
ABSTRACT

MOHAMED, SAAD A. AHMED. A Lie Theoretic Approach to the Full Transformation
Semigroup. (Under the direction of Mohan Putcha.)

The full transformation semigroup is the semigroup analogue of the symmetric group.

Any semigroup is isomorphic to a semigroup of transformations . This semigroup arises

naturally in automata theory, a branch of theoretical computer science .

The purpose of this thesis is to study the full transformation semigroup in a new way. We

accomplish this by realizing that the full transformation semigroup is a subsemigroup of

the monoid of all n × n matrices.This allows us to transfer Lie theoretic concepts to

the full transformation semigroup. In particular we find analogues of Borel and parabolic

subgroups, root elements and Chevalley’s big cell.
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Introduction

The full transformation semigroup Tn has been much studied, see for example

[1],[2],[8],[9], [13] and[14]. In this thesis we find a new way to study the full transfor-

mation semigroup.

Since Tn is a submonoid of the monoid Mn(F ) of all n × n matrices over a field

F , we can apply Lie theoretic aspects of the unit group GLn(F ) , see[4],[5]and[6],to

Mn(F ) , and then to Tn .

We obtain the analogues T +
n and T −n of Borel and opposite Borel subgroups and

introduce the concept of root elements of Tn .

We prove the following results:

1. We prove that Tn = SnT +
n , where Sn is the symmetric group.(Theorem 3.2.1 )

2. We show that T +
n is generated by the positive root elements and that this gives

a presentation for T +
n .(Proposition 3.1.8 and Theorem 3.1.10 )

3. We study the conjugates πT +
n π and their intersections,we find a precise formula

for |T +
n ∩πT +

n π
−1| (Theorem 3.3.4),and notice that this is not determined by `(π)

,like it is for GLn(F ) .

4. By Schur’s theorem any element of Mn(F ) is similar to an upper triangular matrix.

The analogous result is not true for Tn . We prove σ ∈ Tn is conjugate to an

element of T +
n if and only if σn = σn+1 . (Theorem 3.4.2 )

5. We study the analogue T −n T +
n of Chevalley’s big cell B−B of GLn(F ) , we

find that all idempotents are in T −n T +
n (Theorem 3.5.1 ), we also find necessary

conditions for σ ∈ Tn to be in T −n T +
n .(Theorem 3.5.3)
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However the general problem of characterizing the elements of T −n T +
n remains

open.

6. We define analogues P and P− in Tn of opposite parabolic subgroups in GLn(F ) .

We determine |P | and |P−| (Theorem 3.6.1,Theorem 3.6.2) and find that unlike

in GLn(F ) , P and P− are usually not of the same size. We also determine the

root element of P and P− . (Theorem 3.6.5)
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Chapter 1

Semigroups

We will start with some basic information about semigroups, ideals and how to classify

them by Green’s relations, after that we will concentrate on the full linear transformation

semigroups . We know that a semigroup is a group with out the inverse and the identity

conditions. Likewise we also know that a monoid is almost a group ,or a group missing

only the inverse requirement. So the monoid is a semigroup with the identity, and the

group is a monoid has inverse for each element.

1.1 Semigroups

A non-empty set S with associative binary operation ( . ) is called a Semigroup and

denoted by (S, .) . If S is finite, then |S| will denote to the number of elements of

S . If S has an identity element 1 such that x.1 = 1.x = x ∀x ∈ S , in this case we call

S a monoid . If S does not have an identity, always we can adjoin an element works as

1 , so S1 = S ∪ {1} will be a monoid.
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Also, if S does not have a zero element 0 such that 0.x = x.0 = 0 ∀x ∈ S , we can

adjoin an element 0 to S to get S0 = S ∪ {0} as a semigroup having zero.An element

s ∈ S is said to have an inverse if there exists an element x ∈ S such that s = sxs

and x = xsx ,if every element in S has a unique inverse,denoted x−1 ,then S is called

an inverse semigroup.

The element e ∈ S is called idempotent, if e2 = e , will denote to the set of all

idempotents elements of the semigroup S by E(S) ,we will give the idempotent elements

more attention, note that E(S) is a subsemigruop of S .

If H ⊆ S ,H 6= φ , then H is a subsemigroup of S , if H is closed under the same

binary operation.

If A ⊂ S ,A∅∅ , then the subsemigroup generated by A , is the smallest subsemigroup

of S containing A , and denoted by 〈A〉 , which consisting of all finite products

a1a2 . . . an of the elements of A , we call 〈A〉 cyclic subsemigroup if A has just one

element.In general, we call S a cyclic semigroup, if it can generate by a single element.

If A and B are non-empty subsets of a semigroup S , then we define AB as

{ab| a ∈ A, b ∈ B} .

An element s ∈ S is said to be regular if there exist x ∈ S such that s = sxs and

x = xsx . S is called a regular semigroup if every element of S is regular[1]and[2].

We note that if sxs = s then e = sx is an idempotent element of S such that es = e ,
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e2 = (sx)(sx)

= (sxs)x

= sx

= e ,

es = sxs

= s.

Example 1.1.1. Let S = {. . . ,−4,−2, 0, 2, 4, . . . } be the set of the even integers

numbers, then S is a semigroup with usual multiplication, which has zero 0 ,and does

not have identity. So S1 = S ∪ {1} ,and E(S) = {0} .

Example 1.1.2. Let S = {1, 2, 3, . . . } , then S is an infinite semigroup with the usual

multiplication , which has an identity but does not have a zero, so (S, .) is a monoid.

therefore S1 = S , S0 = S ∪ {0} and E(S) = {1} .

Example 1.1.3. For any set S 6= ∅ define the two semigroups L(s) = (S, .) where (.) is

defined as x.y = x ∀x, y ∈ S ,and R(S) = (S, .) where (.) is defined as x.y = y ∀ x, y ∈

S , as long as S has more than one element, L(S) and R(S) are non-commutative

semigroups without identity. E(L(S)) = L(S) and E(R(S)) = R(S) .

Example 1.1.4. Let X be any set,and let 2X be the set of all subsets of X , then

S1 = (2X ,∪) and S2 = (2X ,∩) are semigroups with identities and zeros.For S1 the

identity is the empty subset and the zero is the set X , and S2 has the set X as identity

and the empty set as zero, E(S1) = S1 and E(S2) = S2 .
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Example 1.1.5. Let X be a set. Then S = (2X×X , .) is the semigroup of all relations on

X , where (.) defined by R1.R2 = {(x, y) : for some z ∈ X, (z, x) ∈ R1, (z, y) ∈ R2} .If

R ∈ S let R−1 = {(y, x) : (x, y) ∈ R}, then (R.T )−1 = T−1.R−1 for all R, T ∈ S . The

identity here is the relation I ∈ S , where I = {(x, x) : x ∈ X} .So S1 = S ,hence S is

a monoid.

Example 1.1.6. Z(2×2) =


a b

c d

 : a, b, c, d ∈ Z

 is a semigroup with , the identity

I =

1 0

0 1

 , the zero O =

0 0

0 0

 and many idempotents as

−1 −1

2 2

.

1.2 Ideals, Homomorphisms And Green’s Relations

A non-empty subset I of a semigroup S is called left ideal, if for all i ∈ I , s ∈ S ,

then s.i ∈ I ,that is SI ⊆ I ,also called right ideal, if for all i ∈ I , s ∈ S , then

i.s ∈ I ,that is IS ⊆ I and I is called an ideal, if satisfies both conditions. Ideals,right

and left ideals are subsemigroups.An ideal I of a semigroup S is called principal ideal

if generated by one element s ∈ S , and will denoted by I = 〈s〉.

An ideal I of S is called a proper ideal,if it does not contain ideals of S other

than 0 , and it does not contained in ideals of S other than S it self. A semigroup

S is simple if it has no proper ideals.

If I1, I2, . . . , In are all the ideals of S , then I1 . . . In = I1 ∩ · · · ∩ In , this ideal is

the unique minimal ideal of S ,it is called the kernel of S , and denoted by K(S) .If a

semigroup S has a zero, then K(S) = 0 .

For any semigroup S the sets of all ideals, right ideals, and left ideals are closed

under the operations of union and non-empty intersection.

6



Definition 1.2.1. Let S1, S2 be semigroups, then

ϕ : S1 → S2 is a homomorphism iff ϕ(x1x2) = ϕ(x1)ϕ(x2) ∀x1, x2 ∈ S1

We call ϕ monomorphism or (1 − 1) homomorphism if ϕ is (1 − 1) and we call ϕ

epimorphism or onto homomorphism if ϕ is onto and here we call S2 a homomorphic

image of S1 , also ϕ is isomorphism if it is (1− 1) and onto, in this case we say S1 and

S2 are isomorphic.

Example 1.2.2. Let S1, S2 as defined in example 1.1.4 , and let ϕ : S1 → S2 defined

by ϕ(A) = Ac , where Ac is the complement of A .Then ϕ is an isomorphism, so

S1, S2 are isomorphic.

Example 1.2.3. Let I be an ideal of a semigroup S , and let S/I be the quotient

semigroup,which is defined to be ((S − I) ∪ {0}, .), where 0 /∈ (S − I) and

s1.s2 =


s1s2, if s1s2 ∈ (S − I)

0 otherwise.

The natural epimorphism η : S −→ S/I is given by

η(s) =


s, if s ∈ S − I

0, if s ∈ I.

then we note that S/S = {0} and S/∅ = S0 .

Now we introduce some of the most commonly used ideas in semigroup theory, which

are Green’s relations. Green’s relations were first studied by J.A.Green in [8],it defined

by some relations as we will see in the following definitions.
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Definition 1.2.4. Let S be any semigroup , and s ∈ S , then the principal ideals

generated by s and Green’s relations on S are defined as following :

1. L(s) = S1s is the principal left ideal generated by s and

s1Ls2 ⇐⇒ L(s1) = L(s2).

2. R(s) = sS1 is the principal right ideal generated by s and

s1Rs2 ⇐⇒ R(s1) = R(s2).

3. J(s) = S1sS1 is the principal ideal generated by s and

s1J s2 ⇐⇒ J(s1) = J(s2) .

4. s1Hs2 ⇐⇒ s1L s2 and s1Rs2 .

5. s1D s2 ⇐⇒ ∃s ∈ S such that s1L s and s R s2 or , equivalently, ⇐⇒ ∃t ∈

S such that s1R t and tL s2 .

L ,R ,J ,H , and D are equivalence relations on S , then we can talk about the

equivalence classes for these relations. For example, let Ls be the L -class containing

s ,that is the set of all elements of S which are L -equivalent to s , so

Ls = {t ∈ S : sLt} .

The same for the other relations .

Example 1.2.5. let (S, .) be a semigroup, where S = {a, b, c} and (.) defined as in

the following table: E(S) = {a, c} and S has identity which a ,so S = S1 ,then

8



. a b c
a a b c
b b a c
c c b c

S1a = {a, b, c}, S1b = {a, b} and S1c = {c} .

Therefore, La = {a} , Lb = {b} and Lc = {c} .

Also, aS1 = {a, b, c}, bS1 = {a, b, c} and cS1 = {b, c} , then Ra = {a, b} = Rb

and Rc = {c}.

J(a) = S1aS1 = S1 and J(b) = S1bS1 = S1 , so J(a) = J(b)⇒ aJ b.

J(c) = S1cS1 = {b, c} . H(a) = {a} , H(b) = {b} and H(c) = {c} .

From[4] we have the following theorem to know more about idempotents :

Theorem 1.2.6. The following three conditions on a semigroup S are equivalent :

(i) S is regular , and any two idempotent elements of S commute with other;

(ii) Every principal right ideal and every principal left ideal of S has a unique idempotent

generator ;

(iii) S is an inverse semigroup (i.e., every element of S has a unique inverse in S ).

The following properties can be found in [4]. For a semigroup S , the J ,L and R

relations can be ordered by the following orderings;

1. Ja ≤ Jb iff J(a) ⊆ J(b) .

2. Ra ≤ Rb iff R(a) ⊆ R(b).

3. La ≤ Lb iff L(a) ⊆ L(b) .

These orderings are reflexive , antisymmetric, and transitive. Also, we can note that:

9



1. R-classes and L -classes are disjoint unions of H classes.

2. J -classes are disjoint union of L-classes and , also is disjoint union of R-

classes.Hence J -classes are disjoint union of H-classes.

3. Every H-class is the intersection of an L-class and R-class.

4. The intersection of an L-class and R-class is either empty or is an H-class.

It is obvious that R ⊆ J , L ⊆ J and D ⊆ J , so the Figure(1.1) shows the relation

between these classes on the semigroup S .

L
↗ ↘

H D → J
↘ ↗
R

Figure 1.1: Green’s classes in the semigroup S

Note: For all finite semigroups S , J = D .
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1.3 Full Transformation Semigroups.

For any non-empty set X . Let TX be the set of all functions (or linear transformations

from X to itself f : X → X , then TX with the operation of composition of functions

is called full transformation semigroup.

For each α ∈ TX we associate two things : the range of α which denoted Xα

or α(X) and the equivalence relation on X denoted by πα and defined by xπαy if

α(x) = α(y) . The equivalence classes Xπα of X under this relation has the same

number of elements as the range of α , |Xπα| = |Xα| and this number called the rank

of α .

In this thesis we will focus on the semigroup of all functions from the set {1, 2, 3, . . . , n}

to itself, which denoted by Tn, as example of the full transformation semigroup. (i.e.

Tn = {σ : σ : {1, 2, 3, . . . , n} → {1, 2, 3, . . . , n}, σ function or linear transformation ),and

in this case we have a few notations will be used to represent the elements in Tn as

appropriate:

1. Two line notation, if σ ∈ Tn ,then we can write σ as 1 2 . . . n

σ(1) σ(2) . . . σ(n)


For example , σ ∈ T5, σ(1) = 2, σ(2) = 2, σ(3) = 1, σ(4) = 3 and σ(5) = 2 , then

σ =

1 2 3 4 5

2 2 1 3 2


2. One line notation,since the first line in the two line notation is the same, so we can

omit it and just write the second line to represent σ as

11



σ =

(
σ(1) σ(2) . . . σ(n)

)
For example, we can write σ ∈ T5 which defined above as

σ =

(
2 2 1 3 2

)
3. Matrix notation , let σ ∈ Tn , we can indicate σ(j) = i by place a 1 in the

(i, j)−entry of n× n matrix. For example, again we can write the σ ∈ T5 which

defined above as

σ =



0 0 1 0 0

1 1 0 0 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0


Note: |Tn| = nn.

Example 1.3.1. Let S be the semigroup of all functions from the set X = {1, 2, 3}

to it self ,so S = {σ : σ : {1, 2, 3} → {1, 2, 3}, σ function or linear transformation }

|S| = 33 = 27 So

S =


1 2 3

1 1 1

 ,

1 2 3

2 2 2

 ,

1 2 3

3 3 3

 ,

1 2 3

1 2 2

 ,

1 2 3

2 1 1

 ,

1 2 3

1 3 3

 ,

1 2 3

3 1 1

 ,

1 2 3

2 3 3

 ,

1 2 3

3 2 2

 ,

1 2 3

1 2 1

 ,

1 2 3

2 1 2

 ,

1 2 3

1 3 1

 ,

1 2 3

3 1 3

 ,

1 2 3

2 3 2

 ,

1 2 3

3 2 3

 ,

1 2 3

1 1 2

 ,

1 2 3

2 2 1

 ,

1 2 3

1 1 3

 ,
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1 2 3

3 3 1

 ,

1 2 3

2 2 3

 ,

1 2 3

3 3 2

 ,

1 2 3

3 2 1

 ,

1 2 3

2 1 3

 ,

1 2 3

1 3 2

 ,

1 2 3

2 3 1

 ,

1 2 3

1 2 3

 ,

1 2 3

3 1 2


.

E(S) =


1 2 3

1 1 1

 ,

1 2 3

2 2 2

 ,

1 2 3

3 3 3

 ,

1 2 3

1 2 2

 ,

1 2 3

1 3 3

 ,

1 2 3

1 2 1

 ,

1 2 3

3 2 3

 ,

1 2 3

1 1 3

 ,

1 2 3

2 2 3


1 2 3

1 2 3


.

From [8]we have the following property with it’s proof, to get the number of idempo-

tents in the semigroup Tn :

Property 1.3.2. The number en of the idempotents in the semigroup Tn equals to

en =
n∑
k=1

 n

k

 kn−k. (1.1)

Proof. To define an idempotent α of rank k we have to choose a k−element set

im(α) (this can be done in

 n

k

 different ways), and then we have to define a

mapping from {1, 2, . . . n}\im(α) to im(α) in an arbitrary way (this can be done in

kn−k different ways). Hence Tn contains exactly

 n

k

 kn−k idempotents of rank k .

The statement is now obtained applying the sum rule.
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Example 1.3.3. The number of the idempotents elements in T3 is

e3 =
3∑

k=1

 3

k

 k3−k =

 3

1

+

 3

2

+

 3

3


= 3 + 6 + 1

= 10.

and the number of the idempotents elements in T4 is

e4 =
4∑

k=1

 4

k

 k4−k =

 4

1

+

 4

2

+

 4

3

+

 4

4


= 4 + 24 + 12 + 1

= 41.

From [8] we have the following theorems and corollaries ( also the proofs can be found

in[8]) which show some properties of the Green’s relations on the full transformation

semigroup Tn:

Theorem 1.3.4. Let S = Tn ,for each α ∈ Tn the right principal ideal generated by α

has the following form:

αS = {β ∈ S : im(β) ⊆ im(α)} .

Corollary 1.3.5. 1. Let S = Tn ,and α ∈ S such that rank(α) = k , then

|αS| = kn .

14



2. the semigroup Tn has exactly 2n − 1 different principal right ideals.

Theorem 1.3.6. Let S = Tn ,for each α ∈ Tn the left principal ideal generated by α

has the following form:

Sα = {β ∈ S : dom(α) ⊆ dom(α) and πβ ⊆ πα} .

where (xπαy ⇔ α(x) = α(y) ).

Corollary 1.3.7. 1. Let S = Tn ,and α ∈ S such that rank(α) = k , then

|Sα| = nk .

2. the semigroup Tn has exactly

Bn =
n∑
k=1

S(n, k)

different principal left ideals ( Bn is the number of unordered partitions of the set

{1, 2, . . . , n} into disjoint unions of nonempty k blocks ) .

Theorem 1.3.8. Let S = Tn ,for each α ∈ Tn the principal ideal generated by α has

the following form:

SαS = {β ∈ S : rank(β) ≤ rank(α)} .

Corollary 1.3.9. 1. Let S = Tn ,and α ∈ S such that rank( α )= k , then

|SαS| =
k∑
i=1

S(n, i)
n!

(n− i)!

.
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2. the semigroup Tn contains n different principal ideals.

Lemma 1.3.10. If α , β ∈ Tx ,then:

1. αRβ ⇐⇒ Xα = Xβ .( α , β have the same range).

2. αLβ ⇐⇒ Xπα = Xπβ .( α , β have the same partition).

3. α and β are D−equivalent ⇐⇒ They have the same rank.

Theorem 1.3.11. In the finite full transformation semi group Tx we have:

1. D = J .

2. There is a one-to-one correspondence between the set of all principal ideals of Tx

and the set of all cardinal numbers r ≤ |x| such that the principal ideal corre-

sponding to r consists of all elements of Tx of rank ≤ r .

3. There is a one-to-one correspondence between the set of all D−classes of Tx and

the set of all cardinal numbers ≤ r such that the D−class Dr corresponding

to r consists of all elements of Tx of rank r .

4. Let r be a cardinal number ≤ |X| , there is a one-to-one correspondence between

the set of all L−classes in Dr and the set of all subsets Y of X of cardinal r

such that the L−class corresponding to Y consists of all elements of Tx having

range Y .

5. Let r be a cardinal number ≤ |X| , there is a one-to-one correspondence between

the set of all R−classes in Dr and the set of all partitions Xπα of X for which

|Xπα| = r such that the R−class corresponding to Xπα consists of all elements

of Tx having partition Xπα.
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6. Let r be a cardinal number ≤ |X| , there is a one-to-one correspondence between

the set of all H−classes in Dr and the set of all pairs (Xπα , Y ) , where Xπα is

a partition of X and Y is a subset of X such that |Xπα| = |Y | = r ,such that

the H−class corresponding to (Xπα , Y ) consists of all elements of Tx having

partition Xπα and range Y .

In other words, for Tn , let σ, β ∈ Tn , then: αRβ ⇐⇒ they have the same range

and αLβ ⇐⇒ they have the same fibers ( a fiber of a map f : X → Y is the set

f−1(y) = {x ∈ X : f(x) = y} ). R− classes are in (1− 1) correspondence with subsets

of the set {1, 2, . . . , n} and L -classes are in (1− 1) correspondence with partitions of

the set {1, 2, . . . , n} .

Let J be a J−class of a semigroup S . Let R1, . . . , Rm be the R−classes in

J , and let L1, . . . , Ln be the L−classes in J . Then, the H−classes in J are exactly

{H = Ri ∩ Lj : i = 1, . . . ,m; j = 1, . . . , n} . So the following table shows a picture of

J−classes , each row an R−class , each column an L−class, and the intersection of

each of row and column an H−class.
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Table 1.1: Eggbox of R,L, and H− Classes inTn

R1 H11

Ri Hij

Rm Hmn

L1 Lj Ln

Lets show these relations on T3 , we will use first line notation form (a1a2a3) as

defined before in the beginning of section (1.3), for the mapping 1 → a1, 2 → a2 ,and

3→ a3 ,i.e,

 1 2 3

a1 a2 a3

 , ai ∈ {1, 2, 3} , i = 1, 2, 3 just to save space in the tables.

Example 1.3.12. Let X = {1, 2, 3} , then TX = T3 = {(123), (132), (213), (231), (312),

(321), (111), (112), (113), (221), (222), (223), (331), (332), (333), (122), (133), (211), (233),

(311), (322), (121), (131), (212), (232), (313), (323)} .

Next table shows R,L,D = J and H− Classes for T3 .
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Table 1.2: R,L, and H-Classes of T3

H
HHH

HHH
HHH

X/α

Xα
{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

{1, 2, 3} (111)∗ (222)∗ (333)∗

{1} , {2, 3} (122)∗ (133)∗ (233)

(211) (311) (322)

{2}, {1, 3} (121)∗ (131) (232)

(212) (313) (323)∗

{3}, {1, 2} (112) (113)∗ (223)∗

(221) (331) (332)

(123)∗(312)

{1}, {2}, {3} (132)(231)

(213)(321)

Each row except the first row in the table(Range of α Xα ) is R −class , each

column except the first column(Partition of X/α ) is L −class and the intersections are

H−classes. The Dr = Jr − classes , (r = 1, 2, 3) where Jr is the set of all elements in

T3 of rank r , which : J1 = {(111), (222), (333)} ,

J2 = {(122), (211), (133), (311), (233), (322), (121), (212), (131), (313), (232), (323), (112),

(221), (113), (331), (223), (332)} and J3 = {(123), (312), (132), (231), (213), (321)}.

Thus , T3 has the following eggbox structure :
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Table 1.3: Eggbox Diagram for T3

1

1

1

1

2 2 2

2 2 2

2 2 2

6

From the eggbox , we can see that |T3| = 3(1) + 9(2) + 6(1) = 27 .

Now ,let see all of those properties in T4 , for that we will use the following example

from[ 1].

Example 1.3.13. Let X = {1, 2, 3, 4} then TX = T4 and |T4| = 44 = 256 elements,

here we have the unit group S4 which we denoted by J4(R4 = L4 = H4) , also we have

the maps of rank 3 which we denoted by J3 . Then we have the maps of rank 2 which

formed J−class J2 , finely we have the set of functions of rank 1 , J− class J1 , and

these J−classes are ordered linearly as shown in the following diagram:
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J1

|

J2

|

J3

|

J4

Figure 1.2: J -classes for T4

The next tables show that what each J−class looks like. As the previous example,

here , there are four J−classes Jr(r = 1, 2, 3, 4) , where Jr is the set of all functions

of rank r. The headings for the rows are partitions of the set X, and for the columns

are the ranges of the functions. Starred elements are idempotents.

Table 1.4: J1-class in T4

J1 {1} {2} {3} {4}

{1, 2, 3, 4} (1111)∗ (2222)∗ (3333)∗ (4444)∗
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Table 1.5: J2 Class for T4

J2 {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1}, {2, 3, 4} (1222)∗ (1333)∗ (1444)∗ (2333) (2444) (3444)

(2111) (3111) (4111) (3222) (4222) (4333)

{2}, {1, 3, 4} (1211)∗ (1311) (1411) (2322) (2422) (3433)

(2122) (3133) (4144) (3233)∗ (4244)∗ (4344)

{3}, {1, 2, 4} (1121)∗ (1131)∗ (1141) (2232)∗ (2242) (3343)

(2212) (3313) (4414) (3323) (2424) (4434)∗

{4}, {1, 2, 3} (1112) (1113) (1114)∗ (2223) (2224)∗ (3334)∗

(2221) (3331) (4441) (3332) (4442) (4443)

{1, 2}, {3, 4} (1122) (1133)∗ (1144)∗ (2233)∗ (2244)∗ (3344)

(2211) (3311) (4411) (3322) (4422) (4433)

{1, 3}, {2, 4} (1212)∗ (1313) (1414)∗ (2233) (2424) (3434)∗

(2121) (3131) (4141) (3232)∗ (4242) (4343)

{2, 3}, {1, 4} (1221)∗ (1331)∗ (1441) (2332) (2442) (3443)

(2112) (3113) (4114) (3223) (4224)∗ (4334)∗
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Table 1.6: J3 Class for T4

J3 {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

(1233)∗(2133) (1244)∗(2144) (1344)(3144) (2344)(3244)

{1}, {2}, {3, 4} (2311)(3211) (2411)(4211) (3411)(4311) (3422)(4322)

(3122)(1322) (4122)(1422) (4133)(1433) (4233)(2433)

(1232)∗(2131) (1242)(2141) (1343)(3141) (2343)(3242)

{1}, {3}, {24} (2313)(2312) (2414)(4212) (3414)(4313) (3424)(4323)

(3121)(1323) (4121)(1424) (4131)(1434)∗ (4232)(2434)

(1223)(2113) (1224)∗(2114) (1334)∗(3114) (2334)(3224)

{1}, {4}, {2, 3} (2331)(3221) (2441)(4221) (3441)(4331) (3442)(4332)

(3112)(1332) (4112)(1442) (4331)(1443) (4223)(2443)

(1231)∗(2132) (1241)(2142) (1341)(3143) (2342)(3243)

{2}, {3}, {1, 4} (2312)(3213) (2412)(4214) (3413)(4314) (3423)(4324)

(3123)(1321) (4124)(1421) (4134)(1431) (4234)∗(2432)

(1213)(2123) (1214)∗(2124) (1314)(3134) (2324)(3234)∗

{2}, {4}, {1, 3} (2321)(3231) (2421)(4241) (3431)(4341) (3432)(4342)

(3132)(1312) (4142)(1412) (4143)(1413) (4243)(2423)

(1123)(2213) (1124)(2214) (1134)∗(3314) (2234)∗(3324)

{3}, {4}, {1, 2} (2231)(3321) (2241)(4421) (3341)(4431) (3342)(4432)

(3312)(1132) (4412)(1142) (4413)(1143) (4423)(2243)
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Table 1.7: Eggbox Diagram for T4

J4 24 1.1.24 = 24

J3

6 6 6 6

6 6 6 6

6 6 6 6

6 6 6 6

6 6 6 6

6 6 6 6

6.4.6 = 144

J2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

7.6.2 = 84

J1 1 1 1 1 1.4.1 = 4

Total 44 = 256

.
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1.4 Connection with Automata Theory

In automata theory [3] and[12], full transformation semigroups arise naturally. One

consider a finite set of states Q and a finite input alphabet X, and a next state function

δ : X × Q −→ Q. Thus each x ∈ X gives rise to a function δx : Q −→ Q , given by

δx(q) = δ(x, q). Given a string of inputs x1, x2, . . . , xm ( not necessarily distinct ), the

effect of this string of inputs is given by δxn◦δxn−1◦· · ·◦δx1 .Thus if Q = {1, 2, . . . , n} then

each δx ∈ Tn and studying strings of inputs is the same as studying the subsemigroup

of Tn generated by δx, x ∈ X .

Example 1.4.1. For example let X = {x, y} and Q = {1, 2, 3} .If the next state

function δ : X ×Q −→ Q is given by

(x, 1) −→ 2

(x, 2) −→ 2

(x, 3) −→ 3

(y, 1) −→ 3

(y, 2) −→ 3

(y, 3) −→ 1

Then δx =

1 2 3

2 2 3

 , δy =

1 2 3

3 3 1

 ∈ T3 .

1.5 Mn(F ) Monoid of n× n Matrices

If F is a field, let Mn(F ) denote multiplication monoid of all n× n matrices over

F , also called a linear semigroup. Mn(F ) contains many idempotent elements such

as e =

Ir 0

0 0

, where Ir is the r × r identity matrix. The subset of Mn(F ) of all
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invertible n× n matrices under the matrix multiplication is a group, called the general

linear group,which denoted by GLn(F ) .Also, the subset

SLn(F ) = {A ∈ GLn(F ) | det(A) = 1} .

with the matrix multiplication,called the special linear group SLn(F ) .

If F is algebraically closed field , then

dimMn(F ) = n2 .

If F = Fq ,the finite field with q elements, then

|Mn(F )| = qn
2

.

It will be important for us to realize Tn as a semigroup of matrices . If σ ∈ Tn, let

A(σ) be the matrix with 1 in (σ(i), i)th position and 0 elsewhere. So each column of

A(σ) has exact one non-zero entry that is 1 , and this will be the same as the matrix

notation which defined in section (1.3).

Example 1.5.1. Let σ =

1 2

2 1

 ∈ T2, then σ can represents by 2× 2 matrix

A(σ) =

0 1

1 0

.

If σ =

1 2 3

2 3 2

 ∈ T3 , so σ can represents by 3 × 3 matrix as A(σ) =


0 0 0

1 0 1

0 1 0

.
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Also, if σ =

1 2 3 4 5

1 3 2 4 4

 ∈ T5, then A(σ) =



1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 1

0 0 0 0 0


.

In the next example will list all T3 elements in matrix form, after we listed them in

two lines form(example 1.3.1).

Example 1.5.2. For n = 3, T3 = {σ : σ : {1, 2, 3}→ {1, 2, 3}, σ function or linear

transformation }, |T3| = 33 = 27 So

T3 =




1 1 1

0 0 0

0 0 0

 ,


0 0 0

1 1 1

0 0 0

 ,


0 0 0

0 0 0

1 1 1

 ,


1 0 0

0 1 1

0 0 0

 ,


0 1 1

1 0 0

0 0 0

 ,


1 0 0

0 0 0

0 1 1

 ,


0 1 1

0 0 0

1 0 0

 ,


0 0 0

1 0 0

0 1 1

 ,


0 0 0

0 1 1

1 0 0

 ,


1 0 1

0 1 0

0 0 0

 ,


0 1 0

1 0 1

0 0 0

 ,


1 0 1

0 0 0

0 1 0

 ,


0 1 0

0 0 0

1 0 1

 ,


0 0 0

1 0 1

0 1 0

 ,


0 0 0

0 1 0

1 0 1

 ,


1 1 0

0 0 1

0 0 0

 ,


0 0 1

1 1 0

0 0 0

 ,


1 1 0

0 0 0

0 0 1

 ,


0 0 1

0 0 0

1 1 0

 ,


0 0 0

1 1 0

0 0 1

 ,


0 0 0

0 0 1

1 1 0

 ,


0 0 1

0 1 0

1 0 0

 ,


0 1 0

1 0 0

0 0 1

 ,


1 0 0

0 0 1

0 1 0

 ,

27




0 0 1

1 0 0

0 1 0

 ,


1 0 0

0 1 0

0 0 1

 ,


0 1 0

0 0 1

1 0 0




E(T3) =




1 1 1

0 0 0

0 0 0

 ,


0 0 0

1 1 1

0 0 0

 ,


0 0 0

0 0 0

1 1 1

 ,


1 0 0

0 1 1

0 0 0

 ,


1 0 0

0 0 0

0 1 1

 ,


1 0 1

0 1 0

0 0 0

 ,


0 0 0

0 1 0

1 0 1

 ,


1 1 0

0 0 0

0 0 1

 ,


0 0 0

1 1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 1


 .

Recalling some linear algebra and matrix theory, we see that :

For the semigroup Mn(F ) :

ARB ⇐⇒ A and B are column equivalent .

ALB ⇐⇒ A and B are row equivalent .

AJB ⇐⇒ rank(A) = rank(B) .

For the semigroup Tn we have :

αRβ ⇐⇒ α and β have the same fiber (preimages) that is ( R − classes correspond

to the set of all maps with the same fibers) .

αLβ ⇐⇒ α and β have the same range ( L− classes correspond to the set of all maps

with the same range).

Lastly, αJ β ⇐⇒ α and β have the same rank , that is ( J − classes correspond to

the set of all maps with the same rank).
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Chapter 2

Lie Theory of GLn(F ) and Mn(F )

If F is algebraic closed field, G = GLn(F ) is the unit group of the monoid Mn(F ) ,

then dimGln(F ) = n2 , and if F = Fq , then:

|Gln(F )| = (qn − 1)(qn − q) . . . (qn − qn−1) .

We review some basic concepts about algebraic group theory, which can be found in

[4], [5] and [6] as they pertain to Gln(F ) . The maximal tours T is the group of diagonal

matrices.

W = NG(T )/T is called the Weyl group of G .

2.1 Weyl Group and The Rook Monoid

For GLn(F ) , Weyl group W = Sn generated by simple reflections (i i+1), 1 ≤ i ≤ n .

Rn = NG(T )/T is called the Rook monoid . It consists of all 0−1 matrices with at most

one non-zero entry in each row and column.
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Example 2.1.1. Let G = GL2(R) the group of all invertible matrices,and

T =


a o

o b

 : ab 6= 0


then NG(T ) =


a 0

0 b

 ,

0 a

b 0

 : ab 6= 0


, W = NG(T )/T =


1 0

0 1

 ,

0 1

1 0


 ∼= S2

and NG(T ) =


a 0

0 b

 ,

0 a

b 0


 ,so

NG(T )/T =

R2 =


1 0

0 1

 ,

0 1

1 0


1 0

0 0

 ,

0 1

0 0

 ,

0 0

1 0

 ,

0 0

0 1

 ,

0 0

0 0


.

Definition 2.1.2. If σ ∈ Sn , then the length `(σ) is the smallest number of simple

reflections that σ is a product of. See[7] .It is also given by

`(σ) = |{(i, j) : i < j, σ(i) > σ(j)}| .

Example 2.1.3. If σ(123) ∈ Sn , then `(σ) = 2 . If σ = (23) ∈ Sn , then `(σ) = 1 .

2.2 Borel Subgroup

Let G = GLn(F ) ,the group B of all invertible upper triangular n × n matrices is

a Borel subgroup of G ,this means that B is a maximal invertible connected solvable
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subgroup of G .Also B− , the set of all lower triangular matrices is called the opposite

Borel subgroup of G .

The maximal tours T = B ∩ B− is the group of diagonal matrices .More details

about Borel subgroup can be found in [4],[5], and [6].

2.3 Schur’s Theorem

If F is an algebraically closed field, Schur’s theorem states that every matrix in

Mn(F ) is similar to an upper triangular matrix.[16]and [17]

So, that means for any matrix A ∈ Mn(F ) , A = xUx−1 for some x ∈ Mn(F ) and

some upper triangular matrix U .

In other words, that is gives :

GLn(F ) =
⋃
x∈G

xBx−1.

where B is the group of upper triangular invertible matrices ,and

Mn(F ) =
⋃
x∈G

xB x−1.

where B is the monoid of all upper triangular matrices.

(Schur’s theorem is not valid in Tn as we will see later).

2.4 Bruhat Decomposition

In Gln(F ) , the Bruhat decomposition says that given G = Gln(F ) , the Borel

subgroup B of upper triangular invertible matrices , and the Weyl group W of

permutation matrices, then
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G =
⊔
w∈Sn

BwB

So, that means we can write any element of G as the product of an upper triangular

invertible matrix , a permutation matrix, and an upper triangular invertible matrix.

Example 2.4.1. If n = 2, GLn(F ) =


a b

0 c

 , ac 6= 0

∪

a b

c d

 : c 6= 0, ac 6= bd


Renner decomposition[15 ] extends the Bruhat decomposition of GLn(F ) to Mn(F )

Mn(F ) =
⊔
σ∈Rn

BσB .

Where B is n × n invertible upper triangular matrix. This allows us to express

elements of Mn(F ) as a product of an upper triangular invertible matrix ,some element

in Rn and an upper triangular invertible matrix.

Example 2.4.2. Mn(F ) =


a b

0 c

 , ac 6= 0

 ∪

a b

c d

 : c 6= 0, ad 6= bc

 ∪
a b

0 0

 : a 6= 0

∪

0 b

0 0

 : b 6= 0

∪

a b

c d

 : c 6= 0, ad = bc

∪
0 b

0 d

 : d 6= 0

 ∪

0 0

0 0


.

2.5 Chevalley’s Big Cell

Let B denote to the group of invertible upper triangular matrices and B− denote

the group of invertible lower triangular . Then B−B is called the Chevalley’s big cell.

It is important in the structure theory of algebraic groups[4],[5] and[6]. By the Bruhat

decomposition
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G =
⊔
x∈Sn

B−xB

Now x−1B−x ⊆ B−B . So

G =
⋃
x∈Sn

xB−B .

This means that any invertible matrix A can be written as :

A = σLU

where σ ∈ Sn, L is a lower triangular matrix and U is upper triangular matrix. This

is called the LU decomposition in the linear algebra [16] and [17] (useful for solving

system equations). Moreover A has LU decomposition (that is it’s B−B ) if and only

if all the principal minor of A are non-zero.

Example 2.5.1. Let A =


1 2 3

2 −4 6

3 −9 −3

 , then A can be expressed as a product of

lower triangular matrix L =


1 0 0

2 −8 0

3 −15 −12

 and upper triangular matrix

U =


1 2 3

0 1 0

0 0 1

 , so

A = LU
1 2 3

2 −4 6

3 −9 −3

 =


1 0 0

2 −8 0

3 −15 −12




1 2 3

0 1 0

0 0 1
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LU does not always exist(even if A non-singular),for example, if A =


1 0 0

0 0 2

0 1 −1


is non-singular and can not factored as A = LU .However interchanging 2nd and 3rd

rows leads to an LU decomposition . So A can be written as A = σLU where

σ =


1 0 0

0 0 1

0 1 0

 .

2.6 Roots

For GLn(F ) the root system in 1− 1 corresponding with

Φ = {(i, j)|i, j = 1, 2, . . . , n, i 6= j} .

For α = (i, j) ∈ Φ , we can think of α as a homomorphism ,


a1

O
. . . O

an


−→ ai/aj from T to F .This is the algebraic group analogue of the map in Lie

algebras,


a1

O
. . . O

an

 −→ ai−aj . When i < j , the root α is positive , and when

i > j ,the root α is said to be negative .

Let Φ+ denote to set of all positive roots and Φ− the set of all negative roots . So

Φ = Φ+
⋃

Φ− .

For α ∈ Φ , the root subgroup Xα consists of all elements matrices

I + αEij .

34



We note that Xα
∼= (F,+) . If F is algebraically closed, then dimXα = 1 . If F = Fq

,then |Xα| = q . Now U =
∏
α∈Φ+

Xα where the product is in any order .See [4],[5] and[6]

for details.

Example 2.6.1. For n = 3 , the positive root subgroups are:

X12 =




1 a 0

0 1 0

0 0 1


 , X13 =




1 0 b

0 1 0

0 0 1


 and,X23 =




1 0 0

0 1 c

0 0 1




The negative root subgroups are:

X21 =




1 0 0

a 1 0

0 0 1


 , X31 =




1 0 0

0 1 0

b 0 1


 and,X32 =




1 0 0

0 1 0

0 c 1


.

Note that:

X12X23X13 = X23X12X13 = X12X13X13 = X23X13X12 = X13X12X23 = X13X23X12.

The group U will be the set of all products of X12, X23 and X13 in any order, where

U =




1 a b

0 1 c

0 0 1

 : a, b, c ∈ F


similarly the group

U− =




1 0 0

a 1 0

b c 1

 : a, b, c ∈ F

 .

is a product of X21, X31 and X32 in any order.
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2.7 Borel Subgroups and Intersections

The Borel subgroup B decompose as B = UT , where U is consists of upper

triangular matrices with 1’s on the diagonal and T consists of diagonal matrices. So

B =



1 ∗ . . . ∗

0 1 . . . ∗
...

...
. . . ∗

0 0 . . . 1





∗ 0 . . . 0

0 ∗ . . . 0

...
...

. . . 0

0 0 . . . ∗


If π ∈ Sn , then

B ∩ πBπ−1 = [U ∩ πUπ−1]T .

If F is algebraically closed, then

dim[U ∩ πUπ−1] = n2−n
2
− `(π) .

If F = Fq ,

|U ∩ πUπ−1| = q
n2−n

2
−`(π) .

where

`(π) = |(i, j) : i < j, π(i) > π(j)|. (definition (2.1.2) )

Thus in either case , the size of B∩πBπ−1 depends only on the length `(π) of π .(More

details can found in [4]). In chapter 3 we will see that, this is not valid in Tn .
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2.8 Parabolic Subgroups

If n = n1 + n2 + · · ·+ nt , then the block upper triangular matrices of the form
A1 ∗ ∗

0
. . . ∗

0 0 At


where Ai , is ni×ni matrix, 1 ≤ i ≤ t (Stars in the matrix , it could be any numbers),

form a subgroup group P called a parabolic subgroup of Gln(F ) and denoted by P .

The subgroup of block lower triangular matrices of the form
A1 0 0

∗ . . . 0

∗ ∗ At


is called the opposite parabolic subgroup and denoted by P− .If F is algebraically

closed , then

dimP = dimP−

If F = Fq , then

|P | = |P−| .

So opposite parabolic subgroups have the same size .

Example 2.8.1. If n = 2 + 3 . In this case, the elements of the parabolic subgroup P

of GLn(F ) have the form
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∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗


and the elements of the opposite parabolic subgroup P− have the form

∗ ∗ 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗


where the stars in both matrices can be any elements from F , and the 2 × 2 and

3× 3 diagonal blocks are invertible.
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Chapter 3

Lie Theory and The Full

Transformation Semigroup

The full transformation semigroupTn plays a central role in semigroup theory sim-

ilar to the role that the symmetric group plays in group theory.The full transformation

semigroup Tn and some special subsemigroups of Tn have been much studied over the

last fifty years. Because Tn ⊆Mn(F ) , we can define in Tn upper triangular transforma-

tions T +
n and lower triangular transformation T −n as:

T +
n = { σ ∈ Tn : σ(i) ≤ i ,∀i } .

and

T −n = { σ ∈ Tn : σ(i) ≥ i ,∀i } .

These are analogues of the Borel subgroup B and the opposite Borel subgroup B− of

GLn(F ) .

In this chapter we will concentrate on the semigroups Tn, T +
n ,and T −n , and will try
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to connect our results with Lie theory.

Note that σ(i) = i (the Identity function )is in both T +
n and T −n .

3.1 Borel Subsemigroups

We begin with the analogue of the Borel subgroups B and B− , which are T +
n

and T −n in Tn . We will see , where they are act the same and where they act differently

. Let us start with T +
3 and T −3 , which we will see again and again :

Example 3.1.1. For n = 3 ,

T +
3 = { linear transformation σ where

σ : {1, 2, 3}→ {1, 2, 3} ,and σ(i) ≤ i ∀i ∈ {1, 2, 3}} ⇒

T +
3 =




1 0 0

0 1 0

0 0 1

 ,


1 0 1

0 1 0

0 0 0

 ,


1 0 0

0 1 1

0 0 0

 ,


1 1 1

0 0 0

0 0 0

 ,


1 1 0

0 0 1

0 0 0

 ,


1 1 0

0 0 0

0 0 1


.

and

T −3 = { linear transformation σ where

σ : {1, 2, 3}→ {1, 2, 3} ,and σ(i) ≥ i ∀i ∈ {1, 2, 3}} ⇒

T −3 =




1 0 0

0 1 0

0 0 1

 ,


0 0 0

1 1 0

0 0 1

 ,


0 0 0

0 1 0

1 0 1

 ,


0 0 0

1 0 0

0 1 1

 ,


0 0 0

0 0 0

1 1 1

 ,


0 0 0

1 0 0

0 1 1


.

Theorem 3.1.2. |T +
n | = |T −n | = n!.

Proof. for any σ ∈ T +
n , σ =

 1 2 3 . . . n

σ(1) σ(2) σ(3) . . . σ(n)

 and σ(i) ≤ i ∀i ∈

{1, 2, 3 . . . , n}
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there is only one possibility for σ(1) which is 1 , there are two possibilities for σ(2) which

are 1, 2 and so on ...

There are n possibilities for σ(n) which 1, 2, 3 . . . n

Therefore, |T +
n | = n! . Similarly for |T −n | = n! .

Example 3.1.3. For n = 3, T3 = {σ| σ : {1, 2, 3}→ {1, 2, 3}, σ function or linear

transformation }, |T3| = 33 = 27 where |T +
3 | = 3! = 6 ⇒

T +
3 =




1 0 0

0 1 0

0 0 1

 ,


1 0 1

0 1 0

0 0 0

 ,


1 0 0

0 1 1

0 0 0

 ,


1 1 1

0 0 0

0 0 0

 ,


1 1 0

0 0 1

0 0 0

 ,


1 1 0

0 0 0

0 0 1


.

and |T −3 | = 3! = 6 ⇒

T −3 =




1 0 0

0 1 0

0 0 1

 ,


0 0 0

1 1 0

0 0 1

 ,


0 0 0

0 1 0

1 0 1

 ,


0 0 0

1 0 0

0 1 1

 ,


0 0 0

0 0 0

1 1 1

 ,


0 0 0

1 0 0

0 1 1


.

The rest of T3 is:




0 0 0

1 1 1

0 0 0

 ,


0 1 1

1 0 0

0 0 0

 ,


1 0 1

0 0 0

0 1 0

 ,


0 1 1

0 0 0

1 0 0

 ,


0 1 0

1 0 1

0 0 0

 ,


0 0 1

1 1 0

0 0 0

 ,


0 1 0

0 0 0

1 0 1

 ,


0 0 1

0 0 0

1 1 0

 ,


0 0 0

1 0 1

0 1 0

 ,


0 0 0

0 1 1

1 0 0

 ,


1 0 0

0 0 1

0 1 0

 ,


0 0 1

0 1 0

1 0 0

 ,


0 0 0

0 0 1

1 1 0

 ,


0 1 0

0 0 1

1 0 0

 ,


0 1 0

1 0 0

0 0 1


.

41



E(T3) =




1 0 0

0 1 1

0 0 0

 ,


1 0 0

0 0 0

0 1 1

 ,


1 0 1

0 1 0

0 0 0

 ,


0 0 0

0 1 0

1 0 1

 ,


1 1 0

0 0 0

0 0 1

 ,


0 0 0

1 1 0

0 0 1

 ,


0 0 0

0 0 0

1 1 1

 ,


1 1 1

0 0 0

0 0 0

 ,


0 0 0

1 1 1

0 0 0


 .

In chapter 2 ,section 6, we saw how the root system for GLn(F ) was defined. The

root subgroups were defined as: Xij = {I + αEij}, i 6= j , α ∈ F and called positive if

i < j and Negative if i > j .

That means the positive root subgroups will be as:




1

0
. . . α

1


 and the negative

root subgroups will be as:




1

α
. . . 0

1


. The analogous elements of Tn are the root

elements eij which we now define.

Definition 3.1.4. eij = I −Ejj +Eij, i 6= j where I the identity matrix,Ejj is the Zero

matrix with 1 in (j j) entry , and Eij is the Zero with 1 in (i j) entry. (i.e eij(j) = i

and eij(k) = k, for all k 6= j,k ∈ {1, 2, 3, · · · , n} ) . eij is called Positive Root element

whenever i < j and Negative Root element when i > j.

Example 3.1.5.


e14 =



1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0


, e13 =



1 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1


, e12 =



1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1


,
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e24 =



1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0


, e23 =



1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 1


, e34 =



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0




are the positive root elements in T4 and

e41 =



0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0


, e42 =



1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0


, e43 =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1


,

e31 =



0 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1


, e32 =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


, e21 =



0 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1




are the negative root elements in T4.

Proposition 3.1.6. Every σ ∈ T +
n can be written as a product of finite number of

eij, i ≤ j where eij(j) = i and eij(k) = k ∀k 6= j.

Proof. let σ ∈ T +
n , suppose j1 is the largest number ≤ n such that σ(j1) 6= j1,

say σ(j1) = i1 ( i.e σ(k) = k ∀j1 < k ≤ n) then σ = ei1j1σ1 where σ1(j1) = j1,

and σ1(k) = σ(k)∀k 6= j1. Now σ1(k) = k ∀j1 ≤ k ≤ n again, suppose j2 is the largest

number ≤ j1 such that σ1(j2) 6= j2, let say σ1(j2) = i2, then σ1 = ei2j2σ2 where

σ2(j2) = j2 and σ2(k) = k∀j2 ≤ k ≤ n so σ = ei1j1 ei2j2σ2, but since n is finite,if

we continue with this way , we will reach the identity. Therefore, σ = ei1j1ei2j2 . . . eimjm İ

where m ≤ n.

Let define a standard form for the elements of Tn which will be used as needed later.
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Definition 3.1.7. Define the standard form for σ ∈ T +
n as:

σ = ei1nei2(n−1) . . . eit1.

Example 3.1.8. If σ ∈ T +
5 , σ =

1 2 3 4 5

1 2 2 2 5

 then

σ = e24σ1

, σ1 =

1 2 3 4 5

1 2 2 4 5

 = e24e23σ2 , where σ2 =

1 2 3 4 5

1 2 3 4 5

.

So σ = e24e23e22e11. which is in the standard form as desired.

Now we know that Sn can be generated by simple reflections (i i+1), 1 ≤ i ≤ n ,but

this is not true in case of T +
n .

For example, T +
3 6= 〈e12, e23〉 ( e13 not there ). So the question here, what elements

in T +
n can generate T +

n ?

The following theorem can answer this question :

Theorem 3.1.9. T +
n can be presented as:

〈eij, i ≤ j ≤ n|eij2 = eij, eijejl = eileij, eijekj = ekj and ekjeij = eij〉 .

Proof. We know that every σ ∈ T +
n can be written as a product of eij, i ≤ j and

eij(m) = m ∀m 6= j, eij(j) = i. (Proposition(3.1.6) )

So (eij)
2(m) = eij(m) = m ∀m 6= j , and (eij)

2(j) = (eij)(i) = i ,then (eij)
2 = eij .

Also, eijejl = eij(m) = m ∀m 6= l,m 6= j , eijejl(l) = eij(j) = i, eijejl(j) = eij(j) = i .

Then eijejl = eileij = eijeil ,and eijekj(m) = eij(m) = m ∀m 6= j

eijekj(j) = eij(k) = k ∀k 6= j . Then eijekj = ekj . Similarly, ekjeij(m) = m ∀m 6= j

ekjeij(j) = ekj(i) = i then ekjeij = eij . So T +
n satisfied these conditions .

Now, if there is any other semigroup S satisfies the same conditions
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(i.e S = 〈aij, i ≤ j ≤ n|aij2 = aij, aijajl = ailaij, aijakj = akj and akjaij = aij〉 ).

We need to show that |S| = n! = |T +
n | .

If X = { all upper transformation which in the standard form } ,and σ ∈ X ,so

σ = ai1j1ai2j2 . . . aitjt where j1 > j2 · · · > jt , and ik ≤ jk∀1 ≤ k ≤ t , aij.σ =

aij(ai1j1 . . . aitjt) . Consider the following cases :

(i) i = i1, j = j1 ⇒ aijσ = σ , since aij
2 = aij .

(ii) i ≤ i1 , or i ≥ i1, j = j1 ⇒ aijσ = aijai1j1 . . . aitjt = ai1j1aijai2j2 . . . aitjt , since

ai1j1aij = aij = ai1j1 , and that is true ∀ k such that j < jk (i.e aijaikjk = aikjkaij ).

Therefore, aijσ ∈ X ⇒ aijX ⇒ XX ⊂ X, aij ∈ X ⇒ X = S, |S| ≤ n! .

Example 3.1.10. T +
3 generated by 1 , e12, e13 and e23. T +

3 can be presented as

T +
3 = 〈{1, a, b, c : a2 = a, b2 = b = cb, c2 = cb = c, ab = ba = ac}〉 .

3.2 A Decomposition of Tn

Since Sn is the unit group of the semigroup Tn we look at the product SnT +
n .

Theorem 3.2.1. Tn = SnT +
n . (i.e any σ ∈ Tn , can be expressed as a product of some

element π ∈ Sn and σ+ ∈ T +
n .)

Proof. Let σ ∈ Tn , so every row of σ is made up of one’s and zero’s, we look to the

1stelement of the 1strow which is zero, say ( 1j position) and we look to the column

which contains this zero, it will contains 1, say in i row ( ij position ), then we change

the 2ndrow by i row. Then σ1 = (2 i)σ.

Now, again we look to the 2nd row in σ1 and do the same thing which we did with 1strow

in σ, that is we look for the 1st zero after the 1st one in the 2ndrow , say in 2k position

, and go down below this position till we find the 1st one, say in the lk position , then
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we change the 3rd row by the lth row , to get σ2 = (3 l)(2 i)σ and we continue this

process till we reach the last row and will get σ = (2 i)−1(3 l)−1 . . . (m t)−1σm where

(2 i)−1(3 l)−1 . . . (m t)−1 ∈ Sn and σm ∈ Tnand m ≤ n . Therefore, Tn = SnT +
n .

Example 3.2.2. Let σ =



1 0 1 0

0 0 0 0

0 1 0 1

0 0 0 0


∈ T4 , then σ = πσ+ ,where

π =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


∈ S4 and σ+ =



1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0


∈ T +

4 .

3.3 Intersections

In this section we study intersection of conjugacy of T +
n .

To know more about |T +
n ∩ πT +

n π
−1| ,and T +

n ∩ πT +
n π

−1 .

Let take the following example for T +
4 .

Example 3.3.1. Consider T +
4 , which as follows :

T +
4 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,



1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0


,



1 1 1 0

0 0 0 1

0 0 0 0

0 0 0 0


,



1 1 1 0

0 0 0 0

0 0 0 1

0 0 0 0


,



1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 1


,
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1 1 0 1

0 0 1 0

0 0 0 0

0 0 0 0


,



1 1 0 1

0 0 0 0

0 0 1 0

0 0 0 0


,



1 1 0 0

0 0 1 1

0 0 0 0

0 0 0 0


,



1 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


,



1 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1


,



1 1 0 0

0 0 0 1

0 0 1 0

0 0 0 0


,



1 1 0 0

0 0 1 1

0 0 0 0

0 0 0 0


,



1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1


,



1 0 1 1

0 1 0 0

0 0 0 0

0 0 0 0


,



1 0 0 1

0 1 1 0

0 0 0 0

0 0 0 0


,



1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0


,



1 0 0 0

0 1 1 1

0 0 0 0

0 0 0 0


,



1 0 0 0

0 1 1 0

0 0 0 1

0 0 0 0


,



1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 1


,



1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0


,



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0


,



1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0


,



1 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0


,



1 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1




.

we know that |S4| = 24 . If π ∈ S4 , so there are two questions can be asked here:

What is theT +
4 ∩ πT +

4 π−1?

And what is the|T +
4 ∩ πT +

4 π−1|?

The answer is :

T +
4 ∩ πT +

4 π−1 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,



1 0 1 1

0 1 0 0

0 0 0 0

0 0 0 0


,



1 0 0 1

0 1 1 0

0 0 0 0

0 0 0 0


,



1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0


,
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1 0 0 0

0 1 1 1

0 0 0 0

0 0 0 0


,



1 0 0 0

0 1 1 0

0 0 0 1

0 0 0 0


,



1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 1


,



1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0


,



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0


,



1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0


,



1 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0


,



1 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1




.

and |T +
4 ∩ πT +

4 π−1| = 12.

Also, if π = (23) then:

T +
4 ∩ πT +

4 π−1 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,



1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0


,



1 1 1 0

0 0 0 1

0 0 0 0

0 0 0 0


,



1 1 1 0

0 0 0 0

0 0 0 1

0 0 0 0


,



1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 1


,



1 1 0 1

0 0 0 0

0 0 1 0

0 0 0 0


,



1 1 0 0

0 0 0 1

0 0 1 0

0 0 0 0


,



1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1


,



1 0 1 1

0 1 0 0

0 0 0 0

0 0 0 0


,



1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0


,



1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0


,



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0


,
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1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0


,



1 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0


,



1 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1


,



1 1 0 0

0 0 0 0

0 0 1 1

0 0 0 0




,

and |T +
4 ∩ πT +

4 π−1| = 16.

If π = (34) = π−1, then|T +
4 ∩ πT +

4 π−1| = 18 ,

if π = (13) = π−1, then |T +
4 ∩ πT +

4 π−1| = 4,

if π = (14) = π−1, then |T +
4 ∩ πT +

4 π−1| = 2,

for π = (24) = π−1 , then |T +
4 ∩ πT +

4 π−1| = 8,

if π = (123) then π−1 = (213) and in this case |T +
4 ∩ πT +

4 π−1| = 8.

Now if σ ∈ T +
n , what are the conditions must σ has to (12)σ(12) be in T +

n . The

answer is just

σ(2) 6= 1 ,

for (23)σ(23) to be in T +
n the condition is

σ(3) 6= 2 ,

and for (14)σ(14) to be in T +
n , σ must satisfies the following conditions :

σ(4) = 4, σ(2) 6= 1 and σ(3) 6= 1.

In general,

(i i+ 1)σ(i i+ 1) ∈ T +
n =⇒ σ(i+ 1) 6= i.

And more generally,we can conclude that if σ ∈ T +
n ,and (i j) ∈ Sn, i ≤ j

then (ij)σ(ij) to be in T +
n , σ must has the following conditions :

σ(j) = j or σ(j) < i and σ(k) 6= i∀i < k < j .

49



Then

|T +
n ∩ (i i+ 1)T +

n (i i+ 1)| = i
i+1
n! .

Therefore, we can conclude that

|T +
n ∩ (ij)T +

n (ij)| = i
j
Πi<k<j

k−1
k
n! = i2

j(j−1)
n! .

Proposition 3.3.2. If π = (i i + 1) then |T +
n ∩ πT +

n π
−1| = i

i+1
n! and in general if

π = (i j) then |T +
n ∩ πT +

n π
−1| = i2

j(j−1)
n!.

In chapter 2, for the GLn(F ) we found that, the size of B ∩ πBπ−1 depends on the

length of π ,but this not true for Tn , the following example shows that:

Example 3.3.3. Let π = (12), then

T +
3 ∩ πT +

3 π−1 =




1 0 0

0 1 0

0 0 1

 ,


1 0 1

0 1 0

0 0 0

 ,


1 0 0

0 1 1

0 0 0


.

Therefore |T +
3 ∩ πT +

3 π−1| = 3, and for π = (23), then

T +
3 ∩ πT +

3 π−1 =




1 0 0

0 1 0

0 0 1

 ,


1 1 1

0 0 0

0 0 0

 ,


1 1 0

0 0 0

0 0 1

 ,


1 0 1

0 1 0

0 0 0


.

Therefore |T +
3 ∩ πT +

3 π−1| = 4.

So (12) and (23) have the same length, but |T +
3 ∩(12)T +

3 (12)−1| 6= |T +
3 ∩(23)T +

3 (23)−1| .

The following theorem gives the rule to get|T +
n ∩ π−1T +

n π| .
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Theorem 3.3.4. If π ∈ Sn , then |T +
n ∩ π−1T +

n π| = α1 · α2 . . . αn where

αi = |{j : j ≤ i, π(j) ≤ π(i)}|.

Proof. If σ ∈ T +
n ∩ π−1T +

n π , then σ ∈ T +
n and σ ∈ π−1T +

n π
−1 ,

so σ(i) ≤ i∀1 ≤ i ≤ n→ ..(1) and σ = π−1θπ for some

θ ∈ T +
n ⇒ σ = π−1θπ

⇒ πσπ−1 ∈ T +
n

⇒ πσπ−1(i) ≤ i∀1 ≤ i ≤ n

⇒ πσ(i) ≤ π(i)→ ..(2)

so , if

σ(i) = j ⇒ j ≤ i and π(j) ≤ π(i)

⇒ σ(i) ∈ {j : j ≤ i, π(j) ≤ π(i)}

⇒ αi = |{j; j ≤ i, π(j) ≤ pi(i)}|

which the number of possibilities of π(i) . Therefore |T +
n ∩π−1T +

n π| = α1 ·α2 · · ·αn .

Example 3.3.5. If π = (123) , then |T +
3 ∩ πT +

3 π−1| = α1 · α2 · α3 where:

α1 = |{j : j ≤ 1, π(j) ≤ π(1) }| = 1,

α2 = | {j : j ≤ 2, π(j) ≤ π(2) = 3 }| = 2

and α3 = |{j : j ≤ 3, π(j) ≤ π(3) = 1 }| = 1.
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Therefore,

|T +
3 ∩ πT +

3 π−1| = α1 · α2 · α3

= 1 · 2 · 1

= 2.

3.4 Unions

We have seen that in Schur’s theorem,every element of GLn(C) is a similar to a

triangular matrix.This is not true of Tn , to figure out what X =
⋃
π∈Sn

(πT +
n π

−1) is?

Let start with n = 3 as an example:

Example 3.4.1. X =
⋃
π∈S3

(πT +
3 π−1) =

I,


0 0 0

1 1 1

0 0 0

 ,


1 0 1

0 1 0

0 0 0

 ,


0 0 1

1 1 0

0 0 0

 ,


1 0 0

0 1 1

0 0 0

 ,


0 0 0

1 1 0

0 0 1

 ,


0 0 0

0 0 0

1 1 1

 ,


0 0 0

1 1 0

0 0 1

 ,


0 0 0

1 0 0

0 1 1

 ,


0 0 0

0 1 0

1 0 1

 ,


1 0 0

0 0 0

0 1 1

 ,


1 1 1

0 0 0

0 0 0

 ,


1 0 1

0 0 0

0 1 0

 ,


1 1 0

0 0 0

0 0 1

 ,


0 0 0

0 1 1

1 0 0

 ,


1 1 0

0 0 1

0 0 0

 ,


0 1 0

0 0 0

1 0 1


 .
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Proposition 3.4.2. If σ ∈ T +
n , then σN = σN+1 for some N ≤ n .

Proof. If σ ∈ T +
n ,by using the definition of T +

3 and since n is finite, then we have

σ(i) ≤ i ∀ 1 ≤ i ≤ n , so i ≥ σ(i) ≥ σ2(i) ≥ σ3(i) · · · ≥ σN = σN+1 for some

N ≤ n .

As a result of this proposition ,if π ∈ Sn, σ ∈ T +
n and σ1 = πσπ−1 , then

σn1 = σn+1
1 . So for all σ ∈ X, σn = σn+1 .

The following theorem, gives us the answer of ,what X = ∪π∈Sn(πT +
n π

−1) is? When is

σ ∈ Tn conjugate to an element of T +
n ? Since it gives the conditions on σ to be in

X .

Theorem 3.4.3. If X = ∪π∈Sn(πT +
n π

−1) , then σ ∈ X ⇔ σn = σn+1.

Proof. (=⇒)

Ifσ ∈ X ⇒ σ = π−1θπ , θ ∈ T +
n

⇒ πσπ−1 = θ ∈ T +
n

⇒ πσπ−1(i) ≤ i ∀ i = 1, 2, . . . , n

⇒ (πσπ−1)2(i) ≤ πσπ−1(i) ≤ i∀i = 1, 2, . . . , n

⇒ (πσπ−1)k(i) ≤ (πσπ−1)k−1(i) ≤ · · · ≤ πσπ−1 ≤ i∀ i = 1, 2, . . . , n

So there is some Ni such that

(πσπ−1)N( i+ 1)(i) = (πσπ−1)Ni (i)⇒ πσNi+1π−1(i) = πσNiπ−1 = πσNi π
−1 , therefore take

M = maxNi to get σM(i) = σM+1(i)∀i = 1, 2, . . . n .
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(⇐=) Now if ∃ N such that σN = σN+1 , we need to show that σ ∈ X . Define

the relation ≺ on {1, 2, . . . n} as : i ≺ j ∃ t ≥ 0 such that σt(i) = j ,and prove that

≺ is partially ordered(reflexive, antisymmetric and transitive ).

(i) ≺ reflexive : σ0(i) = 1(i) = i ∀i ∈ 1, 2, . . . n .So i ≺ i ∀i = 1, 2, . . . n .

(ii)≺ antisymmetric : if i ≺ j, j ≺ i,suppose that

σt(i) = j, t > 0, σs(j) = i, s ≥ 0 ⇒ σ(t+ s) = σs(j) = i

⇒ σ(t+s)k(i) = i∀k

⇒ (t+ s)k > N for some k.

i.e ∃M > N such that σN(i) = σM(i) = i,M > N ⇒ σN(i) = i .

But j = σt(i) = σt(σN(i)) = σ(t+N)(i) = σN(i) = i . Therefore, ≺ is symmetric .

(iii)≺ is transitive: If

i ≺ j, j ≺ k ⇒ σt(i) = j, σs(j) = k for some t,s ≥ 0

⇒ k = σs(j) = σs(σt(i)) = σ(s+t)(i)

⇒ i ≺ k.

Then ≺ is partially ordered, so ≺ can be extended to a linear ordered, i.e 1, 2, . . . n =

i1, i2, . . . in that means ∃ π ∈ Sn such that iK = π(k) , ik ≺ il ⇒ k ≤ l , so

π(k) = π(l) ⇒ k ≤ l

⇒ σt(π(k)) = π(l)

⇒ π−1σt(k) ≤ l.
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3.5 Big Cell

We have seen that the big cell B−B is of much importance in group theory . So we

study the analogues product T −n T +
n of the subsemigroups T −n and T +

n to know more

about it,and connect our results with what we already know about the Borel subgroups

B and B− . For that we will introduce two theorems,we begin with:

Theorem 3.5.1. Every idempotent element e ∈ Tn is in T −n T +
n , that means e can

be written as a product of positive root elements and negative root elements

( i.e e ∈ Tn , e2 = e ⇒ e = e−e+ ∈ T −n T +
n for some elements e− ∈ T −n and

e+ ∈ T +
n ).

Proof. Let e ∈ Tn ,be an idempotent element, so e2 = e ⇒ e2(i) = e(i) = e(e(i)) .

Now if e ∈ T +
n ,by the definition of T +

n ,

e ∈ T +
n ⇒ e(i) ≤ i

⇒ e2(i) = e(e(i)) = e(≤ i) which ≤ i (since e ∈ T +
n ).

Also, if e ∈ T −n ⇒ e(i) ≥ i

⇒ e2(i) = e(e(i)) = e(≥ i) which ≥ i (since e ∈ T −n ).
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Therefore, in both cases e ∈ T −n T +
n (since T −n , T +

n ⊂ T −n T +
n ).

Now if e ∈ Tn − {T +
n ∪ T −n } ⇒ e(i) ≤ i for some i′s and e(i) ≥ i for others , then we

can write e as a product of e− ∈ T −n and e+ ∈ T +
n ,

where e−(i) =

 e(i) if e(i) ≥ i

i , otherwise
.

and e+(i) =

 e(i) if e(i) ≤ i

i , otherwise
.

Therefore e = e−e+ ∈ T −n T +
n .

If e(i) ≥ i ⇒ e(i) = e−(i) and e+(i) = i. If e(i) ≤ i ⇒ e(i) = e+(i) and e−(i) = i. So

in both cases e = e−e+ ∈ T −n T +
n .

Example 3.5.2. Let e =



0 0 0 0 0

0 1 0 0 0

1 0 1 1 0

0 0 0 0 0

0 0 0 0 1


be an idempotent element (e2 = e), in T5

then e = e−e+ =



0 0 0 0 0

0 1 0 0 0

1 0 1 0 0

0 0 0 1 0

0 0 0 0 1





1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 0 0

0 0 0 0 1


(e = e−e+ ∈ T −5 T +

5 ).
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Also for e =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0



∈ T7, e = e−e+ ∈ T −7 T +
7 where

e− =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



and e+ =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0



.

We now find some necessary conditions for σ to be in T −n T +
n :

Theorem 3.5.3. If σ ∈ T −n T +
n , then σ is satisfies the following two conditions:

1. If σ is (1− 1) on {1, 2, . . . ,m}, then σ(i) ≥ i ∀i = 1, 2, . . . ,m .

2. If {1, 2, . . . ,m} ⊆ Rang (σ) ,then σ(i) ≤ i ∀i = 1, 2, . . . ,m.

Proof. Suppose σ ∈ T −n T +
n , so σ = σ−σ+ where σ− ∈ T −n and σ+ ∈ T +

n .
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1. If σ is (1− 1) on {1, 2, . . . ,m} , then σ+ will be (1− 1) , because if

σ+(i) = σ+(j), i, j ∈ {1, 2, . . . ,m} ⇒ σ−σ+(i) = σ−σ+(j)

⇒ σ(i) = σ(j)

⇒ i = j since σ is (1− 1).

And we can show (by induction )that σ+ is the Identity map on {1, 2, . . . ,m} ,

at i = 1 , σ+(1) = 1 (from σ+ definition)

σ+(2) ≤ 2⇒ σ+(2) = 1 or 2 ,

but σ+ is (1− 1) , so σ+(2) 6= 1 = σ(1) ,then σ+(2) = 2 and so on . . .

Suppose σ+(j) = j for j < i , since σ+(i) ≤ i , then if

σ+(i) = j, j < i ⇒ σ+(i) = σ+(j) = j.

But since σ+ is (1−1) on {1, 2, . . . ,m} , that means i = j which a contradiction.

So σ+(i) = i , therefore σ+ is the identity map on {1, 2, . . . ,m} , that means

σ(i) = σ−σ+(i) = σ−(i) ≥ i ∀i = 1, 2, . . . ,m (from σ definition ).

2. IF {1, 2, . . . ,m} ⊆ Rang σ , then σ(i) ≤ i ∀i = 1, 2, . . . ,m .

If σ = σ−σ+ , {1, 2, . . . ,m} ⊆ Rang σ ⊆ Rang σ− . First, will try to prove that

σ− is the Identity map on {1, 2, . . . ,m} and we will do that by induction,since

that

1 ∈ Rang σ− ⇒ 1 = σ−(j)for some j

⇒ 1 = σ−(j) ≥ j

⇒ j = 1, so σ−(1) = 1.

58



2 ∈ Rang σ− ⇒ 2 = σ−(k) for some k

⇒ 2 = σ−(k) ≥ k , so k = 1 or k = 2.

If k = 1 ⇒ 2 = σ−(1) = 1 which a contradiction,so k = 2 ⇒ σ−(2) = 2 , and so

on . . .

Suppose that σ−(j) = j ∀j < i , i, j ∈ {1, 2, . . . ,m} , want to show that σ−(i) = i .

Since 2 ∈ Rangσ ⇒ 2 = σ−(k) ≥ k , k = 1 or k = 2 , then 2 = σ−(2) . Same

argument for

i ∈ Rang σ− ⇒ i = σ−(k) ≥ K so i > k

⇒ i = σ−(k) = k, then i = k , σ−(i) = i.
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Example 3.5.4. For n = 3, we know that |T3| = 33 = 27 where |T +
3 | = 3! = 6 .

⇒ T +
3 =


1 0 0

0 1 0

0 0 1

 ,


1 0 1

0 1 0

0 0 0

 ,


1 0 0

0 1 1

0 0 0

 ,


1 1 1

0 0 0

0 0 0

 ,


1 1 0

0 0 1

0 0 0

 ,


1 1 0

0 0 0

0 0 1


.

and |T −3 | = 3! = 6 .

⇒ T −3 =


1 0 0

0 1 0

0 0 1

 ,


0 0 0

1 1 0

0 0 1

 ,


0 0 0

0 1 0

1 0 1

 ,


0 0 0

1 0 0

0 1 1

 ,


0 0 0

0 0 0

1 1 1

 ,


0 0 0

1 0 0

0 1 1


.

T −3 T +
3 =

T
−

3 , T +
3 ,


1 0 1

0 0 0

0 1 0

 ,


0 0 0

1 0 1

0 1 0

 ,


0 0 0

1 1 1

0 0 0

 ,


0 0 0

0 0 1

1 1 0

 ,


0 0 0

0 1 1

1 0 0




And

T +
3 T −3 =

T
−

3 , T +
3 ,


0 0 1

1 1 0

0 0 0

 ,


0 1 0

0 0 0

1 0 1

 ,


0 0 0

1 1 1

0 0 0

 ,


0 1 1

1 0 0

0 0 0

 ,


0 1 0

1 0 1

0 0 0




So |T −3 T +
3 | = |T +

3 T −3 | = 16 .

By theorem(3.5.1) we know that each element of:

E(T3) =




1 0 0

0 1 1

0 0 0

 ,


1 0 0

0 0 0

0 1 1

 ,


1 0 1

0 1 0

0 0 0

 ,


0 0 0

0 1 0

1 0 1

 ,


1 1 0

0 0 0

0 0 1

 ,


0 0 0

1 1 0

0 0 1

 ,
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0 0 0

0 0 0

1 1 1

 ,


1 1 1

0 0 0

0 0 0

 ,


0 0 0

1 1 1

0 0 0


 is in T −3 T +

3 .

Now let see which σ ∈ T3 and which σ /∈ T −3 T +
3 ?




0 0 1

1 1 0

0 0 0

 ,


0 1 1

1 0 0

0 0 0

 ,


0 1 0

1 0 1

0 0 0

 ,


0 1 0

1 0 0

0 0 1

 ,


1 0 0

0 0 1

0 1 0

 ,


0 0 1

0 0 0

1 1 0

 ,


0 0 1

1 0 0

0 1 0

 ,


0 1 0

0 0 1

1 0 0

 ,


0 1 1

0 0 0

1 0 0

 ,


0 1 0

0 0 0

1 0 1

 ,


0 0 1

0 1 0

1 0 0




All of these elements, they do not satisfies the condition(ii) of theorem (3.5.3),and just


0 0 1

1 1 0

0 0 0

 ,


0 0 1

0 0 0

1 1 0

 are satisfy condition (i) .

In GLn(F ) , A ∈ B−B if and only if all the minors of A are non-zero.The analogous

problem in Tn seems much more difficult.

Problem Let σ ∈ Tn .Find necessary and sufficient condition for σ to

be in T −n T +
n .

For GLn(F ) and any π ∈ W = Sn we know that

πBπ−1 ⊆ B−B .

One can ask, is this true for the full transformation semigroup Tn ?
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(i.e is πT π−1 ⊆ T −n T +
n ?)

The answer is NO! , and the following example shows that.

Example 3.5.5. If π = (12) ,and σ =


1 1 0

0 0 1

0 0 0

 then πσπ−1 =


0 0 1

1 1 0

0 0 0

 which not in T −3 T +
3 (see example(3.5.4) ).

3.6 Parabolic Semigroups

We now define the analogues of parabolic subgroups of GLn(F ) .

Let σ ∈ Tn where n = n1+n2+ · · ·+nt satisfies the following conditions

:

σ(i) ≤ n1 ∀i ≤ n1

σ(i) ≤ n1 + n2 ∀n1 < i ≤ n1 + n2

...

σ(i) ≤ n ∀n1 + n2 + · · ·+ nt−1 < i ≤ n

So σ will be as:
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σ =



n1 n2 . . . nt

∗ ∗ · · · ∗
... . . . · · · ∗

∗ ∗ · · · ∗

∗ ∗ · · · ∗

∗ ∗ · · · ∗

∗ ∗ · · · ∗
...

... · · ·

∗ ∗ · · · ∗

. . .

∗ ∗ · · · ∗

∗ ∗ · · · ∗

∗ ∗ · · · ∗

∗ ∗ · · · ∗
...

... · · ·

∗ ∗ · · · ∗


Let denote by P+

n for the set of all σs in this form .

Theorem 3.6.1. P+
n is a subsemigroup of Tn and

|P+
n1+n2+···+nt

| = nn1
1 (n1 + n2)

n2(n1 + n2 + n3)
n3 . . . (n1 + n2 + · · ·+ nt)

nt .

Let P−n denote set of all element of σ of the form:
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σ =



n1 n2 . . . nt

∗ ∗ · · · ∗

∗ ∗ · · · ∗

∗ ∗ · · · ∗

∗ ∗ · · · ∗
...

... · · ·

∗ ∗ · · · ∗

∗ ∗ · · · ∗

∗ ∗ · · · ∗

∗ ∗ · · · ∗
...

... · · ·

∗ ∗ · · · ∗

. . .
∗ ∗ · · · ∗
... . . . · · · ∗

∗ ∗ · · · ∗


We call P−n opposite parabolic subsemigroup.

Theorem 3.6.2. P−n is a subsemigroup of Tn and

|P−n | = (n1 + · · ·+ nt)
n1(n2 + · · ·+ nt)

n2 . . . .̇nnt
t .

Example 3.6.3. If n1 = 1 and n2 = 1 ,so n = 1 + 1 = 2 .

Then σ(i) ≤ n1 = 1 ∀ i ≤ 1 ⇒ σ(1) = 1 and σ(i) ≤ n1 + n2 = 1 + 1 =

2 ∀ 1 < i ≤ 2 ,so σ(2) = 1 or 2 ,then we have just two σ’s satisfies these

conditions :

σ1 =

1 0

0 1

 and σ2 =

1 1

0 0


So P+

1+1 =


1 0

0 1

 ,

1 1

0 0


 .
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Also, P−1+1 has two elements: σ1 =

1 0

0 1

 and σ2 =

0 0

1 1

 .

Example 3.6.4. If n1 = 1 and n2 = 2 ,so n = 1 + 2 = 3 .

Then

σ(i) ≤ n1 = 1 ∀ i ≤ 1⇒ σ(1) = 1

and

σ(i) ≤ n1 + n2 = 1 + 2 = 3 ∀ 1 < i ≤ 3 ⇒ σ(2) = 1, 2 or 3 ,and

σ(3) = 1, 2 or 3 then |P+
1+2| = 1× 32 = 9 and |P−1+2| = (1 + 2)122 = 12

as shown below satisfies these conditions:

σ1 =


1 0 0

0 1 0

0 0 1

 , σ2 =


1 1 1

0 0 0

0 0 0

 , σ3 =


1 1 0

0 0 1

0 0 0

 ,

σ4 =


1 1 0

0 0 0

0 0 1

 , σ5 =


1 0 1

0 1 0

0 0 0

 , σ6 =


1 0 1

0 0 0

0 1 0

 ,

σ7 =


1 0 0

0 1 1

0 0 0

 , σ8 =


1 0 0

0 0 1

0 1 0

 , and σ9 =


1 0 0

0 0 0

0 1 1
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Also,

P−1+2 =




0 0 0

0 0 0

1 1 1

 ,


0 0 0

0 1 0

1 0 1

 ,


0 0 0

1 0 1

0 1 0

 ,


0 0 0

1 1 0

0 0 1

 ,


1 0 0

0 0 1

0 1 0

 ,


1 0 0

0 1 1

0 0 0

 ,


1 0 0

0 0 0

0 1 1

 ,


0 0 0

1 0 0

0 1 1

 ,


0 0 0

1 1 1

0 0 0

 ,


0 0 0

0 0 1

1 1 0

 ,


0 0 0

0 0 0

1 1 1

 ,


1 0 0

0 1

0 0 1


.

Thus we see that the opposite parabolic subsemigroups P+
1+2, P

−
1+2 have

different sizes .

So we see that unlike for GLn(F ) (see section (2.8) ),

P+
n1+n2+···+nt

and P−n1+n2+···+nt
can have different sizes.

Now we can define the root elements eij as before. eij(j) = i and,

eij(k) = k ∀k 6= j . Let Pn1+n2+···+nt
be the set of all σ’s in this form, so

the following theorem gives the rule to find the number of all root elements

in Pn1+n2+···+nt
.
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Theorem 3.6.5. Let Re be the number of root elements in Pn , then

Re = (n21−n1)+(n1+n2).n2−n2+(n1+n2+n3).n3−n3+· · ·+n.nt−nt .(i.e.

Re = n21+n
2
2+· · ·+n2t−n1−n1n2−n1n3−n2n3 · · ·−n1nt−n2nt−· · ·nt−1nt ).

Proof. If eij is a root element in Pn , the eij satisfies all conditions,which

have given in the definition of Pn ,

then we have n21 − n1 root elements satisfies the condition i, j ≤ n1, i 6=

j ,we have (n1 +n2)n2−n2 root elements satisfies the condition n1 < j ≤

n1 + n2 , i ≤ n1 + n2 ,we have (n1 + n2 + n3)n3− n2 elements satisfies the

condition n1 + n2 < j ≤ n1 + n2 + n3 , i ≤ n1 + n2 + n3 , . . . and we have

n.nt−nt root elements satisfies the last condition. Therefore, the number

Re of root elements in Pn is

Re = (n21−n1)+(n1 +n2).n2−n2 +(n1 +n2 +n3).n3−n3 + · · ·+n.nt−nt .

(i.e Re = n21 + n22 + · · ·+ n2t − n1 − n1n2 − n1n3 − . . . n1nt − . . . nt−1nt )

Example 3.6.6. Let Pn be a set as defined above, where

n = n1 + n2 , n1 = 1 and n2 = 2 ,then P1+2 contains nine elements.
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The number of root elements in P+
1+2 is :

(n21 − n1) + (n1 + n2).n2 − n2 = (12 − 1) + (1 + 2).2− 2

= 0 + 6− 2

= 4

⇒ which are

e12, e23, e13 and e23 .

P−1+2 in this case will contain the same number of root elements which 4 ,

they are :

e12, e13, e32 and e23 .

For more explanation , let n = 2+3 , then P+
2+3 and P−2+3 will contains

each σ in the following forms :
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∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗


and



∗ ∗ 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗


In this case the number of root elements in P+

2+3 is :

(n21 − n1) + (n1 + n2).n2 − n2 = (22 − 2) + (2 + 3).3− 3

= 14

Which , they are :
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e21, e12, e43, e53, e54, e13, e23, e14, e24, e34, e15, e25, e35, e45 .

The same thing ,if we consider n = n1 + n2 + n3 , where

n1 = 2, n2 = 3, n3 = 2 .Then P+
n = P+

2+3+2 will contains each σ as:



∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 ∗ ∗

0 0 0 0 0 ∗ ∗


and in this case the number of root elements in P+

2+3+2 will be:

(22 − 2) + (2 + 3).3− 3 + (2 + 3 + 2).2− 2 = 26

e21, e12, e13, e23, e43, e53, e14, e24, e34, e54, e15, e25, e35, e45, e16,

e26, e36, e46, e56, e76, e17, e27, e37, e47, e57 , e67 ,

and P−2+3+2 will contains each σ as:
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∗ ∗ 0 0 0 0 0

∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗


P−2+3+2 will contains the same number of root elements as p+2+3+2 ,which

26 as following:

e21, e12, e31, e32, e41, e42, e51, e52, e61, e62, e71, e72, e43, e34, e53, e35,

e54, e45, e63, e64, e65, e73, e74, e75, e76, e67 .
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