
ABSTRACT

KING, SARAH AMALIE. Multi-Moment Methods for PDEs and GPUs for Large-Scale
Scientific Computations. (Under the direction of Kazufumi Ito.)

The scope of this thesis is broad but focuses on developing effective numerical methods

and efficient implementations. We investigate numerical solution methods for hyperbolic

partial differential equations, numerical optimization methods, and implementation of

fast numerical algorithms on graphics processor units (GPUs).

For partial differential equations we develop numerical methods for the transport and

advection equations. Our method is based on the method of characteristics and multi-

moment approximation of functions. At uniform grid points update formulas for solutions

and their derivatives are derived for variable wave speed.

For numerical optimization we develop a nonsmooth optimization method for solving

the elastic contact problem. The Signorini contact problem is a variational problem that

minimizes the elastic deformation energy subject to the contact inequality. The Coulomb

friction problem is a minimization of the deformable energy at the boundary. We de-

velop a numerical optimization method of the form of Primal-Dual active set methods

for Lagrange multiplier methods and semi-smooth newton method for these variational

problems. To solve these problems numerically we approximate the variational problems

with a multi-moment scheme based on Adini’s elements which involves the use of the

function values as well as the gradient values at nodes. These solution methods are then

combined to solve the full contact problem.

Lastly we develop GPU implementations that combine algorithmic efficiency and com-

puting power. We look at constrained and nonsmooth optimization algorithms as well as

an inverse Hamiltonian based Riccati solver. Our efforts enhance numerical optimization

and control problems for large-scale scientific systems.

© Copyright 2012 by Sarah Amalie King

All Rights Reserved

Multi-Moment Methods for PDEs and GPUs for Large-Scale Scientific Computations

by
Sarah Amalie King

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2012

APPROVED BY:

Mansoor Haider Zhilin Li

Ralph Smith Kazufumi Ito
Chair of Advisory Committee

DEDICATION

To my parents, Leslie and Steven King.

ii

BIOGRAPHY

Sarah Amalie King was born in Washington, District of Columbia, in 1985. She earned

her Bachelors of Science in Applied Mathematics in 2007 from Georgia Institute of Tech-

nology. She began her graduate work at North Carolina State University in 2007 and

earned her Masters of Science in Applied Mathematics in 2009.

She has accepted a research associateship from the National Research Council at the

Naval Research Lab in Monterey, California.

iii

ACKNOWLEDGEMENTS

First and foremost I would like to express my gratitude to my to my advisor, Professor

Kazufumi Ito, for his continued support and guidance. His dedication and insight has

encouraged me to continually improve as a mathematician. I am not sure what I was

expecting the first day I walked into his office, but I definitely got more than I bargained

for.

I would also like to thank my committee members especially Professors Zhilin Li and

Ralph Smith for their professional support.

I am grateful to my family Leslie, Steven, Ashley, Dana, Alex and Jenna for their

support, encouragement, and patience.

Finally I would like to thank to my friends and fellow graduate students. The late

nights and the looniness are memories I will always cherish.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1

Chapter 2 CIP Methods for Hyperbolic Equations in One Dimension . 5
2.1 CIP Method . 5
2.2 One Dimensional CIP Updates . 6

2.2.1 Transport Equation . 6
2.2.2 Advection Equation . 8

2.3 CIP Profiling . 10
2.4 One Dimensional CIP Numerical Results 15

Chapter 3 CIP Methods for Hyperbolic Equations in Two Dimensions 20
3.1 Two Dimensional Updates . 20

3.1.1 Two Dimensional Transport . 20
3.1.2 Two Dimensional Advection . 23
3.1.3 Operator Splitting . 26

3.2 CIP Profiling . 28
3.3 Two Dimensional CIP Numerical Results 30

Chapter 4 Nonsmooth Optimization for the Elastic Contact Problem . 34
4.1 Model Description . 34
4.2 Variational Formulation of Signorini and Coulomb Friction Problems . . 36

4.2.1 Signorini Contact Problem . 37
4.2.2 Coulomb Friction Problem . 37

4.3 Nonsmooth Optimization Algorithms . 39
4.3.1 Primal-Dual Active Set Method for Coulomb Friction Problem . . 41
4.3.2 Primal-Dual Active Set Method for Signorini Contact Problem . . 43
4.3.3 Full Contact Problem . 44

Chapter 5 Finite Element Approximation using Adini Elements 45
5.1 Numerical Method . 45

5.1.1 Adini’s Element Discretization . 46
5.1.2 Accuracy Test for Eigenvalue Computations 49
5.1.3 Adini Elements on Irregular Domains 53

5.2 Test Example . 55

Chapter 6 CUDA Acceleration . 59

v

6.1 Optimization . 60
6.1.1 Lagrange Multiplier Method . 61

6.2 Controls . 64
6.2.1 Heat Equation Example . 66

6.3 Future Work . 69
6.3.1 Numerical Weather Prediction . 71

References . 73

Appendix . 75
Appendix A CUDA Review . 76

A.0.2 Programming Model . 76
A.0.3 Linear system example . 81
A.0.4 Eigen code example . 81

vi

LIST OF TABLES

Table 2.1 Error in numerical solutions for transport equation in `2. 16
Table 2.2 Error in numerical solutions for transport equation in `1. 17
Table 2.3 Error in numerical solutions for advection equation in `2. 19

Table 5.1 Relative error in approximated eigenvalues for Neumann conditions 50
Table 5.2 Relative error in approximated eigenvalues for Dirichlet conditions 51
Table 5.3 Estimated Convergence rates for nonzero eigenvalues for the elastic

system with Neumann conditions 52
Table 5.4 Relative error in approximated eigenvalues for irregular domain with

Dirichlet conditions . 55

Table 6.1 Performance in seconds with dense matrix with a subspace size of
25 and calculating 10 eigenvalues. We use either a quadcore (four
Intel i7s) or a single GPU (Tesla C2050) 66

Table 6.2 Performance in seconds with dense matrices with a subspace size
of L. We use either a quadcore (four Intel i7s) or a single GPU
(GeForce GT 640M LE) . 69

vii

LIST OF FIGURES

Figure 2.1 Diagram of backward characteristics in time for system (2.4). . . . 7
Figure 2.2 Numerical solution u(x, t) using linear profile for t = 0, 1.2, 2.4, and

6. 16
Figure 2.3 (a) Numerical solution u(x, t) and (b) the solution derivative v(x, t)

using multi-moment piecewise linear profile for t = 0, 1.2, 2.4, and 6. 16
Figure 2.4 (a) Numerical solution u(x, t) and (b) the solution derivative v(x, t)

using multi-moment cubic profile for t = 0, 1.2, 2.4, and 6. 17
Figure 2.5 Error in the numerical solutions at t = 1 in `2. 17
Figure 2.6 Error in the numerical solutions in `2 verse CFL = .5, 1, and 2. . 18
Figure 2.7 Numerical solution u(x, t) using (a) the multi-moment piecewise

linear profile (2.18) and (b) the multi-moment cubic profile (2.22)
for t = 0, 0.8, 1.2, and 2. 19

Figure 3.1 Diagram of backward characteristics for system (3.4) in two dimen-
sions. 22

Figure 3.2 (a) Initial conditions (b) t = .3 (c) t = .6 (d) t=.9, and (e) t = 1.2.
(f) is a 1-D cut at x = −.02 and y = −2 to 2 when t = 1.2 for
example 1. 32

Figure 3.3 (a) Initial conditions (b) t = 8π (c) t = 16π (d) 1-D cut at x = −.84
and y = −2 to 2 when t = 8π for example 2. 33

Figure 5.1 Shape functions φk(x, y) for k = 1, .., 12. 47
Figure 5.2 Block tri-Diagonal matrix of block tri-diagonal matrices 48
Figure 5.3 (a) Error plot for Neumann boundary conditions, (b) error plot for

Dirichlet boundary conditions and (c) error plot for elastic system
with stress free boundary conditions. 52

Figure 5.4 Square cells with (a) one interior node, (b) two interior nodes, and
(c) three interior nodes. 53

Figure 5.5 Deformed elastic body in contact with a rigid foundation. 56
Figure 5.6 (a) Vertical displacement, (b) enhanced vertical displacement, (c)

enhanced horizontal displacement, and (d) µ. 57

Figure 6.1 Matlab and CUDA computational times (s) with random matrices 63

Figure A.1 CUDA programming model . 77

viii

Chapter 1

Introduction

This thesis explores the scientific methodology of numerical partial differential equations,

inverse problems, and control problems. Specifically we investigate numerical methods for

hyperbolic partial differential equations, elastic contact problems, and constrained and

nonsmooth optimization. Additionally we develop fast numerical optimization methods

and Riccati equation solver for large-scale problems and their implementations on graph-

ics card processors (GPUs).

The scope of the thesis is very broad but focuses on developing effective numerical

methods and efficient implementations. For numerical PDEs we develop multi-moment

approximations based on the Hermite interpolation, i.e., the solution and its derivatives

are simultaneously calculated. For hyperbolic equations this approach uses exact time

integration method for the solution and its derivatives based on the characteristic method

and the cubic Hermite interpolation for the solution profile. Consequently, we have high

order and a less dissipative numerical methods. For elliptic systems we employ Adini

elements and finite element approximation based on weak formulations.

We discuss a nonsmooth optimization method based on the Lagrange multiplier the-

ory and the semismooth Newton method. Specifically, we study elastic contact problems.

Numerical tests of the proposed algorithm are performed using the Adini element based

finite element approximation. The numerical methods for PDEs and optimization prob-

lems may seem unrelated at first but consider the estimation of the coefficient c for the

1

hyperbolic equation

ut + c(x)ux = 0

u(x, 0) = f(x) and u(x, T) = z(x)

which can be formulated as the least squares problem

min 1
2
|u(x, T)− z|2 + α

2
||c||2 over c

subject to ut + cux = 0, u(x, 0) = f and c(x) ≥ β > 0.

To solve this optimization problem the initial value problem for the hyperbolic equation

must be solved. As is often the case in mathematics there are overlapping aspects that

must be integrated as illustrated above.

The constrained and nonsmooth optimization algorithms we developed are imple-

mented on GPUs. GPUs, originally developed for graphics rendering, have evolved into a

highly parallel, multi-threaded, many-core processors with high memory bandwidth for

distributed computing. In terms of scientific computations this means that GPUs are

hardware designed for large-scale problems with intense computations. Leveraging GPU

parallelism and powerful algorithms our efforts in numerical optimization and control

problems offer a significant advancement and enhance applications in for large- scale sys-

tems. The combined efficiency and effectiveness of the algorithms developed and GPU

implementations are demonstrated through numerical tests. Included in the GPU im-

plementations is the inverse Hamiltonian based Riccati solver which uses the implicit

restarted Arnoldi method for partial eigenvalue problems. Our intent is to build tools

that allow for large-scale problems to be solved rapidly and efficiently which will enlarge

possible applications.

The following is the outline of this thesis. Specific aspects of the topics and our

approach are described:

In Chapter 2 of this thesis we investigate numerical methods for hyperbolic partial

differential equations. Our approach is to use a multi-moment method and extend previ-

ously developed cubic interpolation profiling (CIP) methods. This approach is developed

for the transport equation

ut + c(x)ux = 0

2

and the advection equation

ut + (c(x)u)x = 0.

The method developed involves multi-moment approximation of the solution and its

gradient as well as exact time integration formulas based on the method of characteristics.

Several solution profiles, i.e. Hermite interpolations, are developed to obtain accurate

approximations for sharp gradient solutions. A detailed description of the method and

numerical tests are performed to demonstrate the applicability of the proposed methods.

In Chapter 3 we extend our methods developed in Chapter 2 to the two dimensional

case. The first method we present is a direct extension to two dimensions of our CIP

scheme. The second method is based on time splitting integration and is suitable for

even higher dimensions. The methods are developed for the transport and advection

equations and numerical tests of the methods are presented.

In Chapter 4 we develop a nonsmooth optimization method for solving the elastic

contact problem. The Signorini contact problem is a variational problem that minimizes

the elastic deformation energy subject to the contact inequality, i.e., the normal dis-

placement at a given point of the boundary bounded above by an obstacle function.

The Coulomb friction problem is a minimization of the deformable energy with a L1

friction term at the boundary. We develop an effective numerical optimization method

using the Lagrange multiplier theory and the semi-smooth Newton method for the both

variational problems. The method is of the form of Primal-Dual active set methods for

the solution and Lagrange multipliers. Then both methods are combined to develop an

iterative method for solving the full elastic contact problem.

In Chapter 5 we present a multi-moment finite element scheme based on Adini’s

elements to approximate the solution to the linear elastic equations numerically. The ac-

curacy and feasibility of the method developed are demonstrated for eigenvalue problems

for the linear elastic system. Then we apply the method for solving the two variational

problems and full contact problem.

Lastly, in Chapter 6 we address software development for large-scale problems in op-

timization and control theory. We discuss strategy and capability for developing general

purpose GPU software for scientific computing as well as the capability of such soft-

ware. To accompany this discussion we have included a review of CUDA C based on

our experiences in Appendix A. Currently we have developed software for the quadratic

constrained optimization problem as well as software for finding a partial set of eigen-

3

values and eigenvectors of a given matrix. We have included the algorithm descriptions

for both problems and present basic benchmark tests. We also include a discussion of fu-

ture directions of our work and a potential application that combines the techniques and

approaches developed in this thesis for PDEs, optimization, and large-scale problems.

4

Chapter 2

CIP Methods for Hyperbolic

Equations in One Dimension

In this chapter we develop a multi-moment method based on the method of characteristics

for hyperbolic equations with variable wave speeds. The method is a variation of the cubic

interpolation method (CIP) [17] in which Hermite polynomial based spatial profiles over

each grid cell are used to update the solution and its derivatives simultaneously. We

will apply our method to the transport and advection equations and test our method

numerically.

2.1 CIP Method

Our method originates from the cubic interpolated profile (CIP) method for the one-

dimensional transport equation. The CIP method proposed in [3] has previously been

proven to be numerically stable and have less numerical dispersion than other methods,

e.g. upwinding, in the presence of singularities [17, 19, 16, 14]. Since its introduction CIP

methodology has been applied to many problems like acoustic wave propagation [13], or

incompressible flow [15] and several variations of the CIP method have been developed,

eg. CIP-MOC [18] or CIP-IMM [5]. In order to include all of these variations the method

is now sometimes referred to as the constrained interpolation method.

The general framework of these methods is a spatial profile for each grid cell is devel-

oped using function values and derivative values then for each time step these profiles are

used to update each grid point. The conventional CIP method uses a cubic polynomial

5

for the spatial profile for each grid cell and the constant transport part of the equation is

updated by the characteristic method in time. Additional terms appearing in equations

are integrated in time by the operator splitting method.

Our approach differs from the conventional CIP scheme primarily in two ways. First

we use exact integration in time by the method of characteristics and secondly we derive

exact gradient updates in time. That is, we extend the method of characteristics for the

derivative of solutions (the exact derivative update) along with the solution. Then we

obtain a higher-order time-space discretization method using the interpolation methods

(for example, cubic Hermite interpolation) for the solution profile at each square cell and

then apply the solution and derivative update formula by evaluating for the local profile

of the solution.

Our approach is advantageous as it allows for arbitrary time steps (i.e., no CFL

limitation) while maintaining its stability and accuracy. Additionally for the advection

equation existing CIP schemes use the non-conservative form of the advection equation

and split it into advection and non-advection phases to obtain updates. On the other

hand we developed exact time integration and do not need to split equations.

In order to describe our method we first develop the update formulas for the solution

and solution derivative for the one dimensional transport equation as well as the advection

equation with variable wave speed. We then provide three different profiling techniques

for these formulas. Numerical tests are preformed to demonstrate the effectiveness of our

method. We will extend this method for the multi-dimensional case for the transport and

advection equations in Chapter 3.

2.2 One Dimensional CIP Updates

In this section we will formulate the solution and solution derivative updates for the

transport and advection equations in one dimension based on the method of character-

istics.

2.2.1 Transport Equation

First we consider the one dimensional transport equation given by

ut + c(x)ux = 0, t > 0, t ∈ R, u(0, x) = u0(x), x ∈ R (2.1)

6

where c(x) is the variable wave speed. We begin applying the method of characteristics

by setting U(t) = u(x(t), t) along the characteristics where x(t) satisfies the characteristic

equation
d

dt
x(t) = c(x(t))

and it follows from (2.1) that

dU(t)

dt
=

∂u

∂t
+
∂u

∂x

dx(t)

dt

=
∂u

∂t
+
∂u

∂x
c(x(t)) = 0.

(2.2)

Discretizing with xk = k∆x we obtain the solution update formula

U(t+ ∆t) = u(xk, t+ ∆t) = u(yk, t) (2.3)

where yk is determined by the backward characteristic (depicted by Figure 2.1)
dx

dt
= c(x(t))

x(0) = xk

x(−∆t) = yk

(2.4)

for this system xk is the current value and yk is the previous value. If c(x) = c is constant

then yk = xk − c∆t and (2.3) reduces to u(xk, t+ ∆t) = u(xk − c∆t, t).

t t+ Δ

t

kx

ky

Figure 2.1: Diagram of backward characteristics in time for system (2.4).

7

We now develop the formula for updating the derivative u′k. Taking the spatial deriva-

tive of (2.1) gives

u′t + c(x)u′x + c′(x)u′ = 0. (2.5)

We let V (t) = u′(x(t), t) along the characteristics and apply (2.5) to get

dV

dt
=

∂

∂t
u′ +

∂

∂x
u′
dx(t)

dt

= −c′(x(t))V (t)

thus, we obtain

V (t+ ∆t) = u′(xk, t+ ∆t) = u′(yk, t)exp

(
−
∫ 0

−∆t

c′(x(t))dt

)
. (2.6)

To evaluate this integral we let dx = c(x(t))dt then∫ 0

−∆t

c′(x(t))dt =

∫ xk

yk

c′(x)
dx

c(x)

= ln

(
c(xk)

c(yk)

)
(2.7)

and applying (2.7) to (2.6) gives the update formula

u′(xk, t+ ∆t) = u′(yk, t)
c(yk)

c(xk)
. (2.8)

We now have explicit update formulas for the solution and the solution derivative of

the transport equation. Later we will discuss profiling techniques to evaluate u(yk, t) and

u′(yk, t) in our CIP scheme.

2.2.2 Advection Equation

We now consider the advection equation

pt + (c(x)p)x = 0 (2.9)

8

or equivalently

pt + c(x)px + c′(x)p = 0 (2.10)

where p(x, t) is for example a probability density function. Setting P (t) = p(x(t), t) along

the characteristics, P (t) satisfies

d

dt
P (t) = −c′(x(t))P (t).

Noting that this is the same as (2.5) for u′ we arrive at the update of p(x(t), t)

p(xk, t+ ∆t) = p(yk, t)
c(yk)

c(xk)
. (2.11)

We now derive the formula for update of p′(x(t), t). Taking the spatial derivative of (2.9)

gives

p′t + c(x)p′x + 2c′(x)p′ + c′′p = 0. (2.12)

Let Q(t) = p′(x(t), t) along the characteristics and then

dQ(t)

dt
=

∂

∂t
p′ +

∂

∂x
p′
dx

dt

= −2c′(x(t))Q(t)− c′′(x(t))P (t)

by (2.12) where P (t) = p(x(t), t). So

p′(x(t), t+ ∆t) = Q(t+ ∆t)

= exp

(
−2

∫ 0

−∆t

c′(x(t))dx

)
p′(yk, t)

−
∫ 0

−∆t

exp

(∫ 0

−s
−2c′(x(t))dt

)
c′′(x(s))p(x(s), s)ds. (2.13)

In order to evaluate (2.13) consider the time derivative of (2.9) given by

ṗt + (c(x)ṗ)x = 0

9

then

ṗ+ c(x)ṗ′ + c′(x)ṗ = 0 (2.14)

which satisfies (2.10) and we have

ṗ(xk, t+ ∆t) = ṗ(yk, t)
c(yk)

c(xk)
. (2.15)

Applying (2.14) to (2.15) gives

(−c(x)p′ − c′(x)p)(xk, t+ ∆t) = (−c(y)p′ − c′(y)p)(yk, t)
c(yk)

c(xk)

⇒ −c(xk)p′(xk, t+ ∆t)− c′(xk)p(xk, t+ ∆t) = (−c(x)p′ − c′(x)p)(yk, t)
c(yk)

c(xk)

⇒ p′(xk, t+ ∆t) = −c
′(xk)

c(xk)
p(xk, t+ ∆t) +

(
c(yk)

c(xk)
p′(yk, t) +

c′(yk)

c(xk)
p(yk, t)

)
c(yk)

c(xk)
.

Now we apply (2.11) and the update of the derivative becomes

p′(xk, t+ ∆t) = −c
′(xk)

c(xk)

c(yk)

c(xk)
p(yk, t) +

(
c(yk)

c(xk)

)2

p′(yk, t) +
c′(yk)

c(xk)

c(yk)

c(xk)
p(yk, t). (2.16)

We now have explicit update formulas for the solution and the solution derivative of

the advection equation in one dimension. We will discuss profiling techniques to evaluate

p(yk, t) and p′(yk, t) in section 2.3.

2.3 CIP Profiling

We now develop the interpolation methods that give an accurate profile of the solution

incorporating the values of the solution and its derivatives in a local cell. We have already

developed explicit update formulas for the solution and the solution derivative in previous

sections and we will use these interpolation techniques to evaluate these formulas.

For the one dimensional case we develop a piecewise liner interpolation as well as the

standard Taylor series based methods for each interval using the solution and deriva-

tives at the endpoints of each interval. In section 2.4 we will demonstrate numerically

the efficiency and accuracy of these profiling techniques using numerical examples. Our

10

procedure for each of the profiling methods is as follows

1. Solve the characteristic ODEs. For the transport equation this would be
d

dt
x(t) =

c(x(t)) subject to x(∆t) = xk to find yk’s or wave speed.

2. For each time level tn construct a profile for each subinterval (xk−1, xk).

3. Update solution and solution derivatives based on the update formulas using the

profiles to evaluate.

Note that we need only perform the first step (which is also the most time consuming)

once. We will now describe linear profiling, piecewise linear profiling and cubic profiling;

we provide the the function definitions that we use for the solution updates. We use the

appropriate derivatives of these functions to evaluate the derivative update solutions.

Linear Profile

Consider the data set given by {uk} where uk is the function value. On the interval [−h, 0]

the updates for uk is approximated by the linear function θ(x) = a0 + a1 where

u0 = θ(−h) = a0 − a1h

u1 = θ(0) = a0.

Solving this system gives

a0 = u1

a1 =
u1 − u0

h
.

Then for yj ∈ [xk−1, xk]

θk(yj) = uk +
uk − uk−1

∆x
(yk − xk).

Multi-Moment Piecewise Linear Profile

In our multi-moment scheme a linear profile is created for each subinterval based on the

function values and it derivative at the two ends. The updates for uk and u′k are calculated

individually according to this profile. Given the data set {uk, u′k, xk,∆t} consider the node

11

x on the interval [−h/2, h/2] then define

φk(x) =

φ` =

(
x− h

2

)
u′k−1 + uk−1 x ≤ x∗

φr =

(
x+

h

2

)
u′k + uk x > x∗

(2.17)

where

x∗ =
(u′k + u′k−1)h− 2(uk − uk−1)

2(uk − uk−1)

assuming φ` and φr intersect. This is a hat function for each subinterval as our profile to

approximate u(yk, t). There are several potential issues that arise with this definition of

φ(x):

1. Division by small numbers when φ` and φr are nearly parallel.

2. There are multiple slopes for x when x = x∗.

3. No intersection between φ` and φr.

To tackle these issues the approach taken is to adjust the definition of (2.17) in calcula-

tions. Reformulating φk(x) gives the expression

φk =

φr

1 + exp

(
−(φr − φ`)

c

) +
φ`

1 + exp

(
(φr − φ`)

c

)
1 + exp

(
−(u′k−1 − u′k)

c

)

+

φr

1 + exp

(
(φr − φ`)

c

) +
φ`

1 + exp

(
−(φr − φ`)

c

)
1 + exp

(
(u′k−1 − u′k)

c

)
(2.18)

where c is a small constant (in our computations we used c = 10−6). Using (2.18) elimi-

nates division by small numbers when φ` and φr are nearly parallel to give the piecewise

linear profile for uk. To address the possibility of multiple slopes at x∗ we modify φ` and

φr a little. Define

φ̂` =

(
(x± δ)− h

2

)
u′k−1 + uk−1 (2.19)

12

and

φ̂r =

(
(x± δ) +

h

2

)
u′k + uk (2.20)

where δ small and sign(δ) depends on the direction of motion. This formulation also

allows for differentiation; the expression used to evaluate φ′k(x) is

φ′k =

u′k

1 + exp

(
−(φ̂r − φ̂`)

c

) +
u′k+1

1 + exp

(
(φ̂r − φ̂`)

c

)

1 + exp

(
−(u′k−1 − u′k)

c

)

+

u′k

1 + exp

(
(φ̂r − φ̂`)

c

) +
u′k−1

1 + exp

(
−(φ̂r − φ̂`)

c

)

1 + exp

(
(u′k−1 − u′k)

c

) .

(2.21)

Multi-Moment Cubic Profile

Consider the data set given by {uk, u′k} where uk is the function value and u′k is the

derivative value. On the interval [−h, 0] the updates for uk and u′k are approximated by

the cubic polynomial ψ(x) = a0 + a1x+ a2x
2 + a3x

3 where

u0 = ψ(−h) = a0 − a1h+ a2h
2 − a3h

3

u′0 = ψ′(−h) = a1 − 2a2h+ 3a3h
2

u1 = ψ(0) = a0

u′1 = ψ′(0) = a1

13

Solving this system gives

a0 = u1

a1 = u′1

a2 =
(2u′1 + u′0)h− 3(u1 − u0)

h2

a3 =
(u′1 + u′0)h− 2(u1 − u0)

h3
.

Then for yj ∈ [xk−1, xk]

ψk(yj) = uk + u′k(yk − xk) +
(2u′k + u′k−1)(∆x)− 3(uk − uk−1)

(∆x)2
(yj − xk)2

+
(u′k + u′k−1)(∆x)− 2(uk − uk−1)

(∆x)3
(yj − xk)3.

(2.22)

and

ψ′k(yj) = u′k +
2(2u′k − u′k−1)(∆x)− 6(uk − uk−1)

(∆x)2
(yj − xk)

+
3(u′k − u′k−1)(∆x)− 6(uk − uk−1)

(∆x)3
(yj − xk)2.

(2.23)

Once a type of profile is selected the update to the solution to the transport equation,

uk, in (2.3) is given by

un+1
k = Fk(yk). (2.24)

and the update for u′k is given by

(u′k)
n+1 = F ′k(yk)

c(yk)

c(xk)
(2.25)

where F is the interpolation function. Similarly for the advection equation (2.9) the

update is given by

pn+1
k = Fk(yk)

c(yk)

c(xk)
(2.26)

and

(p′k)
n+1 = −c

′(xk)

c(xk)

c(yk)

c(xk)
Fk(yk) +

(
c(yk)

c(xk)

)2

F ′k(yk) +
c′(yk)

c(xk)

c(yk)

c(xk)
Fk(yk). (2.27)

We have presented three profiles for the interpolation required to evaluate our solution

14

update formulas, next we will discuss the numerical accuracy of our proposed profiles

using numerical tests.

2.4 One Dimensional CIP Numerical Results

Example 1 (Transport Equation):

We consider the case of the transport equation with c(x) = x − x3 and u(x, 0) =

exp(−10x2). Then (2.1) becomes

ut + (x− x3)ux = 0 (2.28)

where x ∈ [−2, 2] and t > 0. The analytic solution to (2.29) is given by

u(x, t) = exp

−10

(
x

√
e−2t

−x2 + e−2tx2 + 1

)2
 .

We apply our CIP scheme with the linear and non-linear profiles. In Figure 2.2, Figure 2.3,

and Figure 2.4 our numerical solutions were calculated with ∆x = ∆t = .02. The three

profiles effectively capture the discontinuities that form in our solution at x = −1, 1. It

should be noted that oscillations or overshooting may occur when using the cubic profile

in the presence of sharp discontinuities.

In Figure 2.5 the cubic profile achieves a fourth order convergence. In Table 2.1 and

Table 2.2 we can observe that the linear profile requires sixteen times the number of points

as the piecewise linear profile to achieve the same level of accuracy. Even if we double

the number of unknowns for the linear profile to equal the same number of unknowns

for the multi-moment piecewise profile we can not achieve the same performance. For

the multi-moment methods (piecewise linear and cubic) we have in Figure 2.3(b) and

Figure 2.4(b) included the gradient solutions, we do not use gradient updates for the

linear case. Lastly in Figure 2.6 we show the error for various CFL numbers for the three

profiles.

15

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: Numerical solution u(x, t) using linear profile for t = 0, 1.2, 2.4, and 6.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−10

−5

0

5

10

(a) (b)

Figure 2.3: (a) Numerical solution u(x, t) and (b) the solution derivative v(x, t) using
multi-moment piecewise linear profile for t = 0, 1.2, 2.4, and 6.

Table 2.1: Error in numerical solutions for transport equation in `2.

N 200 400 800 1600 3200
Linear 1.024e-2 5.206e-3 2.626e-3 1.319e-3 6.608e-4

Piecewise Linear 4.488e-4 1.108e-4 2.917e-5 7.492e-6 2.196e-6
Cubic 1.569e-4 2.834e-5 5.062e-6 8.993e-7 1.594e-7

16

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−10

−5

0

5

10

(a) (b)

Figure 2.4: (a) Numerical solution u(x, t) and (b) the solution derivative v(x, t) using
multi-moment cubic profile for t = 0, 1.2, 2.4, and 6.

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Linear
PLinear
Cubic

Figure 2.5: Error in the numerical solutions at t = 1 in `2.

Table 2.2: Error in numerical solutions for transport equation in `1.

N 200 400 800 1600 3200
Linear 1.271e-2 6.422e-3 3.230e-3 1.620e-3 8.115e-4

Piecewise Linear 4.878e-4 1.160e-4 3.044e-5 7.85e-6 2.320e-6
Cubic 5.875e-5 7.585e-6 9.616e-7 1.207e-7 1.579e-8

17

0.5 1 1.5 2

0

0.005

0.01

0.015

0.02

Linear
PLinear
Cubic

Figure 2.6: Error in the numerical solutions in `2 verse CFL = .5, 1, and 2.

Example 2 (Advection Equation):

We consider the case of the advection equation with c(x) = x − x3 and u(x, 0) =

exp(−10x2). And so (2.1) becomes

ut + ((x− x3)u)x = 0 (2.29)

where x ∈ [−2, 2] and t > 0. The analytic solution to (2.29) is given by

u(x, t) =
e

(−2t+ 2tx2)e2t − 2x2(−5 + t)

−x2 − e2t + e2tx2√
x2 + e2t − e2tx2

x2
((−x+ x3)e2t − x3)

.

We apply our CIP scheme with the multi-moment piecewise linear and cubic profiles. We

calculated numerical solutions with ∆x = ∆t = .02 at various times. In Figure 2.7 we see

that the discontinuities that form are effectively captured. We observe in Table 2.3 that

the error associated with each of the profiles are comparable however the convergence

rate for the piecewise linear achieves second order spatial convergence while the cubic is

sub-second order. This is a nonsmooth problem so we expect a decrease in performance

for the cubic profile.

In the CIP scheme we have presented three types of profiles to accompany the solution

18

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t=0
t=0.8
t=1.2
t=2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t=0
t=0.8
t=1.2
t=2

(a) (b)

Figure 2.7: Numerical solution u(x, t) using (a) the multi-moment piecewise linear profile
(2.18) and (b) the multi-moment cubic profile (2.22) for t = 0, 0.8, 1.2, and 2.

Table 2.3: Error in numerical solutions for advection equation in `2.

N 100 200 400 800
Piecewise Linear 3.9877e-4 7.9853e-5 1.9647e-5 5.6754e-6

Cubic 1.1027e-4 3.2622e-5 1.1291e-5 4.4563e-6

and solution gradient update formulas we developed. Using a multi-moment method we

are able to better capture the formation of discontinuities. For the transport equation

the multi-moment cubic profile achieves the highest accuracy. For the advection equation

the multi-moment piecewise cubic achieves a comparable error to the cubic profile. One

of the advantages of the multi-moment piecewise cubic profile is that it will not oscillate

when discontinuities form unlike the multi-moment cubic profile for coarse grids.

19

Chapter 3

CIP Methods for Hyperbolic

Equations in Two Dimensions

3.1 Two Dimensional Updates

To extend our method to two dimensions we will consider two strategies. First we consider

a direct extension of our method, i.e., develop exact time integration in two dimensions for

the transport equation and the advection equation. We follow the same steps as the one

dimensional case starting with applying the method of characteristics on the full system

to develop solution and gradient update formulas. We then apply a two dimensional

profile to evaluate these update formulas. The second strategy is to use an operator

splitting method for integrating the transport equation in time thus this strategy uses

the CIP profiling developed in Chapter 2 for the one dimensional case.

3.1.1 Two Dimensional Transport

Consider the two dimensional transport equation

∂u

∂t
+ ~c(x)ux = 0 (3.1)

where

~c =

(
a(x1(t), x2(t))

b(x1(t), x2(t))

)

20

for t > 0, t ∈ R and x ∈ R2. To directly extend our method we first apply the method of

characteristics with U(t) = u(x1(t), x2(t), t). Taking the derivative of U(t) gives

dU(t)

dt
=

∂u

∂t
+

∂u

∂x1

dx1

dt
+

∂u

∂x2

dx2

dt
(by the chain rule)

=
∂u

∂t
+ a(x1, x2)

∂u

∂x1

+ b(x1, x2)
∂u

∂x2

= 0

(3.2)

by (3.1). Thus we obtain the update formula

U(t+ ∆t) = u(x1, x2, t+ ∆t) = u(y1, y2, t) (3.3)

where (y1, y2) are determined by the backward characteristic depicted by Figure 3.1 for

the system (x1, x2):

d

dt

(
x1

x2

)
=

(
a(x1, x2)

b(x1, x2)

)
(3.4)

where

x(0) =

(
x1

x2

)
and

(
y1

y2

)
= x(−∆t).

Now we determine the update formula for the gradient (ux1 , ux2). Define V1(t) =

ux1(x1(t), x2(t), t) and V2(t) = ux2(x1(t), x2(t), t) along the characteristics. Taking the

derivative of (3.1) with respect to x1 gives

∂ux1
∂t

+ a(x1, x2)(ux1)x1 + b(x1, x2)(ux1)x2 + ax1(x1, x2)ux1 + bx1(x1, x2)ux2 = 0. (3.5)

Similarly taking the derivative of (3.1) with respect to x2 gives

∂ux2
∂t

+ a(x1, x2)(ux2)x1 + b(x1, x2)(ux2)x2 + ax2(x1, x2)ux1 + bx2(x1, x2)ux2 = 0. (3.6)

21

1

2

1,

1,

1,

()

()

m n

m n x

m n x

u

u

u

1

2

,

,

,

()

()

m n

m n x

m n x

u

u

u

1

2

1, 1

1, 1

1, 1

()

()

m n

m n x

m n x

u

u

u

1

2

, 1

, 1

, 1

()

()

m n

m n x

m n x

u

u

u

 1, 2,,k ky y

 1, 2,,k kx x

t t

t

Figure 3.1: Diagram of backward characteristics for system (3.4) in two dimensions.

Thus,

d

dt
V1 =

∂

∂t
ux1 +

∂ux1
∂x1

d

dt
x1(t) +

∂ux1
∂x2

d

dt
x2(t) by the chain rule

= −(ax1(x1, x2)ux1 + bx1(x1, x2)ux2) at (x1(t), x2(t), t) by (3.5) (3.7)

and

d

dt
V2 =

∂

∂t
ux2 +

∂ux2
∂t

d

dt
x1(t) +

∂ux2
∂x2

d

dt
x2(t) by the chain rule

= −(ax2(x1, x2)ux1 + bx2(x1, x2)ux2) at (x1(t), x2(t), t) by (3.6). (3.8)

We write (3.7) and (3.8) as a system of equations for (V1(t), V2(t)):

d

dt

(
V1(t)

V2(t)

)
+ J(t)

(
V1(t)

V2(t)

)
= 0 (3.9)

22

where

J(t) =

(
ax1(x1(t), x2(t)) bx1(x1(t), x2(t))

ax2(x1(t), x2(t)) bx2(x1(t), x2(t))

)
.

Note that (V1(t), V2(t)) = P (t)(V1(0), V2(0)) where the transition matrix P (t) ∈ R2×2

satisfies
d

dt
P (t) + J(t)P (t) = 0.

To solve this system we define X = (x1, · · · , x6) by

(X1(t), X2(t)) = (x1(t), x2(t)), X3(t) = P11(t), X4(t) = P12(t), X5(t) = P21, and X6(t) = P22(t).

Then the equation for Xt(t) is

d

dt
X =

a(X1, X2)

b(X1, X2)

−ax1(X1, X2)X3 − bx1(X1, X2)X5

−ax1(X1, X2)X4 − bx1(X1, X2)X6

−ax2(X1, X2)X3 − bx2(X1, X2)X5

−ax2(X1, X2)X4 − bx2(X1, X2)X6

(3.10)

with the initial conditions (X1(0), X2(0)) = (x1, x2) and X3(0) = 1; X4(0) = 0; X5(0) =

0; X6(0) = 1. Let Y = X(−∆t) = (y1, ...y6) satisfy (3.10), then the updates for u is

given by (3.3) and the update for ux1 and ux2 are given by(
ux1(x1, x2, t+ ∆t)

ux2(x1, x2, t+ ∆t)

)
=

(
y3 y4

y5 y6

)−1(
ux1(y1, y2, t)

ux2(y1, y2, t)

)
. (3.11)

3.1.2 Two Dimensional Advection

We now consider the system for the advection equation

∂p

∂t
+

∂

∂x
(~c(x)p(x1(t), x2(t), t)) = 0

or alternatively
∂p

∂t
+ ~c(x)px + div(~c(x))p = 0 (3.12)

23

for t > 0, t ∈ R and x ∈ R2. We will apply the method of characteristics with P (t) =

p(x1(t), x2(t), t). Taking the derivative of P (t) gives

dP (t)

dt
=

∂p

∂t
+

∂p

∂x1

dx1

dt
+

∂p

dx2

dx2

dt

=
∂P

∂t
+ a(x1, x2)

∂p

∂x1

+ b(x1, x2)
∂p

∂x2

= −div(~c)P (t).

Define x3(t) by
d

dt
x3(t) = −div(~c(x1(t), x2(t))x3(t), x3(0) = 1 (3.13)

and let y3 be the solution to (3.13) then we obtain the solution update formula

P (t) = p(x1, x2, t+ ∆t) = y3p(y1, y2, t). (3.14)

Next we determine the update for the gradient (px1 , px2). DefineW1(t) =
∂

∂x1

p(x1(t), x2(t), t)

and W2(t) =
∂

∂x2

p(x1(t), x2(t), t) along the characteristics. From (3.12) px1 satisfies

∂px1
∂t

+ a(x1, x2)(px1)x1 + b(x1, x2)(px1)x2 + ax1(x1, x2)px1 + bx1(x1, x2)px2

+ div(~c(x))x1p+ div(~c(x))px1 = 0

(3.15)

and px2 satisfies

∂px2
∂t

+ a(x1, x2)(px2)x1 + b(x1, x2)(px2)x2 + ax2(x1, x2)px1 + bx2(x1, x2)px2

+ div(~c(x))x2p+ div(~c(x))px2 = 0.

(3.16)

Using the chain rule and applying (3.15) we have

dW1

dt
=

∂

∂t
px1 +

∂px1
∂x1

dx

dt
+
∂px1
∂x2

dx2

dt

=
∂

∂t
px1 + a(x1, x2)(px1)x1 + b(x1, x2)(px1)x2

= −(ax1(x1, x2)px1 + bx1(x1, x2)px2 + (div(~c(x)))x1p+ div(~c(x))px1)

24

and similarly by (3.16) we have

dW2

dt
=

∂

∂t
px2 +

∂px2
∂x1

dx1

dt
+
∂px2
∂x2

dx2

dt

=
∂

∂t
px2 + a(x1, x2)(px2)x1 + b(x1, x2)(px2)x2

= −(ax2(x1, x2)px1 + bx2(x1, x2)px2 + (div(~c(x)))x2p+ div(~c(x))px2).

Thus

d

dt

(
W1

W2

)
+ J(t)

(
W1

W2

)
+

(
(div(~c(x)))x1

(div(~c(x)))x2

)
P + div(~c(x))

(
W1

W2

)
= 0 (3.17)

where

J(t) =

(
ax1(x1(t), x2(t)) bx1(x1(t), x2(t))

ax2(x1(t), x2(t)) bx2(x1(t), x2(t))

)
.

Define the fundamental solution T for this system by

dT (t)

dt
+

 div(~c(x)) 0 0

(div(~c(x)))x1 ax1(x) + div(~c(x)) bx1(x)

(div(~c(x)))x2 ax2(x) bx2(x) + div(~c(x))

T (t) = 0

where x = (x1(t), x2(t)). Then we have P (t)

W1(t)

W2(t)

 = T (t)

 1

W1(0)

W2(0)

 .

To complete update we define X = (X1, · · · , X9) by

(X1(t), X2(t)) = (x1(t), x2(t)), X3(t) = P (t)

X4 = T22(t), X5(t) = T23(t), X6(t) = T32, X7(t) = T33(t), X8(t) = T21(t), X9(t) = T31(t)

and the equation for d
dt
X(t) is:

25

Xt =

a(X1, X2)

b(X1, X2)

−div(~c(X1, X2)))X3

−(ax1(X1, X2) + div(~c(X1, X2)))X4 − bx1(X1, X2)X6

−(ax1(X1, X2) + div(~c(X1, X2)))X5 − bx1(X1, X2)X7

−ax2(X1, X2)X4 − (bx2(X1, X2) + div(~c(X1, X2)))X6

−ax2(X1, X2)X5 − (bx2(X1, X2) + div(~c(X1, X2)))X7

−div(~c(X1, X2))x1X3 − (ax1(X1, X2) + div(~c(X1, X2)))X8 − bx1(X1, X2)X9

−div(~c(X1, X2))x2X3 − ax2(X1, X2)X8 − (bx2(X1, X2) + div(~c(X1, X2)))X9

(3.18)

with (X1(0), X2(0)) = (x1, x2) and X4(0) = X7(0) = 1; X5(0) = X6(0) = X8(0) =

X9(0) = 0. Let Y = X(−∆t) = (y1, ..., y9) satisfy (3.18). Then the updates for px1 and

px2 are given by the system(
px1(x1, x2, t+ ∆t)

px2(x1, x2, t+ ∆t)

)
=

(
y4 y5

y6 y7

)−1(
px1(y1, y2, t)− y8

y3
p(y1, y2, t)

px2(y1, y2, t)− y9
y3
p(y1, y2, t)

)
. (3.19)

3.1.3 Operator Splitting

The approach developed in section 3.1.1 for the transport equation significantly increases

the complexity of our one dimensional method and may therefore not be advisable or

desirable for higher dimensions (more than two). For this reason we also extend our

method via time splitting integration for the transport equation which maintains the

simplicity of our method in higher dimensions to reduce the operations while preserving

the accuracy. This procedure can be viewed as a divide an conquer tactic, i.e., for each

direction of motion we create independent update formulas. For the two dimensional case

we will first consider the x1 direction while assuming x2 is constant. After developing the

formulas for the x1 direction we will hold x1 constant to develop update formulas for the

x2 direction. To begin first we assume x2(t) = s where s is a constant then (3.2) becomes

dU(t)

dt
=
∂u

∂t
+

∂u

∂x1

dx1

dt
= 0

which is equivalent to (2.2) and so the solution update in x1 direction is

u(x1, s, t+ ∆t) = u(y1, s, t) (3.20)

26

where y1 is the solution to the characteristic equation d
dt
x1(t) = a(x1, s). To update the

derivative value for ux1 in the x1 direction we observe

∂ux1
∂t

+ a(x1, s)
∂ux1
∂x1

+ ax1(x1, s)ux1 = 0

which is equivalent to (2.5) and so

ux1(x1, s, t+ ∆t) = ux1(y1, s, t)
a(y1, s)

a(x1, s)
. (3.21)

To update ux2 in the x1 direction we take the derivative of (3.1) with respect to x2 to get

∂ux2
∂t

+ a(x1, s)
∂ux2
∂x1

+ ax2(x1, s)ux1 = 0. (3.22)

Now let V (t) = ux2(x1, s, t) then

dV

dt
=

∂ux2
∂t

+
∂ux2
∂x1

dx1

dt

=
∂ux2
∂t

+ a(x1, s)
∂ux2
∂x1

= −ax2(x1, s)ux1

(3.23)

by (3.22) which can be evaluated by and ODE solver. Alternatively we can apply a

quadrature rule to

V (t+ ∆t)− V (t) = −
∫ t+∆t

t

ax2(x1, s)ux1dt. (3.24)

For example if we apply the trapezoidal rule then (3.24) becomes

ux2(x1, s, t+ ∆t) = ux2(x1, s, t)−
∆t

2
(ax2(x1, s)ux1(x1, s, t) + ax2(x̂1, s)ux1(x̂1, s, t+ ∆t))

where x̂1 = x1(t+ ∆t). We now have the formulas for updating the solution and solution

derivatives in the x1 direction. We repeat the same procedure to get the update formulas

in the x2 direction when x1(t) = s̃ is constant then (3.2) becomes

dU(t)

dt
=
∂u

∂t
+

∂u

∂x2

dx2

dt
= 0

27

which is equivalent to (2.2) and so the solution update in x2 direction is

u(s̃, x2, t+ ∆t) = u(s̃, y2, t) (3.25)

where y2 is the solution to the characteristic equation d
dt
x2(t) = a(s̃, x2). To update the

derivative value ux2 in the x2 direction we observe

∂ux2
∂t

+ b(s̃, x2)
∂ux2
∂x2

+ bx2(s̃, x2)ux2 = 0

which is equivalent to (2.5) and so

ux2(s̃, x2, t+ ∆t) = ux2(s̃, x2, t)
b(s̃, y2)

b(s̃, x2)
. (3.26)

To update ux1 in the x2 direction we take the derivative of (3.1) with respect to x1 to get

∂ux1
∂t

+ b(s̃, x2)
∂ux1
∂x2

+ bx1(s̃, x2)ux2 = 0. (3.27)

Now let V (t) = ux1(s̃, x2, t) then

dV

dt
=

∂ux1
∂t

+
∂ux1
∂x2

dx2
dt

=
∂ux1
∂t

+ b(s̃, x2)
∂ux1
∂x2

= −bx1(s̃, x2)ux2

(3.28)

by (3.27) which can be evaluated by and ODE solver. We now have the update formulas

for the function and gradient values using two different techniques. For direct extension

of our method in sections 3.1.1 and 3.1.2 we need to develop two dimensional profil-

ing techniques. For the operator splitting technique we can utilize the one dimensional

profiling techniques developed for the one dimensional case in Chapter 2.

3.2 CIP Profiling

To evaulate u(y1,k, y2,k) used in the update formulas developed in 3.1.1 and 3.1.2 we

develop a two dimensional profiling technique. For each square cell we have the data

28

(uk, (uk)x1 , (uk)x2) at each corner as depicted in Figure 3.1. We use the Adini polynomials

defined by

φ(x, y) =
∑

xky`∈P

ak`x
k
1x

`
2 (3.29)

where

P = {1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

3
1x2, x1x

3
2}.

We are able to solve for each ak` uniquely since we have twelve nodal values and twelve

coefficients. For example when ∆x = 1 we have the map M from the coefficient space

to the solution space and the map M−1 from the solution space to the coefficient space

given by

M =

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

0 1 0 2 0 0 3 0 0 0 0 0

0 0 1 0 1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0 0 1 0 0

0 1 0 0 1 0 0 0 1 0 0 1

0 0 1 0 0 2 0 0 0 3 0 0

1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 2 1 0 3 2 1 0 3 1

0 0 1 0 1 2 0 1 2 3 1 3

,

and

M−1

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

−3 −2 0 3 −1 0 0 0 0 0 0 0

−1 −1 −1 1 0 1 1 1 0 −1 0 0

−3 0 −2 0 0 0 3 0 −1 0 0 0

2 1 0 −2 1 0 0 0 0 0 0 0

3 2 0 −3 1 0 −3 −2 0 3 −1 0

3 0 2 −3 0 −2 −3 0 1 3 0 −1
2 0 1 0 0 0 −2 0 1 0 0 0

−2 −1 0 2 −1 0 2 1 0 −2 1 0

−2 0 −1 2 0 1 2 0 −1 −2 0 1

.

29

Using (3.29) we can compute interpolated the value of u(y1,k, y2,k, t), ux1(y1,k, y2,k, t) and

ux2(y1,k, y2,k, t). Our updates are now are given by

un+1
k (x1,k, x2,k, t) = φk(y1,k, y2,k) (3.30)

and

(ux1)
n+1
k = α(y6φ

′
k(y1,k, y2,k)− y4φ

′
k(y1,k, y2,k)) (3.31)

and

(ux2)
n+1
k = α(−y5φ

′
k(y1,k, y2,k) + y3φ

′
k(y1,k, y2,k)) (3.32)

where α = (y3y6 − y4y5)−1.

3.3 Two Dimensional CIP Numerical Results

In this section we consider some numerical examples to test our methods.

Example 1:

We consider the transport equation given by

ut + x2ux1 + x1ux2 = 0 (3.33)

To compute this solution we use a Strang splitting (time operator splitting) scheme where

we first update our solution where for each time step we first update the x direction for

half a time step, update in the y direction for a full time step, and lastly update in the

x-direction for another half time step, ie, for each step

S = Sx(1/2)SySx(1/2) .

Using the update formulas developed in section 3.1.3 we consider the case when u(x, y, 0) =

exp(−10(x2 + y2). Then (3.33) has the analytic solution given by

u(x, y, t) = exp

(
−10

((
−1

2

(y − x)et − (x+ y)e−t

ete−t

)2

+

(
1

2

(y − x)et + (y + x)e−t

ete−t

)2
))

.

For the numerical solutions we use ∆x = ∆t = .04 (for this method the CFL condition

30

must be met). In Figure 3.2(a) we see the initial distribution and in Figure 3.2(b), Fig-

ure 3.2(c), and Figure 3.2(d) we can see the distribution contract and blade. At t = 1.2

we see the solution in Figure 3.2 as well as 1-D slice in Figure 3.2(f) which has `2 error

0.0035 in at t = 1.2.

Example 2:

We consider the rigid body rotation given by

∂u

∂t
+ x2

∂u

∂x1

− x1
∂u

∂x2

= 0 (3.34)

The initial condition we used is in Figure 3.3(a) is a smoothed slotted disk which is

discontinuous at 1.42− (x2 + y2) = 0 on a 100× 100 mesh. For this example problem we

use our method developed in section 3.1.1 which has a smoothness requirement so we are

using a smoothed domain instead of the standard slotted disk. The numerical solution

when ∆x = .01 and ∆t = 2π/200 ≈ .0157 (we have no CFL condition for this method)

after four and eight revolutions is in Figure 3.3(b) and Figure 3.3(c) respectively, these

figures are meshes oriented to display the solution features. In these figures we observe

slight numerical dispersion in our solution. In Figure 3.3(d) we take a one dimensional

slice of our solution we can see oscillatory behavior near the discontinuities which as we

are using cubic polynomials is to be expected. The `2 error this slice is .0048 so we are

able to capture the behavior of this discontinuous domain with a high degree of accuracy

using this method.

31

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) (d)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

actual
CIP

(e) (f)

Figure 3.2: (a) Initial conditions (b) t = .3 (c) t = .6 (d) t=.9, and (e) t = 1.2. (f) is a
1-D cut at x = −.02 and y = −2 to 2 when t = 1.2 for example 1.

32

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

exact
CIP

(c) (d)

Figure 3.3: (a) Initial conditions (b) t = 8π (c) t = 16π (d) 1-D cut at x = −.84 and
y = −2 to 2 when t = 8π for example 2.

33

Chapter 4

Nonsmooth Optimization for the

Elastic Contact Problem

In this chapter we discuss nonsmooth optimization methods with application to the elas-

tic contact problem with friction in two dimensions. The Signorini contact problem with

Coulomb friction minimizes the elastic deformation energy in the normal and tangential

directions of an applied force. We begin by introducing the problem and discussing opti-

mization techniques. We then apply the optimization techniques developed to the linear

elastic contact problem.

4.1 Model Description

Contact problems with friction arise in many important industrial and engineering ap-

plications for example material failure and load bearing. We will consider the mechanical

contact between an elastic body and a rigid body which is modeled by the Signorini con-

tact problem with Coulomb friction [11, 4]. The Signorini contact models the constrained

motion in the normal direction of the elastic body due to its contact with the rigid body

while the Coulomb friction models the tangential frictional force in the contact region.

We begin with the full contact problem;

34

−divσ = f in Ω,

σn|Γ0 = g,

u|Γ1 = 0,

(4.1)

un − d ≤ 0, σN ≥ 0, (un − d)σN = 0 (4.2)

|στu| ≤ F|σN |, if uτ = 0

στ = −FσN
uτ
|uτ |

, uτ 6= 0
(4.3)

where Ω is the domain on which the deformation vector u is defined, Γ the boundary of

Ω, d is the gap between the elastic body and rigid body, un is the normal displacement,

uτ is the tangential displacement, σn is the normal stress, σN is the normal component

of the normal stress, στ is the tangential component of the normal stress, and F is the

coefficient of friction. We assume linear elasticity strain tensor;

ε =
1

2

(
∇u+ (∇u)T

)
(4.4)

or equivalently

ε =

∂u1

∂x1

1
2

(
∂u2

∂x1

+
∂u1

∂x2

)
1
2

(
∂u2

∂x1

+
∂u1

∂x2

)
∂u2

∂x2

for the two dimension case. We use Hooke’s law for the strain stress-strain relationship,

σ = 2µε+ λtrεI (4.5)

where σ is the strain tensor, and µ and λ are the Lamé constants. The Lamé constants

may be computed using

λ =
(Eν)

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)

where E > 0 is Young’s modulus and ν ∈ (0, 0.5) is the Poisson ration. The full contact

problem has no direct variational formulation and there is no guaranteed existence and

uniqueness for large friction coefficients.

To develop our numerical optimization methods we first review the variational formu-

35

lation of the Signorini problem and Coulomb friction problem. The Lagrange multiplier

theory [4] is used and the necessary optimality and sufficient optimality conditions are

written as complementarity systems. We develop a semi-smooth Newton method for both

complementarity systems for the Signorini problem and the Coulomb friction problem.

They are of the form of Primal-Dual Active Set methods. The semi-smooth method is a

very effective method for nonsmooth optimization problems and converges super linearly

(for finite dimensional problems the active set methods convergence in finite steps). Com-

bining these two schemes we develop an algorithm to solve the full elastic contact problem

with minimized elastic deformation. In the next chapter we will describe a discretization

technique to solve the problem numerically as well as providing a test example.

4.2 Variational Formulation of Signorini and Coulomb

Friction Problems

In this section we begin by reviewing the formulation of the variational Signorini and

Coulomb friction problems. For both of these problems we apply numerical optimization

methods based on semismooth Newton methods. To begin we integrate (4.2) against test

functions φ, φ2 ∈ H1(Ω) to get the weak form

−
∫

Ω

divσ ·

(
φ1

φ2

)
=

∫
Ω

~f ·

(
φ1

φ2

)
(4.6)

where ∫
Ω

divσ ·

(
φ1

φ2

)
=

∫
Ω

div(σ11, σ12)φ1dx+

∫
Ω

div(σ12, σ22)φ2dx

= −
∫

Ω

(σ11, σ22) · 5φ1 −
∫

Ω

(σ12, σ22) · 5φ2

+

∫
Γ

~n · (σ11, σ22)φ1ds+

∫
Γ

~n · (σ12, σ22)φ2ds

by the divergence theorem. Thus the weak form of the linear elastic equation is given by∫
Ω

σ : ε(φ)dx =

∫
Γ

~φ · σn ds+

∫
Ω

~f · ~φ dx (4.7)

36

where

ε(φ) =
1

2

(
∂φi
∂xj

+
∂φj
∂xi

)
we use this form in the following sections to develop the variational form of the Signorini

contact problem as well as the Coulomb friction problem.

4.2.1 Signorini Contact Problem

The variational form of the Signorini Contact problem is

min
u
J(u) =

1

2

∫
Ω

σ : ε−
∫

Γ0

ungds−
∫

Ω

(f, u)dx

subject to un ≤ d on Γc

(4.8)

where Γc is the contact region. Note that this formulation is equivalent to the full contact

problem with F = 0 at Γc and σn is the Lagrange multiplier for the inequality constraint

un − d ≤ 0. That is, define the Lagrange functional

L(u, µ) = J(u) +

∫
Γc

(µ, un − d) ds

and the optimality condition is given by

Lu(u, µ)(φ) =

∫
σ : ε(φ) dx−

∫
Γ0

(g, φn)−
∫

Γc

(µ, φn) ds = 0

for all φ ∈ H1(Ω)2 and

µ ≥ 0 and

∫
Γc

(µ, un − d) ds = 0

assuming L2 lagrange multiplier µ exists.

4.2.2 Coulomb Friction Problem

For the Coulomb friction problem using (4.7) we have the variational formulation

min
u

1

2

∫
Ω

σ : ε−
∫

Γ0

(un, g) ds−
∫

Ω

(f, u)ds+

∫
Γc

F|uτ | dx (4.9)

37

where σN = 0 at Γc. The necessary optimality condition is given by∫
Ω

σ : ε(φ)−
∫

Γ0

(φn, g) ds−
∫

Ω

(f, u) dx−
∫

Γc

F(λ, φτ) ds = 0,

where

λ · uτ = |uτ |, and |λ| ≤ 1.

Thus, the complementary condition is

|στ | ≤ F|στ | if uτ = 0, and στ = FσN if uτ 6= 0.

Let V be a Hilbert space and a be a symmetric, coercive form on V × V , and f ∈ V ∗

is a bounded linear functional on V . Then, one can write (4.8) and (4.9) as variational

inequalities [10, 4] of the form

min
u∈V

1

2
a(u, u)− f(u) + j(u) (4.10)

where V = H1(Ω)×H1(Ω) and

a(u, φ) =

∫
Ω

σ : ε(φ) dx.

The nonsmooth convex functional j on V is defined by

j(u) = Iu≤d for Signorini contact (4.8) and

j(u) =

∫
Γc

F|uτ | ds for Coulomb friction (4.9).

We will use the variational inequality form (4.10) of the Signorini contact and the

Coulomb friction problems to develop our solution techniques. We will be employing

the primal-dual active set strategy. This is an efficient method for quadratic problems

like (4.10) that is based on the complementary condition.

38

4.3 Nonsmooth Optimization Algorithms

Before we can develop solution techniques for the Coulomb friction problem (4.9) we

need to address the L1 term

∫
Γc

F|uτ |. To do this we let ψε be the regularization of | · |;

ψε(s) =

{
|s| if |s| ≥ ε
1
2ε
|s|2 + ε

2
if |s| ≤ ε.

ψε ∈ C1(Rd) where 0 < ε << 1 which we differentiate as

ψ′ε(s) =

{
s
|s| if |s| > ε
s
ε

if |s| ≤ ε.

Using this regularization (4.10) is now the regularized problem

min
u∈V

Jε(u) =
1

2
a(u, u)− f(u) + jε(u) (4.11)

where

jε(u) =

∫
Γc

Fψε(uτ) ds.

The necessary and sufficient optimality condition for the regularized problem is written

as

a(u, φ)− f(φ)− (λε, φ), λε = ψ′ε(uτ)

for all φ ∈ V . Note that

|λε| ≤ 1, |λεuτ | = |uτ |max(0, |uτ | − ε).

It can be proven that the solutions (uε, λε) converge weakly to to the solution (u, λ) to

(4.10) in V × L2(Γc) if the trace operator γ of V onto L2(Γc) is compact.

To solve (4.11) consider the following fixed point method

Auk + γ∗
(

F
max(ε, |γuk−1|)

γuk
)
− f = 0 (4.12)

39

where A ∈ L(V, V ∗) is defined by

a(u, φ) = 〈Au, φ〉V ∗×V

and γ∗ : L(Γc)→ V ∗ is the dual operator of γ.

Theorem 1 The fixed point method (4.12) is globally convergent.

Proof: Equation (4.12) is equivalently written as

a(uk+1, φ)− (f, φ) + (ψ′ε(u
k
τ)u

k+1
τ , φ)Γc = 0 (4.13)

for all φ ∈ V . Note that if we let uk+1 = u+ and uk = u and λ = ψ′ε(u
k
τ), then

λ · (u+ − u)τ = ψ′ε(|uτ |)
1

2
(|u+

τ |2 − |uτ |2) + |(u+ − u)τ |2).

Since Ψε(
√
|s|) is concave,

λ · (u+ − u)τ ≤ ψε(|u+
τ |)− ψε(|uτ |).

Letting φ = u+ − u in (4.13), we obtain

Jε(u
k+1)− Jε(uk) ≤ 0

where equality only holds if uk+1 = uk. Thus, there exist a u∗ ∈ V and λ∗ ∈ L∞(Γc) such

that u∗ → u∗ weakly in V and λk → λ∗ weakly star in L∞(Γc). Since γ is compact ukτ → u∗τ

strongly. Without loss of generality ukτ → u∗ strongly in L2(Γc) and λk → λ∗ strongly

in L∞(Γc). Thus, u∗ ∈ V is the unique solution to (4.15) and a(uk, uk) → a(u∗, u∗) and

(4.12) is globally convergent for all ε > 0. �

The fixed point method works sufficiently well for the friction problem since A is an

elliptic operator.

40

4.3.1 Primal-Dual Active Set Method for Coulomb Friction

Problem

In general, for (4.10) we can use the second order method based on the semi-smooth

Newton method. A Newton derivative of ψ′ε is given by

ψ′′ε (s) =

{
0 |s| ≥ ε
1
ε

|s| ≤ ε.

Thus the Jacobian ψ′ε is singular at the solution. In order to overcome this difficulty

we use the Lagrange multiplier approach. The method is based on the complementarity

system;

Au+ γ∗(F λ) = f

max(1, |λ+ c v|)λ = λ+ c v, v = γu.

where γ ∈ L(V, Y) represents γu = uτ ∈ L2(Γc) (the surface trace for 3D case) for the

friction problem. We apply the semismooth Newton method:

|λ+ c v| δλ+ λ

(
λ+ c v

|λ+ c v|

)t
(δλ+ cδv) + |λ+ c v|λ− (λ+ + c v+) = 0,

if d = |λ + c v| > 1, pointwise, i.e on the inactive set where δv and δλ are increments;

δv = v+ − v and δλ = λ+ − λ, or equivalently

λ+|λ+ c v|+ λ

(
λ+ c v

|λ+ c v|

)t
(λ+ + c v+)− λ|λ+ c v| = λ+ + c v+. (4.14)

Next, we apply the damping and regularization to (4.14);

λ+|λ+ c v|+ β
λ

|λ| ∧ 1

(
λ+ c v

|λ+ c v|

)t
(λ+ + c v+)− β |λ+ c v| λ

|λ| ∧ 1
= λ+ + c v+. (4.15)

Here, the purpose of the regularization λ
|λ|∧1

is to automatically restrict the dual variable

λ to the unit ball. The damping factor β is automatically selected to achieve stability.

41

To this end, we let

d = |λ+ c v|, η = d− 1, a =
λ

|λ| ∧ 1
, b =

λ+ c v

|λ+ c v|
, F = abt

and we have

(η I + β F)λ+ = (I − β F)(c v+) + βd a.

Since F 2 = (a · b)F , by Sherman-Morrison formula

λ+ =
1

η
(I − β d

η + β a · b
F)c v+ +

β d

η + βa · b
a.

In order to achieve stability, we let β d
η+β a·b = 1, i.e., β = d−1

d−a·b ≤ 1. Consequently, we

obtain a Newton step

λ+ =
1

d− 1
(I − F)(c v+) +

λ

|λ| ∧ 1
(4.16)

and can use the primal dual active set strategy.

Primal-Dual Active Method (Coulomb Friction Problem)

1. Initialize: λ0 = 0 and solve Au0 = f for u0. Set k = 0.

2. Set inactive set Ik and active set Ak by

Ik = {|λk + c ukτ | > 1} and Ak = {|λk + c ukτ | ≤ 1}.

3. Solve for (uk+1, λk+1) ∈ V × L2(Γc):
Auk+1 + γ∗(F λk+1) = f

λk+1 =
1

dk − 1
(I − F k)(c uk+1

τ) +
λk

|λk| ∧ 1
, in Ak and uk+1

τ = 0 in Ik.

4. Convergent or set k = k + 1 and Return to Step 2.

The algorithm is unconditionally stable and rapidly convergent.

42

4.3.2 Primal-Dual Active Set Method for Signorini Contact

Problem

Let γ be the trace operator of H1(Ω) onto L2(Γc). The constrained minimization

min
u

1

2
a(u, u)− (f, u) subject to γu ≤ d

has a unique solution u ∈ V and there exists the Lagrange multiplier µ ∈ L2(Γc) such

that the necessary optimality holds;
Au+ γ∗µ = f

µ = max(0, µ+ c (γu− d))

for all c > 0, based on this complementarity system, we now apply the primal-dual active

set method [4].

Primal-Dual Active Set Method (Signorini’s Problem)

1. Initialize: µ0 = 0 and solve Au0 = f for u0. Set k = 0.

2. Set inactive set Ik and active set Ak by

Ik = {µk + c(γuk − d) ≤ 0} and Ak = {µk + c(γuk − d) > 0}.

3. Solve for (uk+1, µk+1) ∈ V × L2(Γc):
Auk+1 + γ∗µk+1 = f

γuk+1 = d in Ak and µk+1 = 0 in Ik

4. Convergent or set k = k + 1 and return to Step 2.

It involves solving the linear system for (u, µA) of the form(
A γ∗A
γA 0

)(
u

µA

)
=

(
f

dA

)

43

where ·A is the restriction on the active set A. For the convergence of the primal-dual

method we refer to [8, 4].

4.3.3 Full Contact Problem

To solve the full contact problem combine the algorithm for the Signorini problem and

Coulomb friction problem to develop Algorithm 1.

Algorithm 1 Iterative algorithm for the full contact problem

1. Initialize: we solve the Signorini problem with F = 0 to obtain (u0, µ0) and set
k = 0.

2. Update A for the friction problem by

Aku = Au+ γ∗
(

Fk
ε ∧ |γuk|

(γu)

)
, Fk = F µk.

3. Solve the Signorini problem with A = Ak to obtain (uk, µk).

4. Convergent or set k = k + 1 an return to Step 2.

For this algorithm we are using the primal dual active set method for Signorini contact

to initialize the problem in step 1 we also use this method in step 3 when we are updating

the solution uk and the Lagrange multiplier µk. In step 2 we are using the fixed point

method developed for the Coulomb friction problem to update Ak but the primal dual

active set method for the Coulomb friction problem may also be used.

44

Chapter 5

Finite Element Approximation using

Adini Elements

5.1 Numerical Method

In Chapter 4 we developed variational formulations for the Signorini contact problem

(4.10) and the Coulomb friction problem (4.11). In this chapter we develop a multi-

moment finite element scheme based on Adini’s elements which uses the function value

and gradient values at nodes to approximate the variational formulations. Specifically

the Adini’s elements at square cell have 12 elements which determined by the solution

value and the solution derivatives in the x and y directions at the four corners of the

cell. Adini elements have previously been used for Poisson’s equation and is known to

achieve superconvergence to the true solution. Additionally for the Poisson equation with

Neumann conditions using an Adini based finite element schmeme is more accurate and

more economical in computations on a regular domains [2]. The Adini elements belongs

to H1(Ω) and are conformal. The conformal finite element method is a well established

numerical method for solving the elastic problem.

We will describe implementation details and demonstrate the high order (fourth)

accuracy of this discretization method for an eigenvalue problem on a regular domain,

i.e., a domain which may be divided into small rectangles. We will also describe extension

of this technique to an irregular domain, i.e. non-rectangular. and test this procedure for

an eigenvalue problem for the Laplace equation on an elliptic domain. After we develop

the Adini finite element scheme we then apply this discretization scheme to the full linear

45

contact problem and use the iterative algorithm developed in section 4.3.3 to solve an

example problem numerically. Specifically we will look at the test problem of solving the

elastic contact problem on the square domain Ω = [0, 1]2, as in Figure 5.5 as well as

provide the discretized iterative scheme for solving the full elastic contact problem.

5.1.1 Adini’s Element Discretization

We form the stiffness matrix S0 using a multimoment Reiz-Galerkin approximation, i.e.,

use quadrature to evaluate (4.7) for the Adini’s elements. Applying (4.4) and (4.5) to∫
Ω

σ : ε dx gives

∫
Ω

(
(2µ+ λ)

(∣∣∣∣∂u1

∂x

∣∣∣∣2 +

∣∣∣∣∂u2

∂y

∣∣∣∣2
)

+ µ

(∣∣∣∣∂u1

∂y

∣∣∣∣2 +

∣∣∣∣∂u2

∂x

∣∣∣∣2
)

+ µ

(
∂u1

∂y

∂u2

∂x

)
+

(
λ
∂u1

∂x

∂u2

∂y

))
.

To approximate u on Ω we assume

u = u(x, y) =
∑

xky`∈P

ak`x
ky` (5.1)

where

P = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, xy3}.

At each square cell we have (u, ux, uy) at the four corners and ak` is completely determined

by the values of (u, ux, uy) at the four corners. That is, we have 12 elements φk, 1 ≤ k ≤ 12

and the Adini polynomial

u(x, y) = (u(1))kφ1(x, y) + (u
(1)
x)kφ2(x, y) + (u

(1)
y)kφ3(x, y) + (u(2))kφ4(x, y)

+(u
(2)
x)kφ5(x, y) + (u

(2)
y)kφ6(x, y) + (u(3))kφ7(x, y) + (u

(3)
x)kφ8(x, y)

+(u
(3)
y)kφ9(x, y) + (u(4))kφ10(x, y) + (u

(4)
x)kφ11(x, y) + (u

(4)
y)kφ12(x, y)

where u(1) is located at the lower left corner of the square cell, u(2) is in the upper

left corner, u(3) is in the lower right corner, and u(4) is in the upper right corner. In

Figure 5.1 we have the 12 shape elements φk; in the first column we have the shape

functions corresponding to the u(k)’s, in the second column the shape functions for the

u
(k)
x ’s, and in the third column the shape functions for the u

(k)
y ’s. We observe that the

shape functions are C1.

46

Figure 5.1: Shape functions φk(x, y) for k = 1, .., 12.

47

We compute 12× 12 stiffness matrices for∫
C

(2µ+ λ)
∂φk
∂x

∂φ`
∂x

dxdy,

∫
C

(2µ+ λ)
∂φk
∂y

∂φ`
∂y

dxdy,

∫
C

µ
∂φk
∂x

∂φ`
∂x

dxdy,

∫
C

µ
∂φk
∂y

∂φ`
∂y

dxdy,

∫
C

µ
∂φk
∂x

∂φ`
∂y

dxdy

∫
C

λ
∂φk
∂y

∂φ`
∂x

dx,

at each cell C. If µ, λ are constant we only need to compute three stiffness matrices.

We assemble the discretized elastic matrix S0 by cell-by-cell procedure, i.e, unknowns

(u, ux, uy) at the node {i, j} has the contributions from unknowns (u, ux, uy) at the nine

neighboring nodes {i+ [−1, 0, 1], j + [−1, 0, 1]}. Thus, the discretized matrix S0 is of the

form

S0 =

(
H11 H12

HT
12 H22

)
and H11, H12, H22 are the block tri-diagonal matrices and each block is tri-diagonal

matrix of block size of 3 as shown in Figure 5.2 using the standard ordering of unknowns.

()a ()b
Figure 5.2: Block tri-Diagonal matrix of block tri-diagonal matrices

48

Next we approximate the trace operator γ by

Gu = u(xk, 0)

where xk is nodes i∆x, (i + 1
3
)∆x, (i + 2

3
)∆x for 0 ≤ i ≤ N − 1 with ∆x = 1

N
. We

are taking intermediate points along the boundary to prevent oscillations caused by the

cubic polynomials used in our interpolations and to ensure that the boundary conditions

are held. Also, we use the approximation

∫ 1

0

|uτ (x, 0)| dx ∼
3N∑
k=0

|(Gu)k|

for our friction term. Hence we have the discretized Signorini problem

S0u+GTµ = 0, µ = max(0, µ+ c (Gu− d)), (5.2)

and the discretized friction problem

S0 +GT

(
F

ε ∧ |Gu|
Gu

)
= f. (5.3)

Let S = S0 and the corresponding algorithm for Signorini’s problem is written in Algo-

rithm 2.

5.1.2 Accuracy Test for Eigenvalue Computations

To validate our method we consider the eigenvalue problem for the Laplacian

−∆u = λu in Ω = [0, 1]2 (5.4)

with the Neumann boundary condition: ∂
∂ν
u = 0 at Γ, which has the eigen pairs

λk,` = (kπ)2 + (`π)2, uk,` = cos(kπx) cos(`πy), k, ` ≥ 0.

The weak form of (5.4) is ∫
Ω

(∇u · ∇φ) = λ

∫
Ω

uφdx. (5.5)

49

Algorithm 2 Primal-Dual Active Set Method (Discretized Signorini’s Problem)

1. Initialize: µ0 = 0 and solve Su0 = f for u0. Set k = 0.

2. Set inactive set Ik and active set Ak by

Ik = {µk + c(Guk − d) ≤ 0} and Ak = {µk + c(Guk − d) > 0}.

3. Solve for (uk+1, µk+1) ∈ V × L2(Γc):
Suk+1 +GTµk+1 = f

Guk+1 = d in Ak and µk+1 = 0 in Ik.

4. Convergent or set k = k + 1 and Return to Step 2.

Let Q be the mass matrix defined by Qk,` =
∫

Ω
φk(x)φ`(x) dx and the stiffness matrix

defined byHk,` =
∫

Ω
∇φk(x)·∇φ`(x). Then, the approximation of (5.5) by Adini’s element

is given by

Qu = λHu.

So, the eigenvalues of the matrix Q−1H gives approximated eigenvalues of those for (5.4).

In Table 5.1 we show the relative error of calculated eigenvalues where n2 is the number

of sub-cells of the square domain Ω. As shown Figure 5.3(a) it achieves better than fifth

order convergence.

Table 5.1: Relative error in approximated eigenvalues for Neumann conditions

k, ` n = 4 n = 8 n = 16 n = 32 n = 64

k = 1, ` = 0 3.8083e-6 8.7959e-8 1.6405e-9 3.7556e-11 1.2961e-11
k = 1, ` = 1 8.9036e-5 2.3275e-6 4.5774e-8 7.8850e-10 3.0473e-11
k = 2, ` = 0 2.0115e-4 5.0876e-6 1.0148e-7 1.7570e-9 3.8138e-11
k = 2, ` = 1 7.7840e-4 2.0755e-5 4.3074e-7 7.5863e-9 1.3291e-10
k = 2, ` = 2 5.4814e-3 1.3377e-4 2.8081e-6 4.9887e-8 8.1512e-10
k = 3, ` = 0 1.6684e-3 4.9626e-5 1.0946e-6 1.9680e-8 3.1876e-10

50

For the Dirchlet boundary condition: u = 0 at Γ we set

u = 0, uτ = the tangential derivative = 0

at the boundary nodes for our method, i.e. they are eliminated from the unknowns. In

this case the eigen-pairs are given by

λk,` = (kπ)2 + (`π)2, uk,` = sin(kπx) sin(`πy), k, ` ≥ 1.

In Table 5.2 we show the relative error of the calculated eigenvalues and in Figure 5.3(b)

it is shown we achieve better than fourth order convergence.

Table 5.2: Relative error in approximated eigenvalues for Dirichlet conditions

k, ` n = 4 n = 8 n = 16 n = 32 n = 64

k = 1, ` = 1 1.7520e-04 3.2782e-06 5.3965e-08 8.6487e-10 1.0645e-11
k = 2, ` = 1 1.1614e-03 2.7884e-05 5.0444e-07 8.2056e-09 1.2010e-10
k = 2, ` = 2 7.2218e-03 1.7520e-04 3.2782e-06 5.3967e-08 8.6395e-10
k = 3, ` = 1 3.5719e-03 1.1969e-04 2.5367e-06 4.3395e-08 6.9228e-10
k = 3, ` = 2 1.8746e-02 5.3439e-04 1.1077e-05 1.8910e-07 3.0259e-09

We also tested the method for calculating eigenvalues for the full elastic system with

the stress free boundary condition on the unit square. For this particular problem we do

not have a closed form of the solution so we only investigate the convergence rates. For

Table 5.3 the relative error was computed using

Relative Error =
|λnk − λ64

k |
|λnk |

where n = 4, 8, 16, and 32 which was then used to compute the convergence rates. In

Figure 5.3(c) and Table 5.3 observe the convergence rate better than the fifth order.

In summary, our tests for the accuracy of approximating the eigenvalues for the

Laplace and elastic operator validate the high order accuracy of the proposed numerical

approximations based on Adini’s elements for a regular domain.

51

(a) (b)

(c)

Figure 5.3: (a) Error plot for Neumann boundary conditions, (b) error plot for Dirich-
let boundary conditions and (c) error plot for elastic system with stress free boundary
conditions.

Table 5.3: Estimated Convergence rates for nonzero eigenvalues for the elastic system
with Neumann conditions

λk α1 α2 α3

λ4 4.9181 5.3406 5.3245
λ5 4.5546 5.1730 5.4569
λ6 5.3312 5.7216 5.9098
λ7 5.3829 5.7365 5.8982
λ8 4.8280 5.4208 5.6167
λ9 5.0492 5.5053 5.5596

52

5.1.3 Adini Elements on Irregular Domains

For non-rectangular domains we consider domains which cannot be subdivided into rect-

angles with interior nodes at each corner. We will devise a strategy for rectangles with

one or more exterior nodes. This strategy involves the use of boundary data to amend

the conditions. For each cell there is a possibility of twelve different boundary cuts where

one node is in the interior, two nodes are in the interior, or three nodes are in the interior

for example see Figure 5.4.

11x

y

u

u

u

x

y

u

u

u

x

y

u

u

u

2 x

y

u

u

u

x

y

u

u

u

2
x

y

u

u

u

3

1

()a ()b ()c

Figure 5.4: Square cells with (a) one interior node, (b) two interior nodes, and (c) three
interior nodes.

For the cases with a single interior node we will use the second order interpolation

polynomial given by

u(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2

where we use intercepts α and β as well as an intermediate point δ on the boundary in

addition to the data at the node to compute the coefficients aj of u(x, y). For the cases

with two interior nodes we use the third order polynomial

u(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y + a9xy
2 + a10y

3

with the intercepts α and β and two interior points δ and η along with the data at the two

nodes to calculate the coefficients aj. For the cases where we have three interior points

53

we use the Adini polynomial

u(x, y) = a1+a2x+a3y+a4x
2+a5xy+a6y

2+a7x
3+a8x

2y+a9xy
2+a10y

3+a11x
3y+a12xy

3

where similarly to the case of one interior point we use the intercepts α and β as well

as an intermediate point δ on the boundary to calculate the coefficients. With these new

interpolation polynomials for the irregular square cell systems can be discretized in the

same manor outlined in section 5.1.1.

Eigenvalue Problem on Irregular Domain

To investigate the accuracy and convergence of our scheme we consider the eigenvalue

problem for the Laplacian on a circular domain Ω is centered at (.5, .5) with radius

a = .411
−∆u = λu for r2 = x2 + y2 < a2

u = 0 for r2 = x2 + y2 = a2
(5.6)

where with the Neumann boundary condition: ∂
∂ν
u = 0 at the boundary Γ. The eigenval-

ues for (5.6) are given by

λim =

[
X i
m

a

]2

, i = 1, 2,

where X i
m is the ith root of the Bessel function of index m. We have the relative error of

the calculated eigenvalues in Table 5.4. The rate of convergence is significantly inferior to

the regular domain case at less than second order convergence. This method is consistent

and works reasonably but the element construction depends on the chosen orientation.

This implies that the method does not work as desired and warrants further investigation.

54

Table 5.4: Relative error in approximated eigenvalues for irregular domain with Dirichlet
conditions

λim Exact n = 4 n = 8 n = 16 n = 32 n = 64

λ1
0 34.2360 1.167e-1 3.690e-2 3.378e-3 4.835e-3 7.966e-4
λ1

1 86.9162 1.251e-1 7.023e-3 9.053e-3 1.251e-2 4.417e-3
λ1

1 86.9162 1.118e-1 6.005e-2 1.458e-2 2.618e-3 2.766e-3
λ1

2 156.136 1.488e-1 1.399e-2 7.594e-3 1.434e-2 3.994e-3
λ1

2 156.136 1.012e-1 4.527e-2 1.032e-2 3.675e-3 2.131e-3
λ2

0 180.388 9.233e-2 3.443e-2 3.336e-3 4.394e-3 7.180e-4
λ1

3 240.979 1.845e-1 1.431e-2 5.664e-3 7.926e-3 2.144e-3
λ1

3 240.979 6.987e-2 5.016e-2 7.297e-3 3.284e-3 2.107e-4
λ2

1 291.370 7.311e-2 8.801e-3 9.370e-3 1.199e-2 4.427e-3
λ2

1 291.370 3.204e-2 4.849e-2 1.266e-3 2.946e-3 2.796e-3

5.2 Test Example

Recall the linear elastic contact problem from Chapter 4:

−divσ = f in Ω,

σn|Γ0 = g,

u|Γ1 = 0,

(5.7)

un − d ≤ 0, σN ≥ 0, (un − d)σN = 0 (5.8)

|στu| ≤ F|σN |, if uτ = 0

στ = −FσN
uτ
|uτ |

, uτ 6= 0.
(5.9)

We consider the case with the regular domain Ω = [0, 1]2, the applied force g(x) = 1 on

Γ0, the obstacle function d = .03 at Γc, friction coefficient F = 0.9 as in Figure 5.5. We

use the following boundary conditions:

u = ux = 0, on Γ0 and v = vy = 0 on Γ1.

Note that in order to enforce Adini elements we added the Neumann condition which is

not required for Galerkin or finite element methods. Our combined algorithm for the full

contact problem as in section 4.3.3 is written in Algorithm 3.

We use 10 × 10 subdivisions (i.e.∆x = 0.1). For our tests our proposed algorithm

55

Γ1 Ω

g(x)
Γ0

Γc

Figure 5.5: Deformed elastic body in contact with a rigid foundation.

Algorithm 3 Iterative algorithm for the discretized full contact problem

1. Initialize: we solve the Signorini problem with F = 0 using Primal-Dual Active
method to obtain (u0, µ0) and set k = 0.

2. Let

Sk = S0 +GT

(
Fk

ε ∧ |Guk|
G

)
, Fk = F µk.

3. Solve the Signorini problem with S = Sk using Primal-Dual Active method to
obtain (uk, µk).

4. Convergent or set k = k + 1 an return to Step 2.

converged less than 10 iterates to obtain three digits accuracy. Figure 5.6(a) is the dis-

placement v in the vertical direction where the effect of the obstacle can be seen along

the bottom boundary Γc. In Figure 5.6(b) we have increased the resolution of our results

using the multi-moment interpolation (5.1). In 5.6(c) is the displacement u in the hori-

zontal direction with improved resolution. We recall that for the stress free condition at

Γ1 and the friction on the contact. Lastly 5.6(d) is the computed Lagrange multiplier µ

where it can be seen that µk > 0 along the contact region Γc and µk = 0 otherwise.

We developed a numerical method for nonsmooth optimization problems, especially

for solving the elastic contact problem. In Chapter 4 we detailed our approach based

on the variational formulation of the Signorini Contact and Coulomb friction problems.

56

(a) (b)

(c) (d)

Figure 5.6: (a) Vertical displacement, (b) enhanced vertical displacement, (c) enhanced
horizontal displacement, and (d) µ.

For both problems the optimality condition is given by the complementarity systems

for the primal and dual variables. An effective optimization method using the semi-

smooth Newton method based on the complementarity systems is then developed. The

semi-smooth method is a very effective method for nonsmooth optimization problems

and converges super linearly (for finite dimensional problems the active set methods

convergence in a finite number of steps). Combining these two algorithms we developed

an algorithm to solve the full elastic contact problem.

In Chapter 5 we use a finite element scheme based on the Adini’s elements for our nu-

merical approximations and demonstrated numerically the high order accuracy (fourth

order) of the proposed numerical method for eigenvalue computations for regular do-

57

mains. We also extended our numerical method for irregular (non-rectangular) domains

and tested the method on a circular domain. The combined algorithm for solving the full

elastic contact problem was tested numerically using our numerical approximations.

58

Chapter 6

CUDA Acceleration

Graphics card programming has become increasingly essential to high performance com-

puting. Originally graphics processing unit (GPU) development was spurred on by the

demand for 3D environments for PC gaming and as such evolved into hardware de-

signed for intense, highly parallel computations required for graphics rendering. However

since NVIDIA launched compute unified device architecture (CUDA) with CUDA C, the

accompanying computer language, GPU processing has developed to address general-

purpose tasks as well as graphics rendering tasks.

GPUs differ from traditional central processing units (CPUs) in that more transistors

are devoted to data processing as opposed to memory and flow control. For program

execution this means while a quad-core processors can only run four execution threads

concurrently the smallest executable unit for NVIDIA GPUs is thirty two execution

threads so a GPU with four multi-processors can have at least one hundred twenty eight

threads [9]. Additionally GPUs achieve better performance per dollar and per watt that

equivalent CPU based technology [12]. Currently heterogeneous platforms with both

CPUs and GPUs are used in three of the top ten fastest super computers in the world

which includes the formerly second fastest computer in the world the Tianhe-1A in China

[1].

We will address several needs in large-scale optimization and large-scale control theory

using CUDA based GPUs for distributed computing. With this software package large-

scale problems that may have been considered impractical or costly may be tackled. Our

goal in the development of this software was to design general purpose software for a

variety of applications. A general strategy for creating optimized software is:

59

1. using the optimized libraries for linear algebra operations, particularly BLAS 3

operations where CUDA has the highest performance and

2. memory management to reduce memory transfers.

This strategy allows for rapid development of crucial software and can be viewed as a

starting point for creating optimized software. By using available libraries we are taking

advantage of available software and as these libraries further develop we will benefit

from their advances. The second part of our strategy is memory management. This is a

very important aspect when using GPUs as memory transfers are expensive especially

memory transfers from the GPU to the CPU and vice versa. We have included a general

strategy for memory management as part of our CUDA review in Appendix A. Using

this strategy we have developed software for the quadratic minimization problem as well

as partial eigenvalue and eigenvector computations.

6.1 Optimization

To begin to develop our general purpose software we first consider constrained mini-

mization problems which arise in a variety of applications including optimal control and

design, signals image analysis, parameter estimation, mechanical contact problems, im-

age reconstruction, and mathematical finance. Specifically we consider problems with the

variational form

min J(x) over x ∈ C (6.1)

where C is a closed convex set. A typical example of a constrained optimization problem

is the quadratic programming which is to find the solution of

min J(x) =
1

2
xTAx+ bTx subject to Ex = c and Gu ≤ g (6.2)

where A ∈ Rn×n is a non-negative definite system matrix, E ∈ Rk×n describes the equality

conditions, G ∈ R`×n describes the inequality conditions, x ∈ Rn is the solution, b ∈ Rn

is given, c ∈ Rk is given, and g ∈ R` is given. Quadratic programing is used for general

constrained minimization (6.1) in terms of sequential quadratic programing (SQP), i.e.,

60

J(x) is sequntially linearized by

J(x) ≈ J ′(xk) + J ′(xk)(x− xk) +
1

2
(x− xk)THk(x− xk)

where Hk is the Hessian. Quadratic programing for large-scale (n large) CUDA imple-

mentation should prove to be very effective as it is inherently parallelizeable. To solve

the quadratic programming problem we employ the Lagrange multiplier method.

6.1.1 Lagrange Multiplier Method

In this section we will describe the Lagrange multiplier method and the algorithm based

on the primal-dual active set method to solve (6.2). We begin by reformulating (6.2) as

the unconstrained problem with penalty method with β >> 1

Jβ(x) =
1

2
xTAx− bTx+

β

2
|Ex− c|2 +

β

2
|max(0, Gx− g)|2

then we have the necessary optimality

F ′β = Ax− b+ βET (Ex− c) + βχGT max(0, Gx− g) = 0 (6.3)

where

χ =

{
1 Gx− b > 0

0 Gx− b ≤ 0.

Setting the multipliers λβ = β(Exβ − c) and µβ = βχ(Gxβ − g), (6.3) is equivalently

written as

F ′β = Ax− b+ ETλβ +GTµβ = 0.

Note that one can prove that the solutions xβ converge to the unconstrained problem

solution x∗ of (6.2). Additionally λβ → λ and µβ → µ as β → ∞ [4] and we have the

system
Ax+ ETλ+GTµ = 0

Ex = c

µ = max(0, µ+ β(Gx− g)).

61

If

(
E

Ga

)
is surjective where Ga be the row vectors of G corresponding to the active

indices, i.e. the indicices of x where (Gx∗ − g)i = 0, then (µ, λ) converges and under

the Kuhn-Tucker (KKT) condition λ ∈ Rk and µ ∈ R` exist. The primal-dual active set

method (see Algorithm 4) is based on the complementary condition
Gxi < gi ⇒ µi = 0 (inactice)

Gxi = gi ⇒ µi ≥ 0 (active)

(Gx− g) · g = 0.

(6.4)

Updates to the current dual variables (λ, µ) are determined by the active and inactive

sets

A = {k ∈ (µ+ (c(Gx− g))k > 0}, I = {j ∈ (µ+ c(Gx− g))j ≤ 0}

where c ∈ R resulting in a Newton-like method in Algorithm 4. Note that if we have

bilateral constraints φ ≤ x ≤ ψ we can embed the bilateral constraint into the inequality

constraint G

I

−I

x ≤

gψ
φ

and continue as before.

Algorithm 4 Primal dual active set method

1. Initialize: x0 and µ0. Set k = 0.

2. Set: Ak = {µk + c(Gxk − g) > 0}, I + k = {µk + c(Gxk − g) ≤ 0}.

3. Solve for (xk+1, λk+1, µk+1):

Axk+1 + ETλk+1 +GTµk+1

Exk+1 = c,
Gxk+1 = g ∈ Ak and µk+1 = 0 inIk.

(6.5)

4. Stop; or set k = k + 1 and return to (3).

62

To implement Algorithm 4 we first note that (6.5) is equivalent to solving the system A ET GT
a

E 0 0

Ga 0 0

 x

λ

µa

 =

 b

c

ga

 . (6.6)

Solving (6.6) for large-scale systems is expensive which is why we have elected to use

distributed computing. In terms of design we have chosen to leverage the available op-

timized libraries CUBLAS, Thrust, and CULA. We use the NVidia CUBLAS library of

functions for BLAS linear algebra operations, the Thrust Library for function primitives,

and the EM Photonics CULA library for LAPACK linear algebra functions. We have

tested our software for solving the quadratic programming problem via the primal-dual

active set method using a quad core of Intel Core i7 CPUs for our baseline CPU matlab

computations and a single Nvidia Telsa C2050 for our GPU computations with matlab

as an interface. To benchmark our GPU implementation we used identical algorithms

and randomly generated matrices where A is n × n where n = 400, 800, 1600, 3200 and

6400, E is m× n where m = 40, 80, 80, 160, and 320, G is `× n where ` = 20, 40, 40, 80

and 3200 respectively.

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

30

n

tim
e

(s
)

Matlab
Cuda

Figure 6.1: Matlab and CUDA computational times (s) with random matrices

63

As seen in Figure 6.1 we have been able to achieve significantly less computational

time using our GPU optimization code. For system with n = 6400, which is a typical size

for large scale quadratic programming, the CUDA implementation was approximately

three times faster than the conventional architecture.

6.2 Controls

Large-scale dynamical systems problems arise via discretization of partial differential

equations, for example fluid or vibration control problems. We will be considering the

linear quadratic regulator problem

min

∫ ∞
0

(
(
x(t), Qx(t))X + |u(t)|2

)
dt over u ∈ L2(0,∞, U)

subject to the linear control dynamics

d

dt
x(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X

where x(t) ∈ X is the state function and u(t) ∈ U is the control function. Then the

optimal control is given in the feedback form

u(t) = −B∗Πx(t)

where Π is bounded, self-adjoint operator on X and is the solution to the algebraic Riccati

equation (ARE)

A∗Πx+ ΠAx− ΠBB∗Πx+Qx = 0 (6.7)

for all x ∈ dom(A). Solving (6.7) directly is expensive and somewhat impractical for

large-scale problems. So to construct the optimal feedback gain K = B∗Π via ARE we

use a algorithm based on the inverse of the Hamiltonian operator on a reduced order

subspace developed in [7]. If we let p(t) = Πx(t) then

d

dt
(x(t), p(t))T = H(x(t), p(t))T

64

where the Hamiltonian operator H is given by

H =

(
A −BB∗

−Q −A∗

)
.

Let λ be an eigenvalue of A − BB∗Π, then λ is an eigenvalue of H. Additionally if

x ∈ dom(A) is an eigenvector of (A−BB∗Π) associated with λ then

(A−BBTΠ)x = λx

−Qx− ATΠx = Π(A−BB∗Π)x = λΠx

and (x,Πx) is an eigenfunction of H and Π = Y V −1 where (V, Y) are the eigenvectors

of λ(H) with Reλ < 0. This process is described in Algorithm 5. The implementation

Algorithm 5 Reduced Hamiltonian ARE

1. Find the eigenpairs (λi, (xi, pi)) of H with Re(λi) < 0 where

H =

(
A −BB∗
−Q −A∗

)
2. Form the matrices V and Y consisting of the eigenvectors of xi and pi.

3. Define KLφ = B∗Y (V TV)−1(V ∗, φ)X where φ ∈ X.

of this algorithm relies on the implicit restarted Arnoldi method (IRAM) in Step 1 to

compute the sub-invariant subspace of a given general matrix M for large magnitude

eigenvalues. The IRAM is an iterative method which creates a reduced subspace by the

Arnoldi process. Arnoldi iteration process is based on the idea of Krylov subspaces Kn
defined by

Kn = {f,Mf,M2f, · · · ,Mn−1f}

where f ∈ Rn is a random seed vector. Using a Gram-Schmidt process on Kn an

orthonormal basis {v1, v2, ..., vn} that spans the Krylov subspace can be formed and

V = [v1 v2 · · · vn] is an orthogonal matrix such that MVm = VmHm + fme
T
m where H

65

is upper Hessenberg. The Arnoldi process creates a reduced order subspace and involves

a number of BLAS 2, e.g. Householder decompositions, operations where we can expect

CUDA use to be advantageous. Algorithm 6 describes the procedure used in IRAM. For

this algorithm V and H are initialized to zero and e is a unit vector. In step 2 the shifts

µ1, µ2, . . . , µp are the unwanted eigenvalues. At the completion of this algorithm

MVmyλi = Vmλiyλi

where λi are the eigenvalues of H and yλi are the corresponding eigenvectors of H. In

Table 6.1 we have a comparison of computational times for computing the ten eigenvalues

of largest magnitude with a subspace size of twenty five for Matlab CPU computation

versus GPU with a C++ interface computational times. For systems with over a million

elements we see the benefit of the CUDA architecture. For the largest matrices tested

our CUDA software computational time was approximately 4.5 times faster. While we

are discussing IRAM in the context of the LQR problem the computation of partial sets

of eigenvalues and eigenvectors is important to a large variety of problems.

Table 6.1: Performance in seconds with dense matrix with a subspace size of 25 and
calculating 10 eigenvalues. We use either a quadcore (four Intel i7s) or a single GPU
(Tesla C2050)

Matrix Order 0.4k 0.8k 1.6k 3.2k 6.4k

Intel 0.02596 0.04439 0.19215 0.64021 2.29447
Tesla 0.15194 0.16896 0.16221 0.20552 0.50485
Speedup 0.17088 0.26275 1.18455 3.11507 4.54488

6.2.1 Heat Equation Example

As an example LQR problem we consider the boundary control of the heat equation

min

∫ ∞
0

(

∫
Ω

|y(x, t)|2 dx+
4∑

k=1

∫
Ω

|uk(t)|2) dt (6.8)

66

Algorithm 6 Implicit Restarted Arnoldi Method

1. Initialize: (M,V,H, f) with MVm = VmHm + fme
T
m, and m-step Arnoldi Factoriza-

tion;

2. Compute σ(Hm) and select p shifts µ1, µ2, ..., µp.

3. qT = eTm

4. For j = 1, 2, ..., p
Factor[Qj, Rj] = qr(Hm − µjI);
Hm = QH

j HmQj; Vm = VmQ;
q = qHQj;

End

5. Beginning with the k-step Arnoldi factorization

MVk = VkHk + fke
T
k ,

apply p additional steps of the arnoldi process to obtain a new m-step Arnoldi
factorization

MVm = VmHm + fme
T
m

6. Convergent or return to Step 2.

over the domain Ω = (0, 1)n subject to the heat equation

yt = ∆y (6.9)

with the Neumann boundary control

∂y

∂ν
=

m∑
k=1

bk(x)uk(t), x ∈ Γ. (6.10)

We approximate (6.9)-(6.10) by the spectral method, i.e. we seek a solution of the form

y(x1, x2, t) =
∑

0≤k,`≤N

yk,`(t)cos(kπx1)cos(`πx2).

67

We use to the weak formulation, i.e. integrating (6.9) against the test function φ(x1, x2) =

cos(kπx)cos(`pix), to obtain the weak form:∫
Ω

∂y

∂t
φ(x) dx =

∫
Ω

∆yφ dx =

∫
Γ

∂y

∂ν
φ−

∫
Γ

∇y∇φ dx

by Green’s formula. For the two dimensional case∫
Γ

∂y

∂ν
φ dx =

∫
Γ1

u1(t)b1φ+

∫
Γ2

u2(t)b2φ+

∫
Γ3

u3(t)b3φ+

∫
Γ4

u4(t)b4φ

where Γk is the four side of domain Ω. Thus, we obtain

dyk,`
dt

= −(k2π2 + `2π2)π2 yk,`(t) +
4∑
j=1

b
(j)
k,`uj(t) (6.11)

where

b
(1)
k,` =

∫
Γ1

b1(x) cos kπx dx

and the other coefficients b(j) are determined similarly. For the two dimensional system

(6.11) is typically not large enough to consider using GPUs so we will focus on the three

dimensional case. For this case we use the boundary control

b(x, y) = χ(.3,.77)×(.3,.77)(x, y)

on two opposite sides z = 0 and z = 1 of Ω = (0, 1)3. In order to construct the invari-

ant subspace of the Hamiltonian H we apply the implicit Anordi method for H−1. We

calculate (x, y) = H−1(f, g) efficiently in the following manner

1. s = A−1f and C = A−1B,

2. t = I + CTQC,

3. u = t−1(−CT (g +Qp))

4. x = Cu+ p,

5. y = −A−T (g +Qx)

68

In Table 6.2 we summarize our results for determining the invariant subspace of

H produced by the marginally stable eigenvalues of H, i.e. the eigenvalues with the

largest magnitude of H−1. Our partial test illustrates the speed of the algorithm and the

additional capacity for further speedup provided by CUDA.

Table 6.2: Performance in seconds with dense matrices with a subspace size of L. We
use either a quadcore (four Intel i7s) or a single GPU (GeForce GT 640M LE)

L N itr CPU GPU Speedup

50 113 3 1.316 1.148 1.146
50 163 3 13.804 5.479 2.519
50 213 3 74.870 15.899 4.709

100 113 1 1.297 1.249 1.038
100 163 1 12.924 5.229 2.472
100 213 1 69.210 14.706 4.706
200 113 1 3.327 4.226 0.787
200 163 1 26.838 12.095 2.219
200 213 1 138.537 30.806 4.497

Remark 1. As a consequence of the low dimensionality of the hyperbolic equations in

Chapters 2 & 3 and the optimization problems in Chapters 4 & 5 these problems are

unsuitable for CUDA use at this time. The software we have developed for solving the

quadratic programing problem may be applied to the elastic contact problem in Chapter 5

in the future for cases with thousands or millions of nodes.

6.3 Future Work

In this thesis we have discussed solutions to partial differential equations, nonsmooth

optimization, and large-scale control problems. For hyperbolic PDEs we created a high

order method using the method of characteristics and exact integration. We also applied

the same methodology to the finite element method for elliptic equations for which we

needed to discretize our nonsmooth optimization problems. Lastly we discussed applica-

tions of GPU computations to large-scale optimization and controls problems. Continuing

our work in the future we would like to address the following:

69

� Our CIP method developed in Chapter 3 was able to accurately capture the true

solution for cases like the slotted disk, in the future we need to address the oscilla-

tions at the discontinuities. It may be beneficial to adopt a scheme similar to the

essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes that actively

choose the best nodal values to for profiling.

� We have focused solely on dense matrices for our GPU software but many ap-

plications including the heat equation would benefit from using sparse structures.

Included in this would be the development of a Riccati solver based on Algorithm

7 developed in [7]. This algorithm uses a reduced subspace on a prescribed basis.

Let W be the reduced order orthonormal basis of X̂ × X̂ (our restriction of H−1).

Then

Ĥ−1 =

(
W ∗ 0

0 W ∗

)
H−1

(
W 0

0 W

)
and we can use Ĥ to solve the ARE by Algorithm 7.

Algorithm 7 Reduced Hamiltonian ARE

1. Find the eigenpairs (λi, (x̂i, p̂i)) of Ĥ−1 with Re(λi) < 0.

2. Form the matrices V̂ and Ŷ consisting of the eigenvectors of xi and pi.

3. Define K̂Lφ = B∗WŶ (V̂ ∗V̂)−1V̂ W ∗φ where φ ∈ X.

� Another area that would benefit from GPU software is nonlinear filtering. Non-

linear filtering is a subject of interest because of its applications in science and

engineering such as navigational and guidance systems or radar tracking and con-

sists of estimating the state of a nonlinear stochastic system from observation data.

Consider the process

x(k) = f(x(k − 1)) + w(k) (6.12)

for x(k) ∈ Rn and the observation process

y(k) = h(x(k)) + r(k) (6.13)

70

where w(k) and v(k) are white noise. The extended Kalman filter is the most

widely used filter for nonlinear filtering problems but its performance suffers in the

presence of significant nonlinearities. For this reason we plan use algorithms based

on Gaussian filters developed in [6]. As a first step in development we have built a

fourth order Runge-Kutta ODE solver.

In addition to developing solutions for these problems we will begin a mathematical

problem that combines all of these elements; numerical weather prediction (NWP).

6.3.1 Numerical Weather Prediction

In numerical weather prediction (NWP) mathematical models use current weather con-

ditions to predict future weather conditions. In order to create these forecasts large

amounts of observations are assimilated by computational algorithms to estimate system

parameters needed by forecasting models. We will be addressing how to find optimal sen-

sor locations for improved data assimilation and state estimation. The data assimilation

problem can be viewed as a two level minimization. First, given parameter p we minimize

the following cost over xn, 0 ≤ N . Let J(p) be the minimum value given p. Then, we

minimize J(p) over admissible p where

J = J b0 + Jq + Jr, (6.14)

J b0 =
1

2
[xb0 − x0]T [P b

0]−1[xb0 − x0], (6.15)

Jq =
1

2

N∑
n=1

[xn −M(xn−1)]TQ−1
n [xn −M(xn−1)], (6.16)

Jr =
1

2

N∑
n=1

[yn −H(xn)]TR−1
n [yn −H(xn)], (6.17)

for t0 ≤ tn ≤ tN and Jr is the cost function for observation error, Jq is the cost function

for model error, and J b0 is the cost function for the background forecast error at t = t0.

Superscripts r, q, and b refer to the observations, model, and background. M is the

forecast model (typically PDE based for example shallow water equations), P is the

background error covariance matrix, Q is the model error covariance matrix and R is

the observation error covariance matrix. The operator H(p) is the map from the state

space to the observation space and depends on the sensor locations p where y is the

71

observations. When M and H are linear we have M(x) = Mx and H(x) = Hx. Then

optimal solution for this system state x is given by

xa = xb + P bHT [HP bHT +R]−1[y −Hxb] (6.18)

where

P b = M [M0P
b
0M

T
0 +Q]MT

and the prior state background estimate xb is

xbn =M(xbn−1) subject to xb0 (6.19)

for 1 ≤ n ≤ N .This is a challenging problem primarily because of its size (millions of state

variables). Solving this problem also will have implications for optimal sensor network

design and data thinning.

72

REFERENCES

[1] TOP500 List, June 2012. http://www.top500.org/.

[2] Z. Li H. Huang and N. Yan. New Error Estimates of Adini’s Elements for Poisson’s
Equation. Applied Numerical Mathematics, 50:49–74, 2004.

[3] A. Nishiguchi H. Takewaki and T. Yabe. Cubic Interpolated Pseudo-particle Method
(CIP) for Solving Hyperbolic-Type Equations. Journal of Computational Physics,
61:261–268, 1985.

[4] K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational Problems and
Applications. SIAM Advances in Design and Control, 2008.

[5] K. Ito and T. Takeuchi. CIP Immersed Interface Methods for Hyperbolic Equations
with Discontinuous Coefficients. 2011.

[6] K. Ito and J. Toivanen. Gaussian Filters for Nonlinear Filtering Problems. IEEE
Transactions on Automatic Control, 45:910–927, 2000.

[7] K. Ito and J. Toivanen. A Fast Algorithm for Determining Optimal Feedback
Gain. Technical Report CRSC-TR08-18, Center for Research in Scientific Com-
puting, North Carolina State University, November 2008.

[8] K. Ito M. Hintermüller and K. Kunisch. The Primal-Dual Active Set Strategy as a
Semi- Smooth Newton Method. SIAM Journal on Optimization, 13:665–688, 2002.

[9] NVidia. CUDA C Best Practices Guide v4.2. NVidia, Santa Clara, CA, 2012.

[10] J.L. Lions R. Glowinski and R. Tremolieres. Numerical Analysis of Variational
Inequalities.

[11] G. Stadler S. Hüeber and B. Wohlmuth. A Primal-Dual Active Set Algorithm for
Three-Dimensional Contact problems with Coulomb friction. SIAM Journal Scien-
tific Computation, 30:572–596, 2008.

[12] J. Sanders and E. Kandrot. Cuda by Example, An Introduction to General-Purpose
GPU Programming. Addison-Wesley, Boston, 2011.

[13] K. Shiraishi and T. Matsuoko. Wave Propagation Simulation using CIP Method of
Characteristic Equations. Communications in Computational Physics, 3:121–135,
2008.

[14] T. Kunugi T. Utsumi and T. Aoki. Stability and Accuracy of the Cubic Interpolated
Propagation Scheme. Computer Physics Communications, 101:9–20, 1997.

73

[15] F. Xiao T. Yabe and T. Utsumi. The Constrained Interpolation Profile Method for
Multiphase Analysis. Journal of Computational Physics, 169:556–593, 2001.

[16] P.Y. Wang T. Aoki Y. Kadota T. Yabe, T. Ishikawa and F. Ikeda. A Universal
Solver for Hyperbolic Equations by Cubic-Polynomial Interpolation: II. Two- and
Three-Dimensional Solvers. Computer Physics Communications, 66:233–242, 1991.

[17] H. Takewaki and T. Yabe. The Cubic-Interpolated Pseudo Particle (CIP) Method:
Application to Nonlinear and Multi-dimensional Hyperbolic Equations. Journal of
Computational Physics, 70:355–372, 1987.

[18] T. Yabe Y. Ogata and K. Odagaki. An Accurate Numerical Scheme for Maxwell
Equation with CIP-Method of Characteristics. Communications in Computational
Physics, 1:311–335, 1996.

[19] T. Yabe and T. Aoki. A Universal Solver for Hyperbolic Equations by Cubic-
Polynomial Interpolation: I. One- dimensional solver. Computer Physics Communi-
cations, 66:219–232, 1991.

74

APPENDIX

75

Appendix A

CUDA Review

Here we provide a brief review on compute unified device architecture (CUDA) C based

on our experiences. We assume reader familiarity with C and/or C++ languages for

the purposes of this discussion. In our experiences using CUDA for systems sufficiently

large, say with at least a thousand variables, using existing GPU optimized libraries

(CUBLAS, CULA, Thrust...) will result in decreased computational time. This means

with minimal effort code previously implemented in C or C++ can take advantage of

graphics card processing (GPU) computational power. In many cases it is just a matter

of switching from LAPACK functions to CULA (the equivalent CUDA linear algebra

package) functions. With this in mind we will briefly highlight basic aspects of CUDA C

programming and give code examples for incorporating CUDA code into existing C++

code.

For the code provided in this review we use double precision computations which can

only be run on GPUs with 1.3 compute capability or higher.

A.0.2 Programming Model

Implementing CUDA code involves running code on the host system which consists of

one or more CPUs and the device which consists of one or more GPUs. This distinction

is important because each system has its own distinct memory. The basic CUDA pro-

gramming model is diagrammed in Figure A.1. Typically data starts on the host (CPU)

and is transfered to the device (GPU). From here the problem is divided into compu-

tational blocks and threads. The computations are then carried out by the threads and

then passed back to the device and potentially back to the host.

76

Figure A.1: CUDA programming model

77

To demonstrate the CUDA programming model we have an implementation of vector

addition. We begin by initializing our data on the host and then begin by transferring

our data onto the device. Data can be initialized on the device but we are assuming that

it came from some other C++ routine. Once the data is on the device we will divide

up our problem to perform our computations. Once our computations are complete we

return the answer to the host as in Figure A.1. Below we have vecAdd.cu in its entirety

and we will discuss the CUDA components of the code.

//vecAdd.cu

#define N 42

//CUDA kernel

__global__ void add(int *a, int *b, int size)

{

int idx=threadIdx.x+blockIdx.x*blockDim.x;

if(idx<size)

b[idx]+=a[idx];

}

int main(void)

{

//initialize host vectors

int *a,*b,*ans;

a=(int *)malloc(N*sizeof(int));

b=(int *)malloc(N*sizeof(int));

ans=(int *)malloc(N*sizeof(int));

for (int i=0; i<N; i++)

{

a[i]=rand()%100;

b[i]=rand()%100;

}

78

//initialize device vectors

int *a_dev, *b_dev;

cudaMalloc((void**) &a_dev, N*sizeof(int));

cudaMalloc((void**) &b_dev, N*sizeof(int));

//transfer data from host memory to device memory

cudaMemcpy(a_dev, a, N*sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(b_dev, b, N*sizeof(int), cudaMemcpyHostToDevice);

//CUDA kernel call

add<<<6,7>>>(a_dev,b_dev,N);

//transfer the data from device memory to host memory

cudaMemcpy(ans, b_dev, N*sizeof(int), cudaMemcpyDeviceToHost);

}

The first lines of CUDA code are

cudaMalloc((void**) &a_dev, N*sizeof(int));

cudaMalloc((void**) &b_dev, N*sizeof(int));

where we allocate memory for the array a dev on the device. We then transfer the arrays

a and b which we initialized on the host to the device using

cudaMemcpy(a_dev, a, N*sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(b_dev, b, N*sizeof(int), cudaMemcpyHostToDevice);

and we are now ready to run our CUDA kernel. The CUDA kernel is the list of tasks to

be performed by each computational thread. Cuda kernels are functions that run on the

device and use the label global or device . To run the kernel we have to specify

the number of blocks and the number of threads CUDA should use. This subdivision

becomes important for more complicated problems as threads in different blocks cannot

communicate. In this example for our kernel call

add<<<6,7>>>(a_dev,b_dev,N);

79

we use <<<6,7>>> to split our problem in to six blocks each running seven threads. The

kernel for vecAdd.cu is

__global__ void add(int *a, int *b, int size)

{

int idx=threadIdx.x+blockIdx.x*blockDim.x;

if(idx<size)

b[idx]+=a[idx];

}

and tells each thread to do the computation b=a+b. The indicies of each computation

thread are indicated by

int idx=threadIdx.x+blockIdx.x*blockDim.x;

which correspond to the indices of our vectors. We include if(idx<size) in case we

wander outside of our allocated memory. After completing the vector addition we use

cudaMemcpy(ans, b_dev, N*sizeof(int), cudaMemcpyDeviceToHost);

to copy our solution back to the host memory. To compile this code in double precision

use the compiler flag arch=sm 13 when calling the NVCC compiler. A few other things to

keep in mind:

1. The number of threads should be a multiple of 64. Ideally one would use 128− 256

and the maximum threads per block is 512.

2. The number of threads per block should be a multiple of 32.

The first step in building optimized CUDA code is memory management. To begin

with transferring data from the host to device and vice versa is expensive and should

be minimized. When transferring global memory, coalescing should be used whenever

possible to efficiently transfer data. Memory coalescing is when memory read by consec-

utive threads is combined by the hardware into several large memory reads, i.e., small

memory transfers are batched into large ones. Other memory optimizations need to be

taken with care due to memory supply constraints. Pinned memory may be used for

higher bandwidth between the host and device but is limited. Once you are on the GPU

for each multiprocessor there is register, shared, constant, and textured memory. Ideally

80

we would want to use the memory on each multiprocessor which has higher bandwidth

and lower latency but it is scarce. At the very minimum shared memory should be used

to avoid repeated data transfers between the device and multiprocessor.

While memory management is important our focus has been to use the available tools

to create optimized software. To that end we provide code examples that demonstrate

CUDA library use.

A.0.3 Linear system example

For this example we use CUDA to solve the linear system Ax = f . The steps we need to

take are

1. A = QR

2. y = QTf

3. x = R−1y

After initializing your device variables dA with matrix A ∈ Rm×m and df with vector

f ∈ Rm allocate memory of size m for dTAU. Then use the commands

culaDeviceDgeqrf(m,m,dA,m,dTAU);

culaDeviceDormqr(’R’,’T’,m,1,m,dA,m,dTAU,df,m);

cublasDtrsv(’u’,’n’,’n’,m,dA,m,df,1);

and on completion df will contain the solution x to the linear system Ax = f . The first

step is take the QR factorization of A using CULA (we are using version R14). The first

CULA function culaDeviceDgeqrf computes the QR factorization of A and overwrittes

dA with R above the diagonal. Below the diagonal are the elementary householder reflec-

tors with scalar factors stored in TAU. The second CULA function culaDeviceDormqr

performs the operation QTf and stores the solution in df. The CUBLAS command

cublasDtrsv computes R−1f . The CUBLAS function cublasDtrsv can only be used to

solve triangular systems.

A.0.4 Eigen code example

It may be beneficial to use C++ for some linear algebra computations especially if you

are developing hybrid code. As part of developing software to create reduced systems

81

it became beneficial to incorporate the Eigen C++ linear algebra library. After using

CUDA to create a reduced system we used Eigen for our computations on that reduced

system. The NVCC compiler does not handle template libraries such as Eigen well so to

get around this you may need to divide up your code into seperate C/C++ and CUDA

files and use a C/C++ compiler for the C/C++ parts. For example if you would like to

use Eigen to calculate the eigenvalues of a matrix you would first create a separate C++

file eigA.cpp below:

// eigA.cpp

#include <complex>

#include <Eigen/Core>

#include <Eigen/Dense>

#include <Eigen/Eigenvalues>

using namespace Eigen;

using namespace std;

extern "C" void eigA(double *, int);

void eigA(double *A, int n)

{

Map<Matrix<double,Dynamic,Dynamic>> Aeig(A,n,n);

EigenSolver<MatrixXd> ee(Aeig);

VectorXcd evals=ee.eigenvalues();

//display eigenvalues

std::cout << "Here are the eigenvalues of A:\n"

<<evals<< std::endl;

}

To access this function from within a *.cu file add

extern "C" void eigA(double *, int);

82

to the preamble then inside your function simply call

eigA(A,n);

to run the eigenvalue solver be sure that A is a host variable. In this example code

Map<Matrix<double,Dynamic,Dynamic>> Aeig(A,n,n);

maps the host memory stored in A into an Eigen expression Aeig. Then the eigen values

are computed using the commands

EigenSolver<MatrixXd> ee(Aeig);

VectorXcd evals=ee.eigenvalues();

and displayed. This same procedure of dividing the code into separate files for compilation

will work to access any functions in a C/C++ template library.

83

