ABSTRACT

FANG, YUAN. Modeling Evapotranspiration by Land Cover Types with Global Eddy Flux and MODIS Data. (Under the direction of Dr. Ge Sun.)

Ecosystem evapotranspiration (ET) is a major component of terrestrial water-balance. Although ET is a key variable that links hydrological and biological processes in most ecosystem models, it is one of the most difficult hydrologic variables to quantify at fine scales. Changes in land use, land cover and climate directly affect ET and thus the entire hydrologic and biogeochemical cycles. I conducted a synthesis study by using global flux data (254 sites and 7 years) collected by the global eddy covariance network (FLUXNET), and by integrating modeling techniques with remote sensing (Moderate Resolution Imaging Spectroradiometer) products. This study explored the key factors (i.e., radiation, wind speed, leaf area index, soil water content, vapor pressure deficit) controlling ET for different land cover types (shrubland, cropland, deciduous forest, evergreen forest, grassland, mixed forest and savannas) and created individual ET regression models with various combinations of variables using continental U.S. (AmeriFlux) and global datasets (FLUXNET), respectively. Our study found that the most significant variables affecting ET varied by land cover type. The AmeriFlux data analysis showed that the leaf area index (LAI) and net radiation (Rn) explained most of the variability of observed ET for shrubland and grassland. In contrast, potential evapotranspiration (PET) as estimated by a temperature-based method was a key control for observed ET of deciduous forest, evergreen forest and mixed forest. This study suggests that the ET processes for different ecosystems were controlled by different environmental variables, thus different ecosystems may have different response to projected future climate change. The improved ET models from this study may be useful in evaluating the impacts of climate change and land use change on water resources at regional to continental scales.
Modeling Evapotranspiration by Land Cover Types with Global Eddy Flux and MODIS Data

by
Yuan Fang

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science

Natural Resources

Raleigh, North Carolina

2012

APPROVED BY:

Dr. John S. King

Dr. Heather M. Cheshire
(Co-chair)

Dr. Ge Sun
(Co-chair)
BIOGRAPHY

Yuan Fang was born on August 18, 1988 in Anhui Province, P. R. China. She received her Bachelor degree from Anhui Agricultural University, China in July 2010. In August 2010, she was admitted to North Carolina State University to continue her Master of Science studies.
TABLE OF CONTENTS

LIST OF TABLES .. v

LIST OF FIGURES ... vi

1. INTRODUCTION .. 1

 1.1 ET quantification .. 2

 1.1.1 Field measurements ... 4

 1.1.2 Remote sensing method .. 5

 1.1.3 Modeling ... 5

 1.2 Environmental controls on ET and empirical ET modeling 9

 1.3 Objectives .. 11

2. METHODS .. 11

 2.1 Daily FLUXNET database ... 13

 2.2 Evapotranspiration (ET) ... 15

 2.3 Potential evapotranspiration (PET) ... 17

 2.4 Leaf area index (LAI) .. 18

 2.5 Monthly environmental database ... 21

 2.6 Data Quality Assurance and Quality Control ... 22

 2.7 Monthly evapotranspiration model development ... 23

3. RESULTS .. 26

 3.1 Key environmental controlling variables for different land cover types 26

 3.1.1 Key environmental controls generated by continental U.S. data 26

 3.1.2 Key environmental controls determined by FLUXNET data 31
3.2 Monthly ET models ... 35

3.2.1 Monthly ET models developed from U.S data (AmeriFlux) 35

1.3.2.1 Sub-models for ET prediction in western area of U.S. 41

3.2.2 Monthly ET models developed from global data (FLUXNET) 45

4. DISCUSSION .. 49

4.1 Relationship between ET and environmental variables 49

4.2 Water use of ET by land cover ... 51

4.3 Limitation of the ET models developed by this study 53

4.4 Uncertainties of ET and LAI ... 54

5. CONCLUSIONS ... 56

ACKNOWLEDGMENTS ... 59

REFERENCES .. 60

APPENDICES .. 68

Appendix A. Sites used in the study of the world monthly ET model 69

Appendix B. Sites used in the study of U.S monthly ET model of shrubland 70

Appendix C. Sites used in the study of U.S monthly ET model of cropland 71

Appendix D. Sites used in the study of U.S monthly ET model of deciduous forest 72

Appendix E. Sites used in the study of U.S monthly ET model of evergreen forest 74

Appendix F. Sites used in the study of U.S monthly ET model of grassland 77

Appendix G. Sites used in the study of U.S monthly ET model of mixed forest 79
LIST OF TABLES

Table 1. A comparison of major evapotranspiration quantification methods............................ 3

Table 2. The most significantly variables contributing to ET with partial R-square values and sample sizes of different land cover types developed from continental U.S. data (AmeriFlux). ... 26

Table 3. 95% confidence limits of slope for monthly precipitation (P), potential evapotranspiration (PET), leaf area index (LAI), net radiation (Rn) , soil water content (SWC) and vapor pressure deficit (VPD) based on AmeriFlux dataset. Dependent variable is ET. 30

Table 4. The most significantly variables contributing to variability in ET with their partial R-square values, by different land cover type, developed from global data (FLUXNET)........ 32

Table 5. 95% confidence limits of slope for monthly precipitation (P), potential evapotranspiration (PET), leaf area index (LAI), net radiation (Rn) , soil water content (SWC) and vapor pressure deficit (VPD) based on FLUXNET dataset. Dependent variable is ET. 35

Table 6. ET models using the most significant variables for different land cover types developed using data from AmeriFlux ... 38

Table 7. ET models using PET, P, and LAI for different land cover types developed using data from AmeriFlux ... 38

Table 8. Additional models for dry area of continental U.S.. 44

Table 9. ET models using the most significant variables for different land cover types developed using data from FLUXNET.. 47

Table 10. ET models using PET, P, and LAI for different land cover types developed using data from FLUXNET.. 47
LIST OF FIGURES

Figure 1. An overview of research methods for database development and analysis 12

Figure 2. FLUXNET sites used in this study with IGBP land cover type 14

Figure 3. AmeriFlux sites used in this study with IGBP land cover type 15

Figure 4. An example of monthly mean LAI (2000-2006) for (a) January, and (b) August in continental U.S.. 20

Figure 5. An example to show the monthly LAI (2003-2005) derived from MODIS for Duke Forest located in Durham, NC (latitude 35.9736, longitude -79.1004). This site was classified as deciduous forest by IGBP land cover classification system.. 21

Figure 6. Workflow of monthly ET model development. I created two series of monthly ET models: regression models using ET, PET and LAI as the independent variables, and regression models consisting of three of the most significant variables. The two series of monthly ET model were derived from AmeriFlux and FLUXNET. .. 25

Figure 7. Relationship between monthly actual evapotranspiration (ET) and environmental variables: monthly precipitation (P), potential evapotranspiration (PET), leaf area index (LAI), net radiation (Rn), soil water content (SWC) and vapor pressure deficit (VPD) based on AmeriFlux dataset. Lines shown are trend lines of each land cover type (AmeriFlux). .. 29

Figure 8. ET correlated with net radiation (Rn) of cropland .. 31

Figure 9. Relationship between monthly actual evapotranspiration (ET) and environmental variables: monthly precipitation (P), potential evapotranspiration (PET), leaf area index (LAI), net radiation (Rn), soil water content (SWC) and vapor pressure deficit (VPD) based on FLUXNET dataset. Lines shown are trend lines of each land cover type 34

Figure 10. Predicted and measured monthly evapotranspiration (ET). Predicted ET was calculated by Equation 12 which was developed using data from AmeriFlux. The solid line is the regression line. The dashed line is the 1:1 line. ... 37
Figure 11. Predicted and measured monthly evapotranspiration (ET). Predicted ET was calculated using different equations for each land cover type. Lines shown are regression lines for each model. (a) The relations between measured ET and predicted ET by land cover. (b) An overall comparison of measured ET and predicted ET derived by land cover type. The value of R^2 also reflected the how well ET was likely to be predicted by the models as a whole for all biome types.

Figure 12. Measured and predicted ET derived from models (Table 7) developed by land cover types for the continental U.S. Lines shown were modeled means.

Figure 13. Variation of monthly P, PET, ET and LAI measured at sites in (a) Northern Wisconsin during the period of 2001 - 2006 and (b) San Diego during the period of 2004 - 2006. The dominated land cover type of the two sites was shrubland.

Figure 14. Predicted and measured monthly evapotranspiration (ET). Predicted ET was calculated by Equation (14) which was developed using data globally. The solid line is the regression line. The dashed line is the 1:1 line.

Figure 15. Measured and predicted ET derived from sub-models (Table 8) by land cover type globally. Lines shown were modeled means.

Figure 16. Mean monthly ET (evapotranspiration), P (precipitation), PET (potential evapotranspiration), and LAI (leaf area index) of July and August generated from AmeriFlux data.

Figure 17. Variation of monthly P, PET, ET and LAI measured at Blodgett Forest in California (latitude 38.89, longitude -120.63) during the period of 2000-2006. The dominated land cover type is evergreen forest.
1. INTRODUCTION

Evapotranspiration (ET) is a term describing the transport of water into the atmosphere from surfaces, including land (e.g. soil, rock and paved surface) and water (e.g. streams, ponds and open-water swamps), and from vegetation (Hewlett 1982). Evapotranspiration is a key variable in the ecosystem water balance (Jung et al. 2010) that could directly affect precipitation, soil water content and temperature of an area (Koster et al. 2004). On a global scale, evapotranspiration represents more than 60 percent of annual precipitation inputs (Vörösmarty et al. 1998) and more than 70 percent of the annual precipitation for the entire United States (Brooks et al. 1997). Clearly, ET is the primary individual component of terrestrial hydrological cycle (Baumgartner et al. 1975).

ET relates to climate change because it is sensitive to environmental variables such as temperature and precipitation. Climate change and land use change affect the hydrological cycle and water resources through altering ET processes. ET is also tightly correlated with net ecosystem exchange due to water use in photosynthesis and soil moisture effects on ecosystem respiration processes. Water availability limits leaf area index and then impacts carbon sequestration over the long-term across different vegetation covers (Law et al. 2002). Since different vegetation development is controlled differently by the environment via complex physiological processes (e.g., photosynthesis, carbon and water cycles), it’s essential to quantify evapotranspiration accurately for modeling ecosystem processes by land cover types (Sun et al. 2011a). Although ET is a key variable that impacts the behavior and dynamics of ecosystem (Baldocchi et al. 2000), ET is one of the most difficult water budget
components to quantify. Developing new measurements and modeling techniques to accurately quantify ecosystem ET is an important aspect of hydrometeorology for understanding the interactions of land and atmospheric processes in global change studies (Shuttleworth 2012).

1.1 ET quantification

There are many ways to quantify ET at different scales. ET estimate methods are broadly grouped into three categories: (1) field-based measurements including the eddy covariance method that this study focuses on; (2) remote sensing methods; and (3) mathematical modeling. A comparison of the strengths and weaknesses is described in Table 1.
Table 1. A comparison of major evapotranspiration quantification methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>Strengths</th>
<th>Weaknesses</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sap flow</td>
<td>Allow routine unsupervised measurement accurately at single plant scale</td>
<td>Large scale measurement errors are determined by the sample size and variability of samples</td>
<td>(Smith et al. 1996; Wilson et al. 2001; Domec et al. 2012; Vinukollu et al. 1998)</td>
</tr>
<tr>
<td>Eddy covariance</td>
<td>Measuring fluxes continuously, offering high temporal resolution data</td>
<td>High cost in instrumentation, gap filling required, energy imbalance problems</td>
<td>(Baldocchi et al. 1988; Wilson et al. 2001, 2002; Twine et al. 2000)</td>
</tr>
<tr>
<td>Bowen Ratio</td>
<td>Low cost, works for both crops and natural vegetation</td>
<td>Relies on several assumptions, errors associated with low gradients</td>
<td>(Bowen 1926; Heilman et al. 1989)</td>
</tr>
<tr>
<td>Remote sensing</td>
<td>Remote sensing</td>
<td>Provide spatial, continuous and temporal scale high resolution data</td>
<td>Uncertainties due to errors generated by measurement of sparse canopies, data mostly from clear sky conditions</td>
</tr>
<tr>
<td>Modeling</td>
<td>Theoretical models (e.g. Penman, Priestley-Taylor, Shuttleworth)</td>
<td>Widely used, long-term accepted, low cost</td>
<td>Require site-specific parameters, not easy to apply on large scale</td>
</tr>
<tr>
<td>Empirical models</td>
<td>Required less input variables, low cost</td>
<td>Uncertainty for extrapolating to novel conditions</td>
<td>(Sun et al. 2011a; Dunn et al. 1995; Liu et al. 2010)</td>
</tr>
</tbody>
</table>
All of these methods have been commonly used to estimate ET at present. Each technique may be appropriate for certain scales and has its own particular assumptions. The major ET quantification methods are introduced in more detail in the following sections.

1.1.1 Field measurements

Direct ecosystem scale ET measurement techniques include catchment water balance (Bosch et al. 1982), sap flow (Smith et al. 1996), eddy covariance (Baldocchi et al. 1988) and Bowen Ratio (Bowen 1926) methods. Remote sensing techniques allow monitoring ET at a large scale (Kustas et al. 1996). According to Wilson et al. (2001) who compared multiple methodologies of measuring ET, each method has its limitations. For example, the watershed water balance method, which is typically applicable to long-term average ET estimates, has errors when change in soil moisture is ignored. In this method, ET would be overestimated or underestimated when ET is computed as the residual of precipitation and runoff. Sap flow measurements provide a powerful tool for quantifying plant water use and physiological responses of plants to environmental conditions (Domec et al. 2012). However, this method would be not dependable for misdistribution of tree stands and inappropriate sample size of measurement and structural scalars (Vinukollu et al. 1998). The eddy covariance method measures fluxes continuously, offering high temporal resolution data series but it is limited by costly instruments and gap filling issues. Besides, eddy covariance method may underestimate ET due to lacking of energy balance closure. A 20% underestimate of energy flux is not uncommon (Wilson et al. 2002). Because of the energy conservation discrepancy, in the current study, I have to correct ET to maintain complete closure, i.e. artificially making
available energy flux (net radiation- soil heat fluxes) equal to the sum of sensible heat and latent heat fluxes(Twine et al. 2000). For the Bowen Ratio method, ET is derived from the ratio of sensible heat to latent heat which is calculated from of air temperature, humidity gradients, net radiation, and soil heatflux. It is relatively inexpensive but relies on several assumptions such as an extensive fetch over a homogeneous surface(Heilman et al. 1989).

1.1.2 Remote sensing method

Remote sensing has been widely used to estimate ET (Ray et al. 2001; Song et al. 2011). This method has been regarded as a flexible technology to obtain large scale and real time ecological variables such as evapotranspiration, leaf area index, etc. MODIS (Moderate Resolution Image Spectroradiometer) global products (Mu et al. 2007; Mu et al. 2010) have provided spatially continuous and temporal scale data such as evapotranspiration, at a high resolution for modeling and analysis(Justice et al. 1998). However, estimation errors exist due to uncertainties in the modeling effective surface emissivity and effective aerodynamic exchange resistance, and sparse canopies and thick clouds also make the remote sensing method less reliable(Shuttleworth 2008).

1.1.3 Modeling

Due to the high cost of measuring ET, mathematical modeling has been widely used to estimate ET. The Penman-Monteith equation (Monteith 1965)(Equation1) has been widely used for many decades to model ET at the leaf level. This model has been regarded as the best way to describe the environmental controls on ET processes.
\[ET = \frac{\Delta R_n + \rho_a C_p (VPD) g_a}{(\Delta + \gamma(1 + g_a \gamma/g_s))\lambda_v} \]

(1)

Where:

- \(ET \) = Water volume evapotranspired \((m^3 s^{-1} m^{-2}) \)
- \(\Delta \) = Rate of change of saturation specific humidity with air temperature \((Pa K^{-1}) \)
- \(R_n \) = Net radiation \((W m^{-2}) \)
- \(\rho_a \) = Dry air density \((kg m^{-3}) \)
- \(C_p \) = Specific heat capacity of air \((J kg^{-1} K^{-1}) \)
- \(VPD \) = Vapor pressure deficit \((Pa) \)
- \(g_a \) = Atmospheric conductance \((m s^{-1}) \)
- \(g_s \) = Stomatal conductance \((m s^{-1}) \)
- \(\gamma \) = Psychrometric constant \((\gamma \approx 66 Pa K^{-1}) \)
- \(\lambda_v \) = Latent heat of vaporization (i.e. energy required per unit mass of water vaporized) \((J g^{-1}) \)

From the Penman-Monteith equation (Equation 1), one can see that radiation, vapor pressure deficit, conductance of air and stomata affect ET rate. The study of Collatz et al. (1991) indicated that the stomatal conductance of a leaf boundary layer can have a significant influence on the response of latent heat flux, and as a consequence, temperature, humidity and available water for energy exchange in proximity to the leaf surface can in turn affect stomatal conductance.

Although the Penman-Monteith model provides a solid basis for estimating ET, its application remains difficult. So potential evapotranspiration (\(PET \)) based methods are commonly used as an indirect method to estimate actual ET. Potential evapotranspiration is defined as the actual ET that would occur if there were ample soil water available (Linsley 1958). \(PET \) has been traditionally estimated using terms for local meteorological data and/or vegetation characteristics, and then actual ET can be estimated based on the limitation of soil
water to the ET processes (Stannard 1993; Ward et al. 2004). Soil water limitations to actual ET through stomatal conductance are indicated in process-based ET models (such as Penman-Monteith equation). Due to the simple concept and ease of estimation, PET is often compared with Precipitation (P) in agricultural irrigation scheduling (Allen et al. 1998).

The primary PET models used in water balance and terrestrial ecosystem modeling include the reference surface methods by Penman (1948) and Hamon (1963) and surface-dependent methods by Priestley et al. (1972), Monteith (1965) and Shuttleworth et al. (1985). The reference surface methods are defined as ET that occurs from a “reference crop”, which refers to a specific well-watered, short, grass cover. In contrast, the surface-dependent methods of ET are measured at several designated land surfaces. The condition is only limited by albedo for the Priestley and Taylor method; other methods depend on surface roughness height, zero-plane displacement, maximum stomatal conductance, leaf area index, canopy radiation extinction, and albedo (Vörösmarty et al. 1998). According to the study of Fisher et al. (2005) and Vörösmarty (1998), the method developed by Shuttleworth-Wallace (1985) performed better than others when compared to measured ET.

Estimates of the conductance of stomata and air to derive transpiration from plant surfaces are needed to estimate ET using the Penman-Monteith (PM) equation. However, this process-based model is difficult to use in practice because it requires parameters and climatic variables that are generally not available on a large spatial scale (Allen et al. 1994). So numerous less data intensive models including PM-Mu (Mu et al. 2007), SEBS (Su 1999)
and PT-Fi (Fisher et al. 2008) were developed for global ET evaluation (Vinukolluet et al. 1998).

Empirical models require fewer environmental variables and are easy to use for hydrologic modeling, especially for large areas. For example, using ET data collected from 13 sites using various methods (Table1), Sun et al.(2011a) developed an empirical model for estimating monthly ecosystem evapotranspiration.

\[
ET = 11.94 + 4.76LAI + ET_o (0.032LAI + 0.0026P + 0.15)
\] (2)

Where LAI is leaf area index, P is precipitation, \(R^2=0.85\), RMSE=15 (mm month\(^{-1}\)), \(n=222\)

\(ET_o\) is the FAO (Food and Agriculture Organization) reference ET representing a hypothetical short grass with a height of 0.12 meter, a surface resistance of 70 \(sm^{-1}\), and albedo of 0.23 at the condition of no water stress (Allen et al. 1994). Furthermore, Sun et al.(2011b) provide another form of the ET model using Hamon’s method to estimate PET instead of the FAO reference ET method in Equation 2. Since a single model could not capture the spatial variability in ET, a specific ET equation for forested regions at high latitudes (e.g. >40 °N) dominated by winter precipitation in the northeastern U.S was applied as following:

\[
ET = 0.4 \times PET + 7.87 \times LAI + 0.00169 \times PET \times P
\] (3)

Where \(R^2=0.85\), RMSE=14.5 (mm month\(^{-1}\)), \(n=147\).
For other regions,

\[ET = 0.174 \times P + 0.502 \times PET + 5.31 \times LAI + 0.0222 \times PET \times LAI \] \hspace{1cm} (4)

Where \(R^2 = 0.85 \), \(\text{RMSE} = 14.0 \text{ (mm month}^{-1}\text{)}, n = 147 \).

1.2 Environmental controls on ET and empirical ET modeling

As described in the Penman-Monteith equation, at the leaf level, net radiation, air temperature and vapor pressure deficit are all important variables that affect ET rates. In addition, stomatal conductance and atmospheric conductance are essential. Stomatal conductance and leaf-level ET differ significantly among species (Ford et al. 2011). At the ecosystem level, ET is determined by canopy conductance. Since canopy conductance is closely related to leaf area index (LAI) at an ecosystem scale, LAI that influences the plant biomass becomes a key control of ET. Determining how leaf phenology affects ET may help us understand seasonal environmental controls (Mackay et al. 2007). There is no doubt that different plant species respond to environmental controls in rather different ways depending on age, neighbors, soil microbial communities and soil resources (Körner 1995), making the mechanism of vegetation in water exchange more complicated. Cheng et al. (2011) concluded that susceptibility of plants to climate change is one of the most important factors influencing ET at interannual scales. Because of the knowledge gap about the role of plant properties in ET processes, the empirical ET models described by Sun et al. (2011a, 2011b) failed to consider the influence of vegetation types. It is therefore necessary for us to explore ET
estimates based on different land cover types and to create models applicable at regional scales.

Both empirical ET data and models show that vegetation cover influences surface energy and moisture balance at multiple scales (Dunn et al. 1995; Liu et al. 2010). ET varies across different vegetation cover types under similar climatic and meteorological conditions (Liu et al. 2010). Alteration in land use/land cover and climate change affect ET because of different combinations of environmental control for different ecosystems types. For example, in central Asian desert shrubland, which has low precipitation and high temperature in summer, solar radiation explains 60% at a maximum of ET (Li et al. 2011). In contrast, evapotranspiration is highly related with LAI ($R^2 = 0.96$) for forests in northern Wisconsin (Sun et al. 2008). Further, analysis of climate and vegetation influences on ET conducted by Brümmer et al. (2012) found significant variation in correlations between ET and other factors (precipitation, vapor pressure deficit, radiation, etc.) by different vegetation types. Vegetation as a critical component of the global energy cycle, has reciprocal effects with environmental variables (Ter Braak 1987). Thus, ET models that can characterize different vegetation types would contribute significantly to understanding the relationships between land use change and climate change (Wallace 1995).
1.3 Objectives

Although the types of empirical ET models developed by Sun et al. (2011a, 2011b) were useful for quantifying ET at the regional scale, these models did not completely describe environmental controls on ET on a short temporal scale. Improvements to these models were needed by examining global eddy flux data and by incorporating environmental controls on ET processes based on different land cover types. The objectives of this study were to (1) examine environmental controls of ET at a monthly time scale by combining ET measurements from the global eddy flux network and associated remote sensing data, and (2) create a new set of ET models by separating land cover types, and separating regions when necessary. The goal was to improve the previous ET models (Sun et al. 2011a, 2011b).

2. METHODS

Daily water flux measurements derived using the eddy covariance method were acquired for this study from the FLUXNET (Baldocchi et al. 2001; Valentini et al. 2000; http://www.eosdis.ornl.gov/FLUXNET) and AmeriFlux (Hargrove 2003; Yang et al. 2007; http://public.ornl.gov/ameriflux/) programs (Figure 1). For each eddy flux tower site from FLUXNET network (Figure 2), I built a database consisting of ET, PET, soil water content (SWC), vapor pressure deficit (VPD), precipitation (P), wind speed (WS) and net radiation (Rn), scaling daily data to monthly values, to this, I added monthly LAI derived from 8-day LAI extracted from MODIS products using positions of each site. After processing quality assessment and quality control of the data, I developed regression models of ET using different combinations of variables separated by land cover type (Figure 1).
Determining the controlling factors for ET was an essential step before developing ET models. Given the diversity of ecosystem types and data quality, I examined
the continental U.S. datasets from AmeriFlux and the global flux data (FLUXNET), separately. I also used global remote sensing products from MODIS (Moderate Resolution Imaging Spectroradiometer), which provides data on various environmental variables, such as evapotranspiration, leaf area index, gross primary production and land cover at a resolution ranging from 250m to 1000m.

I first determined the most significant environmental variables that control ET, and then developed a series of ET models that can be used readily at the regional scale. In particular, I focused on three environmental controls: PET, precipitation (P) and Leaf Area Index (LAI). I also explored the most significant variables that varied for different land cover types due to climatic variability. A series of ET models were developed so users had the choice to fit these to different objectives.

2.1 Daily FLUXNET database

The eddy flux network provided water and carbon flux data and associated environmental variables measured for multiple years. I generated a database that included all variables for ET analysis and model building.

I built a daily database that included latent heat flux (LE in MJ/m²/day), temperature (Ta in °C), vapor pressure deficit (VPD in 100 Pa), soil water content (SWC in m³/m³), precipitation (P in mm/day), wind speed (WS in m/s), net radiation (Rn in MJ/m²/day), sensible heat flux (H in MJ/m²/day) and soil heat flux (G in Mj/m²/day). I associated these data with International Geosphere-Biosphere Programme (IGBP) global vegetation classification,
latitude and longitude scaled from half-hour eddy covariance measurements at FLUXNET sites (Figure 2). The daily database consisted of 254 sites, among which 74 sites are from the AmeriFlux network (Figure 3) operated in the United States (more details in Appendix). Sites spanned different climate and geomorphic regions, ranging from the northern hemisphere to southern hemisphere (Figure 2). Flux towers selected operated on five continents and their latitudinal distribution ranged from 70 degrees north to 30 degrees south. The range of annual precipitation was from 27.52 mm to 5974 mm, and annual mean temperature was from -13.39 °C to 26.73 °C.

Figure 2. FLUXNET sites used in this study with IGBP land cover type
Figure 3. AmeriFlux sites used in this study with IGBP land cover type

2.2 Evapotranspiration (ET)

The flux data bases report daily latent heat fluxes that were scaled from half-hour measurements. Latent heat flux represented energy absorbed for evapotranspiration without a change in temperature. ET was calculated from latent heat flux as:

$$ET = LE \times \frac{1000}{4.18 \times 597}$$

(5)
Energy balance closure (a formula requiring the sum of latent heat flux \((LE)\) and sensible heat flux \((H)\) to be equivalent to the difference between net radiation \((R_n)\) and soil heat flux \((G)\) and heat storage \((S)\)) has been widely used in eddy covariance detection (Mahrt 1998). The energy balance at the land surface can be written as:

\[
R_n - G - S = H + LE
\]

(6)

According to the research of Wilson et al. (2002), the latent heat flux has been underestimated about 20% due to lack of energy balance closure. In other words, the right hand side of Equation 6 is often less than the left side, indicating ET values derived from latent heat were ambiguous. Previous study pointed out that the incomplete energy closure problem was mainly caused by inaccuracies in quantifying available energy (e.g. there is still some confusion as to how G should be calculated); lack of understanding of energy processing (e.g. S is often neglected) (Mayocchi et al. 1995); the source area of turbulent fluxes was constantly changing in contrast to the residual side (Schmid 1997); and large nonstationarity of the turbulent flux and flux sampling errors (Mahrt, 1998).

I corrected reported daily ET for the incomplete energy balance closure problem of eddy-covariance measurements using the method developed by Twine et al. (2000). This method redistributed the energy imbalance, i.e. the residual of available energy \((R_n-G)\) and the sum of latent heat and sensible heat \((H+LE)\), back to both \(LE\) and \(H\) by maintaining the Bowen Ratio \((H/LE)\). So,
\[\text{CorET} = ET \times \frac{R_n - G}{H + LE} \]

Where
\[\text{CorET} = \text{daily corrected evapotranspiration (mm)} \]
\[R_n = \text{daily net radiation (MJ/m}^2\text{)} \]
\[G = \text{daily soil heat flux (MJ/m}^2\text{)} \]
\[H = \text{daily sensible heat flux (MJ/m}^2\text{)} \]
\[LE = \text{daily latent heat flux (MJ/m}^2\text{)} \]

2.3 Potential evapotranspiration (PET)

Potential evapotranspiration (PET) is an essential variable in developing ET models in this study. Hamon’s (1961) PET method was used in this study due to its simplicity and wide use (Vörösmarty et al. 1998; Lu et al. 2003). Hamon (1961) developed an equation estimating daily ET based on air temperature and day length.

I calculated daily potential evapotranspiration using Hamon’s equations (Hamon 1961):

\[\text{PET} = 0.1651 \times \text{DAY} \times \frac{216.7 \times e_s}{t_a + 273.3} \]

\[e_s = 6.108 \times e^{\frac{17.2694 \times t_a}{t_a + 273.3}} \]

\[\text{DAY} = 2 \times \cos^{-1} \left(-1 \times \tan(lat \times 0.0175) \times \tan\left(0.4093 \times \sin\left(\frac{2^{3.1415} + \text{DoY}}{365.0}\right) - 1.405\right) \right) \]
Where

\(PET = \) daily potential evapotranspiration (mm)

\(DAY = \) day length which depends upon latitude (hours)

\(e_s = \) saturation vapor pressure at the given temperature

\(t_a = \) temperature (°C)

\(DoY = \) day of year ranging between 1 and 366

Equation 9 calculates saturation vapor pressure from air temperature (Murray 1967).

2.4 Leaf area index (LAI)

Leaf area index (LAI) is a key variable for understanding the ET process and its modeling. The eddy covariance database did not provide complete information on LAI for each site, so I created my own database of LAI using MODIS global products. I downloaded LAI data based on the coordinates for each eddy flux tower site.

Leaf area index (projected leaf surface per unit ground area, \(m^2/m^2 \)) is an essential factor that represents different biomes and ranges of ecological and climate conditions (Asner et al. 2003). LAI has been widely used in understanding ecosystem processes and building ET models (Cramer et al. 1999). The development of remote sensing techniques made LAI measurements available over large range of areas and short time intervals (Asrar et al. 1983; Running 1984; Running et al. 1989).

I extracted leaf area index (2000-2006, 254 sites) using 8-day GeoTIFF data from products of the Moderate Resolution Imaging Spectroradiometer (MODIS) 1-km LAI global fields and converted them to monthly leaf area index. First, I downloaded the 8-day data for each sites based on latitude and longitude and sorted files into separate folders by year.
Secondly, I converted IMAGE data into GRID format and multiplied by a scale factor of 0.1 to get a true value of leaf area index (Mu et al. 2011). Next, I integrated 8-day values to get monthly values and extracted them from GRID data. I repeated the procedure for 254 sites and reported the monthly leaf area index for 7 years.

LAI values varied greatly in space and time as demonstrated in an example (Figure 4). In January, the continental average LAI values ranged from 0.1 to 4.4; in contrast, the value of LAI could reach as high as 6.3 in August in the growing season (Figure 4). Figure 5 describes monthly LAI over three years for the Duke Forest site, NC.
Figure 4. An example of monthly mean LAI (2000-2006) for (a) January, and (b) August in the continental U.S.
Figure 5. An example to show monthly LAI (2003-2005) derived from MODIS for Duke Forest located in Durham, NC (latitude 35.9736, longitude -79.1004). This site was classified as deciduous forest by IGBP land cover classification system.

2.5 Monthly environmental database

I combined all data for monthly corrected ET, monthly P, monthly LAI and other monthly environmental variables (e.g., mean soil water content, vapor pressure deficit, etc) that were measured using eddy covariance methods, and potential evapotranspiration, as described above. PET was calculated by Equations 8, 9, and 10. I associated all these variables with land cover types based on the IGBP land cover classification. The database spanned 7 years (2000-2006) and included 9637 site-months records.
2.6 Data Quality Assurance and Quality Control

Data reported from FLUXNET were well known for uncertainties that are normally caused by measurement errors and misunderstanding of computing methods (Hollinger et al. 2005). I removed data points which obviously should be excluded from the analysis. For example, negative values of soil water content, potential evapotranspiration and vapor pressure deficit would not be realistic. In addition, I also filtered the monthly data that were scaled from insufficient daily records (i.e. number of daily records of one month <15 days). To decrease the bias caused by missing data, I used the product of mean daily value of a variable in a month and 30 days (i.e. monthly value = mean daily value × 30) to be the monthly value of that variable when the number of daily records of one month was greater than 15 (days) but less than 30 (days). I also limited ET to be less than 300 (mm) per month to address the problem of unusually large ET values existing in the database. The details are: (a) Set to null values for daily net radiation >100 (MJ/m²) or daily latent heat >25 (MJ/m²) or daily sensible heat flux >25 (MJ/m²) or daily soil water content <0 (m³/m³) or daily precipitation <0 (mm) or potential evapotranspiration <0 (mm) or evapotranspiration <0 (mm) or vapor pressure deficit <0 (hPa). (b) Set to null values for monthly evapotranspiration >300 (mm). (c) Set to null values for daily records of one month <15 (days). (d) Filter the data for sites used in our study. The details of sites used in model development are shown in Appendix A.
2.7 Monthly evapotranspiration model development

Investigating the responses of vegetation to environmental variables helps us understand mechanisms controlling evapotranspiration and energy exchange (Law et al. 2012). I used the data from sites representing different biomes to develop regression models of monthly ET consisting of different variable combinations (PET, P, and LAI; or, three of the most significant variables) for each land cover. I created ET models that only included variables of PET, P and LAI because my objective was to produce a model that needed as few climate variables as possible. However, the most significant variables for ET varied from land cover to land cover. Thus, I identified significant variables for each land cover type using stepwise regression in SAS (SAS Institute Inc., 2008) and created ET models using three of the most significant variables, so that the ET models could predict ET as precisely as possible.

In addition to what I discussed above, I assumed it would also be critical to develop two series of ET models, for ET prediction at both the global scale (FLUXNET) and the continental U.S. scale (AmeriFlux), by land cover type. In other words, I developed ET models with two different combinations of variables using global data and U.S. data separately (Figure 6).

I developed ET models for different land cover types using the SAS 9.2 software (SAS Institute Inc., 2008), and created general regression models using three independent variables of PET, LAI and P, or three the most significant variables selected by stepwise
regression. According to the IGBP landcover classification system, the FLUXNET included seven land cover types: shrubland (including closed shrubland and open shrubland), cropland, grassland, deciduous forest (deciduous broad leaf forest), evergreen forest (including evergreen needle leaf forest and evergreen broad leaf forest), mixed forest and savannas (including savannas and woody savannas). For the U.S, I developed models for six land cover types since no land cover type for savannas existed in U.S.
Figure 6. Workflow of monthly ET model development. I created two series of monthly ET models: regression models using ET, PET and LAI as the independent variables, and regression models using three of the most significant variables. The two series of monthly ET model were derived from AmeriFlux and FLUXNET.
3. RESULTS

3.1 Key environmental controlling variables for different land cover types.

3.1.1 Key environmental controls generated by continental U.S. data

It appeared that the most significant variables explaining variability in ET were different among different ecosystems (Table 2). Interestingly, PET was the best predictor for all forests while LAI was best for ecosystem with a low LAI (grasslands). Net radiation, instead of LAI, was most influential for croplands.

Table 2. The most significantly variables contributing to ET with partial R-square values and sample sizes of different land cover types developed from continental U.S. data (AmeriFlux).

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Partial R-square of significant variables</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PET</td>
<td>LAI</td>
</tr>
<tr>
<td>Shrubland</td>
<td>N/A</td>
<td>0.60</td>
</tr>
<tr>
<td>Cropland</td>
<td>N/A</td>
<td>0.08</td>
</tr>
<tr>
<td>Grassland</td>
<td>N/A</td>
<td>0.73</td>
</tr>
<tr>
<td>Deciduous forest</td>
<td>0.84</td>
<td>0.02</td>
</tr>
<tr>
<td>Evergreen forest</td>
<td>0.55</td>
<td>N/A</td>
</tr>
<tr>
<td>Mixed forest</td>
<td>0.95</td>
<td>N/A</td>
</tr>
</tbody>
</table>

For shrubland, LAI and Rn explained 78% of the variability in ET (Table 2). For cropland, the variables Rn, LAI and P were the major controls of ET (p<0.0001), explaining 75%, 8% and 1% of ET, separately. The correlation between Rn and ET was as high as 0.79,
but in a non-linear relationship (Figure 8). For deciduous forest, PET, VPD and LAI explained 84%, 6% and 1% of ET. For evergreen forest, I could see that potential ET and vapor pressure deficit were highly correlated (p<0.0001) with ET, VPD and Rn. PET, VPD and Rn contributed 55%, 12% and 8%, respectively. Precipitation and LAI did not contribute much to the coefficient of determination (R²) between predicted ET and measured ET; this may explain the reason for a low R² (0.67) in the evergreen forest ET prediction. Variables that affected grassland ET were LAI, SWC and Rn (explaining 74%, 7% and 7% of the variability). Soil water content was the second most important factor correlated with ET after leaf area index. For mixed forest, PET was largely determining ET (R² = 0.95); however, sample sizes for mixed forests were far fewer than other land cover types.

The relationships between ET and individual environmental factors were rather complex (Figure 7). The slopes of linear relationships between ET and P (Figure 7) indicated that grassland (95% confidence interval of slope = (0.57, 0.81)) evapotranspired the largest fraction of monthly precipitation. Cropland (95% confidence interval of slope = (0.04, 0.11)) and deciduous forest (95% confidence interval of slope = (0.16, 0.49)) were the second highest, and evergreen forests (95% confidence interval of slope = (0.04, 0.11)) did not evapotranspire as large a percentage of precipitation as expected (Table 3). Moreover, evapotranspiration of evergreen forest was lower than other land cover types except mixed forest at the same LAI (95% confidence interval of slope = (0.04, 0.11) (Table 3)). It was possible that evergreen forest could conserve more water resources relative to other ecosystem types. I also could conclude that, cropland and grassland have higher ET than
other land cover at the same LAI. For croplands, Rn and ET were highly correlated in a non-linear fashion (Figure 7).
Figure 7. Relationship between monthly actual evapotranspiration (ET) and environmental variables: monthly precipitation (P), potential evapotranspiration (PET), leaf area index (LAI), net radiation (Rn), soil water content (SWC) and vapor pressure deficit (VPD) based on AmeriFlux dataset. Lines shown are trend lines of each land cover type (AmeriFlux).
Table 3. 95% confidence limits of slope for monthly precipitation (P), potential evapotranspiration (PET), leaf area index (LAI), net radiation (Rn), soil water content (SWC) and vapor pressure deficit (VPD) based on the AmeriFlux dataset. Dependent variable is ET.

<table>
<thead>
<tr>
<th>Land cover</th>
<th>P</th>
<th>PET</th>
<th>LAI</th>
<th>Rn</th>
<th>SWC</th>
<th>VPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubland</td>
<td>(0.14, 0.30)</td>
<td>(0.41, 0.59)</td>
<td>(14.80, 18.50)</td>
<td>(0.09, 0.13)</td>
<td>(0.81, 1.44)</td>
<td>(-0.50, 0.71)</td>
</tr>
<tr>
<td>Cropland</td>
<td>(0.24, 0.41)</td>
<td>(0.99, 1.13)</td>
<td>(42.09, 50.61)</td>
<td>(0.27, 0.31)</td>
<td>(-1.59, 0.08)</td>
<td>(6.84, 8.85)</td>
</tr>
<tr>
<td>Deciduous forest</td>
<td>(0.16, 0.49)</td>
<td>(1.23, 1.39)</td>
<td>(22.74, 26.06)</td>
<td>(0.26, 0.32)</td>
<td>(-1.33, 0.19)</td>
<td>(6.72, 10.40)</td>
</tr>
<tr>
<td>Evergreen forest</td>
<td>(0.04, 0.11)</td>
<td>(0.73, 0.84)</td>
<td>(11.04, 13.85)</td>
<td>(0.16, 0.19)</td>
<td>(-0.06, 0.69)</td>
<td>(3.38, 4.73)</td>
</tr>
<tr>
<td>Grassland</td>
<td>(0.57, 0.81)</td>
<td>(0.65, 0.85)</td>
<td>(58.36, 72.44)</td>
<td>(0.21, 0.27)</td>
<td>(0.48, 1.86)</td>
<td>(1.83, 3.88)</td>
</tr>
<tr>
<td>Mixed forest</td>
<td>(0.04, 0.61)</td>
<td>(1.11, 1.25)</td>
<td>(17.07, 25.39)</td>
<td>(0.21, 0.30)</td>
<td>(-6.40, 1.49)</td>
<td>(10.02, 12.35)</td>
</tr>
</tbody>
</table>
3.1.2 Key environmental controls determined by FLUXNET data

Compared with key environmental controls developed from AmeriFlux, some differences were found using FLUXNET data. For shrubland, croplands, deciduous forest and mixed forest, the major controls were determined to be the same. However, for grasslands, Rn, instead of LAI, was the most influential variable. For mixed forests, Rn, instead of PET or temperature, was the best predictor for ET. There were few eddy flux
research sites for Savanna ecosystems. The limited data suggested that several environmental variables (LAI, Rn, VPD) controlled ET in savannas.

Table 4. The most significantly variables contributing to variability in ET with their partial R-square values, by land cover type, developed from global data (FLUXNET)

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Partial R-square of significant variables</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PET</td>
<td>LAI</td>
</tr>
<tr>
<td>Shrubland</td>
<td>N/A</td>
<td>0.60</td>
</tr>
<tr>
<td>Cropland</td>
<td>0.003</td>
<td>0.06</td>
</tr>
<tr>
<td>Grassland</td>
<td>0.01</td>
<td>N/A</td>
</tr>
<tr>
<td>Deciduous forest</td>
<td>0.75</td>
<td>N/A</td>
</tr>
<tr>
<td>Evergreen forest</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Mixed forest</td>
<td>0.95</td>
<td>N/A</td>
</tr>
<tr>
<td>Savannas</td>
<td>0.05</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Similar to the relationships between environmental factors and ET found in the AmeriFlux data, PET, Rn, and LAI were linearly correlated to ET (Figure 9). Soil water conditions as represented by monthly P and SWC, were not good predictors for forest ET. ET was highly correlated with LAI for shrubland and savannas, suggesting plant biomass can be used as a good indicator of water use for these types of ecosystems. In contrast, Rn was the key control for ET in cropland, grassland, and evergreen forest, indicating the importance of light in ET processes for these ecosystems.

The slopes of the linear relationships between ET and P (Figure9) indicated that shrubland (95% confidence interval of slope = (0.15, 0.30)), cropland (95% confidence
interval of slope = (0.12, 0.21), and grassland (95% confidence interval of slope = (0.14, 0.22)) evapotranspired a larger fraction of monthly precipitation than any of the forest types (Table 5).
Figure 9. Relationship between monthly actual evapotranspiration (ET) and environmental variable: monthly precipitation (P), potential evapotranspiration (PET), leaf area index (LAI), net radiation (Rn), soil water content (SWC) and vapor pressure deficit (VPD) based on FLUXNET dataset. Lines shown are trend lines of each land cover type.
3.2 Monthly ET models

From the above analysis and previous work (Sun et al. 2001; 2011b), it appears that PET, LAI, Rn, and P are key variables in developing general predictive models at the monthly scale. However, because Rn and VPD were not readily available for regional applications, this study provides two sets of ET models so the user has choices under various situations of data availability.

3.2.1 Monthly ET models developed from U.S data (AmeriFlux)

When pooling all data, the regression model derived from AmeriFlux was:

\[ET = -2.20 + 1.22PET - 5.14VPD + 0.07Rn \]
\[R^2 = 0.80, \ n = 1173, \ RMSE = 18.6 \text{ mm month}^{-1} \]

When only PET, LAI, and P were considered, the monthly ET model took the form of:

\[
ET = -6.51 + 0.76 \text{PET} + 5.44 \text{LAI} + 0.07 \text{P} \tag{12}
\]

\[R^2 = 0.72, \ n = 1247, \ RMSE = 19.9 \text{ mm month}^{-1} \]

A comparison between measured ET and predicted ET values derived from the regression model (12) resulted in an overall RMSE of 19.9 mm month\(^{-1}\) (Figure 10).
Figure 10. Predicted and measured monthly evapotranspiration (ET). Predicted ET was calculated by Equation 12 which was developed using data from AmeriFlux. The solid line is the regression line. The dashed line is the 1:1 line.
Table 6. ET models using the most significant variables for different land cover types developed using data from AmeriFlux

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Model</th>
<th>RMSE</th>
<th>R²</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubland</td>
<td>ET = -5.78 + 13.22LAI + 0.10Rn + 0.11*P</td>
<td>11.2</td>
<td>0.86</td>
<td>182</td>
</tr>
<tr>
<td>Cropland</td>
<td>ET = -2.69 + 0.20Rn + 21.69LAI + 0.07*P</td>
<td>19.9</td>
<td>0.81</td>
<td>291</td>
</tr>
<tr>
<td>Grassland</td>
<td>ET = -24.55 + 34.65LAI + 0.67SWC + 0.15*Rn</td>
<td>15.7</td>
<td>0.83</td>
<td>98</td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>ET = -12.12 + 1.30PET - 4.76VPD + 7.71*LAI</td>
<td>15.6</td>
<td>0.91</td>
<td>154</td>
</tr>
<tr>
<td>Evergreen Forest</td>
<td>ET = 7.56 + 0.84PET - 3.51VPD + 0.10*Rn</td>
<td>15.7</td>
<td>0.74</td>
<td>395</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>ET = -13.09 + 1.63PET - 4.58VPD</td>
<td>8.3</td>
<td>0.96</td>
<td>52</td>
</tr>
</tbody>
</table>

All variables were highly significantly (p<0.0001) except for precipitation (P) in models for deciduous forest and mixed forest (p>0.05). The R^2 of measured ET and predicted ET derived from regression models by land cover ranged from 0.67 to 0.95 (Figure 12).
Figure 11. Predicted and measured monthly evapotranspiration (ET). Predicted ET was calculated using different equations for each land cover type. Lines shown are regression lines for each model. (a) The relations between measured ET and predicted ET by land cover. (b) An overall comparison of measured ET and predicted ET by land cover type. The value of R^2 also reflected the how well ET was likely to be predicted by the models as a whole for all biome types.

A comparison of ET predicted by multiple models (Table 7) and a single model (Equation 12) suggested ET models separating by land cover type would improve prediction. The R^2 value of predicted ET and actual ET increased from 0.72 when data were lumped, to 0.80 when six individual models by land cover type were developed.
Figure 12. Measured and predicted ET derived from models (Table 7) developed by land cover types for the continental U.S. Lines shown were modeled means.
For deciduous forest and mixed forest, precipitation did not contribute significantly to ET models. One explanation for the insensitivity of ET to P may be that these forests have been rarely under water stress at the monthly scale. Therefore, I also developed regression models that consisted of the most significant variables for different land cover types (Table 6).

1.3.2.1 Sub-models for ET prediction in western area of U.S.

After exploring the correlations between different environmental variables for all eddy flux sites, I found that the models developed had different accuracy for different climate regions. It appeared that the dry regions have unique ET processes that meant generalized models did not apply well.

For shrubland, monthly ET values ranged from less than 1 mm month\(^{-1}\) to 145 mm month\(^{-1}\), reflecting the biophysical controls of leaf area index relative to precipitation (Table 2, Figure 7). I also found that ET for many site-months was lower than PET within a narrow range of ET (0-50 mm month\(^{-1}\)). The predicted ET was linearly correlated with measured ET (R\(^2\)=0.80) for most of the sites. For example, the site US-Los was the Lost Creek tower in northern Wisconsin. (The site was covered with deciduous broadleaf vegetation, fully snow covered in winter and humid, warm in summer.) After plotting evapotranspiration, precipitation, potential evapotranspiration and leaf area index from 2001 to 2006 (Figure 13a), I found that ET was highly correlated to PET. US-Los had 680 mm average annual precipitation that could provide adequate water for ET, at least in growing seasons.
In contrast, at the Sky Oaks site in San Diego, CA (US-SO4) which had 482mm average annual precipitation from 2004-2006 (Figure 13b), the water stresses in dry summers lead to a low monthly ET. The general model of shrubland underestimated ET for the western U.S. illustrated by comparing the predicted ET with USGS ET. Therefore, I derived a monthly ET model for the western area of the continental U.S..
Figure 13. Variation of monthly P, PET, ET and LAI measured at sites in (a) Northern Wisconsin during the period of 2001 - 2006 and (b) San Diego during the period of 2004 - 2006. The dominated land cover type of the two sites was shrubland
I also developed models of the western continental U.S. (dry regions) for the land cover types of evergreen forest, grassland and shrubland (Table 8).

Table 8. Additional models for dry area of continental U.S

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Model</th>
<th>RMSE</th>
<th>R^2</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubland</td>
<td>$ET = -16.786 + 0.212 \times PET + 0.110 \times P + 65.075 \times LAI$</td>
<td>9.3</td>
<td>0.54</td>
<td>96</td>
</tr>
<tr>
<td>Evergreen Forest</td>
<td>$ET = 4.041 + 0.953 \times PET + 0.005 \times P + 0.075 \times LAI$</td>
<td>16.3</td>
<td>0.65</td>
<td>207</td>
</tr>
<tr>
<td>Grassland</td>
<td>$ET = 17.232 - 0.209 \times PET - 0.004 \times PET \times P + 0.418 \times PET \times LAI - 0.082 \times P \times LAI$</td>
<td>15.7</td>
<td>0.68</td>
<td>340</td>
</tr>
</tbody>
</table>

I used just the data from the western part of the continental U.S. to develop models for dry regions to improve the prediction accuracy for these low precipitation regions. For shrubland, I used data from sites in California (116 site-months) that had 493 mm annual precipitation (in contrast to other sites such as 796 mm for Wisconsin and 1074 mm for North Carolina) to develop models for dry regions. For evergreen forest, I extracted the data from California, Oregon, Arizona, and Colorado (207 site-months) in which vegetation was mainly dominated by ponderosa pine, and created models for the western U.S. region which had a low LAI for evergreen forest (1.69 m2/m2 monthly average compared to 2.90 m2/m2 monthly average for all regions). For grassland, I used data from Oklahoma, Arizona, Montana, California, and South Dakota (344 site-months) and did model development for all of the western continental U.S. which has 483 mm annual precipitation (in contrast to 1263 mm annual precipitation of other regions of grassland).
I could use the models in Table 6 to estimate ET in the western region of the continental U.S for the land cover type of shrubland, evergreen forest and grassland specifically. To be consistent, I defined the western region to be the range of 95° W to 125° W, from eastern Texas to the West Coast, including the states of California, Oregon, Arizona, Colorado, Oklahoma, Texas, etc.

3.2.2 Monthly ET models developed from global data (FLUXNET)

When pooling all data, the regression model derived from FLUXNET was:

$$ET = 0.42 + 0.74PET - 2.73VPD + 0.10Rn$$ \hspace{1cm} \text{(13)}

$R^2 = 0.73$, $n=4615$, $RMSE = 17.0 \text{ mm month}^{-1}$

When only PET, LAI, and P were considered, the monthly ET model took the form of:

$$ET = -4.79 + 0.75PET + 3.92LAI + 0.04P$$ \hspace{1cm} \text{(14)}

$R^2 = 0.68$, $n=4265$, $RMSE = 18.1 \text{ mm month}^{-1}$

A comparison between measured ET and predicted ET values derived from the regression model (14) resulted in an overall RMSE $18.1 \text{ mm month}^{-1}$ (Figure 14).
Figure 14. Predicted and measured monthly evapotranspiration (ET). Predicted ET was calculated by Equation (14) which was developed using data globally. The solid line is the regression line. The dashed line is the 1:1 line.

The monthly ET models consisted of three of the most significant variables (Table 4) are listed in Table 9 by land cover classification. For mixed forest, PET was the only significant predictor variable (p < 0.0001) of ET. Thus the monthly ET model of mixed forest only had one variable of PET. Even so, the precision of the ET model was high based on the high R^2 (0.79).
Table 9. ET models using the most significant variables for different land cover types developed using data from FLUXNET.

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Model</th>
<th>RMSE</th>
<th>R^2</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubland</td>
<td>$ET = -4.59 + 13.02 \cdot LAI + 0.10 \cdot Rn + 0.11 \cdot P$</td>
<td>11.2</td>
<td>0.85</td>
<td>193</td>
</tr>
<tr>
<td>Cropland</td>
<td>$ET = 0.87 + 0.19 \cdot Rn + 13.99 \cdot LAI + 0.06 \cdot P$</td>
<td>20.2</td>
<td>0.72</td>
<td>649</td>
</tr>
<tr>
<td>Grassland</td>
<td>$ET = -0.87 + 0.20 \cdot Rn + 0.10 \cdot P + 0.24 \cdot SWC$</td>
<td>15.7</td>
<td>0.73</td>
<td>562</td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>$ET = -17.80 + 1.24 \cdot PET - 5.22 \cdot VPD + 0.11 \cdot Rn$</td>
<td>15.9</td>
<td>0.83</td>
<td>628</td>
</tr>
<tr>
<td>Evergreen Forest</td>
<td>$ET = 14.21 + 0.11 \cdot Rn + 1.73 \cdot Ta - 0.81 \cdot VPD$</td>
<td>15.2</td>
<td>0.73</td>
<td>1919</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>$ET = -8.763 + 0.95 \cdot PET$</td>
<td>13.1</td>
<td>0.79</td>
<td>259</td>
</tr>
<tr>
<td>Savannas</td>
<td>$ET = 16.91 + 9.96 \cdot LAI + 0.022 \cdot Rn - 2.38 \cdot VPD$</td>
<td>8.4</td>
<td>0.85</td>
<td>36</td>
</tr>
</tbody>
</table>

I also developed ET models based on PET, LAI and P variables only (Table 10). All variables were highly significant ($p < 0.0001$) except for P in models of deciduous forest and mixed forest ($p > 0.05$). The R^2 of measured ET and predicted ET derived by regression models of different land cover types were from 0.66 to 0.80 (Figure 15).

Table 10. ET models using PET, P and LAI for different land cover types developed using data from FLUXNET.

<table>
<thead>
<tr>
<th>Land cover type</th>
<th>Model</th>
<th>RMSE</th>
<th>R^2</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubland</td>
<td>$ET = -3.11 + 0.39 \cdot PET + 0.09 \cdot P + 11.127 \cdot LAI$</td>
<td>12.5</td>
<td>0.80</td>
<td>193</td>
</tr>
<tr>
<td>Cropland</td>
<td>$ET = -8.15 + 0.86 \cdot PET + 0.01 \cdot P + 9.54 \cdot LAI$</td>
<td>20.9</td>
<td>0.70</td>
<td>653</td>
</tr>
<tr>
<td>Grassland</td>
<td>$ET = -1.36 + 0.70 \cdot PET + 0.04 \cdot P + 6.56 \cdot LAI$</td>
<td>16.8</td>
<td>0.66</td>
<td>803</td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>$ET = -14.98 + 0.96 \cdot PET + 3.08 \cdot LAI$</td>
<td>20.0</td>
<td>0.74</td>
<td>692</td>
</tr>
<tr>
<td>Evergreen Forest</td>
<td>$ET = -0.10 + 0.68 \cdot PET + 0.04 \cdot P + 3.27 \cdot LAI$</td>
<td>15.6</td>
<td>0.71</td>
<td>1623</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>$ET = -9.57 + 0.87 \cdot PET + 2.46 \cdot LAI$</td>
<td>13.2</td>
<td>0.79</td>
<td>254</td>
</tr>
<tr>
<td>Savannas</td>
<td>$ET = -25.66 + 0.18 \cdot PET + 0.10 \cdot P + 44.63 \cdot LAI$</td>
<td>11.1</td>
<td>0.68</td>
<td>36</td>
</tr>
</tbody>
</table>
Figure 15. Measured and predicted ET derived from models (Table 8) developed by land cover type globally. Lines shown are modeled means.
4. DISCUSSION

4.1 Relationship between ET and environmental variables

The global synthesis study of ET for multiple vegetation types showed that ecosystem ET is mainly controlled by energy availability as represented by variables such as PET, Rn, vegetation dynamics, and LAI. Precipitation and soil water content provide additional control of ET.

It is well known that precipitation is the major source of water for plants. Theoretically, ET should be determined by P in the system, especially under water stress. In semiarid regions, ET was more correlated with P rather than net radiation and temperature (Nagler et al. 2007). In contrast, other variables such as LAI could replace the most significant position of P to ET in humid areas. In this study, I found that P was not the predominated predictor variable for deciduous forest and mixed forest in the U.S. By comparing the relations between P and ET by land cover type, I also found that for grassland the ratio of ET to P was much higher than that of evergreen and deciduous forest overall (Figure 7, 9; Table 3, 5). This finding agreed with the conclusions by Williams et al. (2012) that grassland evaporated 9% more annual precipitation than forest, on average. The ET/P rate of cropland was lower than grassland, but higher than evergreen forest (Figure 7, 9; Table 3, 5). In croplands, ET was highly connected with soil water content (SWC) and precipitation (P) could be stored at the top 10 cm of soil to meet the water need of plants at a period (Kurc et al. 2004). A study by Seneviratne et al. (2010) on soil water coupling with other climate variables
suggested that SWC limited ET due to soil moisture supply limitations. ET would be restricted by SWC when soil was too dry.

Underestimation errors may occur when using our model without considering SWC under extreme dry conditions. Nagler et al. (2007) considered interannual lags of precipitation in their study to account for effects of soil water storage on ET. During model development in this study, I also tried to use variables for total precipitation of the previous month and precipitation of the current month to account for lagging effects on ET. However, improvements by this method were not always achievable. The complexity of ecosystems monitored by the eddy flux network made general modeling challenging. LAI and PET were the critical controls to ET. ET had a positive correlation with LAI since more leaves mean more ET surfaces and water use. However, LAI was found to increase with an increase in precipitation with a finite upper limit (Grier et al. 1977). In agreement with previous discussion, the variables of LAI, P and PET were therefore tightly coupled and closely linked to ET.

This study improved ET models previously developed by Sun et al. (2011a, 2011b) by accounting for land cover types. These findings suggest that different ecosystems may have different ET controls. Specific circumstances, such as the dry region, had unique vegetation and climate. Sub-models (Table 8) worked best for ET predictions in the western dry region of the continental U.S from longitude west 125° to west 95° (Arizona, California, Alabama, Organ, Colorado, etc). The sites used to develop the sub-models are given in
appendices (B, C, D, E, F, G), the sites in bold are what I used to develop models for the western dry region. The sites with * represent missing ET data.

4.2 Water use of ET by land cover

In this study, I found that ET varied significantly by land cover type. I explored the water use of vegetation by comparing ET, PET, P and LAI of different land cover types. The months of July and August are always the peak growing season for vegetation in the northern hemisphere. A close look at these two months provides a contrast in maximum water use among land cover types (Figure 16). I plotted the mean monthly ET, P, PET and LAI of July and August for each land cover (Figure 16). The average monthly ET was higher than average monthly P for all land cover during July and August. This indicated precipitation during these months could not satisfy the water requirement for ET and that soil water content may become the significant control for ET. Cropland had the highest mean monthly ET (142 mm) which was far beyond the monthly precipitation, so that may be due to irrigation in the summer. For cropland, deciduous forest and mixed forest, the mean monthly ET rates were even higher than mean monthly PET, indicating that these land covers need more water than “well-watered” grass lands. It was apparent that PET was not the highest ET achievable despite its definition. Cropland, deciduous forest and mixed forest evapotranspired more water than grassland under the condition of no water stress. Thus, grassland may not be the best reference vegetation cover type selected to calculate PET. Cropland or plantation forest has the potential to be used in estimating PET instead. As expected, for grasslands and shrublands that were distributed in the arid regions with low P, ET rates were lower than PET.
during July and August, the peak growing seasons. On a per unit LAI basis, croplands with a mean LAI of 2.1, had the highest ET in July and August. Suprisingly, croplands lost more water than forests that had much higher LAI in the peak growing seasons.

Figure 16. Mean monthly ET (evapotranspiration), P (precipitation), PET (potential evapotranspiration), and LAI (leaf area index) of July and August generated from AmeriFlux data.
4.3 Limitation of the ET models developed by this study

For regional monthly ET prediction purposes in the U.S., the accuracy of the ET models with three input variables (PET, LAI, and P) is sufficient as judged by model summary statistics ($R^2=0.67 - 0.95$; RMSE=8.3-19.9). However, estimation errors existed due to climatic peculiarities and large variability in climate across the U.S. continent. For example, the site of US-Blo (Blodgett Forest in California) had a warm and dry summer climate, and was dominated by ponderosa pine. The site had low precipitation in summer, but was wet in winter (Figure 17). In contrast, the other evergreen forest sites always had low precipitation in winter and high precipitation in the summer. Thus, ET was highly correlated with PET, LAI and P, seasonally. The generalized model, therefore, underestimated ET for the summer and overestimated ET for the winter at the US-Blo site. Additionally, other errors and uncertainties of measurements may also contribute to estimation errors of the ET models as discussed later.
Figure 17. Variation of monthly P, PET, ET and LAI measured at Blodgett Forest in California (latitude 38.89, longitude -120.63) during the period of 2000-2006. The dominated land cover type is evergreen forest.

4.4 Uncertainties of ET and LAI

Daily ET was derived from latent heat flux (LE) measurements. It had biases that came from errors in surface temperature measurements (Kalma et al. 1990). Along with the inevitable measurement errors, unknown disturbances (i.e. the influence of animals) and instrument failures, ET estimation became an inaccurate science (Allen 2008).

Aside from systematic errors associated with eddy covariance methods and remote sensing technique, due to possible bias in our model and data (including PET and LAI extraction), some data were removed from the databases (e.g. when correcting ET by energy closure ratio, ET would be null when energy closure ratio was null value). Energy imbalance
problems might have caused ET estimation errors. For example, the energy closure was found to range from 62% at Beijing poplars site to 110% at the Inner Mongolia grassland site in the study of Sun et al. (2011a). Wilson et al. (2012) concluded that around 20% of a general lack of closure exists in all measured vegetation types and variety of climate conditions and there was about 10% absolute uncertainty in energy balance measurement caused by incomplete closure problem for the eddy covariance method (Twine et al.2000). In our study, the energy closure ranged from 87% to 89% (i.e. 88±1%) at the 95% confidence interval for the worldwide eddy flux data (6725 site-months). This is consistent with Twine et al. (2000) and Wilson (2012)’s conclusions. The general phenomena of incomplete energy balance closure at FLUXNET sites causes underestimation of sensible heat and latent heat flux, and then underestimated ET at the mean value of 12% in our study. The correction methods to remedy energy closure errors could not guarantee that ET estimates were correct since the method assumes the of H/LE ratio remained constant.

As an essential input to our model, LAI which derived from Moderate Resolution Imaging Spectroradiometer(MODIS), had a relatively high resolution (1km²) but still was considered too coarse to represent the site level LAI. Quite often, ground-based measurements of forest LAI were much higher than MODIS LAI. Furthermore, fluctuations of monthly LAI were rather unrealistic in some cases. For example, at the Blodgett Forest site in California, LAI fell abruptly by around 1 (m²/m²) in September, 2001, but rose back to a higher value the next month. This abnormal phenomenon happened in an evergreen forest.

Previous research by Cohen et al. (2006) also found that daily MODIS LAI fluctuated unrealistically. The large fluctuations were caused by clouds and snow affecting
the reflectance of vegetation. This type of problem existed in the current study even though I scaled LAI from daily to monthly values which reduced the error to some extent. The misclassification of vegetation types also increased the errors of estimation when computing LAI by different biomes (Pandya et al. 2006). In addition, MODIS LAI had 1km2 resolution which was greater than the size of the fetch of eddy flux measurements. For example, the grassland site of US-DK1 was located at the Duke Forest open field which was a grassy field adjacent to a forest. LAI for this site was reported as high as 5.5 in the summer, apparently an over-estimation when compared to similar grasslands that had an average LAI of less than 1.0. Such measurement errors could result in a great uncertainty in ET model building.

5. CONCLUSIONS

This study concluded that the key environmental controls for different ecosystem varied greatly. The analysis of AmeriFlux data showed that LAI and Rn explained most of the variability of observed ET for shrubland, cropland and grassland. In contrast, PET as estimated by a temperature-based method was a key control for observed ET of deciduous forest, evergreen forest and mixed forest. Monthly ET could be well explained by PET, LAI and P. The two series of empirical ET models developed from this study have the potential to be used for ET estimation at regional scales, which could be used to quantify actual ET and the accuracy of predicted ET could be as high as possible depending on the available data. The simpler ET models that consist of three variables (PET, P and LAI) might meet the requirements of users who do not have information on soil water content, radiation and vapor humidity. Otherwise, ET models developed using the three most significant variables for ET
may fulfill the expectation of forecasting monthly ET. Furthermore, the improved ET models from this study may be useful in evaluating the impacts of climate change and land use change on water resources at a continental scale.

The approaches of this study combined methods of eddy covariance (FLUXNET) and remote sensing (MODIS). This multiple-ecosystem study showed the general relationships among terrestrial water loss, energy, and water availability and indicated intricate relationships among precipitation, availability of evaporative energy and vegetation dynamics at a finer temporal scale (i.e. monthly)- a scale that most regional-scale hydrological models use for global change studies. In addition, our study improved the previous predictive ET model (Sun et al. 2011) by including more eddy flux sites (254 global, 74 U.S.) and refined the monthly ET model into several sub-models by land cover type. This synthesis study contributed to improvement in ET models because it employed a large amount of data and created a series of ET models by land cover type. It included both global monthly ET models (developed from FLUXNET data) and U.S. monthly ET models (developed from AmeriFlux data), as well as sub-models for western dry areas of the U.S., particularly.

The advantage of the models developed by this study was convenience of use for estimating ET at regional scales. Depending on data availability, users may have choices. The simple ET models only required three variables (PET, P and LAI) which can be derived from networks of weather stations and remote sensing products, or from databases created by climate change projects. Future studies should evaluate the ET models by comparing
modeling results with other ET products, such as MODIS ET and ET estimates based on sapflow and watershed-balance methods in different regions with different regimes.
ACKNOWLEDGMENTS

This study was supported by the USDA Forest Service Eastern Forest Environmental Threat Assessment Center. This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, and the United States China Carbon Consortium. I acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada, and U.S. Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California, Berkeley, and University of Virginia. This work also used MODIS land subset (Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). 2011. MODIS subsettled land products, Collection 5).
REFERENCES

Mu, Q., M. Zhao and S. W. Running. (2011), Brief Introduction to MODIS Evapotranspiration Data Set (MOD16).

Water Resources Research *WRERAQ*, Vol. 29 (No. 5): 1379-1392.

APPENDICES
Appendix A. Sites used in the study of the world monthly ET model.

<table>
<thead>
<tr>
<th>Land cover</th>
<th>Sites used in this study</th>
<th>Site-month</th>
<th>Sites removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savannas</td>
<td>ES-LMa ZA-Kru</td>
<td>36</td>
<td>BW-Ghg AU-Fog</td>
</tr>
</tbody>
</table>
Appendix B. Sites used in the study of U.S monthly ET model of shrubland.
(Sites in bold are what we used to develop models for western dry region. The site with * had no data of ET available)

<table>
<thead>
<tr>
<th>Shrubland</th>
<th>Site</th>
<th>Site code</th>
<th>Plant community and dominant species</th>
<th>Latitude</th>
<th>longitude</th>
<th>Climate</th>
<th>Observation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost Creek (Wisconsin)</td>
<td>US-Los</td>
<td>willow shrub wetland</td>
<td>46.08</td>
<td>-89.97</td>
<td>Snow fully humid warm summer</td>
<td>2001-2005</td>
<td></td>
</tr>
<tr>
<td>Clearcut (North Carolina)</td>
<td>US-NC1</td>
<td>Loblolly pine seedlings surrounded by a dense groundcover composed of dogfennel and roundleaf greenbrier along the margins of the plantation.</td>
<td>35.81</td>
<td>-76.71</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2005-2006</td>
<td></td>
</tr>
<tr>
<td>Sky Oaks (California)</td>
<td>US-SO4</td>
<td>Chamise-dominated chaparral</td>
<td>33.38</td>
<td>-116.64</td>
<td>Warm temperate with dry, hot summer</td>
<td>2004-2006</td>
<td></td>
</tr>
<tr>
<td>Pine barrens (Wisconsin)</td>
<td>US-Wi6</td>
<td>dominated by jack pines, red oaks, prairie willows, and various herbs such as lowbush blueberry and sweet ferns</td>
<td>46.62</td>
<td>-91.29</td>
<td>Snow fully humid warm summer</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>Wisconsin Red pine clearcut (Wisconsin)</td>
<td>US-Wi7*</td>
<td>Red pine clearcut</td>
<td>46.64</td>
<td>-91.06</td>
<td>Snow fully humid warm summer</td>
<td>2005</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Sites used in the study of U.S monthly ET model of cropland.

<table>
<thead>
<tr>
<th>Cropland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
</tr>
<tr>
<td>ARM Southern Great Plains site (Oklahoma)</td>
</tr>
<tr>
<td>Bondville (Illinois)</td>
</tr>
<tr>
<td>Mead - irrigated continuous maize site (Nebraska)</td>
</tr>
<tr>
<td>Mead - irrigated maize-soybean rotation site(Nebraska)</td>
</tr>
<tr>
<td>Mead - rainfed maize-soybean rotation site(Nebraska)</td>
</tr>
</tbody>
</table>
Appendix D. Sites used in the study of U.S monthly ET model of deciduous forest.

<table>
<thead>
<tr>
<th>Site</th>
<th>Site code</th>
<th>Plant community and dominant species</th>
<th>Latitude</th>
<th>longitude</th>
<th>Climate</th>
<th>Observation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan Monroe State Forest (Indiana)</td>
<td>US-MMS</td>
<td>Mixed hardwood deciduous forest, a secondary successional broadleaf forest within the maple-beech to oak hickory transition zone of the eastern deciduous forest.</td>
<td>39.32</td>
<td>-86.41</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2002-2004</td>
</tr>
<tr>
<td>Missouri Ozark Site (Missouri)</td>
<td>US-MOz</td>
<td>Oak hickory forest</td>
<td>38.74</td>
<td>-92.2</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2004-2006</td>
</tr>
<tr>
<td>Oak Openings (Ohio)</td>
<td>US-Ohio</td>
<td>managed oak woodland</td>
<td>41.55</td>
<td>-83.84</td>
<td>Snow with fully humid hot summer</td>
<td>2004-2005</td>
</tr>
<tr>
<td>Willow Creek (Wisconsin)</td>
<td>US-WCr</td>
<td>Mature sugar maple-aspen-yellow birch forests, common type of second stage growth following old-growth hemlock-hardwood forests in northern Wisconsin</td>
<td>45.8</td>
<td>-90.07</td>
<td>Snow fully humid warm summer</td>
<td>2000-2006</td>
</tr>
<tr>
<td>Intermediate hardwood (Wisconsin)</td>
<td>US-Wi1</td>
<td>Naturally regenerated mixed hardwood</td>
<td>46.73</td>
<td>-91.23</td>
<td>Snow fully humid warm summer</td>
<td>2003</td>
</tr>
<tr>
<td>Young hardwood clearcut (Wisconsin)</td>
<td>US-Wi8</td>
<td>Naturally regenerated mixed hardwood</td>
<td>46.72</td>
<td>-91.25</td>
<td>Snow fully humid warm summer</td>
<td>2002</td>
</tr>
<tr>
<td>Bartlett Experimental Forest (New Hampshire)</td>
<td>US-Bar*</td>
<td>Temperate northern hardwood forest</td>
<td>44.06</td>
<td>-71.28</td>
<td>Snow fully humid warm summer</td>
<td>2004-2005</td>
</tr>
<tr>
<td>Location</td>
<td>Code</td>
<td>Forest Type</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Climate Type</td>
<td>Measurement Period</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>---</td>
<td>----------</td>
<td>-----------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>Harvard Forest EMS Tower (Massachusetts)</td>
<td>US-Ha1*</td>
<td>Temperate deciduous forest</td>
<td>42.53</td>
<td>-72.17</td>
<td>Snow fully humid warm summer</td>
<td>2000-2006</td>
</tr>
<tr>
<td>Little Prospect Hill (Massachusetts)</td>
<td>US-LPH*</td>
<td>Temperate deciduous forest</td>
<td>42.54</td>
<td>-72.18</td>
<td>Snow fully humid warm summer</td>
<td>2002-2005</td>
</tr>
<tr>
<td>Morgan Monroe State Forest (Indiana)</td>
<td>US-MMS</td>
<td>Mixed hardwood deciduous forest</td>
<td>39.32</td>
<td>-86.41</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2002-2004</td>
</tr>
<tr>
<td>Univ. of Mich. Biological Station (Michigan)</td>
<td>US-UMB*</td>
<td>Deciduous broadleaf forest</td>
<td>45.55</td>
<td>-84.71</td>
<td>Snow fully humid warm summer</td>
<td>2000-2003</td>
</tr>
</tbody>
</table>
Sites used in the study of U.S monthly ET model of evergreen forest.

<table>
<thead>
<tr>
<th>Site</th>
<th>Site code</th>
<th>Plant community and dominant species</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Climate</th>
<th>Observation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blodgett Forest (California)</td>
<td>US-Blo*</td>
<td>Mixed evergreen coniferous forest dominated by ponderosa pine</td>
<td>38.89</td>
<td>-120.63</td>
<td>Warm temperate with dry, warm summer</td>
<td>2000-2006</td>
</tr>
<tr>
<td>Duke Forest Loblolly Pine (North Carolina)</td>
<td>US-Dk3*</td>
<td>The uniform age overstory is almost solely composed of loblolly pines with an understory of 26 different hardwood species.</td>
<td>35.97</td>
<td>-79.09</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2001-2005</td>
</tr>
<tr>
<td>Flagstaff - Managed Forest (Arizona)</td>
<td>US-Fmf</td>
<td>ponderosa pine forest</td>
<td>35.14</td>
<td>-111.72</td>
<td>Warm temperate with dry, warm summer</td>
<td>2005-2006</td>
</tr>
<tr>
<td>Flagstaff - Unmanaged Forest (Arizona)</td>
<td>US-Fuf</td>
<td>ponderosa pine forest</td>
<td>35.08</td>
<td>-111.76</td>
<td>Warm temperate with dry, warm summer</td>
<td>2005-2006 (incomplete data from January to June in 2005)</td>
</tr>
<tr>
<td>Harvard Forest Hemlock Site (Massachusetts)</td>
<td>US-Ha2*</td>
<td>Temperate coniferous forest</td>
<td>42.53</td>
<td>-72.17</td>
<td>Snow fully humid warm summer</td>
<td>2004</td>
</tr>
<tr>
<td>Howland Forest (Main Tower) (Maine)</td>
<td>US-Ho1*</td>
<td>The natural stands in this boreal-northern hardwood transitional forest consist of hemlock-spruce-fir, aspen-birch, and hemlock-hardwood mixtures.</td>
<td>45.2</td>
<td>-68.74</td>
<td>Snow fully humid warm summer</td>
<td>2000-2004</td>
</tr>
<tr>
<td>Howland Forest (West Tower) (Maine)</td>
<td>US-Ho2*</td>
<td>Evergreen Needleleaf Forest</td>
<td>45.2</td>
<td>-68.74</td>
<td>Snow fully humid warm summer</td>
<td>2000-2004</td>
</tr>
<tr>
<td>Location/Study Area</td>
<td>Location Code</td>
<td>Description</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Climate Description</td>
<td>Data Collection Period</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>--</td>
<td>----------</td>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Kennedy Space Center (slash pine) (Florida)</td>
<td>US-KS1</td>
<td>Managed Slash Pine Flatwoods</td>
<td>28.45</td>
<td>-80.67</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2002 November, December</td>
</tr>
<tr>
<td>Metolius Eyerly Burn (Oregon)</td>
<td>US-Me1</td>
<td>After fire in early July 2002, the live vegetation is constrained to the understory with a significant portion occupied by forbs and grasses. More common species to the understories of ponderosa pine forests in central Oregon have begun to regrow, including antelope bitterbrush and greenleaf manzanita.</td>
<td>44.57</td>
<td>-121.5</td>
<td>Warm temperate with dry, warm summer</td>
<td>2004-2005 Incomplete data from August to December in 2005)</td>
</tr>
<tr>
<td>Metolius Intermediate Pine (Oregon)</td>
<td>US-Me2</td>
<td>Evergreen Needleleaf Forest</td>
<td>44.45</td>
<td>-121.55</td>
<td>Warm temperate with dry, warm summer</td>
<td>2003-2005</td>
</tr>
<tr>
<td>Metolius Second Young Pine (Oregon)</td>
<td>US-Me3</td>
<td>Overstory is young ponderosa pine. Understory is dominated by grasses (~70%) and antelope bitterbrush and greenleaf manzanita (~30%).</td>
<td>44.31</td>
<td>-121.6</td>
<td>Warm temperate with dry, warm summer</td>
<td>2004-2005</td>
</tr>
<tr>
<td>Metolius Old Pine (Oregon)</td>
<td>US-Me4</td>
<td>Overstory is composed of 100% ponderosa pine occurring primarily in one of two distinct age classes: 1) mixed-age stand (~87 years); 2) old stand (~156 years). The understory is relatively sparse, decreasing with older stand ages.</td>
<td>44.49</td>
<td>-121.62</td>
<td>Warm temperate with dry, warm summer</td>
<td>2000</td>
</tr>
<tr>
<td>Loblolly Plantation (North Carolina)</td>
<td>US-NC2</td>
<td>In the immediate vicinity of the tower, vegetation is nearly 100% Loblolly pine with a few red cedars along small indentations in the plantation terrain.</td>
<td>35.8</td>
<td>-76.66</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2005-2006</td>
</tr>
<tr>
<td>Niwot Ridge (Colorado)</td>
<td>US-NR1</td>
<td>Subalpine mixed coniferous forest with very little understory and a canopy gap fraction of 17%</td>
<td>40.03</td>
<td>-105.54</td>
<td>Snow fully humid cool summer</td>
<td>2000-2003</td>
</tr>
<tr>
<td>Austin Cary (Florida)</td>
<td>US-SP1*</td>
<td>95% pine uplands and 5% cypress wetlands, characterized by a mixture of longleaf pine and slash pine with a dense shrub understory.</td>
<td>29.73</td>
<td>-82.21</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2000, 2001, 2005</td>
</tr>
<tr>
<td>Location/Species/Reference</td>
<td>Code</td>
<td>Description</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Climate</td>
<td>Study Period</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>Mize (Florida)</td>
<td>US-SP2</td>
<td>100% pine uplands, characterized by an overstory composed solely of slash pines with a moderately dense shrub understory.</td>
<td>29.76</td>
<td>-82.24</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2000-2004</td>
</tr>
<tr>
<td>Donaldson (Florida)</td>
<td>US-SP3</td>
<td>100% pine uplands, characterized by an overstory composed solely of slash pines with a moderately dense shrub understory.</td>
<td>29.75</td>
<td>-82.16</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2000-2004</td>
</tr>
<tr>
<td>Young red pine (Wisconsin)</td>
<td>US-Wi0*</td>
<td>Red pine plantation</td>
<td>46.61</td>
<td>-91.08</td>
<td>Snow fully humid warm summer</td>
<td>2002</td>
</tr>
<tr>
<td>Intermediate red pine (Wisconsin)</td>
<td>US-Wi2</td>
<td>Red pine plantation</td>
<td>46.68</td>
<td>-91.15</td>
<td>Snow fully humid warm summer</td>
<td>2003</td>
</tr>
<tr>
<td>Mature red pine (Wisconsin)</td>
<td>US-Wi4</td>
<td>Red pine plantation</td>
<td>46.73</td>
<td>-91.16</td>
<td>Snow fully humid warm summer</td>
<td>2003</td>
</tr>
<tr>
<td>Mixed young jack pine (Wisconsin)</td>
<td>US-Wi5*</td>
<td>Naturally regenerated jack pine and hardwood</td>
<td>46.65</td>
<td>-91.08</td>
<td>Snow fully humid warm summer</td>
<td>2004</td>
</tr>
<tr>
<td>Young Jack pine (Wisconsin)</td>
<td>US-Wi9*</td>
<td>Jack Pine plantation</td>
<td>46.61</td>
<td>-91.08</td>
<td>Snow fully humid warm summer</td>
<td>2004-2005</td>
</tr>
<tr>
<td>Wind River Crane Site (Washington)</td>
<td>US-Wrc</td>
<td>The Douglas-fir and western hemlock transitional overstory lies between the Western Hemlock Zone and the Pacific Silver Fir Zone, with an understory dominated by vine maple, salal, and Oregon grape.</td>
<td>45.82</td>
<td>-121.95</td>
<td>Warm temperate with dry, warm summer</td>
<td>2000-2002, 2004-2006</td>
</tr>
</tbody>
</table>
Appendix F. Sites used in the study of U.S monthly ET model of grassland.

<table>
<thead>
<tr>
<th>Site</th>
<th>Site code</th>
<th>Plant community and dominant species</th>
<th>Latitude</th>
<th>longitude</th>
<th>Climate</th>
<th>Observation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM Southern Great Plains burn site (Oklahoma)</td>
<td>US-ARb</td>
<td>Re-emergent C4 and C3 grasses with minor amounts of forbs</td>
<td>35.54</td>
<td>-98.04</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2005-2006</td>
</tr>
<tr>
<td>ARM Southern Great Plains control site (Oklahoma)</td>
<td>US-ARc</td>
<td>C4 and C3 grasses with minor amounts of forbs</td>
<td>35.54</td>
<td>-98.04</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2005-2006</td>
</tr>
<tr>
<td>Brookings (South Dakota)</td>
<td>US-Bkg</td>
<td>Range Grassland</td>
<td>44.34</td>
<td>-96.83</td>
<td>Snow with fully humid hot summer</td>
<td>2005-2006</td>
</tr>
<tr>
<td>Canaan Valley (West Virginia)</td>
<td>US-CaV*</td>
<td>Temperate grassland</td>
<td>39.06</td>
<td>-79.42</td>
<td>Warm temperate fully humid with warm summer</td>
<td>2004-2005</td>
</tr>
<tr>
<td>Duke Forest Open Field (North Carolina)</td>
<td>US-Dk1*</td>
<td>The stand is dominated by the C3 grass, tall fescue, with minor amounts of forbs, herbs, and grasses.</td>
<td>35.97</td>
<td>-79.09</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2002-2005</td>
</tr>
<tr>
<td>Fort Peck (Montana)</td>
<td>US-FPe</td>
<td>Grassland</td>
<td>48.3</td>
<td>-105.1</td>
<td>Arid Steppe cold</td>
<td>2000, 2002, 2005</td>
</tr>
<tr>
<td>Location</td>
<td>Code</td>
<td>Description</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Climate Type</td>
<td>Year Range</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>--</td>
<td>----------</td>
<td>-----------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Flagstaff – Wildfire (Arizona)</td>
<td>US-Fwf</td>
<td>ponderosa pine forest burned by a wildfire 12 years ago (1996), now the vegetation includes only herbaceous species and a few shrubs</td>
<td>35.44</td>
<td>-111.77</td>
<td>Warm temperate with dry, warm summer</td>
<td>2005-2006</td>
</tr>
<tr>
<td>Goodwin Creek (Mississippi)</td>
<td>US-Goo*</td>
<td>Dominantly short grasses with scattered trees and shrubs</td>
<td>34.25</td>
<td>-89.87</td>
<td>Warm temperate fully humid with hot summer</td>
<td>2002-2006</td>
</tr>
<tr>
<td>Fermi National Accelerator Laboratory – (Prairie site) (Illinois)</td>
<td>US-IB2*</td>
<td>Tall grass prairie: C4 grasses and forbs</td>
<td>41.84</td>
<td>-88.24</td>
<td>Snow with fully humid hot summer</td>
<td>2004-2006</td>
</tr>
<tr>
<td>Vaira Ranch (California)</td>
<td>US-Var*</td>
<td>Grazed C3 grassland opening in a region of oak/grass savanna</td>
<td>38.41</td>
<td>-120.95</td>
<td>Warm temperate with dry, hot summer</td>
<td>2001-2006</td>
</tr>
<tr>
<td>Walnut Gulch Kendall Grasslands (Arizona)</td>
<td>US-Wkg*</td>
<td>warm season C4 grassland (bouteloua) with a few shrubs interspersed</td>
<td>31.73</td>
<td>-109.94</td>
<td>Arid Steppe cold</td>
<td>2004-2006</td>
</tr>
</tbody>
</table>
Appendix G. Sites used in the study of U.S monthly ET model of mixed forest.

<table>
<thead>
<tr>
<th>Site</th>
<th>Site code</th>
<th>Plant community and dominant species</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Climate</th>
<th>Observation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park Falls (Wisconsin)</td>
<td>US-PFa*</td>
<td>Species of trees found in the upland regions include aspen, balsam fir, sugar maple, red maple, basswood, red pine, paper birch, yellow birch, and white spruce. Recent clear-cuts are dominated by dense aspen, while older stands tend to be dominated by sugar maple or red pine. Wetlands comprise about 40% of the surrounding landscape and include alder, cedar, tamarack, and black spruce stands.</td>
<td>45.94</td>
<td>-90.27</td>
<td>Snow fully humid warm summer</td>
<td>2000, 2003</td>
</tr>
<tr>
<td>Sylvania Wilderness Area (Michigan)</td>
<td>US-Syv</td>
<td>Old-growth hemlock-hardwood forest</td>
<td>46.24</td>
<td>-89.34</td>
<td>Snow fully humid warm summer</td>
<td>2002-2006</td>
</tr>
</tbody>
</table>