ABSTRACT

GONSALVES, KIRAN. Memory Design for FFT Processor in 3DIC Technology. (Under the direction of Professor Paul D. Franzon).

Computation of Fast Fourier Transform (FFT) of a sequence is an integral part for the Synthetic Aperture Radar (SAR). For FFT computations, there are a lot of data modification operations (multiplication and addition) involved. Typically, a memory (either on-chip or off-chip) would store the input data packet and output data would also be written to the same location. This memory would also be used as a scratch pad for storing intermediate results. As the required resolution of the image increases, the size of the input data increases. Hence, the number of computations in the butterfly structure of the FFT increases and this results in numerous data transactions between the memory and the computation units. Each data access can be expensive in terms of power dissipation and access time. The power dissipation is proportional to the size of the memory and the access time is dependent on the electrical proximity of the memory to the processing unit.

Three Dimensional Integrated Circuits (3D IC) enable the tight integration of this memory with the logic that operates on the memory. Apart from form-factor improvement, 3D IC technology’s main advantage is that it significantly enhances interconnect resources. Davis et al. in [1] mention that in the best case, if the inter-tier vias are ignored, the average wire length can be expected to drop by \((N_{\text{tier}})^{0.5}\).

This structure is advantageous as it reduces the access time and enables quicker computation of FFT when compared to its two dimensional counterpart. Alternatively, when run at the same speed, the 3D version can be said to dissipate lower power than the 2D version, owing to smaller interconnect parasitics.

The electrical proximity of the memory enables more interconnections (wider buses) and as a result, many number of small memories can be interfaced to the processing elements. This would not be possible in the conventional off-chip structure as the number of interconnect pins would be a limiting factor due to limitations on pin-outs and Printed Circuit Board (PCB) routing. This thesis supports the demonstration of memory on logic in a 3D IC environment by creating a full custom memory.
The two types of memories designed for the application are Static Random Access Memory (SRAM) (for storing input, intermediate and output data) and Read Only Memory (ROM) (for storing twiddle factors for FFT computation). For the application a dual ported SRAM cell is sufficient with one port for read and another port for write purposes. The FFT algorithm used ensures that any location in the memory is never read from and written to at the same time and this eliminates the necessity for a design that protects against simultaneous read/write. The ROM is required to store elements that do not change during the calculation of the FFT, i.e. the twiddle factors.

In this project, a 32×64 SRAM including multiplexers and 3D TSVs is designed. This can be readily integrated into a 3DIC flow. The area for the SRAM is 0.155 mm^2, giving an area of $75.68 \mu\text{m}^2$ per bit. The access time for the SRAM is 1.7 ns. The energy for read access is 408.79 fJ/bit. The energy for write access is 90.78 fJ/bit.

A 129×52 ROM is designed with 3D TSVs. This can be integrated into a 3DIC flow. The area for ROM is 0.032922 mm^2, giving an area of $4.72 \mu\text{m}^2$ per bit. The access time for the ROM is 1 ns. The energy per access is 165 pJ/bit.
Memory Design for FFT Processor in 3DIC Technology

by

Kiran Gonsalves

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering Raleigh, North Carolina 2009

APPROVED BY:

Dr. Eric Rotenberg

Dr. William Rhett Davis

Dr. Paul D. Franzon
Chair of Advisory Committee
DEDICATION

This thesis represents the fulfillment of my Masters Degree program and I dedicate this to my parents Arthur Herry Gonsalves, Alice Gonsalves and grandmother Lily Gonsalves for making this experience possible.
BIOGRAPHY

Kiran Gonsalves was born on 28th April 1981 in Bangalore, India. He received his Bachelors degree in Electronics and Communication Engineering from R.V. College of Engineering, Visvesvaraya Technological University in 2003. After undergraduate studies, he worked in Larsen and Toubro Limited for 4 years. In Fall 2007, he began his graduate studies in the Electrical and Computer Engineering Department at North Carolina State University, NC. Since Spring 2008, he has been working under the guidance of Prof. Paul Franzon.
ACKNOWLEDGMENTS

I thank my parents and grandmother for their encouragement. I like to thank Henry Bappu, Eileen Mausi, Arun Uncle, Celine Aunt for their advice towards a Masters program and Deric, Nikhil and Neethi for their constant support during this phase of my life.

I thank Dr. Paul Franzon for entrusting me with the responsibility of designing the memory. I thank Thor for the encouragement and cherish the technical discussions we had. I thank Steve Lipa for the scripts and help in the course of the project. I thank Dr. Rhett Davis and Dr. Eric Rotenberg for agreeing to serve on this committee and giving me guidance.

I thank my friends from the Chapa gang, R.V.C.E. and colleagues from Larsen and Toubro for the good times we shared. My friends at NC State University played an important role in my success here. I thank my roomies Arjun, Vishwesh, Narayan, Swaroop and Suraj for the great time at home.

I thank Lavanya for being a great friend, neighbor, colleague and project partner. I thank Murali, Prakash and many others for their collaboration on projects and tasty food during potlucks.

I thank the members of Two Cents of Hope for giving me the opportunity to help the education of children in India.
TABLE OF CONTENTS

LIST OF TABLES

VII

LIST OF FIGURES

VIII

1 Introduction

1.1 Motivation

1.2 Goal of this work

1.3 Thesis Organization

2 Requirements

2.1 MIT Lincoln Labs Process

2.2 Selection of Memory Type

2.3 Components of Memory

2.3.1 Storage and Access

2.3.2 Multiplexers

3 SRAM Design

3.1 Introductory Theory

3.2 Cell Design

3.3 Decoder Design

3.4 Sense Amplifier Design

3.5 Write Driver Design

3.6 Precharge Circuit Design

3.7 Integrating Multiplexer into Array

3.8 Layout

3.9 Comparison of Custom Memory against CACTI

3.10 TSV Placement

3.11 Integrating Array with Standard Cell Layout

3.12 Checking Basic Working of Memory

4 ROM Design

4.1 Introductory Theory

4.2 Memory Element

4.3 Decoder Design

4.4 Layout

4.5 Experimental Results
5 Thermal Analysis ... 40
 5.1 Introductory Theory ... 40
 5.2 Cell Read ... 40
 5.3 Cell Write ... 41
 5.4 Decoder Word Line Select 41
 5.5 Write Driver ... 42
 5.6 Sense Amplifiers ... 42
 5.7 Precharge ... 42
 5.8 Percentage Power dissipation 43
 5.9 Operating Temperature Range 45

6 Conclusion ... 46
 6.1 Summary ... 46
 6.2 Future Work .. 47

Bibliography ... 48
LIST OF TABLES

Table 2.1 DRAM v/s SRAM comparison .. 7

Table 3.1 Types of decoders and no. of transistors.............................. 14

Table 3.2 Read Write sequencing for SRAM .. 32

Table 3.3 SRAM temperature operation .. 32

Table 3.4 Comparison for SRAM: Schematic v/s Layout 33

Table 4.1 Comparison for ROM: Schematic v/s Layout 39

Table 5.1 Power Dissipation per operation ... 41

Table 5.2 Circuit Blockwise power dissipation - write and read 43

Table 5.3 Circuit Blockwise power dissipation - write 44

Table 6.1 Design Summary .. 47
LIST OF FIGURES

Figure 2.1 3D stack Cross Section from [2] ... 4
Figure 2.2 Memory Bandwidth v/s Resolution .. 5
Figure 2.3 The architecture for 8 Processing Elements in [3] 7

Figure 3.1 Cell Area v/s Number of ports from [4] ... 10
Figure 3.2 Schematic - Bit Cell .. 11
Figure 3.3 Layout - Bit Cell ... 12
Figure 3.4 Schematic - 2 input NOR gate .. 14
Figure 3.5 Schematic - 2:4 Decoder ... 15
Figure 3.6 Schematic - 3 input NOR gate .. 15
Figure 3.7 Schematic - 3:8 Decoder ... 16
Figure 3.8 Schematic - Decoder Integration ... 16
Figure 3.9 Layout - 2:4 Decoder ... 17
Figure 3.10 Layout - 3:8 Decoder .. 18
Figure 3.11 Schematic - Sense Amplifier .. 19
Figure 3.12 Layout - Sense Amplifier ... 20
Figure 3.13 Schematic - Write Driver ... 21
Figure 3.14 Layout - Write Driver .. 22
Figure 3.15 Schematic - Precharge ... 23
Figure 3.16 Layout - Precharge .. 23
Figure 3.17 Schematic - Multiplexer ... 24
Figure 3.18 Layout - Multiplexer .. 25
Figure 3.19 Conceptual Layout .. 26
Figure 3.20 Physical Layout ... 26
Figure 3.21 Read - Static Noise Margin Experiment 30
Figure 3.22 Read - Static Noise Margin Plot .. 31
Figure 3.23 Write Noise Margin Experiment ... 31
Figure 3.24 Write Noise Margin Plot .. 32
Figure 3.25 Write followed by read operation - SRAM 33
Figure 4.1 ROM - Schematic Logic 0 and Logic 1 36
Figure 4.2 ROM Address Decoding .. 37
Figure 4.3 ROM - Layout ... 38
Figure 4.4 Read operation - ROM ... 39
Figure 5.1 Rise/Fall times and Power dissipation v/s capacitance - Decoder 42
Figure 5.2 Rise/Fall times and Power dissipation v/s capacitance - Precharge 43
Figure 5.3 Pie Chart: Power dissipation in various blocks - write and read 44
Figure 5.4 Pie Chart: Power dissipation in various blocks - write 44
Chapter 1

Introduction

In today’s world the data processing elements are becoming more complex and the size of data is growing larger. In order to increase the throughput, while maintaining the same clock frequency, it is essential to think of innovative strategies. One such strategy is to bring the data memory physically closer to the data processing elements, as this helps to avoid the long interconnect paths. Reduction of interconnect path will offer savings in both access time and power dissipation. The above mentioned strategy is realized by using Three Dimensional Integrated Circuits (3DICs) and the thesis discusses the process flow for design and layout.

3DICs offer the advantage to integrate separately fabricated wafers using Through Silicon Vias (TSVs). The vias are relatively short in length and offer the advantage of stacking layers of transistors. The stacks can be made up of logic or memory elements. In this project, the concept of memory on logic is illustrated.

1.1 Motivation

Binding data and logic, which operates on the data, in hardware can be thought of as similar to binding data and functions, which operate on the data, in C++. The advantages when considering hardware are different from that in C++, but the underlying concept of clubbing data and logic is to be appreciated.

This project aims to explore the advantages of 3D ICs by building a custom memory to support synthesized logic. 3D ICs offer the ideal platform to demonstrate memory
on logic application, leading to better System on Chip solutions. Franzon et al. in [5] mention a six-fold improvement in power consumption through a redesign that exploited 3D features.

One of the unique features of this project is the demonstration of memory on logic in a 3D environment, using commercially available 2D IC design tools. In order to accommodate the complex design in the short span of time and due to the absence of 3D design tools, it was decided to keep the design straightforward. A single tier of memory and two tiers of logic are enough to serve the application.

1.2 Goal of this work

This work aims to support the demonstration of memory on logic in a 3D IC environment by creating a full custom memory. The selection of type and size of memory to be used, number of ports, components of the system and layout are part of this work. The final design of the memory to ensure easy integration with the synthesized layout is one of the major objectives of this design.

1.3 Thesis Organization

The thesis is organized as given below. Chapter 2 discusses the requirements for the design, briefly touches on the MIT Lincoln Labs process and elaborates on memory selection criteria. Chapter 3 explains the SRAM Design and layout. Chapter 4 discusses the ROM Design and layout. Chapter 5 goes one step beyond design and presents results which are useful for thermal analysis. Finally, in Chapter 6, the current work is concluded and future work in this area is discussed.
Chapter 2

Requirements

This work aims to support the demonstration of memory on logic in a 3D IC environment by creating a full custom memory. The selection of type and size of memory to be used, number of ports, components of the system and layout are part of this work. The final design of the memory to ensure easy integration with the synthesized layout using 2D design tools is one of the major objectives of this design.

2.1 MIT Lincoln Labs Process

An overview of the MIT Lincoln Labs (MIT LL) manufacturing process is given below. It is a three tier, 150 nm wafer scale 3D integration process. It features a 1.5 V low-power Fully Depleted Silicon On Insulator (FDSOI) CMOS technology with one layer of polysilicon, three metal layers per tier and a back-metal layer between the top two tiers, with an additional metal layer on top of the entire stack.

To maintain some convention, the bottom tier is named A, the middle tier B and the top tier C. Tier A is closest to the heat sink, where as all inputs and outputs to the chip connect to tier C. The figure 2.1 gives an idea of the vertical organization of the stack. This picture is courtesy of MIT Lincoln Labs Process Guide.

The MIT LL process fabricates 3 tiers separately and then combines them into a vertical stack with a total height of 22.45 μm, thereby resulting in form-factor reduction.
Figure 2.1: 3D stack Cross Section from [2]
The capabilities of the MIT LL process can influence the selection of the memory. The absence of the ability to realize large capacitances can obviate the choice of the DRAM. The choice of memory is explained in detail in the following section.

2.2 Selection of Memory Type

A memory element is required in order to store the input data on which the FFT computation is to be performed. Thorolfsson in [6], shows the variation of memory bandwidth against resolution for SAR processor in the figure 2.2.

![Figure 2.2: Memory Bandwidth v/s Resolution](image)

The factors involved in selection of memory are:

1. **Size of Memory** - The resolution impacts the size, and hence the selection, of the memory. The SRAM requires four transistors for storage. Also, for each additional port an SRAM needs two additional transistors.

 A Dynamic Random Access Memory (DRAM) requires one transistor and one capacitor (1T1C) for storage. For each additional port required, a DRAM will need only
one additional transistor. Hence, the DRAM is denser (4x) than the SRAM for the same no. of bits.

2. **Realizable Capacitance** - The last values of capacitance required by DRAM, are realized in DRAM Trench technology. However, that process is not available on the current 3DIC run offered by MIT Lincoln Labs. The area impact would be very large if planar capacitors were realized in existing fabrication technologies. Realizing these capacitors is also a design risk in a relatively new process.

3. **Requirement for Refresh** - The DRAM consists relies on dynamic charge storage. Owing to leakage in the access transistor, the charge stored on the capacitor is susceptible to leakage and data corruption is a possibility. To compensate for this, periodic refresh is required. Refresh entails periodically reading data out and writing data back to the same location. This incurs more area for associated circuitry and more power in the operation.

The SRAM consists of a cross coupled inverter pair which work to maintain each others’ state. This is an active operation when compared to the DRAM and is not affected by leakage as much.

4. **Speed of Operation** - As DRAM circuits rely on sensing the charge stored on a capacitor, the operation is slower compared to an SRAM, where the data is driven out by an inverter. The presence of a Sense Amplifier is mandatory for DRAMs.

The use of sense amplifiers is optional for SRAM and helps to improve the speed of the memory. SRAMs are 10x faster than DRAM for this reason.

5. **Multiple ports** - DRAMs are harder to multi-port as there are multiple avenues for leakage.

SRAMs are driven by active elements and this disadvantage does not arise with each additional port.

For the aforesaid reasons, we choose an SRAM as the primary data storage element. This is used to store the input data, the intermediate data (as this is an in-place FFT) and final output data. The data is presented in table 2.1
Table 2.1: DRAM v/s SRAM comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DRAM</th>
<th>SRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Capacitance</td>
<td>Required</td>
<td>Not required</td>
</tr>
<tr>
<td>Refresh</td>
<td>Periodical</td>
<td>Not required</td>
</tr>
<tr>
<td>Speed</td>
<td>Slow (1x)</td>
<td>Fast (∼5x)</td>
</tr>
<tr>
<td>Leakage (Multiple Ports)</td>
<td>Affects stored charge</td>
<td>Stored charge unaffected</td>
</tr>
<tr>
<td>Sense Amplifier</td>
<td>Mandatory</td>
<td>Not Mandatory</td>
</tr>
<tr>
<td>Process Planar Capacitor</td>
<td>Not proven</td>
<td>Not required</td>
</tr>
</tbody>
</table>

2.3 Components of Memory

The high level diagram of the FFT processor designed by Thorolfsson et al in [3] is shown in 2.3. The design of the highlighted areas are part of the thesis work and are discussed in Chapter 3 and Chapter 4.

![Figure 2.3: The architecture for 8 Processing Elements in [3]](image)

The section 2.2 concludes that an SRAM is the best choice for the design. There are two major blocks of the memory design:
2.3.1 Storage and Access

The components of this memory would include a Memory Array for storage, Row Decoders to access data, Precharge circuitry for data read operation and Driver circuitry for data write operation. The sense amplifier is optional, but is incorporated for making the design more robust.

2.3.2 Multiplexers

As mentioned in 2.2, the bottleneck for large FFTs is memory bandwidth. One way to increase the memory bandwidth is to split the processing memory into smaller segments that can be accessed in parallel. Splitting the processing memory into smaller segments is the core concept of the architecture of the SAR FFT processor.

The processor splits the processing memory into 32 smaller memories based on hypercube partitioning scheme thus increasing the memory bandwidth. In this setup in order to meet all the data dependency requirements of the FFT algorithm each of the processing elements must be connected to a set of two different memories. In order to allow this connectivity multiplexers must placed on each of the smaller memories, as shown in figure 2.3. This presents an overhead not encountered with regular memories, but the area penalty of the multiplexers is more than compensated for by the increased bandwidth of the system.
Chapter 3

SRAM Design

3.1 Introductory Theory

As mentioned in the previous section, the SRAM is the best choice for the data memory considering the application and fabrication process. The sections below discuss the design of individual components of the SRAM, their layout and the integration of individual blocks to ensure a compact final layout. This layout has to be easily interfaced with synthesized logic using Through Silicon Vias (TSVs).

The size of each TSV eliminates the possibility to make a single bit cell in 3D. In this process, the dimensions of a single TSV are 2.5 µm by 2.5 µm and the smallest pitch the vias can be placed on is 3.9 µm.

Kaushal explores the design of SRAM for 3DICs in [7] by contrasting divided word line and divided bit line architectures. His thesis explores both options in 3D, but does not contrast them with a 2D equivalent. One option is to layout the array on 2D and have multiple tiers of memory connected using the decoders or bit lines in a 3D fashion. This approach requires integration of custom memory on synthesized logic and making a memory in 3D will require a complex integration procedure (making schematics for each tier and ensuring the layouts match up on individual tiers).
3.2 Cell Design

The basic cell consists of two cross coupled inverters, which retain a state (1,0 or 0,1) across its output nodes. The SRAM requires two lines per bit cell; for the Bit Line (BL) and its complement, Bit Line Bar (BLB). To access (read) the voltage (or state) of the cell, only one transistor (either on BL or BLB) is sufficient. To modify (write) a state into the cell, the cross-coupled inverters have to be overpowered and this requires application of a differential voltage across the BL and BLB combination.

There are two options to multi-port the design as listed below

1. **One big memory - Severely multi port:** The disadvantage with this type of arrangement is that for N number of data PEs, there should be N ports available on the memory array; each basic cell itself has to be N ported. For each additional port, two transistors are added, complicating the layout of the cell and increasing total capacitance without increasing the memory storage ability. Tatsumi and Mattausch in [4] show the inefficiency in resource utilization as the no. of ports in a SRAM/ROM cell is increased. Plotted areas in 3.1 are normalized to area of the respective 1-port cell. A severe disproportion is seen in the area used by access transistors v/s storage transistors.

![Figure 3.1: Cell Area v/s Number of ports from [4]](image-url)
2. **Many small memory - Moderately multi port:** An alternate technique is to use an intelligent partitioning scheme and organize the memories as smaller blocks. Owing to the time multiplexed access of data, not all memory locations are accessed at the same time and hence each memory needs only one read port and one write port for efficient operation with minimal area and capacitance.

This decision impacts the design of each bit cell and from the discussion in the above paragraph, a dual ported cell should be sufficient. The memory and logic partitioning is done to facilitate such an arrangement. In the dual ported design, one port is dedicated to the read operation and one port is dedicated to the write operation.

This requires a total of 8 transistors (4 for the cross coupled inverters and 2 each for the two ports). The cell is designed as per Cell Ratio (CR) and Pull Up Ratio (PR) guidelines with the PMOS being the weakest, the NMOS access transistors being stronger and the NMOS pull down transistors being the strongest.

![Schematic - Bit Cell](image-url)

Figure 3.2: Schematic - Bit Cell
Exceptions to the above rule have shown to give a smaller area without impacting the design margins severely. However, in the interest of keeping the design robust, a straightforward 2:1 length ratio is maintained between pull up transistors to access transistors. Similarly, a 1:2 width ratio between access transistors to pull down transistors is adequate.

It is important to keep the layout of the cell as compact and symmetrical as possible. This ensures that neighboring cells tie neatly with each other and with the peripheral circuit. A good understanding of the array layout is essential even before laying out the basic cell. Usually, the word lines are drawn horizontally across the cell, while the bit lines are drawn vertically. The power and ground rails are drawn horizontally, resulting in neighboring cells sharing one rail. Each row of cells share either the V_{DD} rail or ground rail with the cell above/below it.

The layout drawn is made as compact as possible and the area of one bit cell in 150nm node is $8 \, \mu \text{m} \times 5 \, \mu \text{m} (40 \, \mu \text{m}^2)$.

Figure 3.3: Layout - Bit Cell
3.3 Decoder Design

The decoder can be dynamic or static. A dynamic decoder requires to be clocked and this can create difficulties in a 3DIC environment and clock distribution challenges are documented by Mineo in [8]. In order to avoid skew issues impacting the word access, it is decided to use a static decoder. The smallest block of memory element is 32 words long (with each word having 64 bits in it) and this requires a 5:32 decoder. The decoder should be strong enough to drive access transistors for 64 cells relatively quickly (total 128 transistors at 2 access transistors per cell).

Literature survey indicates that arrays can be as wide as 128 bits without the necessity for column decoding. Since the array width is 64 bits, column decoder is not used. The design of the 5:32 decoder requires hierarchy because of the following reasons:

- **Increase in no. of transistors** - If a non-hierarchical decoder is built, a total of 11 transistors per row (including the transistor for enable signal) are required. For a 5:32 decoder, the number of transistors are

\[
TRANSISTORS_{total} = TRANSISTORS_{per, row} \times ROWS
\]

\[
= 11 \times 32
\]

\[
= 352
\]

When the same design is implemented hierarchically as a 2:4 connecting to four 3:8 decoders, the total number of transistors is

\[
TRANSISTORS_{5:32} = TRANSISTORS_{2:4} + DECODERS_{3:8} \times TRANSISTORS_{3:8}
\]

\[
= 5 \times 4 + 4 \times (7 \times 8)
\]

\[
= 20 + 4 \times 56
\]

\[
= 20 + 224
\]

\[
= 244
\]

The hierarchical decoder requires fewer transistors compared to the non-hierarchical version and hence is a good choice. The table 3.1 summarizes the no. of transistors for various other options.
Table 3.1: Types of decoders and no. of transistors

<table>
<thead>
<tr>
<th>Option</th>
<th>No. of transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>No hierarchy</td>
<td>352</td>
</tr>
<tr>
<td>1:2 → 4:16</td>
<td>272</td>
</tr>
<tr>
<td>2:4 → 3:8</td>
<td>244</td>
</tr>
</tbody>
</table>

- **Logical effort** - Sutherland explains logical effort in [9]. While driving a set of capacitances it is advisable to opt for a hierarchical structure as it gives better drive strength for the same transistors sizes because of the structure.

- **Layout congestion** - It is tougher to accommodate 11 transistors (for a non-hierarchical structure) in a row and make it pitch match to the SRAM cell. It is easier to accommodate 6 transistors (for the 3:8 decoder) in this situation.

Considering all the above points, it is best to organize the structure hierarchically as a 2:4 decoder followed by a 3:8 decoder. The two-input NOR structure shown in 3.4 is used in the 2:4 Decoder shown in figure 3.5.

![Figure 3.4: Schematic - 2 input NOR gate](image)

The three-input NOR shown in figure 3.6 is used in the 3:8 Decoder shown in figure 3.7.
Figure 3.5: Schematic - 2:4 Decoder

Figure 3.6: Schematic - 3 input NOR gate
Figure 3.7: Schematic - 3:8 Decoder

Each output of the 2:4 decoder is connected to the enable of the 3:8 decoder, resulting in a 5:32 decoder. The lines connected to the 2:4 decoder are the most significant bits A4, A3 and the lines connected to 3:8 decoder are A2, A1, A0.

Figure 3.8: Schematic - Decoder Integration

The layout of the 2:4 decoder and 3:8 decoder is shown in figure 3.9 and 3.10 respectively.
The 2:4 decoder shown in 3.9 utilizes an area of $27 \mu m \times 25 \mu m$ ($675 \mu m^2$). The 3:8 decoder shown in 3.10 utilizes an area of $22 \mu m \times 42 \mu m$ ($924 \mu m^2$). When used hierarchically, the 5:32 decoder utilizes an area of $35 \mu m \times 176 \mu m$ ($6160 \mu m^2$). The row decoder is as long as the array, as it has to be pitch matched and drive each row.

In order to drive the large capacitance on word lines, buffers are added between output of the row decoder and the array word lines. Stage 1 has $4 \times$ PMOS width and $2 \times$ NMOS width with Stage 2 having $4 \times$ PMOS width and $8 \times$ NMOS width is required to drive the load to favor the quick discharge of the deactivated word line.

Another identical decoder is used for the write port. The read decoder is connected to the read access transistors of the cell and the write decoder is connected to the write access transistors of the cell. The decoders are identical in design and layout.

The controller which selects the words out of the memory should read out the contents of one memory locations then, after a time duration equal to the latency through the processing logic, it should write the data back to the same memory location. This means that the addresses given to read port should be given to the write port after a delay equal to the latency of operation.
Figure 3.10: Layout - 3:8 Decoder
3.4 Sense Amplifier Design

A sense amplifier is designed to lend robustness to the circuit operation. The sense amplifier is enabled on each cycle that a read is required, so that the bit cells can drive a voltage onto the bit lines and the result is reflected on the output of the sense amplifiers. The sense amplifier is reset at the end of that cycle and is enabled when CLK is low and Read Enable signal is high. Kelkar [10] contrasts between voltage sensing and current sensing for an SRAM design. The current sensing circuit is more power hungry and hence the circuit in 3.11 is used.

The transistors M1 and M3 are used to precharge the internal nodes of the sense amplifier. The internal nodes are precharged to V_{DD} when ENABLE is low and the status on BL and BLB is evaluated when ENABLE is high. The cross-coupled inverter pair formed by M2, M0, M5 and M4 is designed to store the value on BL and BLB until it is reset by turning ENABLE off. Transistor M8 provides a path to ground for either M7 or M6.

![Figure 3.11: Schematic - Sense Amplifier](image)

When reading a cell with a logic 1, the BL line is driven to logic high and the BLB line is driven to logic low. This voltage on the bitlines turns on M7 and turns off M6. This pulls down the source of M5 and hence the drain of M5. The drain of M5 is connected to
the gates of the inverter formed by M0 and M4, pulling the SA net high. When reading a cell with a logic 0, the BL line is driven to logic low and the BLB line is driven to logic high. This voltage on the bitlines turns off M7 and turns on M6. This pulls down the source of M4 and hence the drain of M4. The drain of M4 is the SA net and is pulled low and retained as this level due to the action of the two inverters.

The layout of the sense amplifier utilizes an area of $7 \mu m \times 8 \mu m$ ($56 \mu m^2$).
3.5 Write Driver Design

The Write Driver is one of the critical parts of the SRAM design. The data that is given to the memory array should be differential, but the data received from the logic processing element is single-ended. The write driver has to convert the data to differential and be strong enough to drive the bit-lines to the given state (1,0 or 0,1). Just as the sense amplifier is connected to the read bit lines, the write driver is connected to the write bit lines.

When DIN signal is logic 1, M0 is on and M1 is turned off through inverter realized by M2 and M3. This results in the BLB net being pulled down and a logic 1 being written into the cell. When DIN signal is logic 0, M0 is off and M1 is turned on through the inverter combination. This pulls down the BL net and a logic 0 is written into the cell. The layout of the write driver utilizes an area of 4 $\mu m \times 6 $ μm (24 μm^2).
3.6 Precharge Circuit Design

The Precharge circuit is required for an SRAM such that the bit lines are pulled to a known value each cycle and are equalized. Typically this happens in the positive half of the clock cycle and is realized using 3 PMOS transistors (M3, M4 and M5) connected as shown. The speed of operation of the memory is not the bottleneck and hence the precharge transistors are minimum sized. The precharge works during the positive half of the clock cycle for a read operation (ENABLE is high). The NAND combination (M0, M6, M1 and M2) ensures that a logic 0 is driven only when both CLK and ENABLE are high, turning on the PMOS precharge circuit. The layout of the precharge circuit utilizes $7 \mu m \times 4 \mu m$ ($28 \mu m^2$).
Figure 3.15: Schematic - Precharge

Figure 3.16: Layout - Precharge
3.7 Integrating Multiplexer into Array

As mentioned in section 2.3.2, there are a total of 32 memory blocks and each of the memory blocks should have the capability to interface with two logic elements.

The two IO ports are termed as A and B. For the read port, data from the output of the sense amplifier is to be given to either port A or port B and the controller decides this. This is a demultiplexer operation.

For the write port, data from either port A or port B are given to the write drivers of the array. This is realized using a straightforward circuit. The passage of the correct voltage level to/from the memory array has to be ensured. This is the multiplexer operation.

The multiplexer/demultiplexer should pass a voltage of 0V and V_{DD} without a drop and this requires a complementary pass transistor logic (PMOS to successfully pass V_{DD} and NMOS to successfully pass 0V). A transmission gate structure is employed to ensure that the voltage levels are faithfully passed through.

![Figure 3.17: Schematic - Multiplexer](image)

The multiplexer circuit is the interfacing block between the logic and memory. Since each memory block on the middle tier is connected to the logic elements on the tier above and the tier below, two types of multiplexer instances are required. The first one has a Through Silicon Via (TSV) going from tier B (middle) to tier A (bottom) and the second one has a TSV from tier B (middle) to tier C (top). These multiplexer blocks are placed near the write drivers and the demultiplexers are placed near the sense amplifiers. The layout of the multiplexer circuit utilizes an area of $4 \mu m \times 12 \mu m$ (48 μm^2).
3.8 Layout

The layout of the entire array is crucial to the success of the project. The layout should be compact and have all the I/O ports available on the periphery of the array to accommodate the large inter-tier through silicon vias (TSVs).

The memory array has been placed in the center of each layout with the read port row decoders on the left and write port row decoders on the right.

The write drivers are placed to the North of the memory array and the sense amplifiers are placed on the South of the memory array. This is done as the TSVs are located only at the north and south of the memory array. The TSVs corresponding to the reading data (i.e. transferring data from the output of the memory to input of logic) are located at the south side after the sense amplifiers. The TSVs corresponding to the writing data (i.e. transferring data from the output of the logic to input of memory) are located at the north side before the write drivers.

The A_{IN} or B_{IN} enables the correct mux and directs data from either $A[63:0]_{\text{IN}}$ or $B[63:0]_{\text{IN}}$ to the write drivers. The write driver circuit asserts bitlines in accordance with the data. When WRITE$_\text{EN}$ is high, $WA[4:0]$ dictates the row asserted by the write row decoder.

The CLK and READ$_\text{EN}$ signals enable the precharge circuit when both are high. When READ$_\text{EN}$ is high, $RA[4:0]$ dictates the row asserted by the read row decoder. The Sense Amplifier is enabled when CLK is low and READ$_\text{EN}$ is high. The A_{OUT} or B_{OUT} enables correct mux and directs data from bitlines to $A[63:0]_{\text{OUT}}$ or $B[63:0]_{\text{OUT}}$.

![Figure 3.18: Layout - Multiplexer](image-url)
Figure 3.19: Conceptual Layout

Figure 3.20: Physical Layout
3.9 Comparison of Custom Memory against CACTI

The layout of 32×64 bits cells occupy $600 \, \mu m \times 180 \, \mu m$ (area of $0.108 \, mm^2$) out of a total array area of $691 \, \mu m \times 225 \, \mu m$ ($0.155 \, mm^2$). The area per bit is $75.68 \, \mu m^2$. For the given memory size and technology node, CACTI 4.1 [11] gives the area of memory as $0.085 \, mm^2$. The designed memory has 3D specific components like multiplexers and TSVs, hence the comparison is valid.

The CACTI memory operates with an access time of $0.85\,ns$, while the custom designed memory operates at $1.7\,ns$. This operating frequency of $588 \, MHz$ is not the bottleneck for the system as the logic operates at $78 \, MHz$.

For the custom memory, energy for a write operation is computed as $5.8 \, pJ$ and energy for a read operation is computed as $26.16 \, pJ$. When this is amortized over the number of bits, the energy per write / bit is $90.78 \, fJ/bit$ and energy per read / bit is $408.78 \, fJ/bit$. For the system, the number of reads and writes are equal and hence the average access energy per bit can be taken as $250 \, fJ/bit$. However, the dynamic read energy from CACTI is $166 \, fJ/bit$ and the dynamic write energy is $59.21 \, fJ/bit$.

3.10 TSV Placement

Through Silicon vias are inter-tier vias that enable the integration of the tiers. Since these tiers have to tie two tiers of silicon ($5 \, \mu m$ apart), they need to have a large footprint on the tier they start. This footprint is $1.25 \, \mu m \times 1.25 \, \mu m$ and is comparable to the layout of a 6T cell. Each such via consumes a lot of area. The location of the vias is important so as not to interfere with the internal routing, hence they are placed at the periphery of the array. The number of vias also should be limited to the minimum possible. In this design, the array needs to contain 64 bits with each array requiring multi-ported capability (one for read and one for write). Also, as per the high level design, each array should contain a multiplexer in built, resulting in doubling the number of input/output pins. Hence, the total number of input/output pins is 256 per array of 32×64.

\[
\text{Total number of TSVs} = 32 \times 256 = 8192
\]
The decision to place the memory block on a particular tier was taken later in the project. The location of the tier, impacts the type of vias that are to be placed around the array.

3.11 Integrating Array with Standard Cell Layout

In a standard cell ASIC design, the power and ground rails are striped across the chip at regular distances. The cells are designed such that they pitch match these lines, i.e. have a horizontal V_{DD} stripe on one end and a horizontal GND stripe on the other end.

Each memory array is a standalone block that is designed independently of the power and ground stripes in the standard cell ASIC, but still it requires power and ground connections to it.

For each cell, a write and read operation is performed. The cell is symmetric and the current to store a 0 is same as current required to store a 1. The total power dissipation in this operation is $0.7455 \mu W$. Since, the supply voltage is 1.5V, the current drawn is calculated as

$$
\frac{0.7455 \mu W}{1.5V} = 0.49\mu A
$$

Since there are 64 cells in a row, the total current drawn by one row is

$$
= 0.49\mu A \times 64 = 31.8\mu A
$$

The MIT LL design guide [2] talks about says that the minimum current density to avoid electro migration is $3mA / \mu m^2$. The peak currents in the system for a series of read and writes is 24mA, but this is for a relatively short duration of time. For a series of 4 read/write operations carried out over 10ns, the power dissipation is 6.16 mW.

The average current drawn from the supply (V_{DD}) of 1.5V is

$$
I_{avg} = \frac{P_{tot}}{V_{DD}} = \frac{6.16mW}{1.5V} = 4.1mA
$$

Going by the guidelines of $1.5mA / \mu m$, the power delivery rails to the system should be sized to accommodate this current

$$
\text{Width} = \frac{4.1mA}{1.5mA/\mu m} = 2.73\mu m
$$

This is the total width of metal, that should tie the power and gnd rails to the array, required to carry the current is 2.73 μm.

As each memory is to be finally integrated with a standard cell design, the number of power and ground lines are limited. Each power/gnd rail is 0.8 µm wide and the pitch of GND rails is 24 µm. The total height of the memory array designed is 225 µm.

\[
\text{Total rails} = \frac{225\mu m}{24\mu m} = 10
\]

As each rail is 0.8 µm wide, the total width of 8 µm (on V\textsubscript{DD} and GND each) should be sufficient to provide the required current consumption.

The design guide indicates that current density of less than 1mA per via should provide reasonable short-term reliability. We might need about 6 vias each time the V\textsubscript{DD} and GND change layers. Since the power and ground are present in metal 1, we do not need the vias mentioned above.

3.12 Checking Basic Working of Memory

The logic elements should interact with the Row Decoders, Write Drivers and Sense Amplifiers on the memory side. It has to be ensured that there exists a voltage level compatibility between the logic and memory. Since system level simulations are time consuming and not practical for a system this large, the VOH, VIH, VOL and VIL levels are entered into the invvec (input vector) and outvec (output vector) files during HSPICE simulations of the memory array. The levels are set as indicated below:

1. VOH = 1.2 V
2. VOL = 0.1 V
3. VIH = 1.0 V
4. VIL = 0.2 V

To ensure the proper working of the memory, the following experiments are performed.
1. **Experiment:** The read Static Noise Margin (SNM) and Write Noise Margin (WNM) are calculated using the procedure mentioned in [12].

The figure below shows how to compute the read static noise margin (SNM) of the cell. First, the feedback from the cross coupled inverters is broken. Next, the Voltage Transfer Curve (VTC) of the inverter formed by half of the SRAM cell is found by sweeping V_1 (inverter’s input) from 0 to V_{DD} and measuring V_2 (inverter’s output). This plot is then used to construct the butterfly plot that is representative of the two halves of the cell driving each other. The read SNM is the side length of the maximum possible square that can fit inside of the butterfly plot.

![Figure 3.21: Read - Static Noise Margin Experiment](image)

The maximum voltage at V_2 when V_1 is at 1.1V is 0.16V. The SNM is shown below. The side of the maximum square that can fit is about 160 mV.

To compute write SNM, V_{DD} is applied to the wordline (to switch on the pass transistor) and the value to be written into the memory cell is driven onto the bitlines. The figure below shows how to extract the write noise margin (WNM) of the cell. Again, feedback from the cross coupled inverters is broken, and the VTC of the inverters are measured. Note that in this case the VTCs of the two halves of the SRAM are no longer the same (since one of the bitlines is driven to 0V and the other to V_{DD}). These VTCs are used to create the plot in figure 3.23. The write SNM is 0.5V.

2. **Experiment:** The SRAM schematic with parasitics extracted from the model files. The simulation is performed over a 10ns time with a clock of 2ns (500 MHz). The vector files are set up to show the operations in table 3.2.

3. **Experiment:** The SRAM operation is checked over a wide temperature range and
Figure 3.22: Read - Static Noise Margin Plot

Figure 3.23: Write Noise Margin Experiment
Table 3.2: Read Write sequencing for SRAM

<table>
<thead>
<tr>
<th>Steps</th>
<th>Read Port</th>
<th>Read Address</th>
<th>Write Port</th>
<th>Write Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step1</td>
<td>NA</td>
<td>NA</td>
<td>A</td>
<td>12h</td>
</tr>
<tr>
<td>Step2</td>
<td>A</td>
<td>12h</td>
<td>B</td>
<td>09h</td>
</tr>
<tr>
<td>Step3</td>
<td>B</td>
<td>09h</td>
<td>B</td>
<td>15h</td>
</tr>
<tr>
<td>Step4</td>
<td>A</td>
<td>15h</td>
<td>A</td>
<td>07h</td>
</tr>
<tr>
<td>Step5</td>
<td>B</td>
<td>07h</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

the results are tabulated in 3.3.

Table 3.3: SRAM temperature operation

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Power Dissipation (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>6.697</td>
</tr>
<tr>
<td>25</td>
<td>8.784</td>
</tr>
<tr>
<td>90</td>
<td>7.927</td>
</tr>
</tbody>
</table>

4. Experiment: While comparing the schematics and layout simulation the differences in power dissipation were observed and table 3.4 was created. This difference is due to the coupling capacitances that are included while performing parasitic extraction of layout. Both designs are run at 500 MHz with a pattern of 4 read and 4 write operations spanning 5 cycles of operation.
Table 3.4: Comparison for SRAM: Schematic v/s Layout

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Schematic</th>
<th>Layout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge (Q) pC</td>
<td>51.3</td>
<td>60.80</td>
</tr>
<tr>
<td>Energy (E) pJ</td>
<td>61.6</td>
<td>72.9</td>
</tr>
<tr>
<td>Power (P) mW</td>
<td>6.16</td>
<td>7.29</td>
</tr>
</tbody>
</table>

This information is useful in understanding the effect of coupling capacitances and help to estimate the increase in power dissipation by using the schematic power dissipation numbers, before actually creating an elaborate layout.

5. **Experiment:** To determine the access time of the SRAM, a value is first written to a given location and on the next cycle a read from that location is performed. The waveforms in figure 3.25 show the following information:

(a) Time taken for the **internal bit voltages to flip** on the **positive half cycle of CLK cycle 2**

(b) Time taken for the **bitlines to precharge** on the **positive half cycle of CLK cycle 3**

(c) Time taken for the **output to be driven** on the **negative half cycle of CLK cycle 3**

![Figure 3.25: Write followed by read operation - SRAM](image-url)
The SRAM can operate correctly with a clock period of 1.7ns giving a clock frequency of 588MHz. The average power dissipation over one write and one read cycle is 12.28 mW.
Chapter 4

ROM Design

4.1 Introductory Theory

Twiddle factors are required for the computation of the FFT. These twiddle factors do not change in the course of computation of the FFT and are stored in a ROM. The benefit of having a ROM is that it takes lesser area (than an SRAM) for storing same number of bits. Also, a ROM is non-volatile and eliminates the need for loading the twiddle factors on power up. This simplifies the system design.

A ROM needs a precharge circuit (for getting the output to a known state each cycle) and this is realized by pull-up PMOS transistors. The no. of bits required in each ROM structure is organized as 129 x 54. The decoder layout is a crucial part of the design as the pitch matching is not easily realized due to the large size of decoder and small size of the cell (only one pull down transistor).

4.2 Memory Element

In the ROM structure, there is a pull up structure common to all bitlines and a transistor is present at each location (intersection of bitline and address line) where a logic 0 is to be read. The absence of a transistor means the line is automatically pulled up (using the precharge) and this indicates a logic 1. The structure that stores the data for a logic 1 and logic 0 is as shown in figure 4.1.
4.3 Decoder Design

The decoder designed here is again a static decoder, but has 8 inputs and 129 output lines. As 7 inputs can control 128 outputs, the MSB is directly given to one row without passing through the decoder structure. This simplifies the task to two decoder structures, a 7:128 and a 1:1 decoder. The 7:128 decoder structure is disabled when the MSB is high.

The decoder is constructed using the same concerns shown during the design of the decoder for the SRAM. However, the cell has only one transistor in it and typically even a hierarchical 7:128 decoder structure has about 15 transistors per row address. Owing to the mismatch in width between a row of the decoder and a row of the array, it is difficult to align the decoders to the array (pitch match). Hence an innovative strategy is implemented. The odd addresses are decoded on the left side of the array and even addresses on the right side. This requires the decoder to be split and alternate addresses interleaved within the array. This results in a more compact layout.

The 7:128 decoder design is now simplified given that A0 is used as the control bit between ODD and EVEN 6:64 row decoders. The 3 most significant bits after A7 (i.e. A6, A5, A4) are given to a 3:8 decoder (DECODER A) and the each of the 8 output of the DECODER A are used as a enable signal for eight other 3:8 decoders, which finally drive the word lines.

The row decoder is constructed on both sides of the array with the odd addresses being decoded on the left side of the array and the even addresses being decoded on the right side of the array. When A0 is high, the EVEN row decoder on the right side is enabled.
and ODD row decoder on the left side is disabled. When A0 is low the ODD row decoder is enabled and EVEN row decoder is disabled. High Level diagram shown in figure 4.2.

![Figure 4.2: ROM Address Decoding](image)

4.4 Layout

The pull up transistors (precharge) circuit are placed on one side (NORTH) of the array and the output is taken from the SOUTH side of the array. This ensures that the output read is correct as the change has to propagate through the entire length of the array.

The layout is generated automatically by reading a file which has the contents of the ROM. SKILL code is written such that transistors are placed at locations where a 0 is read from the file, and no transistor is placed at a location where 1 is read from the file. This avoids the manual work of placing transistors on a grid and also helps to change the layout easily if the contents of ROM are altered later. Thus, a compact layout is realized, by placing transistors at minimum DRC clearance from each other. The row decoders and precharge circuitry is put in later and tied together to form the complete layout of the ROM.
The ROM layout in figure 4.3 shows the odd and even decoders, the precharge and sections of the layout where transistors are placed. The total area for ROM having 54 × 129 bits of memory is 93 µm × 354 µm (0.032922 mm²), giving an area of 4.72 µm² per bit.

4.5 Experimental Results

The logic elements need to interact with the row decoders (by giving the address required) and read the output data from the output bit lines of the ROM structure. It has to be ensured that there exists a voltage level compatibility between the logic and memory. Since system level simulations are time consuming and not practical for a system this large, the VOH, VIH, VOL and VIL levels are entered into the invec (input vector) and outvec (output vector) files during HSPICE simulations of the memory array. The levels are set as indicated below:

1. VOH = 1.2 V
2. VOL = 0.1 V
3. VIH = 1.0 V
4. VIL = 0.2 V
1. **Experiment:** The design of the ROM is automated based on a text file as input. It is important to check that the transistors are placed in the correct location and the voltage levels at the output, as required by the logic, are being met by the designed circuit. The ROM is asynchronous and during the simulation the data from row 0 to row 129 is read out every 2ns. The power dissipation observed in this case is 5.44 mW. A comparison of schematic versus layout is shown below.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Schematic</th>
<th>Layout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge (Q) nC</td>
<td>1.1844</td>
<td>1.3796</td>
</tr>
<tr>
<td>Energy (E) pJ</td>
<td>1.421</td>
<td>1.6555</td>
</tr>
<tr>
<td>Power (P) mW</td>
<td>5.44</td>
<td>6.36</td>
</tr>
</tbody>
</table>

2. **Experiment:** To determine the access time of the ROM, all locations are read. The input address is changed every 1ns. The effect of precharge is visible in bursts, when there is a change in input address causing the precharge to momentarily dominate. The precharge results in longer pulses when no transistor is present at the memory location addressed by the row decoder.

The ROM can operate correctly with a clock period of 1ns giving a clock frequency of 1GHz. This frequency far exceeds the operating frequency of the logic. The average power dissipation over 129 cycles of reading from the ROM is 8.88 mW and energy over 129 cycles is 1.15 nJ.
Chapter 5

Thermal Analysis

5.1 Introductory Theory

One of the major drawbacks while considering 3DIC for any application is the thermal impact on the circuits. In conventional 2DICs, the heatsink can be connected to the die with minimal thermal resistance resulting in quick heat transfer from the heat generation source to the sink. For 3DICs, as wafers are stacked and there is moderate thermal conductivity for heat generated in internal layers to reach a dissipation source (such as a heatsink), thermal analysis plays an important part. In this section, we calculate the power dissipation of the designed circuit while varying certain parameters. The power dissipation is a direct indication of thermal impact.

One of the important parameters while designing is the scalability of the circuit. In the coming sections, an effort is made to capture the power dissipation for the smallest independent circuits for the most frequent operations, hence giving an idea of the variation in power dissipation while increasing the array (in both L and W). [13]

5.2 Cell Read

This section aims to capture the power dissipation associated with a cell read. Only the power dissipation from the cell is captured by connecting the cell transistors to a separate V_{DD} and measuring the current drawn from that supply. The other circuits which are essential for operation are connected to the cell, but they are driven from a separate
source for the purposes of this experiment.

Since the cell is symmetrical there should not be a difference when reading out a (1,0) or (0,1) from the output of the internal cross-coupled inverter. Also, since there is only one read port, we use that to access the data stored internally.

5.3 Cell Write

For the Cell Write, two situations can occur as illustrated below.

- Same Value written - This situation occurs when the value inside the cell is the same as that is being written into it.

- Different Value written - This situation occurs when the value inside the cell is different from that which is being written into the cell. This results in a higher power dissipation that the operation mentioned above.

The power dissipation corresponding to each cycle is calculated while performing a single experiment with the sequence of events shown in 5.1

<table>
<thead>
<tr>
<th>Operation</th>
<th>Power Dissipation (μW)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dummy operation</td>
<td>1.19</td>
<td>Write a logic 0</td>
</tr>
<tr>
<td>Different value write</td>
<td>0.801</td>
<td>Write a logic 1</td>
</tr>
<tr>
<td>Same value write</td>
<td>0.0176</td>
<td>Write a logic 1</td>
</tr>
<tr>
<td>Read</td>
<td>0.1134</td>
<td>Read contents</td>
</tr>
</tbody>
</table>

5.4 Decoder Word Line Select

The decoder is used to turn on one row of transistors, so that the data stored internally can be captured on the bitlines. For each additional bit, two transistors are added to the word line. As the capacitance increases, the power dissipation in the decoder also increases linearly. Figure 5.1 shows the increase in power dissipation and rise/fall times as the capacitance on the word line increases.
5.5 Write Driver

As the number of rows increases, the capacitance on the bitlines increases and this results in a greater amount of charge being stored on the bitlines. However, since only the read bit lines (RBL, RBLB) are being precharged and are separate from the write bit lines (WBL, WBLB), the only charge that is to be discharged is that stored internal to the cell. The capacitance of longer bit lines will not impact the power dissipation in the write driver circuit.

5.6 Sense Amplifiers

The sense amplifier is not driving the bitlines and the power dissipation is not impacted by variation in the number of rows in the array. However, the sense amplifier is supposed to drive the flip flops at the input of the logic path.

5.7 Precharge

Precharge circuit can be thought to be the opposite of the write driver circuit. The write driver strives to create a differential voltage such that one value (1,0 or 0,1) is written into the cell. The precharge circuit strives to equalize the voltage on the bitlines so that the cell can drive its internal value out onto the lines. As the number of rows increases, the transistor S/D contacts on the precharge transistors increase. Figure 5.2 shows the increase in power dissipation and rise/fall times as the capacitance on the word line increases.
5.8 Percentage Power dissipation

Each block of the circuit dissipates a certain amount of power and it is important to characterize the percentage, if not the absolute values, of power dissipation in each of the blocks. This is done by assigning a separate power supply connected to each block and its sub-blocks. The current through these power supplies is measured and the power dissipation is computed.

A split up of power dissipation for a write followed by a read for various blocks is given in the Table 5.2.

<table>
<thead>
<tr>
<th>Name of Block</th>
<th>Power Dissipation (µW)</th>
<th>Percentage of Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Row Decoder</td>
<td>690</td>
<td>15.44</td>
</tr>
<tr>
<td>Write Row Decoder</td>
<td>688</td>
<td>15.39</td>
</tr>
<tr>
<td>Sense Amplifier</td>
<td>5.37</td>
<td>0.12</td>
</tr>
<tr>
<td>Precharge</td>
<td>2680</td>
<td>59.96</td>
</tr>
<tr>
<td>Memory Array</td>
<td>396</td>
<td>8.86</td>
</tr>
<tr>
<td>Write Driver</td>
<td>4.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Multiplexer</td>
<td>6.44</td>
<td>0.14</td>
</tr>
<tr>
<td>Total</td>
<td>4470</td>
<td>100</td>
</tr>
</tbody>
</table>

A graph of power dissipation in various blocks is plotted in 5.3.
Similarly, a split up of power dissipation only for a write is given in the table 5.3.

Table 5.3: Circuit Blockwise power dissipation - write

<table>
<thead>
<tr>
<th>Name of Block</th>
<th>Power Dissipation (µW)</th>
<th>Percentage of Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Row Decoder</td>
<td>875</td>
<td>64.44</td>
</tr>
<tr>
<td>Write Row Decoder</td>
<td>478</td>
<td>35.17</td>
</tr>
<tr>
<td>Precharge</td>
<td>2.73</td>
<td>0.2</td>
</tr>
<tr>
<td>Memory Array</td>
<td>2.52</td>
<td>0.185</td>
</tr>
<tr>
<td>Total</td>
<td>1360</td>
<td>100</td>
</tr>
</tbody>
</table>

A plot of percentage power for write operation is shown in figure 5.4.
For each additional cell added to a row, the Gate-Source capacitance of two transistors (RA1, RA2 for read decoders and WA1, WA2 for write decoders) plus wiring capacitance are added.

The power dissipation is directly proportional to the capacitance. For the scenario, the bulk of the capacitance is due to the Gate-Source connections and some part is contributed by wire capacitance. An approximation can be made that the power dissipation in a decoder varies linearly as the Gate-Source capacitance connected to it. Hence, if the width of the array is made 32 bits, instead of 64 bits, the power dissipation would drop by half. Likewise, if the number of rows are reduced, the power dissipation would drop by half.

5.9 Operating Temperature Range

The memory element designed in this project is encapsulated by two tiers of logic. The combined 3D unit will be packaged and ultimately used in imaging application for an unmanned aerial vehicle. This means that the design should meet military standard specifications. The maximum external temperature is 125 °C and a temperature of about 175 °C can be assumed as the internal ambient that the memory is supposed to operate under.

A temperature sweep is conducted from 10 °C to 200 °C and the memory operations are checked for errors, by writing to a memory location and then reading from the same, at the operating frequency of 75 MHz.
Chapter 6

Conclusion

6.1 Summary

In summary, a SRAM of 32 rows x 64 bits wide was designed to support the FFT Processor and demonstrate memory on logic in 3D IC technology. Multiplexers to write to the SRAM and Demultiplexers to read from the SRAM were also designed and integrated with the memory block. TSVs are placed on the data input and output lines, on the periphery of the array, to ensure easy integration with Processing Elements on other tiers. Power and Ground rails are passed through the array, so as to enable continuity of supply rails throughout that layer.

The area for the SRAM is 0.155 mm2 (75.68 μm2 per bit). The access time for the SRAM is 1.7 ns. The energy for read access is 408.79 fJ/bit and write access is 90.78 fJ/bit.

A ROM was designed to ensure compact storage of twiddle factors. The ROM was tested and integrated with the Processing Elements. The ROM is placed on the outer two tiers and the address inputs are from the controller. The controller is located on the middle tier and the ROM needs to have TSVs on the address lines in order to connect to the controller. The output data from the ROM is connected to the Processing Elements on that tier and does not require TSVs.

The area for ROM is 0.032922 mm2 (4.72 μm2 per bit). The access time for the ROM is 1 ns and energy per access is 165 fJ/bit.
Table 6.1: Design Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Static Random Access Memory</th>
<th>Read-Only Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (bits)</td>
<td>32×64</td>
<td>54×129</td>
</tr>
<tr>
<td>Total Area (mm2)</td>
<td>0.155</td>
<td>0.032922</td>
</tr>
<tr>
<td>Area per bit (μm2)</td>
<td>75.68</td>
<td>4.72</td>
</tr>
<tr>
<td>Access Time (ns)</td>
<td>1.7</td>
<td>1</td>
</tr>
<tr>
<td>Read Energy (fJ/bit)</td>
<td>408.79</td>
<td>165</td>
</tr>
<tr>
<td>Write Energy (fJ/bit)</td>
<td>90.78</td>
<td>NA</td>
</tr>
</tbody>
</table>

The benefits of memory partitioning and 3D interconnect are quantified in [3]. The memory and logic are laid out on a single tier and the performance of this 2D system is made with the 3D system. Partitioning the design into many smaller memories has increased the area of peripheral blocks per memory (decoders, write and sense circuits), but has resulted in average wire length reduction (53%), overall area reduction (30.9%) and higher operating frequency (24.6%) over its 2D counterpart.

6.2 Future Work

The present design is partitioned with SRAM and Controller on the central tier and the upper and bottom tiers containing the Processing Elements and ROMs. The memory block designed as part of this work can be used as a building block to create a 3D memory using one of the architectures (BLsplit, WLsplit) described by Kaushal [7]. The Controller and Processing Elements should be partitioned to accommodate a 3D Memory. The 3D Memory can be built using the memory module designed as part of this work.

Leveraging on improvements to the existing process or using a different process, a DRAM can be designed to work with the existing framework. Area and performance comparisons can be made with the existing system.
Bibliography

