ABSTRACT

MOHAMED, SAAD A. AHMED. A Lie Theoretic Approach to the Full Transformation
Semigroup. (Under the direction of Mohan Putcha.)

The full transformation semigroup is the semigroup analogue of the symmetric group.
Any semigroup is isomorphic to a semigroup of transformations . This semigroup arises
naturally in automata theory, a branch of theoretical computer science .

The purpose of this thesis is to study the full transformation semigroup in a new way. We
accomplish this by realizing that the full transformation semigroup is a subsemigroup of
the monoid of all n x n matrices.This allows us to transfer Lie theoretic concepts to
the full transformation semigroup. In particular we find analogues of Borel and parabolic

subgroups, root elements and Chevalley’s big cell.
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Introduction

The full transformation semigroup 7, has been much studied, see for example
[1],2],[8],[9], [13] and[14]. In this thesis we find a new way to study the full transfor-
mation semigroup.

Since 7T, is a submonoid of the monoid M, (F) of all n x n matrices over a field
F | we can apply Lie theoretic aspects of the unit group GL,(F) , see[4],[5]and[6],to
M, (F) , and then to 7, .

We obtain the analogues 7 © and 7, of Borel and opposite Borel subgroups and
introduce the concept of root elements of 7, .

We prove the following results:
1. We prove that 7, = S, 7.7 , where S, is the symmetric group.(Theorem 3.2.1 )

2. We show that 7, is generated by the positive root elements and that this gives

a presentation for 7" .(Proposition 3.1.8 and Theorem 3.1.10 )

3. We study the conjugates 7777 and their intersections,we find a precise formula
for |7, N7w Tt (Theorem 3.3.4),and notice that this is not determined by ()

Jike it is for GL,(F) .

4. By Schur’s theorem any element of M, (F') is similar to an upper triangular matrix.
The analogous result is not true for 7, . We prove ¢ € 7, is conjugate to an

element of 7,7 if and only if o™ = ¢™*! . (Theorem 3.4.2 )

5. We study the analogue 777 of Chevalley’s big cell B~ B of GL,(F) , we
find that all idempotents are in 7, 7% (Theorem 3.5.1 ), we also find necessary

conditions for o € 7, to bein 7,- 7 .(Theorem 3.5.3)

n



However the general problem of characterizing the elements of 77t remains

open.

. We define analogues P and P~ in 7, of opposite parabolic subgroups in G L, (F) .
We determine |P| and |P~| (Theorem 3.6.1,Theorem 3.6.2) and find that unlike
in GL,(F), P and P~ are usually not of the same size. We also determine the

root element of P and P~ . (Theorem 3.6.5)



Chapter 1

Semigroups

We will start with some basic information about semigroups, ideals and how to classify
them by Green’s relations, after that we will concentrate on the full linear transformation
semigroups . We know that a semigroup is a group with out the inverse and the identity
conditions. Likewise we also know that a monoid is almost a group ,or a group missing
only the inverse requirement. So the monoid is a semigroup with the identity, and the

group is a monoid has inverse for each element.

1.1 Semigroups

A non-empty set S with associative binary operation ( . ) is called a Semigroup and
denoted by (S,.) . If S is finite, then |S| will denote to the number of elements of
S . If S has an identity element 1 such that 2.1 = 1.2 = x Vax € .5, in this case we call
S amonoid . If S does not have an identity, always we can adjoin an element works as

1,s0 S'=SU{1} will be a monoid.



Also, if S does not have a zero element 0 such that 0.x =2.0=0Vx € S, we can
adjoin an element 0to S to get S° = SU{0} asa semigroup having zero.An element
s € S is said to have an inverse if there exists an element x € S such that s = sxs
and x = zsz ,if every element in S has a unique inverse,denoted x~! ,then S is called
an inverse semigroup.

2 — ¢, will denote to the set of all

The element e € S is called idempotent, if e
idempotents elements of the semigroup S by E(S) ,we will give the idempotent elements
more attention, note that FE(S) is a subsemigruop of S .

If HCS ,H # ¢, then H is a subsemigroup of S ,if H is closed under the same
binary operation.

If AcCS,ADD,then the subsemigroup generated by A , is the smallest subsemigroup
of S containing A , and denoted by (A) , which consisting of all finite products
ajas . ..a, of the elements of A | we call (A) cyclic subsemigroup if A has just one

element.In general, we call S a cyclic semigroup, if it can generate by a single element.

If A and B are non-empty subsets of a semigroup S , then we define AB as
{abl a € A,b € B} .

An element s € S is said to be regular if there exist = € S such that s = sxs and
x=uxsr . S is called a regular semigroup if every element of S is regular[l]and|2].

We note that if srs = s then e = sz is an idempotent element of S such that es=e |



es = (sx)(sz)
= (szs)x

= ST

es = SIS

Example 1.1.1. Let S = {...,—4,-2,0,2,4,...} be the set of the even integers
numbers, then S is a semigroup with usual multiplication, which has zero 0 ,and does

not have identity. So S' = SU{1} ,and E(S)= {0} .

Example 1.1.2. Let S =1{1,2,3,...},then S isan infinite semigroup with the usual
multiplication , which has an identity but does not have a zero, so (S,.) is a monoid.

therefore S'=S5, S%=SU{0} and E(S)={1}.

Example 1.1.3. For any set S # ) define the two semigroups L(s) = (S,.) where (.) is
defined as z.y = Vo,y € S ,and R(S) = (5,.) where (.) isdefinedasz.y=yVax,y €
S, as long as S has more than one element, L(S) and R(S) are non-commutative

semigroups without identity. E(L(S)) = L(S) and E(R(S)) = R(S5) .

Example 1.1.4. Let X be any set,and let 2% be the set of all subsets of X , then
Sp = (2%,U) and Sy = (2%,N) are semigroups with identities and zeros.For S; the
identity is the empty subset and the zero is the set X , and Ss has the set X as identity
and the empty set as zero, E(S1) =S; and E(S;) =55 .



Example 1.1.5. Let X beaset. Then S = (25X ) is the semigroup of all relations on
X , where (.) defined by Ri.Ry = {(z,y): forsome z € X, (z,2) € Ry, (2,y) € Ry} .If
ReSlet R7'={(y,z): (z,y) € R}, then (RT)"'=T"'R™ forall R,T €S . The

identity here is the relation I € S, where [ = {(z,z):xz € X} .So S' =S Jhence S is

a monoid.
a b
Example 1.1.6. Z(3*? = ca,b,c,d € Z 3 is asemigroup with , the identity
c d
10 00 -1 -1
I = , the zero O = and many idempotents as
0 1 00 2 2

1.2 Ideals, Homomorphisms And Green’s Relations

A non-empty subset [ of a semigroup S is called left ideal, if forall 1 €1, s€ S,
then s.i € I ,thatis SI C [ ,also called right ideal, if for all ¢ € I |, s € S, then
1.s € I thatis IS C I and [ is called an ideal, if satisfies both conditions. Ideals,right
and left ideals are subsemigroups.An ideal I of a semigroup S is called principal ideal
if generated by one element s € S | and will denoted by I = (s).

An ideal I of S is called a proper ideal,if it does not contain ideals of S other
than 0 , and it does not contained in ideals of S other than S it self. A semigroup
S is simple if it has no proper ideals.

If I1,1,...,1, are all the ideals of S ,then I,...I, =1,N---N1, , thisideal is
the unique minimal ideal of S it is called the kernel of S , and denoted by K(S) .If a
semigroup S has a zero, then K(S)=0.

For any semigroup S the sets of all ideals, right ideals, and left ideals are closed

under the operations of union and non-empty intersection.



Definition 1.2.1. Let 57, S5 be semigroups, then
¢ : S — Sy is a homomorphism iff p(z129) = @(x1)p(xe) VI, 29 € S)

We call ¢ monomorphism or (1 — 1) homomorphism if ¢ is (1 —1) and we call ¢
epimorphism or onto homomorphism if ¢ is onto and here we call S, a homomorphic
image of S , also ¢ is isomorphism if it is (1 — 1) and onto, in this case we say S; and

S, are isomorphic.

Example 1.2.2. Let 51,5 as defined in example 1.1.4 , and let ¢ : S; — S5 defined
by ©(A) = A® | where A° is the complement of A .Then ¢ is an isomorphism, so

S1, 55 are isomorphic.

Example 1.2.3. Let I be an ideal of a semigroup S , and let S/I be the quotient
semigroup,which is defined to be ((S —1)U{0},.), where 0 ¢ (S — 1) and

S1S59, if S$182 € (S — I)
§1.852 =

0 otherwise.

The natural epimorphism n :S — S/I is given by

s, ifseS—1
n(s) =
0, ifsel.

then we note that S/S = {0} and S/ = S° .

Now we introduce some of the most commonly used ideas in semigroup theory, which
are Green’s relations. Green’s relations were first studied by J.A.Green in [8],it defined

by some relations as we will see in the following definitions.



Definition 1.2.4. Let S be any semigroup , and s € 5, then the principal ideals

generated by s and Green’s relations on S are defined as following :

1. L(s) = S's is the principal left ideal generated by s and

$1L8y <— L(Sl) = L(SQ).

2. R(s) = sS' is the principal right ideal generated by s and

$s1Rsy <= R(s1) = R(s2).

3. J(s) = S'sS! is the principal ideal generated by s and

51T 8y — J(Sl) = J(Sg) .

4. $1HSy <= s1L s; and s1Rsy .

5. 51D sy <= ds € S such that s;.%s and s R sy or , equivalently, <= dt €

S such that syR ¢t and tL£ sy .

L ,R,J ,H,and D are equivalence relations on S , then we can talk about the
equivalence classes for these relations. For example, let L, be the L -class containing

s ,that is the set of all elements of S which are L -equivalent to s, so
L, ={teS :sLt}.
The same for the other relations .

Example 1.2.5. let (S,.) be a semigroup, where S = {a,b,c} and (.) defined as in
the following table:  E(S) = {a,c¢} and S has identity which a ,so S = S' ,then



Sla ={a,b,c}, S = {a,b} and Slc={c}.

Therefore, L, = {a}, Ly = {b} and L. = {c} .

Also, aS' = {a,b,c}, bS' = {a,b,c} and ¢S' = {b,c} , then R, = {a,b} = R,
and R, = {c}.

J(a) = S'aSt = S' and J(b) =SSt =S, s0 J(a) = J(b) = aTb.

J(c) = S'eSt = {b,c} . H(a) = {a} , H(b) = {b} and H(c) = {c} .

From[4] we have the following theorem to know more about idempotents :

Theorem 1.2.6. The following three conditions on a semigroup S are equivalent :
(i) S s regular , and any two idempotent elements of S commute with other;
(ii) Every principal right ideal and every principal left ideal of S has a unique idempotent

generator

(iii) S is an inverse semigroup (i.e., every element of S has a unique inverse in S ).

The following properties can be found in [4]. For a semigroup S , the J,L and R

relations can be ordered by the following orderings;
1. J, < Jyiff J(a) C J(D) .
2. R, < Ry iff R(a) C R(b).
3. Lo < Lyiff L(a) C L(b) .

These orderings are reflexive , antisymmetric, and transitive. Also, we can note that:



1. "R-classes and L -classes are disjoint unions of H classes.

2. J-classes are disjoint union of L-classes and , also is disjoint union of R-

classes.Hence J-classes are disjoint union of H-classes.
3. Every H-class is the intersection of an L-class and R-class.
4. The intersection of an L-class and ‘R-class is either empty or is an H-class.

It is obvious that R C J , LC J and D C J , so the Figure(1.1) shows the relation

between these classes on the semigroup S .

Figure 1.1: Green’s classes in the semigroup S

Note: For all finite semigroups S, J =D .

10



1.3 Full Transformation Semigroups.

For any non-empty set X . Let Tx be the set of all functions (or linear transformations
from X toitself f: X — X | then Tx with the operation of composition of functions
is called full transformation semigroup.

For each « € Tx we associate two things : the range of « which denoted X,
or «a(X) and the equivalence relation on X denoted by 7, and defined by zxm,y if
a(z) = a(y) . The equivalence classes X,, of X under this relation has the same
number of elements as the range of « , |X,,| = |X.| and this number called the rank
of a .

In this thesis we will focus on the semigroup of all functions from the set {1,2,3,...,n}
to itself, which denoted by 7,, as example of the full transformation semigroup. (i.e.
Ton=40c:0:{1,2,3,...,n} = {1,2,3,...,n},0 function or linear transformation ),and
in this case we have a few notations will be used to represent the elements in 7, as

appropriate:

1. Two line notation, if o € 7, ,then we can write ¢ as

For example , 0 € T5,0(1) =2,0(2) =2,0(3) =1,0(4) =3 and o(5) =2 , then

1 23 45
2 21 3 2

2. One line notation,since the first line in the two line notation is the same, so we can

omit it and just write the second line to represent o as

11



a:(a(1) o(2) ... J(n))

For example, we can write o € 75 which defined above as

02(22132)

3. Matrix notation , let o € 7, , we can indicate o(j) = ¢ by place a 1 in the

(7, 7)—entry of n x n matrix. For example, again we can write the o € 75 which

defined above as

o o O
o]
@]
]
e

Note: |T,| =n".

Example 1.3.1. Let S be the semigroup of all functions from the set X = {1,2,3}
to it self so S ={o: o: {1,2,3} = {1,2,3}, o function or linear transformation }
|S|= 3= 27 So

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

S: ) Y ) Y ) Y
1 11 2 2 2 3 3 3 1 2 2 2 11 1 3 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
311 2 3 3 3 2 2 1 21 21 2 1 31

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

31 3 2 3 2 3 2 3 11 2 2 21 11 3

12



1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 11 2 2 2 3 3 3 1 2 2 1 3 3 1 21

1 2 3 1 2 3 1 2 3 1 2 3

3 2 3 113 2 23 1 2 3

From [8]we have the following property with it’s proof, to get the number of idempo-

tents in the semigroup 7, :

Property 1.3.2. The number e, of the idempotents in the semigroup 7, equals to

3

en = kmF, (1.1)

Proof. To define an idempotent « of rank k we have to choose a k—element set

n
im(a) (this can be done in different ways), and then we have to define a

k

mapping from {1,2,...n}\im(«a) to im(«) in an arbitrary way (this can be done in
n
kn=F different ways). Hence 7, contains exactly k"% idempotents of rank k .

k
The statement is now obtained applying the sum rule.

13



Example 1.3.3. The number of the idempotents elements in 73 is

3 3 3 3 3
=1 \ k 1 2 3
= 3+6+1
= 10.

4 4 4 4 4 4
€4 — Z k’4ik = + + +
k=1 \ k 1 2 3 4
= 4424+12+1
= 41.

From [8] we have the following theorems and corollaries ( also the proofs can be found
in[8]) which show some properties of the Green’s relations on the full transformation

semigroup 7,:

Theorem 1.3.4. Let S =T, ,for each « € T, the right principal ideal generated by «

has the following form:
aS={feS:im(p) Cim(a)} .

Corollary 1.3.5. 1. Let S =7, ,and « € S such that rank(a) =k , then

laS| = k™ .

14



2. the semigroup 7, has exactly 2" — 1 different principal right ideals.

Theorem 1.3.6. Let S =T, ,for each « € T, the left principal ideal generated by «

has the following form:
Sa={p €S :dom(a) Cdom(a) and ms C m,} .
where (zmay < a(x) = aly) ).
Corollary 1.3.7. 1. Let S =7, ,and o € S such that rank(a) =%k, then

|Sa =nF .

2. the semigroup 7, has exactly

3

B, =) S(n,k)
k=1

different principal left ideals ( B, is the number of unordered partitions of the set

{1,2,...,n} into disjoint unions of nonempty k blocks ) .

Theorem 1.3.8. Let S =T, ,for each o € T, the principal ideal generated by « has

the following form:
SaS={peS: rank(8) < rank(a)} .

Corollary 1.3.9. 1. Let S=T, ,and a €S such that rank( o )=k , then

k
L nl
|Sas| :;S(n,z) —)

(n

15



2.

the semigroup T, contains n different principal ideals.

Lemma 1.3.10. If «, 8 € 7, ,then:

1.

2.

3.

aRp <= X, =Xz .(a, f have the same range).
alf <= X, = Xn, .(a, B have the same partition).

a and ( are D—equivalent <= They have the same rank.

Theorem 1.3.11. In the finite full transformation semi group 7T, we have:

D=J.

There is a one-to-one correspondence between the set of all principal ideals of T,
and the set of all cardinal numbers r < |x| such that the principal ideal corre-

sponding to r consists of all elements of T, of rank < r .

There is a one-to-one correspondence between the set of all D—classes of T, and
the set of all cardinal numbers < r such that the D—class D, corresponding

to r consists of all elements of T, of rank r .

Let r be a cardinal number < |X| , there is a one-to-one correspondence between
the set of all L—classes in D, and the set of all subsets Y of X of cardinal r
such that the L—class corresponding to Y consists of all elements of T, having

range Y .

Let r be a cardinal number < |X| , there is a one-to-one correspondence between
the set of all R—classes in D, and the set of all partitions X, of X for which
| Xr.| =1 such that the R—class corresponding to X, consists of all elements

[e1 ’

of T. having partition X .

16



6. Let r be a cardinal number < |X| , there is a one-to-one correspondence between
the set of all H—classes in D, and the set of all pairs (X, ,Y) , where X, is
a partition of X and Y is a subset of X such that | X, |=1|Y|=r ,such that
the H—class corresponding to (X,,,Y) consists of all elements of T, having

partition X, and range Y.

In other words, for 7, ,let 0,8 €T, ,then: aRfS <= they have the same range
and aLf <= they have the same fibers ( a fiber of a map f: X — Y is the set
Y y)={x e X: f(x) =y} ). R — classes are in (1 — 1) correspondence with subsets
of the set {1,2,...,n} and L -classes are in (1 — 1) correspondence with partitions of
the set {1,2,...,n}.

Let J be a J—class of a semigroup S . Let Ry,...,R,, bethe R—classes in
J,and let Lq,...,L, bethe L—classes in .J . Then, the H—classes in J are exactly
{H=R;NL;j:i=1,...,m;7=1,...,n} . So the following table shows a picture of
J—classes , each row an R—class , each column an L—class, and the intersection of

each of row and column an H—class.

17



Table 1.1: Eggbox of R, L,and H — Classes inT,

]{1 ffﬂ

f& fﬁj

}Ln E[mn
L || L; L,

Lets show these relations on 73 , we will use first line notation form (ajasas) as

defined before in the beginning of section (1.3), for the mapping 1 — a1,2 — as ,and

1 2
3 — asg e, ,a; € {1,2,3} ;i =1,2,3 just to save space in the tables.
ay ag as

Example 1.3.12. Let X = {1,2,3} ,then Tx = T3 = {(123), (132), (213), (231), (312),
(321), (111), (112), (113), (221), (222), (223), (331), (332), (333), (122), (133), (211), (233),
(311), (322), (121), (131), (212), (232), (313), (323)} .

Next table shows R, L, D = Jand H — Classes for T .

18



Table 1.2: R, L, and H-Classes of T3

Ao {1 ] {2y | {3F ] {L2p | {3} | {23} | {123}
X/a
{1,2,3} (111)* | (222)* | (333)*

{1} .{2,3} (122)* | (133)* | (233)
(211) | (311) | (322)
{2},{1,3} (121)* | (131) | (232)
(212) | (313) | (323)*
{3},{1,2} (112) | (113)* | (223)
(221) | (331) | (332)

(123)%(312)

{1}.{2}, {3} (132)(231)

(213)(321)

Each row except the first row in the table(Range of « X, )is R —class , each
column except the first column(Partition of X/a ) is £ —class and the intersections are
‘H—classes. The D, = J, — classes ,(r = 1,2,3) where J, is the set of all elements in
T; of rank r, which : J; = {(111),(222), (333)} ,

Jo = {(122), (211), (133), (311), (233), (322), (121), (212), (131), (313), (232), (323), (112),
(221), (113), (331), (223), (332)} and J5 = {(123), (312), (132), (231), (213), (321)}.

Thus , 73 has the following egghbox structure :

19



Table 1.3: Eggbox Diagram for 73

1

1

1

1
21212
2122
212)|2

From the eggbox , we can see that |73| = 3(1) +9(2) +6(1) = 27 .

Now ,let see all of those properties in 7Ty , for that we will use the following example

from[ 1].

Example 1.3.13. Let X = {1,2,3,4} then Tx = T; and [Ty = 4* = 256 elements,
here we have the unit group S; which we denoted by Jy(R4 = L4 = H,4) , also we have
the maps of rank 3 which we denoted by J3 . Then we have the maps of rank 2 which
formed J—class .Js , finely we have the set of functions of rank 1, J— class J; , and

these J—classes are ordered linearly as shown in the following diagram:
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Ji

J2

Figure 1.2: J-classes for Ty

The next tables show that what each [J—class looks like. As the previous example,
here , there are four J—classes J.(r =1,2,3,4) , where J, is the set of all functions
of rank r. The headings for the rows are partitions of the set X, and for the columns

are the ranges of the functions. Starred elements are idempotents.

Table 1.4: J;-class in Ty

J1 {1} {2} {3} {4}
{1,2,3,4} | (1111)* | (2222)* | (3333)* | (4444)*
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Table 1.5:

Jo Class for Ty

o (1,2} | {13} | {14} | {23} | {24} | {3,4)
{1},{2,3,4} | (1222)* | (1333)* | (1444)* | (2333) | (2444) | (3444)
(2111) | (3111) | (4111) | (3222) | (4222) | (4333)

{2},{1,3,4} | (1211)* | (1311) | (1411) | (2322) | (2422) | (3433)
(2122) | (3133) | (4144) | (3233)* | (4244)* | (4344)

{3},{1,2,4} | (1121)* | (1131)* | (1141) | (2232)* | (2242) | (3343)
(2212) | (3313) | (4414) | (3323) | (2424) | (4434)"

{4},{1,2,3} | (1112) | (1113) | (1114)* | (2223) | (2224)* | (3334)
(2221) | (3331) | (4441) | (3332) | (4442) | (4443)

{1,2},{3,4} | (1122) | (1133)* | (1144)* | (2233)* | (2244)* | (3344)
(2211) | (3311) | (4411) | (3322) | (4422) | (4433)

(1,3}, {2,4} | (1212)* | (1313) | (1414)* | (2233) | (2424) | (3434)
(2121) | (3131) | (4141) | (3232)* | (4242) | (4343)

(2,3}, {1,4} | (1221)* | (1331)* | (1441) | (2332) | (2442) | (3443)
(2112) | (3113) | (4114) | (3223) | (4224)" | (4334)
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Js Class for 7Ty

Table 1.6:
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Table 1.7: Eggbox Diagram for 7y

Ji | 24 1.1.24 = 24

J3 6.4.6 = 144

Jo 7.6.2=284

& 1/1|1]1 141=14

Total 4* = 256
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1.4 Connection with Automata Theory

In automata theory [3] and[12], full transformation semigroups arise naturally. One
consider a finite set of states () and a finite input alphabet X, and a next state function
0: X xQ — Q. Thus each x € X gives rise to a function 6, : ) — @ , given by
d:(q) = d(z,q). Given a string of inputs x1,zs, ..., 2z, ( not necessarily distinct ), the
effect of this string of inputs is given by 6,06, _ 0---0d,, . Thusif Q@ ={1,2,...,n} then

each ¢, € 7, and studying strings of inputs is the same as studying the subsemigroup

of T, generated by d,,x € X .

Example 1.4.1. For example let X = {z,y} and @Q = {1,2,3} .If the next state

function 0 : X x Q — @ is given by

— 3

Y,2) — 3

y,3) — 1
1 2 3 1 2 3

Then 9, = 0y = eTs.
2 2 3 3 3 1

1.5 M,(F) Monoid of n xn Matrices

If Fis afield, let M,(F) denote multiplication monoid of all n X n matrices over

F | also called a linear semigroup. M, (F) contains many idempotent elements such

I, 0
as e = , where I, is the r x r identity matrix. The subset of M, (F) of all

0 0
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invertible n X n matrices under the matrix multiplication is a group, called the general

linear group,which denoted by GL,,(F') .Also, the subset
SL,(F)={A € GL,(F) | det(A) =1} .

with the matrix multiplication,called the special linear group SL,(F) .
If F' is algebraically closed field , then

dimM,(F) =n? .
If =T, ,the finite field with ¢ elements, then
|M(F)| =q" .

It will be important for us to realize 7, as a semigroup of matrices . If o € T,,, let
A(o) be the matrix with 1 in (o(i),i)" position and 0 elsewhere. So each column of
A(o) has exact one non-zero entry that is 1, and this will be the same as the matrix

notation which defined in section (1.3).

1 2
Example 1.5.1. Let o= € T, then o can represents by 2 x 2 matrix
2 1
0 1
Alo) =
1 0
000
1 2 3
If o = € T3 , so o can represents by 3 X 3 matrix as A(o) = |1 0 1
2 3 2
010
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1 00 0O
001 00
1 2 3 4 5
Also, if o = € Ts, then A(lo)=10 1 0 0 0
1 3 2 4 4
00011
0 00 O0@O

In the next example will list all 73 elements in matrix form, after we listed them in

two lines form(example 1.3.1).

Example 1.5.2. For n=3,T3 ={o: o: {1,2,3}— {1,2,3}, o function or linear

transformation }, |T3| = 3% = 27 So
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001 100 010
100,101 0-]0 01
010 0 01 100
1 11 000 000 100 100 1 01
E(T3) = 00011 1}510 00,101 1}f-]0 0 O0O}-]0 1 0>
000 000 1 11 000 011 000
000 110 000 100\
010|550 0O0}>11T 1T O0f>]0 1 0

1 01 0 01 0 01 0 01

Ve

Recalling some linear algebra and matrix theory, we see that :
For the semigroup M, (F) :
ARB <= A and B are column equivalent .
ALB <= A and B are row equivalent .

AJ B < rank(A) = rank(B) .

For the semigroup 7, we have :
aRp <= a and [ have the same fiber (preimages) that is ( R — classes correspond
to the set of all maps with the same fibers) .
alf <= « and  have the same range ( L — classes correspond to the set of all maps
with the same range).
Lastly, aJf <= a and [ have the same rank , that is ( J — classes correspond to

the set of all maps with the same rank).
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Chapter 2

Lie Theory of GL,(F) and M,(F)

If F' is algebraic closed field, G = GL,(F) is the unit group of the monoid M, (F') ,
then dimGl,(F)=n?,and if F =T, , then:

GlL(F) = (¢" = D(¢" = q) .- (¢" —q"7") .

We review some basic concepts about algebraic group theory, which can be found in
[4], [5] and [6] as they pertain to Gi,,(F') . The maximal tours 7 is the group of diagonal

matrices.

W = Ng(T')/T is called the Weyl group of G .

2.1 Weyl Group and The Rook Monoid

For GL,(F), Weyl group W = S,, generated by simple reflections (ii+1),1 <i<mn.

R, = Ng(T)/T is called the Rook monoid . It consists of all 0 — 1 matrices with at most

one non-zero entry in each row and column.
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Example 2.1.1. Let G = GLy(R) the group of all invertible matrices,and

a o
T = :ab#0
o b
a 0 0 a
then Ng(T) = : cab#0
0 b b 0
10 01
01 10
a 0 a
and Ng(T) =
b 0

Definition 2.1.2. If ¢ € S, , then the length /¢(o) is the smallest number of simple

reflections that o is a product of. See[7] .It is also given by

o) = {(0,4) i <3, o(i) > ()} -

Example 2.1.3. If 0(123) € S, , then ¢(0) =2 .If 0 =(23) € S, , then {(0) =

2.2 Borel Subgroup

Let G = GL,(F) ,the group B of all invertible upper triangular n X n matrices is

a Borel subgroup of G ,this means that B is a maximal invertible connected solvable
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subgroup of G .Also B~ , the set of all lower triangular matrices is called the opposite
Borel subgroup of G .
The maximal tours 7' = B N B~ is the group of diagonal matrices .More details

about Borel subgroup can be found in [4],[5], and [6].

2.3 Schur’s Theorem

If F is an algebraically closed field, Schur’s theorem states that every matrix in
M, (F) is similar to an upper triangular matrix.[16]and [17]
So, that means for any matrix A € M,(F) , A= xzUx?! for some x € M,(F) and
some upper triangular matrix U .

In other words, that is gives :
GL,(F) = | J 2Bz
where B is the group of upper triangular invertible matrices ,and

M,(F) = U Bz

zeG
where B is the monoid of all upper triangular matrices.

(Schur’s theorem is not valid in 7, as we will see later).

2.4 Bruhat Decomposition

In GI,(F) , the Bruhat decomposition says that given G = GI,(F) , the Borel
subgroup B of upper triangular invertible matrices , and the Weyl group W of

permutation matrices, then
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G = |_| BwB
wWE Sy

So, that means we can write any element of G as the product of an upper triangular

invertible matrix , a permutation matrix, and an upper triangular invertible matrix.

a b a b
Example 2.4.1. If n =2, GL,(F) = yac # 0 U cc# 0,ac # bd
0 c c d

Renner decomposition[15 | extends the Bruhat decomposition of GL,(F) to M, (F)

Where B is n x n invertible upper triangular matrix. This allows us to express
elements of M, (F') as a product of an upper triangular invertible matrix ,some element

in R, and an upper triangular invertible matrix.

Example 2.4.2. M,(F) = o yac #£ 0 p U “ b cc#0,ad # be p U
0 c c d
3
a b 0 b a b
ca#0pU :b#0 U cc#0,ad =bc p U
00 { 0 c d
Vs

0
0 b 0 0)
:d#0p U .
0 d 00
2.5 Chevalley’s Big Cell

Let B denote to the group of invertible upper triangular matrices and B~ denote
the group of invertible lower triangular . Then B~ B is called the Chevalley’s big cell.
It is important in the structure theory of algebraic groups[4],[5] and[6]. By the Bruhat

decomposition
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G = |_| B~ zB

IGSn

Now 2 'B~2 C B~ B .So

G = U 2B B .

xGSn

This means that any invertible matrix A can be written as :
A=colLU

where o € S, L is a lower triangular matrix and U is upper triangular matrix. This
is called the LU decomposition in the linear algebra [16] and [17] (useful for solving
system equations). Moreover A has LU decomposition (that is it’s B~ B ) if and only

if all the principal minor of A are non-zero.

1 2 3
Example 2.5.1. Let A=|92 —4 ¢ , then A can be expressed as a product of

3 -9 -3
1 0 0
lower triangular matrix L = | 2 —§ 0 and upper triangular matrix
3 —15 —12
1 2 3
U=101 0], so
001
A=LU
1 2 3 10 0 1 2 3
2 4 6 |=12 -8 0 010
3 -9 -3 3 —15 —12 0 01
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10 0

LU does not always exist(even if A non-singular),for example, if A= 10 0 2

01 -1

is non-singular and can not factored as A = LU .However interchanging 2"¢ and 3"

rows leads to an LU decomposition . So A can be written as A = LU where

1 00
c=10 01
010

2.6 Roots
For GL,(F) the root system in 1— 1 corresponding with

O ={(,j)|i,7=1,2,...,n,0 #j}.
(3]
For o = (i,j) € ® , we can think of « as a homomorphism , | O *-. O

an

— a;/a; from T to F .This is the algebraic group analogue of the map in Lie
ay

algebras, | O . O — a;—a; . When i < j,theroot «is positive , and when

Qn

1> 7 ,the root « is said to be negative .

Let ®* denote to set of all positive roots and @~ the set of all negative roots . So
=0 JD .
For o € & , the root subgroup X, consists of all elements matrices
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We note that X, = (F,+) . If F is algebraically closed, then dimX,=1.1f F=F,
sthen | X,| =¢q . Now U = H X, where the product is in any order .See [4],[5] and][6]

acdt
for details.

Example 2.6.1. For n = 3, the positive root subgroups are:

1 a 0O 1 00 1 00
X1z = 01 0fp,Xiz= 010 and, Xo3 = 01 ¢
0 01 001 001

The negative root subgroups are:
1 00 1 00 1 00
Xo1 = a 1 0 , X31 = 010 and, X3y = 010
00 1 b 0 1 0 ¢c 1

Note that:
X129 X3 X135 = X3 X192 X 13 = X190 X3 X153 = Xo3 X3 X192 = X3 X190 X9 = X3 X903 X0,

The group U will be the set of all products of X5, Xo3 and X;3 in any order, where

1 a b
U= 01 cl|: abcekF
001
similarly the group
100
U~ = a1l 0|: abcelF
b ¢ 1

is a product of Xy, X3; and X3, in any order.
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2.7 Borel Subgroups and Intersections

The Borel subgroup B decompose as B = UT , where U is consists of upper

triangular matrices with 1’s on the diagonal and T consists of diagonal matrices. So

1 % ... «* * 0 ... 0
0O 1 ... =« 0 = ... 0
B =
* 0
0 0 1 0 0 *

If 7€, ,then
BnaBr ' =[UnxUx T .
If F is algebraically closed, then

dim[U NxUr™'] = 2= — f(x) .

2

If F=F,,

UNzUr™Y| = anQH*e(”) :
where
U(m) =|(i,7) - i < j,m(i) > w(j)|. (definition (2.1.2) )

Thus in either case , the size of BN7Br~! depends only on the length ¢(7) of 7 .(More

details can found in [4]). In chapter 3 we will see that, this is not valid in 7, .
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2.8 Parabolic Subgroups

If n=ny+n9+---4n;, then the block upper triangular matrices of the form

Al * *
0 *
0 0 A

where A; ,is m; x n; matrix, 1 <7 <t (Stars in the matrix , it could be any numbers),
form a subgroup group P called a parabolic subgroup of GI,(F) and denoted by P .

The subgroup of block lower triangular matrices of the form

A 0 0
* 0
* * At

is called the opposite parabolic subgroup and denoted by P~ .If F is algebraically

closed , then
dimP = dimP~
If F=TF,, then
[Pl =[P~].
So opposite parabolic subgroups have the same size .

Example 2.8.1. If n =243 . In this case, the elements of the parabolic subgroup P
of GL,(F) have the form
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0 0 * * =%
0 0 % * =«
0 0 % % x

* ok ok ok Xk

EIE SR S S 3

where the stars in both matrices can be any elements from F' |, and the 2 x 2 and

3 x 3 diagonal blocks are invertible.
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Chapter 3

Lie Theory and The Full

Transformation Semigroup

The full transformation semigroup7,, plays a central role in semigroup theory sim-
ilar to the role that the symmetric group plays in group theory.The full transformation
semigroup 7,, and some special subsemigroups of 7, have been much studied over the
last fifty years. Because T, C M, (F) , we can define in 7,, upper triangular transforma-

tions 7T and lower triangular transformation 7.~ as:

T ={o

m

Tnio(i) <i Vi}.
and

T, ={oceT,:0()>iVi}.

n

These are analogues of the Borel subgroup B and the opposite Borel subgroup B~ of
GL,(F) .

In this chapter we will concentrate on the semigroups 7,,7." ,and 7~ , and will try
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to connect our results with Lie theory.

Note that o(i) =4 (the Identity function )is in both 7 and 7.

3.1 Borel Subsemigroups

We begin with the analogue of the Borel subgroups B and B~ , which are 7.t
and 7.~ in 7, . We will see , where they are act the same and where they act differently

. Let us start with 7;" and 7, , which we will see again and again :
Example 3.1.1. For n=3,

7,7 ={ linear transformation o where

o {1,2,3}> {1,2,3} ,and o(i) <i Vi€ {1,2,3}} =

1 00 1 01 1 00 111 110 110
T3 = 010],{0 10101 1,00 O0}-10 0 1},]0 0 O
001 000 000 000 000 0 01
and
Ty~ ={ linear transformation ¢ where
o: {1,2,3}— {1,2,3} ;and o(i) > i Vi € {1,2,3}} =
1 00 000 000 000 000 000
T3 = 0o1rof,{1r10fs10 10,12 00|10 0O0>]1 0O
001 001 1 01 011 111 011
Theorem 3.1.2. |T./| = |77 | = nl.
Proof. for any o € Tt |, 0 = ! ’ S and o(i) < i Vi €
o(l) o(2) a(3) a(n)

{1,2,3...,n}
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there is only one possibility for ¢(1) which is 1, there are two possibilities for ¢(2) which

are 1,2 and so on ...
There are n possibilities for o(n) which 1,2,3...n

Therefore, |7,7| = n! . Similarly for |7, | =n!. O

Example 3.1.3. For n =3T3 ={o| o: {1,2,3}— {1,2,3}, o function or linear

transformation }, |73| = 3% = 27 where |T;7| =3! = 6 =
1 00 1 0 1 1 00 1 11 1 10 1 10
T =< {o1of. o1 of.{o11].]ooo|.|oo1].]0oo00
0 01 0 00 0 00 0 00 0 00 0 0 1
and |T; | = 3'=6 =
1 00 0 00 000 0 00 0 00 0 00
Ty = o01o0},]2 101,40 10},]1T 0O0}5170 0O0(,]1 0O
0 01 0 0 1 1 01 01 1 1 11 01 1
The rest of T3 1is:
0 00 011 1 0 1 011 010 0 01
11 1),11 00,0 O O0f>]0 O Of-1 O 1},|1T 1 0],
0 00 0 00 010 1 00 0 00 0 00
010 0 0 1 0 00 0 00 1 0 0 0 0 1
oo0oo0,J00®O}s]12011,J0 1 1,00 1]5,10 1 0},
1 01 1 10 010 1 00 010 1 00
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100 100 1 01 000 110 000
E(T3) = 011,50 0 0}>10 1T Of>10 1 Of>]J0 O O}-|1 1 OF>
000 011 000 1 01 0 01 0 01
000 111 000 \
00050 00O0],]11 11

1 11 000 000

/

In chapter 2 ;section 6, we saw how the root system for GL,(F) was defined. The
root subgroups were defined as: X;; = {I + aE;;},i #j , a € F and called positive if

1 < j and Negative if 7 > j .

1
That means the positive root subgroups will be as: 0 . « and the negative
1
1
root subgroups will be as: a .0 . The analogous elements of 7, are the root

elements e;; which we now define.
Definition 3.1.4. ¢;; = — E;; + E;;,1 # j where [ the identity matrix,£); is the Zero
matrix with 1 in (j j) entry , and Ej; is the Zero with 1 in (i j) entry. (i.e €;;(j) = ¢

and e;;(k) = k, for all k # j,k € {1,2,3,--- ,n} ) . e; is called Positive Root element

whenever ¢ < j and Negative Root element when ¢ > j.

(
10 01 1010 1100
0100 0100 0000

Example 3.1.5. €14 = ,€13 = ;€12 = 3
0 010 0000 0010
| 0000 0 001 0 001
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1 0 00 1 0 00 1 000
0101 0110 0100
€24 = ;€23 = ;€34 = ’
0010 0000 0011
0000 0001 0000 )
are the positive root elements in 7; and
(
00 00 1 000 1 0 00
0100 01 01 01 00
€41 = y €42 = ) €43 = )
0010 0010 0000
\ 1 000 0000 0011
)
0000 10 00 0000
01 00 0010 1 100
€31 = €32 = €21 =
1 010 01 00 0010
0001 0001 0001

are the negative root elements in 7;.

Proposition 3.1.6. Every o € 7.7 can be written as a product of finite number of
eij, 1 < j where e;;(j) =7 and e;j(k) = k Vk # j.

Proof. let o € T*, suppose j; is the largest number < n such that o(j;) # ji,
say o(j1) =i (le o(k) =k Vj <k <n)then o = e;;,01 where o1(j1) = ji,
and o1(k) = o(k)Vk # ji1. Now o1(k) = k Vj; < k < n again, suppose js is the largest
number < j; such that o1(ja) # Jjo, let say o01(j2) = iz, then o7 = eigjoos where
02(J2) = j2 and o9(k) = kVjs < k < nso o = e}, elaja09, but since n is finite,if
we continue with this way , we will reach the identity. Therefore, o = ¢€; j €y, - - - eimjmf

where m < n. ]

Let define a standard form for the elements of 7,, which will be used as needed later.
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Definition 3.1.7. Define the standard form for o € 7" as:

o = 62'17161‘2(,1_1) A E

1 2 3 4 5
Example 3.1.8. Ifo € 7.t 0 = then
1 2 2 2 5
0 = €940
1 2 3 45 1 23 45
, 01 = = €94€9309 , Where oy =
1 2 2 4 5 1 2 3 4 5

S0 0 = eg4€e93€99€11. Which is in the standard form as desired.

Now we know that S,, can be generated by simple reflections (ii+1),1 <i <n ,but
this is not true in case of 7, .
For example, 75" # (e12, es3) (€13 not there ). So the question here, what elements
in 7.F can generate T ™ 7

The following theorem can answer this question :
Theorem 3.1.9. 7" can be presented as:
. . 2 o . o _
(€ij, i < J < nlei;” = eij, ei5ej = eqeij, eijer; = ex; and egjey; = €j) .

Proof. We know that every o € 7" can be written as a product of e;;,7 < j and
e;j(m) =m VYm # j,e;;(j) =i. (Proposition(3.1.6) )

So (ey)*(m) =ey(m) =m V¥m #j , and (e;;)*(j) = (ey)(i) =1 ,then (ey)* = ej; .
Also, ejjeq =eij(m)=mVm#lL,m#j, eijeu(l) =e;(j) =t,e5e5(j) = e;ij(j) =1 .
Then e;je; = eye;; = ejjey ,and e;jegi(m) = e;;(m) =m Vm # j

eijeri(j) = e;j(k) = k Vk # j . Then e;jer; = ey; . Similarly, egje;;(m) = m Vm # j
exjei;(j) = ex; (i) =1 then eye;; =e;; . So T.& satisfied these conditions .

Now, if there is any other semigroup S satisfies the same conditions

44



(e S =(aij,i <j<nlay? = aij, aijaj = agaij, aijar; = ag; and agja;; = a;) ).

We need to show that |S| =n!=|T1]|.

If X = { all upper transformation which in the standard form } ,and o € X so
O = Qi j,Qigjy - - - g Jy Where Jip > jo--- > jp , and 4 < V1 < kK < t, a0 =
a;;(ai,j, - .. a;;,) . Consider the following cases :

(i) i=141,j=7j1 = ajo=o0 ,since a;;> = a;; .

(i) @<d3,0r @>1d1,] = j1 = Qj0 = QijQj, - - - Qipj, = iy jy GijQigjy - - - Gigj, , SIDCE
Qi j, Qi = Q;; = 44, , and that is true V k such that j < jp (e ajja;j, = @i ;017 ).

Therefore, a;;0 € X = ;X = XX C X,a;; € X = X =55 <n!. ]

Example 3.1.10. T;" generated by 1, eja, €13 and ep3. T3 can be presented as

7:—3+:<{1ua’7b7C:CL2:CL7bQ:b:Cb’CQICb:C,ab:ba:CLC}> i

3.2 A Decomposition of 7,

Since S, is the unit group of the semigroup 7, we look at the product S,7," .

Theorem 3.2.1. 7, =S,7,. . (i.eany o €T, , can be expressed as a product of some

element me S, and ot €771 .)

Proof. Let o € T, , so every row of ¢ is made up of one’s and zero’s, we look to the
1%%element of the 1¥row which is zero, say ( 1j position) and we look to the column
which contains this zero, it will contains 1, say in i row ( ¢j position ), then we change
the 2"row by i row. Then o = (2 i)o.

Now, again we look to the 2"¢ row in o, and do the same thing which we did with 1'row
in o, that is we look for the 1% zero after the 1% one in the 2"%row , say in 2k position

, and go down below this position till we find the 1% one, say in the [k position , then
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we change the 3" row by the

lth

row , to get o9 = (3 1)(2 i)o and we continue this

process till we reach the last row and will get o = (24)7*(3 1)~!...(m t)"'0o,, where

24BN ...(mt)"t €S, and 0,, € Trand m < n . Therefore, T, = S,T." . O
1 010
00 0O
Example 3.2.2. Let 0 = € Ty , then o = mo™ ,where
01 01
00 00
1000 1010
0 010 0101
T = € Syand ot = €T,
01 00 00 00
0 001 00 0O

3.3 Intersections

In this section we study intersection of conjugacy of 7" .

To know more about |7, N7 7, 7| .and T,FNaT fn b .

Let take the following example for 7," .

Example 3.3.1. Consider 7," , which as follows :

1000 1

1 00 0
T =

0
0010 0
0001

o

1 11
000
000
000

1 110 1 110 1 110
0 01 0 0
000 0 0

o o O
o o O
—_

S
e}

e}

e}
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1 101 1101 1 100 1 100 1 100
0010 0000 0011 0010 0010
0000 ’ 0010 7 000 7 0001 7 0000 ’
0000 0000 000 0000 0001
1100 1100 1 100 1011 1 001
0001 11 0000 0100 0110
0010 7 0000 , 0010 ’ 0000 ’ 0000 ,
0000 000 0001 0000 0000
1001 1 000 100 1 000 1 000
0100 0111 0110 0110 0101
0010 7 0000 7 0001 ’ 0000 ’ 0010 ’
0000 0000 0000 0001 0000
1000 1 010 1 010 1 010 \
0100 0101 0100 0100
0011 , 0000 7 0001 7 0000
0000 0000 0000 0001/

we know that |Sy| = 24 . If 7© € S; , so there are two questions can be asked here:

What is the7," N a7, 717
And what is the|7," N 7T 7~ 1]?

The answer is :

1000 1011 1 001 1 001
0100 0100 0110 0100
T NaTfnt = : , : :
0010 0000 0000 0010
0001 0000 0000 0000
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01
0 0

0 0
and |T," NaT, 771 =12

Also, if 7 = (23) then:

’

71—&- N 7T7:1+7T—1 —

o o O

o o O
o o O
o o O
o o O
o o O
o o O

o o O
[an}




1010 1010 1 010 1100 \
0101 0100 0100 0000
0000 ’ 0001 7 0000 7 0011 7
0000 0000 0001 0000 )

and |T," N T Y = 16.

If m=(34) =771, then|T," N7T, 771 =18,

if m=(13) = 77!, then |T,f NaT, 77| =4,

if m=(14) = 771, then |T,f NaT, 71| =2,

form=(24) =7~ | then |T," N7T r7 ! =38,

if ™= (123) then 7' = (213) and in this case |T," N 7T, 7! = 8.

Now if o € T, , what are the conditions must o has to (12)o(12) be in 7, . The

answer is just

o(2) #1,
for (23)0(23) to be in 7" the condition is

o(3)#2 ,
and for (14)c(14) tobein 7,7, o must satisfies the following conditions :

c(4)=4,0(2) #1 and o(3) # 1.
In general,
(ii+Do(ii+1)eT = o(i+1)#i.

And more generally,we can conclude that if o € 7 and (i j) € S,,i < j

then (ij)o(ij) to be in 7.7, 0 must has the following conditions :

o(j)=jor o(j)<iand olk)#Vi<k<j.
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Then

TN+ DT i+ 1)) = 50!

Therefore, we can conclude that

.. .. i — i2
7,70 (@) T, (i5)] = licke; %”! = j(j—l)n! :

Proposition 3.3.2. If 7= (i i+ 1) then |[T,FNaT,fa~| = Z5n! and in general if

= (i j) then |T,FNaTrrn | = j(jiil)n!.

In chapter 2, for the GL,(F) we found that, the size of BN 7B7r~! depends on the

length of 7 ,but this not true for 7, , the following example shows that:

Example 3.3.3. Let 7 = (12), then
1 00 1 01 1 00

T, NaTint = 010|,[lo1o0],]0o11

0 0 1 0 00 0 00
Therefore |T;t N 7Tt w7t = 3, and for 7 = (23), then
1 00 111 1 10 1 01

rnaTm'=<1o 1 0fl,l0 0 o0f,l0o00f,]l0 10
00 1 00 0 00 1 00 0

Therefore |T;" NaT; n7t = 4.

So (12) and (23) have the same length, but |7;"N(12) 757 (12) 7| # |73 7 N(23) 757 (23) 71 .

The following theorem gives the rule to get|7," N7 17 x| .
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Theorem 3.3.4. If mr € S, , then |T," N7 T 7| = a; - ay...q, where

ai = {j:j <, w(j) < m (i)}

Proof. If c € T;"Na T r  then c € T,F and o € 7 ' Fn !,

so o(1) <iV1<i<n-—.(l)and o=7'6r for some

6eT’ o=71t0r
ror b e T*

mon (i) <Vl <i<n

$or

mo(i) <m(i) = ..(2)

so , if

oi)=j = j<iandw(j) < m(i)
= o(i)e{j:j<im(j) <7}

= a; = {j;j <im(j) < pi(i)}]

which the number of possibilities of 7 (i) . Therefore |T,fN7 1T 7| = a;-ay---

Example 3.3.5. If 7 = (123) , then |[T;t N7 77t = a; - as - az where:
ar=Wj:j<La(j)<w(1) } =1,
ay=[{j:j<2m(j)<7(2)=3}=2

and ag=|{j:j<3,7(j) <7m(3)=1}=1.
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Therefore,

LENaTLir ™ = ar-ay-as
= 1-2-1
= 2.

3.4 Unions

We have seen that in Schur’s theorem,every element of GL,(C) is a similar to a

triangular matrix.This is not true of 7, , to figure out what X = U (7T Fr ) is?
TES

Let start with n =3 as an example:

Example 3.4.1. X = U (rT3tn™h) =

TES3

0 000

o
o
o
—
(@]
—
=)
o
[
—
(@]
@)
)
o

1 01,10 0 Of,

~
—_
—_
—_
()
[
(@)
—
—
(@)
()
[
[
[

1 1 11

@]
(@]
]
]
@]
@]
]
@]
]
]
@]
@]
]
]
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Proposition 3.4.2. If o € 7,7, then oV = ¢V *! for some N < n.

Proof. If o € T, by using the definition of T;" and since n is finite, then we have
oi) <iV1<i<n ,s0i>0o(i)>0%i)>03i) > o =¥ for some
N<n. ]

As a result of this proposition ,if 7 € S,,,0 € 7,7 and o, = wor~! | then

o = o™ . Soforall o€ X,o" =0t

The following theorem, gives us the answer of ;what X = Uycg, (77, 7~ ") is? When is

o € T, conjugate to an element of 7" ? Since it gives the conditions on ¢ to be in

X .

Theorem 3.4.3. If X = Uycs, (7T, 77Y) , then o € X < o™ = o™ L.

Proof. (=)

IfoeX = o=7n'01.,0€T}
Tor ' =0¢€ T}
mon Hi) <iVi=1,2,...,n

(ror 1)?(i) < mor (i) <iVi=1,2,...,n

ol

(rom DG < (ror @) < - <monTt <iVi=1,2,...,n

So there is some N; such that
(ron )i+ 1)(i) = (mon= )} (i) = roNirin=l(i) = roNin~! = mol'r~! , therefore take

(2 (2

M = mazN; to get oM(i) =cMH(i)Vi=1,2,...n .
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(<) Now if 3 N such that o” = o™ | we need to show that o € X . Define
the relation < on {1,2,...n}as: i <j 3¢t >0 such that o'(i) = j ,and prove that
=< is partially ordered(reflexive, antisymmetric and transitive ).

(i) =< reflexive: ¢%(i)=1(i)=iVie1,2,...n.S0 i<iVi=1,2,...n.

(ii)< antisymmetric : if i < 7,7 < i,suppose that

(i) =4, t>0,0°)=i,s>0 = olt+s)=0°(j)=1i
= oIk = ivk

= (t+s)k > N for some k.

i.e IM > N such that o™ (i) =cM(i)=i,M > N = o"(i)=1i.
But j = o'(i) = ot(cV(i)) = o't + N)(i) = oV (i) = i . Therefore, < is symmetric .

(iii)< is transitive: If

i<7,7<k = o'(i) =74 0°j) =k for some t,s >0
= k=0'() = (0 () = o)

= 1=k

Then < is partially ordered, so < can be extended to a linear ordered, i.e 1,2,...n =

i1,19,...1, that means I 7 € S, such that ix =7n(k) ,ix <4 =k <1, s0

m(k)=n(l) = k<I
= o'(m(k)) = 7(I)

= 7 lo'(k) <1
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3.5 Big Cell

We have seen that the big cell B~ B is of much importance in group theory . So we
study the analogues product 7,7t of the subsemigroups 7, and 7 " to know more
about it,and connect our results with what we already know about the Borel subgroups

B and B~ . For that we will introduce two theorems,we begin with:

Theorem 3.5.1. Every idempotent element e € T, isin T, T, , that means e can
be written as a product of positive root elements and negative root elements
(ie e€T,,e?=e =e=ce" €T, T+ forsome elements e~ € T, and

et eTt ).

Proof. Let e € T,, ,be an idempotent element, so e* =e = ¢€%(i) = e(i) = e(e(i)) .

Now if e € 7,% by the definition of 7,1 |

4
[}
[\
—~
~.
~—

e(e(i)) = e(< i) which < i (sincee €T, ).

Alsoyif e€ T, = e(i) >1i

= e%(i) = e(e(i)) = e(> 1) which > i (since e € T, ).
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Therefore, in both cases e € 7, 7.5 (since 7, , T, C T, T.").
Now if ee T, —{T,F UT,} = e(i) <iforsome s and e(i) > for others, then we

can write e as a product of e~ € 7,7 and et € 7,1,

e(i) if e(7) >4
where e~ (i) = ) (0) =
i, otherwise

and ¢+(i) = e(i) if e(1) <1

i , otherwise
Therefore e =e"et € T T .
If e(i)>i =e(i)=e (i) and et (i) =i. If e(i) <i = e(i) =eT(i) and e (i) = i. So

in both cases e=e¢"et € T TT.

Example 3.5.2. Lete= |1 0 1 1 0| beanidempotent element (¢* =¢), in T;

then e=ee*=110 10 0|00 1 1 0f(e=eereT, T
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Alsofore= |0 0 0 0 0 0 0| €Tz, e=ee™ €T, T;" where
000O0T1T171
00 0O0O0O0O O
0 00O0O0OO0OD@ O
00 0O0O0OO0OO@ O 1000 0O0O
00 0O0O0O0OO O 01 00O0O0O0
1110000 0 01 00 00O
e =100 01000 and e"=10 0 0 0 0 0 0
00 0O0T1TTQO0@ 0 000O0T1T1T1
00 0O0O0OT1TDPO0 000 0OO0O0ODP
00 0O0O0OO0OT1 000 O0O0O0OO© O

We now find some necessary conditions for o to be in 7, 7" :

Theorem 3.5.3. If o € T, Tt , then o is satisfies the following two conditions:
1. If ois(1—=1)on {1,2,...,m}, theno(i) > i Vi=1,2,...,m .
2. If {1,2,...,m} C Rang (o) ,then o(i) <iVi=1,2,...,m.

Proof. Suppose o € T, 7.7 ;s0 0 =0 0" where 0~ €T, and ot €T .
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1. If o is (1—1) on {1,2,...,m}, then oF will be (1 —1), because if

ot(i)=0"(j), i, j€{1,2,....m} = o ot (i)=0 0" (j)
= o(i) = o(j)

= i=j since ois (1 —1).
And we can show (by induction )that o% is the Identity map on {1,2,...,m} ,
at i=1, 07(1) =1 (from o* definition)
ct(2)<2=0"(2)=1or2,

but otis (1—1),s0 07(2)#1=0(1) ;then 07(2)=2 andsoon ...

Suppose ot (j) =j for j <i,since o*(i) <4, then if

ot (i) =3, j <i =o"(i) =0"(j) =J.

But since ot is (1—1) on {1,2,...,m}, that means i = j which a contradiction.
So o7 (i) =i , therefore o7 is the identity map on {1,2,...,m} , that means
o(i)=0c0c"(i)=0" (i) >iVi=1,2,...,m (from o definition ).

2. IF {1,2,...,m} C Rang o ,then o(i) <iVi=1,2,...,m.
If o =0"0",{1,2,...,m} C Rang 0 C Rang o~ . First, will try to prove that
o~ is the Identity map on {1,2,...,m} and we will do that by induction,since

that

1€ Rang o~ = 1=o0 (j)for some j
= 1=0()=J

= j=1,s00 (1) =1.

o8



2€ Rang o~ = 2=o0 (k) for some k

= 2=0 (k) >k,sok=1o0rk=2.

If k=1=2=0"(1) =1 which a contradiction,so k=2 = 0"(2) =2, and so
on ...

Suppose that o~ (j) =jVj <i,i,j € {1,2,...,m}, want to show that o~ (i) =i .
Since 2 € Rangoc =2 =0 (k) >k ,k=1 or k=2, then 2=0"(2). Same

argument for

i€ Rango~ = i=o0 (k)>Ksoi>k

= i1=0 (k)=k, theni=Fk o (i) =1i.
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Example 3.5.4. For n =3, we know that |73 = 3% = 27 where |T;7| = 3!

|

J’_

-

0 0 1 01

ja=)
—_
)
)
—_
—_
—_

1 0,0 1 OF:

[aw]
—_
—
o
o
o
(a]
o
o

o

01 000

)
)
)
=}
=}
=}
=}
=}
—_

and |T3 | = 3!=6 .

)
)
)
o
)
)
[ R e
@)
)
)
o — e
o
)
)

=T, =
100\ {000
01 o0f.]1t 1ol ]o1tol.[{1t00].]ooofl.]100
001/ \oo1) \to1)/ \o11) \1t11) \o11
101\ {oo0o0\ [0o0 00 00
T T =47 .T% oo o], |toz1f.[t11].]oo01|.[o1
o010/ \o1o)/ \ooo) \110) \1o0
And
00 1) {o10) {ooo) {011\ (01
T =<7t 1ofl.looofl. |t 11].]1t00[.]10
000/ \to1) \ooof \ooo/ \oo

So [Ty T5'| = |T5" 75| = 16 .

By theorem(3.5.1) we know that each element of:

100 100 1 01 0 0

o
—_
—_
=)
(a]

E(T:)=<l0 1 1|00 o0ol,lo 10,0 1

=}
@)
(@)
()
—_

000 011 000 10

—
o
(e
—
@)
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000 111 000
000f.]loo0oo0],]1 11 isin T, 75" .

1 11 000 000

Now let see which o € T3 and which o ¢ T3 T3 ?

0 01 011 010 010 1 00 0 01

110,y 00¢-f1 0 1511 0 O0}>10 0 1,10 0 O},

000 000 000 0 01 010 110
0 01 010 011 010 0 01
100,100 1}-]J0 0 O0O-{0 O O]-10 1 O
010 1 00 1 00 1 01 1 00

All of these elements, they do not satisfies the condition(ii) of theorem (3.5.3),and just

0 01 0 01
1 10f,]0 00 are satisfy condition (i) .

000 1 10

In GL,(F),A € B~ B if and only if all the minors of A are non-zero.The analogous
problem in 7, seems much more difficult.
Problem Let ¢ € 7, .Find necessary and sufficient condition for o to
bein T, T .
For GL,(F) and any m € W = S,, we know that

7Bn'C B B .

One can ask, is this true for the full transformation semigroup 7, 7
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(e is #Tn 1 CT T+ 7)

The answer is NO! , and the following example shows that.

110

Example 3.5.5.If 7 = (12) ,and o0 = |0 0 1 then wom~! =

000

001
1 1 0| whichnotin 75 7;" (see example(3.5.4) ).

000
3.6 Parabolic Semigroups

We now define the analogues of parabolic subgroups of GL,(F) .

Let o € 7, where n =ny+ns+---+n; satisfies the following conditions

O'(Z) §n1 W) §n1

0(i)§n1+n2Vn1<i§n1—|—n2

J(i)gnVn1+n2+---+nt_1<i§n

So o will be as:
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ny no Ny
/* % % ko ok % * ok *\
* ok ok S S ko ok *
ES * * ok ok * ko ok *
* ok *
ko ok *

Let denote by P for the set of all s in this form .
Theorem 3.6.1. P is a subsemigroup of T, and
| Py i, | = 01 (01 12)"2 (ng + 1o +n3)" (0 +ng 4 -+ )™

Let P~ denote set of all element of o of the form:
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n U5 ny
* % ok % *
* % k% *
* ok k% * * % *
<k

We call P opposite parabolic subsemigroup.
Theorem 3.6.2. P, is a subsemigroup of T, and

Example 3.6.3. If ny=1and no=1s0on=1+1=2.
Then o(i) <ny=1Vi<1l=o0(l)=1 and o(i) <ny+ng=1+1=

2V 1<i<2.,80 0(2) =1 or 2 then we have just two o’s satisfies these

conditions :
10 11
o] = and 09 =
01 00
1 0 1 1
So Pl = :
01 00
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10 00
Also, P, has two elements: oy = and o9 =

01 11
Example 3.6.4. If ny=1 and ny =2 s0o n=14+2=3.

Then
o(i)<n=1Vi<l=o0(l)=1
and
o(i) <m+n=14+2=3V1<i<3 = o(2)=1,20r 3 ,and

o(3) =1,2 0r 3then |Pl,|=1x3>=9 and |P,| = (1+2)'22 =12

as shown below satisfies these conditions:

(10 0) (11 1) (11 0)

o1=|1010},02=100 01,03

001];

\0 0 1) \0 0 0) \0 0 0)
(11 0) (10 1) (10 1)

oi=1000]|.05=|010].06=000].
\0 0 1/ \0 0 0) \0 10/
(10 0) (10 0) 100
or=1011|,08s=]00 1]|.;andog=10 0 0

\0 0 0) \0 1 0) 011
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Also,
000 000 000 000 1 00

Pio=<l0oo0oo0|.-l0o10]:-l101]:-l110]|:]001],

111 1 01 010 001 010
1 00 100 000 000 000
011|000}, 1 00,11 111001},
000 011 011 000 110

\

000 100

~”

000,101

1 11 001
Thus we see that the opposite parabolic subsemigroups P;’,, P, have

different sizes .
So we see that unlike for GL,(F') (see section (2.8) ),

Jr — . .
Py inytoin, and P04 can have different sizes.

Now we can define the root elements e;; as before. e;;(j) =1 and,
eij(k) =k Vk # j . Let Py in,+.4n, be theset of all ¢’s in this form, so

the following theorem gives the rule to find the number of all root elements

1 Pn1+n2—|—~~-—|—nt .
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Theorem 3.6.5. Let R. be the number of root elements in P, , then
R. = (n?—ny)+(n1+ng).no—ng+(ny+ng+ng).ng—ng+- - -+n.ng—n; . (i.e.

R, = n%—kn%—k- . -+nf—n1—n1n2—n1n3—n2n3 =N N — NN — - - Ny 1Nt )

Proof. If e;; is aroot element in P, , the e;; satisfies all conditions,which
have given in the definition of P, ,

then we have n? — n; root elements satisfies the condition i, < nq,i #
j ,we have (nj+ no)ns —ns root elements satisfies the condition n; < j <
ni+mns ,i < ny+mny ,we have (ny+ ng+ ng)ng — ny elements satisfies the
condition ny+ns <j<ny+ns+ng,t <ni+ns+ns,...and we have

n.n; —n; root elements satisfies the last condition. Therefore, the number

R, of root elements in P, is

R, = (n?—n1)+ (n1+ng).ng—ng+ (N +no+nz)ng—ng+---+n.ng—ny .

(i.e Re:n%+n§+---+nf—n1—nmg—nlng—...nmt—...nt,lnt)

]

Example 3.6.6. Let P, be a set as defined above, where

n=mny+n9,n =1 and ny =2 ,then P, o contains nine elements.
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The number of root elements in P}, is :

(n* —ni)+ (np+ng)me—ng = (I2=1)+(14+2).2-2
= 0+6—-2
= 4
= which are
€12, €23, €13 and es3 .

P/, in this case will contain the same number of root elements which 4 ,

they are :
€12, €13, €32 and es3

For more explanation , let n = 2+3, then P;Zr3 and P, 5 will contains

each o in the following forms :
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and

(o s % )
x X k x
0 x k x
0 x ok x
\0 Y
[ 00 0)
x 000
x X k%
x x k%
\* * */

In this case the number of root elements in Py’ 5 is :

(Tl% — ”I’Ll) + (711 + ng).ng — N9

Which , they are :
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(22 -2)+(2+3).3-3

14



€21, €12, €43, €53, €54, €13, €23, €14, €24, €34, €15, €25, €35, €45 .
The same thing ,if we consider n = ny + ns + ng , where

ny =2,n9 =3,n3 =2 .Then P = PJ, , will contains each o as:

0O Ol*x % * x =

0000 0% =

Kooo

)
)
*
*
SN—

+

and in this case the number of root elements in P 5., will be:

(22-2)+(2+3)3-3+(2+3+2)2—-2 = 26

€21, €12, €13, €23, €43, €53, €14, €24, €34, €54, €15, €25, €35, €45, €16,

€26, €36, €46, €56, €76, €17, €27, €37, €47, €57 ,C67 ,

and P, 5 o will contains each o as:
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\*******)

— . . Jr .
Py 5., will contains the same number of root elements as py, 5., ,which

26 as following:
€21, €12, €31, €32, €41, €42, €51, €52, €61, €62,€71, €72, €43, €34, €53, €35,

€54, €45, €63, €64, €65, €73, €74, €75, €76, €67 -
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