
ABSTRACT

TOLLEY, MELISSA MARIE. The Connections Between A∞ and L∞ Algebras. (Under the
direction of Dr. Thomas Lada.)

In the work of Kajiura and Stasheff, we are given the definition of A∞ strong homotopy

derivations. By proving an alternate, but equivalent, definition for these derivations, we are able

to take this idea and develop a corresponding definition for L∞ strong homotopy derivations.

From here we show this definition is not only consistent with the ideas behind our alternate

A∞ strong homotopy derivation definition, but also consistent with the symmetrization of A∞

algebras to L∞ algebras, thus showing this is the correct definition to use. We then define

strong homotopy inner derivations for these algebras, resulting in examples of A∞ and L∞

strong homotopy derivations.

One of our goals here is to find connections between A∞ and L∞ algebras. We show that

there are two ways to start with a lower level A∞ algebra structure and lift to an L∞ algebra

structure on the corresponding coalgebra, both resulting in exactly the same L∞ algebra. We

show that skew-symmetrizing then lifting maps is equivalent to lifting then symmetrizing the

maps of the lower level A∞ algebra.

To show these connections throughout the paper, we start with the work from Michael

Allocca, where an explicit example of an A∞ algebra is given. By using definitions of Stasheff and

Lada, we are then able to construct a corresponding L∞ algebra, then lift these two examples

on coalgebras, resulting in four explicitly stated A∞ and L∞ algebras which we use throughout

the paper. To complete our concrete examples, we find explicit strong homotopy derivations for

the lifted A∞ and L∞ algebras, giving two concrete examples of algebras and corresponding

homotopy derivations.
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Chapter 1

Definitions

From Stasheff, we obtain the definition of an A∞ algebra [9]:

Definition 1 (A∞ Algebra). Let V be a graded vector space. An A∞ structure on V is a

collection of linear maps mk : V ⊗k → V of degree 2− k that satisfy the identity

n−1∑
λ=

n−λ∑
k=1

αmn−k+1(x1 ⊗ · · · ⊗ xλ ⊗mk(xλ+1 ⊗ · · · ⊗ xλ+k)⊗ xλ+k+1 ⊗ · · · ⊗ xn) = 0 (1.1)

where α = (−1)k+λ+kλ+kn+k(|x1|+···+|xλ|), for all n ≥ 1.

From Lada and Stasheff, we have the definition of an L∞ Algebra [8]:

Definition 2 (L∞ Algebra). An L∞ algebra structure on a graded vector space V is a collection

of skew symmetric linear maps ln : V ⊗n → V of degree 2− n that satisfy the relation

∑
ij=n+1

∑
σ

(−1)σ(−1)e(σ)(−1)i(j−1)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0 (1.2)

where (−1)σ is the sign of the permutation, e(σ) is the product of the degrees of the permuted

elements, and σ is taken over all (i, n− i) unshuffles.

There are equivalent descriptions of A∞ and L∞ algebras given by degree one coderivations

on the coalgebras TC(↓ V ) and SC(↓ V ), respectively, with D2 = 0. From Kajiura and Stasheff

[5], we obtain the following definitions:

Definition 3 (A∞Algebra). Let A be a Z-graded vector space A =
⊕
r∈Z

Ar and suppose that

there exists a collection of degree one multi-linear maps

m := {mk : A⊗k → A}k≥1

1



(A,m) is called an A∞ algebra when the multi-linear maps mk satisfy the following relation

∑
k+l=n+1

k∑
i=1

(−1)o1+···+oi−1mk(o1, . . . , oi−1,ml(oi, . . . , oil−1), oi+l, . . . , on) = 0 (1.3)

for n ≥ 1, where oj on (−1) denotes the degree of oj .

Definition 4 (L∞ Algebra). Let L be a graded vector space and suppose that a collection of

degree one graded symmetric linear maps l := {lk : L⊗k → L}k≥1 is given. (L, l) is called an

L∞ algebra if and only if the maps satisfy the following relation

∑
σ∈Sk+l=n

(−1)ε(σ)l1+l(lk(cσ(1), . . . , cσ(k)), cσ(k+1), . . . , cσ(n)) = 0 (1.4)

for n ≥ 1, where (−1)ε(σ) is the Kozsul sign of the permutation.

Theorem 5. [6] If {mn : V ⊗n → V } is an A∞ structure, then ln =
∑
σ∈Sn

(−1)τmn ◦ σ where τ

is the multiplication of the sign of σ and the Koszul sign, gives an L∞ structure.

We will use the definitions from Lada and Stasheff for beginning work, and the alternate

definitions once we move to the coalgebras in later work.

Before we go any further, we discuss permutations versus unshuffles. If we consider the

element (x, y, z), the permutations are

(x, y, z)

(x, z, y)

(y, x, z)

(y, z, x)

(z, x, y)

(z, y, x)
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However, the unshuffles are:

(x, y, z)

(x, y, (z))

(x, z, (y))

(y, z, (x))

(x, (y, z))

(y, (x, z))

(z, (x, y))

The difference here is that permutations do not keep order, whereas unshuffles do. For the

unshuffles, we look at ways to break up the number of elements, so in our example we can break

up 3 by (3, 0), (2, 1), and (1, 2). Note that (3, 0) and (0, 3) are the same. We use unshuffles in

the definitions of L∞ algebras and permutations in the above theorem and in the definition of

A∞ algebra.

Definition 6. (Strong homotopy derivation for A∞ Algebras) A strong homotopy derivation

of degree one of an A∞-algebra (A,m) consists of a collection of multi-linear maps of degree

one

θ := {θq|A⊗q → A}q≥1

satisfying the following relations:

0 =
∑

r+s=q+1

r−1∑
i=0

(−1)β(s,i)θr(o1, . . . , oi,ms(oi+1, . . . , oi+s), . . . , oq)

+ (−1)β(s,i)mr(o1, . . . , oi, θs(oi+1, . . . , oi+s), . . . , oq)

(1.5)

Here the sign β(s, i) = o1 + · · ·+ oi results from moving ms, respectively θs, past (o1, . . . , oi).

Definition 7. (Strong Homotopy Derivation for L∞ Algebras) A strong homotopy derivation

of degree one of an L∞ algebra consists of a collection of symmetric, multi-linear maps of degree

one

θ := {θq|L⊗q → L}q≥1

3



satisfying relations:

j=n∑
j=1

σ∈U(j,n−j)

(−1)ε(σ)θn−j+1(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n))

+ (−1)ε(σ)ln−j+1(θj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n)) = 0

(1.6)

where (−1)ε(σ) is the sign of the unshuffle.
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Chapter 2

Finite Examples

In Chapter 1 we gave definitions for our two algebras, in this chapter we present (and justify)

two A∞ and two L∞, one at each level, that we will reference throughout this paper.

2.1 Finite A∞ Example

Allocca and Lada used our first definition to find a small finite dimensional example [1]:

Example 8. Let V denote a graded vector space given by V = ⊕Vn where V0 has basis

< v1, v2 >, V1 has basis < w >, and Vn = 0 for n 6= 0, 1. The structure on V is defined by the

linear maps mn : V ⊗n → V :

m1(v1) = m1(v2) = w

For n ≥ 2 : mn(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗(n−2)−k) = (−1)ksnv1, 0 ≤ k ≤ n− 2

mn(v1 ⊗ w⊗(n−2) ⊗ v2) = sn+1v1

mn(v1 ⊗ w⊗(n−1)) = sn+1w

where sn = (−1)
(n+1)(n+2)

2 , and mn = 0 when evaluated on any element of V ⊗n that is not listed

above.

Our goal here was to show an L∞ algebra could arise from this finite A∞ algebra example.

To do our work, we used the following theorem that creates a relationship between the two

algebras (at the lower level). [6]

Theorem 9. If {mn : V ⊗n → V } is an A∞ structure, then ln =
∑
σ∈Sn

(−1)τmn ◦ σ where τ is

the multiplication of the sign of σ and the Koszul sign, gives an L∞ structure.

5



For the Koszul sign and sign of σ, this comes from the degree of the permuted elements

along with the number of transpositions done. For example, on the element (x, y, z), the Koszul

sign for l2(l1(y), x, z) would be (−1)1(−1)|x||y| because x and y have been switched, so we have

one transposition. These signs will play an important part in our work.

2.2 Finite L∞ Example

From this finite example and using the above theorem, we are able to construct a finite L∞

algebra:

Example 10. Consider the graded vector space V = V0 ⊕ V1 where V0 has basis < v1, v2 >

and V1 has basis < w >. We show that this space has an L∞ structure given by:

l1(v1) = l1(v2) = w

For n ≥ 2, ln(v1 ⊗ w⊗(n−1)) = (n− 1)!sn+1w

ln(v1 ⊗ w⊗(n−2) ⊗ v2) = (n− 2)!sn+1v1

where sn = (−1)
(n+1)(n+2)

2 and ln = 0 when evaluated on any element of V ⊗n that is not

listed.

Here, the tensor product, ⊗, is the skew-symmetric tensor, i.e. the wedge product. Through-

out this paper will will use ⊗ instead of ∧ for L∞ algebra to keep notation consistent, but keep

in mind at the lower level of L∞ algebras, we have that ⊗ is the skew-symmetric tensor product

and at the higher level, ⊗ is the symmetric tensor.

First, note that from the Theorem and the maps mn (and using that ln is skew-symmetric),

the only nonzero terms in the sum
∑
σ∈Sn

(−1)τmn ◦ σ, will be those acting on the following

elements of V ⊗n: v1, v2, v1 ⊗ w⊗k ⊗ v1 ⊗ w(n−2)−k for 0 ≤ k ≤ n − 2, v1 ⊗ w⊗(n−2) ⊗ v2, and

v1 ⊗ w⊗(n−1), for n ≥ 2.

Now look at l1. Since the only permutation of one element is the identity, we have that

l1(v1) = m1(v1) = w

and

l1(v2) = m1(v2) = w

6



Next, we look at l2 before we look at a generic n, to get a feel for how these permutations

work. From our list above, the only terms that will give nonzero entries are v1⊗w and v1⊗ v2.

We look at each of these individually.

We have that

l2(v1 ⊗ v2) = m2(v1 ⊗ v2)−m2(v2 ⊗ v1)

= s3v1 − 0

= s3v1

l2(v1 ⊗ w) = m2(v1 ⊗ w)−m2(w ⊗ v1)

= s3w − 0

= s3w

Now, let n ≥ 3. We first look at ln(v1⊗w⊗(n−1)). When we look at the sum
∑
σ∈Sn

(−1)τmn◦σ

acting on this element, the only non-zero terms will be mn(v1⊗w⊗(n−1)) for each σ permuting

the w′s. Any other term will have mn(w ⊗ · · · ), which is zero, as A∞-algebra mappings are

neither symmetric nor skew-symmetric. Now we consider the Koszul sign of each of these terms.

Since w ∈ V1, when we permute any two w′s we get a coefficient sign of +1. That is, we get

(−1) for a transposition of two w′s and a (−1)(−1)1·1 as the Koszul sign since these terms are

in V1, giving a positive sign for each term. The number of nonzero terms is the number of ways

we can permute the n− 1 w′s, which is (n− 1)!. Now we have (n− 1)! terms, each one is

mn(v1 ⊗ w⊗(n−1)) = sn+1w

therefore

ln(v1 ⊗ w⊗(n−1)) = (
∑
σ∈Sn

(−1)τmn ◦ σ)(v1 ⊗ w⊗(n−1))

= (n− 1)!sn+1w

Next, look at ln(v1⊗w⊗(n−2)⊗v2). When we expand this in the summation
∑
σ∈Sn

(−1)τmn◦σ,

we see that the only nonzero terms will be of the form mn(v1⊗w⊗(n−2)⊗v2), when we permute;

this is because the mn maps involving v1 and v2 for n ≥ 3 are only defined when v1 is the first
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term and v2 is the last term.

In a similar fashion as before, when we permute w′s we get a positive Koszul number. The

number of terms in the sum will be the number of ways we can permute the w⊗(n−2), which is

(n− 2)!. Since each term is positive, we get:

ln(v1 ⊗ w⊗(n−2) ⊗ v2) = (n− 2)!mn(v1 ⊗ w⊗(n−2) ⊗ v2)

= (n− 2)!sn+1v1

The last nonzero element to consider is v1⊗w⊗k ⊗ v1⊗w⊗(n−2)−k. We will show for n ≥ 2,

ln(v1⊗w⊗k ⊗ v1⊗w⊗(n−2)−k) = 0. For explanation purposes, we will distinguish the two v1 as

v11 and v12 , so we are looking for

ln(v11 ⊗ w⊗k ⊗ v12 ⊗ w⊗(n−2)−k)

When we expand the summation, the only nonzero terms will be of the form

mn(v11 ⊗ w⊗k ⊗ v12 ⊗ w⊗(n−2)−k)

and

mn(v12 ⊗ w⊗k ⊗ v11 ⊗ w⊗(n−2)−k)

for some permutations on w′s.

Note that there are n− 1 terms of the form mn(v11 ⊗ w⊗k ⊗ v12 ⊗ w⊗(n−2)−k), these are:

v11 ⊗ v12 ⊗ w⊗(n−2)

v11 ⊗ w ⊗ v12 ⊗ w⊗(n−3)

...

v11 ⊗ w⊗(n−2) ⊗ v12

Similarly, there are n − 1 terms of the form mn(v12 ⊗ w⊗k ⊗ v11 ⊗ w⊗(n−2)−k), each one

corresponding to switching v11 and v12 from above. These are the only nonzero terms since a

w in the first coordinate gives a zero for mn, that is mn(w, . . .) = 0.

We look at the correspondence of the sign of mn(v11 ⊗w⊗k ⊗ v12 ⊗w⊗(n−2)−k) and the sign

of mn(v12 ⊗ w⊗k ⊗ v11 ⊗ w⊗(n−2)−k). Say the sign of mn(v11 ⊗ w⊗k ⊗ v12 ⊗ w⊗(n−2)−k) is +1.

8



Then the sign of

mn(v11 ⊗ v12 ⊗ w⊗k ⊗ w⊗(n−2)−k)

is (+1)(−1)k since we have done k transpositions, with each transposition between two elements

of degree +1. Continuing, the sign of

mn(v12 ⊗ v11 ⊗ w⊗k ⊗ w⊗(n−2)−k)

is (+1)(−1)k(−1) since we’ve transposed two elements, each of degree 0.

Moving those k w′s back to the right, gives the sign of

mn(v12 ⊗ w⊗k ⊗ v11 ⊗ w⊗(n−2)−k)

as (+1)(−1)k(−1)(−1)k since we’ve done k transpositions, each with two elements of degree 1

and 0, so a sign of +1. Simplifying this sign gives:

(+1)(−1)k(−1)(−1)k = (−1)(−1)2k

= −1

Hence, when the sign of mn(v11 ⊗w⊗k⊗ v12 ⊗w⊗(n−2)−k) is +1, the sign of mn(v12 ⊗w⊗k⊗
v11 ⊗w⊗(n−2)−k) is −1. The n− 1 of the first type then cancel out with the n− 1 of the second

type, giving us 0 in the summation.

Therefore,

ln(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗(n−2)−k) = 0

for n ≥ 2.

Because we used the theorem presented before, we know this is an example of an L∞ algebra,

but we explicitly prove this is an L∞ algebra in the next section. Although these calculations

are unnecessary (as the theorem provides our proof), this is a way to show how the mappings

work together in addition to proving the accuracy of our calculations.

2.2.1 Showing Sum Relation

Next, to verify that this finite example is, in fact, an L∞ algebra, we show the relation

∑
ij=n+1

∑
σ

(−1)σ(−1)e(σ)(−1)i(j−1)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0

holds on the maps for each n. It is important to note that we are still using the definitions

for A∞ and L∞ algebras that have not been desuspended, that is, we are using the first two

9



definitions.

For n = 1, we have that

l1(l1(v1)) = l1(w)

= 0

and

l1(l1(v2)) = l1(w)

= 0

For n = 2, the only elements of V that are nonzero when maps are applied are v1 ⊗ w and

v1 ⊗ v2, so we show this sum is zero on each element:

For v1 ⊗ w we have:

∑
ij=n+1

∑
σ

(−1)σ(−1)e(σ)(−1)i(j−1)lj(li(σ(v1, w)))

= (−1)0(−1)0(−1)2(1−1)l1(l2(v1 ⊗ w)) + (−1)0(−1)0(−1)1(2−1)l2(l1(v1), w)

+(−1)1(−1)0·1(−1)1(2−1)l2(l1(w), v1)

= l1(l2(v1 ⊗ w))− l2(l1(v1), w) + l2(l1(w), v1)

= l1(s3w)− l2(w,w) + l2(0, v1)

= s3 · 0− 0 + 0

= 0

For v1 ⊗ v2 we have:
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∑
ij=n+1

∑
σ

(−1)σ(−1)e(σ)(−1)i(j−1)lj(li(σ(v1, v2))

= (−1)0(−1)0(−1)2(1−1)l1(l2(v1 ⊗ v2)) + (−1)0(−1)0(−1)1(2−1)l2(l1(v1), v2)

+(−1)1(−1)0·0(−1)1(2−1)l2(l1(v2), v1)

= l1(l2(v1, v2))− l2(l1(v1), v2) + l2(l1(v2), v1)

= l1(s3v1)− l2(w, v2) + l2(w, v1)

= s3l1(v1)− 0− l2(v1, w)

= s3w − s3w

= 0

Next, we move to n ≥ 3. As a precursor to the generalized result, we will show the relations

hold on the two elements that give nonzero maps, v1 ⊗w⊗w and v1 ⊗w⊗ v2. Two comments

are of importance here, we use w1 and w2 to keep track of order. These do not denote two

different elements in V1, as both are w. Secondly, in terms where multiple transpositions occur,

we multiply by more than one Koszul sign, one for each transposition.

For v1 ⊗ w ⊗ w we have:

∑
ij=n+1

∑
σ

(−1)σ(−1)e(σ)(−1)i(j−1)lj(li(σ(v1, w, w)))

= (−1)0(−1)0(−1)1(3−1)l3(l1(v1), w1, w2)

+(−1)0·1(−1)1(−1)1(3−1)l3(l1(w1), v1, w2)

+(−1)0·1(−1)1·1(−1)2(−1)1(3−1)l3(l1(w2), v1, w1)

+(−1)0(−1)0(−1)2(2−1)l2(l2(v1, w1), w2)

+(−1)1·1(−1)1(−1)2(2−1)l2(l2(v1, w2), w1)

+(−1)0·1(−1)0·1(−1)2(−1)2(2−1)l2(l2(w1, w2), v1)

+(−1)0(−1)0(−1)3(1−1)l1(l3(v1, w1, w2))

= l3(l1(v1), w1, w2)− l3(l1(w1), v1, w2)− l3(l1(w2), v1, w1) + l2(l2(v1, w1), w2)

+l2(l2(v1, w2), w1) + l2(l2(w1, w2), v1) + l1(l3(v1, w1, w2))

= l3(w,w,w)− l3(0, v1, w2)− l3(0, v1, w1) + l2(s3w,w) + l2(s3w,w)

+l2(0, v1) + l1(2!s4w)

= 0
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For v1 ⊗ w ⊗ v2 we have:

∑
ij=n+1

∑
σ

(−1)σ(−1)e(σ)(−1)i(j−1)lj(li(σ(v1, w, v2)))

= (−1)0(−1)0(−1)1(3−1)l3(l1(v1), w, v2)

+(−1)0·1(−1)1(−1)1(3−1)l3(l1(w), v1, v2)

+(−1)0·0(−1)0·1(−1)2(−1)1(3−1)l3(l1(v2), v1, w)

+(−1)0(−1)0(−1)2(2−1)l2(l2(v1, w), v2)

+(−1)0·1(−1)1(−1)2(2−1)l2(l2(v1, v2), w)

+(−1)0·0(−1)0·1(−1)2(−1)2(2−1)l2(l2(w, v2), v1)

+(−1)0(−1)0(−1)3(1−1)l1(l3(v1, w, v2))

= l3(l1(v1), w, v2)− l3(l1(w), v1, v2) + l3(l1(v2), v1, w) + l2(l2(v1, w), v2)

−l2(l2(v1, v2), w) + l2(l2(w, v2), v1) + l1(l3(v1, w, v2))

= l3(w,w, v2)− l3(0, v1, v2) + l3(w, v1, w) + l2(s3w, v2)

−l2(s3v1, w) + l2(0, v1) + l1(s4v1)

= −2s4w − s3s3w + s4w

= 2w − w − w

= 0

Now we move to the generalized case of n ≥ 3. The two elements to consider here are

v1 ⊗ w⊗n−1 and v1 ⊗ w⊗n−2 ⊗ v2.

For v1 ⊗ w⊗n−1 each entry in the sum is of the form:

lj(li(v1, w
⊗n−j−2), w⊗j−1) or lj(li(w

⊗i), v1, w
⊗n−i−1)

But simplifying these gives:

lj((i− 1)!si+1w), w⊗j−1) or lj(0, v1, w
⊗n−i−1)

In either case, the term is zero. Hence the sum is zero and the relation holds.

Our last case to consider is the sum acting on v1⊗w⊗n−2⊗ v2. First, we note that the only

way we are able to get nonzero terms is when we have elements from our initial list where the

maps were defined. All other terms in the sum will be zero. Hence, the only nonzero terms are:
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ln(l1(v2), v1, w
⊗(n−2)), ln−1(l2(v1, v2), w⊗(n−2)), l1(ln(v1, w

⊗(n−2),v2)),

and ln−i+1(li(v1, , w
⊗(i−2), v2), w⊗n−i)) where n > i > 2

Also note that for each i where 2 < i < n, we will have
(
n−2
n−i
)

terms because we can choose

any n− i of the w-elements. Without considering the coefficients, our sum is:

±l1(ln(v1, w
⊗n−2, v2))± ln−1(l2(v2, v2), w⊗n−2)± ln(l1(v2), v1, w

⊗n−2),

and ±
∑

2<i<n

(
n− 2

n− i

)
ln−i+1(li(v1, w

⊗i−2, v2), w⊗n−i)

Now we find the coefficients. For our last term, we first permute the w-elements, then move

the i − 2 w-elements past the v2 element. Permuting elements from V1 results in a positive

sign (a −1 for the permutation multiplied by a (−1)1·1 for the Koszul sign), so we leave these

positive one multiplications out. The only sign that is left is the (−1)0·1(−1)n−i = (−1)n−i,

which comes from moving v2 past n− i w-elements. Now our sum becomes:

= (−1)n·0l1(ln(v1, w
⊗n−2, v2)) + (−1)2(n−2)(−1)n−2ln−1(l2(v2, v2), w⊗n−2)

(−1)n−1(−1)n−1ln(l1(v2), v1, w
⊗n−2)

+
∑

2<i<n

(−1)n−i(−1)i(n−i)
(
n− 2

n− i

)
ln−i+1(li(v1, w

⊗i−2, v2), w⊗n−i)

= (−1)n·0l1((n− 2)!sn+1v1) + (−1)2(n−2)(−1)n−2ln−1(s3v1, w
⊗n−2)

(−1)n−1(−1)n−1ln(w, v1, w
⊗n−2)

+
∑

2<i<n

(−1)n−i(−1)i(n−i)
(
n− 2

n− i

)
ln−i+1((i− 2)!si+1v1, w

⊗n−i)

= (n− 2)!sn+1w + (−1)n−2snw − (n− 1)!sn+1w

+
∑

2<i<n

(n− 2)!

(n− i)!(i− 2)!
(−1)n−i(−1)i(n−i)(i− 2)!si+1(n− i)!sn−i+2w

To show this sum is zero, it is equivalent to show the coefficients of w add to 0. And since

each has a factor of (n− 2)!, we can divide by (n− 2)! and simplify exponents to get:

(−1)
(n+2)(n+2)

2 + (−1)n−2(−1)
(n+1)(n+2)

2 − (n− 1)(−1)
(n+2)(n+3)

2

+
∑

2<i<n

(−1)n−i(−1)i(n−i)(−1)
(i+2)(i+3)

2 (−1)
(n−i+3)(n−i+4)

2

13



Also note that (−1)n+2 = (−1)n−2, so we can simplify the second term to be (−1)
(n+2)(n+3)

2

and so our sum becomes:

(3− n)(−1)
(n+2)(n+3)

2 +
∑

2<i<n

(−1)n−i(−1)i(n−i)(−1)
(i+2)(i+3)

2 (−1)
(n−i+3)(n−i+4)

2

We use a computer programming language (Maple) to simplify the sum. Also note, that

our sum only depends on exponents being even or odd. And since these exponents are being

divided by 2, we can take every term modulo 4 in the numerator of the exponents. So we have:

(3− n)(−1)
(n+2)(n+3)

2 − (n+
1

2
)(−1)

n(n+5)
2 +

7

2
(−1)

n(n+9)
2 from Maple

= (3− n)(−1)
(n+2)(n+3)

2 + (n+
1

2
)(−1)

n2+5n−2
2 − 7

2
(−1)

9n2+n−2
2

≡ (3− n)(−1)
(n+2)(n+3)

2 + (n+
1

2
)(−1)

n2+n−2
2 − 7

2
(−1)

n2+n−2
2 mod 4

≡ (3− n)(−1)
(n+2)(n+3)

2 + (n+
1

2
− 7

2
)(−1)

n2+n−2
2 mod 4

≡ (3− n)(−1)
(n+2)(n+3)

2 + (n− 3)(−1)
n2+n+6

2 mod 4

= (3− n)(−1)
(n+2)(n+3)

2 + (n− 3)(−1)
(n+2)(n+3)

2

= 0

Now we have shown that for any n,

∑
ij=n+1

∑
σ

(−1)σ(−1)e(σ)(−1)i(j−1)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0

thus proving that our finite example is, in fact, an L∞ algebra.

2.3 Finite Desuspended A∞ Example

On a higher level (where all maps have degree one and we use our second definition), we use

work from Michael Allocca. From Allocca’s paper [1], he desupsended our previous A∞ algebra

and proved the following gives an A∞ algebra structure:

Example 11. Let V = V−1 + V0 be given by V−1 = 〈x1, x2〉 and V0 = 〈y〉. The following maps

describe an A∞ structure on V :
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m̂1(x1) = m̂1(x2) = y

For n ≥ 2, m̂n(x1 ⊗ y⊗k ⊗ x1 ⊗ yn−2−k) = x1 for 0 ≤ k ≤ n− 2

m̂n(x1 ⊗ y⊗n−2 ⊗ x2) = x1

m̂n(x1 ⊗ y⊗n−1) = y

2.4 Finite Desuspended L∞ Example

From our previous example of an L∞ Algebra, we need to desuspend this algebra to find a

finite example on a desuspended coalgebra. To do this, we look at Lada’s paper [6] where he

shows how to obtain these desuspended maps, we let W = W−1 + W0 where W−1 = 〈x1, x2〉
and W0 = 〈y〉 such that the desuspension operator, ↓, is given by: ↓ v1 = x1, ↓ v2 = x2, and

↓ w = y. Then the collection of degree one symmetric linear maps l̂n : W⊗n → W given by

l̂n = (−1)
n(n−1)

2 ↓ ◦ln◦ ↑⊗n gives an L∞ algebra structure, given by our second definition of L∞

algebra.

To find these l̂n maps, we apply the above map to x1, x2, x1⊗ y⊗n−1, and x1⊗ y⊗n−2⊗ x2,

as these come from the maps of ln. As a note about signs, each time we apply a desuspension,

we need to consider how many terms this operator has moved past, as an example

l3◦ ↑⊗3 (x1, y, y) = (−1)|x1|+|y|+|x1|l3(v1, w, w)

since one operator has moved past x1 and y, one has moved past x1, and one hasn’t moved past

anything. Then we have four calculations to perform:

(i) On x1:

l̂1(x1) = (−1)
1(1−1)

2 ↓ ◦l1◦ ↑⊗1 (x1)

= (−1)
1(1−1)

2 ↓ ◦l1(v1)

= (−1)
1(1−1)

2 ↓ (−1)
(1+2)(1+3)

2 w

= y
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(ii) On x2:

l̂1(x2) = (−1)
1(1−1)

2 ↓ ◦l1◦ ↑⊗1 (x2)

= (−1)
1(1−1)

2 ↓ ◦l1(v2)

= (−1)
1(1−1)

2 ↓ (−1)
(1+2)(1+3)

2 w

= y

(iii) On the element x1 ⊗ y⊗n−1, we have:

l̂n(x1 ⊗ y⊗n−1) = (−1)
n(n−1)

2 ↓ ◦ln◦ ↑⊗n (x1 ⊗ y⊗n−1)

= (−1)
n(n−1)

2 (−1)n−1 ↓ ◦ln(v1 ⊗ w⊗n−1)

= (−1)
n(n−1)

2 (−1)n−1 ↓ (−1)
(n+2)(n+3)

2 (n− 1)!w

= (−1)
n(n−1)+2n−2+(n+2)(n+3)

2 (n− 1)!y

= (n− 1)!y

The reason we can simplify this last exponent so much is due to the fact that everything is

modulo 2 in the exponent of−1. Since we have that n(n−1)+2n−2+(n+2)(n+3)
2 = (n+1)(n+2),

where either n+ 1 or n+ 2 is even, the exponent of −1 is even, so

(−1)
n(n−1)+2n−2+(n+2)(n+3)

2 = +1

(iv) Lastly, we look at x1 ⊗ y⊗n−2 ⊗ x2:

l̂n(x1 ⊗ y⊗n−2 ⊗ x2) = (−1)
n(n−1)

2 ↓ ◦ln◦ ↑⊗n (x1 ⊗ y⊗n−2 ⊗ x2)

= (−1)
n(n−1)

2 (−1)n−1 ↓ ◦ln(v1 ⊗ w⊗n−2 ⊗ v2)

= (−1)
n(n−1)+2n−2

2 (−1)
(n+2)(n+3)

2 ↓ (n− 2)!v1

= (−1)
n(n−1)

2 (−1)
(n+2)(n+3)

2 (n− 2)!x1

= (n− 2)!x1

Again, we can simplify this exponent because everything is modulo 2 in the power of −1.

This work gives us the following:

Example 12. Let W = W−1 +W0 be given by W−1 = 〈x1, x2〉 and W0 = 〈y〉, which has been

desuspended from our previous finite L∞ algebra given by V . The maps given by l̂n : W⊗n →W

16



where

l̂1(x1) = l̂1(x2) = y

l̂n(x1 ⊗ y⊗n−1) = (n− 1)!y

l̂n(x1 ⊗ yn−2 ⊗ x2) = (n− 2)!x1

give an L∞ structure, as defined in the second definition using a coalgebra.

2.4.1 Showing Sum Relation

By the work of Lada [6], we know our desuspended algebra is an example of an L∞ algebra, as

he proves that by setting l̂n =↓ ◦ln◦ ↑⊗n, the result is an L∞ algebra. To verify the accuracy of

our work, and to show how the mappings work inside the double sum, we show (by definition)

that this is, in fact, an L∞ algebra. To prove this, we look to our sum in the second definition

of L∞ (1.4) algebra and show that

∑
σ∈Sk+l=n

(−1)ε(σ)l1+l(lk(cσ(1), . . . , cσ(k)), cσ(k+1), . . . , cσ(n)) = 0

We show this double sum is zero on each of our four inputs as follows

(i) We have that l̂1 ◦ l̂1(x1) = l̂1(y) = 0, so the definition holds.

(ii) We also have that l̂1 ◦ l̂1(x2) = l̂1(y) = 0, so again the definition holds.

(iii) When we look at this double sum on x1 ⊗ y⊗n−1, the only terms we need to consider are

those where x1 is in the first position. Here we have:

±l̂n−j+1(l̂j(x1 ⊗ y⊗j−1), y⊗n−j) = ±l̂n−j+1((j − 1)!y, y⊗n−j)

= 0

or we have the term

l̂n(l̂1(x1), y⊗n−1) = l̂n(y, y⊗n−1)

= 0

Therefore each term in the double sum is zero and hence the definition holds.

(iv) Lastly, we look at the double sum on the element x1 ⊗ y⊗n−2 ⊗ x2. Inside the double

sum there are two types of elements we need to consider, as all others will be zero. These

nonzero terms are
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(I) ±l̂n(l̂1(x2), x1 ⊗ y⊗n−2)

(II) ±l̂i(l̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j) for j = 2, . . . n− 1.

We go through these and look at each element, then add them to get zero.

(I) Since we have switched x1 and x2, both of degree −1, we have that

−l̂n(l̂1(x2), x1, y
⊗n−2) = −l̂n(y, x1, y

⊗n−2)

= −(n− 1)!y

(II) Lastly, we have that,

±l̂i(l̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j) = l̂i((j − 2)!x1, y
⊗n−j)

= (n− j)!(j − 2)!y

Now note that there are
(
n−2
j−2

)
elements of this form for each j = 2, . . . n.. Since

there are
(
n−2
j−2

)
terms, when we add them all up we get:

n∑
j=2

(
n− 2

j − 2

)
(n− j)!(j − 2)!y

=

n∑
j=2

(n− 2)!

(n− j)!(j − 2)!
(n− j)!(j − 2)!y

=

n∑
j=2

(n− 2)!y

= [n(n− 2)!− (n− 2)!]y

Now, we have these two types of terms, only one each of type (I), and we’ve already added

up the
(
n−2
j−2

)
terms of type (II) for j = 2, . . . , n. We add all of these to get:

[n(n− 2)!− (n− 2)!]y +−(n− 1)!y = [−(n− 1)(n− 2)! + (n− 1)(n− 2)!]y

= (n− 2)![−(n− 1) + (n− 1)]y

= 0

Therefore, the double sum from our definition of L∞ algebra holds on all types of elements and

our maps on the desuspended algebra do, in fact, give an L∞ algebra from the second definition

given.
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2.5 Desuspended Connection

From our work, we’ve seen that we can get an example of an L∞ algebra from an A∞ algebra

at the lower level by setting ln =
∑
σ∈Sn

(−1)τmn ◦ σ, where (−1)τ is the product of the sign of

the permutation with the degrees of the permuted elements. Then, we can lift each of these

algebras to achieve A∞ and L∞ algebras that have been desuspended. The question we then

asked, is are these desuspended algebras related in the same was that the lower level algebras

are? That is to say, for our example, does the following diagram commute:

(A, m̂) (L, l̂)

(A,m) (L, l)

(−1)
n(n−1)

2 ↓ ◦mn◦ ↑⊗n (−1)
n(n−1)

2 ↓ ◦ln◦ ↑⊗n

∑
σ∈Sn

(−1)τmn ◦ σ

∑
σ∈Sn

(−1)γm̂n ◦ σ

Figure 2.1: Ways to Lift Our Example

Where (−1)γ comes from the degrees of the permuted elements. That is to say, if we per-

muted x and y within our sum, we would have a coefficient of (−1)|x||y|. Note that at the

upper level, because the maps are symmetric, we do not need to account for the degree of the

permutation inside the summation, only the degree of the permuted elements.

For our example, this answer is yes, as we show by acting
∑
σ∈Sn

(−1)γm̂n ◦σ on the elements,

x1, x2, x1⊗ y⊗n−1, x1⊗ y⊗k ⊗ x1⊗ y⊗n−2−k, and x1⊗ y⊗n−2⊗ x2, and show this gives our L∞

algebra example.

Look at l̂1. Since the only permutation of one element is the identity, we have that

l̂1(x1) = m̂1(x1) = y
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and

l̂1(x2) = m̂1(x2) = y

Now, let n ≥ 2. We first look at l̂n(x1⊗y⊗(n−1)). When we look at the sum
∑
σ∈Sn

(−1)γm̂n ◦σ

acting on this element, the only non-zero terms will be m̂n(x1 ⊗ y⊗(n−1)) for each σ permuting

the y′s. Any other term will have m̂n(y ⊗ · · · ), which is zero. Now we consider the degree sign

of each of these terms. Since y ∈W0, when we permute any two y′s we get a coefficient sign of

10·0 = 1, giving a positive sign for each term. The number of nonzero terms is the number of

ways we can permute the n− 1 y′s, which is (n− 1)!. Now we have (n− 1)! terms, each one is

m̂n(x1 ⊗ y⊗(n−1)) = y

therefore

l̂n(x1 ⊗ y⊗(n−1)) = (
∑
σ∈Sn

(−1)γm̂n ◦ σ)(x1 ⊗ y⊗(n−1))

= (n− 1)!y

Next, look at l̂n(x1⊗y⊗(n−2)⊗x2). When we expand this in the summation
∑
σ∈Sn

(−1)γm̂n◦σ,

we see that the only nonzero terms will be of the form m̂n(x1⊗y⊗(n−2)⊗x2), when we permute;

this is because the m̂n maps involving x1 and x2 for n ≥ 2 are only defined when x1 is the first

term and x2 is the last term.

In a similar fashion as before, when we permute y′s we get a positive degree number. The

number of terms in the sum will be the number of ways we can permute the y⊗(n−2), which is

(n− 2)!. Since each term is positive, we get:

l̂n(x1 ⊗ y⊗(n−2) ⊗ x2) = (n− 2)!m̂n(x1 ⊗ y⊗(n−2))

= (n− 2)!x1

The last nonzero element to consider is x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗(n−2)−k. We will show for n ≥ 2,

l̂n(x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗(n−2)−k) = 0. For explanation purposes, we will distinguish the two x1 as

x11 and x12 , so we are looking for

l̂n(x11 ⊗ y⊗k ⊗ x12 ⊗ y⊗(n−2)−k)
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When we expand the summation, the only nonzero terms will be of the form

m̂n(x11 ⊗ y⊗k ⊗ x12 ⊗ y⊗(n−2)−k)

and

m̂n(x12 ⊗ y⊗k ⊗ x11 ⊗ y⊗(n−2)−k)

for some permutations on y′s.

Note that there are n− 1 terms of the form m̂n(x11 ⊗ y⊗k ⊗ x12 ⊗ y⊗(n−2)−k), these are:

x11 ⊗ x12 ⊗ y⊗(n−2)

x11 ⊗ y ⊗ x12 ⊗ y⊗(n−3)

...

x11 ⊗ y⊗(n−2) ⊗ x12

Similarly, there are n − 1 terms of the form m̂n(x12 ⊗ y⊗k ⊗ x11 ⊗ y⊗(n−2)−k), each one

corresponding to switching x11 and x12 from above. These are the only nonzero terms since a

y in the first coordinate gives a zero for m̂n.

We look at the correspondence of the sign of m̂n(x11 ⊗ y⊗k ⊗ x12 ⊗ y⊗(n−2)−k) and the sign

of m̂n(x12 ⊗ y⊗k ⊗ x11 ⊗ y⊗(n−2)−k). Say the sign of m̂n(x11 ⊗ y⊗k ⊗ x12 ⊗ y⊗(n−2)−k) is +1.

Then the sign of

m̂n(x11 ⊗ x12 ⊗ y⊗k ⊗ y⊗(n−2)−k)

is (+1) since time we permute any y and x1, the degrees of which are 0 and −1, respectively,

we get a corresponding (−1)0·−1 = +1. Continuing, the sign of

m̂n(x12 ⊗ x11 ⊗ y⊗k ⊗ y⊗(n−2)−k)

is (+1)(−1) since we’ve transposed two elements, each of degree −1.

Moving those k w′s back to the right, gives the sign of

m̂n(x12 ⊗ y⊗k ⊗ x11 ⊗ y⊗(n−2)−k)

is (+1)(−1)(+1), for the same reasoning as above. Hence, when the sign of m̂n(x11 ⊗ y⊗k ⊗
x12 ⊗ y⊗(n−2)−k) is +1, the sign of m̂n(x12 ⊗ y⊗k ⊗ x11 ⊗ y⊗(n−2)−k) is −1. The n − 1 of the

first type then cancel out with the n− 1 of the second type, giving us 0 in the summations.
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Therefore,

l̂n(x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗(n−2)−k) = 0

for n ≥ 2. Another way to look as this is that from properties of l̂n, we have:

l̂n(x12 ⊗ y⊗k ⊗ x11 ⊗ y⊗(n−2)−k) = l̂n(x1 ⊗ x1 ⊗ y⊗(n−2))

= (−1)−1·−1 l̂n(x1 ⊗ x1 ⊗ y⊗(n−2)) from the degrees of x1

And since

l̂n(x1 ⊗ x1 ⊗ y⊗(n−2)) = (−1)l̂n(x1 ⊗ x1 ⊗ y⊗(n−2))

we must have that l̂n(x12 ⊗ y⊗k ⊗ x11 ⊗ y⊗(n−2)−k) = 0.

From this work, we can see that these l̂ are precisely those we found by lifting our finite L∞

algebra, and therefore our diagram:

(A, m̂) (L, l̂)

(A,m) (L, l)

(−1)
n(n−1)

2 ↓ ◦mn ↑⊗n (−1)
n(n−1)

2 ↓ ◦ln ↑⊗n

∑
σ∈Sn

(−1)τmn ◦ σ

∑
σ∈Sn

(−1)γm̂n ◦ σ

Figure 2.2: Commuting Diagram to Lift in Our Example

does, in fact, commute, which gives rise to the idea that you can symmetrize and then

lift to go from a lower level A∞ algebra to a desuspend L∞ algebra, or you can lift and then

symmetrize. We will look at this in more detail in chapter 7.
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2.6 Our Four Examples

For simplicity, our four concrete examples we will use through this paper are:

Example 13 (A∞). Let V denote a graded vector space given by V = ⊕Vn where V0 has basis

< v1, v2 >, V1 has basis < w >, and Vn = 0 for n 6= 0, 1. The structure on V is defined by the

linear maps mn : V ⊗n → V :

m1(v1) = m1(v2) = w

For n ≥ 2 : mn(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗(n−2)−k) = (−1)ksnv1, 0 ≤ k ≤ n− 2

mn(v1 ⊗ w⊗(n−2) ⊗ v2) = sn+1v1

mn(v1 ⊗ w⊗(n−1)) = sn+1w

where sn = (−1)
(n+1)(n+2)

2 , and mn = 0 when evaluated on any element of V ⊗n that is not listed

above.

Example 14 (Desuspended A∞). Let W = W−1 + W0 be given by W−1 = 〈x1, x2〉 and

W0 = 〈y〉. The following maps describe an A∞ structure on V :

m̂1(x1) = m̂1(x2) = w

For n ≥ 2, m̂n(x1 ⊗ y⊗k ⊗ x1 ⊗ yn−2−k) = x1 for 0 ≤ k ≤ n− 2

m̂n(x1 ⊗ y⊗n−2 ⊗ x2) = y1

m̂n(x1 ⊗ y⊗n−1) = y

Example 15 (L∞). Consider the graded vector space V = V0⊕V1 where V0 has basis < v1, v2 >

and V1 has basis < w >. We show that this space has an L∞ structure given by:

l1(v1) = l1(v2) = w

For n ≥ 2 ln(v1 ⊗ w⊗(n−1)) = (n− 1)!sn+1w

ln(v1 ⊗ w⊗(n−2) ⊗ v2) = (n− 2)!sn+1v1

where sn = (−1)
(n+1)(n+2)

2 and ln = 0 when evaluated on any element of V ⊗n that is not

listed.

Example 16 (Desuspended L∞). Let W = W−1 + W0 be given by W−1 = 〈x1, x2〉 and

W0 = 〈y〉, which has been desuspended from our previous finite L∞ algebra given by V . The

23



maps given by l̂n : W⊗n →W where

l̂1(x1) = l̂1(x2) = y

l̂n(x1 ⊗ y⊗n−1) = (n− 1)!y

l̂n(x1 ⊗ yn−2 ⊗ x2) = (n− 2)!x1

give an L∞ structure, as defined in the second definition using a coalgebra.
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Chapter 3

Alternate A∞ Strong Homotopy

Derivation Definition

It is important to note that for the remainder of this paper, we will use the definitions of A∞

and L∞ algebras on a desuspended algebra.

We next look into the work of Hiroshige Kajiura and Jim Stasheff on homotopy algebras

inspired by classical open-closed string field theory [5]. Here, Kajiura and Stasheff give the

following definition:

Definition 17. (Strong homotopy derivation) A strong homotopy derivation of degree one of

an A∞-algebra (A,m) consists of a collection of multi-linear maps of degree one

θ := {θq|A⊗q → A}q≥1

satisfying the following relations:

0 =
∑

r+s=q+1

r−1∑
i=0

(−1)β(s,i)θr(o1, . . . , oi,ms(oi+1, . . . , oi+s), . . . , oq)

+ (−1)β(s,i)mr(o1, . . . , oi, θs(oi+1, . . . , oi+s), . . . , oq)

(3.1)

Here the sign β(s, i) = o1 + · · ·+ oi results from moving ms, respectively θs, past (o1, . . . , oi).

In their paper, Kajiura and Stasheff go on to say that this sum is equivalent to seeing θ as a

coderivation of T cA with no constant term and such that [m, θ] = 0. Keep in mind, these maps

have been lifted, so we are now using our second definition of A∞ algebra.

First we note that for lifted m and θ, these maps have degree one. So when we apply these

maps to elements, we don’t need to worry about multiplying by the degree of the map, also the
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commutator bracket is given by

m ◦ θ − (−1)|m||θ|θ ◦m

and since both degrees are one, that is |m| = |θ| = 1, we have the commutator bracket is

reduced to m ◦ θ + θ ◦m. We show this is equivalent to Kajiura and Stasheff’s definition of a

strong homotopy derivation.

We look at this bracket on one element:

[m, θ](x) = mθ(x) + θm(x)

= m1θ1(x) + θ1m1(x)

This is equivalent to the sum given by (3.1), and we later use that m1θ1 = −θ1m1, since

the sum (and hence the bracket) are set to zero by definition.

Now we work on two elements:

[m, θ](x, y) = m(θ2(x, y) + θ1(x)⊗ y + (−1)|x|x⊗ θ1(y))

+θ(m2(x, y) +m1(x)⊗ y + (−1)|x|x⊗m1(y))

= m1θ2(x, y) +m2(θ1(x), y) +m1θ1(x)⊗ y + (−1)|θ1(x)|θ1(x)⊗m1(y)

+(−1)|x|m2(x, θ1(y)) + (−1)|x|m1(x)⊗ θ1(y) + (−1)|x|+|x|x⊗m1θ1(y)

+θ1m2(x, y) + θ2(m1(x), y) + θ1m1(x)⊗ y + (−1)|m1(x)|m1(x)⊗ θ1(y)

+(−1)|x|θ2(x,m1(y)) + (−1)|x|θ1(x)⊗m1(y)

These signs come from the elements that mi or θi has moved past. Technically, the coefficient

for, say, x⊗m1(y) is (−1)|x||m1|, but as we said before |m1| = 1, so we don’t write the degrees

of the maps. Now we look at terms that cancel:

(−1)|θ1(x)|θ1(x)⊗m1(y) + (−1)|x|θ1(x)⊗m1(y) = 0

since |θ1(x)| = 1 + |x|, so (−1)|x|θ1(x)⊗m1(y) = −(−1)|θ1(x)|θ1(x)⊗m1(y).

Similarly,

(−1)|x|m1(x)⊗ θ(y) + (−1)|m1(x)|m1(x)⊗ θ1(y) = 0
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Now we use the fact that m1θ1 = −θ1m1 to get that

m1θ1(x)⊗ y + θ1m1(x)⊗ y = 0

and

(−1)|x|+|x|x⊗m1θ1(y) + (−1)|x|+|x|x⊗ θ1m1(y) = 0

This leaves us with

[m, θ](x, y) = m1θ2(x, y) +m2(θ1(x), y) + (−1)|x|m2(x, θ1(y))

+ θ1m2(x, y) + θ2(m1(x), y) + (−1)|x|θ2(x,m1(y))

which is equivalent to (3.1) on two inputs.

Before we generalize this on n inputs, we show the process in more detail with three elements:
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[m, θ](x, y, z) = m1θ3(x, y, z) +m2(θ2(x, y), z)

+m1θ2(x, y)⊗ z + (−1)|θ2(x,y)|θ2(x, y)⊗m1(z)

+(−1)|x|m2(x1, θ2(y, z)) + (−1)|x|m1(x)⊗ θ2(y, z)

+(−1)|x|+|x|x⊗m1θ2(y, z) +m3(θ1(x), y, z)m2(θ1(x), y)⊗ z

+(−1)|θ1(x)|θ1(x)⊗m2(y, z) +m1θ1(x)⊗ y ⊗ z

+(−1)|θ1(x)|θ1(x)⊗m1(y)⊗ z + (−1)|θ1(x)|+|y|θ1(x)⊗ y ⊗m1(z)

+(−1)|x|m3(x, θ1(y), z) + (−1)|y|m2(x, θ1(y))⊗ z

+(−1)|x|+|y|x⊗m2(θ1(y), z) + (−1)|x|m1(x)⊗ θ1(y)⊗ z

= (−1)|x|+|x|x⊗m1θ1(y)⊗ z + (−1)|x|+|θ1(y)|+|x|x⊗ θ1(y)⊗m1(z)

+(−1)|x|+|y|m3(x, y, θ1(z)) + (−1)|x|+|y|m2(x, y)⊗ θ1(z)

+(−1)|x|+|y|+|x|x⊗m2(y, θ1(z)) + (−1)|x|+|y|m1(x)⊗ y ⊗ θ1(z)

+(−1)|x|+|θ1(y)|+|x|x⊗m1(y)⊗ θ1(z) + (−1)|x|+|y|+|x|+|y|x⊗ y ⊗m1θ1(z)

+θ1m3(x, y, z) + θ2(m2(x, y), z) + θ1m2(x, y)⊗ z

+(−1)|m2(x,y)|m2(x, y)⊗ θ1(z) + (−1)|x|θ2(x1,m2(y, z))

+(−1)|x|θ1(x)⊗m2(y, z) + (−1)|x|+|x|x⊗ θ1m2(y, z)

+θ3(m1(x), y, z) + θ2(m1(x), y)⊗ z + (−1)|m1(x)|m1(x)⊗ θ2(y, z)

+θ1m1(x)⊗ y ⊗ z + (−1)|m1(x)|m1(x)⊗ θ1(y)⊗ z

+(−1)|m1(x)|+|y|m1(x)⊗ y ⊗ θ1(z) + (−1)|x|θ3(x,m1(y), z)

+(−1)|y|θ2(x,m1(y))⊗ z + (−1)|x|+|y|x⊗ θ2(m1(y), z)

+(−1)|x|θ1(x)⊗m1(y)⊗ z

= (−1)|x|+|x|x⊗ θ1m1(y)⊗ z + (−1)|x|+|m1(y)|+|x|x⊗m1(y)⊗ θ1(z)

+(−1)|x|+|y|θ3(x, y,m1(z)) + (−1)|x|+|y|θ2(x, y)⊗m1(z)

+(−1)|x|+|y|+|x|x⊗ θ2(y,m1(z)) + (−1)|x|+|y|θ1(x)⊗ y ⊗m1(z)

+(−1)|x|+|m1(y)|+|x|x⊗ θ1(y)⊗m1(z) + (−1)|x|+|y|+|x|+|y|x⊗ y ⊗ θ1m1(z)

As a remark on the signs, consider the last element, (−1)|x|+|y|+|x|+|y|x⊗ y⊗ θ1m1(z). This

came from θ acting on the element (−1)|x|+|y|x⊗y⊗m1(z). The sign of (−1)|x|+|y|x⊗y⊗m1(z)

came from moving m1 past x and y (we aren’t permuting elements, so we only include signs

obtained by moving the map past elements), and the fact that m1 has degree one. The reason

for the extra (−1)|x|+|y| in the term (−1)|x|+|y|+|x|+|y|x⊗ y⊗ θ1m1(z) came from moving the θ1

past x and y, just like the m1. Again, since the degree of θ is one, we don’t bother to multiply
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the exponent by the degree of the map.

Now we show that every term involving a tensor cancels out. First we look at those terms

involving a m1θ1(xi). Those that cancel are:

m1θ1(x)⊗ y ⊗ z with θ1m1(x)⊗ y ⊗ z

(−1)|x|+|x|x⊗ θ1m1(y)⊗ z with (−1)|x|+|x|x⊗m1θ1(y)⊗ z

(−1)|x|+|y|+|x|+|y|x⊗ y ⊗ θ1m1(z) with (−1)|x|+|y|+|x|+|y|x⊗ y ⊗m1θ1(z)

Note that the coefficients are the same for these terms, which is no coincidence and we prove

later.

Next, we look at repeated terms and show they add to zero. For example,

(−1)|θ2(x,y)|θ2(x, y)⊗m1(z) + (−1)|x|+|y|θ2(x, y)⊗m1(z) = (−1)|x|+|y|+1θ2(x, y)⊗m1(z)

+(−1)|x|+|y|θ2(x, y)⊗m1(z)

= −(−1)|x|+|y|θ2(x, y)⊗m1(z)

+(−1)|x|+|y|θ2(x, y)⊗m1(z)

= 0

All others of this form are:

(−1)|x|m1(x)⊗ θ2(y, z) + (−1)|m1(x)|m1(x)⊗ θ2(y, z) = 0

(−1)|θ1(x)|θ1(x)⊗m2(y, z) + (−1)|x|θ1(x)⊗m2(y, z) = 0

(−1)|θ1(x)|θ1(x)⊗m1(y)⊗ z + (−1)|x|θ1(x)⊗m1(y)⊗ z = 0

(−1)|θ1(x)|+|y|θ1(x)⊗ y ⊗m1(z) + (−1)|x|+|y|θ1(x)⊗ y ⊗m1(z) = 0

(−1)|x|m1(x)⊗ θ1(y ⊗ z) + (−1)|m1(x)|m1(x)⊗ θ1(y ⊗ z) = 0

(−1)|x|+|θ1(y)|+|x|x⊗ θ1(y)⊗m1(z) + (−1)|x|+|y|+|x|x⊗ θ1(y)⊗m1(z) = 0

(−1)|x|+|y|m2(x, y)⊗ θ1(z) + (−1)|m2(x,y)|m2(x, y)⊗ θ1(z) = 0

(−1)|x|+|y|m1(x)⊗ y ⊗ θ1(z) + (−1)|m1(x)|+|y|m1(x)⊗ y ⊗ θ1(z) = 0

(−1)|x|+|θ1(y)|+|x|x⊗m1(y)⊗ θ1(z) + (−1)|x|+|y|+|x|x⊗m1(y)⊗ θ1(z) = 0

Now, we consider those tensor terms that are left. These are of the form x⊗· · · and · · ·⊗ z.
Simplifying these gives:
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m1θ2(x, y)⊗ z +m2(θ1(x), y)⊗ z + (−1)|x|m2(x, θ1(y))⊗ z + θ1m2(x, y)⊗ z

+θ2(m1(x), y)⊗ z + (−1)|x|θ2(x,m1(y))⊗ z

= [m1θ2(x, y) +m2(θ1(x), y) + (−1)|x|m2(x, θ1(y)) + θ1m2(x, y)

+θ2(m1(x), y) + (−1)|x|θ2(x,m1(y))]⊗ z

= 0⊗ z from the relationship on two elements previously

= 0

In the same way, we have,

(−1)|x|+|x|x⊗m1θ2(y, z) + (−1)|x|+|x|x⊗m2(θ1(y), z) + (−1)|x|+|y|+|x|x⊗m2(y, θ1(z))

+(−1)|x|+|x|x⊗ θ1m2(y, z) + (−1)|x|+|x|x⊗ θ2(m1(y), z) + (−1)|x|+|y|+|x|x⊗ θ2(y,m1(z))

= x⊗ [m1θ2(y, z) +m2(θ1(y), z) + (−1)|y|m2(y, θ1(z))

+θ1m2(y, z) + θ2(m1(y), z) + (−1)|y|θ2(y,m1(z))]

= x⊗ 0 from the relation on two elements and (−1)2|x| = 1

= 0

After all these cancellations, we are left with

[m, θ](x, y, z) = m1θ3(x, y, z) +m2(θ2(x, y), z) + (−1)|x|m2(x1, θ2(y, z))

+m3(θ1(x), y, z) + (−1)|x|m3(x, θ1(y), z) + (−1)|x|+|y|m3(x, y, θ1(z))

+θ1m3(x, y, z) + θ2(m2(x, y), z) + (−1)|x|θ2(x1,m2(y, z))

+θ3(m1(x), y, z) + (−1)|x|θ3(x,m1(y), z) + (−1)|x|+|y|θ3(x, y,m1(z))

which is precisely the sum given by Kajiura and Stasheff.

Now we prove that this bracket is equivalent to the (3.1) on a generic number of inputs. We

have that
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[m, θ](x1, x2, . . . , , xn) = mθ(x1, x2, . . . , xn) + θm(x1, x2, . . . , xn)

= m(
n∑
j=1

(−1)β(i)x1 ⊗ · · · ⊗ xi ⊗ θj(xi+1, . . . , xi+j)⊗ · · · ⊗ xn)

+θ(
n∑
j=1

(−1)β(i)x1 ⊗ · · · ⊗ xi ⊗mj(xi+1, . . . , xi+j)⊗ · · · ⊗ xn)

=

n∑
p=1

n∑
j=1

(−1)α(s)(−1)β(i)x1 ⊗ xs ⊗mp(xs+1, . . . , xs+p)⊗ xi ⊗ · · ·

· · · θj(xi+1, . . . , xi+j)⊗ · · · ⊗ xn

+

n∑
p=1

n∑
j=1

(−1)α(s)(−1)β(i)x1 ⊗ xs ⊗ θp(xs+1, . . . , xs+p)⊗ xi ⊗ · · ·

· · ·mj(xi+1, . . . , xi+j)⊗ · · · ⊗ xn

where β(q) = α(q) = |x1| + · · · + |xq|. We only need to show that any term with a tensor

product cancels in the above sum to show this is equivalent to (3.1). We do this in the same

way as with three elements.

Note that there are three types of tensor terms:

(i) x1 ⊗ · · · ⊗ θ1m1(xj)⊗ · · · ⊗ xn (or m1θ1)

(ii) x1 ⊗ · · · ⊗mi(xj , . . . , xj+i)⊗ · · · ⊗ θq(xl, . . . , xl+q)⊗ · · · ⊗ xn (or mi and θq are switched)

(iii) x1 ⊗ · · · ⊗ xi ⊗mj(xi+1, . . . , θq(xs, . . . , xs+q), . . .)⊗ · · · ⊗ xn (or mj and θq are switched)

Note that we’ve shown the bracket is equivalent to (3.1) for two and three inputs, as we will

be using induction to show these equations are equivalent. Let two elements be our base case

and assume that [m, θ](x1, . . . , xn−1) = 0. We prove [m, θ](x1, . . . , xn) = 0 (or is equivalent to

(3.1)) by induction. Consider term (i). This comes from θ acting on x1⊗· · ·⊗m1(xj)⊗· · ·⊗xn.

Firstly, the sign for x1 ⊗ · · · ⊗m1(xj) ⊗ · · · ⊗ xn is (−1)|x1|+···+|xj−1| since we have moved m1

past the first j− 1 terms. When we apply θ, we move θ1 past the first j− 1 terms again, giving

(with the coefficient) the term:

(−1)2(|x1|+···+|xj−1|)x1 ⊗ · · · ⊗ θ1m1(xj)⊗ · · · ⊗ xn

So, this term has a coefficient of +1. Note that there is another term from the second half

of the sum, again with a coefficient of +1 (for the same reason as above) of the form

(−1)2(|x1|+···+|xj−1|)x1 ⊗ · · · ⊗m1θ1(xj)⊗ · · · ⊗ xn
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And since m1θ1 = −θ1m1 (from before), we have that

x1 ⊗ · · · ⊗ θ1m1(xj)⊗ · · · ⊗ xn + x1 ⊗ · · · ⊗m1θ1(xj)⊗ · · · ⊗ xn = 0

So all terms of form (i) sum to 0.

Next, we move to terms of form (ii). The term

x1 ⊗ · · · ⊗mi(xj , . . . , xj+i)⊗ · · · ⊗ θq(xl, . . . , xl+q)⊗ · · · ⊗ xn

comes from applying θm to the term (−1)|x1|+···|xj−1|x1⊗· · ·⊗xj−1⊗mi(xj , . . . , xj+1)⊗· · ·⊗xn,

where mi has moved past the first j − 1 terms. Once we apply θm, we have the term:

(−1)|x1|+···+|xj−1|+|x1+···+|mi(xj ,...,xj+i)|+|xj+i+1|+···+|xl−1|x1 ⊗

· · · ⊗mi(xj , . . . , xj+i)⊗ · · · ⊗ θq(xl, . . . , xl+q)⊗ · · · ⊗ xn

Now we have another term in the second half of the sum by applying mi to

(−1)|x1|+···+|xl−1|x1 ⊗ · · · ⊗ θq(xl, . . . , xl+q)⊗ · · · ⊗ xn

which came from moving θq past the first q − 1 terms. This gives the term:

(−1)|x1|+···+|xl−1|+|x1|+···+|xj−1|x1 ⊗ · · · ⊗mi(xj , . . . , xj+i)⊗ · · · ⊗ θq(xl, . . . , xl+q)⊗ · · · ⊗ xn

And note that

(−1)|x1|+···+|xj−1|+|x1|+···+|mi(xj ,...,xj+i)|+|xj+i+1|+···+|xl−1|

= (−1)|x1|+···+|xj−1|+|x1|+···+|xj |···|xj+i|+1+|xj+i+1|+···+|xl−1|

= (−1)|x1|+···+|xl−1|+|x1|+···+|xj−1|+1

= −(−1)|x1|+···+|xl−1|+|x1|+···+|xj−1|

Hence,
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(−1)|x1|+···+|xj−1|+|x1+···+|mi(xj ,...,xj+i)|+|xj+i+1|+···+|xl−1|x1 ⊗ · · · ⊗

⊗mi(xj , . . . , xj+i)⊗ · · · ⊗ θq(xl, . . . , xl+q)⊗ · · · ⊗ xn
+(−1)|x1|+···+|xl−1|+|x1|+···+|xj−1|x1 ⊗ · · · ⊗ · · · ⊗mi(xj , . . . , xj+i)⊗

⊗ · · · ⊗ θq(xl, . . . , xl+q)⊗ · · · ⊗ xn
= −(−1)|x1|+···+|xl−1|+|x1|+···+|xj−1|x1 ⊗ · · · ⊗mi(xj , . . . , xj+i)⊗ · · · ⊗ θq(xl, . . . , xl+q)⊗

⊗ · · · ⊗ xn
+(−1)|x1|+···+|xl−1|+|x1|+···+|xj−1|x1 ⊗ · · · ⊗mi(xj , . . . , xj+i)⊗ · · · ⊗ θq(xl, . . . , xl+q)⊗

⊗ · · · ⊗ xn
= 0

So these terms of type (ii) also sum to 0.

Lastly, we look to those of type (iii). Consider all the terms left (after canceling those of

form (i) and (ii)) of the form

x1 ⊗ · · · ⊗ xi ⊗mj(xi+1, . . . , θq(xs, . . . , xs+q), . . .)⊗ xb ⊗ · · · ⊗ xn

where i is the largest subscript on the left and b is the smallest subscript on the right of this

form. Then factoring out on the left and right gives:

x1 ⊗ · · · ⊗ xi ⊗ [m, θ](xi+1, . . . , xb−1)⊗ xb ⊗ · · · ⊗ xn

Note that by induction,

[m, θ](xi+1, . . . , xb−1) = 0

so these terms combine to zero. Also, we can work our way outward, meaning after performing

this cancelation for i and b, we look to xj where j < i and xa where a > b, and perform

induction again. Hence, all terms of form (iii) combine to zero.

Therefore, our three types of terms add to zero, leaving only those of the form

(−1)β(i)θr(x1, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn)

and

(−1)β(i)mr(x1, . . . , xi, θs(xi+1, . . . , xi+s), . . . , xn)

which is precisely (3.1).
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From this work, our double sum can be thought of as a commutator bracket on m and θ.

This gives an alternate definition for a strong homotopy derivation on an A∞ algebra and helps

us develop a corresponding definition for an L∞ strong homotopy derivation in our later work.
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Chapter 4

L∞ Strong Homotopy Derivation

Definition

4.1 Strong Homotopy Derivations on L∞ Algebras

Given the definition of strong homotopy derivations of A∞ algebras [5], we knew there should

be a corresponding definition for L∞. As we looked previously, a strong homotopy derivation for

A∞ consists of a collection of maps satisfying (3.1), but an equivalent definition is a collection

of degree one maps, θ, where [m, θ] = 0. Using this same idea, we worked backwards by saying

if (L, l) is an L∞ algebra and θ a strong homotopy derivation, then [l, θ] = 0. (We give these

details later.) From this relation, we get the definition:

Definition 18 ((Strong Homotopy Derivation for L∞ Algebras)). A strong homotopy derivation

of degree one of an L∞ algebra consists of a collection of symmetric, multi-linear maps of degree

one

θ := {θq|L⊗q → L}q≥1

satisfying relations:

j=n∑
j=1

σ∈U(j,n−j)

(−1)ε(σ)θn−j+1(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n))

+ (−1)ε(σ)ln−j+1(θj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n)) = 0

(4.1)

where (−1)ε(σ) is the sign of the unshuffle.
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4.2 Developing this Definition

We now show this is consistent with [θ, l] = 0. First, note that as with the A∞ case, we don’t

bother multiplying exponents by the degree of the maps when we carry through the l or θ, as

these both have degree one. The difference here is we have to consider the signs of unshuffles

as we carry through the maps, and for the same reason

[θ, l] = θ ◦ l − (−1)|θ||l|l ◦ θ = θ ◦ l + l ◦ θ

Consider this bracket on one element:

[θ, l](x) = (θ ◦ l)(x) + (l ◦ θ)(x)

= θ1l1(x) + l1θ1(x)

which is consistent to (4.1), since there are no unshuffles to consider. Now we look to two

inputs. Note the signs of the unshuffles as we apply θ and l.

[θ, l](x, y) = θ(l2(x, y) + l1(x)⊗ y + (−1)|x||y|l1(y)⊗ x)

+l(θ2(x, y) + θ1(x)⊗ y + (−1)|x||y|θ1(y)⊗ x)

= θ1l2(x, y) + θ2(l1(x), y) + θ1l1(x)⊗ y + (−1)|l1(x)||y|θ1(y)⊗ l1(x)

+(−1)|x||y|θ2(l1(y), x) + (−1)|x||y|θ1l1(y)⊗ x

+(−1)|x||y|+|l1(y)||x|θ1(x)⊗ l1(y) + l1θ2(x, y) + l2(θ1(x), y)

+l1θ1(x)⊗ y + (−1)|θ1(x)||y|l1(y)⊗ θ1(x)

+(−1)|x||y|l2(θ1(y), x) + (−1)|x||y|l1θ1(y)⊗ x

+(−1)|x||y|+|θ1(y)||x|l1(x)⊗ θ1(y)
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Now we use the property that x⊗ y = (−1)|x||y|y ⊗ x. So,

(−1)|l1(x)||y|θ1(y)⊗ l1(x) + (−1)|x||y|+|θ1(y)||x|l1(x)⊗ θ1(y)

= (−1)(|x|+1)|y|θ1(y)⊗ l1(x) + (−1)|x||y|+(|y|+1)|x|l1(x)⊗ θ1(y)

= (−1)(|x|+1)|y|+|l1(y)||θ1(x)|l1(x)⊗ l1(y) + (−1)|x||y|+(|y|+1)|x|l1(x)⊗ θ1(y)

= (−1)(|x|+1)|y|+(|y|+1)(|x|+1)l1(x)⊗ l1(y) + (−1)|x||y|+(|y|+1)|x|l1(x)⊗ θ1(y)

= (−1)|x||y|+|y|+|x||y|+|x|+|y|+1l1(x)⊗ l1(y) + (−1)|x||y|+|x||y|+|x|l1(x)⊗ θ1(y)

= (−1)|x|+1l1(x)⊗ l1(y) + (−1)|x|l1(x)⊗ θ1(y) since (−1)2m = 1 for all m

= −(−1)|x|l1(x)⊗ l1(y) + (−1)|x|l1(x)⊗ θ1(y)

= 0

Similarly,

(−1)|x||y|+|l1(y)||x|θ1(x)⊗ l1(y) + (−1)|θ1(x)||y|l1(y)⊗ θ1(x) = 0

Now look at our other tensor terms. We use the fact that θ1 ◦ l1 = −l1 ◦ θ, from before, to

say:

(−1)|x||y|θ1l1(y)⊗ x+ (−1)|x||y|l1θ1(y)⊗ x = [(−1)|x||y|θ1l1(y) + (−1)|x||y|l1θ1(y)]⊗ x

= [(−1)|x||y|θ1l1(y)− (−1)|x||y|θ1l1(y)]⊗ x

= 0⊗ x

= 0

Similarly,

l1θ1(x)⊗ y + θ1l1(x)⊗ y = 0

Now, we have reduced the bracket to:

[θ, l](x, y) = θ1l2(x, y) + θ2(l1(x), y) + (−1)|x||y|θ2(l1(y), x)

+l1θ2(x, y) + l2(θ1(x), y) + (−1)|x||y|l2(θ1(y), x)

Which is consistent with (4.1).

We next show that (4.1) is consistent with our bracket on n inputs. Much like the A∞ case,

we show this by induction (since we have proved our base case of n = 2), so assume the bracket
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definition for strong homotopy derivation is consistent with (4.1) for any number of inputs less

than n. We look at

[θ, l](x1, . . . , xn) = θ ◦ l(x1, . . . , xn) + l ◦ θ(x1, . . . , xn)

Since we only consider unshuffles and don’t actually move θ and l through the term

(x1, . . . , xn)

every term begins with θ(xi, . . .) or l(xi, . . .). So, to show this is consistent with (4.1), we only

need to show that all terms of the form

lp(xq1 , . . . , xqp)⊗ θm(xj1 , . . . , xjm)⊗ · · ·

and

θq(lj(xi1 , . . . , xij ), xij+1 , . . . , xq+j−1)⊗ · · ·

cancel with some other term(s) in the sum. Note that in no instance will we have a term of the

form:

lp(xq1 , . . . , xqp)⊗ xt ⊗ θm(xj1 , . . . , xjm)⊗ · · ·

because in an unshuffle we always keep order, meaning after applying θ, the term involving

θ is now the first term when we apply l, so this has to remain either in the first part of the

unshuffle (this would result in the second form from above) or the second part of the unshuffle

(resulting in the first form from above).

First we consider term one,

lp(xq1 , . . . , xqp)⊗ θm(xj1 , . . . , xjm)⊗ · · ·

and note there is a corresponding term of the form

θm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · ·

Our primary goal is to find the coefficients of these two terms, then add the two terms,

resulting in zero.

Consider
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lp(xq1 , . . . , xqp)⊗ θm(xj1 , . . . , xjm)⊗ · · ·

This comes from applying l to θm(xj1 , . . . , xjm) ⊗ · · · . For this term, we need to figure the

sign of the unshuffle. Each time we move xjα past another xβ, we get a factor of −1 from a

transposition, but we want to be careful not to double count transpositions. Here, we get the

coefficient of

(−1)

|xj1 |
∑
i<j1
i 6=jα

|xi|+ |xj2 |
∑
i<j2
i 6=jα

|xi|+ · · ·+ |xjm |
∑
i<jm
i 6=jα

|xi|

Now, once we apply l we get the term lp(xq1 , . . . , xqp)⊗ θm(xj1 , . . . , xjm)⊗ · · · with a coef-

ficient of −1 to the following exponent:

γ = |xj1 |
∑
i<j1
i 6=jα

|xi|+ |xj2 |
∑
i<j2
i 6=jα

|xi|+ · · ·+ |xjm |
∑
i<jm
i 6=jα

|xi|+ |xq1 |
∑
i<q1
i 6=jα
i 6=qβ

|xi|+ · · ·

+|xqp |
∑
i<qp
i 6=jα
i 6=qβ

|xi|+
p∑
i=1

|xqi ||θm(xj1 , . . . , xjm)|

This gives the term

(−1)γlp(xq1 , . . . , xqp)⊗ θm(xj1 , . . . , xjm)⊗ · · ·

and using properties of the skew-symmetric tensor product, we know that:

(−1)γlp(xq1 , . . . , xqp) ⊗ θm(xj1 , . . . , xjm)⊗ · · · =

= (−1)γ(−1)|lp(xq1 ,...,xqp )||θm(xj1 ,...,xjm )|θm(xj1 , . . . , xjm)

⊗lp(xq1 , . . . , xqp)⊗ · · ·

= (−1)γ+(|xq1 |+···+|xqp |+1)(|xj1 |+···+|xjm |+1)θm(xj1 , . . . , xjm)

⊗lp(xq1 , . . . , xqp)⊗ · · ·

= (−1)Γθm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · ·

Hence, we have rewritten our first term as

(−1)Γθm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · · (4.2)
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Now, consider (as we said previously) the corresponding term:

θm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · ·

Doing the same process on this term gives the coefficient of −1 with exponent:

δ = |xq1 |
∑
i<q1
i 6=qα

|xi|+ · · ·+ |xqp |
∑

i<qp
i 6=qα |xi|+ |xj1 |

∑
i<j1
i 6=jα
i 6=qβ

|xi|+ · · ·+

+|xjm |
∑
i<jm
i 6=qβ
i 6=jα

|xi|+
m∑
i=1

|xji ||lp(xq1 , . . . , xqp)|

Giving us the term the finalized term:

(−1)δθm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · · (4.3)

If we can show that (4.2) + (4.3) = 0, then we have shown that all terms of the form

θp(xq1 , . . . , xqp)⊗ lm(xj1 , . . . , xjm)⊗· · · sum to 0. We do this by showing that −(−1)Γ = (−1)δ,

which is equivalent to showing that Γ + 1 = δ.

We first expand out Γ and δ slightly:

Γ = |xj1 |
∑
i<j1
i 6=jα

|xi|+ |xj2 |
∑
i<j2
i 6=jα

|xi|+ · · ·+ |xjm |
∑
i<jm
i 6=jα

|xi|+ |xq1 |
∑
i<q1
i 6=jα
i 6=qβ

|xi|+ · · ·

+|xqp |
∑
i<qp
i 6=jα
i 6=qβ

|xi|+ |xq1 |+ · · ·+ |xqp |+ |xq1 ||xj1 |+ |xq1 ||xj2 |+ · · ·+

+|xq2 ||xj1 |+ · · ·+ |xq2 ||xjm |+ · · ·+ |xqp ||xj1 |+ · · ·+ |xqp ||xjm |+ 1 +

+|xq1 |+ · · ·+ |xqp |+ |xq1 ||xj1 |+ |xq1 ||xj2 |+ · · ·+ |xq1 ||xjm |+ |xq2 ||xj1 |+ · · ·

+|xq2 ||xjm |+ · · ·+ |xqp ||xj1 |+ · · · |xqp ||xjm |+ |xj1 |+ · · ·+ |xjm |

Note that xq1 + · · ·+ xqp appears twice in this sum, so we can make Γ̂ where:
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Γ̂ = |xj1 |
∑
i<j1
i 6=jα

|xi|+ |xj2 |
∑
i<j2
i 6=jα

|xi|+ · · ·+ |xjm |
∑
i<jm
i 6=jα

|xi|+ |xq1 |
∑
i<q1
i 6=jα
i 6=qβ

|xi|+ · · ·

+|xqp |
∑
i<qp
i 6=jα
i 6=qβ

|xi|+ |xq1 ||xj1 |+ |xq1 ||xj2 |+ · · ·+ |xq2 ||xj1 |+ · · ·+

+|xq2 ||xjm |+ · · ·+ |xqp ||xj1 |+ · · ·+ |xqp ||xjm |+ 1 + |xq1 ||xj1 |+

+|xq1 ||xj2 |+ · · ·+ |xq1 ||xjm |+ |xq2 ||xj1 |+ · · ·+ |xq2 ||xjm |+ · · ·+ |xqp ||xj1 |+

+ · · ·+ |xqp ||xjm |+ |xj1 |+ · · ·+ |xjm |

And we have that

δ = |xq1 |
∑
i<q1
i 6=qα

|xi|+ · · ·+ |xqp |
∑

i<qp
i 6=qα |xi|+ |xj1 |

∑
i<j1
i 6=jα
i 6=qβ

|xi|+ · · ·+

+|xjm |
∑
i<jm
i 6=qβ
i 6=jα

|xi|+ |xqp |
∑
i<qp
i 6=jα
i 6=qβ

|xi|+ |xj1 |+ · · ·+ |xjm |+ |xj1 ||xq1 |

+|xj1 ||xq2 |+ · · ·+ |xj1 ||xqp |+ |xj2 ||xq1 |+ · · ·+ |xj2 ||xqp |

+ · · ·+ |xjm ||xq1 |+ · · · |xjm ||xqp |

Also note that both Γ̂ and δ have the terms

|xj1 ||xq1 |+ |xj1 ||xq2 |+ · · · + |xj1 ||xqp |+ |xj2 ||xq1 |+

+ · · ·+ |xj2 ||xqp |+ · · · + |xjm ||xq1 |+ · · · |xjm ||xqp |

and

|xj1 |+ · · ·+ |xjm |

so we can reduce these terms to say showing Γ + 1 = δ is equivalent to showing Γ̂ + 1 = δ,

which is equivalent to showing Γ̃ + 1 = δ̃ where

41



Γ̃ = |xj1 |
∑
i<j1
i 6=jα

|xi|+ |xj2 |
∑
i<j2
i 6=jα

|xi|+ · · ·+ |xjm |
∑
i<jm
i 6=jα

|xi|+ |xq1 |
∑
i<q1
i 6=jα
i 6=qβ

|xi|+ · · ·

+|xqp |
∑
i<qp
i 6=jα
i 6=qβ

|xi|+ |xq1 ||xj1 |+ |xq1 ||xj2 |+ · · ·+ |xq1 ||xjm |+ |xq2 ||xj1 |+ · · ·

+|xq2 ||xjm |+ · · ·+ |xqp ||xj1 |+ · · · |xqp ||xjm |+ 1

and

δ̃ = |xq1 |
∑
i<q1
i 6=qα

|xi|+ · · ·+ |xqp |
∑

i<qp
i 6=qα |xi|+ |xj1 |

∑
i<j1
i 6=jα
i 6=qβ

|xi|+ · · ·+

+|xjm |
∑
i<jm
i 6=qβ
i 6=jα

|xi|+ |xqp |
∑
i<qp
i 6=jα
i 6=qβ

|xi|

We show this by showing each term appears the same number of times in Γ̃ and in δ̃, with

the exception of the +1 appearing in Γ̃.

(I) Consider the term |xqk ||xi|. We have two cases:

(a) if i 6= jα for any α, then we don’t need to worry about repeating this element, as it

appears exactly once on each side.

(b) if i = jα for some α, then we again have two possibilities.

(i) Say qk < jα. Then this term appears twice in Γ̃, once in xjα
∑
i<jα
i 6=jβ

|xi| and once in

the non-summation terms. For δ̃, since qk < jα, this term does not appear in δ̃.

Appearing twice in Γ̃ is equivalent to appearing zero times in δ̃ since (−1)2 = 1.

(ii) Now say qk > jα. This term will appear once as a non-summation term in Γ̃,

and once in δ̃ in the sum |xqk |
∑
i<qk
i 6=qβ

|xi|. So this term appears the same number

of times in each exponent.

(II) Now consider the term (the only other type), |xjk ||xi|. We have two cases:
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(a) If i 6= qα for any α, then we don’t need to worry about repeating this element, as it

appears exactly once on each side.

(b) If i = qα for some α, then we again have two possibilities.

(i) Say jk < qα. This appears only as a non-summation term in Γ̃, so only one term.

For δ̃, this appears again only once in the sum |xqα |
∑

i<qαi 6=qβ

|xi|, appearing the

same number of times in each exponent.

(ii) Now say jk > qα. Then this term appears twice in Γ̃, once in xjk
∑
i<jk
i 6=jβ

|xi| and

once in the non-summation terms. For δ̃, since jk < qα, this term does not

appear in δ̃. Again, appearing twice in Γ̃ is equivalent to appearing zero times

in δ̃.

Since these are the only types of terms and they appear an equal (or equivalent) number of

times in both Γ̃ and δ̃, we have that Γ̃ + 1 = δ̃ and so Γ + 1 = δ. Therefore,

(−1)γlp(xq1 , . . . , xqp) ⊗ θm(xj1 , . . . , xjm)⊗ · · ·

+ (−1)δθm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · ·

= (−1)Γθm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · ·

+(−1)δθm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · ·

= −(−1)δθm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · ·

+(−1)δθm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗ · · ·

= 0

So all terms of the form θm(xj1 , . . . , xjm)⊗ lp(xq1 , . . . , xqp)⊗· · · sum to 0, keeping consistent

with our definition of an L∞ algebra strong homotopy derivation (4.1).

Lastly, we consider elements of the form

θq(lj(xi1 , . . . , xij ), xij+1 , . . . , xq+j−1)⊗ · · ·

Recall that (by our induction argument), (4.1) is equivalent to the bracket structure on n − 1

elements. Start with n− 1 elements in the otimes, so as an example, all elements of the form

θ1l1(xσ(1))⊗ xσ(2) ⊗ · · ·

If we take all the terms (of which there are only two), we now can use induction and the
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properties of skew-symmetric tensor products to say this is 0 ⊗ xσ(2) ⊗ · · · . We continue this

by collecting terms with n− 2 terms in the otimes. Then by induction, we again will get their

sum to be zero. Hence, all of these terms add to zero.

Since both types of terms

lp(xq1 , . . . , xqp)⊗ θm(xj1 , . . . , xjm)⊗ · · ·

and

θq(lj(xi1 , . . . , xij ), xij+1 , . . . , xq+j−1)⊗ · · ·

add to zero, we are only left with terms such as

θn−j+1(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n))

and

ln−j+1(θj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n))

which is exactly what we see in (4.1). Hence, this definition for L∞ strong homotopy deriva-

tion is consistent with the bracket. So our definition works in the same way the definition of

A∞ strong homotopy derivation does.

4.3 Relating Strong Homotopy Derivations

After finding a definition for L∞-algebra strong homotopy derivation, we then asked the ques-

tion, if an L∞-algebra is produced from symmetrizing an A∞-algebra, does an L∞-strong ho-

motopy derivation result from symmetrizing an A∞-strong homotopy derivation?

Our result here is, yes, the two are connected the same way A∞ and L∞-algebras are. To

prove this result, we look at Lada’s work in Commutators of A∞ Structures [6]. In this paper,

we use the notation that Λ∗V is the cofree commutative coalgebra on V , and T ∗V the cofree

coalgebra on the graded vector space V . Here the projections are given by πn : T ∗V → TnV

and pn : Λ∗V → ΛnV . We have a correspondence between the two coalgebras via a coalgebra

injective map

χ(v1 ⊗ · · · ⊗ vn) =
∑
σ∈Sn

(−1)e(σ)vσ(1) ⊗ · · · ⊗ vσ(n)

where (−1)e(σ) is the sign of the permutation.

We now reference Lada’s Proposition 5 [6]:
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Proposition. (Proposition 5) Suppose that f : T ∗V → V is a linear map which extends to the

coderivation f̂ : T ∗V → T ∗V . Then the diagram

Λ∗V T ∗V

Λ∗V T ∗V V

χ

ˆf ◦ χ

χ f

π1
f̂

Figure 4.1: Lada’s Proposition 5

commutes. Here, ˆf ◦ χ is the extension of the map f ◦ χ : Λ∗V → V to the coderivation
ˆf ◦ χ : Λ∗V → Λ∗V .

Now, let (V,m) be an A∞ structure and extend this to an L∞ structure given by (V, l),

where l is found by skew-symmetrizing m, as we did before in Theorem 3. This gives us the

diagram:

ΛcV T cV

ΛcV T cV V

χ

l̂ = ˆm ◦ χ
χ m

π1
m̂

l = m ◦ χ

Figure 4.2: Proposition 5 With A∞ & L∞ Maps

We let (V, θ) give a strong homotopy derivation structure and we define θ′ to be the sym-

metriczation of θ, again using Theorem 3. This gives the picture:
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ΛcV T cV

ΛcV T cV V

χ

θ̂′ = ˆθ ◦ χ
χ θ

π1
θ̂

θ′ = θ ◦ χ

Figure 4.3: Proposition 5 With A∞ & L∞ SH Derivation Maps

Our goal here is to show that θ′ is an L∞ strong homotopy derivation. Using our definition

and work with L∞ strong homotopy derivations, we know the definition holds if and only if

[l̂, θ̂′] = 0. We have shown this is equivalent to the definition in previous work. To prove this,

we use that θ gives an A∞ strong homotopy derivation on V , so [m̂, θ̂] = 0. Now we apply χ to

get:

χ[l̂, θ̂′] = χ(l̂θ̂′ + θ̂′ l̂)

= χl̂θ̂′ + χθ̂′ l̂

= m̂χθ̂′ + θ̂χl̂

= m̂θ̂χ+ θ̂m̂χ

= [m̂, θ̂]χ

= 0

This comes from the fact that the diagrams commute, so χ ◦ l̂ = m̂ ◦ χ, and the fact that

[m̂, θ̂] = 0 since θ is a strong homotopy derivation.

So we’ve shown that χ[l̂, θ̂′] = 0, and since χ is injective, this means that [l̂, θ̂] = 0. Hence,

when we symmetrize a strong homotopy derivation for an A∞ algebra, we do, in fact, get a

strong homotopy derivation for an L∞ algebra. Another point of importance here is that by

showing that strong homotopy derivations are connected in the same way that A∞ and L∞

algebras are connected shows that our definition of L∞ strong homotopy derivations is the

definition we should be using.
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Chapter 5

Example of A∞ and L∞
SH-Derivations

After giving the definition of strong homotopy derivations for both A∞ and L∞ algebras, we

next look to finding a canonical example for these derivations. To do this, we look back to basic

Lie algebras from [4] and notice how he defines an inner derivation to fix an element a, then

Da(x) = xa− ax.

5.1 On A∞ Algebras

Our goal was to use this to define θ1 for an A∞ algebra using m2 as the multiplication, so we

set θ1(x) = m2(x, a)−m2(a, x), where a is a fixed element in the vector space. This definition

worked with the double sum from (3.1), but when we defined something similar for θ2, we

noticed the problems with negatives. So, we went back and redefined θ1 = m2(x, a) +m2(a, x).

We first show this is consistant with (3.1), i.e., does given a strong homotopy derivation.

First, let θ1 = m2(x, a) +m2(a, x). From the double sum, (3.1), we have that

θ1m1(x) +m1θ1(x) = 0

should hold. Expanding this out and using our basic relation on A∞ algebra maps (using our

second definition of A∞ algebra since maps have been lifted), we know that

m1m2(x, y) +m2(m1(x), y) + (−1)|x|m2(x,m1(y)) = 0
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So we have,

θ1m1(x) +m1θ1(x) = m2(m1(x), a) +m2(a,m1(x)) +m1m2(x, a+m1m2(a, x)

= m1m2(x, a) +m2(m1(x), a) + (−1)|x|m2(x,m1(a))

+m1m2(a, x) + (−1)|a|m2(a,m1(x)) +m2(m1(a), y)

= 0

This last line comes from setting restrictions on a. We set m1(a) = 0 and |a| = 2k for some

k ∈ Z. Thus, our definition for θ1 is consistent with (3.1) and can be used to define a strong

homotopy derivation for A∞ algebras.

Next, we define θ2(x, y) = m3(x, y, a) +m3(x, a, y) +m3(a, x, y) and show this is consistent

with the definition of strong homotopy derivation, (3.1). For this, we look back to the definition

of A∞ algebra to get the relationship among the mi’s. From this we have:

m1m3(x, y, z) +m2(m2(x, y), z) + (−1)|x|m2(x,m2(y, z)) +m3(m1(x), y, z)

+(−1)|x|m3(x,m1(y), z) + (−1)|x|+|y|m3(x, y,m1(z)) = 0

To show θ2 is consistent with the definition of a strong homotopy derivation, we plug into the

double sum, (3.1), to get:

θ1m2(x, y) + θ2(m1(x), y) + (−1)|x|θ2(x,m1(y))

+m1θ2(x, y) +m2(θ1(x), y) + (−1)|x|m2(x, θ1(y))

= m2(m2(x, y), a) +m2(a,m2(x, y)) +m3(m1(x), y, a)

+m3(m1(x), a, y) +m3(a,m1(x), y) + (−1)|x|m3(x,m1(y), a)

+(−1)|x|m3(x, a,m1(y)) + (−1)|x|m3(a, x,m1(y)) +m1m3(x, y, a)

+m1m3(x, a, y) +m1m3(a, x, y) +m2(m2(x, a), y)

+m3(m2(a, x), y) + (−1)|x|m2(x,m2(y, a)) + (−1)|x|m2(x,m2(a, y))
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And since m1(a) = 0 and |a| = 2k for some k ∈ Z, we can alter this sum to the following way

= m2(m2(x, y), a) +m3(m1(x), y, a) + (−1)|x|m3(x,m1(y), a)

+m1m3(x, y, a) + (−1)|x|m2(x,m2(y, a)) + (−1)|x|+|y|m3(x, y,m1(a))

+m2(a,m2(x, y)) + (−1)|a|m3(a,m1(x), y) + (−1)|x|m3(a, x,m1(y))

+m1m3(a, x, y) +m2(m2(a, x), y) +m3(m1(a), x, y) +m3(m1(x), a, y)

+(−1)|x|+|a|m3(x, a,m1(y)) +m1m3(x, a, y) +m2(m2(x, a), y)

+(−1)|x|m2(x,m2(a, y)) + (−1)|x|m3(x,m1(a), y)

= 0 + 0 + 0

= 0

Hence, the way in which we defined θ2 is consistent with the definition of strong homotopy

derivation on an A∞ algebra.

Now, we define θn for a generic n and show this works with (3.1). Define

θn(x1, . . . , xn) = mn+1(x1, . . . , xn, a) +mn+1(x1, . . . , xn−1, a, xn)

+ · · ·+mn+1(x, a, x2, . . . , xn) +mn+1(a, x1, . . . , xn)

Let’s look at the double sum, (3.1) on n elements:

∑
r+s=n+1

r−1∑
i=1

(−1)β(i)θr(x1, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn)

+
∑

r+s=n+1

r−1∑
i=1

(−1)β(i)mr(x1, . . . , xi, θs(xi+1, . . . , xi+s), . . . , xn)

where β(i) = |x1|+ |x2|+ · · ·+ |xi| and we know from the definition of A∞ algebra that

∑
k+l=n+1

k∑
i=1

(−1)β(i)mk(x1, . . . , xi−1,ml(xi, . . . , xi+l−1), . . . , xn) = 0

Using how we’ve defined θi, the double sum now becomes:
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∑
r+s=n+1

r−1∑
i=1

(−1)β(i)θr(x1, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn)

+
∑

r+s=n+1

r−1∑
i=1

(−1)β(i)mr(x1, . . . , xi, θs(xi+1, . . . , xi+s), . . . , xn)

=
∑

r+s=n+1

r−1∑
i=1

[(−1)β(i)mr+1(x1, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn, a)

+(−1)β(i)mr+1(x1, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn−1, a, xn) + · · ·+

+mr+1(x1, a, x2, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn)

+mr+1(a, x1, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn)]

+
∑

r+s=n+1

r−1∑
i=1

[(−1)β(i)mr(x1, . . . , xi,ms+1(xi+1, . . . , xi+s, a), . . . , xn)

+(−1)β(i)mr(x1, . . . , xi,ms+1(xi+1, . . . , xi+s−1, a, xi+s), . . . , xn) + · · ·+

+(−1)β(i)mr(x1, . . . , xi,ms+1(xi+1, a, xi+2, . . . , xi+s), . . . , xn)

+(−1)β(i)mr(a, x1, . . . , xi,ms+1(xi+1, . . . , xi+s), . . . , xn)]

And since |a| = 2k for some k ∈ Z and m1(a) = 0, we can make this sum as follows:

=
∑

r+s=n+1

r−1∑
i=1

[(−1)β(i)mr+1(x1, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn, a)

+(−1)β(i)mr+1(x1, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn−1, a, xn) + · · ·+

+(−1)β(i)+|a|mr+1(x1, a, x2, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn)

+(−1)β(i)+|a|mr+1(a, x1, . . . , xi,ms(xi+1, . . . , xi+s), . . . , xn)]

+
∑

r+s=n+1

r−1∑
i=1

[(−1)β(i)mr(x1, . . . , xi,ms+1(xi+1, . . . , xi+s, a), . . . , xn)

+(−1)β(i)mr(x1, . . . , xi,ms+1(xi+1, . . . , xi+s−1, a, xi+s), . . . , xn) + · · ·+

+(−1)β(i)mr(x1, . . . , xi,ms+1(xi+1, a, xi+2, . . . , xi+s), . . . , xn)

+(−1)β(i)mr(a, x1, . . . , xi,ms+1(xi+1, . . . , xi+s), . . . , xn)]

+[(−1)β(n)mn+1(x1, . . . , xn,m1(a)) + (−1)β(n−1)mn+1(x1, . . . , xn−1,m1(a), xn) +

+ · · ·+ (−1)1mn+1(x1,m1(a), x2, . . . , xn) +mn+1(m1(a), x1, . . . , xn)]

Note that when we originally expanded out the sum with only mi’s, at no point would
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m1(a) appear because we only have mi acting on (x1, . . . , xn), so if mi acts on an element, it

must contain an xj . This is why we add the last set of terms. Additionally, in the first set of

terms, we need to point out the added (−1)|a| because a has been moved past mi, and to keep

signs consistent we need this extra coefficient. Note that we can keep the equality here because

|a| = 2k for some k ∈ Z.

Now we rewrite the double sum yet again:

=
∑

k+l=n+1

k∑
i=1

(−1)β(i)mk+1(x1, . . . , xi−1,ml(xi, . . . , xi+l−1), . . . , xn, a)

+
∑

k+l=n+1

k∑
i=1

(−1)β(i)mk+1(x1, . . . , xi−1,ml(xi, . . . , xi+l−1), . . . , xn−1, a, xn) + · · ·+

+
∑

k+l=n+1

k∑
i=1

(−1)β(i)+|a|mk+1(x1, a, x2, . . . , xi−1,ml(xi, . . . , xi+l−1), . . . , xn)

+
∑

k+l=n+1

k∑
i=1

(−1)β(i)+|a|mk+1(a, x1, x2, . . . , xi−1,ml(xi, . . . , xi+l−1), . . . , xn)

Each of these is 0 as a direct result of the definition of A∞ algebra maps on n+1 elements, or

we could think of this at n+ 1 copies of the sum definition of A∞ algebra. Hence, our definition

for θn gives a strong homotopy for an A∞ algebra because the double sum, (3.1), holds.

5.2 On L∞ Algebras

Just as we did before with finding a canonical example of an A∞ algebra strong homotopy

derivation, we will do the same for a L∞ algebra strong homotopy derivation.

For this section, we again use our second definition of L∞ algebra (1.4) along with our

definition of an L∞ algebra strong homotopy derivation (4.1). Now, let (L, l) be an L∞ algebra

and a be a fixed element in our algebra such that l1(a) = 0 and a has even degree, i.e., |a| = 2k

for some k ∈ Z. We will show that by setting

θn(x1, . . . , xn) = ln+1(x1, . . . , xn, a)

we obtain a strong homotopy derivation. Before we prove that this works with our definition,

we look at the case where n = 1 first.

Define θ1(x) = l2(x, a). To prove this is consistent with our definition of strong homotopy

derivation, we should get 0 when we plug in one element to our double sum (4.1). Additionally,
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we use our relationship from the definition of L∞ algebra (1.4) to say that l1(l1(x)) = 0. Here

we get:

θ1(l1(x)) + l1(θ′1(x)) = l2(l1(x), a) + l1(l2(x, a))

And if we make our a such that l1(a) = 0, then this is equal to:

= l2(l1(x), a) + l1(l2(x, a)) + (−1)|x||a|+1l2(l1(a), x)

= 0

Because this comes directly from our definition of L∞ algebra on (x, a).

Now let θ1(x1, . . . , xn) := ln+1(x1, . . . , xn, a). We show that by defining θn in this way, we

have an L∞ strong homotopy derivation, i.e., that the sum from (4.1) is 0.

Acting the sum on n-inputs gives:

j=n∑
j=1

σ∈U(j,n−j)

(−1)ε(σ)θn−j+1(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n))

+(−1)ε(σ)ln−j+1(θj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n))

=

j=n∑
j=1

σ∈U(j,n−j)

(−1)ε(σ)ln−j+2(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n), a)

+(−1)ε(σ)ln−j+1(lj+1(xσ(1), . . . , xσ(j), a), xσ(j+1), . . . , xσ(n))

=

j=n∑
j=1

σ∈U(j,n−j)

(−1)ε(σ)ln−j+2(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n), a)

+(−1)ε(σ)+|a||xσ(j+1)|+···+|a||xσ(n)|ln−j+1(lj+1(xσ(1), . . . , xσ(j), a), xσ(j+1), . . . , xσ(n))

+(−1)|x1||a|+···+|xn||a|ln+1(l1(a), x1, . . . , xn)

= 0

because this is precisely the relation between li’s in the definition of L∞ algebra on (x1, . . . , xn, a).

Since we get that (4.1) is 0, defining θn in this way does give a strong homotopy derivation.

By finding these two ways to find A∞ and L∞ strong homotopy derivations, we can now

write out explicit examples in the next chapter.
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Chapter 6

Concrete Examples

Now that we have a way to construct these strong homotopy derivations, we go back to our

concrete examples and explicitly define a strong homotopy derivation.

6.1 Concrete A∞ Example

Recall from Allocca’s paper [1]:

Example 19 (A finite A∞ Algebra). Let W = W−1 + W0 be given by W−1 = 〈x1, x2〉 and

W0 = 〈y〉. The following maps describe an A∞ structure on W :

m̂1(x1) = m̂1(x2) = y

For n ≥ 2, m̂n(x1 ⊗ y⊗k ⊗ x1 ⊗ yn−2−k) = x1 for 0 ≤ k ≤ n− 2

m̂n(x1 ⊗ y⊗n−2 ⊗ x2) = x1

m̂n(x1 ⊗ y⊗n−1) = y

From this definition, we can see that the degree of y is even and m̂1(y) = 0. Now we define

θn(x1, . . . , xn) := m̂n+1(x1, . . . , xn, y) + · · ·+ m̂n+1(y, x1, . . . , xn)

as we did before, but replacing a with y. Now we go through and find explicitly what these θ

are. Note that the only terms we need to check are:

(i) x1

(ii) x1 ⊗ x2

(iii) x2 ⊗ x1
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(iv) x1 ⊗ x1

(v) x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−2−k

(vi) x1 ⊗ y⊗n−2 ⊗ x2

(vii) x1 ⊗ y⊗k ⊗ x2 ⊗ y⊗n−2−k

(viii) x1 ⊗ y⊗n−1

We go through each of these, apply θn, then find a more simplified form.

(i) For x1, we get

θ1(x1) = m̂2(x1, y) + m̂2(y, x1)

= y

(ii) For x1 ⊗ x2, we have that

θ2(x1, x2) = m̂3(x1, x2, y) + m̂3(x1, y, x2) + m̂3(y, x1, x2)

= x1

(iii) For x2 ⊗ x1, we have that θ2(x2, x1) = 0 because m̂3 is 0 whenever x2 is our first element

or y is our first element.

(iv) For x1 ⊗ x1, we have

θ2(x1, x1) = m̂3(x1, x1, y) + m̂3(x1, y, x1) + m̂3(y, x1, x1)

= 2x1

(v) For x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−2−k, we have

θn(x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−2−k) = m̂n+1(x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−1−k) + · · ·

+m̂n+1(x1 ⊗ y⊗k ⊗ x1 ⊗ yn−1−k) +

+m̂n+1(x1 ⊗ y⊗k+1 ⊗ x1 ⊗ y⊗n−2−k) + · · ·

+m̂n+1(x1 ⊗ y⊗k+1 ⊗ x1 ⊗ y⊗n−2) +

+m̂n+1(y ⊗ x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−2−k)

Note that there are n− 1− k terms of the form m̂n+1(x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−1−k) and
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k + 1 terms of the form m̂n+1(x1 ⊗ y⊗k+1 ⊗ x1 ⊗ y⊗n−2), so if we add these together we

get:

θn(x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−2−k) = (n− 1− k)x1 + (k + 1)x1

= nx1

(vi) For x1 ⊗ y⊗n−1 ⊗ x2, we have:

θn(x1 ⊗ y⊗n−2 ⊗ x2) = m̂n+1(x1 ⊗ y⊗n−2 ⊗ x2 ⊗ y) + m̂n+1(x1 ⊗ y⊗n−1 ⊗ x2) +

+ · · ·+ m̂n+1(x1 ⊗ y⊗n−1 ⊗ x2) + m̂n+1(y, x1 ⊗ y⊗n−1 ⊗ x2)

Note that there are n− 1 terms of the form m̂n+1(x1 ⊗ y⊗n−1 ⊗ x2), so we get:

θn(x1 ⊗ y⊗n−2 ⊗ x2) = x1 + (n− 1)x1

= nx1

(vii) For x1⊗y⊗k⊗x2⊗y⊗n−2−k, we have that m̂n+1 is nonzero only when x2 is the last element

to be acted on. Since this won’t happen when we distribute the extra y throughout, then

θn(x1 ⊗ y⊗k ⊗ x2 ⊗ y⊗n−2−k) = 0

(viii) Lastly, for x1 ⊗ y⊗n−1, we have that:

θn(x1 ⊗ y⊗n−1) = m̂n+1(x1 ⊗ y⊗n) + · · ·+ m̂n+1(x1 ⊗ y⊗n) + m̂n+1(y ⊗ x1 ⊗ y⊗n−1)

And since there are n terms of the form m̂n+1(x1 ⊗ y⊗n), we get that:

θn(x1 ⊗ y⊗n−1) = ny

Then if we write out the explicitly defined strong homotopy derivation we have:

Example 20. Let W = W−1 + W0 be given by W−1 = 〈x1, x2〉 and W0 = 〈y〉, where an A∞

algebra structure has been given by

m̂1(x1) = m̂1(x2) = y

For n ≥ 2, m̂n(x1 ⊗ y⊗k ⊗ x1 ⊗ yn−2−k) = x1 for 0 ≤ k ≤ n− 2

m̂n(x1 ⊗ y⊗n−2 ⊗ x2) = x1

m̂n(x1 ⊗ y⊗n−1) = y
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Then the following gives a strong homotopy derivation on this coalgebra:

θ1(x1) = y

For n ≥ 2, θn(x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−2−k) = nx1 where 0 ≤ k ≤ n− 2

θn(x1 ⊗ y⊗n−1) = ny

θn(x1 ⊗ y⊗n−2 ⊗ x2) = nx1

6.1.1 Verifying the Definition

To reiterate that this is consistent with our definition of strong homotopy derivation, we show

the double sum (3.1) from our definition works on x1 ⊗ x1 and x1 ⊗ y ⊗ y, just to show how

cancellation works and to double check ourselves.

From the definition of A∞ strong homotopy derixation, we have:

θ1(m̂2(x1, x1)) + θ2(m̂1(x1), x1) + (−1|x1|)θ2(x1, m̂1(x1)) + m̂1(θ2(x1, x1)) +

+m̂2(θ1(x1), x1) + (−1)|x1|m̂2(x1, θ1(x1))

= θ1(x1) + θ2(y, x1) + (−1)|x1|θ2(x1, y) + m̂1(x1) + m̂2(y, x1) + (−1)|x1|m̂2(x1, y)

= y + (−1)|x1|y + y + (−1)|x1|y

= y − y + y − y

= 0

And now on x1 ⊗ y ⊗ y we have:

θ1(m̂3(x1, y, y)) + θ2(m̂2(x1, y), y) + (−1)|x1|θ2(x1, m̂2(y, y)) + θ3(m̂1(x1), y, y)

+(−1)|x1|θ3(x1, m̂1(y), y) + (−1)|x1|+|y|θ3(x1, y, m̂1(y)) + m̂1(θ3(x1, y, y)) +

+m̂2(θ2(x1, y), y) + (−1)|x1|m̂2(x1, θ2(y, y)) + m̂3(θ1(x1), y, y) +

+(−1)|x1|m3(x1, m̂1(y), y) + (−1)|x1|+|y|m̂3(x1, y, θ1(y))

= θ1(y) + θ2(y, y) + (−1)|x1|θ2(x1, 0) + θ3(y, y, y) +

+(−1)|x1|(x1, 0, y) + (−1)|x1|+|y|θ3(x1, y, 0) + m̂1(2y) + m̂2(y, y) +

+(−1)|x1|m̂2(x1, 0) + m̂3(y, y, y) + (−1)|x1|m3(x1, 0, y) +

+(−1)|x1||y|m̂3(x1, y, 0)

= 0

These are two examples to show that our example of a strong homotopy derivation on an

A∞ algebra is consistent with our definition. We know the technique for that θn works, as we
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proved this earlier. This is just a way to double check our work.

Next we more to a concrete example of an L∞ algebra. As a reminder, here was our finite

L∞ algebra from before:

6.2 Concrete L∞ Example

Our definition of strong homotopy derivation is only defined on the desupsended coalgebras, so

here, we use the work from chapter 2 to use the lifted L∞ algebra example:

Example 21 (Desuspended L∞). Let W = W−1 + W0 be given by W−1 = 〈x1, x2〉 and

W0 = 〈y〉, which has been desuspended from our previous finite L∞ algebra given by W . The

maps given by l̂n : W⊗n →W where

l̂1(x1) = l̂1(x2) = y

l̂n(x1 ⊗ y⊗n−1) = (n− 1)!y

l̂n(x1 ⊗ yn−2 ⊗ x2) = (n− 2)!x1

give an L∞ structure, as defined in the second definition using a coalgebra.

From here we can now give an explicit example of a strong homotopy derivation on our L∞

algebra.

From our work before, we know that setting θ̂n(x1, . . . , xn) = l̂n+1(x1, . . . , xn, a) where

|a| = 2k for some k ∈ Z and l̂1(a) = 0 gives a strong homotopy derivation structure on our L∞

algebra. In our example, y has the properties that l̂1(y) = 0 and |y| = 0. So we set

θ̂n(x1, . . . , xn) = l̂n+1(x1, . . . , xn, y)

and find what these θ̂n actually are. For this, we only need to plug in x1, x1 ⊗ y⊗n−1, and

x1 ⊗ y⊗n−2 ⊗ x2. The reason we don’t worry about x2 is that l̂2(x2, y) = 0.

Now we plug in our three terms:

(i) For x1, we have,

θ̂1(x1) = l̂2(x1, y)

= y
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(ii) Next, we evaluation on x1 ⊗ y⊗n−1, to get

θ̂n(x1 ⊗ y⊗n−1) = l̂n+1(x1 ⊗ yn)

= n!y

(iii) Lastly, we plug in x1 ⊗ y⊗n−2 ⊗ x2,

θ̂n(x1 ⊗ y⊗n−2 ⊗ x2) = l̂n+1(x1 ⊗ y⊗n−1 ⊗ x2)

= (n− 1)!x1

What we wish to show is that by setting

θ̂1(x1) = y

θ̂n(x1 ⊗ y⊗n−1) = n!y

θ̂n(x1 ⊗ y⊗n−2 ⊗ x2) = (n− 1)!x1

then we get a strong homotopy derivation structure on our L∞ algebra. Before we explicitly

state this example, we prove, using the definition, that this is an L∞ strong homotopy derivation

structure by showing

j=n∑
j=1

σ∈U(j,n−j)

(−1)ε(σ)θn−j+1(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n))

+ (−1)ε(σ)ln−j+1(θj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n)) = 0

(6.1)

where (−1)|σ| is the sign of the unshuffle. We show this double sum is zero on the elements x1,

x1 ⊗ y⊗n−1, and x1 ⊗ y⊗n−2 ⊗ x2. Although we have already showed this θ̂ structure should

work, we do it again now that θ̂ has been defined explicitly.

(i) For x1, we have that θ̂1(l̂1(x1)) + l̂1(θ̂1(x1)) = 0, so the double sum definition holds.

(ii) For x1 ⊗ y⊗n−1, the only terms of importance are:

±l̂i(θ̂j(x1 ⊗ y⊗j−1), y⊗n−j)± θ̂i(l̂j(x1 ⊗ y⊗j−1), y⊗n−j)

= l̂i((j − 1)!y, y⊗n−j)± θ̂i((j − 1)!y, y⊗n−j)

= 0

So each term in the double sum is zero, hence the definition holds.
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(iii) Lastly we have the term x1 ⊗ y⊗n−2 ⊗ x2. The terms that will give us nonzero elements

are:

(I) ±l̂n−j+1(θ̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j) for j = 2, . . . , n.

(II) ±θ̂n(l̂1(x2), x1, y
⊗n−2)

(III) θ̂n−j+1(l̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j) for j = 2, . . . , n.

For the second type, we have that

±θ̂n(l̂1(x2), x1, y
⊗n−2) = −θ̂n(y, x1, y

⊗n−2)

= −n!y

For those of of type (I), note that there are
(
n−2
j−2

)
of these for each j = 2, . . . , n. So when

we add these terms up, we get:

n∑
j=2

∑
σ

l̂n−j+1(θ̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j)

=
n∑
j=2

(n− 2)!

(j − 2)!(n− j)!
l̂n−j+1((j − 1)!x1, y

⊗n−j)

=
n∑
j=1

(n− 2)!

(j − 2)!(n− j)!
(j − 1)!(n− j)!y

=

n∑
j=2

(j − 1)(n− 2)!y

=

n∑
j=2

j(n− 2)!y −
n∑
j=1

(n− 2)!y

= (n− 2)!
n(n+ 1)

2
y − (n− 2)!y − n(n− 2)!y + (n− 2)!y

= (n− 2)!
n(n+ 1)

2
y − n(n− 2)!y

Lastly, for those of type (III), note that there are
(
n−2
j−2

)
of these for each j = 2, . . . , n.
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Adding these together gives:

n∑
j=2

(
n− 2

j − 2

)
θ̂n−j+1(l̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j)

=
n∑
j=2

(n− 2)!

(n− j)!(j − 2)!
θ̂n−j+1((j − 2)!x1, y

⊗n−j)

=
n∑
j=2

(n− 2)!

(n− j)!
(n− j + 1)!y

= (n− 2)!(−1)n
2
(n− j + 1)y

=
n∑
j=2

(−1)n
2
n(n− 2)!y −

n∑
j=1

(n− 2)!jy +
n∑
j=1

(n− 2))!y

= n2(n− 2)!y − n(n− 2)!y − (n− 2)!
n(n+ 1)

2
y +

+(n− 2)!y + n(n− 2)!y − (n− 2)!y

= n2(n− 2)!y − (n− 2)!
n(n+ 1)

2
y

Now that we have added up the three different types of terms, we add the results together

which will give us the double sum on the element x1⊗ y⊗n−2⊗ x2. Adding these together

gives:

n2(n− 2)!y − (n− 2)!
n(n+ 1)

2
y + (n− 2)!

n(n+ 1)

2
y

−n(n− 2)!y − n!y

= n2(n− 2)!y − n(n− 2)!y − n!y

= (n− 2)!y[n2 − n− n(n− 1)]

= 0

Therefore, this example is consistent with the definition of a strong homotopy derivation for

L∞ algebras, so formally we state this example as:

Example 22. Let W = W−1 +W0 be given by W−1 = 〈x1, x2〉 and W0 = 〈y〉 with maps given

by l̂n : W⊗n →W where

l̂1(x1) = l̂1(x2) = y

l̂n(x1 ⊗ y⊗n−1) = (n− 1)!y

l̂n(x1 ⊗ yn−2 ⊗ x2) = (n− 2)!x1
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as an L∞ structure. Then a strong homotopy derivation on W is given by the following sym-

metric maps θ̂ : W⊗n →W :

θ̂1(x1) = y

θ̂n(x1 ⊗ y⊗n−1) = n!y

θ̂n(x1 ⊗ y⊗n−2 ⊗ x2) = (n− 1)!x1

Where θ̂n is zero on elements where no permutation is listed.

Now we have concrete examples for an A∞ strong homotopy derivation and a L∞ strong

homotopy derivation to go along with our previous A∞ and L∞ algebras.
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Chapter 7

Two Ways to Lift

In chapter 2, we saw that for our examples of A∞ and L∞ algebras, the following diagram

commutes:

(A, m̂) (L, l̂)

(A,m) (L, l)

(−1)
n(n−1)

2 ↓ ◦mn◦ ↑⊗n (−1)
n(n−1)

2 ↓ ◦ln◦ ↑⊗n

∑
σ∈Sn

(−1)τmn ◦ σ

∑
σ∈Sn

(−1)γm̂n ◦ σ

Figure 7.1: Two Ways to Lift

Where (−1)γ comes from the degrees of the permuted elements and τ = γ · ε(σ), where ε(σ)

gives the degree of the permutation.

In this chapter we prove that this diagram, in general, commutes and thus show that there

are two ways to go from a lower level A∞ algebra to an upper level L∞ algebra.

Before we start our work, we briefly clarify the desuspension operator, ↑⊗n. When we apply

this map, much like the maps for an A∞ algebra map, any time we move the operator past an
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entry, we have to account for the degree of that element. Looking at

↑⊗n (x1, . . . , xn)

To desuspsned x1 we haven’t moved an operator past any entries. To desuspend x2, we have

moved ↑ past x1. To desuspend x3, we have moved ↑ past x1 and x2. To desuspend x4, we have

moved ↑ past x1, x2, and x3. This gives the coefficient of

(−1)|x1| · (−1)|x1|+|x2| · (−1)|x1|+|x2|+|x3| · · · (−1)|x1|+|x2|+···+|xn−1|

Combining these exponents, we see that there are n− 1 of |x1|, n− 2 of |x2|, etc. Therefore,

the sign that comes from ↑⊗n is

(−1)

n∑
i=1

(n− i)|xi|

To show this diagram commutes, we start with l̂n(x1, . . . , xn) at the upper level, and work

backwards to show we achieve the same results. There are a few things to note here, when we

desuspend, we will let ↑ xi = vi, and denote γx and γv as the signs that come from permuting

xi’s and vi’s, respectively.

Working backwards along the left side of this diagram, we have that

l̂n(x1, . . . , xn) =
∑
σ∈Sn

(−1)γxm̂n ◦ σ(x1, . . . , xn)

=
∑
σ∈Sn

(−1)γx(−1)
n(n−1)

2 ↓ ◦mn◦ ↑⊗n ◦σ(x1, . . . , xn)

Along the right side, we have

l̂n(x1, . . . , xn) = (−1)
n(n−1)

2 ↓ ◦ln◦ ↑⊗n (x1, . . . , xn)

= (−1)
n(n−1)

2 ↓ ◦
∑
σ∈Sn

(−1)τmn ◦ σ◦ ↑⊗n (x1, . . . , xn)

= (−1)
n(n−1)

2 ↓ ◦
∑
σ∈Sn

(−1)γv ·ε(σ)mn ◦ σ◦ ↑⊗n (x1, . . . , xn)
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Our goal is to show these two sums are equal. To do this, we look at terms. Once we apply

the desuspension operator, all terms will be of the form (vσ(1), . . . , vσ(n)). If we can show that

all coefficients for each σ are equivalent, the we will have show these two sums are equal.

Instead of looking at a general permutation, we look at a general transposition and show

the coefficients are equal. Once we show this equality, we will use the fact that any permutation

can be written as a product of transpositions, so coefficients of a permutation will be a product

of coefficients of transpositions.

Let σ be a transposition that transposes vj and vj−1, or xj and xj−1 at the higher level. We

now find the coefficient along the two sides of the diagram.

Along the left side, (−1)γx = (−1)|xj ||xj−1| since we have only transposed these two ele-

ments. We will still have (−1)
n(n−1)

2 , and by applying the operator ↑⊗n, we have a coefficient of

(−1)

(n−i)|xj−1|+(n−i−1)|xj |+

j−2∑
i=1

(n− i− 1)|xi|+
n∑

i=j+1

(n− i)|xi|
. These two terms (n − i)|xj−1|

and (n− i−1)|xj | in the exponent come from the operator ↑ having to move past one less entry

to desuspend xj and moving past one extra to desuspend xj−1.

Along the right side of the diagram, we have (−1)
n(n−1)

2 from the lifting, (−1)ε(σ) = (−1)1,

and (−1)γv = (−1)|vj ||vj−1| from one transposition switching vj and vj−1. Since we applied

the desuspsension operator first, this was applied to all xi, hence we get a coefficient of

(−1)

n∑
i=1

(n− i)|xi|
.

Therefore our two coefficients for (v1, v2, . . . , vj , vj−1, vj+1, . . . , vn) are:

(−1)

n(n−1)
2

+|xj ||xj−1|+(n−i)|xj−1|+(n−i−1)|xj |+

j−2∑
i=1

(n− i− 1)|xi|+
n∑

i=j+1

(n− i)|xi|
(7.1)

and

(−1)

n(n−1)
2

+1+|vj ||vj−1|+

n∑
i=1

(n− i)|xi|
(7.2)

Showing these are equivalent, reduces to showing the two exponents of (−1) are equivalent

modulo 2, so we working backwards starting with the left side (7.1)
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n(n− 1)

2
+ |xj ||xj−1|+ (n− i)|xj−1|+ (n− i− 1)|xj |+

+

j−2∑
i=1

(n− i)|xi|+
n∑

i=j+1

(n− i)|xi|

=
n(n− 1)

2
+ |xj ||xj−1|+

n∑
i=j+1

(n− i)|xi|+

+(n− i)|xj−1|+
j−2∑
i=1

(n− i)|xi|+ (n− i− 1)|xj |

And the right side (7.2) can be seen as:

n(n− 1)

2
+ 1 + |vj ||vj−1|+

n∑
i=1

(n− i)|xi|

=
n(n− 1)

2
+ 1 + (|xj |+ 1)(|xj−1|+ 1) +

n∑
i=1

(n− i)|xi|

=
n(n− 1)

2
+ |xj ||xj−1|+ |xj |+ |xj−1|+

n∑
i=1

(n− i)|xi| mod 2

Note that both terms have n(n−1)
2 as well as |xj ||xj−1|, so we can cancel these. Also, note

that

n∑
i=1

(n− i)|xi| − (

j−2∑
i=1

(n− i)|xi|+
n∑

i=j+1

(n− i)|xi|)

= (n− j + 1)|xj−1|+ (n− j)|xj |

Once we cancel these last terms from our reduced forms of (7.1) and (7.2), we are left with

showing that

(n− j)|xj−1|+ (n− j − 1)|xj | = |xj |+ |xj−1|+ (n− j + 1)|xj−1|+ (n− j)|xj |

modulo 2. This is true, as

(n− j)|xj−1|+ (n− j − 1)|xj | = n|xj−1| − j|xj−1|+ n|xj | − j|xj | − |xj |
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and

|xj |+ |xj−1|+ (n− j + 1)|xj−1|+ (n− j)|xj | = |xj−1|+ |xj−1|+ |xj |

+n|xj−1| − j|xj−1|+ n|xj | − j|xj |
∼= |xj |+ n|xj−1| − j|xj−1|+ n|xj | − j|xj |

Thus, the two coefficients for (v1, v2, . . . , vj , vj−1, vj+1, . . . , vn) are equivalent, and any ele-

ment that comes from one transposition has equivalent coefficients. Therefore, when working

backwards in both ways to look at l̂n(x1, . . . , xn) and expanding the sum, any transposition has

the same coefficient.

Consider the following theorem from Garrett [3],

Theorem 23. The permutation group Sn on n things {1, 2, . . . , n} is generated by adjacent

transpositions si.

Instead of looking at a general permutation, we have looked at a general adjacent transpo-

sition and shown the coefficients are equal. Since any permutation can be written as a product

of transpositions, the coefficients of a permutation will be a product of coefficients of transpo-

sitions. Therefore, the coefficients of each of the permutations on (v1, . . . , vn) are equivalent,

resulting in the two sums being equal, and so our diagram

(A, m̂) (L, l̂)

(A,m) (L, l)

(−1)
n(n−1)

2 ↓ ◦mn◦ ↑⊗n (−1)
n(n−1)

2 ↓ ◦ln◦ ↑⊗n

∑
σ∈Sn

(−1)τmn ◦ σ

∑
σ∈Sn

(−1)γm̂n ◦ σ

Figure 7.2: Commuting Diagram for Two Ways to Lift

does, in fact, commute.
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The result of this chapter is that if we start with a lower level A∞ algebra, we can either

skew-symmetrize then lift, or lift and then symmetrize to result in exactly the same desuspended

L∞ algebra.
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Chapter 8

An Extra L∞ Example

By overlooking a degree of a mapping, I was able to find an additional example of an L∞ algebra

and corresponding strong homotopy derivation:

This work gives us the following:

Example 24. Let W = W−1 +W0 be given by W−1 = 〈x1, x2〉 and W0 = 〈y〉, which has been

desuspended from our previous finite L∞ algebra given by V . The maps given by l̂n : W⊗n →W

where

l̂1(x1) = l̂1(x2) = y

l̂n(x1 ⊗ y⊗n−1) = (−1)n
2+1(n− 1)!y

l̂n(x1 ⊗ yn−2 ⊗ x2) = (−1)n
2+1(n− 2)!x1

give an L∞ structure, as defined in the second definition using a coalgebra.

We first show that this is, in fact, an L∞ algebra. To prove this, we look to our sum in the

second definition of L∞ algebra and show that

∑
σ∈Sk+l=n

(−1)ε(σ)l1+l(lk(cσ(1), . . . , cσ(k)), cσ(k+1), . . . , cσ(n)) = 0 (8.1)

We show this double sum is zero on each of our four inputs as follows

(i) We have that l̂1 ◦ l̂1(x1) = l̂1(y) = 0, so the definition holds.

(ii) We also have that l̂1 ◦ l̂1(x2) = l̂1(y) = 0, so again the definition holds.

(iii) When we look at this double sum on x1 ⊗ y⊗n−1, the only terms we need to consider are
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those where x1 is in the first position. Here we have:

±l̂n−j+1(l̂j(x1 ⊗ y⊗j−1), y⊗n−j) = ±l̂n−j+1((−1)j
2+1(j − 1)!y, y⊗n−j)

= 0

Therefore each term in the double sum is zero and hence the definition holds.

(iv) Lastly, we look at the double sum on the element x1⊗ y⊗n−2⊗ x2. Inside the double sum

there are four types of elements we need to consider, as all others will be zero. These

nonzero terms are

(I) ±l̂n(l̂1(x2), x1 ⊗ y⊗n−2)

(II) ±l̂i(l̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j) for j = 2, . . . n− 1.

We go through these and look at each element, then add them to get zero.

(I) Since we have switch x1 and x2, both of degree −1, we have that

−l̂n(l̂1(x2), x1, y
⊗n−2) = −l̂n(y, x1, y

⊗n−2)

= (−1)n
2+1(n− 1)!y

= (−1)n
2
(n− 1)!y

(II) Lastly, we have that,

±l̂i(l̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j) = l̂n−j+1((−1)j
2+1(j − 2)!x1, y

⊗n−j)

= (−1)j
2+1(−1)(n−j+1)2+1(n− j)!(j − 2)!y

Now note that there are
(
n−2
j−2

)
elements of this form for each j = 2, . . . , n.. Since

there are
(
n−2
j−2

)
terms, when we add them all up we get:

n∑
j=2

(−1)j
2+1(−1)(n−j+1)2+1

(
n− 2

j − 2

)
(n− j)!(j − 2)!y

=

n∑
j=2

(−1)j
2+1(−1)(n−j+1)2+1 (n− 2)!

(n− j)!(j − 2)!
(n− j)!(j − 2)!y

=

n∑
j=2

(−1)n
2+1(n− 2)!y

= (−1)n
2+1n(n− 2)!y − (−1)n

2+1(n− 2)!y
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For the exponent of −1, we have that

j2 + 1 + (n− j + 1)2 + 1 ≡ j2 + n2 − 2nj + 2n+ j2 − 2j + 1

≡ n2 + 1

Hence, the exponent simplifies when we look modulo 2.

Now, we have these two types of term, only one each of type (I), and we’ve already added

up the
(
n−2
j−2

)
terms of type (II) for j = 2, . . . , n. We add all of these to get:

(−1)n
2
(n− 1)!y + (−1)n

2+1n(n− 2)!y − (−1)n
2+1(n− 2)!y

= ((−1)n
2
(n− 1) + (−1)n

2+1n− (−1)n
2+1)(n− 2)!y

= ((−1)n
2
n− (−1)n

2 − (−1)n
2
n+ (−1)n

2
)(n− 2)!y

= 0(n− 2)!y

= 0

Therefore, the double sum from our definition of L∞ algebra holds on all types of elements

and our desuspended algebra is, in fact, an L∞ algebra. From here we can now give an explicit

example of a strong homotopy derivation on our L∞ algebra.

From our work before, we know that setting θ̂n(x1, . . . , xn) = l̂n+1(x1, . . . , xn, a) where

|a| = 2k for some k ∈ Z and l̂1(a) = 0 gives a strong homotopy derivation structure on our L∞

algebra. In our example, y has the properties that l̂1(y) = 0 and |y| = 0. So we set

θ̂n(x1, . . . , xn) = l̂n+1(x1, . . . , xn, y)

and find what these θ̂n actually are. For this, we only need to plug in x1, x1 ⊗ y⊗n−1, and

x1 ⊗ y⊗n−2 ⊗ x2. The reason we don’t worry about x2 is that l̂2(x2, y) = 0.

Now we plug in our three terms:

(i) For x1, we have,

θ̂1(x1) = l̂2(x1, y)

= −y
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(ii) Next, we try x1 ⊗ y⊗n−1, to get

θ̂n(x1 ⊗ y⊗n−1) = l̂n+1(x1 ⊗ yn)

= (−1)(n+1)2+1n!y

= (−1)n
2
n!y

(iii) Lastly, we plug in x1 ⊗ y⊗n−2 ⊗ x2,

θ̂n(x1 ⊗ y⊗n−2 ⊗ x2) = l̂n+1(x1 ⊗ y⊗n−1 ⊗ x2)

= (−1)n
2
(n− 1)!x1

What we wish to show is that by setting

θ̂1(x1) = y

θ̂n(x1 ⊗ y⊗n−1) = (−1)n
2
n!y

θ̂n(x1 ⊗ y⊗n−2 ⊗ x2) = (−1)n
2
(n− 1)!x1

then we get a strong homotopy derivation structure on our L∞ algebra. Before we explicitly

state this example, we prove, using the definition, that this is an L∞ strong homotopy derivation

structure by showing

j=n∑
j=1

σ∈U(j,n−j)

(−1)ε(σ)θn−j+1(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n))

+ (−1)ε(σ)ln−j+1(θj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n)) = 0

(8.2)

where (−1)|σ| is the sign of the unshuffle. We show this double sum is zero on the elements x1,

x1 ⊗ y⊗n−1, and x1 ⊗ y⊗n−2 ⊗ x2. Although we have already showed this θ̂ structure should

work, we do it again now that θ̂ has been defined explicitly.

(i) For x1, we have that θ̂1(l̂1(x1)) + l̂1(θ̂1(x1)) = 0, so the double sum definition holds.

(ii) For x1 ⊗ y⊗n−1, the only terms of importance are:

±l̂i(θ̂j(x1 ⊗ y⊗j−1), y⊗n−j)± θ̂i(l̂j(x1 ⊗ y⊗j−1), y⊗n−j)

= l̂i(αy, y
⊗n−j)± θ̂i(αy, y⊗n−j)

= 0
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So each term in the double sum is zero, hence the definition holds.

(iii) Lastly we have the term x1 ⊗ y⊗n−2 ⊗ x2. The terms that will give us nonzero elements

are:

(I) ±l̂(n− j + 1(θ̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j) for j = 2, . . . , n.

(II) ±θ̂n(l̂1(x2), x1, y
⊗n−2)

(III) θ̂n−j+1(l̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j) for j = 2, . . . , n.

For the second type, we have that

±θ̂n(l̂1(x2), x1, y
⊗n−2) = −θ̂n(y, x1, y

⊗n−2)

= −(−1)n
2
n!y

For those of of type (I), note that there are
(
n−2
j−2

)
of these for each j = 2, . . . , n. So when

we add these terms up, we get:

n∑
j=2

∑
σ

l̂n−j+1(θ̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j)

=

n∑
j=2

(n− 2)!

(j − 2)!(n− j)!
l̂n−j+1((−1)j

2
(j − 1)!x1, y

⊗n−j)

=

n∑
j=1

(n− 2)!

(j − 2)!(n− j)!
(−1)j

2
(j − 1)!(−1)(n−j+1)2+1(n− j)!y

=
n∑
j=2

(−1)n
2
(j − 1)(n− 2)!y

=
n∑
j=2

(−1)n
2
j(n− 2)!y −

n∑
j=1

(−1)n
2
(n− 2)!y

= (−1)n
2
(n− 2)!

n(n+ 1)

2
y − (−1)n

2
(n− 2)!y − (−1)n

2
n(n− 2)!y + (−1)n

2
(n− 2)!y

= (−1)n
2
(n− 2)!

n(n+ 1)

2
y − (−1)n

2
n(n− 2)!y

Lastly, for those of type (III), note that there are
(
n−2
j−2

)
of these for each j = 2, . . . , n.Adding
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these together gives:

n∑
j=2

(
n− 2

j − 2

)
θ̂n−j+1(l̂j(x1 ⊗ y⊗j−2 ⊗ x2), y⊗n−j)

=
n∑
j=2

(n− 2)!

(n− j)!(j − 2)!
θ̂n−j+1((−1)j

2+1(j − 2)!x1, y
⊗n−j)

=
n∑
j=2

(n− 2)!

(n− j)!
(−1)j

2+1(−1)(n−j+1)2(n− j + 1)!y

= (n− 2)!(−1)n
2
(n− j + 1)y

=
n∑
j=2

(−1)n
2
n(n− 2)!y −

n∑
j=1

(−1)n
2
(n− 2)!jy +

n∑
j=1

(−1)n
2
(n− 2))!y

= (−1)n
2
n2(n− 2)!y − (−1)n

2
n(n− 2)!y − (−1)n

2
(n− 2)!

n(n+ 1)

2
y +

+(−1)n
2
(n− 2)!y + (−1)n

2
n(n− 2)!y − (−1)n

2
(n− 2)!y

= (−1)n
2
n2(n− 2)!y − (−1)n

2
(n− 2)!

n(n+ 1)

2
y

Now that we have added up the three different types of terms, we add the results together

which will give us the double sum on the element x1⊗ y⊗n−2⊗ x2. Adding these together

gives:

(−1)n
2
n2(n− 2)!y − (−1)n

2
(n− 2)!

n(n+ 1)

2
y + (−1)n

2
(n− 2)!

n(n+ 1)

2
y

−(−1)n
2
n(n− 2)!y − (−1)n

2
n!y

= (−1)n
2
n2(n− 2)!y − (−1)n

2
n(n− 2)!y − (−1)n

2
n!y

= (−1)n
2
(n− 2)!y[n2 − n− n(n− 1)]

= 0

Therefore, this example is consistent with the definition of a strong homotopy derivation for

L∞ algebras, so formally we state this example as:

Example 25. Let W = W−1 +W0 be given by W−1 = 〈x1, x2〉 and W0 = 〈y〉 with maps given

by l̂n : W⊗n →W where

l̂1(x1) = l̂1(x2 = y

l̂n(x1 ⊗ y⊗n−1) = (−1)n
2+1(n− 1)!y

l̂n(x1 ⊗ yn−2 ⊗ x2) = (−1)n
2+1(n− 2)!x1
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as an L∞ structure. Then a strong homotopy derivation on W is given by the following sym-

metric maps θ̂ : W⊗n →W :

θ̂1(x1) = y

θ̂n(x1 ⊗ y⊗n−1) = (−1)n
2
n!y

θ̂n(x1 ⊗ y⊗n−2 ⊗ x2) = (−1)n
2
(n− 1)!x1

Where θ̂n is zero on elements where no permutation is listed.

This is another example of an L∞ algebra and strong homotopy derivation. Again, this

resulted by overlooking a corresponding sign from a previous L∞ algebra example, but in the

end, we have another concrete example of an L∞ algebra and corresponding strong homotopy

derivation.
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