to the clinically collected data so that the resulting model trajectories match the data. Termed

the inverse problem, model calibration is present in many areas of engineering and other physical

problems. For a good overview of the inverse problem methodology and process, see (Banks and

Tran, 2009) and the references therein.

In general, inverse problems are difficult problems to solve. Nonlinear and ill-posed problems

are nearly the norm when confronting inverse problems. Additionally, not all parameters and

states may be directly measurable or even observable, and the data available may be noisy and

sparse. These problems in general may not have a unique solution, and require problem-specific

expertise to solve. A summary of these uniqueness issues as well as stability considerations is

given in (Aster et al., 2005).

Before rigorous parameter estimation techniques can be applied to any nonlinear ODE model,

a large issue that must be overcome is the identification of which parameters, or subset of

parameters, are identifiable given the available data. This question can be extended to investigate
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how the data affects identifiability; e.g. determining at which time points having more data

would lead to increased parameter identifiability. To address these issues, identifiability analysis

is the first a priori step in model calibration and validation.

In this chapter we develop and discuss a few of these methods that are used in this work to

identify the HIV model parameters to fit the clinical data, including calculus based sensitivity

analysis, identifiability analysis, and methods for subset selection.

To develop these theories, we will motivate the analysis through the use of some low-dimension

examples before addressing the general cases that we apply to this work.

3.1 Calculus Based Sensitivity Analysis

Sensitivity analysis is the study of the response of the system to small perturbations in data and

system parameters. This analysis forms the basis of analysis of inverse problems, as it determines

which parameters most affect system output. However we will find that even though a parameter

is sensitive in some context, this does not mean that it may be uniquely identified from data or

observations. In the past, sensitivity analysis was primarily used in the analysis of the forward,

or simulation, problem when one needed to understand the effects of parameter perturbation on

the output. In recent years sensitivity analysis has become a de-facto part of inverse problem

analysis, partly because it directly aids in uncertainty analysis. When physiologically based

mathematical models are developed, the parameters typically have biological relevance, and

thus one may wish to estimate these parameters from data. Sensitivity analysis can also aid in

the optimal design of experiments and improved data collection (Banks et al., 2007).

We have not addressed generalized sensitivity analyses, which provides an information-

theoretical viewpoint of sensitivity analysis and can offer insight on the dependence of parameters

on the model output. These functions also provides correlation information on which portions of

data contain the most information for parameter estimations (Thomaseth and Cobelli, 1999;

Batzel et al., 2007; Kiparissides et al., 2009; van Griensven et al., 2006).
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Consider a function y(q). The derivative dy
dq , defined as

y′(q̂) = lim
h→0

y(q̂ + h)− y(q̂)

h
, (3.1.1)

at a point q̂ determines how much y changes as q changes near q̂. Large absolute values for y′(q̂)

indicate large changes in y near q̂, whereas small values of y′(q̂) indicate small changes in y, as

presented in Figure 3.1.

y(q)

y' - large

y' - small

small change in q           large change in y

large change in q          small change in y

Figure 3.1: A function y(q) and corresponding derivative y′(q).

3.1.1 Direct Computation

Sensitivity functions can be computed in several different ways, each with varying degrees of

accuracy, tedium, and computational time. Consider a simplified HIV model (Fink et al., 2007),
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Ṫ = λ− dT − kV T

Ṫ ∗ = kV T − δT ∗

V̇ = NδT ∗ − cV,

(3.1.2)

with observation function

y(t) =

 T1 + T ∗1

VI + VNI

 . (3.1.3)

This model neglects a second type of target cells and assumes no treatment nor immune

response, and we use parameter values that are identical for the larger, seven state model. The

state variables are the same as given in Table 2.1, and we take q = [λ, d, k, δ,N, c]. If we wanted

to calculate

∂y

∂k
=

 ∂T1
∂k +

∂T ∗
1

∂k

∂VI
∂k + ∂VNI

∂k

 , (3.1.4)

we could do so directly by taking derivatives,

∂

∂k

dT

dt
=

∂

∂k
(λ− dT − kV T ) (3.1.5)

d

dt

∂T

∂k
= −d∂T

∂k
− V T − k

(
∂V

∂K
T + V

∂T

∂k

)
. (3.1.6)

In the above calculation, the quantity of interest is ∂T
∂k , though we now need expressions for

∂V
∂K and ∂T

∂k . We have also exchanged the order of differentiation on the left hand side, as we

have implicitly assumed sufficient continuity requirements. Equation (3.1.6) is now a differential

equation in ∂T
∂k that would be solved by standard numerical integration techniques. To integrate

27



(3.1.6) an initial condition is required, and we take

∂T

∂q
(0) = 0,

∂T ∗

∂q
(0) = 0,

∂V

∂q
(0) = 0, (3.1.7)

implying that the initial conditions for the states do not depend on the parameters.

Calculating sensitivities using this method is tedious and fraught with potential errors. Using

a symbolic algebra system such as Maple could reduce the chance of an error being made,

however the resulting set of equations would undoubtedly be unwieldily. In general, we are

interested in the calculation of all sensitivity functions. For a system of n equations with m

parameters, this leaves us with mn differential equations to be solved along with the original

n equations. A more systematic method is required while still maintaining a high degree of

accuracy.

The system (2.3.1) of differential equations can be written in the form

dx(t)

dt
= f

(
x(q), t;q

)
, x(t0) = x0, (3.1.8)

with observation function

y(t) = g(x(t)). (3.1.9)

Here, x ∈ Rn is a vector of the state variables T1, . . . , E with y ∈ Rp. We assume the parameter

vector q ∈ Rm to be constant over time, though theory exists for cases when the parameters are

considered functions rather than just constant values.

The sensitivity equations are formed by implicitly differentiating both sides of (3.1.9) with

respect to q by way of the chain rule,

∂y

∂q
=
∂g

∂x

∂x

∂q
. (3.1.10)

These are the output sensitivities, and are in terms of the state sensitivities ∂x
∂q . These equations
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are obtained by differentiating (3.1.8) also with respect to q. We again exchange the order of

differentiation as we have implicitly made sufficient continuity assumptions. The mn sensitivity

equations are then given by

d

dt

∂x(t)

∂q
=
∂f

∂x

∂x

∂q
+
∂f

∂q
, (3.1.11)

which is a linear, matrix differential equation in ∂x
∂q . The calculation of the terms ∂f

∂x and ∂f
∂q must

still be handled. These terms can either be calculated through manual techniques as discussed

earlier and in (Valdez-Jasso et al., 2009), or by way of Automatic Differentiation (AD).

AD is essentially a systematic, numerical implementation of the chain rule of differentiation

(Griewank, 1989; Verma, 2000). No matter how complicated a mathematical function is, it

is still a combination of elementary functions such as trigonometric functions, addition, and

multiplication. The derivatives of these functions are known and the total derivative is computed

by table lookups and tracking all of the functional compositions. AD takes derivatives as people

do: through product, quotient, and chain rules and provides a derivative that is numerically

accurate to floating point (Carmichael et al., 1997). There is no sacrifice in accuracy as there is

in finite difference methods, and AD can be relatively straight forward to implement. In our

work, we have used a combination of AD and finite difference methods to compute the sensitivity

functions.

3.1.2 Initial Condition Sensitivities

Because the initial model states are unknown for each patient, we must also estimate the

initial conditions for the model. Doing so requires the formulation of initial condition sensitivity

equations, or how the states respond to perturbations in initial condition. To construct these n2

equations we differentiate (3.1.8) with respect to x0. After exchanging the order of integration,
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we have

d

dt

∂x(t)

∂x0
=
∂f

∂x

∂x

∂x0
. (3.1.12)

These equations are coupled with the original sensitivity and state equations yielding a system

of n+mn+ n2 differential equations,

dx(t)

dt
= f(x(q),q)

d

dt

∂x(t)

∂q
=
∂f

∂x

∂x

∂q
+
∂f

∂q

d

dt

∂x(t)

∂x0
=
∂f

∂x

∂x

∂x0
,

(3.1.13)

which would then be integrated in forward time giving the sensitivity functions. The Jacobian

matrices ∂f
∂x and ∂f

∂q could either be computed and stored prior to integration, or computed on

the fly with AD.

We assume a zero initial condition for the parameter sensitivity equations (3.1.11) at time

t = t0, as the initial conditions for model states are not parameter dependent and a unity initial

condition for the initial condition sensitivities (3.1.12), since ∂x(t)
∂x0

∣∣
t=t0

= ∂x0
∂x0

= 1.

3.1.3 Finite Differencing

A final method of calculation of the sensitivity equations, and the method used in this research,

is finite differencing. Consider the Taylor series of order n of a scalar valued function f ,

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) + · · ·+ hn

n!
f (n)(x). (3.1.14)

The derivative f ′(x) can then be written in terms of the higher order terms,

f ′(x) =
f(x+ h)− f(x)

h
+O(h). (3.1.15)
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Equation (3.1.15) is referred to as the forward difference, whereas

f ′(x) =
f(x)− f(x− h)

h
+O(h) (3.1.16)

is called the backwards difference. Combining these two we obtain the central finite difference,

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2). (3.1.17)

The central difference has the distinct advantage of being accurate on an order of h2, versus

order h for the forward and backward differences. This accuracy however comes at the cost

of requiring an additional function evaluation. When we neglect the higher order terms, the

difference approximations will be close to the true derivative value for sufficiently small steps h;

as h→ 0, the finite difference approximations mathematically converge to the true derivative.

We are careful to note that this convergence occurs in a mathematical sense, however not

in a numerical sense. Reducing the step size h to an arbitrary small value can introduce large

amounts of floating point based error into the approximation, providing diminishing returns.

Managing the step size h becomes nontrivial, especially because parameter values of interest

can be on different orders of magnitude and the step size must scale accordingly. In (Dennis Jr.

and Schnabel, 1996) it is shown that a good choice for h in forward and backward differencing

schemes is h =
√

macheps ·x; for central differencing schemes a good value of h = (macheps)1/3x.

These values are given in terms of macheps, which is the relative error in computing f(x). These

values minimize the round-off and machine error in the calculations.

For our calculations, the sensitivity functions are computed using a central finite difference

approximation,

∂y

∂qi
=

y(qi + hei)− y(qi − hei)
2h

+O(h2), (3.1.18)

where y are the observations of the state solutions as computed from the integrator, and ei is
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an elementary basis vector which is all zeros except for the ith slot, where the value is 1.

3.1.4 Sensitivity Rankings

After the sensitivity functions have been calculated, we need a way to compare the sensitivity

of one parameter to another. Since parameters in a model are often of different units, we first

non-dimensionalize the parameters by multiplying by the parameter value,

∂yi
∂qj

qj . (3.1.19)

To improve the scaling of the functions, we also divide by the maximum value of the state

variable. Finally, we take the L2 norm, generating sensitivity coefficients,

Cij =

∥∥∥∥∂yi∂qj

qj
max yi

∥∥∥∥2

2

=

∫ tf

t0

∣∣∣∣∂yi∂qj

qj
max yi

∣∣∣∣2 dt ∈ R. (3.1.20)

Once these ranking values are computed, we can effectively compare the overall effect of one

parameter on system output to another. Typically it is at this point that the parameters are

ranked in descending order of sensitivity, beginning to give insight into the overall system

identifiability. Some of the simplest identification techniques state simply that the larger the

coefficients, then the more dramatic the system output with respect to that parameter and

therefore a parameter is more likely to be identifiable when there is a greater sensitivity. As we

will discuss in the next section, this is not always the case.

3.2 Identifiability Analysis

Sensitivity analysis as we have defined it so far is a local concept based around perturbations

of parameters and initial state values. The sensitivity of a parameter is only one of many

considerations that determines whether or not a parameter can be identified from data. Some

parameters may have a very weak effect on the measured output, and successful estimation
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is unlikely. However due to model structure and lack of measurements, parameters may also

be unestimatable. The ideal estimation problem assumes an error free model and error free

data. Since this is not often the case, we use identifiability analysis to shed light on how (the

imperfect) model structure and available (noisy) data impact the ability to estimate parameters.

In that sense, the identification problem is conditioned on the experiment. Identifiability is a

basic system property, is theoretical in nature and is part of an a-priori analysis to parameter

estimation (Li et al., 2004).

Identifiability in relation to HIV models have been considered in several works, (Xia and

Moog, 2003; Xia, 2003; Wu et al., 2008; Guedj et al., 2007), though, in general, have been

concerned with lower dimensional models and have not included clinical data. Indeed, many of

the methods developed in these works simply do not easily scale to higher dimensional models

such as ours. An excellent paper detailing identifiability issues in relation to viral dynamic

models is (Miao et al., 2011). The authors define a system to be identifiable if the parameter q

can be uniquely determined from the system input u(t) and the measured system output y(t).

Otherwise, the system is said to be unidentifiable. In (Ljung and Glad, 1994), the definition

distinguishing between globally identifiable, which states any two parameters q1,q2 are globally

identifiable relative to system output y(q), we have y(q1) = y(q2) ⇐⇒ q1 = q2. Local

identifiability is similar, though the result holds only in a local neighborhood about some point

q∗.

We will follow a similar structure to (Miao et al., 2011), detailing the prior work in structural

and practical identifiability before addressing the methodology used in this research, sensitivity-

based identifiability analysis.

3.2.1 Structural Identifiability

Structural identifiability was first introduced in (Bellman and Åström, 1970), and explores how

system structure, i.e., the model itself, affects parameter identifiability. These methods are not

yet in widespread use, due to either computational complexity or the lack of effective evaluation
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algorithms. To motivate how model structure can affect parameter identifiability, consider a

system of equations describing radioactive marking of tumor cells. In this example, marked

tumor cells are added in-vivo to the blood stream and the levels of cancer cells are measured

over time. The system can be represented as

ẋ1 = −δ1x1 − δ2x1 (3.2.1)

ẋ2 = δ2x1 − β1x2, (3.2.2)

where x1, x2 are the number of marked cells in two different environments such as capillaries

and the lung. The parameters q = [δ1, δ2, β1] are terms that regulate transfer rates between

the two model states. Note that the first state can be written as ẋ1 = −(δ1 + δ2)x1, and so

in estimation one is only truly able to estimate the sum term δ1 + δ2, rather than each term

independently and uniquely. This model is structurally unidentifiable.

Consider a second model, for drug concentration:

ẋ(t) = −p1x(t) + p2u(t), (3.2.3)

with observation y(t) = p3x(t). Here, x(t) is the drug concentration and the drug input is u(t).

The solution is given by, where we assume x(0) = 0,

y(t) = p3p2

∫ t

0
e−p1(t−s)u(s)ds, (3.2.4)

and we are left with the unidentifiable product term p3p2, despite not explicitly having a product

term in the original dynamic equation. This model is also unidentifiable.

It is these kinds of analyses that structural identifiability addresses. For general nonlinear

models, frameworks consisting of differential algebras have been developed (Ljung and Glad,

1994). Differential algebra methods are applied to biological systems in (Audoly et al., 2001).

A more direct method of addressing structural issues is given in (Xia and Moog, 2003), and is
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based on the implicit function theorem. Termed algebraic identifiability, the authors develop an

identification function, proceed to show how parameters can be identified by solving algebraic

equations based only on the initial conditions and the output variables. This function is derived

by eliminating the unobserved state variables by taking higher order derivatives of the right

hand side equations. A matrix, aptly named the identification matrix is formed by taking partial

derivatives of these equations with respect to the unknown parameters. If this matrix is of full

rank, then the parameters are identifiable. This method has been applied to models of up to

dimension six (Miao et al., 2008; Xia and Moog, 2003). This method requires the construction

of relatively large matrices and assumes a well conditioned rank test. As we discuss in a later

section, these matrices are not singular, but rather nearly singular, and an informed decision is

needed to declare the rank.

3.2.2 Practical Identifiability

Structural identifiability analysis is prefaced on two already mentioned tenants: that the model

is perfect and uncorrupted, and that the data are exact and have no noise nor error. Given

the undeniable fallacy of these assumptions, analysis is required beyond the structural level

to determine parameter identifiability. It is in practical identifiable analysis where we begin to

take the experiment vis a vis the data into account and build upon the structural analysis. We

note that if a parameter is determined to be structurally unidentifiable, no amount of practical

analysis will change that. Conversely, should a parameter be structurally identifiable, practical

analysis may yield an unidentifiable result.

Practical identifiability analysis analyzes whether parameters identified as structurally

identifiable can be estimated from the data with acceptable accuracy. In contrast to the structural

analysis, this is a posterior (in relation to the experiment) analysis. The next subsections detail

specific techniques to this end.
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3.2.3 Sensitivity-Based Identifiability Analysis

In addition to parameters being insensitive and thus difficult to estimate, parameters may also

be correlated. If there is a large correlation between parameters then the two parameters are

likely to be indistinguishable. These dependencies can be analyzed and handled through analysis

of the sensitivity function matrix.

This matrix is defined for outputs y1(t), . . . , yp(t) with respect to parameters q = [q1, . . . , qm]>

at the time points t = (t1, . . . , tn) by the pn×m matrix

S(q, t) ≡



s1,1(q, t1) · · · s1,m(q, t1)

s1,1(q, t2) · · · s1,m(q, t2)

...
. . .

...

s1,1(q, tn) · · · s1,m(q, tn)

s2,1(q, t1) · · · s2,m(q, t1)

...
. . .

...

sp,1(q, tn) · · · sp,m(q, tn)



, si,j(q, tk) =
∂yi(tk)

∂qj
. (3.2.5)

The sensitivity matrix S represents the classical mechanism of sensitivity analysis (Frank, 1978;

Eslami, 1994). A nominal parameter value is required for the evaluation of the sensitivity matrix,

thus identifiability analysis based on sensitivity methods is evaluated with respect to a specific

point in the parameter space. Consider the first order Taylor series expansion of the system

response near a nominal parameter value q∗,

y(q) = y(x(tk),q)

≈ y(x(tk),q
∗) +

∂y(x(tk),q)

∂q

∣∣∣∣
q=q∗

(q− q∗), (3.2.6)

where in our notation S = ∂y(x(tk),q)
∂q

∣∣
q=q∗ . Let ŷk denote a model observation, e.g. a measurement

at time tk and 4q = q− q∗. The residual sum of squares between the model observations and
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the linear approximation (3.2.6) is

RSS(4q) =
N∑
k=1

[
ŷk − yk(q

∗)− ∂y(x(tk),q)

∂q

∣∣∣∣
q=q∗
4q

]2

=
N∑
k=1

[
∂y(x(tk),q)

∂q

∣∣∣∣
q=q∗
4q

]2

, (3.2.7)

where we have assumed that the residuals rk = ŷk − yk(q
∗) are small and negligible. Rewriting

(3.2.7) in terms of the sensitivity function matrix S, we have

RSS(4q) = (S4q)>S4q, (3.2.8)

which has a minimum when (S>S)4q = 0. The matrix S>S is referred to as the Fisher

Information Matrix, and is a first order approximation to the Hessian of the cost function in

an ordinary least squares sense. It follows that the parameters q are locally identifiable if and

only if the column rank of the matrix S is equal to m, or equivalently det(S>S) 6= 0. If S>S is

full rank, then (S>S)4q = 0 has a unique solution, ∆q = 0, and q = q∗ implying that q is

locally identifiable at q∗. If S>S is singular, then there exists a nontrivial solution q 6= q∗, and

the model parameters are not identifiable at q∗.

It is clear that identifying q is contingent on F being full rank. It is typically the case,

especially when working with complex compartment models the matrix F is not exactly singular.

However F is often nearly singular, in the sense that its smallest singular value is much smaller

than the largest singular value of F . The numerical rank of a matrix offers a measure of linear

independence in the columns of a matrix. To compute the numerical rank of the matrix, we use

the following measure with ε = ε‖F‖, the floating point accuracy at ‖F‖. This is a version of the

equation presented in (Golub et al., 1976).

rank(A, ε) = max

{
i s.t.

|σi|
|σ1|

> ε ‖A‖m
}
, (3.2.9)
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where σi are the singular values of the matrix, with σ1 ≥ σi ∀i > 1, and m is the number

of columns. The calculation of the numerical rank is highly dependent on the tolerance used,

especially when the spectrum is relatively smooth with no obvious breaks or gaps. The spectrum

of the information matrix for two of the patients in the data set are given in Figures 3.2 and

Figure 3.3. The obvious break in the spectrum continuity for patient 1 determines the numerical

rank of the matrix to be 9. For patient 4, the spectrum is smoother and we must rely on only

the error tolerance of the rank estimate; the sensitivity to the tolerance is higher. In this case,

the rank of the matrix is given as 6.
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Figure 3.2: Spectrum of S>S for pt 1. The gap in the continuity of the spectrum between
parameter indices 9 and 10 determine the numerical rank of the matrix to be k = 9.

When the matrix F is of numerical rank k, we say that only k parameters are identifiable,

as k parameters form a mostly linearly independent spanning set. The question then becomes

which k parameters are identifiable, and this is answered through subset selection.
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Figure 3.3: Spectrum of S>S for pt 4. The gap in the continuity of the spectrum between
parameter indices 6 and 7 determine the numerical rank of the matrix to be k = 6.

3.3 Subset Selection

A number of approaches have been developed and used to find an identifiable subset of parameters.

In addition to parameters being insensitive, parameters may also be correlated, which also

reduces identifiability (Thompson et al., 2009; Miao et al., 2011; Jacquez, 1972; Daun et al., 2008).

Methods of subset selection seek to determine which grouping of parameters are identifiable

in some sense, and are typically based on methods of maximizing linear independence in the

sensitivity matrix. In this section we briefly discuss some common methods and algorithms for

subset selection before settling on the method used in this work.

3.3.1 Structured Correlation Analysis

Subset selection based on correlation analysis relies on the analysis of the system correlation

matrix. Assume that a parameter estimate q̂ has been computed by fitting the observations to
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the model through a least squares process. The correlation matrix R has the form

C(q) =



r11(q̂1, q̂1) r12(q̂1, q̂2) · · · r1m(q̂1, q̂m)

r21(q̂2, q̂1) r22(q̂2, q̂2) · · · r2m(q̂2, q̂m)

...
. . .

rm1(q̂m, q̂1) r12(q̂m, q̂2) · · · rmm(q̂m, q̂m)


, (3.3.1)

where rij , i, j = 1, . . . ,m, rij ∈ [−1, 1] are the correlation coefficients between parameter

estimates q̂i and q̂j . A strong correlation between two parameters is indicated if |rij | is near 1.

We use the term “near”, as there is currently no theory nor empirical rule as to what constitutes

a correlated parameters. The derivation for correlation matrix expression is given in (Daun et al.,

2008; Rodriguez-Fernandez et al., 2006), where it is again used in a subset selection context.

This method uses at its base the Fisher information matrix, also known as the model Hessian.

For a dynamic system of the form (3.1.8, 3.1.9), the Fisher matrix is formally given as

F =
N∑
k=1

∂y(x(tk),q)

∂q

>
Σ−1∂y(x(tk),q)

∂q
(3.3.2)

= S>Σ−1S, (3.3.3)

where Σ is the measurement covariance. The Fisher matrix also provides the lower bound of

variance of the parameter estimates according to Cramèr-Rao theory (Rao, 1945), and is equal

to the inverse of the correlation matrix. That is,

C = F−1 (3.3.4)

for detF 6= 0. The correlation coefficients in matrix C are given by

rij =
Cij√
CiiCjj

, i 6= j (3.3.5)
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and 1’s on the diagonal. The correlation matrix is also used to derive the standard errors, and

this is discussed in section 3.4.1. In (Cintrón-Arias et al., 2009), the correlation matrix is used

to compute what the authors term a vector of “coefficients of variation” ν(q) ∈ Rm,

νi(q) =

√
C(q)ii
qi

. (3.3.6)

A selection score α(q) is then defined as |ν(q)| and parameters with high scores are suggested

as having wide variability in at least some of their estimates, whereas α(q) near zero indicates

lower uncertainty. One method of subset selection in (Olufsen and Ottesen, 2011) involves

findings parameters with correlation values |cij | > 0.9, and sequentially removing parameters

from estimation until the remaining parameters all have correlation values |cij | < 0.9. The

correlation matrix for patient 8 is shown in Figure 3.4.

Using the correlation matrix to assess parameter identifiability assumes a well-conditioned

Fisher matrix, which as discussed in section 3.2.3, may be difficult to assume.

3.3.2 Subset Selection Using Rank-Revealing QR

Subset selection through QR based methods follows on SVD based techniques put forth in (Golub

and Loan, 1996). Subset selection with QR seeks to determine the most linearly independent

columns of the Fisher matrix F . The parameters corresponding to these columns are termed the

identifiable subset. This is a rank-revealing QR, and a strong algorithm is developed in (Gu and

Eisenstat, 1996), and described and summarized in (Pope, 2009).

The rank revealing nature comes from a column pivoting process inside the QR algorithm.

Given a matrix A ∈ Rm×n, m ≥ n, the factorization with pivoting builds an orthogonal matrix

Q ∈ Rm×m, an upper triangular matrix R ∈ Rm×n, and a permutation matrix P ∈ Rn×n such
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Figure 3.4: Correlation matrix for parameter estimates for patient 8 with no subset selection.
The warmer colors indicate high parameter correlation.
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that

AP = QR =

[
Q1 Q2 Q3

]
R11 R12

0 R22

0 0

 . (3.3.7)

The matrices are constructed in the following process:

1. Initialize: i = 1, P = I,R = A = R22, Q = I.

2. Find j, the index of the column of R22 with greatest 2-norm.

3. Swap columns i and i+ j − 1 in P and in R.

4. Use an orthogonal transformation Qi that triangularizes the first i columns of R and

assures non-negativity on the diagonal.

5. Update: Q = QQ>i , R = QiR.

6. Repartition into 
R11 R12

0 R22

0 0

 ,
where the first block R11 is moved left most at step i.

7. Update the counter i, and repeat steps 3 through 6 n− 1 times.

The orthogonal transformations at step five can be achieved through methods such as

Gram-Schmidt, Householder transformations, or Givens rotations. The choice of norm used in

step 2 is not unique. In (Kappel, 2009), different procedures of computing the QR factorization

are outlined, and 1,2, and supremum norms are compared for the column selection step. It is

shown that selection of the norm varies the permutation matrix P in some instances.

Another method of subset selection using QR utilizes a singular value decomposition prior

to QR factorization to determine the numerical rank of the matrix F in a manner similar to
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(3.2.9). A subset selection algorithm based on using SVD followed by QR with column pivoting

is given next.

1. Given a Fisher matrix F , compute the numerical rank k.

2. Compute the eigen-decomposition of F = V ΛV >, with Λ a diagonal matrix of eigenvalues

with corresponding eigenvectors as the columns of V .

3. Partition the eigenvector matrix V so that V = [Vk Vm−k], where Vk are the first k

eigenvectors.

4. Use QR with column pivoting on V >k so that V T
k P = QR.

5. Use the partition matrix P to reorder the parameters in q, qρ = P>q.

The identifiable parameters are then taken as the first k entries in qρ. Using the model Hessian

F in conjunction with SVD and QR is a process that is used in (Burth et al., 1999) in one of

the earlier subset selection problems. This method is extended in numerous places, including

(Miao et al., 2011; Olufsen and Ottesen, 2011; Vélez-Reyes, 1992; Heldt, 2004).

3.3.3 Subspace Selection

In this work we utilize a method based on minimizing distances between parameter subspaces

and the eigenspace of the model Hessian S>S. This methodology is similar in principle to the

orthogonal method described in (Yao et al., 2003), and seeks to examine the linear dependencies

of the columns of F . Rather than use correlation based information, the method calculates

the spanning distance of one column to the vector space spanned by the other columns. This

methodology is first developed in (Kappel, 2009), and then expanded and described in detail in

(Olufsen and Ottesen, 2011), and we reproduce the key results and notation here.

Subspace selection methods discussed thus far utilize the singular values of the Fisher

matrix and the QR decomposition, where the parameter space is partitioned into an identifiable

and non-identifiable subset. We begin this method by writing F = V ΛV >, where Λ is a
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diagonal m×m matrix of eigenvalues, and the columns of V the eigenvectors. We first partition

the sorted (from lowest magnitude to highest magnitude) eigenvalues and eigenvectors into

two groups, {λ1, . . . , λk} and {λk+1, . . . , λm} and the corresponding eigenvectors {v1, . . . , vk}

and {vk+1, . . . , vm}. These two groups correspond to the parameters which can and can not

be identified, respectively. Then we denote the subspace spanned by the first k eigenvectors

Wa = span{v1, . . . , vk}. The corresponding matrix Wa = [v1, . . . , vk] then has rank k and

indicates the identifiable subspace. Therefore, Wa is the orthogonal projection onto the subspace

Wa.

The subspace, which when taken from all subspaces of dimension k spanned by canonical

basis vectors is closest in distance to Wa, is the subset of identifiable parameters. We compute

all possible subspaces spanned by k canonical basis vectors, E = span{ei1 , . . . , eik s.t. 1 ≤ i1 <

· · · < ik ≤ m}. The total number of subspaces is denoted |E|, and is equal to
(
m
k

)
.

We move next to define a metric on all subspaces of dimension k so as to determine the

minimal distance. Let S1 and S2 be subspaces of Rn with dimS1 = dimS2 = k and let Pi be

the orthogonal projection onto Si, i = 1, 2. The distance between S1 and S2 is then defined as

dist(S1, S2) = ‖P1 − P2‖2. Note that dist(·, ·) defines a metric on any set of subspaces of Rn

with the same dimension. We then have the following key result.

Let W,Z be orthogonal matrices in Rn×n and assume they are partitioned as W =

[W1 W2], Z = [Z1 Z2], where W1, Z1 ∈ Rn×k and W2, Z2 ∈ Rn×n−k. Then for the subspaces

S1 = image W1 and S2 = image Z1, we have dist(S1, S2) =
∥∥W>1 Z2

∥∥
2

=
∥∥Z>1 W2

∥∥
2
. This result

is provided by Theorem 2.6.1 in (Golub and Loan, 1996).

The subset of k identifiable parameters is then the subspace spanned by the canonical

basis vectors which is closest in distance to Wa. This is performed by minimizing the distance

dist(Wa, E(i)k) ∀E(i)k ∈ E . Here the notation (i)k represents an ordered multi-index of length k,

(i)k = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ m. This algorithm can be summarized as follows.

1. Given a parameter vector q, compute the sensitivity matrix S and the Fisher matrix

F = S>S.
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2. Compute the numerical rank k of matrix F .

3. Compute the eigenvalue decomposition F = WΛW>, and partition the matrix of eigen-

vectors into W = [Wk Wm−k]

4. Calculate Wa = span{W1, . . . ,Wk}.

5. Generate all subspaces spanned by the canonical basis vectors E(i)k = span{e1, . . . , ek},

and calculate the distance to Wa given by
∥∥(W>a )E(i)k

∥∥
2
.

6. Find the subspace with the smallest spanning distance over all E(i)k , and pick out the

associated parameters.

This procedure will give you a subset of parameters whose span is closest to the eigenspace

corresponding to the k most significant values. The subsets that are selected by the subspace

selection algorithm, and the others, are not necessarily unique, and can (frequently) include

non-sensitive parameters.

The subset of identifiable parameters is denoted ρ, with the subset of non-identifiable

parameters ρ. The parameters in ρ can be fixed to some nominal literature values. While this

may not affect system output, fixing these parameters introduces a statistical bias into the

parameter estimates. In this work, rather than fixing to a nominal a-priori value, we perform

a limited (in iteration) global based optimization process and fix the parameters given in ρ

to these results, reducing parameter bias. This process is explained in detail in section 4.2. In

(Banks et al., 2008), the non-estimated parameters were fixed to population averages, rather

than a patient specific estimate as in this work.

3.4 Combination Subset Selection and Sensitivity Analysis

The subset selection techniques up to this point may yield parameters that, while being linearly

independent in some sense, may not be sensitive in the model output and thus (still) difficult to

estimate. We would ultimately like to have a subset of sensitive and identifiable parameters,
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and this can be accomplished by applying the subset selection methodology and comparing the

results to the sensitivity analysis, and then successively reapplying the subset algorithms to a

smaller, more sensitive group of parameters. Formally, this is accomplished as follows:

1. Perform subset selection sensitivity analysis, and numerical rank calculations on the entire

set of parameters. For purposes of this algorithm, we will denote the k most sensitive

parameters ρ∗, where k is the numerical rank of the Fisher matrix.

2. Remove the least sensitive parameter in the identifiable subset by fixing it to a literature

or other value.

3. Reapply the subset algorithm to the reduced subset of parameters.

4. Continue steps 2 and 3 until the identifiable subset contains only parameters that are in

the original set ρ∗.

This process will yield a subset of parameters that are linearly independent and sensitive. In

practice, this involves regenerating a new, smaller, sensitivity matrix at each iteration. As a

result, the numerical rank k can change over iterations, however when performing our simulations

we keep k as the original numerical rank of the full sensitivity matrix.

3.4.1 Standard Error Analysis & Correlation Coefficients

One method of determining the effectiveness of different parameter estimation techniques is to

look at the so-called standard errors of the resulting model predictions. To develop this idea

mathematically we follow the notation in (Banks and Tran, 2009).

Consider a generic statistical model given by

Yk ≡ f(tk, q0) + Ek, k = 1, . . . , n, (3.4.1)

where f(tk, q0) is the dynamic model for the observations of the true states given the “truth”

parameter q0 ∈ Rp. The observations are corrupted by errors Ek which are assumed to be
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independently and identically distributed (i.i.d) random variables with zero mean and variance

σ2
0, where σ2

0 is unknown. The observations Yk are therefore random variables with mean f(tk, q0)

with variance σ2
0.

To determine the unknown parameter value q, an ordinary least squares (OLS) process can

be used. We use the realizations {yk} of the process {Yk} along with the model to compute q∗

where

q∗ = arg min J(q) =

n∑
k=1

(
yk − f(tk, q)

)2
. (3.4.2)

Since Yk is a random variable, so is q∗, with a distribution called the sampling distribution.

This distribution characterizes all possible values that q∗ could take on for a fixed data set of

length n. The standard errors of q∗ quantify the uncertainty in the estimation of q∗ for a given

data set and estimate of q∗.

The sample distribution can be estimated by a p-multivariate Gaussian distribution (with

asymptotic convergence to distribution) with mean q0 and covariance matrix Σ0 ≈ σ2
0

(
S>(q0)S(q0)

)−1
,

where S(q0) is the local, regular sensitivity matrix evaluated at q0. Therefore for n large, the

sampling distribution approximates

q∗(Y ) ∼ Np(q0,Σ0) ≈ Np
(
q0, σ

2
0

(
S>(q0)S(q0)

)−1)
. (3.4.3)

We have already discussed methods to compute the sensitivity matrix S, and to compute σ2
0 we

can use the simple approximation

σ2
0 ≈ σ̂2 =

1

n− p

n∑
k=1

(
yk − f(tk, q

∗)
)2
. (3.4.4)

Standard errors are then given by the square-root of diagonal elements of the covariance matrix
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(Casella and Berger, 2002),

ek(q) =
√

Σkk(q), k = 1, . . . , p. (3.4.5)

These errors can be used to construct confidence intervals at the normal 100(1− α)% level. The

confidence measure is defined as

P{q − t1−α/2ek(q) < q0 < q + 1tα/2ek(q)} = 1− α, (3.4.6)

where α ∈ [0, 1] and t1−α/2 ∈ R+. For small values of α, such as 0.05, the values t1−α/2 are

pulled from a student’s t distribution with n− p degrees of freedom.

3.5 Inverse Problem Formulation & Censored Data

We wish to use the HIV model given in (2.3.1) to describe clinically collected data and to make

patient specific predictions. Before this can be done we must calibrate the model parameters to

the clinical data through the inverse problem methodology.

The inverse problem is patient specific; we use data from a single patient j in order to

estimate the patient specific parameter value qj . Whereas in prior sections we have used ŷ(tk)

to denote model observations, we now switch notation, letting zs(t
ij
s ), s = 1, 2 denote the model

observation for patient j, output s, at time index i. The goal function is given by

q?j = arg min J(q) =

2∑
s=1

1

N j
s

Nj
s∑

i=1

∣∣zs(tijs ; q)− yijs
∣∣2 , (3.5.1)

over an admissible parameter space Ω ⊆ R`, where ` is the number of parameters being identified

by the least squares process.

Because the model solutions and collected data vary significantly in orders of magnitude, we

fit and simulate the log10 scaled version of the model and data. From a statistical standpoint,
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minimizing (3.5.1) is equivalent to computing a maximum likelihood estimate of q, assuming

the log scaled measurements yijs are normally distributed,

yijs ∼ N (zs(t
i; q0), σ2

s), s = 1, 2,

for some true parameter value q0 and variance σ2
s . When viral load data are below the censor

level, the observed values do not represent the truth value for the data value. The optimization

process must be modified to account for this information, and is accomplished through standard

techniques for censored data analysis.

In working with the censored data we exploit the fact that the log scaled data are normally

distributed. Let L1 = log10 400 and L2 = log10 50, denoting the low and high sensitivity assay

limits, respectively. For the censored data, the only knowledge available is that yi2 ≤ Li. In this

context, we observe pairs (wi, χi), i = 1, . . . , N where,

wi =


yi2 if yi2 > Li

Li if yi2 ≤ Li,

χi = I{yi2>Li}
,

and IA is the indicator function for the set A. Next we define the standard normal probability

distribution function (pdf),

ϕ(ξ) =
1√
2π

exp(−ξ2/2) (3.5.2)

with corresponding cumulative distribution function (cdf),

Φ(ξ) =

∫ ξ

−∞
ϕ(s)ds. (3.5.3)
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The viral load portion of the likelihood function given the observation wi is

L(q, σ2) =
N∏
i=1

[
1

σ2
ϕ

(
wi − zi2
σ2

)]χi [
Φ

(
wi − zi2
σ2

)]1−χi

, (3.5.4)

where the first term accounts for the probability of observing wi given it is not censored, and the

second term accounting for the probability that the observation is censored and in the interval

(−∞, Li). Equation (3.5.4) is obtained under the assumptions of a truncated normal distribution

for the censored observations. The corresponding log-likelihood is then

L(q, σ2) =

N∑
i=1

(
χi
[

logϕ

(
wi − zi2
σ2

)
− log σ2

]
+ (1− χi)

[
log Φ

(
wi − zi2
σ2

)])

=
N∑
i=1

(
χi
[

logϕ

(
yi2 − zi2
σ2

)
− log σ2

]
+ (1− χi)

[
log Φ

(
Li − zi2
σ2

)])
, (3.5.5)

which is then maximized to estimate q and σ2. We use the Expectation Maximization (EM)

(Dempster et al., 1977; McLachlan and Krishnan, 2008) algorithm to obtain the maximum value.

EM works by iteratively updating the estimates for q, σ2 until the maximum is reached. Defining

ξi =
Li−zi2
σ2

and Λ(ξi) = ϕ(ξi)
Φ(ξi)

and using properties of the truncated normal distribution, we have

E[yi2 | yi2 ≤ L] = z2 − σ2Λ(ξi),

E[(yi2)2 | yi2 ≤ L] = (zi2)2 − 2σ2z
i
2Λ(ξi)− σ2

2ξ
iΛ(ξi) + σ2

2.

These are used to update the censored data and squared residuals through

ỹi = χiyi2 + (1− χi)E[yi2 | yi2 ≤ L]

= χiyi2 + (1− χi)[zi2 − σ2Λ(ξi)], (3.5.6)
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and for the residuals

r̃i = χiE[(yi2 − zi2)2] + (1− χi)E[(yi2 − zi2)2 | yi2 ≤ L]

= χi(yi2 − zi2)2 + (1− χi)
[
E[(yi2)2 | yi2 ≤ Li]− 2zi2E[(yi2) | yi2 ≤ Li] + (zi2)2

]
= χi(yi2 − zi2)2 + (1− χi)σ2

2[1− ξiΛ(ξi)]. (3.5.7)

The EM Algorithm is then given by the following.

1. Adjust the censored data down by half to Li/2 and use ordinary least squares to estimate

q̂(0) using both the CD4+ data yi1 and viral load ỹi, which includes the replaced censored

data. Note that for censored data χi = 0. Set k = 0 and compute an initial estimate for

σ2
2 from

(σ̂
(0)
2 )2 =

1

N2

N2∑
i=1

∣∣ỹi − z2(ti2; q̂(0))
∣∣2.

2. Define ẑ
i(k)
2 = z2(ti; q̂(k)) and ξ̂i(k) =

Li−ẑ
i(k)
2

σ̂
(k)
2

and update the data and residuals by

ỹi(k) = χiyi2 + (1− χi)
[
ẑ
i(k)
2 − σ̂(k)

2 Λ(ξ̂i(k))
]

(3.5.8)

r̃i(k) = χi(yi2 − ẑ
i(k)
2 )2 + (1− χi)(σ̂(k)

2 )2
[
1− ξ̂i(k)Λ(ξ̂i(k))

]
. (3.5.9)

3. Perform ordinary least squares to compute q̂(k+1), σ̂
(k+1)
2 by minimizing over q

q̂(k+1) = arg min

N1∑
i=1

∣∣yi1 − z1(ti1; q)
∣∣2 +

N2∑
i=1

∣∣ỹi(k) − z2(ti2; q)
∣∣2

and then computing and update to σ̂2,

(
σ̂

(k+1)
2

)2
=

1

N2

N2∑
i=1

r̃i(k).

If the relative change in q̂, σ are small, terminate. Else set k = k + 1 and continue.
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The end result of EM yields estimates of the parameters, the expected value and variance

of true values for the censored data. This information can then be used to compute standard

errors and confidence measures for the parameter estimates, as discussed in section 3.4.1.
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CHAPTER 4

Model Validation Results & Simulation

For each patient, we estimate a patient specific parameter set, including the seven initial

conditions for the model. The following process is applied to each patient.

1. Solve the sensitivity equations (3.1.13) and build the sensitivity function matrix and

corresponding Fisher matrix.

2. Compute the numerical rank k of the Fisher matrix F = S>S.

3. Determine the minimal spanning subset of parameters, determining the identifiable subset

of parameters ρj by searching through all
(
n
k

)
subsets.

4. Estimate the entire parameter and initial condition set. This involves a preliminary

optimization with a sampling based algorithm. After only a few iterations of this algorithm

we apply the EM algorithm in conjunction with a gradient based optimizer. The resulting

parameter estimates are saved as ρ, or the non-identifiable subset of parameters.

5. Operating only on the identifiable subset ρ, recompute the parameter estimates using the
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results of the prior step as the initial optimization iterate.

4.1 Sensitivity Results

Because our sensitivity analysis is a local concept about the nominal patient parameter, the

only distinguishing difference between the patients is adherence to the clinical control. It is the

adherence patterns that directly effect which parameters come up as sensitive when performed

as a local analysis.

Here we present representative results from two patients, patient 11 and patient 8. With the

other patients, we see similar patterns in the sensitivity results, the clustering of parameters into

distinct groups. Clustering of the parameters is evident in Figures 4.1, 4.2. In general the number

of parameters in the most sensitive cluster nearly agrees with the numerical rank calculation.
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Figure 4.1: Pt 11 sensitivity values. Note that the clustering in the y1 sensitivities agrees with
the k = 6 rank calculation.
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Table 4.1: Sensitivity results and values for patient 11. The line between parameters 6 and 7
indicate the numerical rank of the corresponding sensitivity matrix, k = 6.

Parameter y1 sens Parameter y2 sens

λ1 32.932 NT 165.67
NT 28.54 c 160.47
c 27.865 δ 127.04
k1 26.885 ε2 125.82
d1 22.031 λ2 95.972
δ 17.114 λ1 83.854

λ2 3.3046 k1 79.207
d2 2.0706 d2 78.125
ε2 1.795 ε1 77.941
k2 1.6258 k2 77.697
ε1 1.4738 d1 60.849
f 0.74023 f 59.674
ρ1 0.42985 ρ2 2.3311
Kd 0.098362 ρ1 2.0439
ρ2 0.095749 Kd 0.26292
bE 0.06998 dE 0.14215
δE 0.060345 bE 0.12699
λE 0.048854 m1 0.12328
m2 0.036065 δE 0.11497
dE 0.030544 m2 0.11106
m1 0.026841 λE 0.093993
Kb 0.024296 Kb 0.093307

4.2 Patient Specific Subsets

For each patient, an a-priori sensitivity analysis is conducted at a nominal parameter value q∗.

The parameter values and descriptions are given in Table 2.2. As each patient model is evaluated

at the same q∗, the only factor that affects parameter identifiability is the patient adherence to

treatment.

Before a subset specific estimate is formed, we first attempt to estimate all 22 parameters

using the global optimization algorithm DIRECT with the EM algorithm. DIRECT is a bounded,

sampling method based on dividing hyper-rectangles (Finkel and Kelley, 2004). The bounds
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Table 4.2: Sensitivity results and values for patient 8. The line between parameters 6 and 7
indicate the numerical rank of the corresponding sensitivity matrix, k = 6.

Parameter y1 sens Parameter y2 sens

d1 26.479 NT 267.82
λ1 25.299 c 259.78
NT 24.696 λ1 246.66
k1 24.11 d1 232.4
c 23.982 k1 230.25
δ 1.7784 δ 41.111

ρ1 0.69431 λ2 33.376
ε2 0.63088 ε2 30.394
λ2 0.57694 ε1 22.91
ε1 0.57118 k2 14.899
k2 0.028845 ρ1 7.5254
f 0.077068 f 3.8677
Kb 0.020505 ρ2 1.5751
δE 0.019747 d2 1.4192
ρ2 0.01822 Kb 0.27754
m1 0.15668 δE 0.21042
m2 0.012461 m2 0.16566
λE 0.012172 m1 0.15609
d2 0.011235 Kd 0.15279
Kd 0.009063 λE 0.14555
δE 0.0074273 δE 0.12937
bE 0.004447 bE 0.070737

for each parameter and initial state value are given in Table 4.3. The termination criterion

for DIRECT is the number of iterations, and we only allow 3. DIRECT is sometimes used to

determine a “better” local initial iterate for gradient based optimizers, and our approach is

similar in this regard. The parameters that are not being estimated are fixed to the output of

DIRECT optimization, and it is at this point we begin the gradient based method with EM to

further refine the parameter estimates on the identifiable subset.

The number of identifiable parameters range from k = 6 to k = 10. In addition to these

parameters, all seven initial conditions were estimated for each patient. Each patient subset is

given in Table 4.4.
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Figure 4.2: Pt 8 sensitivity values. Clustering of the parameters is evident.

Common in nearly all subsets are infection and immune induced clearance rates for both

populations, ki,mi. Other identifiable parameters range in sensitivity, but their presence in the

identifiable set indicates their mutual linear independence. Moreover, an identifiable subset is

not unique.

4.3 Patient Specific Model Fits

In each figure the collected clinical data are given, as well as the adjusted data calculated

through the expectation maximization algorithm. The forward model prediction is given in red.

In general, the fits are good and the model prediction follows the clinical adherence pattern.

For some patients, namely patients 7, 9, and 12, the CD4+ fits are not as good as they

possibly could be. The parameter estimates are computed in batch in a parallel manner; estimates

could be refined by restarting the optimizations in a patient specific manner. Additionally for

these patients, there is a definite lack of data compared to some of the other patients. This is

reflected in the goodness of fits in Figures 4.9, 4.10, and 4.14. There is no preference assigned to
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Table 4.3: Bounding boxes used by DIRECT for initial estimation of model parameters and
initial conditions. All bounds are log10 scaled from the values given below.

Parameter Lower Bound Upper Bound Parameter Lower Bound Upper Bound

λ1 0.1 100 λ2 0.001 1
d1 0.001 0.1 d2 0.001 0.1
k1 10−9 10−4 k2 10−7 0.01
m1 10−8 0.001 m2 10−8 0.001
ρ1 0.99 1.01 ρ2 0.99 1.01
δ 0 0.01 c 1 100
f 0 1 NT 10 1000
λE 10−5 .1 δE 0.01 0.9886
Kb 0.001 10 Kd 0.001 10
ε1 10−6 0.99 ε2 10−6 0.99

T1(0) 0.9 ·minT1(t) 1.1 ·maxT1(t) T2(0) 0.1 100
T ∗1 (0) 0.01 maxT1(t) T ∗2 (0) 10−5 100
VI(0) 100 106 VNI(0) 1 104

E(0) 10−4 10

either the viral load or CD4+ counts in the goal function (3.5.1), though by weighting towards

the CD4+ dataset, we perhaps could see an improved fit. This, however, may not be necessary,

as there is in general a higher interest in the viral load progression than solely the CD4+ count.
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Figure 4.3: Collected and adjusted data with model prediction for patient 1.
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Figure 4.4: Collected and adjusted data with model prediction for patient 2.
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Figure 4.5: Collected and adjusted data with model prediction for patient 3.
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Figure 4.6: Collected and adjusted data with model prediction for patient 4.
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Figure 4.7: Collected and adjusted data with model prediction for patient 5.
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Figure 4.8: Collected and adjusted data with model prediction for patient 6.
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Figure 4.9: Collected and adjusted data with model prediction for patient 7.
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Figure 4.10: Collected and adjusted data with model prediction for patient 8.
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Figure 4.11: Collected and adjusted data with model prediction for patient 9.
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Figure 4.12: Collected and adjusted data with model prediction for patient 10.
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Figure 4.13: Collected and adjusted data with model prediction for patient 11.
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Figure 4.14: Collected and adjusted data with model prediction for patient 12.
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Table 4.4: Patient specific identifiable subsets

Patient Identifiable Subset ρ

1 d1, k1, k2,m1,m2, bE ,Kb, ε2

2 d1, k1, k2,m1,m2, f, dE , ε1

3 λ2, k1, k2,m1,m2, dE ,Kb, ε2

4 d1, k1, k2,m1,m2, NT

5 d2, k1, k2,m1,m2, δ, c, ε2

6 λ2, k1, k2,m1,m2, c, f, bE , ε1

7 d2, k1, k2,m1,m2, δ, δE , ε1

8 λ2, k1, k2,m1,m2, NT , dE ,Kd

9 λ2, k1, k2,m1,m2, δ,Kb,Kd

10 d1, k1, k2,m1,m2, f,Kb,Kd

11 d2, k1, k2,m1, ρ1, ρ2, dE ,Kd

12 λ2, k1,m2,m1,m2, λE , bE , ε2

13 λ2, k2,m1, ρ1, δ, c, ε1

14 λ2, k1, k2,m1,m2, NT , dE , ε2
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CHAPTER 5

Optimal Treatment Protocols

In this chapter we seek to compute optimal treatment strategies by calculating an optimal

schedule for treatment. There have been various investigations into using optimal control based

methodologies for the treatment of HIV through a variety of methods (Brandt and Chen, 2001;

Ge et al., 2005; Joshi, 2002). Due to drug resistance, evolution of new viral strains, serious

patient side effects, and imperfect patient compliance, the ability of HAART treatment to

effectively control the virus long term fails in a high proportion of patients (Bajaria et al., 2004).

Therefore concerns regarding the constant use of anti-retroviral therapies strongly motivate

the investigation into their optimal use. In general, control of an HIV model is difficult due to

the inherent nonlinearities in the mathematical model. In (Ge et al., 2005) a Lyapunov based

design is used; in (Brandt and Chen, 2001) the idea of a feedback controller through a drug

regimen is introduced onto a three dimensional HIV model. In the work done by (Adams et al.,

2004; David, 2007; David et al., 2008), a calculus of variations approach was used to compute a

control function. This was done either by a direct approach using the Pontryagin Minumum

Principle, or an optimization approach as detailed in (Gunzburger, 2003).
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These methods derive a continuous control function, which may be difficult to implement in

a clinical setting, where treatment can only be altered at discrete intervals. To that end, we seek

to compute treatment schedules that would be compatible with real world treatment scenarios.

5.1 Control Formulations

Together with the model equations (2.3.1), we consider a control problem defined by the objective

function,

J
(
u(t)

)
=

∫ tf

0

[
QV (t) +R1ε1(t)2 +R2ε2(t)2 − SE(t)

]
dt, (5.1.1)

where ε1(t) = ε1u(t), an RTI, and ε2(t) = ε2u(t), a PI. The values ε1 and ε2 are the patient

specific values estimated in Chapter 4. The parameters Q,R1, R2 and S represent the control

weights for the virus, control input, and immune response, respectively. By varying these weights,

the optimal control can be customized in a patient specific sense, and exact treatments can be

designed. By including the control terms in (5.1.1) we attempt to minimize the systematic cost

of the drugs both in the sense of physiologic side effects as well as the monetary treatment cost.

A similar optimal control based treatments are considered in (Culshaw et al., 2004; Kirschner

et al., 1997), but with simpler dynamics with nominal parameter values, as well as simplified

goal functions.

In (Adams et al., 2004), the authors use a direct search approach to find an optimal treatment

by discretizing the control over a treatment interval. It is this technique that we further develop

and implement. The control functions are represented as ε1(t) = ε1u(t) and ε2(t) = ε2u(t),

where u(t) is a binary treatment function, with a 1 representing a patient taking the drug during

the given treatment interval, and a 0 meaning no treatment taken for that specific time period.

The quality of control can depend on the treatment interval, which is the minimum of time

necessary to change the treatment protocol. A sample control input is shown in Figure 5.1.

Computing control functions of the form shown in Figure 5.1 is akin to calculating a series of
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structured treatment interruptions, rather than a continuous treatment. These treatments are

described further in the next section.

time (t)

u
(t

)

on
o↵

1

0

Figure 5.1: A sample control input for the HIV model. The switching of treatment represents a
structured treatment interruption.

Mathematically, we represent the control numerically with a pair of vectors describing the

control function u(t) and the corresponding time intervals the control applies to. For example,

for a treatment regimen with a treatment interval of m = 15 days, a possible control could be

u(t) = [1 1 0 0 1]. This corresponds to an overall treatment length of 75 days with on treatment

for the first 30 days, off for the next 30, and then back on for the final 15 days of treatment. For

any treatment interval with n switchings of treatment, there exists a possible 2n ways to define

a treatment. Because this is a finite set, there exists an optimal control that minimizes (5.1.1).

We denote the set of all control vectors U , with |U| = 2n. We then seek the optimal control,

u∗ ∈ U = arg min J
(
ε1(t), ε2(t)

)
. (5.1.2)

On average, the data sets contain four years of longitudinal patient data, therefore n ≈ 1400

days. Because n is relatively large, modeling daily changes in treatment is both impractical

from a computational and clinical stand point. In practice, an interval of two to three weeks is

clinically appropriate and is what we simulate.

If we assume a 30 day treatment interval, modeling the entire control interval could involve
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the calculation of nearly 50 control values, or switches. As the problem is defined, m = 30 and

n ≈ 1400 would involve testing upwards of 250 possible treatment protocols; clearly this is not

computationally tractable. To mitigate this issue, we seek to reduce the number of iterations

necessary to find the optimal control. One strategy is to break the treatment interval into bins

and calculate independent controls on these intervals before combining all of these controls for

the entire interval. For instance, for 30 day segments we first compute an optimal control over

the set [0, 30, 60, 90, 120, 150, 180], a calculation that involves the testing of 27 = 128 distinct

possible controls. Once this control is computed, the resulting trajectories are integrated to

t = 180, and a control is computed over the set [180, 210, 240, . . . , 540]. This control is then

appended to the prior control vector, and this sequence is repeated until the final time tf is

reached.

Because we divide the treatment interval into several separate bins, the resulting control is

only suboptimal; however in (Adams et al., 2004) they show that these results are reasonable

approximations to a fully efficacious continuous therapy. In the simulations presented, we

compare 10, 20, and 30 day treatment intervals.

5.2 Structured Treatment Interruptions

HAART has changed the course of HIV treatments since introduction. Under HAART, viral

load decreases exponentially in the weeks after the start of treatment and is maintained at low

levels so long as treatment is continued. Despite this exponential decline in viral load, these

treatments do not completely clear the virus from the patient, and a life long therapy is necessary

to maintain low viral load (Finzi et al., 1999). Even with this kind of success, the best way

to treat acutely infected HIV patients is still an open question with many approaches under

investigation (Bell et al., 2010). For many patients, long term continuous HAART is expensive

and can include problems with drug toxicity and side effects, as well as increased drug resistance

(Phillips, 2005). It has been shown that approximately 80% of patients who adhered to less than

70% of the prescribed treatment regimen experienced treatment failure, whereas patients of
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high adherence (>95%) experienced the best results (Paterson et al., 2000). Long term use of

protease inhibitors has been associated with insulin intolerance, cholesterol elevation, and the

redistribution of body fat. Because of these reasons, some HIV infected patients will voluntarily

terminate HAART. Some of these patients will also interrupt the continuous prescribed therapies

for short or long periods. After discontinuing HAART, patients will usually experience a rapid

increase in viral load coupled with a immediate decline in CD4+ counts (Lisziewicz and Lori,

2002).

The canonical example of a patient undergoing unsupervised breaks in HAART is that of

the “Berlin patient” (Lisziewicz et al., 1999). In this case, the patient was able to control viral

load in the absence of treatment by cycling HAART on and off due to non-related infections.

When treatment was fully stopped after day 176, the patient’s viral load did not immediately

rebound as is consistent with going off treatment. Due to this patient, interest in the use of

structured treatment interruptions (STI) as a mechanism to regulate an HIV infection piqued.

The investigators further note that the management of viral load coincided with the emergence

and stimulation of a CD8 immune response, and speculate that it is this response that kept the

viral load at bay. Indeed, in a randomized, controlled clinical trial with simian immunodeficiency

virus infected macaques demonstrated that it was in fact the intermittent interruption of

therapy that caused the boosted immune response (Lori et al., 2000). This immune response is

further examined in (Carr et al., 1996), and optimal treatment protocols designed around the

maximization of immune response is discussed in (Culshaw et al., 2004).

Structured treatment interruptions have been studied in three distinct contexts: the man-

agement of acutely infected patients, management of chronically drug suppressed patients, and

“salvage treatment”, in which patients have a severely depressed immune system. STI treatment

is not in general without risk, and a main goal of the clinical trials is to assess how the risks can

be weighed against the benefits. In Table 5.1 a summary of potential risks and benefits are listed.

In (Lori and Lisziewicz, 2001), the authors survey many different STI based clinical trials and

compare their results. Among their key findings are that STI treatments are most effective in
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Figure 5.2: Qualitative effects on viral load given no treatment, continuous HAART treatment,
and an STI type protocol. This figure is from (Lori and Lisziewicz, 2001).

the acute regime. In a clinical trial in Boston involving 8 subjects, treatment was discontinued

and only turned back on when viral load exceeded 5000 copies/mL for three consecutive weeks.

In this study, all of the patients achieved long-term control of HIV replication in the absence of

treatment after the first treatment interruption (Rosenberg et al., 2000). Another STI success is

discussed in (Palacios et al., 2010), where HIV infected children are put onto an STI therapy

with twelve weeks on, four weeks off. Due to the STI, viral rebounds decreased in magnitude

with each switch from on to off, along with an increased immune response.

For patients in later stages of HIV infection, extension of the positive acute results is more

difficult because STI in the chronic case can not take advantage of a relatively healthy immune

system which is present in the acute stage. Additionally HAART efficacy may be reduced in this

phase, because of a high number of drug-resistant mutant viruses. The STI objective during

chronic infection is to see if reliance on constant HAART can be reduced while still maintaining

effective viral control, indicating a restoration of sensitivity to HAART. In a large Swiss-Spanish

study, the patient group consisted of 128 chronically infected patients. Despite two weeks off
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and eight weeks on HAART for four cycles, participants did not show an appreciable decline

in viral load nor a boost in CD4+ counts. Finally in a Philadelphia study which tracked five

chronically infected, HAART suppressed patients, the patients experienced an increase in both

CD4+ and CD8 counts following STI. The results of this study suggest that HAART might be

able to recover an appropriate HIV immune response during the chronic regime, and variations

in the method of STI could have an effect on immune response.

One of the key variables in the design of any STI based protocol is the criteria in which

patients are removed or placed back on treatment. In some studies the viral load was the primary

indicator as to when treatment would resume, whereas in other studies off periods were of a

fixed length, followed by a fixed length on period. The former approach is simpler, but harder to

administer as it requires a higher level of patience scrutiny with more expensive and inconvenient

blood tests. The latter strategy is easier to implement in larger patient groups, but the on/off

periods are still up for debate and the subject of many clinical trials. Currently the period

durations are determined either in an ad-hoc style, or by trying to adapt the methodologies of

other trials.

The use of mathematical modeling to determine optimal STI regimes has flourished in recent

years. The survey paper (Rosenberg et al., 2007) details the design of STI strategies using HIV

models and emphasizes that the use of models may be beneficial in a clinical design scenario. In

(Bajaria et al., 2004) the authors build upon the original work of (Ortiz et al., 2001) and use an

in-host HIV model to simulate many possible different STI treatments. In contrast to our work

however, there is no patient specific data or parameter estimates used and the STI treatments

are not calculated, only evaluated; several insights into the effects of STI treatments are gained

through the “virtual STI” trials.

5.3 Open Loop Control Formulation

There are two standard formulations of an optimal control. The first, and most common

framework is an open loop control, or non feedback control. In an open loop control, the control
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Table 5.1: Summary of potential benefits and risks associated with STI like therapies, adapted
from (Lori and Lisziewicz, 2001).

Risks Benefits

Virological Control Loss of viral control Enhanced immune response

Development of resistance Delay of rebound

Repopulation of viral reservoirs Long-term treatment interruption

Acute retroviral syndrome Reduction in drug resistance

Immunity & Toxicity CD4+ cell decline Increased tolerability of drug regimens

Loss of immune response Fewer toxic effects

Clinical events

Other Recurrence of acute drug adverse effects Increased access to treatment

Pharmacokinetic Issues Increased adherence levels

Increased risk of transmission Reduced monetary costs

Social and psychological factors

function is a function of only initial conditions and time,

u∗(t) = e(x(t0), t). (5.3.1)

A diagram of a generic open loop controller is given in Figure 5.3. Thus the optimal open-loop

control is optimal only for a particular initial state value. While this is straightforward in a

mathematical sense, it also poses several risks in an actual clinical setting. If the patient were

to deviate from the optimal control, even in the slightest, then the resulting control is now

suboptimal, and may not even be beneficial. Moreover, if the patient is under periodic clinical

surveillance then an open loop control does not take advantage of new data that is collected. It

is these reasons why we would like to consider a feedback based control methodology. A possible

controller process
u⇤(t) x(t)

Figure 5.3: Diagram of a generic open loop controller. The model state does not affect the
control beyond t0.
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procedure for finding an open loop control given our control problem is as follows.

1. Divide the treatment interval into k = d nme bins.

2. Integrate model dynamics from t0 to the end of the first bin. Determine the optimal control

for the first bin by searching through all u ∈ U .

3. For k > 1, integrate the model dynamics to the end of the kth bin, using the optimal

control determined in the prior steps for bins 1, . . . k − 1. Calculate the optimal control

for bin k by evaluating all u ∈ U .

4. Repeat prior step until the end of the entire interval has been reached.

This is the process that is extended in the following sections.

5.4 Closed Loop (Feedback) Control

Feedback control methodologies include mechanisms to allow the control to be updated in real

time according to progressing model dynamics. This allows for an adaptivity in the control to

handle changing model dynamics, or even possibly external stimuli to the system. A generic

feedback control system is shown in Figure 5.4. In (Brandt and Chen, 2001), a feedback system

consisting of a therapeutic drug regimen parameterized by the model states is presented. However

only a reduced order model was considered with nominal parameters with monotherapy.

controller process
u⇤(t) x(t)

Figure 5.4: Diagram of a generic closed loop feedback controller. The control is updated with
new information from the state beyond t0.
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5.4.1 Linear Feedback Laws

The HIV model being nonlinear poses a wide class of considerations to be made when formulating

a feedback control. The control of a linear system has been extensively documented (Anderson

and Moore, 2007). If the cost function is quadratic in both state and control, then the optimal

control is a linear feedback law and the gains can be solved explicitly. These results are primarily

due to R. E. Kalman. For the following derivation, we follow the process in (Kirk, 2004). In the

linear case, the system is given by

ẋ = Ax(t) +Bu(t), (5.4.1)

where the matrices A,B could be time varying. The performance measure, or goal function, for

the class of linear quadratic regulator problems is given as

min J(u) =
1

2
x>(tf )Gx(tf ) +

1

2

∫ tf

t0

x>(t)Qx(t) + u>(t)Ru(t) dt, (5.4.2)

where the matrices G,Q are symmetric, semi-positive definite and R is symmetric, positive

definite. The necessary conditions for optimality are derived through calculus of variations

(Lewis and Syrmos, 1995), and are given by

ẋ∗ =
∂H

∂p
= Ax∗ +Bu∗ (5.4.3)

ṗ∗ = −∂H
∂x

= −Qx∗ −AT p∗ (5.4.4)

∂H

∂u
= 0 = Ru∗ +B>p∗ ⇒ u∗ = −R−1B>p∗, (5.4.5)

where p(t) is a costate variable, otherwise known as a Lagrange multiplier or a “shadow” variable.

We see that the optimal control u∗(t) is in terms of the optimal costate p∗(t). The existence of
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R−1 in (5.4.5) is guaranteed since R is positive. Substituting (5.4.5) into (5.4.3) we obtain

ẋ∗ = Ax∗(t)−BR−1B>p∗(t), (5.4.6)

resulting in a set of 2n linear, homogeneous differential equations

ẋ∗(t)
ṗ∗(t)

 =

 A −BR−1B>

−Q −A>


x∗(t)
p∗(t)

 . (5.4.7)

The solution to these equations has the form

x∗(tf )

p∗(tf )

 = Φ(tf , t)

x∗(t)
p∗(t)

 , (5.4.8)

where Φ is the state transition matrix of (5.4.7). Partitioning the matrix, we have

x∗(t)
p∗(t)

 =

Φ11(tf , t) Φ12(tf , t)

Φ21(tf , t) Φ22(tf , t)


x∗(tf )

p∗(tf )

 , (5.4.9)

where each partition of Φ is an n× n matrix. Boundary conditions for the solution are given by

x(t0) = x0 (5.4.10)

∂h

∂x

∣∣∣∣
tf

− p∗(tf ) ≡ 0⇒ p∗(tf ) = Gx∗(tf ), (5.4.11)

where h(x) is the final-time weighting function in (5.4.2). Substituting these results, namely for

p∗(tf ) into (5.4.9),

x∗(tf ) = Φ11(tf , t)x
∗(t) + Φ12(tf , t)p

∗(t)

Gx∗(tf ) = Φ21(tf , t)x
∗(t) + Φ22(tf , t)p

∗(t)

(5.4.12)
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Substituting the top into the bottom, and then solving for p∗(t) yields

p∗(t) =
(
Φ22(t, tf )−GΦ12(t, tf )

)−1(
GΦ12(t, tf )− Φ21(t, tf )

)
x∗(t) (5.4.13)

, Π(t)x∗(t), (5.4.14)

implying that p∗(t) is a linear function of the system state and Π(t) is a time varying n × n

matrix. To solve for Π(t), differentiate both sides to obtain

ṗ∗ = Π̇x∗ + Πẋ∗

= Π̇x∗ + Π(Ax∗ +Bu)

= Π̇x∗ + Π
(
Ax∗ +B(−R−1B>p∗)

)
−Qx∗ −A>p∗ = Π̇x∗ + Π(Ax−BR−1B>Πx∗)

0 = Π̇x∗ + ΠAx∗ −ΠBR−1B>Πx∗ +Qx∗ +A>Πx∗

Π̇ = −(ΠA−ΠBR−1B>Π +A>Π +Q),

(5.4.15)

with boundary condition Π(tf ) = G. This matrix differential equation is of the Riccati type,

and is referred to as the algebraic Riccati equation (ARE). The solutions are computed by

integrating the final equation in (5.4.15) in backwards time, requiring the solution of n(n+ 1)/2

equations due to Π being symmetric. The matrix is then substituted back into (5.4.6) for the

optimal state and feedback control.

5.4.2 Nonlinear Feedback Laws

For generic nonlinear systems, a different approach is required. For this derivation, we follow the

process given in (Lewis and Syrmos, 1995). Assume we have a general nonlinear system model

ẋ = f(x,u, t), x(t0) = x0. (5.4.16)
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We seek to minimize the generic cost

J(x(t0), t0) = ϕ
(
x(tf ), tf

)
+

∫ tf

t0

L(x,u, t)dt. (5.4.17)

We proceed by first dividing the interval. If time t is the current time, then t+ ∆t is a future

time close to t. Then the cost corresponding to current time t, J(x(t), t) can be written as

J(x, t) = ϕ
(
x(tf ), tf

)
+

∫ tf

t+∆t
L(x,u, s)ds+

∫ t+∆t

t
L(x,u, s)ds. (5.4.18)

This can be rewritten as

J(x, t) =

∫ t+∆t

t
L(x,u, s)ds+ J(x + ∆x, t+ ∆t). (5.4.19)

Note that in the sense of a Taylor expansion, the increment ∆x = f(x,u, t)∆t. Equation (5.4.19)

describes all possible cost function values from time t to final time tf . According to Bellman’s

principle of optimality, which states that no matter what the prior states of the system have

been, all future decisions must constitute an optimal policy, the only candidates for the optimal

cost J∗(x, t) are the costs J(x, t) that are optimal from t+ ∆t to tf . The optimality principle

then requires

J∗(x, t) = min
u(s)

t≤s≤t+∆t

[∫ t+∆t

t
L(x,u, s)ds+ J∗(x + ∆x, t+ ∆t)

]
. (5.4.20)

Equation (5.4.20) is referred to as the principle of optimality for continuous time systems,

and does not provide a straightforward analytic process of determining the optimal control and

cost. Assuming that the second partial derivatives of J∗ exist and are bounded, we can expand
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J∗(x + ∆x, t+ ∆t) in a Taylor series around the point x(t) to obtain

J∗(x, t) = min
u(s)

t≤s≤t+∆t

{∫ t+∆t

t
L(x,u, s)ds+ J∗(x, t) +

[
∂J∗

∂t
(x, t)

]
∆t+

[
∂J∗

∂x
(x, t)

]> [
x(t+ ∆t)− x(t)

]
+ terms of higher order

}
. (5.4.21)

For small values of ∆t,

J∗(x, t) = min
u(t)

{
L(x,u, t)∆t+ J∗(x, t) +

∂J∗

∂t
(x, t)∆t+

∂J∗

∂x

>
f(x,u, t)∆t+O(∆t)2

}
.

(5.4.22)

To complete the derivation, we note that J∗ and J∗t are independent of the control u(τ), t ≤

τ ≤ t+ ∆t and can be removed from the optimization process. Hence,

∂J∗

∂t
(x(t), t)∆t+ min

u(t)

{
L(x,u, t)∆t+

∂J∗

∂x

>(
f(x,u, t)

)
∆t+O(∆t)2

}
= 0. (5.4.23)

Dividing by ∆t and taking the limit as ∆t→ 0, we obtain

∂J∗

∂t
(x(t), t) + min

u(t)

{
L(x,u, t) +

∂J∗

∂x

>
(x, t)f(x,u, t)

}
= 0. (5.4.24)

The boundary condition is given by

J∗(x(tf ), tf ) = ϕ(x(tf ), tf ). (5.4.25)

The Hamiltonian H is defined as

H(x,u, J∗x, t) , L(x,u, t) +
∂J

∂x

>
f(x,u, t), (5.4.26)
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and

H
(
x,u∗(x, J∗x, t), J

∗
x, t
)

= min
u(t)
H(x,u, J∗x, t), (5.4.27)

since the optimal control will depend only on x, J∗x and t. Using the Hamiltonian definitions

above, we can rewrite (5.4.24) as

J∗t (x, t) +H
(
x,u∗(x, J∗x, t), J

∗
x, t
)

= 0. (5.4.28)

Equation (5.4.28) is referred to as Halmilton-Jacobi-Bellman (HJB) equation. For nonlinear

systems, the optimal feedback control in the case of quadratic cost is known to be of the form

u∗(t) = −1/2R−1BJ∗x(t), (5.4.29)

requiring the solution of (5.4.28), a partial differential equation. Solutions to the HJB equation

exist analytically only for the most trivial of problems. Thus, computational methods have been

developed to approximate the solution to the HJB, or to solve a related problem resulting in a

suboptimal control. In general designing feedback control systems for nonlinear systems is a

process with many areas to consider. A survey and comparison of these techniques is presented

in (Beeler et al., 2000) and includes power series approximations, solving a state-dependent

Riccati equation, and Galerkin solutions to the Halmilton-Jacobi-Bellman equations.

One approach that is used successfully in (Banks et al., 2006) building upon the algebraic

Riccati equation derived in equations (5.4.15) by using a state dependent Riccati equation

(SDRE). Using only partial state measurements that are similar to the clinical data sets, the

authors are able to design multidrug strategies that reduce viral load, increase CD4+ count

while stimulating immune response. The idea behind the use of the SDRE is to rewrite the
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right-hand-side equations in the form

ẋ = f(x) = A(x)x, (5.4.30)

where clearly A(x) is non unique. In (Banks et al., 2006), they show that A(x) = ∂f
∂x is a very

good choice for models comprised of a system of nonlinear ODEs. When f is written in this

way, the SDRE is of the form

Π(x)A(x) +A>(x)Π(x)−Π(x)BR−1B>Π(x) +Q = 0, (5.4.31)

and the optimal feedback is given similarly as in the linear case,

u∗(x) = −R−1B>Π(x)x. (5.4.32)

Solving for the Riccati solution Π(x) is more difficult in this state dependent case than in the

constant coefficient case. A method discussed in (Beeler et al., 2000) involves a power series

expansion to approximate the general solution. The matrix A(x) is rewritten in terms of a

constant matrix and the state dependent part,

A(x) = A0 + ε∆A(x), (5.4.33)

where ε is a just a temporary variable soon to be fixed to 1. Next Π(x) is written out in a power

series,

Π(x, ε) = Π(x) |ε=0 +ε
∂Π(x)

∂ε

∣∣∣∣
ε=0

+
ε2

2

∂2Π(x)

∂ε2

∣∣∣∣
ε=0

+ · · ·+ εn

n!

∂(n)Π(x)

∂εn
(5.4.34)

=
∞∑
n=1

εnLn(x), (5.4.35)

where each Π is symmetric, as is each Ln. By substituting the power series expression for Π(x)
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back into (5.4.31) we obtain

[ ∞∑
n=1

εnLn(x)

](
A0 + ε∆A(x)

)
+
(
A>0 + ε∆A>(x)

)[ ∞∑
n=1

εnLn(x)

]
−

[ ∞∑
n=1

εnLn(x)

]
BR−1B>

[ ∞∑
n=1

εnLn(x)

]
+Q = 0. (5.4.36)

Equation (5.4.36) can be expanded in ε. Equating coefficients for terms involving the same

power of ε, we obtain a recurrence relation that can be used to determine Ln,

L0A0 +A>0 L0 − L0BR
−1B>L0 +Q = 0, (5.4.37)

L1(A0 −BR−1B>L0) + (A>0 − L0BR
−1B>)L1 + L0∆A>L0 = 0, (5.4.38)

Ln(A0 −BR−1B>L0) + (A>0 − L0BR
−1B>)LN + Ln−1∆A+

∆A>Ln−1 −
n−1∑
k=1

(LkBR
−1B>Ln−k) = 0, (5.4.39)

which is the standard ARE for the linear part A0 coupled with higher order equations. These

equations can be solved, but may be difficult if the expansion is complicated. For problems of

certain structure, namely those in which ∆A has the same function of x in all of its elements,

the coefficients Ln are much easier to compute. In problems of this form, including our problem,

we can write

∆A(x) = g(x)∆Ac. (5.4.40)

Similarly as before we can define

Ln(x) = gn(x)(Ln)C , (5.4.41)
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where (Ln)C is a constant matrix. Then, by (5.4.39), we obtain

(Ln)C(A0 −BR−1B>L0) + (A>0 − L0BR
−1B>)(Ln)C + (Ln−1)C∆AC+

∆A>C(Ln−1)C −
n−1∑
k=1

((Lk)CBR
−1B>(Ln−k)C) = 0, (5.4.42)

which is a large constant valued matrix equation which can be solved with ease for a fixed n.

Once as many Ln terms as desired are found, these terms can be substituted back into (5.4.35)

with ε = 1. Given its numerical nature, this process approximates the solution to the SDRE,

and so any resulting controls would be suboptimal in nature.

5.5 Receding Horizon Control

The control methodology for the HIV model described up to now has been an open loop control.

We would like to install a feedback based control for several reasons. A feedback control could

adjust for unexpected perturbations to the treatment schedule, e.g. the patient decides to go off-

treatment for a period of time not otherwise prescribed. The feedback control could then adjust

for this in future dosing. As established in the prior section, though several control paradigms

exist for the control and simulation of nonlinear systems, not many nonlinear controllers can

be applied to the discrete sample-and-hold methodology described in section 5.1. One method

that is highly promising and is well suited to finding an optimal treatment amenable to HIV

treatment is the receding horizon control (RHC) (Garćıa et al., 1989). Receding horizon control

has also explicitly been used to compute optimal treatment schedules in (Zurakowski and Teel,

2006), though with a very different, immune response centric model. The authors were some of

the first investigators to apply RHC methodologies to biological systems.

Receding horizon, or model predictive control seeks to gain the benefits of a feedback control

while maintaining the overall existing control methodology (i.e. STI) and model structure.

Developed in the late seventies, RHC was first applied to chemical reaction systems and has

not seen wide spread application in biological systems (Cutler and Ramaker, 1980; Richalet
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et al., 1978). The basic structure of the RHC methodology is shown in Figure 5.5. RHC is

a feedback control system that operates by computing the current control by solving a finite

time open loop control problem, using the current state of the system as the initial state. This

implicit optimization then yields a control for future time, and the first control in the sequence

is applied to the system for a specified control window. This is the primary difference with the

open loop methodologies, where the controls are computed for the entire simulation interval

before simulation.

This framework is uniquely suited for the computation of controls that fall within the STI

paradigm under HAART. Since the number of elements in the control sequence if finite due

to the on-off nature of the STI control, the existence of an optimal control on each window is

guaranteed. Moreover, this approach is model invariant, in that the HIV model can be updated

or swapped out with a model with minimal modifications to the control setup. Lastly the RHC

parameters such as horizon and window length, discussed later, can be easily modified based on

clinical needs and observations.

There are several basic elements to the RHC system, outlined in (Camacho and Bordons,

2004):

1. Model equations which govern the system dynamics.

2. The calculation of a sequence of optimal control laws, subject to the cost function.

3. A “receding horizon” strategy, so that on each interval or horizon, that the control is

computed is shifted forward in time. The control that is computed is then only used for a

portion of the horizon length.

To solidify the RHC methodology, we present the following mathematical framework.

Let [ti ti+1] be a sequence of time intervals. Let thor,i such that thor,i ≥ ti+1 − ti be the

control horizon. We denote ti+1− ti to be twin, the current control window. Consider a sequence

85
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Optimizer
(Finite time horizon, open-

loop optimal control)
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and outputs Predicted 

outputs

Future
Controls

Cost
function

Control
constraints

Figure 5.5: Schematic diagram of the receding horizon control.

of control problems Pi,

u∗ ∈ U s.t. u∗ = arg min J(u) =

∫ ti+thor,i

ti

L(x, u, t)dt, (5.5.1)

subject to

ẋ(t) = f(x, u), x(ti) = xi, (5.5.2)

on the interval [ti ti+1]. The solution to each control problem Pi is computed by following the

direct search routine described in the prior section. This process is extended by RHC, outlined

as follows:

1. Given an initial condition x(ti) solve the optimal control problem Pi on the horizon interval

[ti thor,i].

2. Use the control calculated in the prior step to compute the trajectory over the current

control window [ti ti+1].

3. Repeat this process by extending to the next control horizon to compute the next control.

Terminate when the next ti > tf .
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A schematic overview of this process is given in Figure 5.6. Note that in this system, each

successive control computed on each new window is now implicitly a function of the prior

window’s final state – now the current window’s initial condition. The window length and

horizon length vary per simulation given different patient parameters, and are listed with each

simulation presented.

20

15

10

5

0

5

10
Example of Receding Horizon Control

t0 t3 t2 t1 T   

Control computed on [t0 T]      
Control used on [t0 t1]        

Control computed on [t1 t1+T]
Control used on [t1+t2]      

Figure 5.6: An example of receding horizon control. Future controls are calculated by computing
controls on successive intervals.

Receding control depends on having full state knowledge in the observations of the system.

Our control functions are computed after the completion of the inverse problem, so we assume

our model to be accurate and predictive for each patient, therefore yielding full state knowledge

at each time step.

For problems where there exists only a reduced observation of the system, a (typically)

nonlinear estimation of the true state values is needed for the RHC to operate successfully. In

cases such as this, the estimator is installed between the system model and the optimizer, as

shown in Figure 5.7.
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Figure 5.7: Schematic diagram of the receding horizon control with a nonlinear state estimator.

5.6 Simulations

In this section we present optimal controls and the resulting state solutions for several different

patients under utilizing differing control weights and treatment intervals. We wish to illustrate

that treatment protocols can be swayed and adjusted on a patient specific basis using the control

weights. We also show cases with an “unexpected” perturbation to the optimal treatment, e.g.

forced off treatment during an interview to demonstrate the feedback capability of the RHC.

The control weights are presented as the vector [Q S R1 R2]. In all of the following plots, the

green and red bars at the bottom of the plot indicate clinical adherence to control, whereas the

cyan and magenta indicate the computed control of on treatment and off treatment, respectively.

5.6.1 Varying Treatment Intervals

We first investigate the impact of different treatment intervals has on viral load. Figure 5.8 and

Figure 5.9 differ only in the treatment interval. We first see a 20 day schedule, which results

in an average viral of load of less than 1000 RNA copies/ml. The control is on for alternating

periods of 60 days, followed by 40 days off, then 60 days on again.

When the interval is increased to 30 days in Figure 5.9 the average viral load increases to

over 1500 RNA copies/ml. The control is on for the first 60 days, followed by an off treatment for
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30 days, repeating periodically. Despite having a greater number of switching times, the control

is off for fewer day, 30 off, versus 40 off with m = 20 in Figure 5.8. With 30 day treatment

intervals, the viral load peaks to a level less than that of using 20 day intervals. The on/off

treatment doesn’t decrease the viral load to points achieved due to clinical adherence, which

is constant on for nearly two years. However, when the patient goes off treatment even for a

matter of days, the viral load spikes to nearly 40,000 RNA copies/ml. This kind of spike does

not occur with the STI style regime produced by the RHC.

Compare these results with Figure 5.10, where we use a 15 day treatment interval. Treatment

begins with 45 days of on treatment, before entering into a periodic switching of 30 days off,

15 days on, 15 days off, 30 days on. Due to the greater amount of time spent off control, the

lowest viral load is greater than that of other treatment intervals. Through these results we see

that having access to a greater number of switchings, or shorter treatment intervals, does not

necessarily produce better results overall. Further, we see in general a greater amount of control

used in the first 100 or so days, indicating the need to control HIV greater in the acute infection

regimes.

5.6.2 Varying control weights

One advantage of the control methodology presented is being able to customize a treatment for

a given patient. This can be done by varying the control weights to emphasize or demphasize

specific terms in the goal function (5.1.1). Between Figures 5.8 and 5.11 we see the effect of

changing the weight on viral load reduction by a factor or 10. Nearly twice as much control

is used when Q = 0.01 versus Q = 0.001. There are currently ongoing clinical trials that are

exploring STI treatments by using more frequent on-treatments compared to prior studies.

5.6.3 Unexpected Treatment Perturbations

In Figure 5.12 we force an off treatment protocol for 100 days early in the simulation. The

control returns the viral load to the same level in Figure 5.11, where treatment is not modified.
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Figure 5.8: Patient 3, with weights [.01 1 .01 .1], with 20 day treatment intervals, 100 day
control window, and 720 day control horizon.
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Figure 5.9: Patient 3, with weights [.01 1 .01 .1], with 30 day treatment intervals, 90 day control
window, and 720 day control horizon.
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Figure 5.10: Patient 3, with weights [.01 1 .01 .1], with 15 day treatment intervals, 90 day
control window, and 720 day control horizon.
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Figure 5.11: Patient 3, with weights [.001 1 .01 .01], with 20 day treatment intervals, 100 day
control window, and 720 day control horizon.
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Figure 5.12: Patient 3, with weights [.001 1 .01 .01], with 20 day treatment intervals, 100 day
control window, and 720 day control horizon. The control was fixed to zero for 100 days early
on in the simulation.
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CHAPTER 6

Conclusion and Future Work

In this work we have examined an in-vivo model describes the acute and chronic infection

regimes of HIV. With this model, we have performed a patient specific model calibration to

clinically collected data sets consisting of CD4+ count as well as viral load, which are censored.

Because the dynamic model contains over 20 biologically relevant parameters, we must first

determine which parameters are to be estimated. Traditionally, this process has relied solely on a

local relative sensitivity analysis, which identifies parameters that have a significant effect on the

output of the system given small changes. However we have shown that simply being sensitive

does not constitute identifiability, and other methods are needed to identify the parameters that

can be estimated in a least-squares sense. To that end, we utilize subset selection algorithms

that identify the source of rank-dependence in the Fisher matrix. While the parameters that

are identified through this process are identifiable in some sense, they may not be sensitive. We

therefore propose an algorithm that would lead to a sensitive, and identifiable set of parameters.

To use the censored data within the inverse problem methodology, statistical methods such

as expectation maximization are utilized to provide estimates to the true data that is unobserved.
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We initialize the methods using a global sampling algorithm to provide a good initial iterate for

optimization. Using these statistical estimates provides better parameter estimates than just

having simply ignored the censored clinical data.

In concluding this work, we take the first steps in investigating the construction of optimal

treatment strategies, noting the lack of consensus in the best standards of treatment for acutely

infected patients. To construct the treatment protocols, we first describe in detail linear and

non-linear feedback control systems in a mathematical context. For a feedback law in our model,

we use receding horizon control which computes several successive controls over a shifting

interval. The broader controls are then used on short time intervals, allowing for the control

to adjust to unexpected physical perturbations to the system. These controls mimic the form

of structured treatment interruptions, and there are several ongoing clinical studies to assess

their effectiveness against standard HAART regimes. In our control implementation, we have

assumed full state knowledge of the dynamic system. This is an unrealistic assumption and the

use of nonlinear estimators would be perfunctory.

Going forward, there are several areas that can be addressed. Calibration and validation

of more advanced HIV models could lead greater insight into the replication processes during

acute infection. Parameter estimates can be improved, and this would rely on richer data

being available. Additionally, the development of new immune response models, an area that

is currently poorly understood, would shed light into the complicated immune processes that

occur post-infection. There is CD8 immune response data available, but we do not use it in this

work, as the data does not match the type of immune response that we have modeled.

In performing the identifiability analysis and subset selection, it is only the clinical adherence

to therapy that determines the identifiability of parameters on a patient specific basis as a

nominal patient parameter is used in the subset selection algorithm. Therefore, identifiability

of parameters is directly affected by experiment design and execution. Constructing optimal

experiments (Banks et al., 2010) could lead to enhanced parameter identification and in turn,

improved model analysis and calibration. �
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