
ABSTRACT

CORNE, MATTHEW ALLAN. Minimally–Constrained Canonical Quantization of
Geometrodynamics. (Under the direction of Arkady Kheyfets.)

Finding a quantum theory of gravitation has been a long–standing problem. Ein-

stein’s theory of general relativity gives a classical description of gravity as the action

of geometry on matter and matter on geometry. A theory of quantum gravity seeks

to provide a quantum mechanical treatment of this process. In analogy with canonical

quantization which, from classical mechanics and classical field theory, arrives at quan-

tum mechanics and quantum field theory, canonical quantization of gravity is a family of

different procedures following from the canonical (Hamiltonian) formulation of general

relativity as pioneered by Dirac and Arnowitt, Deser, and Misner. Unfortunately, almost

all of them exhibit pathologies, the most significant being “the problem of time evolu-

tion.” Specifically, the problem arises with the use of a single operator equation both to

describe quantization of the superhamiltonian constraint and as a means of enforcement

of this constraint; this inhibits a meaningful notion of time–evolution.

However, there is an approach that avoids this difficulty entirely: separation of the

process of enforcement of constraints from the evolution of the quantum system. We

investigate such an approach to gravity quantization known as minimally–constrained

canonical (MC2) quantization. It is based on Wheeler’s geometrodynamics and the

identification of the correct dynamical degrees of freedom of the gravitational field as

determined by York. Using MC2 quantization, we quantize only the dynamical degrees

of freedom of gravitation.

In this manuscript, we provide an exposition of this procedure as well as a presentation

of other methods of canonical quantization of gravity with which to compare and con-

trast our approach. The first result is a justification of the way in which constraints are

imposed. The problem of time evolution motivates imposing constraints as expectation

values; the classical theory of general relativity – a theory with external gauge symmetry

– requires, due to 3–diffeomorphism invariance, that the supermomentum constraints are

automatically satisfied with the superhamiltonian constraint not automatically satisfied.

In electromagnetism – a theory with internal gauge symmetry – the constraints can be

applied at any point of the quantization. Practically, this manifests as selection of a par-

ticular field configuration which automatically satisfies the constraint(s). To investigate



this result, we review MC2 quantization of anisotropic, homogeneous cosmologies and

explore the procedure in flat spacetime regarding electromagnetic plane waves, a charged

particle in an electromagnetic field, and a scalar field to compare with prior approaches

of quantization.

The second result is an explicit demonstration that MC2 quantization produces ex-

actly the same results as previous quantization procedures applied to the plane wave

electromagnetic field and to the scalar field. We discuss the charged particle in an elec-

tromagnetic field and how it differs, essentially by construction, from other approaches.

Finally, we discuss future directions for gravity quantization including problems such as

gravitational collapse, cosmology, and alternative theories of gravity.
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Chapter 1

Invitation

Why quantize gravity? Similar questions regarding other interactions can be answered by

their relevance to resolving outstanding theoretical problems. Quantization of radiation

theory resolves the “ultraviolet catastrophe” and the interaction of electromagnetic fields

with quantum objects [1]: objects whose behavior is accurately described by quantum

mechanics. (We say “objects” instead of “particles” because of the possible ambiguities

in the definition of particles.) Quantization of the strong and weak interactions resolves

issues regarding intranuclear and electro–nuclear behavior, respectively. Then, in the

context of the other theories, quantization of gravity can be viewed as the determination

of the mechanism through which gravity interacts with quantum objects.

We say “gravity” as opposed to “gravitational field” since we take, as our starting

point, general relativity (hereafter, variously, GR) as the classical theory of gravity.

While it is a theory of a field – a tensor field – GR is a larger–encompassing description

that takes an admixture of the local (geometry) and the global (topology) features of a

manifold to describe gravitational phenomena. This theme of local and global pervades all

physical problems that require relativity’s touch. Further, this theme strongly influences

the transition from purely classical problems to their quantum analogues.

The earliest motivation for this work was to quantize gravity and matter together.

This turned out to be an extremely difficult problem. The issues are (1) very few relevant

metrics with gravitational dynamical degrees of freedom and (2) a discordance between

most matter fields used in quantum field theory and gravity. The second of these issues

can be handled by considering sources of classical matter in a gravitating system. Of

course, a number of phenomena cannot be described in a straightforward way with clas-
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sical matter, and quantum fields do not always follow from classical fields, at least in

modern formulations.

The first problem is more severe. Assumption of spherical symmetry – a nondynam-

ical gravitational field in GR – has allowed much success in solar system observations

and practical applications, notably GPS systems [2]. This implies that, if there is any

anisotropy or dynamics, it is negligible. Beyond these successes, it is nontrivial to in-

troduce dynamics without some kind of handle such as symmetry groups in the context

of homogeneous cosmologies. We cannot address this problem yet because, at this time,

there are too many options for how to approach it.

This work evolved from quantization gravity and matter together into an inspection

of a particular approach to canonical quantization which has proven successful in the

quantization of homogeneous cosmologies [3]. Such an inspection is necessary because if

this approach would be unable to handle quantization of fields already achieved success-

fully otherwise, it would seem to indicate either a problem with the approach, a problem

with the other approaches (in spite of their successes), or an inherent disconnect between

gravity and the other interactions.

The second chapter discusses the classical theory of general relativity starting from

historical considerations. A presentation of appropriate mathematical preliminaries [2, 4,

5, 6, 7, 8, 9] then precedes the formal introduction of the theory via the Einstein–Hilbert

action principle. We briefly describe the connection between the Bianchi identities and

conservation of energy–momentum. Then, we consider the ADM 3+1 split which gives

rise to the Hamiltonian formulation of the theory. Next, we discuss how to count degrees

of freedom and the way these degrees are classified within GR. Finally, we consider J.

York’s identification of the correct dynamical degrees of freedom of gravity, which involves

introducing a scale factor.

The third chapter addresses a purely classical problem investigated in [10, 11], that

of the nonlocalizability of electric coupling and binding energy in charged spherically

symmetric objects. This is not a mere digression but a great example that illustrates the

disciplined analysis needed when addressing problems in GR. It serves as a prelude to the

presentation of a quantum theory of gravity in the sense that one cannot naively assign

energy in general relativity theory as in other theories; similarly, one cannot naively

quantize general relativity in the same way as other theories.

The fourth chapter presents canonical quantization and proceeds to cover different
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prescriptions for quantization of gravity. We will indicate the configuration space of

choice for each, then arrive at the problems of time evolution associated with them.

These are either that the fundamental Schrödinger equation is of the form ĤΨ = 0

or that a lack of caution in the treatment of certain variables as classical or quantum

results in an unsuitable time parametrization. This is also related to the form of the

constraints in the Hamiltonian theory and to the insistence that they be imposed from

the very beginning of the quantization procedure, resulting in identically zero operators.

At the end of this chapter, we will introduce an approach to quantization which avoids

this problem by imposing the constraints only on expectation values. The choice of

language is important in discussing this last procedure. We construct the appropriate

Hilbert space, which involves mapping the dynamical variables to quantum operators

while leaving the embedding variables as non–quantum.

The fifth chapter discusses spatially homogeneous and anisotropic cosmologies cor-

responding to the classification by Bianchi groups. These problems provide a good in-

troduction to the application of this procedure. The anisotropies serve as gravitational

dynamical degrees of freedom. We review the Bianchi IA (Kasner) and Bianchi IX (Taub)

cosmological models and interpret their quantizations.

The sixth chapter introduces several non–gravitational applications of the MC2 quan-

tization procedure, specifically of an electromagnetic (EM) plane wave and a scalar field

in flat spacetime and show that under standard boundary conditions, we are able to

retrieve the usual quantum theoretic picture with our procedure. We also consider a

charged relativistic particle in an electromagnetic field in flat spacetime and provide an

interpretation within MC2 quantization.

We conclude by summarizing our results and discussing implications and future appli-

cations of this procedure. First, we present some consequences of our approach, including

that some classically gravitating systems are not interesting from the point of view of

quantization due to the lack of dynamical degrees of freedom. Next, we consider the

introduction of anisotropy and inhomogeneity via modifications of line elements relevant

to our world (e.g., spherical and cylindrical symmetries) as a means to reduce symmetry.

Finally, we discuss the possibility of alternative theories of gravity as a means to insert

dynamics for quantization.

Coming into this investigation, two issues presented themselves. First, must all the

constraints of GR and electromagnetism be imposed weakly (i.e., only on expectation val-
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ues of operators)? If not, is there a consistent way to impose them? Second, does MC2

quantization produce the same or equivalent results in the quantization of theories of

classical matter fields, specifically electromagnetic and Klein–Gordon scalar fields? The

main results of this work are the answers to these inquiries. First, in MC2 quantization,

imposing the constraints of GR on expectation values is always necessary for the super-

hamiltonian constraint and necessary for the supermomentum constraints in the presence

of (dynamical) matter; for electromagnetism, the constraints are satisfied ab initio in the

free field and minimally coupled cases considered here. Second, the MC2 quantization

procedure retrieves the usual results for quantum field theory in flat spacetime for a free

electromagnetic field and for a Klein–Gordon scalar field.

Chapters 3 and 6 contain the principal contributions of original work. Chapters 2, 4,

and 5 provide background to classical relativity, canonical quantization of gravity, and

previously–worked examples of quantization of cosmologies, respectively.

In terms of notation, words underlined and italicized represent definitions; italicized

words indicate important points. Throughout, we will use “geometrized units” (G = c =

1) [2, 8] unless otherwise indicated by the presence of the constants or other factors (e.g.,

Gaussian units).
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Chapter 2

General Relativity

The Michelson–Morley experiment demolished the notion of the luminiferous ether. It

demonstrated that the measured speed of light was the same regardless of the orientation

of the interferometer. Further, this speed was found to correspond with the constants

in Maxwell’s theory of electromagnetism related to the permittivity and permeability of

free space.

In Newtonian mechanics, the notion of Galilean relativity was long known. The

world was imbued with an absolute time, and the positions of various uniformly moving

observers could be measured relative to each other in the sense of their relative velocities.

Because accelerations impart forces and give preference to certain frames of reference,

the restriction is to these inertial observers : those whose velocities are constant with

respect to each other.

To reconcile these two theories, Einstein [12] utilized two postulates:

(SR1) Galilean principle of relativity: No experiment can measure the absolute ve-

locity of an observer. The results of any experiment performed by an observer are inde-

pendent of his speed relative to other observers not participating in the experiment.

(SR2) Universal speed of light: Relative to any unaccelerated observer, the speed of

light is constant. This is independent of the motions of the observers relative to each

other.

These together lead to the theory of special relativity.

Severe difficulties arise when attempting to incorporate Newtonian gravity into the
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framework of special relativity [2, 12]. One difficulty is that the equations of Newtonian

gravity,

d2xi

dt2
= − ∂Φ

∂xi
; (2.1)

∇2Φ = 4πGρ, (2.2)

are neither 4–dimensional nor Lorentz invariant. Different reference frames alter the

appearance of the equations, meaning that Newtonian gravity is a frame–dependent

theory. Further, the second of these is an elliptic equation, so that changes in the density

ρ give rise to instantaneous changes in the gravitational potential Φ; this implies an

infinite speed of propagation of gravity.

To exemplify the problems, consider the thought experiment by Einstein regarding a

falling particle converted into a photon and sent back up [2]. Begin with a particle of rest

mass m atop a tower of height h, and assume conservation of energy. Allow the mass to

drop to the bottom; it will gain a kinetic energy equal to that of gravitational potential

energy mgh. Its total energy will then be ETot = m+mgh. Convert the massive particle

to a photon by some legitimate means. Send it back up the tower. Assuming it does

not interact with gravity, then it will travel unimpeded to the top. If we convert the

arriving photon into a particle of mass m, we will necessarily obtain (for free) another

contribution of gravitational potential energy mgh. This contradicts the conservation of

energy; to remedy this, the photon must be redshifted. Hence, the photon does interact

with gravity.

This redshift provides evidence for the equivalence principle, which states that the

effects of a uniform gravitational field are indistinguishable from the effects of a uniform

acceleration of the coordinate system.

General relativity is the correct classical theory of gravity (regarding our current

observations). Simply, it reconciles special relativity and Newtonian gravity in a consis-

tent way and accurately predicts physical phenomena outside the scope of these theories

[2, 8, 12, 13]. Less simply, it requires a significant leap in mathematical machinery com-

pared with both special relativity and Newtonian gravity. Special relativity necessitates

the abandonment of absolute space or time in favor of a spacetime where the total in-

variant interval is independent of observers, but distinct observers will measure spatial
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lengths or times differently. General relativity necessitates the abandonment of flat space-

time in favor of a curved spacetime, this curvature associated directly with gravitation.

To describe correctly the physical effects, the geometry transitions from Euclidean to

non–Euclidean, specifically, (pseudo–)Riemannian.

Differential geometry is necessary to correctly describe gravitational effects in the

context of general relativity. For our purposes, we will use definitions which are suited

to handling explicit calculations in mathematical physics. Up to now, we have used

the word “spacetime” in a semi–intuitive context. Physically, it can be perceived as a

collection of events and observers. To obtain a correct quantitative description of these

notions, we must provide a precise definition of spacetime.

2.1 Mathematical Preliminaries

Let M be a smooth (C∞) manifold [4]. For all of our work, dimM = 4.

Importantly, M is connected , meaning that the only subsets of M both open and

closed are ∅ and M .

For a pair of coordinate systems (xµ) and (yν), we say they are consistently oriented

if the Jacobian determinant J = det(∂xµ/∂yν) > 0. M is orientable if there exists an

atlas such that every pair of its coordinate systems is consistently oriented [4]. For M

orientable, there exists an everywhere nonvanishing 4–form α called an orientation [5].

A metric on M is a tensor g ∈ T 0
2 (M) such that gx is a metric on TxM . g is a

Riemannian metric if, given u,v ∈ TxM , gx(u,v) = gx(v,u), and gx(u,u) ≥ 0 with

gx(u,u) = 0 only if u = 0. A pseudo–Riemannian metric differs only in the second

condition so that if gx(u,v) = 0 for any u ∈ TxM , then v = 0.

The matrix representation of g is symmetric, so its eigenvalues are real [6]. Rieman-

nian metrics then have strictly positive eigenvalues; pseudo–Riemannian metrics admit

negative eigenvalues. In our case, we will have one negative eigenvalue and three posi-

tive eigenvalues, so we will have an index (1, 3) describing g. The signature is given by

(−,+,+,+). Such a metric is called a Lorentz metric. A smooth manifold which admits

a Lorentz metric is called a Lorentzian manifold .

Given the orientation α ∈ Λ4(M) of M , then the volume element of (M,g) is the

4–form β ∈ Λ4(M) such that βx is a volume element of TxM relative to gx and βx is a

positive multiple of αx.
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Let (V ,g) be an n–dimensional Lorentzian vector space [9]. LetW ⊂ V be a subspace.

Then, the causal character of W is spacelike, lightlike, or timelike if and only if g is

positive definite, positive semidefinite but not positive definite, or otherwise, respectively.

Suppose v ∈ V . Then, the causal character of v is that of span(v).

This extends to tangent spaces. Let x ∈ M . Then, the causal character of v ∈ TxM
is that of span(v) ⊂ TxM . The causal character of (x,v) ∈ TM is the causal character

of v ∈ TxM . Let (M,g) be a connected Lorentzian manifold, TM its tangent bundle,

and π : TM → M its projection. Then, (M,g) is time–orientable if and only if the set

of timelike points in TM has two components.

An affine connection ∇ on µ : N →M is an object which assigns to each t ∈ TnN an

operator ∇t which maps vector fields over µ into Tµ(n)M and, for all t,v ∈ TnN , X, Y

vector fields over µ, C∞ functions f : N → R, a, b ∈ R, and C∞ vector fields Z on N ,

satisfies the following axioms [4]:

(∇1) Linearity in t: ∇at+bvX = a∇tX + b∇vX.

(∇2) Linearity over R of ∇t: ∇t(aX + bY ) = a∇tX + b∇tY .

(∇3) ∇t is a derivation: ∇t(fX) = (tf)X(n) + (fn)∇tX.

(∇4) Smoothness : The vector field ∇ZX over µ defined by (∇ZX)(n) = ∇Z(n)X is

C∞.

∇tX is the covariant derivative of X with respect to t. Generally speaking, we can

consider covariant differentiation of tensors with respect to a vector field X; this proce-

dure has four properties [7]:

(Cov1a) Rank–preserving : ∇X : T pq (M)→ T pq (M) by T 7→ ∇XT.

(Cov1b) Linearity : ∇fX+gY = f∇X + g∇Y for f, g ∈ C∞(M) and vector fields X, Y

on M .

(Cov2a) Reduction to partial differentiation for functions : ∇Xf = Xf .

(Cov2b) Derivatives of tensor products : ∇X(S⊗T) = ∇XS⊗T + S⊗∇XT

(Cov3) Vanishing covariant derivative of the metric tensor g: ∇Xg = 0.

(Cov4) Zero torsion: ∇XY −∇YX = [X, Y ].

Covariant derivatives are the generalization of directional derivatives as seen in vec-

tor calculus. In practice, we write covariant derivatives of a tensor T ∈ T pq (M) in a
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component form, Tα1,...,αp
β1,...,βq ;γ. These are actually the components of the gradient

of a tensor [2]. The gradient is a map grad : T pq (M) → T pq+1(M). The covariant

derivative, by (Cov1a), is a map ∇u : T pq (M) → T pq (M) related to the gradient by

∇uT = grad T( ...︸︷︷︸
p

, ...︸︷︷︸
q

,u).

A Levi–Civita connection D is the unique symmetric connection on (M,g) such that

the covariant derivative of the metric vanishes (i.e., (Cov3) is satisfied). This condition

is known as metric compatibility .

We are now able to provide a precise definition of a spacetime. A spacetime (M,g,D)

(also written (M,g) or M) is a connected, 4–dimensional, oriented, and time–oriented

Lorentzian manifold (M,g) together with the Levi–Civita connection D of g on M [9].

Finally, we introduce curvature. The curvature operator on two vector fields X and

Y is given by R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ] = [∇X ,∇Y ] − ∇[X,Y ]. Then, the

Riemann curvature tensor is [2, 7]

Riemann(ω,X, Y, Z) =< ω,R(Y, Z)X > . (2.3)

Let γ : (a, b) → M be a curve in M such that γ(t) ∈ M is covered by a single chart

(U, φ) coordinatized with x = φ(m), m ∈M . Let X be a vector field defined along γ(t).

Then, X is parallel transported along γ(t) if X satisfies ∇tX = 0 for any t ∈ (a, b). t is

the tangent vector to γ(t). [6]

Given a vector in the tangent space of a point, we parallel transport this vector along

two distinct paths to a common point. The Riemann tensor compares the resultant

vectors in the tangent space to the second point and yields the difference. This provides

an intrinsic notion of curvature.

2.2 Lagrangian formulation: Einstein–Hilbert action

principle and Einstein’s equations

For our purposes, it is convenient and useful to derive the Einstein equations from the

Einstein–Hilbert action principle. Historically [2], the equations – and hence the correct

(Einstein) tensor – were arrived at by certain assumptions relating matter and geometry.

Subsequently, an action principle was developed and, through the use of variational

calculus, the equations – Einstein’s equations – result as the Euler–Lagrange equations
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of the action. An equivalent formulation is expressed using principal fiber bundles [5],

and we will use elements of the PFB formalism to elucidate those aspects which are

not clearly explained by variational calculus. Variational calculus, however, suffices to

produce the evolution equations in which we are interested.

In general, we consider the Lagrangian, a functional L(qi, q̇i, t) of configuration vari-

ables and their velocities in a configuration space, qi, q̇i ∈ C, both of which evolve in time.

We require that Lagrangians be at least twice–differentiable. (A more rigorous definition

is supplied on principal fiber bundles [5].) These functions can go beyond first–order, but

we restrict attention to Lagrangians of the type presented here. Lagrangians are defined

only over a compact domain.

An action is a functional I[q] =
∫
L(qi, q̇i, t)dt. We will make use of this quantity

throughout.

We begin with the Einstein–Hilbert action, which is the integral of the scalar curva-

ture R over the proper 4–volume [2, 8],

I =

∫
R
√
−gd4x. (2.4)

The scalar curvature R is the contraction of the Ricci tensor Ric with g so that R =

gµνRicµν . The Ricci tensor is defined by contracting over two of the indices of Riemann

so that Ric(X, Y ) =< εµ,R(eµ, Y )X > with < εµ, eν >= δµν . In terms of components,

Ricµν = Riemannαµαν .

To include matter, one needs only to add another Lagrangian density appropriate to

the matter (e.g., scalar field, electromagnetic field). Then,

I =

∫
R
√
−gd4x+

∫
LMatterd

4x. (2.5)

LMatter can depend on a variety of tensor fields, depending on the theory of interest.

Further, because of the properties of variational calculus [2, 14, 15], different Lagrangians

(hence different action principles) yield the same physical theories due to vanishing of the

variations or divergences of terms on the boundaries. For example, the electromagnetic

Lagrangian can be written in terms of the field strengths only or in terms of the gauge

potentials and field strengths.

Variation of the action, δI = 0, leads to the Einstein equations [2, 8]:
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Ricµν −
1

2
gµνR = 8πTµν (2.6)

where Tµν are the components of the stress–energy tensor T. The left–hand side may be

written as Gµν = Ricµν− 1
2
gµνR. Gµν are the components of the Einstein tensor G. The

Einstein equations may be written succinctly as G = 8πT.

Conservation of energy–momentum follows from the (second) Bianchi identity,

Riemannαµνκ;λ +Riemannαµλν;κ +Riemannαµκλ;ν = 0. (2.7)

This can be expressed in terms of the double dual of Riemann [2], ∗Riemann∗, where

the (Hodge) star operator ∗ : Λp(M)→ Λ4−p(M) so that Gµν
;ν = 0 (geometric identity)

and, consequently, T µν ;ν = 0 (conservation).

The form of Einstein’s equations above leaves out “Einstein’s greatest blunder,” Λgµν ,

where Λ is the cosmological constant. However, upon inspection,

Gµν + Λgµν = 8πTµν

⇒ Gµν = 8πTµν − Λgµν

⇒ Gµν = 8πT ′µν . (2.8)

The cosmological constant term can be absorbed into the energy-momentum tensor

as a source. Historically, the Einstein tensor was proposed because it is divergenceless:

a necessary requirement for conservation of energy–momentum since, for conservation to

hold, the stress–energy tensor is divergenceless on the other side of the equation. The

covariant derivative of the metric tensor vanishes; as long as the scalar cosmological term

Λ is constant, there are no difficulties.

2.3 Hamiltonian formulation

The diffeomorphism invariance of GR obscures the analysis of the dynamical degrees of

freedom of the gravitational field [16]. Formally [9], a (general relativistic) gravitational

field [(M,g)] is an equivalence class of spacetimes where the equivalence is defined by

orientation–preserving and time–orientation–preserving isometries. Each (M,g,D) ∈
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[(M,g)] is a representative of [(M,g)]. Physically, all representatives of [(M,g)] model

the same gravitational properties. It suffices to work with one representative and to focus

on properties (e.g., symmetries) shared by all representatives in the same gravitational

field.

For most other field theories, it is necessary only to specify initially the field compo-

nents and their first time derivatives to obtain the time evolution of the field. Because of

diffeomorphism invariance in GR, however, the components of the metric tensor modify

under general coordinate transformations at any time in the evolution. Determining the

time evolution of the gravitational field – the metric – as a dynamical quantity proves

challenging.

Coordinate invariance leaves the physics alone; it is necessary to have an approach

separating the true dynamical degrees of freedom (the number of independent Cauchy

data) from the degrees of freedom concerning the coordinate system. This approach is

the canonical form of general relativity and yields the independent dynamical modes of

the gravitational field. The number of dynamical degrees of freedom is the minimum

number of variables specifying the system’s configuration.

The essence of this construction is that the field equations are first order in the time

derivatives and that space and time have been split into 3+1 form. General covariance

remains and, in this way, GR is analogous to parametrized mechanics. GR has diffeomor-

phism invariance; parametrized mechanics possesses invariance under reparametrization.

GR is “already parametrized.” The approach to canonical form can be framed similarly,

the goal being to distinguish between the correct dynamical variables and those variables

associated with diffeomorphisms or coordinate transformations.

2.3.1 Canonical Form

This section is a recapitulation of the results from [16]. For a system with a finite (positive

integer) number N degrees of freedom (e.g., particle mechanics), its action principle can

be written as

I =

∫ t2

t1

Ldt =

∫ t2

t1

(
N∑
i=1

piq̇i −H(p, q))dt. (2.9)

Here, q̇ = dq/dt, and the Lagrangian is expressed functionally as linear in its time

derivatives. This is the canonical form of the action, also called the first–order form.
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Varying independently the pi and the qi produces the first–order equations of evolution.

By allowing these variations along with variations of t and the endpoints, the maximum

of information can be obtained from the action.

Assume that the total variation is a function only of the endpoints so that δI =

G(t2)−G(t1). Then, Hamilton’s equations of evolution for the pi and the qi, conservation

of energy as dH/dt = 0, and the generating function G(t) =
∑

i p
iδqi −Hδt follow.

The action admits a parametrized form where the time t becomes a function of an

arbitrary parameter, t = qN+1(τ). Then,

I =

∫ τ2

τ1

Lτdτ =

∫ τ2

τ1

N+1∑
i=1

piq′idτ (2.10)

where q′ = dq/dτ and the conjugate to qN+1, pN+1, satisfies the constraint equation

pN+1 +H(p, q) = 0. This constraint may be replaced in the action:

I =

∫ τ2

τ1

(
N+1∑
i=1

piq′i − fC)dτ (2.11)

where f := f(τ) is a Lagrange multiplier. Variation of f produces the constraint equation

C(pN+1, p, q) = 0. This constraint may be any equation with the solution pN+1 =

−H occurring as a simple root (root of multiplicity one). Given that f transforms as

dq/dτ , this action satisfies general covariance under reparametrization. Unfortunately,

this action sacrifices canonical form.

To retrieve canonical form, we can substitute the solution pN+1 = −H into (2.11) to

obtain the action

I =

∫ τ2

τ1

(
N∑
i=1

piq′i −H(p, q)q′N+1)dτ

=

∫ qN+1,2

qN+1,1

(
N∑
i=1

pi
dqi

dqN+1

−H)dqN+1. (2.12)

The dynamics leave both the Lagrange multiplier f and variable qN+1 arbitrary, although

any particular choice of qN+1 as a function of the parameter fixes f .

In field theories, variation of the field variables (elements of the configuration space)

provide a notion of translations. The generator provides an advantageous perspective for

13



fields because it is directly associated with these variations. The generator associated

with (2.11) is G =
∑N+1

i=1 piδqi − fCδτ which, under substitution of constraints, yields

G =
∑N

i=1 p
iδqi −HδqN+1. With the coordinate condition qN+1 = t, the usual generat-

ing function is obtained with the N pairs of canonical variables and the non–vanishing

Hamiltonian of the theory evident.

2.3.2 ADM 3+1 split

Following the procedure in [16], we restate the Lagrangian so that the equations of

evolution are first–order and solved explicitly for the time derivatives. To obtain first–

order evolution equations, the appropriate Lagrangian should be linear in first derivatives.

This is known as the Palatini Lagrangian. In this case, the metric g and the connection Γ

are varied separately. In the computation, this manifests as variations of the contravariant

components of g and the connection coefficients. Then, the Palatini action principle is

I =

∫ √
−ggµνRicµν(Γ)d4x. (2.13)

Variation with respect to the metric yields Einstein’s equations; variation with respect

to the connection yields an equation relating the components of the metric and the

connection coefficients.

The canonical form requires that field equations be of first–order in the time deriva-

tives and that time be separated from the spatial quantities. In GR, linear time deriva-

tives comprise the Palatini Lagrangian, making this form advantageous.

The motivation for splitting spacetime into a foliation of spacelike hypersurfaces {Σt}
parametrized by t, a global time function, is to yield two sets of first–order equations along

with two sets of constraints instead of the second–order, nonlinear Einstein equations

which, without implementation of symmetries, are difficult to solve. First–order equations

are manifestly easier to deal with, and the constraint equations allow for specifying initial

conditions, which leads to the initial value problem.

The 3–geometry (3)G – the equivalence class of diffeomorphically equivalent Rieman-

nian 3–metrics – is fixed on two faces of a “sandwich,” which is a representation of two

adjacent hypersurfaces. This is also known as the “thin–sandwich formulation” [2]. To

construct a sandwich, we need the 3–geometries (essentially, the 3–metrics) of the lower

and upper hypersurfaces. Obtaining these metrics requires us to split the metric of the 4–
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geometry. Similarly, to obtain a meaningful notion of the curvature of the 3–geometries,

we split the curvature of the 4– geometry. This leads us to the intrinsic curvature and

the extrinsic curvature of the 3– geometry. The intrinsic curvature is that curvature

within the hypersurface; the extrinsic curvature is the curvature of the hypersurface as

embedded in the surrounding 4–geometry.

The set of all 3–geometries forms a configuration space called superspace [2, 8].

Let (M,g) be the spacetime of interest, where M is the 4-manifold and g is the metric.

Let µ : M → Σ and t : M → R. Topologically, the 4–manifold may be written as the

Cartesian product of a hypersurface and the real line, Σ× R.

Consider a foliation of Cauchy surfaces {Σt}, Σt = Σ×{t}, parametrized by a global

time function t. Cauchy surfaces are such that every inextendible causal timelike or null

curve without endpoints intersects a hypersurface only once. The unit timelike normal

vector to these surfaces, n, is defined such that its natural pairing with its dual equals

−1. Physically, n represents the 4–velocity of observers instantaneously at rest in the

hypersurfaces; these are called Eulerian observers as their motion follows the slices [17].

Define the spatial metric as the metric of the spacelike hypersurface as expressed in

the spacetime coordinate basis. Let nµ be as above. Then, the components of the spatial

metric are given by

γµν = gµν + nµnν . (2.14)

We will make use of this quantity in the York decomposition (section 2.4), but it is useful

now for a couple of definitions.

We choose t and a “time flow” vector field f on M such that t and f together satisfy

the relation fµt;µ = 1. Then, lapse is given by N = −fµnµ = (nµt;µ)−1, and the

shift components Nj = γjµn
µ [8, 17]. The components of n are related to the lapse and

shift; n0 = 1/N , and nj = −N i/N . The components of the dual are n0 = −N and nj = 0

[2]. The lapse gives the quantity of proper time between the hypersurfaces (sandwich

faces), and the shift gives the amount of displacement a point undergoes between the

lower (earlier) face and the upper (later) face.

The nomenclature of the spatial metric is relevant as contraction of the unit timelike

normal vector field with this metric gives zero.

The relevant 3–dimensional quantities needed to describe the ADM split follow from

the 4–dimensional ones. The 3–metric components are given by gik =(4) gik. In relation
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to the 4–metric, the lapse is N = (−(4)g00)−1/2, and the shift components are Ni =(4) g0i.

From these identifications, we see that γik = gik. The components of the momenta

conjugate to the 3–metric are found by the relation

1

16π
πij =

δS

δgij
=
∂LGeom
∂ġij

. (2.15)

Explicitly, the conjugate momenta are given by πik =
√
−g((4)Γ0

rs − g(4)
rs Γ0

pqg
pq)girgks.

Thus, the Lagrangian density of general relativity becomes

L =
√
−g(4)

R = −gik∂tπik −NH−NiHi − 2
(
πikNk −

1

2
πllN

i +N |i
√
g
)
,i
. (2.16)

where πll is the trace of the conjugate momentum. Here, H is the superhamiltonian

constraint , and Hi are the supermomentum constraints . “|” represents covariant differ-

entiation using the 3–metric.

The action becomes

S =
1

16π

∫ [
− gij

∂πij

∂t
−NH(πij, gij)−NiHi(πij, gij)

−2
[
πijNj −

1

2
N iπll +N |i

√
g
]
,i

]
d4x. (2.17)

The first term involving the partial derivatives of the conjugate momenta with respect

to coordinate time can be written via the product rule as

−gij
∂πij

∂t
= − ∂

∂t
(gijπ

ij) + πij
∂gij
∂t

, (2.18)

with the full time derivative falling out of the variational principle since variations in the

interior geometry do not affect terms at the boundary; such variations go to zero. Also,

the divergence in this action, [...],i, disappears as it contributes only a surface term. This

gives an action principle

S =
1

16π

∫ [
πij

∂gij
∂t
−NH(πij, gij)−NiHi(πij, gij)

]
d4x. (2.19)

We may define the ADM Hamiltonian as HADM = NH(gij, π
ij) +N iHi(gij, π

ij). The
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lapse and shift are freely specifiable; they are the Lagrange multipliers since they have

no conjugate momenta present, similar to the scalar potential in electrodynamics. Some-

times, lapse and shift are compared with gauge in electrodynamics, though it is more

accurate to compare diffeomorphism invariance in GR with gauge invariance in electro-

dynamics. As with the Lagrangian formulation, this can be extended to incorporate

matter, taking into account the appropriate dynamic and embedding variables.

To obtain Hamilton’s equations of evolution, vary with respect to the field coordinates

and their conjugate momenta:

∂gij
∂t

=
δHADM

δπij
=

2N
√
g

(πij −
1

2
gijπ

l
l) +Ni|j +Nj|i;

∂πij

∂t
= −δHADM

δgij
= −N√g(Ricij − 1

2
gijR) +

N

2
√
g
gij(πlkπ

k
l −

1

2
πkkπ

l
l)

−2N
√
g

(πimπm
j − 1

2
πijNm)|m +

√
g(N |ij − gijN |m|m)

+(πijNm)|m −N i
|mπ

mj −N j
|mπ

mi. (2.20)

To obtain the constraint equations – the superhamiltonian and the supermomentum –

vary with respect to the lapse and the shift:

H = 0;

Hi = 0. (2.21)

Explicitly,

H = (
1
√
g

(πlkπ
k
l −

1

2
πkkπ

l
l −
√
g(3)R);

Hi = −2πik |k. (2.22)

The constraint equations govern the conservation of energy–momentum. In the presence

of sources, the source will, generally, have a dependence on or be coupled with the 4–

metric and so will have a dependence on or be coupled with the 3–metric, the lapse,

and the shift. Typically, because of the source’s coupling with gravity, these extra terms
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modify the superhamiltonian, the supermomentum, and Hamilton’s equations (typically

those equations for ġij).

The ADM formulation allows freedom in how the hypersurfaces push forward with

respect to the time parameter. “Many-fingered time” allows portions of the hypersurfaces

move forward differently, so long as they remain spacelike. The lapse function N(t, xk),

gives this freedom in the integration for each change in t. For the dynamic equations,

lapse and shift are freely–specifiable quantities and must be prescribed by an observer;

nature does not determine them. The choice of lapse and shift yields the choice of

coordinates of spacetime, leading to the appearance of the 3–metric and the extrinsic

curvature of successive hypersurfaces. The 4–geometry remains unchanged, however:

many representations exist for the same quantities [2].

In a 3+1 picture, the 4–dimensional curvature may be viewed in 3 dimensions in

two ways: intrinsically and extrinsically. The relationship between scalar curvature in 4

dimensions and the intrinsic and extrinsic curvatures in 3 dimensions is [2]

(4)R =(3) R + njnjK
i
iK

l
l −Km

pKp
m. (2.23)

(3)R is the scalar curvature in 3 dimensions; it is defined intrinsically without consid-

eration of the spacetime in which the hypersurface is embedded. The components nj

are those of n. The extrinsic curvature tensor is K = −1
2
£ng, the Lie derivative of the

metric tensor along the unit timelike normal vector. This is not the only way to define

extrinsic curvature; one may consider it as the exterior derivative of the unit timelike

normal vector, which is a vector–valued 1–form [2]. Having introduced the last of these,

we can relate the momentum conjugate to the metric with the extrinsic curvature,

πij =
√

(3)g(gijK l
l −Kij). (2.24)

To solve the initial–value problem, we must specify appropriate initial–value data:

the six functions gij
(3)(xi), the six functions πij(xi) or Kij(xi), and the source qualify.

These functions satisfy the four constraint equations which give the number and the form

of the degrees of freedom. Critical for this problem is the Cauchy formulation [17, 18].

Given the existence of the topological space (M,g), we assume the 4–metric possesses

global hyperbolicity. Global hyperbolicity implies that M possesses a Cauchy surface, no

closed or nearly closed causal paths exist, a universal time function describes this surface,
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and the topology of M is Σ× R.

2.4 York’s decomposition

General solutions of the initial–value equations can be obtained when the metric γij

of the initial spacelike hypersurface is specified up to an (initially) unknown conformal

factor [19]. Recall the spatial metric (2.14). Then, we define the conformal metric γ̃ with

components related to those of the spatial metric by γ̃ij = γ−1/3γij. This is freely specified

on the initial hypersurface; it is invariant with respect to conformal transformations

γij → γ̄ij = φ4γij. φ(xi) is arbitrary but initially unknown and is found only after

complete solution of the initial–value equations.

We introduce the 5/3–weight form of the conformal curvature tensor [19],

β̃ik =
1

2
γ1/3(εlmiγkp + εlmkγip)Rmp|l. (2.25)

This gives a nonzero conformally–invariant measure of the curvature in 3 dimensions

(the Weyl conformal curvature tensor vanishes in dimension ≤ 3) [2]. We covariantly

differentiate the Ricci tensor in 3 dimensions here. Because the tensor β̃ is symmetric,

traceless, and covariantly transverse [20, 21], conformally equivalent three–geometries

give equivalent transverse and traceless representations of the gravitational field. Thus,

the conformal 3–geometry (3) < – the conformal equivalence class of diffeomorphically

equivalent Riemannian 3–metrics – is an element of the configuration space, called the

conformal superspace, of the true dynamical degrees of freedom. This does not affect the

count of the degrees of freedom, only the identification.

Given a maximal slicing Tr(K) = 0, the initial–value supermomenta are conformally

invariant. The initial–value superhamiltonian is not; however, it is used to determine the

conformal factor φ(xi).

2.5 Count of degrees of freedom for the gravitational

field

Initial specification of the metric and conjugate variables and the lapse and shift deter-

mine uniquely the metric and conjugate variables at a later time [16]. This is the essence
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of the thin–sandwich formulation. The lapse and shift describe how the coordinate system

is continued from one slice to the next; this implies that the (intrinsic) 4–geometry of the

spacetime is determined uniquely by the initial specification of metric and momentum

variables.

The twelve variables (gij, π
ij) constitute a complete (though nonminimal) set of

Cauchy data. To account for the minimum number of variables, we consider the twelve

and may eliminate four using the superhamiltonian and supermomentum constraints.

These four constraints on the canonical variables correspond with four Bianchi identities

among Hamilton’s equations of evolution. Lapse and shift determine the continuation

of the coordinate system without affecting the intrinsic geometry. For every choice of

lapse and shift as functions of the remaining eight Cauchy data – this represents a choice

of coordinate frame – four equations result stating that the time derivatives of four of

the remaining eight canonical variables vanish. The choice of coordinate frame can be

specified by selecting four of the remaining eight canonical variables as the coordinates of

spacetime; these coordinates determine the lapse and shift. Following this, there remain

four dynamical equations over the remaining four canonical variables; this corresponds

to a system with two dynamical degrees of freedom. From York’s decomposition, we see

that these dynamical degrees of freedom are in fact related to (3) <.

It is most accurate to say that the dynamical degrees of freedom are contained in these

field variables. For physical problems, the boundary conditions and symmetries are such

as to delineate a time–dependent part from a spatial part. Respecting the decompositions

above, the final step is to consider the whole problem, boundary conditions included.

Important for our discussion of quantization is the satisfaction of constraints. We

will follow the discussion presented in [8]. In terms of the ADM 3+1 split, if f is a

diffeomorphism of the hypersurface Σt with parameter t, then gij and f ∗gij describe the

same physical problem. (This is also true when considering γij and f ∗γij.)
(3)G is the

equivalence class containing such metrics, the equivalence being diffeomorphism. We may

consider the set of these equivalence classes, called superspace [2, 8], as the configuration

space. Then, with the configuration space being superspace, we have that for any vector

field v on Σt, the conjugate momenta πij must satisfy the relation
∫
d3xπij(δgij+v(i|j)) =∫

d3x πijδgij where v(i|j) = 1
2
(vi|j + vj|i). Here, the variations are taken to be first–order

perturbations in the parameter associated to the group of diffeomorphisms generated by

v. Any variations of metrics related under diffeomorphism in an element of superspace
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can then be related (infinitesimally) by δgij → δgij+vi|j+vj|i. This leads to the following:

Claim. [8] For any vector field v on Σt,
∫
d3xπij(δgij+v(i|j)) =

∫
d3xπijδgij ⇒ πij |i = 0.

Proof. Let v be a vector field on Σt. Then, v is an infinitesimal generator of a one–

parameter group of diffeomorphisms.

Let
∫

Σt
d3xπij(δgij+v(i|j)) =

∫
Σt
d3xπijδgij. This implies that

∫
Σt
d3xπij(vj|i+vi|j) = 0.

Since πij = πji, it suffices to write
∫

Σt
d3x πijvi|j = 0. Using integration by parts, we find

that
∫

Σt
d3x πij |jvi = 0, where the total divergence integrates to a surface term that can

be neglected as variations of the interior geometry do not affect the value of the surface

term where variations vanish. Then for any vector field v, πij |j = 0.

This implies that the supermomentum constraint is automatically satisfied as Hi =

−2πik |k [2, 17]. This result is valid for the York decomposition as well since the conformal

superspace – the set of conformal 3–geometries (3) < – is a subset of superspace.

Our notation differs from [8] in that we use the 3–metric in place of the spatial metric

since γij = gij, and we do not have square–roots of determinants of the 3–metric or

spatial metric in front of terms. In fact, πik is by definition a tensor density; while [2]

and [17] write the constraint as we do, [8] has a factor 1/
√
g to obtain a scalar density

for the entire Hamiltonian.

The superhamiltonian constraint H is not automatically satisfied [8]. This is due to

the freedom in the choice of slicing (time function). GR is parametrization covariant,

not parametrization invariant. In the classical theory, this constraint is used to solve for

the scale factor. The lack of identical resolution of this quantity justifies the treatment

in the MC2 quantization procedure of assigning the constraint to the expectation value

of the corresponding quantum operator.

We will return to these points in Chapter 4. The following chapter is a digression

into a purely classical but important problem in the context of GR. It is related to

the difficulties of observer and observations – the problem of measurement – and the

importance of proper bookkeeping in such questions.
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Chapter 3

Mass, binding energy, and

nonlocalizability in general relativity

The subject of self–binding in static, spherically symmetric objects is, perhaps surpris-

ingly, nontrivial. Basic notions of extended objects appeal to spherical symmetry, and it

is one of the few cases in GR where the concept of mass is clearly defined.

Self–binding and binding energy can be given clear meaning in Newtonian and classi-

cal electromagnetic models. The idea of a particle as a finite extended object motivates

the desire to determine the associated binding properties. For example, many attempts

have been undertaken to produce a viable form of the Abraham–Lorentz model of an

electron. Poincaré initially resolved the problem in special relativity [22]. He introduced

Poincaré stress, another source of energy–momentum. Hoping to avoid the artifice of

this term, some investigators attempted to provide a general relativistic construction.

Because energy–momentum produces gravity and because electromagnetic fields possess

energy–momentum, the hypothesis existed that these fields can bind themselves into a

stable configuration with the behavior of an extended object. In general relativity, con-

struction of any model of an extended object is difficult because the geometry of the

object, its exterior geometry, and its matter distribution must be assigned or determined

in relation to initial and boundary conditions. [10, 11] consider a construction consisting

of a static, spherically symmetric object whose matter distribution is a charged perfect

fluid. This satisfies the requirements for constructing an extended object and provides a

handle for testing the behavior of such an object under limits where matter vanishes.

As it turns out, the problem is multifaceted and requires extreme caution in its
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analysis. Though a quantity, such as electrostatic coupling, contributes to the total

energy of a system (when such total energy is defined), it does not necessarily contribute

to any binding energy of the system of interest. In the following problem, electrostatic

coupling energy is nonlocalizable; it depends on the boundary conditions. Generally, it

is difficult or impossible to define the total energy of a system in general relativity. This

difficulty has produced a research line [2, 8] concerning alternative definitions of mass

in GR. The symmetries of our problem permit us to avoid directly implementing such

definitions, but we will review them as they are relevant in the general theory. Then, we

will discuss the problem of charged spherically symmetric objects.

3.1 Mass in general relativity

In Newtonian gravity or special relativity, provided the assumption of appropriate sym-

metries, a notion of energy of the fields prevails. In SR, the stress–energy tensor for a field

may be computed, and the total energy of this field follows. Given a time–translation

Killing vector field ξ on a spacelike Cauchy hypersurface Σ with unit normal vector n, the

total energy of the field is defined as E =
∫

Σ
Tµνn

µξνd3x [8]. The vanishing divergence of

T ensures that the total energy is conserved independent of the choice of hypersurface.

In general relativity, the gravitational field is nontrivial, and the vanishing divergence

of T is a purely local conservation law. It can be a global conservation law only if a

Killing vector field is present in the spacetime. Generally, the gravitational field does not

admit a meaningful construction of its own energy density. In these generic cases, it is

reasonable to consider a consistent mechanism of isolating the system; then, a measure of

total energy is possible. This is achieved by considering physical systems in GR analogous

to particles in SR.

An energy–momentum 4–vector p is assigned to particles in SR so that the particle’s

energy is the time–component of p. Given a time–translation Killing field ξ, the energy

is E = −pµξµ. If the particle is at rest relative to ξ, then the energy E is the same as

the mass M =
√−pµpµ. In this way, the Killing field provides a notion of rest frame

and, along with M , allows for determination of the components of p. This logic extends

directly to GR.

For static space times (e.g., Schwarzschild, Reissner–Nordström), because Newtonian

gravity possesses a multipole expansion for the gravitational potential Φ, it is easy to
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identify the appropriate measure of mass for the isolated system. This is just the neg-

ative of the coefficient of the 1/r (monopole) term. This is equivalent to considering a

topological 2–sphere enclosing all sources and then integrating the gradient of Φ over the

enclosure of the surface. This computation obtains the total outward force needed to

hold matter in place with unit surface mass density,

4πM =

∫
S

Φ;in
idA. (3.1)

This computation depends only on the asymptotic features of the gravitational field and

generalizes to another expression, called the Komar mass ,

−8πM =

∫
S

εαβγδ∇γξδd3x, (3.2)

so that the choice of surface depends only on the Killing field. Not only does this expres-

sion provide for the total mass of a static, asymptotically flat spacetime which is vacuum

outside of the surface, it holds for those which are stationary and are asymptotically

vacuum.

This generalizes further to the case of nonstationary asymptotic flatness. This leads

to the Bondi energy ,

E = − lim
Sα→J

1

8π

∫
Sα

εµνγδ∇γξδd3x, (3.3)

where {Sα} is a one–parameter family of spheres approaching the cross–section of future

null infinity. ADM mass addresses the situation when considering spatial infinity.

Other definitions of mass–energy have been developed along these lines, and questions

of positivity have been addressed [8]. Returning to the simple cases to be presented here,

a source of confusion resides not in the mathematical complexity of formulations of

mass but in basic bookkeeping. In static, spherically symmetric spacetimes, an adequate

definition of mass can be found by analyzing the Keplerian orbits of negligible test masses

far from the source. It must be clear throughout the problem what the proper volume

is and exactly which quantities are being written so as to avoid introducing factors

incorrectly. Further, notions of gravitational energy density should not be implemented

when considering matter sources. While techniques using energy pseudotensors (e.g.,

[23]) have been developed to incorporate meaningfully gravitational energy density, such

quantities have nothing to do with mass.

24



We consider the case of a charged, spherically symmetric object with a charged perfect

fluid and static electric field as sources of energy–momentum. The mass is determined

directly by the aforementioned association with 1/r terms. This work demonstrates that

the electrostatic coupling energy of charges does not contribute to gravitational binding

energy and that, in the fluidless limit, the object is unstable. The importance of this

result is that it demonstrates for this configuration, general relativity cannot serve as a

replacement for unusual matter (e.g., Poincaré mass) in special relativity.

3.2 Gravitational binding of charged spherically sym-

metric objects

It is well–known [2, 12] that there is a coordinate system (t, r, θ, φ) in which the geometry

of a static spherically symmetric system is given by the line element,

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2 θdφ2)

⇒ g00 = −e2Φ(r); grr = e2Λ(r); gθθ = r2; gφφ = r2 sin2 θ. (3.4)

The stress–energy tensor of a charged perfect fluid is given by

Tαβ = (µ+ p)uαuβ + gαβp+
1

4π

(
Fα

κFβκ −
1

4
FκλF

κλgαβ

)
(3.5)

where µ and p are the proper density and proper pressure of the fluid, respectively. The

notation ρ is reserved for the proper charge density. The only nonzero component of uµ

is u0 = −eΦ.

This expression is obtained as the variational derivative of the matter Lagrangian

with respect to the spacetime metric. Although the Lagrangian of the charged fluid is

composed of the Lagrangian of fluid, the Lagrangian of the electromagnetic field, and

the interaction Lagrangian (interaction between the charged particles of the fluid and the

electromagnetic field), the interaction term does not contribute to the energy–momentum.

The total stress–energy tensor is the sum of the energy–momentum of the fluid and the

energy–momentum of the electromagnetic field. This does not exclude contribution of

the electromagnetic coupling to the total energy of the object. However, this contribution
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is not localizable and appears only upon integration over the volume of the object.

The components of the metric tensor and of the stress–energy tensor allow computa-

tion of Einstein’s equations. Only four components of these equations are nontrivial and,

of those, only the 00–component and the rr–component (due to spherical symmetry)

contain important physical information:

G00 = 8πT00 ⇒
1

r2
e2Φ d

dr
[r(1− e−2Λ)] = 8πµe2Φ + EiE

ie2Φ; (3.6)

Grr = 8πTrr ⇒ −
1

r2
e2Λ(1− e−2Λ) +

2

r

dΦ

dr
= 8πpe2Λ − EiEie2Λ. (3.7)

Ei = F 0i are components of the electric field E in the proper space of static observers.

The electric field is constrained by Maxwell’s equations which, due to the symmetries of

the problem, are reduced to the nontrivial equation

Ei
;i = 4πρ. (3.8)

Also, due to the symmetries, E is a static, radial vector field, and its magnitude E(r)

can be computed by integrating (3.8) with respect to r, yielding

E(r) = q(r)/r2 (3.9)

where q(r) is the total charge enclosed by a sphere of radius r

q(r) =

∫ r

0

4πr2eΛ(r)ρ(r)dr. (3.10)

The other two Einstein equations follow from these by virtue of the contracted Bianchi

identities. It is standard practice to replace them by the equations of motion

Tαβ ;β = 0, (3.11)

where the Tαβ are components of the stress–energy tensor. With spherical symmetry,

the only relevant equation is the one with α = r [12]:

T rβ ;β = T r0;0 + T rr ;r + T rθ ;θ + T rφ;φ = 0
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⇒
(
µ+

E2

8π

)
dΦ

dr
+

(
p− E2

8π

)
dΦ

dr
+
d(p− E2

8π
)

dr
− E2

2πr
= 0

⇒ (µ+ p)
dΦ

dr
+
d(p− E2

8π
)

dr
− E2

2πr
= 0. (3.12)

This expression reduces the 00–component of Einstein’s equations (referred to here-

after as the 00–equation) to

d

dr

[
r(1− e−2Λ(r))

]
= 8πr2µ(r) +

q2(r)

r2
. (3.13)

In this analysis, the boundary of the object r = R is determined by the conditions

µ(r) = ρ(r) = 0 for r > R which imply that, outside of the object, q(r) is a constant

q(r) = q(R) = Q =

R∫
0

ρ(r)4πr2eΛ(r)dr (3.14)

that can be identified as the total charge of the object.

It is convenient to replace the function Λ(r) by a new function m(r)

m(r) =
1

2
r
(
1− e−2Λ(r)

)
+
q2(r)

2r
(3.15)

which reduces the 00–equation to

dm

dr
= 4πr2µ(r) +

1

2r

d

dr
[q2(r)]. (3.16)

or, equivalently

dm

dr
= 4πr2µ(r) +

q(r) ρ(r) 4πr2eΛ(r)

r
. (3.17)

Integration of this equation yields m(r), sometimes called the mass function,

m(r) =

r∫
0

4πr2µ(r)dr +

r∫
0

q(r) ρ(r) 4πr2eΛ(r)

r
dr (3.18)

although it cannot be interpreted as the mass–energy inside r since energy is not local-

izable in general relativity.

Outside the object ( r > R ), the mass function becomes constant,
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m(r) = m(R) = M =

R∫
0

4πr2µ(r)dr +

R∫
0

q(r) ρ(r) 4πr2eΛ(r)

r
dr. (3.19)

The constant M is interpreted as the total mass of the object, since substitution of

e2Λ(r) =
1

1− 2M
r

+ Q2

r2

, (3.20)

in the line element turns it into the Reissner–Nordström metric; this identifies M as the

total mass of the object based on analysis of the Keplerian motion of neutral test particles

around the object [2]. Neutral test particles are necessary as they are not coupled with

the electric field.

The second term of (3.19) represents electric coupling of charges in the object. It can

be called the electromagnetic mass of the object (similar to the electromagnetic mass of

an electron in the Lorentz theory).

In (3.19), the second term is an integral over the proper volume whereas the first is

not. We rewrite the expression for M in the form

M = m(R) =

R∫
0

e−Λ(r)µ(r) 4πr2eΛ(r)dr +

R∫
0

q(r) ρ(r)

r
4πr2eΛ(r) dr. (3.21)

In (3.21), integration in both terms is performed over the proper volume, with 4πr2eΛ(r)dr

the proper volume of the spherical layer between r and r + dr. In the first term, the

factor

e−Λ(r) =

[
1− 2m(r)

r
+
q(r)2

r2

] 1
2

(3.22)

contains the contribution of gravitational binding energy to the mass of the object. More

explicitly, this expression can be written as

M = m(R) =
R∫
0

µ(r) 4πr2eΛ(r)dr +
R∫
0

q(r) ρ(r)
r

4πr2eΛ(r) dr

−
R∫
0

(
1− e−Λ(r)

)
µ(r) 4πr2eΛ(r)dr, (3.23)
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where the integral

R∫
0

(
1− e−Λ(r)

)
µ(r) 4πr2eΛ(r)dr (3.24)

is the gravitational binding energy of the object; its sign is consistent with that in [2]. It

should be noted that the gravitational binding energy is influenced by the charge distri-

bution (via the expressions for e−Λ(r) and m(r)) and by the pressure to the extent that

the pressure influences µ(r) through the state equation (or equations). The expression

for the integral above clearly shows that gravity binds only the localized part of the

mass (perfect fluid) but not the non–localizable part caused by electric coupling. In the

case with q(r) = 0, this integral is positive (we are assuming that µ(r) is nonnegative)

and represents true binding. However, when q(r) is large enough compared to m(r), the

integral might become negative, in which case gravity cannot hold the object together.

Removal of all but electromagnetic contributions to the mass will produce an object that

cannot be held together by gravity. However, this alone does not mean that these objects

cannot exist.

Neither the expression of the mass function nor of the total mass are coordinate effects.

We implement a properly chosen slicing of spacetime by spacelike surfaces determined

by comoving observers (sometimes called static observers) and the existence of spheres

centered on the source of the gravitational and electric fields in each slice. Such a slicing

and spheres exist due to the symmetries of the problem.

Another important point is the nature of gravitational binding energy. This is related

to that of Newtonian gravity; the term in our expression involves M/r so that higher

order terms (e.g., O(1/rn)) which may appear do not affect the gravitational binding

energy by definition.

Inspection of the mass function and the total mass shows that the integrals appearing

in their expressions are of proper densities over the proper volumes of comoving observers.

Presence of the Schwarzschild radial coordinate r in these expressions does not violate

coordinate independence because this coordinate can be expressed in terms of the proper

area A of an appropriate sphere

r =

√
A

4π
. (3.25)
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No matter the coordinates in the proper space (constant time slice) of the comoving

observers, all the expressions for electric and gravitational fields in terms of the quantity

r, defined in this coordinate independent way, will remain the same. This fact is used in

deriving the expression for the electric field. The slicing of spacetime by the proper spaces

of comoving observers – which coincides with surfaces of constant t in Schwarzschild

coordinates – is the appropriate slicing for defining the total mass and is the only one

in which the electromagnetic field remains static and purely electric. This is similar

to the selection of a comoving observer when defining the rest mass of a particle. The

Schwarzschild time coordinate t should not be misinterpreted either because the only

quantities present in all the expressions or derivations of these expressions are normalized

vectors ∂/∂t: the 4-velocities of comoving observers.

In the expression for the total mass M , the second term (electromagnetic mass) in-

cludes a contribution from the energy of the electric field outside of the object (from R

to ∞) [24]. That we can write it as an integral over the interior of the object (from 0

to R) is important as it allows us to treat the object as isolated [8] and to introduce

an alternative expression for its mass, the Tolman–Whittaker formula. A thorough and

modern treatment of the issue was given by Komar [25] and Møller [26]. It is applicable

to the cases we are interested in, namely static (with respect to the timelike Killing vec-

tor field ξµ ), asymptotically flat spacetimes and spatially bounded objects (cf. [8] for

generalizations), which is the case of the Schwarzschild and Reissner–Nordström space-

times. Such a procedure introduces a Tolman–Whittaker version of the mass function

mG(r). It should be noted that neither m(r) nor mG(r) with r < R produces the value

of mass for a portion of the object and that m(r) and mG(r), in general, do not coincide.

However, according to what is sometimes referred to as the general relativistic version

of the virial theorem [8], m(R) = mG(R) = M and does produce the total mass of the

object (including the electric field contribution).

It is easy to generalize the results described above to the case of locally anisotropic

equations of state for spherically symmetric objects. An excellent presentation of the

issue for the case of neutral objects can be found in [27]. These considerations have

been applied, with different degrees of success, in astrophysics [27] and in attempts to

produce a more successful classical model of an electron [28]. Local anisotropy together

with spherical symmetry implies that the stress–energy tensor T µν (in Schwarzschild

coordinates) is diagonal and in the neutral case is given by
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T µν = diag (−µ, pr, pθ, pφ), (3.26)

with pθ = pφ = p⊥, or

T µν = diag (−µ, pr, p⊥, p⊥). (3.27)

Einstein’s equations are essentially the same for both neutral and charged objects

as in the isotropic case, except pr (radial pressure) replaces p in the rr–equation, p⊥

(tangential pressure) replaces p in the θθ and φφ equations and, in general, pr 6= p⊥.

Then in the neutral (without charge) case, we obtain three structure equations in five

unknowns (Φ, Λ, µ, pr and p⊥), which implies that, in addition, two equations of state

pr = pr(µ) and p⊥ = p⊥(µ) must be specified. In general, pr and p⊥ may depend on more

variables (such as entropy, etc.) in which case more equations are needed. Of course, in

the case of a charged object, one more variable ρ must be included and one more equation

should be added.

The 00–equation in the anisotropic case remains the same as in the isotropic case,

which implies that the expression for the mass function m(r) and its connection with

Λ(r) remain the same for both neutral and charged objects, as does the expression for

the total mass M (Reissner–Nordström parameter) of the object.

3.3 Gravitational binding and total binding

While gravitational binding may not be strong enough to counter electrostatic repulsion,

the stress of the fluid forming the object can supply additional (nongravitational) binding

such that a charged, spherically symmetric object can exist.

The condition of hydrostatic equilibrium in the object – the pressure gradient needed

to keep the fluid static in the gravitational and electromagnetic fields [12] – is described

by the Oppenheimer–Volkov (O–V) equation. As in the case of a neutral object, the O–V

equation is derived by eliminating dΦ/dr from the rr–component of Einstein’s equations

and from the equation of motion. For a charged spherical object, it takes the form [29]

dp

dr
=
q(r)

4πr4

dq(r)

dr
− (µ+ p)

(
4πr3p− q2(r)

r
+m(r)

r[r − 2m(r) + q2(r)
r

]

)
. (3.28)
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This equation is not separable, unlike the O–V equation for an uncharged spherical object

[12] obtained from (3.28) by letting q(r)→ 0,

dp

dr
= −(µ+ p)(m(r) + 4πr3p)

r(r − 2m(r))
. (3.29)

We assume that µ > 0 for r < R.

The first term on the right hand side of the O–V equation (3.28) represents elec-

trostatic repulsion, does not depend on µ, and is positive if the sign of ρ is the same

everywhere. The second term supplies gravitational binding. If the sum of the two terms

is positive, the object cannot be held together by gravitational binding alone, and ad-

ditional binding must be supplied by the stress of the fluid such that (according to the

O–V equation) dp
dr
> 0. The meaning of this requirement is especially transparent near

the surface of the object. At the surface of the object (r = R), the pressure pr=R = 0,

and the O–V equation reduces to

dp

dr
|r=R =

QQ′

4πR4
− µ

(
−Q2

R
+M

R[R− 2M + Q2

R
]

)
. (3.30)

Inside the object, the conditions dp
dr
> 0 and pr=R = 0 imply that the pressure of the

fluid must be negative, at least near the surface of the object.

The first term of this expression does not depend on µ and is positive if the sign of ρ

is the same everywhere, which means that when µ becomes arbitrarily small, the pressure

gradient becomes positive and the pressure of the fluid becomes negative no matter the

sign of µ. The O–V equation demands this. Of course, a configuration with arbitrarily

small density and finite negative pressure is thoroughly nonphysical; the correct physical

interpretation is that such an object cannot be formed in classical general relativity.

In the case of an anisotropic fluid, hydrostatic equilibrium in the object is determined

by the anisotropic generalization of the O–V equation derived in the same way as the

isotropic version. In the absence of charge, it is expressed by

dpr
dr

= −(µ+ pr) Φ′ +
2

r
(p⊥ − pr), (3.31)

with
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Φ′ =
m(r) + 4πr3pr
r (r − 2m)

(3.32)

so that, finally, the O–V equation takes the form

dpr
dr

= −(µ+ pr)
m(r) + 4πr3pr
r (r − 2m)

+
2

r
(p⊥ − pr). (3.33)

where m(r) is the mass function as described above.

It should be noted that there is no equation for the gradient of the tangential pressure

p⊥ as it is determined by both the equations above and the equations of state.

The second term in the O–V equation is the only one in the structure equations that

explicitly contains p⊥. Moreover, in the Newtonian limit the O–V equation reduces to

dpr
dr

= −mµ

r2
+

2

r
(p⊥ − pr), (3.34)

which implies that the anisotropy term is of Newtonian origin in the case of spherical

symmetry [27]. In addition, we wish to point out that this term is produced not by

gravity but by the stress of the fluid.

To solve the O–V equation together with the other structure equations, appropriate

boundary conditions must be imposed. Just as in the case of isotropy, it is required

that the interior of the matter distribution be free of singularities, which imposes the

condition m(r) → 0 as r → 0. If pr is finite at r = 0, then Φ′ → 0 as r → 0. Therefore
dpr
dr

will be finite at r = 0 only if p⊥ − pr vanishes at least as rapidly as r when r → 0.

Ordinarily, it is required that [27]

lim
r→0

p⊥ − pr
r

= 0. (3.35)

The radius of the object R is determined by the condition pr(R) = 0. It is not

required that p⊥(R) = 0. In astrophysical applications, it is assumed that p⊥(r) ≥ 0 for

all r < R [27]. An exterior vacuum metric such as Schwarzschild or Reissner–Nordström

is always matchable to the interior solution across r = R as long as pr(R) = 0.

The charged anisotropic O–V equation is obtained as easily (the procedure is the

same as for the isotropic case):
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dpr
dr

=
q(r)

4πr4

dq(r)

dr
− (µ+ pr)

(
4πr3pr − q2(r)

r
+m(r)

r[r − 2m(r) + q2(r)
r

]

)
+

2

r
(p⊥ − pr). (3.36)

All comments concerning the boundary conditions for neutral objects (cf. above) apply

to charged objects as well.

At the surface of the object (r = R), the pressure pr = 0, so

dpr
dr
|r=R =

QQ′

4πR4
− µ

(
−Q2

R
+M

R[R− 2M + Q2

R
]

)
+

2

R
p⊥. (3.37)

This equation is the same as the isotropic version except for a term associated with

tangential pressure. In cases when gravity alone is insufficient to counteract electrostatic

repulsion, additional binding caused by the stress of the fluid is required to satisfy the O–

V equation. Near the surface of the object, such stress can be generated by anisotropy

if p⊥(r) < 0 and, if it is insufficient, by allowing pr(r) < 0. In any case, the O–V

equation requires one or both of these pressures to be finite and negative. However, for

any reasonable state equations – those state equations such that the radial and tangential

pressures will become arbitrarily small as the density is made arbitrarily small – the O–V

equation cannot be satisfied for arbitrarily small density. This means that an object with

pure or mostly electromagnetic mass obtained by making µ arbitrarily small cannot exist

in classical general relativity.

The nuances in this construction illustrate the caution needed when studying problems

in general relativity. At all times, the equations, the initial and boundary conditions,

the choice of matter distribution, and the symmetries must be respected. This is true of

any quantitative theory, in fact, but relativity is especially tricky because of the nature

of coordinate transformations and the need to separate between coordinate effects and

real, physical effects due to curvature (second–order) terms. Careless interchange of one

assumption with another during calculations lead to ambiguous and confusing results.

In GR, for example, this can mean swapping one equation of state for another, changing

the frame or coordinatization, or not taking into account which quantities truly produce

the mass. Also, comparisons between different models are difficult to assess, again by

the same reasons as above. One must start at the very beginning of the problem and

34



run everything through the Einstein equations using appropriate initial and boundary

conditions.

While this is not a quantum problem, the kind of reasoning presented here is necessary

to approach quantization of gravity. Importantly, the problem must be well–defined,

and the question(s) being asked should be clear and specific from the beginning of the

problem. Regardless the quantization scheme, the nature of the problem should be clear

throughout the process of its resolution.
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Chapter 4

Canonical quantization of gravity

It is important to consider previous attempts at gravity quantization to gain an under-

standing of the difficulties with the process. We will limit our focus to those canonical

quantization procedures related to geometrodynamics, simply because it is easier to mo-

tivate similarities with and differences from our own procedure [13].

Before discussing gravity quantization, we will briefly review the evolution of quantum

theory [30, 31]. Quantum theory initially developed in several thrusts: quantization of

electric charge, development of correct understanding of the theory of blackbody radia-

tion, and the photoelectric effect. The latter two aided in the formulation and implemen-

tation of the photonic theory of light: light is composed of discrete packets of quanta of

finite energy. This perspective found reinforcement in x–ray scattering (Compton effect),

and it was used to analyze atomic spectra via the development of the Rutherford nuclear

model and the Bohr atom (hydrogen).

Limitations in the extension to the spectra of other elements could only be resolved

by the development of quantum mechanics. DeBroglie’s wave/particle duality for matter

was confirmed in diffraction experiments of electrons. The Schrödinger equation unified

the previous efforts in quantum mechanics into a common mathematical construction.

However, this equation is not Lorentz invariant, and subsequent investigations led to the

development of the Dirac equation [32]. Following from these investigations, the subject

of quantum field theory was born.

Whenever considering quantum theory, it is necessary to have a well–defined problem.

This means starting from classical theory with equations and initial and boundary con-

ditions suitable for describing that physical system. As we have seen in the development
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of general relativity theory, the evolution of classical physical systems is described by

the Euler–Lagrange equations, Hamilton’s equations, or the Hamilton–Jacobi equation.

When discussing canonical quantization, we consider those variables appearing in Hamil-

tonian formulations; the interesting variables – dynamical degrees of freedom – form a

dynamical configuration space which is a subset of the configuration space of all variables.

Then, depending on the form of canonical quantization (i.e., the form of dynamical con-

figuration space), some or all of the quantities described by the equations are elevated to

operators. Following [6, 32], we consider six axioms of canonical quantization that any

such quantization procedure will follow for an isolated classical, dynamical system:

(Q1): Given a classical physical system characterized by dynamical degrees of free-

dom – those parameters which remain freely varying – there exists a Hilbert space Hilb

for the corresponding quantum system, and the state of the quantum system is described

by a state functional/wavefunction dependent on these dynamical degrees of freedom and

time.

(Q2): Classical observables – those quantities associated with the dynamical degrees

of freedom on which the system depends – are replaced by linear Hermitian operators

acting on the Hilbert space Hilb. We denote the dynamical configuration space (phase

space of a Hamiltonian) containing these classical observables by CDyn and the analogous

space of operators by ĈDyn.

(Q3): For any physical state in Hilb, there exists an operator for which the physical

state is one of the eigenstates of the operator.

(Q4): Poisson brackets {·, ·} : CDyn × CDyn → CDyn in the classical theory go to

commutators [·, ·] : ĈDyn × ĈDyn → ĈDyn in the quantum theory.

(Q5): The result of a measurement of a physical observable is any one of its eigen-

values. Given an ensemble (a collection of identically prepared systems in an arbitrary

state in Hilb), the expectation value (average of many measurements) of an observable

with respect to a state function Ψ ∈ Hilb, < · >: ĈDyn → R, is given by

< Â >Ψ=< Ψ|Â|Ψ > . (4.1)

(Q6): The time evolution of a quantum system is expressed by the Schrödinger equa-

tion. For a closed physical system, it has no explicit time dependence; the eigenvalues of

the Hamiltonian operator are the allowed stationary states of the system.
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Concerning (Q6), the eigenvalues of the Hamiltonian operator are the separable so-

lutions of the time–independent Schrödinger equation. These solutions are important in

the context of quantum theory because (1) they are stationary states; (2) they are states

of definite total energy with respect to the observer’s Hamiltonian; (3) a linear combi-

nation of them forms the general solution of the time–dependent Schrödinger equation.

Stationary states are important since the probability density of a wave function and of

the expectation value of an observable are time–independent [33, 34].

Two other quantities are useful for quantum mechanical computations. The dispersion

of an observable Â is given by
〈

(∆Â)2
〉

=
〈
Â2
〉
−
〈
Â
〉2

which is just the expectation

value of the square of the operator ∆Â = Â −
〈
Â
〉
I [35]. The dispersion is also called

the variance or mean–square deviation. Dispersion provides a quantitative notion of

uncertainty or “fuzziness.”

The generalized uncertainty relation [35] for any two observables is given by

〈
(∆Â)2

〉〈
(∆B̂)2

〉
≥ 1

4

∣∣∣〈[Â, B̂]〉∣∣∣2 . (4.2)

Our perspective for canonical quantization of gravity is that of “first–quantization,”

which is the elevation of classical observables to operators. (“Second–quantization” in-

volves the elevation of wave functions, such as those obtained from first–quantization or

from the Dirac equation, to operators subject to quantum conditions.) As a consequence,

we begin from a classically well–defined action principle, well–defined meaning without

the presence of ~ or some related artifice arrived at by working backwards from another

equation to obtain the action. The motivation is that in the classical (correspondence)

limit, ~ → 0, so any terms containing ~ vanish. While it is mathematically possible to

consider action principles containing ~ [5], the physical aspect of the theory concern-

ing minimal coupling with gravity warrants caution. We will restrict ourselves to those

situations where we can begin with unambiguous classical fields.

The procedures of our focus – Dirac quantization, ADM’s square–root quantization,

and minimally–constrained canonical (MC2) quantization – are quantum extensions of

J. Wheeler’s geometrodynamics. (We will not address loop quantum gravity [36, 37, 38],

which is the quantization of Ashtekar’s “connectiodynamics” and, while canonical, is

not related to our work.) In Dirac’s, ADM’s, and MC2 procedures, one starts with
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the principal Hamilton functional S[q, t] and maps to the state functional Ψ[q, t]. The

principal Hamilton functional S is similar to I which describes the action principle,

except that S has a fixed initial limit and is an action satisfying Hamilton’s equations of

evolution. More precisely, we may consider [2] the invariant integral (action principle)

I =

∫ q,t

q′′,t′′
L(q′, q̇′, t′)dt′ (4.3)

where we may think about some initial configuration of field variables q′′ at an initial

time t′′. Then, we define the dynamic phase or action by

S[q, t] = IExtremum[q, t] = extremum value of

∫ q,t

q′′,t′′
L(q′, q̇′, t′)dt′. (4.4)

Variation of this quantity and use of integration by parts [39] leads to

δS =
∂L

∂q̇
δq −

(
q̇
∂L

∂q̇
− L

)
δt. (4.5)

The rate of change of dynamic phase with position [2] is just the momentum conjugate

to the field variable; the negative of the rate of change of dynamic phase with time is

identified by the quantity in front of δt. In classical mechanics, this can be viewed as the

energy; similarly for classical field theories in flat spacetime. It is more subtle in general

relativity as, generally, total energy is not well–defined. We will return to this later in

the discussion on quantization.

The important difference between I and S is as follows. In the equation for I, we

consider some initial and final time. In the equation for S, we fix the initial configuration

and time and vary the final limit of the integral. Generally, we have the freedom to fix the

initial and final configurations, the initial and final times, or some admixture depending

on our interests, so long as we only fix two quantities.

Using the definition of conjugate momentum in terms of the dynamic phase to rewrite

the “velocities,” we arrive at the Hamilton–Jacobi equation,

−∂S
∂t

= H

(
q,
∂S

∂q
, t

)
. (4.6)

We may refer to H as the Hamiltonian; this is the generator of time–translation (coeffi-

cient in front of δt) [16].

In the ADM formulation of general relativity, investigation of the gravitational dy-
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namics leads to the interpretation of the supermomentum constraints as expressing the

3–dimensional diffeomorphism invariance (the freedom of choice of coordinates on the

slices), and the superhamiltonian constraint – together with the natural identification

πij =
δS

δgij
(4.7)

as the Hamilton–Jacobi equation of the theory [3, 40],

H
(
gij,

δS

δgij

)
= 0. (4.8)

Although this Hamilton–Jacobi equation involves all six components of the 3–metric,

the 3–diffeomorphic invariance as expressed by the supermomentum constraints,(
δS

δgij

)
|j = 0 (4.9)

allows one to identify the Hamilton–Jacobi equation as an equation that describes the

evolution of the 3–geometry rather than of the 3–metric. However, (4.8) cannot be inter-

preted as the generator of time translation. Unlike in mechanics, the superhamiltonian

H participating in the Hamilton–Jacobi equation (4.8) does not coincide with the ADM

Hamiltonian which generates the dynamic evolution via Hamilton’s equations (2.20).

This ADM Hamiltonian density is related to the Lagrangian density L by the standard

relation

HADM = πij
∂gij
∂t
− L (4.10)

while, generally, H is not.

The gravity quantization procedures differing from MC2 are known to have or can be

shown to have the “problems of time evolution” [3]. These problems are (1) the problem

of functional evolution; (2) the multiple–choice problem; (3) the Hilbert space problem;

(4) the spectral–analysis problem. We will elaborate on the technicalities of these as we

encounter them in the different procedures.

4.1 Dirac quantization of gravity

Dirac’s procedure of canonical quantization utilizes the standard prescription
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πik → δS

δgik
7→ π̂ik = −i~ δ

δgik
(4.11)

and leads to four functional differential equations based solely on the four constraint

equations of the classical theory

H
(
gik, π

ik
)

= 0, (4.12)

Hi
(
gik, π

ik
)

= 0. (4.13)

To obtain the Hamilton–Jacobi equation, we replace the conjugate momenta πik →
δS
δgik

, so that the constraints become

H
(
gik,

δS

δgik

)
= 0, (4.14)

Hi

(
gik,

δS

δgik

)
= 0. (4.15)

The first of these is identified with the Hamilton–Jacobi equation.

The quantization is performed by δS
δgik
→ π̂ik = ~

i
δ

δgik
, so that we obtain the Schrödinger

equation,

Ĥ
(
gik,

δS

δgik

)
Ψ = 0. (4.16)

This equation is also known as the Wheeler–DeWitt equation. After quantization, com-

mutation relations are imposed on all components of the 3–metric.

The three equations (supermomenta) are often interpreted as a requirement for the

state functional to be a functional of the 3–geometry, Ψ = Ψ[(3)G] rather than of the

3–metric. (4.16) is the Wheeler–DeWitt equation [2, 41] which is considered here to be

a proper wave equation for quantum gravity. This equation resembles more a Klein–

Gordon equation than a Schrödinger equation. The state functional Ψ in this equation,

although originally introduced as a functional of the 3–metric Ψ = Ψ[gik], after imposing

on it the requirement of 3– dimensional diffeomorphic invariance, is considered to be

a functional of the underlying 3–geometry Ψ = Ψ[(3)G]. The commutation relations

are imposed on all the components of the 3–metric, although care is taken to ensure
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that they are diffeomorphically invariant. The Wheeler–DeWitt equation, just as its

classical counterpart, the Hamilton–Jacobi equation, does not admit an interpretation of

the Hamiltonian as a generator of time translation.

Several problems plague this approach. First, there does not exist a notion of natural

time. The state functional Ψ is a functional of either the slice 3–metric or the slice

3–geometry. Commutation relations are imposed on all the components of the 3–metric

and in quantum mechanics, the evaluation of expectations involves integration over all

the variables participating in the commutation relations. Such a calculation, however,

ordinarily excludes the possibility for the introduction of functional time or time evolution

in the theory. To avoid this difficulty, it is possible to split the set of variables in two

subsets, one of which is to be considered as a set of functional arguments of the state

functional over which to integrate during computation of the expectations, while the other

is to be considered as a set of functional parameters (one per slice) and to be interpreted

as a representation of functional time. This split should be introduced only after the

solution for the state functional is obtained but prior to the evaluation of expectation

values. Splitting variables in this way, though, is thoroughly artificial and amounts to

treating the embedding variables as quantum operators in one part of the theory yet as

classical in another.

Second, the Wheeler–DeWitt equation is second order, like the Klein–Gordon equa-

tion, which leads to the same difficulty as in that theory: the state functional density ψ

possesses no probabilistic interpretation. In essence, an appropriate Hilbert space cannot

be provided for the set of solutions Ψ.

Third, the operators associated with the superhamiltonian and supermomentum con-

straints do not commute, [Ĥ, Ĥi] 6= 0, implying that either energy or momentum is

not conserved. This is equivalent to saying, respectively, that either time–translation or

space–translation is not invariant.

4.2 ADM square–root quantization of gravity

In this procedure, the 3–metric is split into a slicing parameter called a conformal factor

Ω (“many–fingered time”) [2], three coordinatization parameters α associated with the

diffeomorphic degrees of freedom (diffeomorphism constraints), and two dynamic degrees

of freedom β (or q). Then, we have the four superhamiltonian and supermomentum
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constraints

H(Ω, α, β, pΩ, pα, pβ) = 0, (4.17)

Hi(Ω, α, β, pΩ, pα, pβ) = 0. (4.18)

To obtain the Hamilton–Jacobi equation, we replace the conjugate momenta pΩ = δS
δΩ

,

pα = δS
δα

, and pβ = δS
δβ

so that our constraints become

H
(

Ω, α, β,
δS

δΩ
,
δS

δα
,
δS

δβ

)
= 0, (4.19)

Hi

(
Ω, α, β,

δS

δΩ
,
δS

δα
,
δS

δβ

)
= 0. (4.20)

For the slicing parameter and coordinatization parameters, we obtain

−δS
δΩ

= h

(
Ω, α, β,

δS

δβ

)
, (4.21)

δS

δαi
= hi

(
Ω, α, β,

δS

δβ

)
. (4.22)

The slicing parameter Ω is considered the “time” variable. The first of these is the

Hamilton–Jacobi equation, also known as the h–reduced Hamiltonian or ADM Hamil-

tonian. At this stage, there is a square–root of squares of momenta conjugate to the

dynamical variables appearing in the equation for δS
δΩ

.

To quantize, we make the transitions − δS
δΩ
→ i~ δ

δΩ
and δS

δβ
→ π̂β = −i~ δ

δβ
. This

produces the Schrödinger equation,

i~
δΨ

δΩ
= ĥ

(
Ω, α, β,

~
i

δ

δβ

)
Ψ, (4.23)

with commutation relations on the dynamical variables β.

Often, the parameters α and Ω are chosen such that the three equations (ĥα) are

interpreted as a requirement of the diffeomorphism invariance, while the equation (ĥΩ)

is considered to be the proper Schrödinger equation; hΩ is treated as the Hamiltonian.

As with the superhamiltonian H, the square–root Hamiltonian hΩ in the classical theory
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is not related to the Lagrangian L as it would be in a standard dynamic theory.

The square–root Hamiltonian quantization procedure is based on the same classical

picture of the evolution in geometrodynamics as a change of 3–metric or 3–geometry

from one spacelike slice to another and leads to a Hamilton–Jacobi equation. However,

it introduces the split of variables just before quantization. Afterwards, it assumes there

is only one function Ω per slice. The state functional Ψ, when restricted to one slice,

becomes essentially a functional of β only; this can be written properly as

Ψ = Ψ[α,Ω; β] or Ψ = Ψ[Ω; β]. (4.24)

Now, computation of expectation functions assumes functional integration over the

two parameters β only, with the result depending on Ω as a parameter and on the three

functional parameters α.

There are two significant problems with this approach. First is the “multiple choice

problem.” That is, the scale parameter Ω and three coordinatization parameters α de-

scribe the observer, with the dynamical variables given by β. However, the exact split

is unclear and may not be unique. This is related to the fact that for general relativity,

unlike for quantum mechanics and quantum electrodynamics, the clock is not external

to the system. A different split may yield different dynamics, and so it becomes unclear

which is the “correct” physical system.

Second is the “spectral analysis problem.” In the operator ĥ, a square root appears

around the momenta conjugate to the dynamical variables, and it is not positive definite

regardless of the unitarity of the operators associated with the dynamical variables. As

a result, spectral analysis yields an operator ĥ is not self–adjoint, meaning that the

Schrödinger equation does not produce unitary evolution.

4.3 MC2 quantization of gravity

4.3.1 Motivation

The equations of quantum gravity, whether those of Dirac’s procedure or of the square–

root Hamiltonian procedure, do not provide for a natural split of the variables into those

which should be quantized and those which should be left as classical. The split is, to an

extent, arbitrary. It reflects, for any particular gravitational system, our understanding
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of the system’s dynamics. In a sense, it is similar to the situation described by N. Bohr

regarding the split of any considered phenomenon into its quantum and classical parts.

Such a split depends not only on the object that we are considering but, also, on the

questions that we are asking.

It appears that the equations of quantum gravity do not imply the necessity of a

picture of time evolution for quantum gravitational systems. The assumption of time

evolution should be added, at some level, so as not to contradict the rest of the theory.

The reason is as follows. Given a global time function t and a “time flow” vector field

f , they cannot be interpreted as or related to physical measurements using clocks until

the spacetime metric is known [8]. Specifically, until we know the form of the functions

upon which the expression for the metric depends, we have no physical clock. This is

no problem classically, as this simply requires solution of the Einstein equations. In a

quantum theory, though, we cannot select a metric specific to any system. Rather, we

can select only a representative metric tensor field which respects the symmetries and

boundary conditions of the problem of interest. This selection of a representative field is

not unlike in other quantum field theories. As such, no clock external to the dynamical

system can be specified a priori or ab initio. It can only be assigned after a complete

solution of the quantum problem.

The first step in this direction is to introduce a split of metric variables into dynamical

variables β, coordinatization parameters α, and the many–fingered time parameter Ω.

Only the variables β are to become quantum observables (calculation of expectation

values involves functional integration of Ψ only over these functions), while α and Ω are

merely functional parameters that allow, after some manipulations, the introduction of

the concept of time evolution.

We advance an alternative procedure of quantization – a procedure that, from the very

beginning, is based on a picture of geometrodynamic evolution induced by York’s analysis

of the geometrodynamic degrees of freedom. This alternative approach does not involve

a change in the paradigm of time evolution in geometrodynamics. This development was

initially motivated by Wheeler’s semi–intuitive remark that the 3–geometry of a spacelike

hypersurface has encoded within it the two gravitational degrees of freedom as well as its

temporal location within spacetime. It is this notion that the 3–geometry is a carrier of

information about time that has been referred to as “Wheeler’s many–fingered time [2].

It was York who first made this thesis precise. He forwarded the split of the 3–

45



geometry into its underlying conformal equivalence class (its shape representing the two

dynamic degrees of freedom of the gravitational field coordinate per space point) and the

conformal scale factor (its scale representing Wheeler’s many–fingered time). Only the

conformal 3–geometry is truly dynamic in that it can be specified freely as the initial

data. The scale factor is non–dynamic. York’s results have demonstrated that the true

dynamic part of the gravitational field is not the 3–geometry but only its conformal part,

and that the proper configuration space or “arena for geometrodynamics” should be the

underlying conformal superspace (the space of all conformal 3–geometries) rather than

Wheeler’s superspace (the space of all 3–geometries). The conformal scale factor and

three other functional parameters of the 3–metric (responsible for coordinate conditions)

thus become external parameters.

4.3.2 Procedure

The most important aspect of MC2 quantization to clarify initially is that only the “true”

dynamical degrees of freedom as determined from the classical theory are quantized. The

remaining quantities – such as the scale factor and coordinatization parameters – are left

as classical, or non–quantized. In this way, we present a view similar to Bohr’s: the

physical world is composed of two facets, one classical and the other quantum. While

it is true that quantum theory accurately describes physics on microscopic length scales

(< 10−5 meter), that everything is quantum is a dubious claim. For this claim implies

that all systems are reducible into small quantum subsystems. Such a perspective neglects

nonlocality present in classical physics (e.g., [10, 11]). Even quantum theory can depend

on nonlocality in the form of boundary conditions. Succinctly, quantization is not a

cure–all for problems related to measurement. At best, it provides a further view into

some aspects of a physical system – those related to its dynamics – but does not replace

completely the classical theory.

Another important aspect is that the MC2 approach to quantization of gravity avoids

the problem of time evolution by several means. First, we do not fix the quantum operator

of the superhamiltonian Ĥ equal to zero. Rather, we impose the constraints only on the

expectation values of the superhamiltonian, < Ĥ >= 0 and the supermomenta, < Ĥi >.

The former of these is justified by the fact that the superhamiltonian is not identically

satisfied as a constraint for the free field in GR. While the supermomentum constraints are

automatically satisfied for the free field in GR, in the presence of matter, the quantity
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associated with the shift may not identically remove itself. A notable example is the

coupled gravitational and EM field construction [2]. As such, we never introduce the

Wheeler–DeWitt equation, ĤΨ = 0, into our approach.

Second, we construct a new quantityHDyn, the dynamic Hamiltonian, using as canon-

ical variables the dynamical degrees of freedom of the field(s) under consideration. In the

case of gravity, the terminology “true” dynamical degrees of freedom is sometimes used

to indicate the difference between the original ADM formulation of general relativity and

the formulation by York which identifies part of the conformal 3–metric with the correct

dynamics of gravitation. The conformal or scale factor relating this conformal metric to

the original metric is an embedding variable; it is not a dynamical variable and is related

to the notion of “many–fingered time” and to the idea of a classical observer. This rea-

soning allows for a better mechanism for the parametrization of time. It is evident that

HDyn is not a constraint and as such is not required to be zero.

In this procedure [41], we consider the case when the components of the 3–metric,

gik, are given in terms of nq other variables qA, A = 1 ≤ nq ≤ 6, such that gik := gik(qA).

The functions qA are assumed to be independent and form a complete set. We then

consider two subsets of {qA} following from York’s decomposition: a subset of “true”

dynamical variables {βI}
nDyn
I=1 with 1 ≤ nDyn ≤ 2, and a subset of “embedding” variables

{αµ}nEmbµ=0 , 0 ≤ nEmb ≤ 3. The embedding variables are those corresponding to the

scale factor associated with the superhamiltonian constraint and to the diffeomorphic

degrees of freedom associated with the diffeomorphism constraints (supermomenta). For

notational convenience, we will replace βI with qI subsequently.

It is important to note that symmetries can reduce the number of degrees of freedom.

Certain geometries, such as flat or spherically symmetric, have no degrees of freedom

and, in our approach, are not interesting from a quantum gravitational standpoint.

We must be careful before proceeding further because our dynamical variables are not

tied to a particular 3–metric but to a class of 3–metrics equivalent up to diffeomorphism

or scale. A choice of metric, for example, is merely a representative of the class we are

considering. A way to think about these equivalence classes is to identify the transition

from Wheeler’s superspace (3)G to York’s conformal superspace (3) < to the geometro-

dynamical superspace (3)G̃. The last equivalence class serves as the configuration space

for the dynamical variables; its elements are those dynamical variables belonging to the

class of 3–metrics related either by diffeomorphism or scale.
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Following this construction of the configuration space, we rewrite the constraints in

terms of the appropriate variables. Formally, this is a lengthy process, but in applications

it is very straightforward. We begin by defining the dynamic Hamiltonian (using qI to

represent dynamical variables),

HDyn = πI q̇I − L (4.25)

where L is the Lagrangian density associated with general relativity and πI is the mo-

mentum conjugate to qi. It is important to realize that, at this point, our dynamical

variables do not belong to components of a metric which would be a solution of Ein-

stein’s equations. Also, HDyn satisfies the definition of the Hamilton principal function

on (3)G̃ [41],

S[qI , t] = IExtremum =

∫ (t,qI)

(t′′,q′′I )

(π′I q̇′I −HDyn)d3x′dt′. (4.26)

In terms of the functions, the integrand is identical to L. The limits are different;

variational derivatives calculated hereafter involve only fixed qI , while the remaining

variables of the original set {qA} are unfixed.

Now, we have a quantity which can be written in terms of the conjugate momenta

and the canonical variables (as πI = ∂L
∂q̇I

). We identify the Hamilton–Jacobi equation

with HDyn [41], resulting in the equation

−δS
δt

= HDyn. (4.27)

That the variations are computed with respect to fixed qI only, we have generally that

δS/δt 6= 0.

We then quantize, so that

HDyn = −δS
δt
→ ĤDyn = i~

δ

δt
, (4.28)

πI =
δS

δqI
→ π̂I = −i~ δ

δqI
, (4.29)

qI → q̂I . (4.30)

Our Hamilton–Jacobi equation (classical) becomes a Schrödinger equation (quantum)
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with substitution of our variables. To complete the dynamics, we impose also the con-

straints (superhamiltonian and supermomenta) on expectation values of the correspond-

ing operators. For problems involving matter sources, considerations regarding gauge

freedom arise. Specifically, as GR is a fully constrained theory, its constraints are tied to

the dynamics. For other theories (e.g., electromagnetism), the constraints are associated

directly with gauge freedom. This gauge freedom often provides an appropriate descrip-

tion of the physical problem at hand. Further, the Lagrangian should be invariant under

choice of gauge; because of this, some constraints do not survive beyond the classical

problem.

Depending on the problem and initial and boundary conditions, it is possible to

consider a separation of variables to find a general solution for the Schrödinger equation.

The difficulty of such an operation is algebraic; texts such as [42] provide assistance

for such procedures. To specify a particular problem, appropriate initial data must be

furnished and can be done by either specifying an initial state functional or assigning the

unknown coefficients in relation to the constant of separation.

To obtain definite predictions from a particular solution of the Schrödinger equation,

the embedding variables must be determined. This requires (1) computation of the

expectation value < pβ >s of the momentum p̂β; (2) substitution of this expectation

value into the constraints; and (3) solution of the resulting equations with respect to the

embedding variables.

Two features distinguish MC2 quantization from the other geometrodynamic quan-

tization approaches. First, our dynamical configuration space consists only of the “true”

dynamical degrees of freedom rather than all variables appearing in GR. Second, we

impose the classical value of the gravitational constraints only on expectation values of

the operators associated to those constraints. The latter of these is justified by the lack

of automatic satisfaction of the superhamiltonian constraint in GR. While the supermo-

mentum constraint is automatically satisfied by the gravitational variables and can be

imposed ab initio in the free field case, the presence of matter terms in the supermo-

mentum constraint may require imposing its value on the expectation of the operator.

An example of this is gravity coupled with the electromagnetic field [2, 16], where the

supermomentum constraint Hi = εijkE jBk. Then, as we will see in Chapter 6, the electric

and magnetic fields are transversal and contain dynamics.

With MC2 quantization, we have a viable geometrodynamic procedure for investi-
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gating the quantization of gravity without the pathologies of the previous geometrody-

namic approaches. The following two chapters investigate quantization of homogeneous,

anisotropic cosmological models, an EM plane wave in flat spacetime, a charged point–

particle in an EM field in flat spacetime, and a Klein–Gordon massive scalar field in flat

spacetime. Homogeneous and anisotropic cosmological models have enough symmetries

to avoid certain challenges that we will discuss in the conclusions. The work done in flat

spacetime is to verify that MC2 quantization is compatible with quantum field theory

in flat spacetime. If the procedure cannot reproduce this, then any attempts to couple

matter to gravity in any future explorations is futile.
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Chapter 5

MC2 quantization of homogeneous,

anisotropic cosmological models

The study of cosmological models is interesting in its own right, and much work has been

done in the cases of homogeneous cosmologies (see especially [7] but also [8]). Homoge-

neous cosmological models are those which can be filled with a one–parameter family of

hypersurfaces such that these surfaces possess symmetries at each time parameter, clas-

sically. Over the time evolution of a problem, these symmetries are preserved. Einstein’s

equations are coupled, nonlinear PDEs, and are thus extremely difficult to solve except

in those cases of symmetries.

An important tool for the development of such models is the notion of isometry . Given

a manifold with metric (M,g), a map f : M → M is an isometry if it leaves the metric

invariant so that f ∗g = g or gf(p)(f∗X, f∗Y ) = gp(X, Y ) for vector fields X, Y ∈ TpM
[5, 6]. An infinitesimal isometry is given by a Killing vector ξ; the Killing vector satisfies

the equation £ξg = 0. In terms of components of ξ, this leads to the Killing equation,

aµ;ν +aν;µ = 0. The Killing vector generates isometries; this will become more clear once

we explore the associated group structure.

Consider (M,g) with the metric invariant under some isometries. These isometries

have the structure of a group: given isometries f, f ′, there is defined an associative

product of f and f ′ given by f followed by f ′; there exists an inverse for each element;

there exists an identity element (unit transformation). This group is the symmetry group

of M .

The Killing vectors which leave the metric invariant under Lie differentiation provide
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the isometries via exponentiation in the same way that group elements are obtained from

the infinitesimal generators forming the Lie algebra of the group. Thus, the group of

isometries of M is isomorphic to some abstract group G. Conversely, if G is given as a

Lie group, then M is invariant under G if there exist d Killing vector fields, where d is

the dimension of G, which satisfy the Lie algebra relation.

If the Killing vectors are linearly independent as vector fields –
∑

i aiξi = 0⇒ ai = 0

for functions ai – then G with dimension d is called simply transitive on subspaces . For

a point p ∈M and for some isometry f ∈ G, the orbit of f is the set of all points q ∈M
such that f(p) = q. The orbit forms a subset H ⊂M ; the collection of subsets {Hi} are

disjoint and fill M so that
⊔
iHi = M . H is a homogeneous or invariant subspace. If G

is simply transitive, then dimH = dimG. If dimH < dimG, then G is called multiply

transitive on H.

Given a manifold M with a symmetry group G, an invariant (under the action of G)

basis of vector fields {Xµ} may be used. Thus, the elements of this basis have vanishing

Lie derivatives with respect to any of the Killing vectors. The utility of such a basis is

the demonstration of the invariance of each component of the metric under group action

(hence the metric components are constant on each homogeneous subspace generated by

the group) and of the constancy of the structure coefficients of the elements of the basis

on each homogeneous hypersurface.

Spacetime is represented by a 4–manifold; for homogeneous cosmologies of dimension

4, there are three cases of interest.

If G is simply transitive on M , then dimG = 4, and M is called homogeneous in

space and time.

If G has dimension 3 and is simply transitive, then G generates invariant hypersurfaces

H with dimH = 3, and M is called homogeneous or spatially homogeneous. Some of the

invariant hypersurfaces may not be spacelike but still fill M and are a one–parameter

family, thus implying the metric’s dependence on one variable and independence of the

position on each invariant hypersurface. This certainly holds true if there exists a one–

parameter family of spacelike hypersurfaces Σt foliating the spacetime. Then, a spacetime

(M,g) is said to be (spatially) homogeneous if there exists this family such that for each

t and for any points p, q ∈ Σt, there exists an isometry f ∈ G of g such that f(p) = q [8].

If G is multiply transitive with dimG > 3, and generates invariant hypersurfaces with

dimH = 3, then M is called spatially homogeneous.
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For the first case, the existence of an invariant basis follows by giving the components

of the basis elements with respect to the Killing vectors. Then, the structure coefficients

can be determined. Finally, the duals to the basis elements can be constructed, leading

to a form for the metric. For the second case, it is important to represent M = H×R as

a topological product. Choosing a curve in M in correspondence with R, the tangent to

this curve is translated through each dimension 3 subspace H(t) = Σt (given a parameter

t ∈ R, H(t) is the homogeneous hypersurface at t) via Lie differentiation. Three other

vector fields are chosen tangent to H(t), also translated to produce the remaining vector

fields required for a basis. The structure coefficients follow similarly.

Only some groups are candidates to be an isometry group of a Lorentzian manifold.

These are catalogued in the Petrov classification. The isometry groups can be separated

into two collections: isotropy groups and spatially homogeneous groups. An isotropy

group of a point p ∈ M is the set of all isometries leaving p fixed. It is a subgroup of

the symmetry group of the manifold. If G is transitive, then all isotropy groups in the

manifold are isomorphic. Also, the isotropy group of a point must be a subgroup of the

(homogeneous) Lorentz group. This significantly restricts G.

Spatially homogeneous manifolds are those whose symmetry group acts transitively

on dimension 3 subsets. In the context of generic spatially homogeneous cosmological

models, either the symmetry group has a dimension 3 subgroup which acts in a simply

transitive manner, or the homogeneous spacelike hypersurfaces Σt have a multiply (not

simply) transitive group of isometries.

Bianchi [7] classified all three–dimensional real Lie algebras. These determine uniquely

the local properties of the corresponding three–dimensional Lie groups. We do not worry

about the global properties of the Lie groups because the important information about

homogeneous cosmologies is obtained from the isometry group. Isometries are gener-

ated via exponentiation from the Killing vectors – elements of a Lie algebra – so we can

restrict our considerations locally. This classification describes spatially homogeneous

cosmologies possessing simply transitive isometry groups.

A spacetime is said to be (spatially) isotropic if there exists a congruence of timelike

curves (i.e., observers), with tangents denoted u, filling the spacetime and satisfying the

property that, given any point p and any two unit “spatial” tangent vectors s1, s2 ∈ Tp(Σ)

perpendicular to u, there exists an isometry of g leaving p and u at p fixed but that

rotates s1 into s2 [8, 43]. Anisotropy , then, represents the situation where there exists a
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point such that the unit spatial tangent vectors cannot be rotated into each other. This

represents the situation that the points along the directions of the tangent vectors are

moving at different rates.

We will consider two examples [3] which are spatially homogeneous but possess

anisotropy. The presence of anisotropy implies dynamics; such cosmological models

admit quantization. These examples are especially useful due to their analogues with

models in quantum mechanics.

5.1 Bianchi IA cosmological model

The Bianchi IA cosmological model is commonly referred to as the axisymmetric Kasner

model. As a Bianchi Type-I model, its symmetry group is isomorphic to the group of

translations in R3 [7]. This may be perceived as a uniformity when moving from point to

point in a spacelike hypersurface. Its metric is determined by two parameters: the scale

factor Ω and the anisotropy parameter β. It can be viewed as the free–particle analogue

of quantum cosmology. The line element is

ds2 = −dt2 + e−2Ω(e2βdx2 + e2βdy2 + e−4βdz2). (5.1)

As this cosmology is homogeneous, the scale factor and anisotropy parameter are

functions of the time parameter t only. The scalar 4–curvature can be expressed in terms

of these two functions to yield the Hilbert action and, after subtracting the boundary

term, the cosmological action,

ICosmological = IHilbert +
3V

8π
Ω̇e−3Ω

∣∣∣tf
t0

=
3V

8π

∫ tf

t0

(β̇2 − Ω̇2)e−3Ωdt, (5.2)

where V =
∫ ∫ ∫

dxdydz is the spatial volume element. Specifying an initial and final

time in the boundary term is acceptable here; typically, either the initial configuration

and initial time, the final configuration and the final time, or some admixture of the two

is enough to consider the quantum problem.

The scale factor Ω(t) is the many–fingered time parameter, and the anisotropy β(t)

is the dynamical degree of freedom. The momentum conjugate to β is

pβ =
∂L

∂β̇
=

3V

4π
e−3Ωβ̇ = mβ̇. (5.3)
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In analogy with particle mechanics, one may write m = (3V/4π)e−3Ω so that pβ = mβ̇,

though it should be cautioned that this is not related at all to the notion of mass. This

leads to the dynamic Hamiltonian,

HDyn = pββ̇ − L

=
4π

3V
e3Ωp2

β −
3V

8π

(
4π

3V

)2

e3Ωp2
β +

3V

8π
Ω̇2e−3Ω

=
2π

3V
e3Ωp2

β +
3V

8π
Ω̇2e−3Ω

=
p2
β

2m
+
m

2
Ω̇2︸ ︷︷ ︸
U

. (5.4)

U may be viewed as a “potential” for the “particle.” This identification does not

influence the construction, so we merely note it. Classically, the dynamic Hamiltonian

can be used to produce either one pair of Hamilton’s evolution equations or the equivalent

Hamilton–Jacobi equation. Either way, the dynamical picture derived in this way is

incomplete. To complete it, we impose the superhamiltonian constraint. This is obtained

as H = −√g[(3)R+ g−1(1
2
π2−πijπij)] in terms of the usual gravitational variables [2, 16]

and reduces to

p2
β =

(
3V

4π

)2

e−6ΩΩ̇2 = m2Ω̇2. (5.5)

Using the Hamilton–Jacobi equation ∂S
∂t

= −HDyn(∂S
∂β
,Ω(t), Ω̇(t)) with (5.4) and the

standard quantization prescription, we obtain the Schrödinger equation for the axisym-

metric Kasner model:

i~
∂Ψ

∂t
= −2π~2

3V
e3Ω∂

2Ψ

∂β2
+

3V

8π
Ω̇2e−3ΩΨ. (5.6)

The constant ~ in this equation should be understood as the square of Planck’s length

scale rather than the standard Planck constant. At this point, the scale factor Ω in the

equation is an unknown function of time. Thus, the equation does not describe completely

the quantum dynamics of the axisymmetric Kasner model. To complete the dynamical

picture, we follow our prescription and impose, in addition to (5.6), the superhamiltonian
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constraint

〈p̂β〉2 =

(
4π

3V

)2

e−6ΩΩ̇2 (5.7)

where 〈p̂β〉 is the expectation value of the momentum operator p̂β = i~∂/∂β obtained by

〈p̂β〉 = 〈Ψ|p̂β|Ψ〉 =

∫ ∞
−∞

Ψ∗(β, t)p̂βΨ(β, t)dβ. (5.8)

The system of equations (5.6) and (5.7) provide a complete quantum dynamical pic-

ture of the axisymmetric Kasner model and, when augmented by appropriate initial and

boundary conditions, can be solved analytically.

Before discussing the initial value conditions, we will find the general solution of the

Schrödinger equation considering the scale factor Ω as a function of time generating an

external potential. For this we separate variables so that Ψ(β, t) = Φ(β)T (t). Substitut-

ing into the Schrödinger equation, we obtain,

i~ΦṪ = −2π~2

3V
e3ΩTΦ′′ +

3V

8π
Ω̇2e−3ΩTΦ. (5.9)

Here, the prime denotes differentiation with respect to β; the dot indicates differentiation

with respect to t. Rewriting as

2π~2

3V

Φ′′

Φ
= −i~e−3Ω Ṫ

T
+

3V

8π
e−6ΩΩ̇2 = −λ (5.10)

produces the constant of separation λ which allows for the completion of the procedure

to produce the system of ordinary differential equations (ODEs) for Φ(β) and T (t),

Φ′′ +
3V

2π~2
λΦ = 0;

Ṫ

T
= − i

~
e3Ω

(
3V

8π
e−6ΩΩ̇2 + λ

)
. (5.11)

The equation for Φ(β) admits only positive eigenvalues for λ. Introducing the notation

3V λ/2π = k2, we can write the solutions Φk(β) and Tk(t) for k ∈ R:

Φk(β) = Ake
i
~kβ; (5.12)
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Tk(t) = Bk exp

{
− i
~

∫ t

t0

(
2π

3V
k2 +

3V

8π
e−6ΩΩ̇2

)
e3Ωdt

}
. (5.13)

Superposition of these solutions provides the general solution of the Schrödinger equa-

tion,

Ψ(β, t) =

∫ ∞
−∞

Ake
i
~kβ exp

{
− i
~

∫ t

t0

(
2π

3V
k2 +

3V

8π
e−6ΩΩ̇2

)
e3Ωdt

}
dk. (5.14)

Appropriate initial data is necessary to specify a particular problem. That is,

Ψ(β, t0) =

∫ ∞
−∞

Ake
i
~kβdk (5.15)

must be issued. This can be done either by specifying a function Ψ(β, t0) and then

recovering Ak from equation (5.15) using Fourier transforms, or by assigning Ak as a

function of k, depending on the problem being formulated. In this section, we consider

the simplest example comparable with the quantum mechanics of a particle, namely a

Gaussian wave packet. To describe a Gaussian wave packet centered initially at the value

k0 (the k–center of the packet at t = t0) of k, we assign

Ak = Ce−a(k−k0)2 , (5.16)

where C is the normalization constant. This leads to the following expression for the

initial values of the wave function:

Ψ(β, t0) = C

∫ ∞
−∞

e−a(k−k0)2e
i
~kβdk = C

√
π

a
e
i
~βk0e−

β2

4a~2 . (5.17)

The normalization constant C is determined by the condition

< Ψ|Ψ >= C2π

a

∫ ∞
−∞

e−
β2

2a~2 dβ = C2~π3/2

√
2

a
= 1, (5.18)

leading to the value of C2,

C2 =

√
a

~π3/2
√

2
. (5.19)

Using (5.16) for Ak and some algebraic legerdemain [3], we can obtain a closed form
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expression for the state functional. It is not yet useful as a predictive tool, though. It

depends on the undetermined scale factor Ω(t); to find this, we must (1) compute the

expectation of the momentum, < p̂β >; (2) substitute < p̂β > into the superhamiltonian

constraint; (3) solve the resulting equation with respect to Ω. We first compute p̂β:

< p̂β >= k0. (5.20)

The expectation value of the momentum < p̂β > does not change with time. It is

determined by the k–center of the packet at t = t0. Insertion of this result into the

superhamiltonian constraint (5.7) yields

k2
0 =

(
3V

4π

)2

e−6ΩΩ̇2. (5.21)

This equation and the classical equations are identical. Substitution of this solution

into the state functional solves the problem posed by (5.6) and (5.7). The many–fingered

time of quantum geometrodynamics in the case of a Gaussian wave packet of axisymmet-

ric Kasner spacetimes coincides with its classical counterpart if the expectation value of

the momentum of the packet is identified with the (conserved) value of the momentum

of the classical solution.

Computation of the expectation of β yields

< β̂ >= 2k0
2π

3V

∫ t

t0

e3Ωdt. (5.22)

By using the expectation of p̂β, Ω(t) can be solved for explicitly. “The center” of the

wave packet evolves as the classical Kasner universe determined by the momentum value

equal to k0 would evolve.

The spread of the wave packet with time is the dispersion of β,

< (β̂− < β̂ >)2 >=
~2a2 + ( 2π

3V

∫ t
t0
e3Ωdt)2

a
, (5.23)

and increases with time. The result is similar to that of the quantum mechanics of a

free particle, which is consistent with the Bianchi I cosmology being the free–particle

analogue of quantum cosmology. Symmetries allow a straightforward solution of this

problem. In the next example of the Taub cosmology (and generally speaking), solution

of these problems requires solving a system of integro–differential equations.
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5.2 Bianchi IX Cosmology

A Bianchi IX model which is axisymmetric in each hypersurface and which is invariant

under an isometry group isomorphic to SO(3,R) is called the Taub cosmology. (A more

general case of Bianchi IX – where the spacelike hypersurfaces are topologically 3–spheres

– is discussed in [44].) It is parametrized by a scale factor Ω(t) and an anisotropy

parameter β(t). The line element may be expressed by

ds2 = −dt2 + a2
0e

2Ω(e2β(dθ2 + dφ2) + e−4β(dψ2 + 2 cos θdφdψ + cos2 θdφ2)). (5.24)

The scalar 4–curvature is expressed in terms of the scale factor and anisotropy and yields

the action

ICosmological =
3πa3

0

4

∫ {
(β̇2 − Ω̇2)− 1

6

(3)

R

}
e3Ωdt. (5.25)

Here, (3)R = (e−2β/2a2
0e

2Ω)(4− e−6β) represents the scalar 3–curvature.

Ω(t) is treated as the many–fingered time parameter, and β(t) is the dynamic degree

of freedom. The momentum conjugate to the anisotropy is pβ = ∂L/∂β̇ = (3/2)πa3
0e

3Ωβ̇,

where we can identify m = (3/2)πa3
0e

3Ω so that pβ = mβ̇. Then, the dynamic Hamilto-

nian is given by

HDyn = pββ̇ − L =
1

2m
p2
β +

m

2

(
Ω̇2 +

4e−2β − e−8β

12a2
0e

2Ω

)
. (5.26)

In the classical theory, the dynamic Hamiltonian can be used to construct either the

Hamilton–Jacobi equation or the two Hamilton equations. To complete the dynamics

– to restore general covariance – however, we must also impose the superhamiltonian

constraint,

p2
β = m2

(
Ω̇2 +

1

6

(3)

R

)
. (5.27)

Using the dynamic Hamiltonian, the corresponding Hamilton–Jacobi equation, and

the usual quantization prescription, we obtain the Schrödinger equation,
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i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂β2
+
m

2

(
Ω̇2 +

4e−2β̂ − e−8β̂

12a2
0e

2Ω

)
Ψ. (5.28)

To attempt an analytic solution, we recognize that the operators ekβ̂ admit a Taylor

series expansion so that, generically, ekβ̂Ψ = ekβΨ by virtue of the fact that Ψ := Ψ(β, t)

and is written in a basis of {β}, and that β̂Ψ = βΨ. Thus, the Schrödinger equation is

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂β2
+
m

2

(
Ω̇2 +

4e−2β − e−8β

12a2
0e

2Ω

)
Ψ. (5.29)

The many–fingered time parameter can be solved by applying the superhamiltonian

constraint on expectations,

Ω̇2 =

(
< p̂β >S

m

)2

+
1

6
<(3) R >

=

(
< p̂β >S

m

)2

+
1

12a2
0e

2Ω
< 4e−2β̂ − e−8β̂ > . (5.30)

(5.29) and (5.30) must be solved as a system subject to appropriate initial conditions.

In general, most problems in MC2 quantization lead to a system of integro–differential

equations to be solved [44]. Though the scale factor is solved via the (averaged) super-

hamiltonian constraint, it is in a sense inextricable from the dynamics. A solution has

been arrived at numerically [40].

5.3 Remarks

Several issues demand attention. First, the selection of a Gaussian wave packet as an

initial condition follows from the classical theory where the evolution equations resemble

those of a particle in a box. Particles are localized, and the analogy of the cosmological

models with particles in boxes dictates that we pick an appropriate localization (e.g.,

Gaussian) in the configuration space. For different problems, specification of an initial

condition Ψ(β, 0) is more appropriate.

Second, in other approaches to quantization (e.g., quantum mechanics, quantum field

theory), stationary states (eigenstates) of the Hamiltonian operator represent fixed en-
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ergy levels. The existence of these stationary states is related to the initial and bound-

ary conditions of the problem; identification of the Hamiltonian as the generator of time

translation (i.e., the conjugate variable to the time appearing in front of δt) motivates the

connection with energy. In the Schrödinger picture of quantization, the time–dependence

is carried by the state functional. This means that, on the initial simultaneity (hypersur-

face), we may expand the state functional in some infinite basis which evolves in time.

The interpretation of an eigenvalue problem rests in the time–independent Schrödinger

equation; this yields the stationary states.

However, the meaning of the eigenvalues of HDyn for the cosmological models is not

the same as those of a Hamiltonian for a system in quantum mechanics or quantum field

theory formulated in flat spacetime. In general relativity, the notion of total energy is

not well–defined, and the dynamic Hamiltonian therefore, even in the classical theory,

generally does not represent the total energy. The dynamic Hamiltonian represents the

energy measured with respect to some observer. So, the eigenvalues associated with the

dynamic Hamiltonian cannot be generally associated with energies in the context of other

Hamiltonians.

Although we do start with a manifold with metric, the manifold may be split topolog-

ically as Σ×R in the classical theory. Then, a 3–metric can be split out of the 4–metric

to provide a metric on Σ. (In York’s prescription, the spatial metric (2.14) can be used

to this end.) It is this metric which then contains the dynamics of gravitation: the

variables to be quantized. The state functional Ψ is related to the probability of finding

the cosmology (or universe) with a configuration (anisotropy) between β and β + dβ at

“time” t [33], though it is safer to identify t as an evolution parameter. This is because

the notion of a physical clock – hence a physical time – can be recovered in GR only

after solution of the entire problem.

MC2 quantization has been worked out in the case of general relativity [41] and ex-

hibited on problems related to homogeneous cosmologies possessing anisotropies [3], [44],

[40]. However, the approach has not been checked for matter fields already explored

by prior versions of quantum field theory on flat spacetime. The following chapter ad-

dresses MC2 quantization in flat spacetime of an electromagnetic field (specifically a

plane wave), a system comprised of a charged point particle and an EM field, and a

massive Klein–Gordon scalar field.
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Chapter 6

Applications of MC2 quantization in

flat spacetime

At this point, it is necessary to show that our procedure can be applied to known cases –

those classical systems which have been quantized and used to successfully probe physical

problems – and retrieve the same results to the extent needed to apply them. Thus,

we need to demonstrate that our quantization procedure either gives the same theory

or one which is unitarily equivalent to the other procedures. Then, we have only to

provide that our approach gives the same or similar observables from which applications

follow. Because MC2 quantization differs from other approaches only by the choices

of configuration space and Hamiltonian, it suffices to check whether or not we obtain

with our dynamic Hamiltonian HDyn, prior to quantization, the same Hamiltonian with

our choice of configuration space. If so, then our quantization procedure will produce

the same Schrödinger equation (via the Hamilton–Jacobi equation) as other quantization

schemes. Otherwise, we would have to solve completely a problem in our procedure

(i.e., solve the Schrödinger equation with appropriate initial conditions and evaluate any

constraints) and compare our results with the previous schemes of quantization to see

whether or not our procedure is valid.

The well known applications of quantum field theory are done in the regime of flat

spacetime. The metric in flat, or Minkowski, spacetime can be written in different coor-

dinate systems, but we often write it in the line element ds2 = −dt2 + dx2 + dy2 + dz2

for some observer. This is especially useful for problems related to translations.

We consider the cases of EM plane waves, a charged particle in an EM field, and a
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massive scalar field in flat spacetime. Both the electromagnetic and scalar field cases

necessitate a brief introduction to their classical theories similar to that given for general

relativity. As it turns out, for the EM field and scalar field, our dynamic Hamiltonian

operator corresponds with the usual Hamiltonian and can be implemented as such (e.g.,

identification of stationary states, solution of scattering problems). We obtain a different

Hamiltonian than the usual theory for the charged particle in an EM field, but this is

expected as we start from a slightly different construction (though compatible with [3])

which avoids the appearance of a square–root in the Hamiltonian.

We also resolve the method by which to impose the constraints of electromagnetism

in the MC2 quantization procedure. That is, do we impose the constraints on the expec-

tation value of operators corresponding to the classical constraints? The answer, as will

be shown, is no: those constraints associated with conservation of charge are automati-

cally satisfied by the dynamical variables and can be imposed prior to quantization. It is

unique to gravity that the constraints should be imposed only on the expectation values

of the operators corresponding to the classical constraints. This is due to the relationship

between the constraints and conservation of energy and momentum in gravity.

6.1 Electromagnetism

Electromagnetic (EM) fields represent the presence and describe the interaction of charged

objects. Traditionally, the perspective is that charged objects generate the fields through

their motions or lack thereof. Depending on the boundary conditions of the domain

of interest, these fields can be considered by themselves free of sources. The behavior

of fields, both in the presence and absence of charge or current, is determined by the

Maxwell equations.

Just as GR can be described using the language of geometry, so can electromagnetism.

The important quantities in this theory are the gauge potential – the pullback of the

connection by a section of a principal fiber bundle (PFB) – and the field strength (the

pullback of the curvature of the connection on the PFB) [5].

Electromagnetism possesses gauge invariance. This manifests on the PFB via local

trivializations (LTs); the connections associated to open sets of the base manifold are

related through the LTs, or choices of gauge. In electromagnetism, the field strengths

are unaffected by the LTs. This is exactly the case for electromagnetism viewed on the
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base manifold.

6.1.1 Lagrangian and Hamiltonian formulations

The usual Lagrangian density of electromagnetism on the base manifold is

L = −1

4
FµνF

µν . (6.1)

It is convenient for placing the EM action principle in canonical form and for iden-

tification of the constraints to express the Lagrangian density in Palatini form. For free

electromagnetic fields, the Palatini Lagrangian density on the base manifold is given by

[16]

L = Aµ,νF
µν +

1

4
FµνF

µν . (6.2)

As we are in flat spacetime, we represent covariant derivatives with commas instead

of semicolons (the latter indicating nonzero connection coefficients). In this formalism,

we vary the 4–potential A and the Faraday tensor F to obtain the first–order form of

electromagnetism. F is assumed to be antisymmetric. This yields, respectively,

F µν
,ν = 0 (variation of Aµ);

Fµν = Aν,µ − Aµ,ν (variation of Fµν). (6.3)

Following the ADM 3+1 split and exploiting the vanishing of boundary terms under

integration by parts, we can write the Lagrangian density as

L = −Ei∂0Ai −
1

2
(BiB

i + EiE
i)− A0E

i
,i. (6.4)

The components of the electric field E and of the magnetic field B are given by, respec-

tively,

Ei = F 0i

and Bi =
1

2
εijkFjk =

1

2
εijk(Ak,j − Aj,k). (6.5)
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Because no time derivatives of A0 are present in the expression for the Lagrangian

density (equivalently, A0 has no conjugate momentum), A0 is the Lagrange multiplier of

this theory. (We see that the Lagrange multiplier should be A0 even prior to the 3+1

split since no time derivatives of A0 appear anywhere in the action.) As such, A0 is

freely specifiable in the way that lapse and shift are in general relativity. To determine

Maxwell’s equations at this juncture, we can vary independently Ei, Ai, and A0 [16].

Alternatively, we can consider the PFB formalism [5] where A is the pullback of the

connection and F is the pullback of the curvature on the PFB. Then, F = dA, which

implies that dF = 0 since this is an exact form. This gives two of Maxwell’s equations; to

obtain the other two, we consider ∗d ∗ F = 4πJ. However, we proceed with the Palatini

formalism to obtain a clear account of the dynamical degrees of freedom.

Either of these approaches yields all of Maxwell’s equations [43],

F µν
,ν = 0

and F[µν,γ] = 0. (6.6)

To elucidate the dynamics of this theory, it is useful to investigate the generator of

canonical transformations, which is defined by varying the action with respect to the

components of the 4–potential and the coordinates. The canonical form clearly exhibits

the constraints of the theory. This produces

G =

∫
d3x[−EiδAi −

1

2
(EiE

i +BiB
i)δt+ (

1

2
εijkEiBj)δxk − Ei

,iδA0]. (6.7)

Inserting the constraint associated with the variation of A0 produces the canonical form

of the generator

G =

∫
d3x[−Ei

T δA
T
i −

1

2
(ET

i E
i
T +BiB

i)δt+ (
1

2
εijkET

i Bj)δxk]. (6.8)

The vanishing divergence of the electric field – the constraint associated with the

Lagrange multiplier A0 – is solved in terms of the fundamental theorem of vector calculus

[45], so that a continuous vector field (to within constant vectors) has a unique repre-

sentation as the sum of a (curlfree) potential field and a (divergenceless) solenoidal field.
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This provides a Helmholtz decomposition of the electric field, Ei = (Ei)T + (Ei)L. The

first term is transverse (divergenceless), and the second term is longitudinal (curlless).

Because of the constraint, the longitudinal part of the electric field vanishes. The con-

traction of Ei and Ai is an inner product; the (Ai)
L vanish both in the variation of the Ai

and the kinetic term of the generator due to orthogonality. Thus, the correct canonical

variables are determined by the phase space consisting of the pairs ((Ai)
T ,−(Ei)T ).

The procedure of obtaining the degrees of freedom for a free electromagnetic field

leads to the identification of the transverse components of the vector potential ~A as

the sole carriers of dynamical content. This can be seen explicitly from the Helmholtz

decomposition ~A = ~AT + ~AL. If we consider a gauge transformation, then we have
~A− ~∇χ = ~AT + ~AL−(~∇χ)T−(~∇χ)L. From vector calculus, we recognize that (~∇χ)T = 0

identically since the curl of a gradient vanishes so that ~∇χ = (~∇χ)L.

In the Lagrangian (6.2), we have terms of the form Ȧi. We can express the functions

Ai := Ai(qB) or as Ai := Ai(qB, x
j). qB := qB(xj, t) are assumed to be independent,

and 1 ≤ B ≤ 2. Unlike the gravitational case [41], there are no embedding variables. In

terms of the qB, these become

Ȧi =
∂Ai
∂qB

q̇B (6.9)

with summation over the index B. This can be written as a matrix equation (though a

matrix of the derivatives need not be square). The conjugate momentum densities πB of

qB are found through substitution into (6.2) and are given by

πB =
∂Ai
∂qB

(−Ei). (6.10)

This is similar to the situation in gravity [41] in that the relationship between conjugate

variables Ai, −Ei is paralleled by qB, πB. It is important to note that the actual conjugate

momenta pB are related to an integral of πB. For the examples presented here (as in the

cosmological models above), we will be working with the Lagrangian L instead of the

Lagrangian density L. This is acceptable for as long as the volume of interest can be

integrated over in a straightforward manner. Indeed, as mentioned earlier, the Lagrangian

is defined over a compact domain.

The ultimate question is whether or not gauge invariance should be imposed from the

beginning or recovered on expectation values of the quantum operators corresponding
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to the constraints in theories other than gravity. In electromagnetism, the constraints

are given by Bi
;i = 0 and Ei

;i = 0. The former of these follows from the definition of

the magnetic field. To consider the latter constraint, let us take the space of equivalence

classes of vector potentials, {[~A]}, where the vector potentials in each class are equivalent

if they differ only by a gauge transformation [8]. Given an equivalence class [~A], the space

of variations of the vector potentials in [~A] is a vector space; its algebraic dual is the space

of linear functions of these variations. Then, the conjugate momenta are represented by

vector fields ~π so that the following is true:

Claim. [8]
∫
πi[δAi − (δχ)|i] d

3x =
∫
πiδAi d

3x ⇐⇒ πi|i = 0.

Proof. The equality of the integrals leads to the statement that
∫
πi(δχ)|i d

3x = 0. Then,

integration by parts yields
∫

(πiδχ)|i d
3x−

∫
πi|iδχ d

3x = 0. The first term is equivalent

to a surface term. Since variations vanish on the boundary, this leaves only the second

term, which implies that πi|i = 0.

The other direction follows by running the proof above backwards.

This implies that the space of conjugate momenta is comprised of divergenceless vector

fields on the hypersurface. Then, the conjugate momenta are transverse, implying that

the constraint Ei
,i = 0 is automatically satisfied. Thus, the constraint can be imposed

“strongly,” or ab initio for the electromagnetic field. This differs from the case for gravity

where the constraints cannot be imposed strongly without encountering the problems of

time but only “weakly,” or on the expectation values of the operators corresponding to the

classical constraints. This is related to the function of the constraints in electrodynamics

(conservation of charge) versus those in GR (conservation of energy–momentum).

6.1.2 Electromagnetic plane waves in flat spacetime

We may consider the problem of electromagnetic plane waves propagating in a single

direction relative to some observer in flat (Minkowski) spacetime [1]. EM plane waves

are characterized by electric and magnetic field components transverse to each other; this

can be determined by solving for the electric and magnetic fields via Maxwell’s equations

with periodic boundary conditions. One may consider the full development of radiation

theory [22, 24], but it suffices that far away from any source (charge distribution), we can

consider electromagnetic waves propagating freely. The metric of flat spacetime is the
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trivial solution of Einstein’s equations. Yet, an electromagnetic wave is a form of matter

and so has an stress–energy tensor and hence is inconsistent with this metric from the

point of view of general relativity. On the other hand, the effects of this wave on the

spacetime are negligible, thus allowing for consideration of a matter source effectively

decoupled from gravity.

As found above, the dynamics of electromagnetism are contained within the com-

ponents of vector potential. To obtain a dynamical picture of an electromagnetic wave,

instead of solving for the components of the electric and magnetic fields, we can substitute

for them the components of 4–potential into their definitions. This leads to equations in

terms of the 4–potential components rather than in terms of electric and magnetic field

components.

From the 3+1 decomposition above for free EM fields, the constraints Ei
,i = 0 and

Bi
,i = 0 are satisfied automatically and imposed from the beginning, meaning that we can

write Ei = Ei
T and Bi = Bi

T for the components of the fields. This, with the definitions

(6.5) of the fields, implies that they consist only of derivatives of AiT . Also, we have that

Ai(qB) = AiT (qB) + AiL where, because of the count of degrees of freedom, the dynamics

are contained only in the transverse (divergenceless) part of the vector field. So, EM

fields, in the 3+1 split, can be described purely in terms of AiT and its derivatives. Since

AiT is by definition divergenceless, we achieve the conditions of Coulomb gauge here. This

implies that the 3+1 split of an EM field is compatible with the Coulomb gauge.

The component A0 can be selected on the initial hypersurface by demanding that it

vanish at infinity (and that it will thus be 0 everywhere). In the 3+1 construction for

the free EM field, however, A0 appears only as a Lagrange multiplier. Its appearance in

the definition of the electric field is as a gradient which, by the Helmholtz decomposition,

is longitudinal. But, with the electric field being purely transverse here, it can have no

longitudinal components.

As this is a problem of PDEs (Maxwell’s equations), we must also consider appropriate

initial and boundary conditions. The Dirichlet and Neumann boundary conditions are

periodic. This may be realized either by considering cubic volumes in R3 [1] or by

considering an intrinsically flat torus [18]. The wave equation is a vector equation so

that it may be written as several equations (just the same as the Einstein equations are

a collection of 10 equations). Then, as a solution to the wave equation, the components

of the vector potential ~A can be expressed as a separable product due to the periodicity
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over a closed interval,

Aλ = qλ(t)f
λ(xj). (6.11)

The Greek index λ – different from the convention in relativity – indicates the polarization

directions. It is of extreme importance that we have picked a (class of) frame(s) of

reference – an observer or class of observers – such that this separation of variables is

valid. (Generally, depending on the choice of coordinatization, it may be difficult or

impossible to separate variables.) The vector potential ~A may be written then as a sum

over polarizations,

~A =
2∑

λ=1

qλ(t)f
λ(xj)eλ. (6.12)

{qλ(t)} are the amplitudes of the plane waves and provide the dynamics per spacepoint

per mode for each polarization. ~A is transverse; this is due to the field configuration for

an EM plane wave and is evident from the presence of dynamics in each term of the series.

The spatial functions {fλ(xj)} are an infinite, orthogonal set of sinusoidal functions of

the form
√

8πc2 cos((kλ)jx
j),
√

8πc2 sin((kλ)jx
j), or linear combinations thereof; this is

related to the classical solution of a plane wave [1]. Specifically, these functions are

solutions to the equation following from separation of variables,

(fλ(xj))i,k
,k
ei +

νλ
2

c2
(fλ(xj))iei = 0. (6.13)

The (xj) are coordinates with respect to the observer. (For convenience, one may

consider an observer oriented with basis vectors along the directions of polarization and

propagation.) The basis vectors eλ give the directions of polarization of the wave and

may be expressed as a linear combination of basis vectors with respect to the coordina-

tization of the observer. The {kλj} are the components of a vector in the direction of

propagation. At most, two polarizations are present, resulting in two dynamical degrees

of freedom qλ(t) per mode nλ per spacepoint for plane waves. The indices i are associ-

ated with the coordinate system (xi) associated with the observer. Should the observer’s

choice of coordinatization coincide with a coordinate basis aligned with the directions of

polarization and propagation, we can neglect the Roman indices and make use only of

the λ indices. Per the classical solution, kλi = (2π/L)nλi , and ||kλ|| = νλ/c. The last
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of these quantities follows from the spatial functions which satisfy transversality of the

components of ~A and periodicity on the boundaries.

Now, we can begin to develop the quantization of this theory using the MC2 approach

outlined above. Similarly to gravitation and the conformal 3–geometry, we are quantizing

on the equivalence class of vector fields related by a gauge transformation. Thus, we are

not quantizing a specific wave but on the equivalence class of gauge–related vector fields

to which waves belong.

In the classical theory, plane waves satisfy the condition FαβF
αβ = 0 (vanishing double

trace of the Faraday tensor). Consequently, the Lagrangian density vanishes for plane

waves. Nonetheless, we can use the weaker identification associated with (6.10) to obtain

the conjugate momentum of this theory. This involves substituting the definition of Ai

as a function of the variables qλ into the Lagrangian density (6.2) from the beginning

and considering the integral over the hypersurface Σ.

For the spatial functions, we have a normalization condition over both polarizations

and modes [1, 49] so that, over the cubic volume,∫
(fλmeλm) · (fµneµn)d3x = 4πc2δλmµn . (6.14)

In (6.2), the magnetic field components are defined to be the curl of the vector poten-

tial. Since we have the square of the magnetic field, this introduces into the Lagrangian a

product of curls. Following from vector identities [1] and the use of (6.13) for the spatial

functions, we may write for the Lagrangian (taking into account a factor of 1/4π)

L =
1

4π

∫ {∑
n,m

2∑
µn=1

2∑
λm=1

q̇µn(t)fµn(xj)eµn · q̇λm(t)fλm(xj)eλm

−1

2

(∑
n,m

2∑
µn=1

2∑
λm=1

νµn
c

νλn
c
qµn(t)fµn(xj)eµn · qλm(t)fλm(xj)eλm

+q̇µn(t)fµn(xj)eµn · q̇λm(t)fλm(xj)eλm

)}
d3x

= −1

2

∑
m

2∑
λ=1

(ν2
λm

c2
q2
λm(t)− q̇2

λm(t)
)
. (6.15)

For each mode and polarization, the conjugate momenta are given by pλm = ∂L
∂q̇λm

=
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q̇λm . This leads us to the dynamic Hamiltonian,

HDyn =
∑
m

2∑
λm=1

pλm q̇λm − L

=
∑
m

2∑
λm=1

(
p2
λm +

1

2

ν2
λm

c2
q2
λm −

1

2
p2
λm

)
=

1

2

∑
m

2∑
λm=1

(
p2
λm +

ν2
λm

c2
q2
λm

)
. (6.16)

HDyn is the same as the Hamiltonian of a collection of simple harmonic oscillators; this

is the result obtained from the radiation (Coulomb) gauge.

The procedure of MC2 quantization differs in that we take into account the dynamical

degrees of freedom from the beginning. Thus, as in the case with gravity, not only do

we consider an equivalence class of vector potentials related by gauge transformations,

but we consider a configuration space of the dynamical variables contained in the vector

potentials. Since our process of quantization is the same, and because we impose the

constraint Ei
,i = 0 ab initio, we will obtain the same quantum theory. Ultimately,

beginning with the count of dynamical degrees of freedom leads us automatically to the

same conditions imposed by the Coulomb gauge.

The other difference is that we do not begin with the Hamiltonian, and we do not

assume, even after we obtain HDyn, that it equals to the total energy. As HDyn equals

the Hamiltonian as obtained in the radiation gauge, and because that does equal the

total energy [1], HDyn is equal to the total energy for this system. This is also related to

the fact that we are in flat spacetime and thus can calculate the total energy. Ours is an

entirely constructive procedure that, in this situation, provides exactly the same theory.

With an explicit sinusoidal representation of both the amplitude and spatial functions

substituted so that ||E|| = ||B||, the Lagrangian for an electromagnetic wave vanishes.

This would seem to indicate a pathology or degeneracy. However, in the quantization,

we do not solve Maxwell’s equations completely to obtain an explicit representation for

the amplitude. This leads to the question of whether or not we can consider {qλ(t)}
as amplitudes from the beginning of the procedure. The answer is yes; we consider

them so, assuming that we are quantizing Maxwell’s theory and upon analysis of the
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dynamical degrees of freedom within this framework. In quantum theory, though, they

are coordinates on the dynamical configuration space and not explicit classical functions.

This is typical of quantum mechanics; we are working in a function space where each

point (element) of the function space is a function, in this example some qλ(t). As seen

in the cases of homogeneous cosmologies, we did not solve Einstein’s equations first.

Rather, we selected a metric (tensor field) of interest, usually represented by symmetries

appropriate to a class of physical problems, then processed it through the action principle

to produce a quantum theory for the model. Similarly here, we select a vector field with

symmetries appropriate to the class of problems of plane waves, then process it through

the action principle to produce a quantum theory.

6.1.3 EM field + charged particle in flat spacetime

In the literature [2, 16], different quantities reveal the dynamics of a charged particle

coupled with an electromagnetic field. The constraints of the theory differ whether we

take a canonically–reduced Lagrangian [16] or a superhamiltonian [2] leading to a derived

Lagrangian. We will follow the latter approach, similarly to [3], as this approach avoids

the difficulties associated with a square–root operator. Because of our work with the free

field in subsection (6.1.2), we know how to incorporate the dynamics of the field.

Variation of the action, in terms of the particle superhamiltonian, yields

0 = δI =

∫ {
pα
dxα

dλ
−HParticle(pα, x

α)
}
dλ (6.17)

where λ is a timelike parameter. For a particle of mass m, the expression for the super-

hamiltonian is

HParticle =
1

2m

[
m2 + ηµν

(
pµ +

e

c
Aµ

)(
pν +

e

c
Aν

)]
. (6.18)

Hamilton’s equations here yield

ẋµ =
1

m

(
pµ +

e

c
Aµ
)

and

ṗµ = − e

mc
(pν +

e

c
Aν)A

ν
,µ, (6.19)

the derivative with respect to the affine parameter λ. The momenta are given by
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pµ = mẋµ − e

c
Aµ, (6.20)

and, with the superhamiltonian above, lead to a Lagrangian for the particle in an external

field,

LParticle = pµẋ
µ −HParticle

=
1

2
mẋµẋ

µ − 1

2
m− e

c
Aµẋµ. (6.21)

This may be written in 3+1 form as

LParticle =
(1

2
mẋi −

e

c
Ai

)
ẋi +

1

2
mẋ0ẋ

0 − 1

2
m− A0

e

c
ẋ0. (6.22)

Eventually, to include the field dynamics, we will construct the Lagrangian density in

tandem with the particle Lagrangian by adding the Lagrangian density of the field (in

3+1 form),

L = −Ei∂0Ai + δ(3)(xa − xa(t))
[(1

2
mẋi −

e

c
Ai

)
ẋi +

1

2
mẋ0ẋ

0 − 1

2
m
]

+A0

[{
− e

c
ẋ0
}
δ(3)(xa − xa(t))− Ei

,i

]
− 1

2

[
EiE

i +BiB
i
]
. (6.23)

The Lagrange multiplier in this theory is A0. Its variation yields the constraint Ei
,i =

{− e
c
ẋ0}δ(3)(xa − xa(t)). The first constraint resolves via the Helmholtz decomposition

Ei = Ei
T + Ei

L so that it becomes (Ei
L),i = {− e

c
ẋ0}δ(3)(xa − xa(t)). The selection of

x0 = t, ẋ0 = ṫ = 1, reduces our constraint to (Ei
L),i = − e

c
δ(3)(xa− xa(t)); this is within a

sign of [16, 46]. This is related to a sign difference in our construction.

Because we started from a superhamiltonian for the particle, we have a constraint

not typically associated with theories in flat spacetime. While a similar “energy condi-

tion” [46] appears as a constraint in other formulations of this theory, it differs slightly

from ours here and is associated to another constraint multiplier. In GR, the super-

hamiltonian is obtained by varying the lapse function; though lapse makes no obvious

appearance here, it is equal to 1. So, this constraint is imposed weakly, obtained by
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allowing arbitrary lapse but fixing the lapse before and after identifying the constraint.

We will impose the superhamiltonian constraint on the expectation value of the quantum

operator corresponding to the superhamiltonian, following from the fact that, in general

relativity, the superhamiltonian does not automatically vanish [8]. From GR [2, 16], we

know there is a field contribution to the superhamiltonian, so we add it to our above

expression. This yields a “total” constraint,

m2 + ηµν
(
pµ +

e

c
Aµ

)(
pν +

e

c
Aν

)
+m

∫ [
EiE

i +BiB
i
]
d3x = 0. (6.24)

Now, we construct the dynamic Hamiltonian density. The momenta conjugate to

the particle positions are pi = ∂L/∂ẋi = (mẋi − e
c
Ai); this is evident from the particle

Lagrangian obtained from the particle superhamiltonian. From the Helmholtz decom-

position, we have that the components Ai = ATi + ALi , where ALi is absent because the

particle’s continuity equation Jµ,µ = 0 is an identity [46]. This equation, in tandem with

the time derivative of Ei
,i = 4πρ with ρ the charge density, leads to cancellation of lon-

gitudinal terms in Ampere’s Law, so that AiL does not appear. Then, the momentum

densities conjugate to the components of transverse vector potential ATi are −Ei
T . Con-

sequently, that only the transverse components of the vector potential and the electric

field contain the field dynamics, we can justifiably write the field contributions to the

Lagrangian as in (6.1.2). These transverse components admit the same expansion in

terms of separation of variables.

The constraint on Ei
L can be imposed prior to construction of the dynamic Hamilto-

nian since this field does not participate in the dynamics of the theory and because of

the gauge invariance (see subsection (6.1.2)). We then can write

HDyn =
∑
s

2∑
λs=1

pλs q̇λm + piẋ
i − L

=
1

2m

{(
pi +

e

c
ATi

)(
pi +

e

c
AiT

)
+m2ṫ2 − 2me

c
A0ṫ+m2

}
+

1

2

∑
s

2∑
λs=1

(
p2
λs +

ν2
λs

c2
q2
λs

)
+

1

2

∫
d3xEL

i E
i
L︸ ︷︷ ︸

U

. (6.25)

The canonical pairs are (pλs , qλs) and (pi, x
i). The last term 1

2

∫
d3xEL

i E
i
L is the usual
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electrostatic potential (coupling) energy which we will hereafter denote by U . Our Hamil-

tonian differs from [1, 16, 46] in that, while all have a sum of Hamiltonians of the charge,

the radiation oscillators of the transverse field, and the electrostatic coupling energy, we

avoid the presence of a square–root in our Hamiltonian. Also, because we constructed

our Lagrangian from a superhamiltonian, we have one more constraint in our theory than

[1] but one less than [16, 46]. Our superhamiltonian constraint is similar to the “energy

condition” constraint of [16, 46], but we absorb this information into our superhamilto-

nian.

The Hamilton’s equations obtained are internally consistent, i.e.,

ẋi =
∂HDyn

∂pi
=

1

m

(
pi +

e

c
AiT

)
;

ṗi = −∂HDyn

∂xi
= − 1

m
(pj +

e

c
ATj )AjT ,i +

e

c
A0

,iṫ−
∂U

∂xi
;

q̇λs =
∂HDyn

∂pλs
= pλs ;

ṗλs = −∂HDyn

∂qλs
= − e

mc
f iλspi −

e2

mc2

∑
n

2∑
µn=1

qµn(t)fµni (xj)f iλs(x
j)

−
ν2
λs

c2
qλs . (6.26)

ẋi is in agreement with the above considerations used in obtaining the conjugate momenta

of the particle. The last two of these equations are subtle, but we can solve them together,

q̈λs +
ν2
λs

c2
qλs = − e

mc
f iλspi −

e2

mc2

∑
n

2∑
µn=1

qµn(t)fµni (xj)f iλs(x
j). (6.27)

(6.27) is similar to that in [1], up to a sign related to our construction. At this point,

we can reproduce the result in [1] up to a sign, but only by replacing pi with its form as

determined prior to working in the dynamical configuration space.

To solve the problem, we must construct the Hamilton–Jacobi equation, then the

Schrödinger equation, and finally implement the superhamiltonian constraint (which pro-

vides a relation between the affine parameter λ and the proper time τ along the world

line of the particle). The superhamiltonian constraint can be expanded and, when set to
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zero, takes the form

m2 + pip
i +

2e

c
piA

i +
e2

c2
AiA

i +m

∫
[EiE

i +BiB
i]d3x = m2ṫ2 +

2e

c
A0ṫ. (6.28)

In solving for ṫ, we have a quadratic equation so that

ṫ =
−2e

c
A0 ±

√
4e2(A0)2

c2
+ 4m2(m2 + pipi + 2e

c
piAi + e2

c2
AiAi +m

∫
[EiEi +BiBi]d3x)

2m2

=
−2e

c
A0 ±

√
4e2(A0)2

c2
+ 4m2(m2 + (pi + e

c
Ai)2 +m

∫
[EiEi +BiBi]d3x)

2m2
. (6.29)

The radicand is nonnegative–definite so that we avoid any imaginary numbers or

spectral difficulties related to the problem of time evolution [3].

While this example is not entirely realistic since particles have spin, it is a useful ex-

ercise to illustrate the advantage over other “geometrodynamic” quantization procedures

that MC2 quantization has regarding its avoidance of the problems of time evolution.

6.2 Scalar field in flat spacetime

Above, we described a charged relativistic particle coupled with an electromagnetic field.

It is possible to give a description for a collection of particles which is Lorentz invariant.

Clearly, a particle’s position as measured by an external observer is frame–dependent.

The original interest in developing a Lorentz invariant description of a particle was in

the context of reconciling quantum mechanics with special relativity. In fact, the KG

equation fails to provide a wave equation describe a single particle due to the inability

to interpret probabilistically the scalar field in the theory. It can, however, describe a

collection of particles and in flat spacetime, can be associated with the number of particles

[18, 47].

Field–theoretic formulations involving an action principle are often developed after

knowledge of the evolution equations. So we begin with a classical R–valued scalar field

φ and construct a Lorentz–invariant action. Because of the signature (− + ++) we use

for the metric, the Lagrangian density is given by
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L = −1

2
(∂µφ)2 − 1

2
m2φ2. (6.30)

For the metric signature (+−−−) used in other texts [47, 48], the action principle takes a

different form to account for the effect on signs in the evolution equations. If we consider

the massless case (i.e., no type of particle associated with the field), then m = 0. In

general, we may write for the 3+1 Lagrangian

L =

∫ {1

2
φ̇2 − 1

2
(∂iφ)2 − 1

2
m2φ2

}
d3x. (6.31)

The first term becomes positive; the time derivatives are to be viewed covariantly and,

because of the metric in Minkowski spacetime, this introduces a minus sign.

Varying with respect to the field φ, we can obtain the Euler–Lagrange equation of

evolution (−∂µ∂µ + m2)φ = 0, which is the Klein–Gordon equation. It is linear in φ;

to apply Fourier’s method of separation of variables, it is necessary to consider a closed

interval. With insight from the free electromagnetic field, we assume periodic boundary

conditions. Such periodicity is also manifested by choosing a topological torus. (This

is also reasonable when considering the de Broglie wavelength of a particle and working

within this volume.) As such, we may implement the ansatz φ = q(t)f(xj). Again,

as in the case of electromagnetic waves, {f(xi)} is a collection of orthogonal functions,

again of a sinusoidal form as in the case with electrodynamics since the KG–equation is

hyperbolic. The normalization of the spatial functions here, however, is determined by

the modes of the spatial functions rather than the polarizations. The sums correspond

to an infinite countable set. Substituting into the Lagrangian, we obtain

L =

∫ {1

2

(∑
n,m

q̇nq̇mfnfm −
∑
n,m

qnqmfn,if
,i
m −m2

∑
n,m

qnqmfnfm

)}
d3x

=
1

2
(
∑
n

q̇2
n −

∑
n

ν2
n

c2
q2
n −m2

∑
n

q2
n). (6.32)

This result is similar to that found in [18], though we sum over modes instead of the

wave number kn. A Fourier transformation allows for switching between presentations

[47].

There is only one dynamic degree of freedom per spacepoint per mode with no con-
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straints in this theory. Based on the Lagrangian, we take this to be qn for each mode

since the amplitudes depend only on time. The conjugate momentum for each mode is

then pn = ∂L/∂q̇n = q̇n. This leads to the dynamic Hamiltonian,

HDyn =
∑
n

pnq̇n − L

=
1

2

∑
n

(
p2
n +

ν2
n

c2
q2
n +m2q2

n

)
. (6.33)

This is the same as the Hamiltonian for the simple harmonic oscillator. To put this into

the usual picture involving ladder operators [47, 48], apply a Fourier transform an insert

the representation of the canonical conjugates in terms of these ladder operators.

Because the method of constructing a Hamilton–Jacobi equation and, subsequently,

a Schrödinger equation, we can stop our computations here. That our classical HDyn

is the same as the usual classical Hamiltonian automatically guarantees an identical

quantization since our procedure follows the usual rules of canonical quantization.

6.3 Remarks

Evidently, we can impose strongly the constraints of electrodynamics. This is obvious, in

a sense, because the constraints are not at all associated with time translation/evolution.

The choice of observer is the choice of gauge for EM fields, and it is verified that this

does not lead to ambiguities related to clocks – problems of time evolution – if we impose

the constraints strongly.

Other gauge field theories exist, both Abelian and non–Abelian. For non–Abelian the-

ories, the curvature (field strength) is a nonlinear function of the connection (gauge po-

tential) and so depends on the choice of gauge [5]. We expect to find that constraints can

be imposed strongly provided they do not depend on the dynamics of other fields. Other-

wise, as is the case of the supermomentum constraint in a gravitational–electromagnetic

system, we will need to impose the constraints on expectation values of associated oper-

ators. This amounts to imposing constraints weakly on other types of matter or charge.

The study of such theories is a future direction, though, because the fields are usually

handled via second quantization.

78



MC2 quantization may be viewed as having limitations because of the aspect related

to taking into account degrees of freedom before quantization. The result of this account-

ing is that we can reproduce – indeed, must reproduce – the results of radiation gauge

quantization because of electromagnetism’s dynamical dependence only on the transverse

fields. However, electrodynamics is gauge invariant; this gauge invariance remains un-

changed under quantization. While we cannot obtain a relativistically invariant quantum

theory, we do obtain a relativistically covariant theory. Especially that our quantization

procedure was developed originally for GR, we do not expect to obtain a relativistically

invariant quantum theory. Clearly, from earlier successful efforts using the Coulomb

gauge in quantization [1], demanding relativistic invariance is not absolutely necessary.
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Chapter 7

Conclusions and Future Directions

The MC2 quantization procedure has been shown to quantize successfully two well–

known and developed cases: an electromagnetic plane wave in flat spacetime and the

Klein–Gordon massive (and, by extension, massless) scalar field in a flat spacetime.

This is fortunate as it means that our procedure is in accord with the physics done

previously. It has also been used to provide a quantum description of gravitationally

dynamic systems – specifically, spatially homogeneous, anisotropic cosmological models.

The modest results obtained thus far provide a hope of and potential guide for being able

to consider quantization of problems concerning fields coupled with dynamical gravity.

Nonetheless, as certain geometric symmetries completely eliminate dynamical degrees

of freedom, some classical gravitational systems have no quantum analogue. The best

example of this is one of the simplest and most common, that of the spherically symmetric

line element which is used in finding the Schwarzschild solution of Einstein’s equations.

There exist no dynamical degrees of freedom for this gravitational field. This presents no

fundamental problem in our procedure; we take the perspective that part of any given

physical problem – that part which depends on the results of macroscopic observations –

is classical, and that quantization describes only certain aspects of the physical problem

prior to observation. This is essentially the perspective promoted by Bohr.

This issue (the same for stationary spacetimes) leads to questions regarding the kind

of problems to pose in the context of quantum gravity. In canonical quantization, we are

quantizing classical systems. An immediate consequence is that the dynamical configu-

ration space is determined before quantization. Thus, the allowable classical observables

which lead to the quantum states are determined by the set-up of the classical problem.
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For example, if we have a configuration space whose dynamical variables cannot become

singular, then the quantum mechanical development of the classical observables will not

lead to the development of singular states. Different possible quantum states depend on

the classical configuration space. The dynamical variables are “field coordinates” and

must satisfy the definition of a coordinatization; the types of functions are determined by

some of the classical equations of evolution which are not constraints and which describe

correctly the problem. This results in the inability for our quantization procedure – in-

deed, any canonical quantization procedure – to generate previously unknown functions

or emergent results for the observables.

Another difficulty is the “problem of measurement.” We know how to measure sys-

tems for which we can consider (1) asymptotic conditions/observers and (2) stationary

conditions. Are these the most prevalent and relevant physical systems? Gravity has

many nuances, and it is not evident that we must restrict quantization to these types

of systems. On the other hand, quantizing arbitrary systems leads to interpretational

difficulties.

Interesting problems in the context of quantum gravity should (1) have some dy-

namical content in the gravitational field variables or at least some coupling between the

dynamics of the matter fields and gravity; (2) correspond with testable scenarios. Rather

than insisting or defining systems to be governed a priori or ab initio by quantum mechan-

ics, we start with some problem in the classical regime which satisfies classical equations

of evolution. We then promote the appropriate dynamical variables – depending on the

problem at hand – to quantum operators acting on the elements of a Hilbert space. We

will discuss briefly a few of these problems intended for future research directions.

7.1 Gravitational Collapse

The collapse of a spherical star has been thoroughly investigated [2]. It is a completely

classical problem with no gravitational dynamical degrees of freedom. There may be

matter degrees of freedom; these must be dissipated relative to some observer if the

collapse is to make sense.

Observers in free fall recognize the collapse once passing beyond the gravitational

radius of the star. External observers, at best, can detect only the increasing redshift of

signals being sent from the surface (at the gravitational radius) of the collapsing star. So,
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what happens with the possible dynamical degrees of freedom of the matter? Collapse

is potentially interesting from a quantum mechanical perspective because it can provide

insight into how to quantize systems described by extended objects. Field theory is

adequate and effective when describing point particles or continuous fields of various

tensor ranks. Extended objects are more difficult because they do not follow from field

theory alone: they are formed by satisfaction of certain boundary conditions.

Realistically, objects are not perfectly spherical and, subsequently, do not have ex-

terior geometries represented by spherically–symmetric line elements. Thus, there may

exist unknown gravitational dynamics.

What might a quantum mechanical description of collapse offer? Does collapse of a

generic extended object require quantum gravity? This depends on the possible dynamics

of the system. Certainly, the classical theory for generalized collapse beyond the static

case would need development.

7.2 Gravitational Coupling and Other Field Theo-

ries

One challenge is related to the minimal coupling of gravity with other fields. Since

the realm of particle physics is described by non–classical fields, it is not clear that

coupling of gravity – especially gravity with dynamical degrees of freedom – can be

done in the naive way associated with minimal coupling. In fact, this was the original

motivation of this line of research. To achieve such a theory, it will be necessary either to

determine a legitimate classical action principle (which easily admits minimal coupling)

that can reproduce the results of particle theory, or to somehow quantize gravity and

then put it through a second quantization. The latter of these is extremely delicate and

may be insurmountable given the difficulties we have already encountered regarding the

dynamics of a fully–constrained theory. Further, the usual techniques of replacing field

variables with ladder operators may not yield satisfactory results as this does not admit

an interpretation in terms of particle number in a general setting.

It is an open problem to determine exactly the (possible) quantum mechanical rela-

tionship between gravity and matter fields currently treated under second quantization.

Even in simple models, it is necessary to understand this relationship. Any spacetimes

involving exotic matter or unusual matter (e.g., [50, 51]) which, realistically, would need
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to “appear suddenly” to initiate some effect, will need a completely worked out quantum

scheme between gravity and the matter fields to understand how this matter can arise

from the (nongravitational) field excitations (or even what the excitations mean with

quantum gravity involved). Efforts (e.g., [52]) have involved semi–classical approxima-

tions or estimations, but the nature of gravity tends to be unforgiving except in simple

circumstances.

7.3 Introduction of Anisotropy and Modifications

The anisotropy parameters in cosmological models are gravitational dynamical degrees

of freedom which admit a quantum gravitational description of the problems under con-

sideration. Obtaining a complete solution involves finding the dynamic Hamiltonian,

identifying the constraint(s), setting up the Hamilton–Jacobi equation, quantizing ac-

cording to the usual procedure, solving for or selecting appropriately the initial condition

for the state functional, then imposing constraints on expectation values. This com-

pletely determines the problem (i.e., provides a satisfactory description of time evolution

of the state functional with time as an external parameter).

Because many line elements and, subsequently, spacetimes have no dynamic degrees

of freedom, in our approach, they appear to have no quantum gravitational features. One

possibility, however, is that they are only approximations of geometries with anisotropies.

Particularly, if the anisotropies are introduced as functions e2β, for example, then for suit-

ably small β, we can have effectively isotropic geometries. Naively, a Taylor expansion

with a limit as β → 0 is the way to introduce these effects. However, it is better to con-

sider the limiting procedure as presented by Synge [53], where second–order (Riemann)

terms are taken to be small, as these are obviously important in GR. The question occurs,

though, as to why these effects have not been observed. This is in accord with questions

in cosmology concerning the modern universe versus the distant past. Another question

concerns the mechanism for introduction of anisotropy. A cautious approach is to em-

ulate the appearance of such terms in cosmological models; this makes the exponential

a reasonable choice. If we are considering vacuum, we must also keep in mind how the

addition of such terms will affect this. The introduction of terms should be done in such

a way as not to emulate matter, necessarily.

Another possible modification includes an admixture of metrics, each known to lead to
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exact solutions of Einstein’s equations. Because the full Einstein equations are nonlinear,

this admixture of metrics cannot be a mere sum. The connotation here is that metrics

with some kind of weighting functions in front may be introduced – maybe even with

anisotropy parameters as the weighting functions – so that regions of spacetime are

classically well–modeled by conventional exact solutions but so certain exotic features,

particularly those associated with changes in topology, can be considered both classically

and as resulting from transitions after quantization. This may be tied into considering

state functionals over some kind of product of conformal 3–geometries (i.e., product of

elements of the conformal superspace [2]). It may also be useful for the considerations of

[54, 55] or [56] regarding changes or allowed changes in topology.

7.4 Beyond Relativity

From the procedure outlined above, canonical quantization of gravity does not provide

anything emergent in the description of nature. Simply, it takes the description of nature

given it, maps to appropriate spaces as prescribed by the procedure of canonical quanti-

zation, and provides an internally consistent description of the output. Anything exotic

or unusual must be built into the classical problem in the beginning as this provides the

configuration space. As suggested above, modifications of exact solutions by anisotropy

or cautious superposition may broaden the allowed configurations of a given gravitational

field.

Another possibility is to consider alternative theories of gravity. Two common direc-

tions include the introduction of a scalar field to the Ricci curvature in the action (e.g.,

Brans–Dicke [2] or dilaton–gravity type theory) and f(R) theories consisting of higher–

order curvature terms. Why would this be interesting at all? In the action principle of

GR, the fraction c/G appears outside of the integral. What if c or G becomes dynam-

ical in some way? They would then come back inside the integral. Now, this is a truly

difficult problem because their variability would have to be determined (i.e., functions of

dynamical variables, functions of coordinates). Essentially, this necessitates development

of a Hamiltonian formulation.
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