ABSTRACT
ZHANG, SIDONG MAX. The Immersed Interface Method for Two Dimensional Poisson /
Helmholtz Equations in Complex Number Space. (Under the direction of Dr. Zhilin Li.)
This thesis describes an expanded Immersed Interface Method for solving the two-
dimensional Helmholtz /Poisson equations in the complex number space with an interface.
Across the interface, the coefficient of the Helmholtz equation may have a finite
discontinuity, and the source term of the Helmholtz /Poisson equations can have singular
source terms. The solution and its normal derivatives can have discontinuities across the
interface. Then we apply the developed method for solving Helmholtz /Poisson equations on

irregular domains using the augmented immersed interface method.

This dissertation utilizes a combination of methodologies including the immersed interface
method, Fast Fourier Transformation algorithm, augmented strategies, least squared
interpolations, and the Generalized Minimal Residual method (GMRES) in complex number
space for the Schur complement system. This expanded IIM is structured that the computed
solutions are second order convergent towards the exact solution. Moreover, the cost of
computation is designed to be efficient when solving the Schur complement system with

almost constant number of iterations.

This dissertation also includes numerical experiments that have two different type problems.
The results have confirmed the theoretical analysis expectation. The computed solutions
showed statistically second order convergence. The proposed method is efficient, robust for

wide range of real or complex wave numbers.
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CHAPTER 1

Introduction

In this dissertation, we studies two-dimensional Helmholtz Equation in complex number

space in general irregular domains with a Dirichlet boundary condition:

o’u  du )
—+—+ku=f(x,y), (x,y)eQcR
PR Sy, (x.p)

u(x,y)=0, (x,y)eoQ (1.1)
where u(x,y):Q->C; f(x,y):Q—>C;keC.

These particular equations are used describe many problems related to steady-state
oscillations in different media, such as mechanical, acoustical, thermal and electromagnetic
phenomena. These problems also have been widely used in military and civil engineering

communities.

In reality of the electromagnetic field models, the domains are more than likely to have
discontinuous media with general irregular interfaces, and the models may have a complex
wave number (k) which represents both electric and magnetic charges. These phenomena
present extra challenges for the researchers and engineers, because the traditional methods
are usually designed for rectangular domains, and real wave numbers. This dissertation is

trying to make progress in answering these challenges.



1.1 The Application Problem and its Difficulty

Developed by Maxwell and Hertz, the theory describing electromagnetic waves can be

written in the format of Helmholtz equation [14,27].

For example in [9,43], Figure 1.1, demonstrates the electromagnetic scatting from a two-
dimensional open cavity filled with inhomogeneous media. The ground plane and the walls
of the open cavity are assumed as perfect electric conductors (PEC), and the interior of the
open cavity is filled with non-magnetic materials which may be inhomogeneous. The half
space above the ground plan is filled with a homogenous and isotropic medium with its
permittivity € and permeability p. Also, the electromagnetic scattering by the cavity is
governed by the Helmholtz equation along with Sommerfeld’s radiation conditions imposed

at infinity.

Figure 1.1 Diagram of an Electromagnetic Wave Model.



Due to difficulties in designing the finite difference approximations close to a curved
boundary, the irregular domain will be embedded into a larger rectangle domain. So, the
original differential equation is extended to the rectangular domain correspondingly by
introducing the following jump conditions across the interface, where the interface I' is the

boundary of the original domain.

[u]. =u—u =0
[, ]r = C(s).

Figure 1.2 Rectangular Domain with An Embed Arbitrary Interface.

Therefore, the harmonic Maxwell equation is reduced to Helmholtz equation format:

Authku=f(x,3), (x,y)eQ,
UZO, (xay)EQ+>

where  k=-kie, u,.

Another advantage of embedding an irregular domain into a rectangular domain is that it is

almost no computing cost in generation the grid under Cartesian coordination.



1.2 Helmholtz and Poisson Equations

The Helmholtz equation in rectangular domain has the following form
Au+ku=-0 . (1.2)

The particular two-dimensional Helmholtz equation in the Cartesian coordinate system:

o*u  du
—+—+hku=f(x,y), 1.3
o oy’ S5 (1-3)

where k is the wave number (in some reference, it is expressed as k?); f is a source. To
simplify our notation, we write the right-hand as f(x, y) instead of —®(x, y) in this
dissertation. If k=0, then (1.3) became a Poisson equation:

o*u  d’u
- 4+ = R . 1.3a
o’ oy’ S5 (132)

For a homogeneous Helmholtz equation with =0, the general analytic solution exists, and

can be written as a combination of following particular solutions

u =(Acos ,x + Bsin g, x)(C cos i,y + Dsin i, y), k=u'+u;.

u = (Acos p,x + Bsin p,x)(C cosh y, y + Dsinh u, ), k=pul—u. (1.4)
u = (Acosh g,x + Bsinh g2, x)(C cos 41,y + Dsin p, y), k=-pul+u;.

u = (Acosh g, x + Bsinh z2,x)(C cosh s, y + Dsinh u, y), k=—pul — 5.

For inhomogeneous Helmholtz equation in the rectangle domain (say 0 <x <a, 0 <y <b),

with Dirichlet boundary condition as prescribed:

u(0,y)= fi(»), u(a,y) = f,(»),

(1.5)
u(x,0) = f3(x), u(x,b) = f,(x).

The solution for Helmholtz problem exists if & # 7’ (n_2 + ’Z—z ;o on=12,... m=12,..
a



The solution can be written analytically in an integral equation involving Green’s function
a eb
u(x,y) = [ [ £(EMGCx v, n)dndé

[ I G Emleadn= [ LG p i

b 0 b 0
+f S GGyl de - [/ (O, Oy £, o de.
where the Green’s function G(*) has the following forms of representation:

_ 2 &sin(p,x)sin(p, &)
G(xayaéjaﬂ)_a; ,Bn Sll’lh(ﬂnb) Hn(yJ?)

or

2 &, sin sin
Glr.y. £ =2 3, a2 MG
b m=1 /le Slnh(#m a)

0, (x.9),

where
nw
pn =7 > ﬁn = pn _k’
a
mr 3
=" m = m _k’
qn b H q
and

Lo [sinh(Bm)Sinh(B,(b-p)]. for 0<p<y<
"D =1 Ginh( B, y)sinhl B, (b -], for

<y<np<
_ Jsinh(g,&)sinh[p, (a—x)], for 0<S<x<a,
O (x.e) = sinh(z, x)sinh[p, (b—&)], for 0<x<&E<

Though, we can analytically give out the solution for rectangular domains and
boundary condition [41], they will become very complicated and not practical for physics

and engineering use when the domain is general and irregular. Thus, numerical methods and

solutions are still required and in high demand [35].



1.3 Review of Existing Numerical Methods

For a problem defined on an irregular domain, the method most often used is the
embedding technique. We will discuss in detail later in chapter 3 and 4 of this dissertation.
Then the problem can be treated as a special interface problem. Therefore, the terminology of

interface problems is introduced to include the problems defined on irregular domains.

There are many algorithms and methods discussed in research papers in the literature
that address the interface problem. For example, smoothing method for discontinuous
coefficients, harmonic averaging for discontinuous coefficients, immersed boundary method,
numerical integral equation method, ghost fluid method, and immersed interface method are
the most frequently referenced in the related fields. This dissertation just focus on the two
dimensional method that has closest relation to our algorithm, that is the Immersed Boundary

method, the numerical integral equation method, and existing Immersed Interface Method.

1.3.1 Immersed Boundary (IB) method

This Immersed Boundary method was originally developed by Peskin [29, 30, 31, 32,
33] to model the blood flow in a human heart, and has been applied to many other problems,

particularly in biophysics.



One of the most important ideas in the IB method is the use of a discrete delta
function to distribute a singular source to nearby grid points. The commonly used discrete

delta functions in one dimension are as following.

Hat delta function

6g<x>={(g_"“'”€i iflxl<e.
0, if|x>e.

Cosine delta function

1

=y 2¢,
5 (x) = 48(1+cos( ), iflxl<2e

O, & U(‘|X|225

And Radial Delta function

1 2| x| 4|x| 4x°
—|3——4+,/1+ -—— b
8e Py € g if |x|<e ,

2
S5.(x) = i[S—M—\/—HM—‘” j,if e<x|<2

8s £ £ g’

0, if |x[>2e

In two dimensions, the discrete delta function often is the product of one dimensional

discrete delta functions, such as J, (x,y) =J,(x)d, () . And the discretized Helmholtz

equation at (x;, y;) became

kA

Zykul+f,\.,]+_/,\. + kui,‘/ = 5}7 (x/ - x: )6}1 (y/ - y/* ).f;/ 5

k=1



where k; is the number of discrete points {(x;*, y;*)} on the interface, {yi}’s are the
coefficients that involved in the finite difference scheme, h is the mesh spacing. In this way,

the singular source is distributed to nearby grids points in a neighborhood of the interface I".

The Immersed Boundary method is robust and simple to implement. It has been
applied to many problems in mathematical biology and computational fluid mechanics [1, 2,
4,5,7,8,10, 11, 12, 39, 42, 44]. Various work has been developed to improve the accuracy
of the IB method, and it is most time first order convergence results [29, 31,30], with some
occasional second order convergence [17, 34]. But, there is not yet any complete analytical
convergence proof for the IB method [30]. However, stability analysis of the IB method is

given in [37, 38] for a membrane problem.

1.3.2 Integral Equation Method

Greenhaum, Mayo and their collaborators [23, 24, 25, 26] are among the few who
first combined integral equation based on the single and double layer theory with finite
difference methods to solve a Poisson equation on an irregular domain. The irregular domain
is embedded into a larger rectangle, and then the problem is recast as an elliptic interface
problem such that the solution is harmonic in the rectangle, excluding the boundary. Taylor
expansions at irregular grid points and the integral representation of the particular solution
near the irregular boundary are used. The source strength is determined from an integral

equation. The jump conditions are derived from the integral equation and are used to derive



the finite difference schemes at all grid points in the rectangular domain so that a fast Poisson

solver can be used.

By solving the integral equation and a regular Poisson equation, the algorithm is
somehow second order accuracy in L™ norm. The numerical integral equation methods are
most effective for homogeneous source terms and certain boundary conditions. Although this
method still can be applied for nonhomogeneous source terms and different boundary
conditions if with some extra effort. The implementations of these methods, especially when

they are coupled with the fast multipole method, are difficult.

1.3.3 Immersed Interface Method

Immersed Interface Method is first developed by LeVeque and Li in 1994 [19]. It is
motived by Peskin’s IB method, but there are remarkable improvements in [IM. [IM is a
sharp interface method which the discontinuities or the jump condition are enforced exactly
by prior knowledge or approximately through Augmented strategy [20, 16].

In general cases, standard finite difference methods are used in discretization. At the
grid point near or on the interface, a correction term is added according to the jump condition
to ensure point-wise convergence. By this approaching, IIM can still take advantage of
existing numerical algorithm to solve the differential equation system. In most cases, [IM can

achieve second order global accuracy under the infinity norm L™ .



This dissertation is trying further expending Immersed Interface Method into
complex-numbered wave number and function, while thus preserving its advantages, like

efficient and stable solution with second order convergence.

1.4 Outline of the thesis

Chapter One surveys the general IIM background and literature. The fundamental
concepts such as interface problems and jump condition are introduced. The last section

describes the structure of this thesis.

In Chapter Two, we studied the solution for Poisson and Helmholtz equations in
rectangular domains without interface jump conditions. A new Fast Fourier Transformation

method is derived and analyzed for the efficiency and stability.

In Chapter Three, we introduced correction terms at irregular grid points such that the

proposed algorithm is 2™ order convergence.

In Chapter Four, we further studied some unknown interface conditions. Augmented
Strategies are used to assume one of the unknown interface variables, and estimated by
weighed least square interpolation, then we created Schur complement system. Finally,

GMRES method was used to solve for the whole system.

10



Two examples of numerical experiments are presented in Chapter Five. Under
different functions, interface condition and computing circumstances, all results are in line

with our previous analysis.

The last chapter summarizes the contributions we have achieved and discusses

several possible future research topics.

At the end of the thesis is a list of papers, books and presentations which this research

has referenced.

11



CHAPTER 2
ZFFT methods for solving two dimensional Poisson /

Helmholtz Equation in Rectangular Domains

The Fast Fourier Transformation (FFT) method for solving two dimensional Poisson’s
equations was first introduced by Cooley and Tukey [15] in 1965. It was focused on squared
domains with uniformed mesh space. The main idea of this method is to take advantage of
some beautiful properties of the discrete Fourier transformation, which is able to decompose
the tridiagonal matrix into multiplication of eigenvalues and their eigenvectors. Therefore, by
substituting the variables back and forth twice, the FFT method only needs O(NlogN)

multiplications instead of computing the inverse of the matrix, thus it is much faster.

In 1984, Swarztrauber further developed the FFT method for rectangular domains [40]. He
first converted the two-dimensional solution u;j into 1-dimensional vector umi+j, and turned
the finite difference scheme into a tridiagonal block matrix, and then solve the linear

equations system using row reduction method. This method achieved O(NlogN) (N=mxn)

efficiency. But it is somehow confusing, and not easy to understand and implement.

To ensure the efficiency of our computing, the FFT method in this dissertation is designed
for rectangular domains. For inscribing an arbitrary shape into another geometry shape, a
rectangular is more than likely to cover less area than a square. Thus the rectangular

constructs less grid points, and therefore less computation.

12



In addition, we also need double complex precision for our data to keep rounding errors from
distorting our computing result. For example, we need the Schur complement residues in

very high precision so that the jump condition in the interface can be accurately obtained.

However, there is no existing FFT method that fit for our requirements at the time. Besides,
modern day computing environment is completely different from the 60s to 80s, the old
Fortran code that developed at that time may be obsolete and may not be complied smoothly
nowadays. So, we decided to develop our very own Fast Fourier Transformation methods for
rectangular domains with double complex precision. We would like to call the new algorithm
ZFFT, it is because this Fast Fourier Transformation method is dealing with complex number.
There three slightly variation of the algorithms total, we are going to introducing them one by

one.

2.1 ZFFT Method with hx # hy, and m = n

First, we consider the discrete finite difference equation for Poisson equation in a rectangular
domain with the standard 5 point finite difference scheme at a rectangular domain can be

written as

u +u

ny —2u . U, tu 2u

h;—lz,J i ht,jz—l if zfu’ l',j=1,"',7’l , (2'1)

x y

13



where hx and hy are the mesh spaces in their respect x-axis and y-axis direction, and we
assume that hx # hy, and m = n. Notice that f; is the right hand side value intergraded with

boundary condition. To rewrite (2.1) in matrix format

%TU+L2UT ~F 2.2)
h
X y
where
-2 1 0 0
1 -2 1 0
T=|0 1 -2 0 and U = (u, I)n,n’ F= (f'f )"v”
0 0 0 -2

Apply discrete Fourier Transformation to each column of T, then T=V'DV. (2.2) became

h;V='DVU +h;UV ~'DV = hh}F,

27 (2.3)
where V= (S,,j )M, S, = sin( 2n+ 1)),
A0 0
0 A 0
D= 2 L A= —dsint(), ij=len
: 2(n+1)
0 0 A,
It is worth to point out that V has another beautiful property that
V= 2 2.4
n+1
Multiply hxzhyz, and V from left and V™' from right to (2.3) at both sides, then
RDVUV " +h VUV 'D =RV FV . (2.5)
— 0 _ ol 272 -1 7
Now, let U =VUV™ =(,,),,.and F =h;h VFV = =(f,,),, »then
h’DU +h’UD=F . (2.6)

14



Since D is diagonal matrix, then U in (2.5) can be easily solved

_ Ji) L
i, = where i,j=1..n . 2.7)
LR A R,

Further, for Helmholtz equation, (2.7) can be

= /s where i,j=1...n. (2.8)

Z/_l’, 2 2 2727 °
DURA AR, IRk

Once we have U, then reverse discrete Fourier Transformation,

Uu=v'ur . (2.9)

This Fast Fourier Transformation method is directly derived from the traditional
method for square domain. The tridiagonal matrix T is nxn square matrix. However, we
estimate the locate truncation error through (2.1), we can find out that it may not guaranteed
to be second order convergence for the computed solutions. So we keep on working on the

next method.

2.2 ZFFT Method with hx = hy, and m # n

In this method, we still start the finite difference equation for Poisson equation in a
rectangular domain with the standard 5 point finite difference scheme. This time, the mesh

spacings toward the x-axis and the y-axis directions are equal (h = hy = hy), but the number of
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grid points in that 2 direction are not equal (n # m). It can be written as

i,j-1 _2ulj . .
h2 h2 zﬁj’ l:13.“3m; ] :1,"',’/1. (2.10)

i+l, ] i-1,j — <%

u,, +u 2u +uw+1+u

Notice that f;; is the right hand side value intergraded with boundary condition. Rewrite (2.10)

in matrix format

T U+UT, =h’F, (2.11)
where
-2 1 0 0 -2 1 0 0
-2 1 0 1 -2 1 0
T,={ 0 1 =2 o , T,=l0 1 =2 0
(2.12)
0 0 0 - =2 0 0 0 - =2

m,m n,n

U= (u,yj )m,n > F= (f;yj )m,n :

By discrete Fourier Transformation, Ts= VDV, s =m, n, then

v'DV.U+UV, DV, =h'F . (2.13)

Again, Multiplying h*, V,, from left and V™' from right at both sides of the (2.13), we have

D V.UV +V. UV 'D =h*V FV . (2.14)

Let

U=v,uv,' =(,),,. and F=rV,FV,' =(f )., - (2.15)

m

Then substitute (2.15) into (2.14), it become

DU+UD =F . (2.16)
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Since Dy, and D, in (2.16) are diagonal, we can simply solve (2.16) for U,

~

_ Y : :

U, =/'L(m),+/1‘/(n)= i=Ll-my j=1-.n. (2.17)
Similarly, for Helmholtz equation

m Ji i=l-m; j=1-.n . (2.18)

u =
R ORI U S
J

Reverse the discrete Fourier transformation, we get
u=v,'uv, . (2.19)

This method uses traditional equal mesh spacing, while the numbers of grid points are
different in x-axis and y-axis direction. It is most compliable with the traditional numerical
analysis, and we can still take advantage of many existing software packages. In this method,
we have to construct two different set of discrete Fourier Transformation in (2.13), which
cost little extra computing. When it was used iteration like GMRES, we can store and re-use
them rather constructing from new each time. More important, the locate truncation error can
be estimated as usual, which we will prove later that it is second order convergence for the
computed solution against exact solution. So we decided to use this ZFFT II method for the

rest of our dissertation.
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2.3 ZFFT Method with hx # hy, and m # n

For the completeness of this academic exploration, we want to further study the method with
rectangular mesh spacing and unequal number of grid points. Let us consider discrete
Poisson equation with, hx # hy and m # n, then

T2y ey = 2.20
h2 P > _f;j’ i=lL---m; j=1---n. ( . )

x v

P 2uU . U, +u

Notice that fj; is the right hand side value intergraded with boundary condition. Rewrite (2.20)

as matrix format, then

Lrustur~F. 2.21)
K h?

where Tm and Tn are defined in (2.12)

Apply discrete Fourier Transformation to each column of T , i.e.

Tm = va_leva > and Tn = Vn_anVn > (222)
where V. = (S,(") , S = sin( 2L), i,j=1..n
S Inon / 2(n+1)
/’ti‘” 0 0
A0 j
D, = 0 2 o A =~ 4sin 2(—Z—),
: : . : 2(n +1)
0 0o ... A"
Then, we have
hV,'D,V,U+hUV,”' DV, =hlhF. (2.23)
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Now, Multiplying hxzhyz, Vm from left and Vn™' from right for both sides of (2.23), then

nD,V, UV, +hV,UV, "D, =h’hV,FV,". (2.24)
Let

e - — - 272 -1 7

U = K77UVn : = (ui,_/')m,n s and F = hx hy VmFVn = (]{7/ )m,n 2 (225)
then (2.24) become

nD,U +hUD, = F . (2.26)

Since Dy, and D,, are diagonal, it is easy to solve (2.26) for U,

By

L_[,j: 5 fwz R i=1,"',771; j=1,"',l’l. (2_27)
R A+ R,

Similarly, for Helmholtz equation,

Py

_ >
i, = » L i=Leem; j=len. (2.28)
LA A" + kiR k

Once we have U, then by the reversed discrete Fourier Transformation (2.19), it is easy to get

the solution U.

This third ZFFT method is the combination of ZFFT method I and ZFFT method II. It is a
generalized algorithm that solves Poisson or Helmholtz equation. In practice of this research,
it is an over kill to simulate the rectangular shape by both measures of rectangular grid shape
and unequal mesh size. However, somebody may need this method for future research

someday.
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2.4 ZFFT Method Summary

We mainly focus on the second complex-numbered Fast Fourier Transformation method
(ZFFT II) in rectangular domain for this summary. Other methods in this chapter are almost

identical. Here is the step by step approaching of the algorithm

1. Perform discrete Fourier Transformation on F, get

2n°

F=nV FV'=
n+1

V.FV, . (2.29)

m

2. Compute middle solution U:

_ f:,/

u’y] = D)
A"+ 2"+ Rk

i=1m j=len, (2.30)

where A" = —4sin” i . A" =—4sin’ T
2(m+1) ‘ 2(n+1)

3. Perform reversed discrete Fourier Transformation on U, get

2

U=v1'uv, = vuv, . (2.31)

2.5 Efficiency Analysis

From previous section, we can see that the cost of step Two is 3xmxn operation, and step

One and Three is seems to be a triple matrix multiplication each. If we do use the
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straightforward matrix multiplication method, then the cost is mxmxn+ mxnxn flops, which
is O(m?). However, the triple matrix multiplication actually represents the Discrete Fourier
Transformation. Thus, we can use convolutions and recursive algorithm, therefor the

computation cost is reduce the (m* log, m) [6]. Here is the process for V,,FV,, as an example.

Let Fi={fi.5;, ... , fmj}T be the the jth column of the F matrix, and

a(a))=flj +f21a)+f3ja)2 +---+fmja)'",
2 (2.32)

where  © =" = cos(—)—i-sin(—2-), i=~1.
1 m+1

o is also known as a principal (m+1)th root of unity. The DFT of F; is just the polynomial

(2.32) evaluation at the points {0’, ©', ©% ..., w™'}. Conversely, the inversed DFT is the

polynomial interpolation producing the coefficients of a polynomial given its values at {®°,

. 1
O,0, ..., W}

Assume m=2° , then we divide the polynomial (2.32) into two equal pieces.

a(@)= fi, + fL,0+ f,0° +-+ [, 0"
= (fl/ +f3‘/w2 +f5_/a)4 "')+a)(f2_/ +f4‘/w2 +fo_/a)4 ) (2-33)
=a,,(0)+o-a,, (o).

even (

From above, to evaluate two polynomials a,4q and aeyen of degree m/2-1 at ((oj)2 . But this is

. 2( +ﬂ) .
really just m/2 points o for 0 <j <m/2-1 since ®*' = "2 Thus evaluating a

polynomial of degree m-1=2s-1 at all m (m)th roots of unity is the same as evaluating two

polynomials of dgree m/2-1 at all m/2 (m/2)th roots, and then combining the results with m

21



multiplication additions. This can be done recursively with following algorithm

function DFT (a)
n = size(a);
if m=1 then vreturn a

w = e(Z;r/n)

1

— (a)O’a)I,a)Z’_”a)n/Z—l)

o = (ay50a5,a5,-a, ;)
even 2(02,04,06,"‘an)
odd ZDFT(aodd)

= DFT (a
- = -7 =
Yoid = Aodd to - Y even
— _ = —-T —

Yeven = aodd -—@ - Y even

return y

TR S TR ST

even )

Y
<
<
S

|

end

. . 3m
Therefore, the computing cost of each column of a mxn matrix is log, m 0 and by same

.. 3n
method, the cost of each row of each column of a mxn matrix is log, n- ? . So, the total

computing cost for a mxn matrix is O(m -n-log(m- n)). The recursive method requires huge

memory for stocking of heap, which was not available in the 60s or 80s. Also for small
number mesh size, there are no significant different from recursive method compare to direct

matrix multiplication.

2.6 Error Analysis

Since we have u(x, y): R*> C, then we can write

u(x, y) =v(x, y) +i-w(x,y) wherev, w:R*>R.
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First, let us consider the locate truncation error (LTE) for the standard 5-point finite

difference scheme for real function v(x,y) at grid point (xi, y;).

o 9 VL Y Y — Ay,
LTE(v,) = + V- Vit o =L 2.34
;) (62x 62y) e (2.34)

where i=1,..., m; j=1,..., n, and v;; =v(x;, y;) . By Taylor expansion;

0 1 o? 1o 1 o
Vi, =V +a—(" )h+282 v, )h2+§aTV W + 1o's -, Yt +O(h),
1 o° 1o 1 0!
Viey =V, __(V )h"‘—@T ,,)hz . Vw)h3 e (v Yot + O(R),
1 67 , 1¢ s 1 54 \ (2.35)
=V h+— h™ +—— h + h + O’
vt,]+1 ay(vz /) 2 82 ) 3' a3y vl,_/) 4' 84 (vl /) ( )
0 1 &? 1 o° 10
vl,_/—l = 8y(V )h+ > 82 ( I/)hz —gaTy Vi,./ )h3 4' 64 (V )h4 +0(h5)
Substitute (2.35) into (2.34), and simplify
64 84
LTE(v, )——h ( )+O(h Yy=0(h’). (2.36)

By the same method, we can have the locate truncation error for w

84w 0w
. ay )+ oh’)=0(h*). (2.37)

LTE(w,) = li (

Finally, with the norm for complex number, the locate truncation error for u is
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LTE (u,) =| LTE (v,) + i - LTE (wi )|
4
= Lhz(a Z a :}
12 Ox 5’

1, 0% a“ 2~L254 'w ’
[ G Do [ e oo

= \/{ ( v O )+ O(h' )} +i[i(a4lv+a42”)+0(hl)} =0(h*).
12 oy

)+O(h)+[ h(aw o°

w
12 ox* )+O(h )}

(2.38)

ox* 64 12 " ox

Furthermore, T is diagonally dominant, thus the global error is O(h?) for Poisson

equations. Very similar for Helmholtz equation, if the exact solution exists, i.e.
2 m) _ a1 e i1 ...
h'k #-2, —ﬂj , i=l-m j=1,---,n (2.34)

Then the location truncation error is O(h?) and the global error is also O(hd).
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CHAPTER 33
Immersed Interface Method for Two dimensional Poisson

/ Helmholtz Equation in Complex Number Space

In this chapter, we try to develop an improved finite difference scheme to handle the
discontinuous f and coefficients cross the interface in complex number space. The real
number two-dimensional elliptic interface problem was solved using immersed interface
method [20]. Our approach is also based on immersed interface method, and very similar to
the real number one. The goal of our approach is to obtain a finite difference scheme that

works with discontinuous f and second order convergence guaranteed.

3.1 Interface Embedding

Let Q be a convex domain in two dimensions within there is an irregular interface I'. Let Q"

and Q’ be the two regions of the interface, see following Figure 3.1.

o u={

Uxx+Hyy+kU=f

0

Figure 3.1 Function Domain and Embed Interface.
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We are considering the following Helmholtz / Poisson problem
Uxx+Uyy+kU = f, in Q. (3.1)

With some boundary condition on Q2 and jump conditions on the interface I'.

[ul, =u” —u =w. (3.2)
out  ou”
(24, ] o o % (3.3)

In this study, we assume that the interface I" is arbitrarily smooth, Q is piecewise
smooth, k and f are piecewise continuous in Q" and Q respectably, and along the interface,
w has continuous second derivatives and q has continuous first derivatives. Then the solution
u has piecewise second order derivatives components in Q, that is u € C?in Q" or €, but not
inQ.

Since the f and/or k may be discontinuous across the interface, the solution and its
derivatives may also be non-smooth or even discontinuous across the interface. Therefore the
traditional standard finite difference schemes will not work properly for this class of

problems.

Below is outline of our approach, step by step:
e Select a point (Xi*,y_i*) on interface I" near grid point (X;, y;j).
e Apply alocal coordinate transformation in the directions normal and tangential to I

at (Xi*,yj'*).

e Derive the interface relations relating + or — values at (Xj*,y_i*) in local coordinates.

26



Choose some additional points to form a modified stencil.

Setup and solve a system of linear equations for the coefficients yy’s.

Compute the correction term Cj; .

Add Cjjinto standard finite difference scheme for PDE, then solve.

3.2 Local Coordinate Transformation

Unless otherwise stated, we are using uniformed mesh grid size, h,=h, and the

traditional standard five-point finite difference stencil in our study.

Definition: a grid point is called regular if all the grid points in the centered 5-point

stencil are on the same side of the interface; otherwise, a grid point is called irregular if not

all the grid points in the centered 5-point stencil are on the same side of the interface.

For example, in Figure 3.1, point 3, 4, 7 are regular grid points, while point

1,2,5,6,8.9 are irregular grid points.
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s
h

Figure 3.2 Interface, Regular and Irregular Points.

We consider a fixed point (x*,y*) on the interface, and define a local £-n coordinate

system by

E=(x—x*)cosO+(y—y*)sinb, GA)
n=—(x—x*)sinf+(y — y*)cosé. '

where 0 is the angle between the x-axis and the normal direction, pointing to the direction of

a specified side, say the “+” side. At the point (x*, y*), the interface I" can be written as

s=x0n)  with  x(0)=0, x'(0)=0. (3.5)

The curvature of the interface at (x*,y*) is x’’.
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n-direction as
tangential direction

N y-direction

& direction as
normal direction

{x*.¥'lirf xy-coordinates
,0) in n¢ local coordinates

{x.y)

x=direction

Figure 3.3 An Irregular Grid Point, its Orthogonal Projection, and the Local Coordination.

Note that under the local coordinate transformation (3.4), the partial differential

equation (3.1) remains unchanged, that is:

[ue +u,, +kul=[£]. (3.1a)

3.3 Interface Relations

Let (x*, y*) be a point on the interface I'. Assume that u(x.,y) has second order
derivative in the neighborhood of (x*, y*) corresponding to the local coordinates at (0, 0).

Then from jump condition (3.2), we can immediately have
ut=u +w. (3.6)
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Since (3.5), we can use the notation [u] = w(n) and [u,] = g(n) in local coordinate
system. Differentiating (3.2) with respect to & along the interface, we get
u; =u; +g. (3.7)
Differentiating (3.2) with respect to 1 along the interface, we get
[ 1 +u, 1= w'(n). (3.8)
Setting n=0, we get

u, =u, +w'. (3.9)

n

Differentiating (3.8), we obtain
" ] d ' _n
lu1x"+x d—n[ug] +lug, 1y +u,,1=vw"@).
Setting n=0, we get
Uy, =y, + W, —u;)y"+w'". (3.10)
In local coordinates, (3.3) can also be written as
ul —u;)('=u;—u;;('+g«/l+(;(')2. (3.11)
Differentiating (3.11) with respect to n along with the interface, we have

+ "

+ 0 + d + ' - - d - PP
Uge X TUg, _d_ﬂ(u” ¥4 U T U X FU, _d_ﬂ(u” Y4 U, x

o (3.12)
Lg W) + EDLL)
vI+(x)
Setting n=0, we get
ug, =u; —u;+ @, —u) " vug, +g'. (3.13)

From (3.1a), we have
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+ + - - + - _ o+ -
Uge FUy, —Ug —U,, +hu" —ku” =f"—f".
Solving for uggfr, then

uzg =ug +u, —u, —kw+[f]. (3.14)

These interface relation are used in deriving the finite difference method in later

section discussing correction term.

3.4 The Finite Difference Scheme of the IIM

At regular grid points (X, yj), we can use the standard central five-point stencil finite
difference schemes

ul+l,] + ut—l,] - 2ul,j
5

& 3.15
Z’ll,‘/+1 +ul,j—1 _21’!7',‘/ ( . )

h

y

uxx(xjﬁy‘/) ~

uyy(xl’y_/) ~

If the solution is 2nd order continuous or higher, then it relatively easy to show that

the locate truncation error in these points are O(h2) in previous chapter.

We now focus on irregular grid points, which the solutions are discontinuous across
interface. Taking an irregular grid point (x;, yj), we try to develop the modified finite

difference scheme like following

k,
Z Vilhivi g+ jy + kuz/ = f!l + Cz/ ? (3'16)

k=1
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where the summation is take over ks neighborhood points center at (x;, y;), and ys are the
coefficients of the finite difference scheme. Our goal is to find proper coefficients ys and Cs,

such that the finite difference scheme is still second order accurate

Generally speaking, the wave number k is usually constant. And we would like
coefficient ys still keep as same as the ones in standard 5-point central finite difference
scheme. That is, the coefficients are yy =1/h? for the four neighbors of (xi, yj), and —4/ h? for

the master grid point (X;, y;j).

3.5 Correction Terms at Irregular Grid Points

The Taylor expansion of u(Xi+ik, Yj+k) about (xi, y;) under the local coordinates is

u(xi+ik ’yj"'jk ) = Z/l(gg,ﬂ) = ui + fku? + nkui

1., . L1, . (3.17)
+§§iug¢ + &, +§f7§u,;,7 +O(h’),

(132

where the “+” or sign is chosen depending on whether (Ek, nk) lies on the “+” or “-”
side of interface I'. After the expansions of all terms, u(Xi+ik, Yj+k), used in the finite

difference equation (3.16), the local truncation error Tij can be espressed as a linear

. . + + + + + + .
combination of the values u™, uz, uy, Uz , Uzyy , Uyy as following
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kS
T, = Zyku(xmk’yj+jk)_ku(xiﬂyj)_f(xi’yj)_cij

k=1
_ - + - + - +
=au +au +asu, +au: +asu, +agu, (3.18)
- + - + - + '
+a;u. +agu. +aglt,, +a,, +a U, +apu,
- - 3
—ku - f _Cij +max{|y, |}O(h").
The quantities * are the limiting values of the function f at (x; , yj*) from the “+” or “—” side

of the interface. The coefficients {a;} depend only on the position of the stencil relative to the
interface. They are independent of the PDE, u, k, f and the jump conditions w and g. If we

define the index set K" and K~ by
K* ={k:(&.,n,)is on the "t"side of T}.

Then the {aj}’s are given by

0122%’ a2227ks

keK™ keK*
a3=Z§k}/k, a4=2‘§k7k>
keK™ keK™
a5=277k7/k’ aszznﬂ/w
keK™ keK™
1 , 1 ) (3.19)
a7:_Z§k7ks a8:_z‘§k7k’
zkeK' zkeK"
1
a9=52771§7k5 a,y = 2771371(:
keK™ kekK™
a, = kaﬂk% , a;, = Z‘fk’]kyk'
keK™ keK™

Using the interface relations from (3.6) to (3.14), we can eliminate the quantities from

[

one side, say “+” side, using the quantities from the other side, say side, and combining

likely terms and rearrange
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T, =(a,+ay))u” +(a, +a,)u; +(as +ag)u,

+(a;, +ag — l)ugg +(ay +a,, - l)u,;,7 +(a,, +a,, )u;,l (3.20)

—ku — 4Ty~ C,) +max{] y, JOOR).

where

A

TU. =a,w+a,g+as, +a,y" wra,w'"

+(ay +ag g, 2'")g + ag(LF1+hw—w'").

(3.21)

Luckily, if we choose the coefficients ys as for standard S5-point central finite

difference scheme, then following equations are satisfied

a, +a, =0,
a,+a, =0,
as +ag =0,
(3.22)
a, +ag =1,
a, +a,, =1,
a,, +a,, =0.
In addition, let
C, =T, =a,w+a,g+ag +a,y'" Yw+a,w" (3.23)

+(a, +agy'—a, ' )g +ag([f1+kw—w"),
here, C;; depends on the curvature (w’”) of the interface, which means it is difficult to get an

analytic expression for the correction terms.

Thus, we have a method that the local truncation error at (x; , yj*) in (3.18) is second
order convergence guaranteed in theory. Later in our numerical experiments results, the

global truncation errors are second order convergence under L norm.
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Since the standard 5-point central finite difference scheme is used, and only the right-
hand sides of the finite difference equations need to be modifies by adding a correction term.
So the Fast Fourier Transformation solver as we described in previous chapter can be applied
to solve the system of finite difference equations. This makes the Immersed Interface Method
very efficient because the computational cost on the irregular points is relatively small.
Further in next chapter, under the augmented strategy, this I[IM method still can be used

effectively even when one of the jump conditions [u] or [u,] is unknown.
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CHAPTER 4

Augmented Strategies

In many interface problems, the jump conditions for the solution U and the derivative
of the solution U, in the interface are coupled together, and one of them are usually unknown.

We start with assume the unknown jump condition as some augmented variable g of
codimension, and its discrete form G. The approximate solution U and the augmented
variable G together form a large linear system representing the original problem, thus it was
relatively easy to be understood but sometime too big to solved. Then, by eliminate U from
the matrix vector equations, we try to solve for the augmented variable G using the Schur
complement system, which is generally much smaller than that for U. GMRES iterative
method is used first solving the original problem, with assumed initial augmented variable;
then finding the residual of the constraint using the computed approximate solution given the
augmented variable.

Augmented method do not required a Green’s function, and no need to set up the
system of equations; and it can be applied to general PDEs with or without source term. All
boundary conditions shall be working just fine. Only high precision data type required when
implementation Schur complement. The only way to derive an accurate algorithm in that
kind of problem is perhaps the augmented approach.

The original idea of the augmented strategy for the interface problem is introduced in
[21] to solve elliptic interface problems, and then further developed in [22] applied to

generalized Helmholtz equation on irregular domains.
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4.1 The Augmented Variable

In this dissertation, we only studied Dirichlet boundary condition. Other boundary

condition such as Neumann and Robin, however, can be derived using same methodology.

Since Dirichlet boundary condition, we have already know the solution u at boundary,
u=w(x.,y), (x,y)el'. so it is natural to select the normal derivative [u,] as the augmented
variable g. Further by discretization, we can write [u]r as W={W, W», ... Wy} and [u,] r as

G={G1, Gz, an}.

4.2 Discrete System of Equations in Matrix-Vector Form

From previous chapter, we knew that the correction term Cj; depends on {Gy} and

{Wy} continuously. Then the Helmholtz equation (1.2) can be written as following discrete
from

AU+ BW.,G)=F, (4.5)
where U and F are the vectors formed by {Uj;} and {Fjj}. From (3.23), we knew that B(W,G)
is a linear function of W and G, and can be written as

BW.,G)=BG-BW, (4.6)
where B and B are two matrices with entries. Thus (4.5) becomes

AU+BG=F+BW =F,. (4.7)
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On the other hand, if the solution U from the system (4.7) is known, we can
interpolate {Uj} linearly to get {U;(X,)}, which is an approximation to the normal derivative
from each side of the interface at {Xx}, 1 < k < ny . The interpolation scheme is very
important to the accuracy of our augmented algorithm, we will discuss it in more detail next
section. Since the interpolation is linear, we can represent it as following

CU+DG=W, (4.8)

where C and D are the linear interpolation scheme to approximate W.

Combining (4.7) and (4.8) together, we have

¢ olelv) o

Remark: A, B, C and D represent the operation of their respect scheme, and they may not be

written explicitly into matrix format.

4.3 Least Squared Interpolation

In this study, we involved the complex number least squared interpolation scheme from a
Cartesian grid to form interface. It is almost identical to the work in real number [18]. The
performing of this least square interpolation scheme is crucial to the accuracy and the

iterations of the GMRES, and thus irreplaceable to whole augmented method.

The interpolation scheme for approximating U", can be written as
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k,
U (x".y)=Y »U -C . (4.10)
k=1

* Lk
[ S

where ks is the number of grid points involved in the interpolation scheme, ( Xi+ yj*) is the
closest grid point to the projected interface point (x*, y*), C is the correction term and yy. is
the coefficients for the interpolation. Note that yx and C are depend on (x*, y*). It is clear that

we have to determine the coefficients {yx} and C to complete the interpolation.

The coefficients {yx} are determined by minimizing the interpolation error of (4.10)
when Ujsij =k 1S substituted with the exact solution u(Xisik, Yj=+jk). Using the local

coordinates system

{g:(x—x*)cos0+(y—y*)sin 0, (4.11)

n=—-(x—-x*sin6l+(y—y*) coséb.
Centered at the point (x*, y*), and denoted the local coordinates of (Xix+ik, Yj*+ik) as (Ek, Mk)s

we have the following from the Taylor expansion at (x*, y*) or (0,0) in the local coordinates:

UK s 5 Y s, ) = u(Sy-my)

s " P P B 5 4.12)
=u +§ku§ +nu, +5§k U +§k77ku§,7 +577k u,, +O(h).

113

where the “+” or “-“ sign is chosen depending on whether (&, ny) lies on the “+ or “-* side

of the interface T, and u®, ngi, e uTmi are evaluated at local coordinates (0,0), or (x*,y*) in
the original coordinates system. Be careful with these two coordinate system, they are
confusing yet necessary for different computing function.

We carry out this expansion for all the grid points involved in the interpolation

scheme and adding them together, that is plug all (4.12) (k=1, ..., k) into (4.10). Afternoon
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combining likely terms and re-arrange them, we have

U,(x*,y*)~au +au” +agu; +a,u; +asu, +a.u,

_ . _ . ~ . (4.13)
+ AU + gl +agu,, +au,, +agug, +apu, —C,
where the {a;} are defined as following
a1:Z7k= azzz7ka
keK™ keK™
a; = Z‘fk%m a, = Z§k7k>
kekK™ kekK™
as = 277ka> ag = an}/k’
keK™ kek™
1 ) 1 ) (4.14)
a7=525k7k> a8=525k7k>
kek™ keK*
1
a9=§ 277137/{» ap = 277137/{’
keK™ kekK*
a, = Zf/ﬁk}’k s ap,, = kaﬂm-
keK™ keK™

Since u'=u+w and u, =u,+g. and the interface relations. We can express all the quantities
from the “+” side in (4.13) in terms of those from the “-“ side and the known quantities.
Thus , when Ujsyj j=+jx is substituted for the exact solution u(Xi=+ik, Yj*+k) , (4.10) can be

written as

kS
U,y =Y raue,, v, )= C
k=1
=au +au’ +au; +au; +au, +agu; +au; +agug
+agu,, +au, +ayu; +ayuz —C
=(a,+ayu +(a;+a,)u; +(as +ag)u, +(a, +ag)ug,
+(ay +ayu,, +(a, +ay,)u,, +a,lul+a,lu.]+aslu,]

++a8[u¥]+a10[u@7]+a12[uw]—C.
To minimize the interpolation error, we should set the following linear system of equations

for the coefficients {yi} by matching the terms of u’, us’, ..., ug,
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a, +a, =0, a, +a, =1,
a,+a, =0, a, +ay, =0, (4.15)

a, +a,, =0, a,, +a,, =0.
If the linear system (4.15) has a solution, then we can obtain a second-order interpolation
scheme for the normal derivative u,” by choose an appropriate correction term C. From (4.12)
and (4.15), we can see that the system of equations for the {yx} is independent of the jump
conditions which means we can calculate {yy} outside of GMRES iteration.

In this study, we choose between 6 to 16 closest grid points to (x*,y*) as the
interpolation stencil. If less than 6 different grid points (ks > 6) in a neighborhood of (x*,y*)
are used in the interpolation, we will have an under-determined system of linear equation
system. If more than 16 points are chosen, then the computing cost will be very high without
significant accuracy improvement.

We chose SVD method to solve (4.15). The SVD algorithm is very stable and can be
found in many software packages, such as Linpack and Lapack. The SVD solution has the

smallest 2-norm among all feasible solutions

> (7o) =minfd (7))

k

For such a solution, the magnitude of Yk* is well under control, which in important to the
stability of the entire algorithm. Once the {yx}’s are computed, then the {ax}’s can be
obtained quickly. Now the correction term C is determined from following:

C=a,w+a,g+aw'tag(gy'"-w'"+[f]

" " ' " ' (416)
tag(w'-gx'")+a,(w'yx'"+g").

Further, through the relation un+=un'+g, we can obtain
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k_s
Uy (x*, )= 71Uy e, —C+g . (4.17)

k=1

In this study, the interface is represented by the zero set of a level set function, the
least squares interpolation is used to approximate the surface derivatives using their values at
the orthogonal projections of irregular grid points. The accurate with local support is second-
order. It is robust in smooth error distribution. The trade-off is that we have to solve a an

underdetermined 6x kg linear system of equations (ks > 6), which is manageable.

4.4 Schur complement system

It is possible to directly solve the linear equation system in (4.9). However, by doing so, we
have to deal with a matrix of O((m x n x ny )*). This is way too much computing cost without
an existing fast solver. The more efficient way is to using Schur complement and GMRES
method, which we can also take advantage of new FFT passion solver we discussed in
previous chapter.
By solving for U from (4.7), then substitute it back into (4.8), we can eliminating U
from (4.9), and now have another much smaller O((n,)°) linear system
(D-CA'B)G=W —-CA'F, , (4.18)
on the left hand side of the equation, D-CA™'B is the Schur complement of A. If the least
square interpolation C is second order approximation to the continuous jump condition on the

interface, then the Schur complement can be prove as invertible.
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To solve (4.15), we first evaluate the right-hand side of the Schur complement. Set
initial value G = 0, then solve (4.5) or (4.7) to get U(0) which is A’'F, from (4.7). Now the
residual of the Schur complement for G=0 is

W—CA'F, =W -CU(0).

Second we evaluate the matrix-vector multiplication need by GMRES iteration. Solve

the coupled system (4.7) to get U(G), interpolate U(G) as CU(G), then compute the residual

as R(G)=D—-CU(G).

4.5 Solving by GMRES

Since the coefficient matrix of the Schur complement is no guarantee to be symmetric
positive definite, the GMRES iterative method is preferred, because GMRES method
requires only matrix-vector multiplication.

The Generalized Minimum RESidual (GMRES) method for real number was first
proposed by Saad and Schultz [36] in 1986, later extended to complex number space by
Fraysse and Giraud and Gratton [13] in 2005. It is among the most widely used Krylov
solvers for the iterative solution of general large, sparse and non-symmetric (or non
Hermitian) linear system. However, GMRES method in this study is still customized to fit
our specific computational requirement.

The number of GMRES iteration depends on the condition number of the Schur
complement, which seems to be proportional to 1/h. Therefore, the number of iteration will

grow linearly as we decrease the mesh size.
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To improve our computing performs, we use the weighted least squares interpolation

(in previous section) to approximate u, or u, , then use following formula respectively
w, =—g+u,l or u =-g+u,]

to force the solution to satisfy the flux jump condition, and then updated by the GMRES
method. This is a precondition for the Schur complement system.

With this modification, the number of iteration for solving the Schur complement
system seems be a constant and independent of the mesh size h. The numerical experiments
have verified that conclusion. This precondition is an acceleration process and with no

modification of the algorithm, and little computational cost.

44



CHAPTER 5

Numerical Experiments Results

We have performed a number of numerical experiments using Immersed Interfaced
Method with Augmented Strategy. The results confirmed our analysis that the our method is
second order convergence for Helmholtz / Poisson problem in complex number space with

arbitrary interface.

All our computations were done using IBM Thinkpad R51 or HP Pavilion a706n
Linux and later on Dell Latitude E6520 laptop computer. These are ordinary business or
family computers which usually work with 2.1GHz CPU and 2GB memory, they are not very
powerful machine. But the computing can be achieved in seconds or a few minutes, depends
on the mesh size. For mesh size m=128 or less, the results are immediately printed out, and
recorded CPU time is merely zero. For typical mesh size m=256, the computing can be
finished in usually in 2 to 3 minutes. Once I had tried m=2048, and the computation took

about 2 hours.

All project program are written/rewritten and complied using open source Fortran

GNU 95 (http://www.g95.0rg ). G95 is viewed as mildly fast. G95 has another advantage is

its compatibility with other version, like legacy Fortran77, or propertied Intel’s Visual
Fortran. So we can use some existing packages like Linpack, FishPack without any

modification. But the best advantage is its ability of cross-platforms, including Windows,
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Unix/Linux and Mac. We can write the code once, and run it everywhere. G95 does not come
with an Intergraded Developing Environment (IDE), and it relay on old-fashioned debug
technical skill. However, Zeus (http://www.zeusedit.com) provides a free version editor that

is very helpful.

The source codes are mostly upgraded from its real number I[IM source code. Almost
all the subroutines and functions have changed from double precision to double complex.
The geometry functions and /or subroutines are modified to compatible with the sub-
immersed boundary condition from original fully immersed interface condition. Complex
number norm is created to replace the real number norm in the GMRES subroutine. The Fast
Fourier Transformation solver for Poisson / Helmholtz problem is complete new method

which is detailed described in Chapter Two.

The Error in the result table is defined as below using L™ morn.

= _max | e;") | , where e;") = u;") —u(x,,y,), 5.1
1=U,...m
_[=0),..,Vl
(¥,,9,)eQ"

E, = ||Err0r ;

0

where uj; is the computed solution at (x;, y;j), while u(x;, y;) the exact solution, n is the mesh

size. We also display the rate of two successive errors.

E, .,
Rate = log{Hj . (5.2)
2n o

For a first order convergence method, the rate approaches to 1; and for a second order

convergence method, the rate approaches to 2. The overall convergence order is displayed at
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the bottom of the table, using least square linear regression for logarithm of error vs.

logarithm of mesh size. The formula for the slope (noted as a) is following

n, Y (log(E,)log(n)— Y log(E, )Y log(n)
a= : (5.3)

n, ) (log(n)” - (Z log(n)]

where nj is the total number of mesh size. The order of convergence is actually the negative
slope of the linear regression model. It can be treated an overall rate for the entire test block.
The complete linear regression model is also call called best fit line which can be written

log, (Error) = alog,(n)+b, (5.4)

where a stated in (5.3) and b is the intercept of the linear model, and the formula is

D log(E,)Y (log(n))* = log(n)Y log(E,)log(n)
b=

(5.5)

n, Y (log(n)* ~ (Z IOg(n)J

A hypothesis test (say, t-test) is performed for the convergence order / slope of the linear
model of each test block at significant level of a.. Here a is the probability of Type I error,
when the Null Hypothesis is rejected but it is true in fact. This is to ensure that the method

developed in this dissertation is truly second order convergence.
H,:a=-2(claim); H, :a+-2 (two—tailed).
We choose a=0.05 (for strong evidence) or 0.01 (for weak evidence). The degree of freedom

isn—2=5-2=3.8So, t,»=3.182 when 0=0.05; t,»=5.841 when 0=0.01. The confident

interval is constructed as
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~ 1 _ 1
a_ta/2Sest S_ sas a+ra/2Sest S_

XX XX

: (5.6)

where a is the computed convergence order from observation, and a is “true” convergence
order from our method, and Se is the standard error of the estimate which is the standard

deviation of the observed log,(E,) values about the predicted logy(E, ) values

\/Z(logz(En)— log . (E,))?

S = 5.7
— (5.7)
And S, is the sum of squared difference for independent variables.
9
S =2 (x,-%)*=>(-7°=10> (5.8)
X; i=5

where X; is the value of logarithm of the mesh size, log, (n), and n=32, 64, 128, 256 and 512.

If a =-2.00 fall between our confidence interval with o = 0.05, then there is
significant evidence not to reject the claim that this method is the second order convergence
for this test block. If a = -2.00 fall between our confidence interval with o = 0.01, then there
is evidence to not to reject the claim that this method is second order convergence for this
test block. If a =—2.00 fall outside the confidence interval with o = 0.01, then there is

significant evidence to reject the claim that this method is the second order convergence for

this test block.

In addition, P-value is also computed through inversed t-distribution function with

d.f. = 3 from ts value
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_a-(2) (5.9)

We also conducted Pearson Product Moment Correlation Coefficient (PPMC) for the
relationship in each block. This Correlation Coefficient is commonly known as r

n, Y log( E,)log( n) - log( E,)Y log( n) (5.6)
\/{n\z (o n»Z—[z o ”)j Hz og( £, —[z o Euj ]

If the value of r is close to +1, then there is a strong positive linear relationship

between the variables; If the value of r is close to —1, then there is a strong negative linear
relationship between the variables; If the value of r is close to 0, then there is a no or weak

linear relationship between the variables [3].

We use three different geometry boundaries as irregular interfaces in our numerical

experiments. They are half circle, half oval and arbitrary half flower shape as following

+1 +1

o of

_ r
[o] a
o

-1 0,0) +1 1 ©,0) +1

(@) T={(x,y):x* +y* =r’}, (b),F={(x,y);x_2+y_:1}

0

a, bo2
A Half Circle Interface, A Half Oval Interface,
-1 (0,0) +1 ’
2 2 2 2
() ) X Yo X vy .
I =<(x, : = —+ — = —+ “—: min s =0;:°
{( y) o, aé bo2 @, bo2 a(f (@.9,) }

An Arbitrary Half Flower Petal Interface.

Figure 5.1 Domains and Interfaces.
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5.1 Numerical Example 1

In this example, we consider a problem with a discontinuous source term f, and the
differential equation is

u, tu, +ku=f, (x,y)eQ, (5.4)
with exact solution as

ry’ -4 Q
g X Ty 4 (x,y) e, (5.5)
0, (x,y) e Q".

and if k=0 then the source terms is

_ 4 (x,)eQ,
/= {O, (x,y) e Q". (>:6)

The interface and the wave number k are given in each individual case. the Dirichlet
boundary condition and jump condition [u]r=w will be determined by the exact solution

accordingly. Beware that the other jump condition [u,] r = g is unknown

Case 1.1 Half Circular Interface

Let the domain Q= {(x,y): -1 <x<1land 0 <y <1}, and

2 2
Interface: I := {(x, y): x_2 + 2}— =1,a, =0.5,b, = 0.5} ,

2
0 0
Subdomain that is inside interface:
x2 y2
Q =9(x,y):—5+5<L a,=05, b,=05 -1<x<1, 0<y<I,.

- <
a, by

Subdomain that is outside interface: Q =Q/ Q" .
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Table 5.1a Error Analysis for Grid Refinement of Example 5.1.

K=100i k=100 k=100+100i
Mesh Error Rate Error Rate Error Rate
32 4.6002536E-02 3.3543979E-01 7.2610372E-02
64 1.0881148E-02 | 2.08 | 4.6449764E-02 | 2.85 | 1.6160096E-02 | 2.17
128 3.4165863E-03 | 1.67 | 1.5463574E-02 | 1.58 | 4.9224887E-03 | 1.71
256 8.4377786E-04 | 2.02 | 3.3379200E-03 | 2.21 | 1.2196654E-03 | 2.01
512 2.1049513E-04 | 2.00 | 8.2083288E-04 | 2.03 | 3.0374241E-04 | 2.01
C°”(‘;‘:;ge‘ince 1.92 2.11 1.95
Table 5.1b More Error Analysis for Grid Refinement of Example 5.1.
k=0 k=10+10i K=1+2i
Mesh Error Rate Error Rate Error Rate
32 4.2429899E-02 7.0610581E-02 4,7572807E-02
64 1.0470141E-02 | 2.02 | 1.7668004E-02 | 2.00 | 1.1739928E-02 | 2.02
128 2.6140307E-03 | 2.00 | 4.4181842E-03 | 2.00 | 2.9297816E-03 | 2.00
256 7.3682237E-04 | 1.83 | 1.1027800E-03 | 2.00 | 7.8627861E-04 | 1.90
512 1.8355658E-04 | 2.00 | 2.8224852E-04 | 1.97 | 1.9748188E-04 | 1.99
Congf;ge‘ince 1.95 1.99 1.97
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U comp

Usomp Examplel Casel, k=100+100i, tol=1 0E-5

38

-3.85

395

Figure 5.2 Computed Solution for Problem One
with A Half Circle Interface, k=100+100i, m=256, n=128.

Ermor Examplel Case1, k=100+100i, tal=1 0E-5

[Ucarnp — U ewact|

Figure 5.3 Error of Computed Solution for Problem One
with A Half Circle Interface, k=100+100i, m=256, n=128.
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logAError)

2 A“\
s BN | iet00
:-‘\“—}“‘a\\‘ —a— k=100

6 :\\%‘ S - —8— k=100+100i
. = "i}é‘ “\,\‘“ i k=0
10 - N

iz —“i

-14

Log,(nj

Figure 5.4 Convergence Order Comparision
for Problem One with a half circle interface.

Table 5.2 Convergence Analysis for Example 5.1.1.

k=100 | k=100 | k=100+100i | k=0 | k=10+10i | k=1+2i
Coefficient | 49995 | -0.9967 | 09995 | -0.9999 | -1.0000 | -0.9999
Correlation
Slope
19232 | -2.1148 | -1.9530 | -1.9534 | -1.9935 | -1.9725
Intercept | ¢ 1462 | 8.7044 5.9180 51672 | 6.1379 | 5.4394
Sext 0.1095 | 0.3144 0.1093 00591 | 0.0121 | 0.0373
Min
osop ey | 20334 | 24312 | 20630 | -20129 | -2.0057 | -2.0100
Max 18130 | -1.7984 | -1.8431 | -1.8940 | -1.9813 | -1.9349
95% C.I. ' ' ' ' ' '
P-value 0.1134 | 03318 0.2672 0.0882 | 0.1909 | 0.1019
Accept
Ho =0 Yes Yes Yes Yes Yes Yes
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Case 1.2 Half Oval Interface

Let domain Q= {(x,y): -1 <x<1and 0<y<1}, and

interface - ._ {

2 2

X Yy
(x,y) i —5+ =
a, b,

=1l.a, =05.b, = 0.25}’

Subdomain that is inside the interface:

Q"

2

0

2
Y _<l,a,=05b, =

bl

0

Subdomain that is outside the interface Q" =Q/ Q" .

0.25 . -1< x<1.,0

IN

<=

IN

—_
[ —;

Table 5.3a Error Analysis For Grid Refinement of Example 5.1.2.

k=100i k=100 k=100+100i

Mesh Error Rate Error Rate Error Rate
32 3.8657325E-02 4.4417541E-02 6.0811784E-02

64 8.7199213E-03 | 2.15 | 1.1272433E-02 | 1.98 | 1.3027898E-02 | 2.22
128 2.6332450E-03 | 1.73 | 3.4108313E-03 | 1.72 | 3.9079273E-03 | 1.74
256 8.2955764E-04 | 1.66 | 9.1640248E-04 | 1.90 | 1.1840489E-03 | 1.72
512 2.2077671E-04 | 1.91 | 2.4399532E-04 | 1.91 | 3.1353999E-04 | 1.92

Conéf;i‘ince 1.83 1.86 1.87

Table 5.3b More Error Analysis For Grid Refinement of Example 5.1.2.

k=0 K=10+10i k=1+2i

Mesh Error Rate Error Rate Error Rate
32 4.2351202E-02 6.4132756E-02 4.9644458E-02

64 1.0529019E-02 2.01 1.6197542E-02 1.99 | 1.2348346E-02 | 2.01
128 2.6216007E-03 2.01 4.0506224E-03 2.00 | 3.0729950E-03 | 2.01
256 6.5443496E-04 2.00 1.0100359E-03 2.00 | 7.6676177E-04 | 2.00
512 1.6352861E-04 2.00 2.5205691E-04 2.00 | 1.9147906E-04 | 2.00

CO”(‘;‘:;i‘ince 2.00 2.00 2.00
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Ucomp Example! Case2, k=100+100i, tol=1.0E-5

375

U comp

Figure 5.5 Computed Solution for Problem One
with A Half Oval Interface, k=100+100i, m=256, n=128.

Enor Examplet Case3, k=100-+100i, tol=1.0E-5
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Figure 5.6 Error of Computed Solution for Problem One
with A Half Oval Interface, k=100+100i, m=256, n=128.
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Problem 1 with Half Oval Interface
[
ﬂcﬁgg‘\\‘ K 100
N k=100+100i
““:E;-‘\:\\_.‘ ——K=0

itk
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?.,
!I”A’
— gl

)

=

Figure 5.7 Convergence Order Comparison for Problem One with A Half Oval Interface.

Table 5.4 Convergence Analysis for Example 5.1.2.

k=100i | k=100 |k=100+100i | k=0 | k=10+10i | k=1+2i
Coefficient | 4 9981 | -0.9997 | -0.9979 | -1.0000 | -1.0000 | -1.0000
Correlation
Slope 1.8354 | -18522 | -1.8785 | -2.0054 | -1.9965 | -2.0057
Intercept | 6.1810 | 65784 | 7.0828 | 7.4695 | 80215 | 7.7008
Sest 01796 | 00733 | 01919 | 00021 | 0.0067 | 0.0017
Min
osy e | 20162 | -1.9259% | 20715 | -2.0075* | -2.0033 | -2.0074*
Max 1.6547 | -1.7785% | -1.6854 | -2.0033* | -1.9898 | -2.0040*
95% C.I.
Pvalue | 0.0626 | 00078 | 01389 | 00039 | 0.2009 | 0.0017
Accept
Hy:a=-2 Yes No Yes No Yes NO

*. a=-2 is fall outside of the confident interval with 0=0.01.
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Case 1.3 Arbitrary Half Flower Petal Interface

Let domain Q= {(x,y): -1 <x<1and 0 <y <1 }, and the interface

r:

2
X
_ (x,y):0,(x,y) = —+

2
a, b,

2
y _1,

@p(x.y)=min{ ¢,.0,} =0,

2 2

So, the subdomain that is inside the interface

Q =

(xﬁJ/)3(P1= 2+

2 2
X Y

2
a, b,

¢ (x,y) = min{

The subdomain that is outside the interface Q'=Q/ Q" .

x y
(/)z(an’):ﬁ+ a02 -1, a,
-1<x<1, <y<1
x 2 h%
-1, = + -1,
7o boz aoz
,,0,) <0, -1 < x

0.5,

IA
—_
(=)
IA
~

Table 5.5a Error Analysis for Grid Refinement of Example 5.1.3.

b, =0.25,|,

K=100i K=100 K=100+100i
Mesh Error Rate Error Rate Error Rate
32 5.1913879E-02 4.1377305E-01 8.4508015E-02
64 1.0052570E-02 | 2.37 | 8.2334070E-02 | 2.33 | 1.4939966E-02 | 2.50
128 3.0053951E-03 | 1.74 | 2.3477317E-02 | 1.81 | 4.3482050E-03 | 1.78
256 8.3011452E-04 | 1.86 | 7.2167304E-03 | 1.70 | 1.1887442E-03 | 1.87
512 2.2101530E-04 | 1.91 | 1.5688298E-03 | 2.20 | 3.1446435E-04 | 1.92
C°”(‘;‘:;ge‘ince 1.93 1.96 1.98
Table 5.5b More Error Analysis for Grid Refinement of Example 5.1.3.
K=0 K=10+10i K=1+2i
Mesh Error Rate Error Rate Error Rate
32 5.3374629E-02 7.0759979E-02 5.9816160E-02
64 1.2864436E-02 | 2.05 | 2.2450431E-02 | 1.66 | 1.4717447E-02 | 2.02
128 4.8032416E-03 | 1.42 | 7.2590087E-03 | 1.63 | 5.3513614E-03 | 1.46
256 6.5180997E-04 | 2.88 | 1.1405516E-03 | 2.67 | 7.3578566E-04 | 2.86
512 4.5682590E-04 | 0.52 | 6.5899523E-04 | 0.79 | 5.0810818E-04 | 0.54
CO”(‘;‘:;i‘ince 1.80 1.78 1.81
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Ucomp Examplel Case3, k=100+100i, tol=1.0E-5
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Figure 5.8. Computed Solution for Problem One
with An Arbitrary Flower Petal Interface, k=100+1001, m=256, n=128.

Ermor Examplel Case3, k=100+100i, tol=1 0E-&

S

Figure 5.9. Error of Computed Solution for Problem One
with An Arbitrary Flower Petal Interface, k=100+100i, m=256, n=128.

58



Order of Convergent
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Figure 5.10 Convergence Order Comparison for Problem One
with An Arbitrary Flower Petal Interface.
Table 5.6 Convergence Analysis for Example 5.1.3.
k=100i k=100 k=100+100i k=0 k=10+10i k=1+2i
Coefficient | 9976 | -0.9972 | -09968 | -0.9908 | -0.9918 | -0.9913
Correlation
Slope -1.9642 -1.9334 -2.0235 -2.0488 -1.9494 -2.0495
Intercept 7.3523 10.1501 8.3788 8.1677 8.0757 8.3452
Sest 0.2157 0.2311 0.2566 0.4418 0.3963 0.4299
Min
95% C.I. -2.1813 -2.1660 -2.2817 -2.4934 -2.3482 -2.4820
Max 17471 | -1.7008 | -1.7654 | -1.6042 | -1.5507 | -1.6169
95% C.I. ' ' ' ' ' '
P-value 0.6360 0.4296 0.7906 0.7500 0.7136 0.7400
Accept
Hy:a=-2 Yes Yes Yes Yes Yes Yes
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Table 5.7 Computing Cost Analysis: Number of Iteration for Example 5.1.1.

Mesh | k=100i | k=100 | k=100+100i | k=0 | k=10+10i | K=1+2i
32 15 10 11 8 10 9
64 13 10 10 8 10 9
128 13 10 11 8 10 9
256 13 10 11 8 10 9
512 13 10 11 8 9 9

Table 5.8 Computing Cost Analysis: Number of Iteration for Example 5.1.2.

Mesh | k=100i | k=100 | k=100+100i | k=0 | K=10+10i | k=1+2i
32 10 10 11 8 10 8
64 10 12 11 9 10 9
128 10 12 10 10 11 10
256 9 12 10 9 11 9
512 9 12 10 9 11 9

Table 5.9 Computing Cost Analysis: Number of Iteration for Example 5.1.3.

Mesh | k=100i | k=100 | k=100+100i | k=0 | k=10+10i | k=1+2i
32 11 12 13 11 12 11
64 10 12 11 11 12 11
128 16 17 17 17 16 16
256 11 14 12 12 13 12
512 18 17 19 17 20 19
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5.2 Numerical Example 2

In this example, we consider a problem with a discontinuous source term f, and the
differential equation is

u, tu, +ku=f, (x,y)eQ, (5.4)

with exact solution as

X Q—
0, (x,y) e Q".
and if k=0 (Poisson equation), then the source terms is
/=0, (xyeQ. (5.9)

The interface and the wave number k are given in each individual case, the Dirichlet
boundary condition and jump condition [u]=w will be determined accordingly. Beware that

the other jump condition [un] =g is unknown

Case 2.1 Half Circular Interface

Let the domain Q= {(X,y): -1 <x<land 0 <y <1 }, and

x2 y2
Interface: I = {(x, y)i—+ el =1,a, =0.5,b, = 0.5}.
0 0

Subdomain that is inside interface:

2 2

Q::{(x,y):x—2+y—<1, a, =05, b, =05 -1<x<I, Ogygl}-

- <
a, b,

Subdomain that is outside interface: Q'=Q/ Q" .
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Table 5.10a Error Analysis for Grid Refinement of Example 5.2.1.

K=100i k=100 k=100+100i
Mesh Error Rate Error Rate Error Rate
32 1.9172309E-02 1.3101805E-01 2.8496815E-02
64 4.9807631E-03 | 1.94 | 2.1360192E-02 | 2.62 | 7.1232807E-03 | 2.00
128 1.3884691E-03 | 1.84 | 6.3771377E-03 | 1.74 | 1.9176186E-03 | 1.89
256 3.4969866E-04 | 1.99 | 1.4476327E-03 | 2.14 | 4.7597509E-04 | 2.01
512 8.8140329E-05 | 1.99 | 3.6014252E-04 | 2.01 | 1.1939369E-04 | 2.00
Conéf;g;”ce 1.94 2.09 1.97
Table 5.10b More Error Analysis for Grid Refinement of Example 5.2.1.
k=0 K=10+10i k=1+2i
Mesh Error Rate Error Rate Error Rate
32 4.2454093E-02 4.2454093E-02 4.7394051E-02
64 1.0469232E-02 | 2.02 | 1.0469232E-02 | 2.02 | 1.1685877E-02 | 2.02
128 2.6134649E-03 | 2.00 | 2.6134649E-03 | 2.00 | 2.9153959E-03 | 2.00
256 7.3696011E-04 | 1.83 | 7.3696011E-04 | 1.83 | 7.7192953E-04 | 1.92
512 1.8364497E-04 | 2.00 | 1.8364497E-04 | 2.00 | 1.9422000E-04 | 1.99
Coné’)f;ge‘ince 1.95 1.95 1.98
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Ucomp Example2 Cagel, m=286, tol=1.0E-5

Figure 5.11 Computed Solution for Problem Two
with A Half Circle Interface, k=100+100i, m=256, n=128.

Etror Example2 Casel, k=100+100i, tol=1.0E-6

w10

[T corrp — U eaact|

Figure 5.12. Error of Computed Solution Problem Two
with A Half Circle Interface, k=100+1001, m=256, n=128.
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Order of Convergent
Problem 2 with Half CircularInterface
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Figure 5.13 Convergence Order Comparison for Problem Two with An Half Circle Interface.

Table 5.11 Convergence Analysis for Example 5.2.1.

k=100i k=100 | k=100+100i k=0 k=10+10i | k=1+2i
Coefficient | ) 9999 | -0.9983 | -1.0000 | -0.9999 | -0.9999 | -1.0000
Correlation
Slope 19362 | -2.0897 | -1.9701 | -1.9534 | -1.9534 | -1.9782
Intercept 39939 | 7.2989 4.7187 51674 | 5.1674 5.4654
Sest 00488 | 02232 0.0340 0.0595 0.0595 0.0319
Min
o55% .. -1.9853* | -23143 | -2.0044 | -2.0133 | -2.0133 | -2.0103
Max -1.8871* | -1.8651 -1.9359 -1.8935 | -1.8935 -1.9461
95% C.I.
P-value 00257 | 0.2933 0.0694 0089 | 0.0896 0.1192
Accept
H,:a= 9 Maybe Yes Yes Yes Yes Yes

*. a=—2 falls between 99% confident Interval [-2.0264,-1.8460].
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Case 2.2 Half Oval Interface

Let domain Q= {(x,y): -1 <x<1and 0<y <1}, and interface

0

2

0

Subdomain that is inside the interface:

=

2 2
x
(x,y):—2+y—2£
a, b,

2
r= {(x,y):x—2+;;—2= l,a, = 0.5,b, = 0.25}.

l,a, =0.5,b, =0.25,-1<x<1,0<y sl}-

Subdomain that is outside the interface Q" =Q/ Q" .

Table 5.12a Error Analysis for Grid Refinement of Example 5.2.2.

k=100i k=100 k=100+100i

Mesh Error Rate Error Rate Error Rate
32 1.3909343E-02 1.3494268E-02 2.1417184E-02

64 3.5219551E-03 | 1.98 | 3.4273603E-03 | 1.98 | 5.1010118E-03 | 2.07
128 1.1136624E-03 | 1.66 | 1.0692560E-03 | 1.68 | 1.5781984E-03 | 1.69
256 3.9142595E-04 | 1.51 | 2.7907968E-04 | 1.94 | 5.4499299E-04 | 1.54
512 9.8978365E-05 | 1.98 | 7.4918455E-05 | 1.90 | 1.3846264E-04 | 1.98

Coné‘:;gefnce 1.74 1.86 1.78

Table 5.12b More Error Analysis for Grid Refinement of Example 5.2.2.

K=0 k=10+10i K=1+2i

Mesh Error Rate Error Rate Error Rate
32 4.2345275E-02 6.3370572E-02 4.9557268E-02

64 1.0527419E-02 | 2.01 | 1.6014427E-02 | 1.99 | 1.2323084E-02 | 2.01
128 2.6216757E-03 | 2.01 | 4.0061370E-03 | 2.00 | 3.0667723E-03 | 2.01
256 6.5430825E-04 | 2.00 | 9.9966997E-04 | 2.00 | 7.6546386E-04 | 2.00
512 1.6348735E-04 | 2.00 | 2.4947955E-04 | 2.00 | 1.9119254E-04 | 2.00

Conéf;ge‘ince 2.00 2.00 2.00

65




Ucomp Example2 Case2, m=256, tol=1.0E-5

Figure 5.14. Computed Solution for Problem Two
with A Half Oval Interface, k=100+100i, m=256,n=128.

Error Example? CaseZ, k=100+1001, tol=1.0E-5

w10

5.

I

| corvap — I awact |
w
:.J”"‘“‘-"
£ —

Figure 5.15. Error of Computed Solution for Problem Two
with A Half Oval Interface, k=100+1001, m=256, n=128.
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Figure 5.16 Convergence Order Comparison for Problem Two with A Half Oval Interface.

Table 5.13 Convergence Analysis for Example 5.2.2.

k=100 k=100 | k=100+100i k=0 K=10+10i | k=1+2i
Coefficient | 5504 -0.9997 -0.9988 -1.0000 | -1.0000 | -1.0000
Correlation
Slope 11,7439 -1.8604 1.7773 2.0042 | -1.9979 | -2.0045
Intercept 2.4575 3.0666 3.2155 54567 | 6.0169 | 5.6852
Sest 0.1504 0.0766 01611 00027 | 00067 | 0.0027
Min -1.8953* | -1.9375%* | -1.9394*** | -2.0069% | -2.0047 | -2.00724#
95% C.I.
95'\;3(’:‘ | _1.5925* | -1.7833** | -1.6152*** | -2.0014# | -1.9912 | -2.0018##
(s] ol
P-value 0.0126 0.0104 0.0221 00169 | 04016 | 0.0132
Accept
Hy:a=-2 Maybe Maybe Maybe Yes Yes Maybe

*. a=—2 fall between 99% Confident Interval [-2.0218,-1.4660].
**: a=-2 fall between 99% Confident Interval [-2.0019, -1.7189].
k4% a=—2 fall between 99% Confident Interval [-2.0748, -1.4797].
#: a=-2 fall between 99% Confident Interval [ -2.0092, -1.9991].
##: a=—2 fall between 99% Confident Interval [ -2.0094, -1.9995].
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Case 2.3 Arbitrary Half Flower Petal Interface

Let domain Q= {(x,y): -1 <x<1and 0 <y <1 }, and the interface

_— (x,y):(/)l(x,y)=z—§+z7—l, ¢2(x,y):z7+ zg a, = 0.5, b, =025,
p(x,y)=min{ ¢,.0,} =0, —-1<x<1, <y<l1
So, the subdomain that is inside the interface
x’ x? y
AR AR R T “hoga =gl @ =05, by =025
p(x,y)=mn{ ¢,.0,} <0, -l = x 0 < y<
The subdomain that is outside the interface Q'=Q/ Q" .
Table 5.14a Error Analysis for Grid Refinement of Example 5.2.3.
K=100i k=100 K=100+100i
Mesh Error Rate Error Rate Error Rate
32 1.7045674E-02 1.1645818E-01 2.6767626E-02
64 3.5129496E-03 2.28 4,1921111E-02 1.48 4,9592515E-03 2.43
128 1.1078943E-03 1.66 1.5779112E-02 1.41 1.5496942E-03 1.68
256 3.9008112E-04 1.51 3.1673795E-03 2.32 5.4311581E-04 1.51
512 9.8402477E-05 1.99 8.5726590E-04 1.88 1.3750733E-04 1.98
Convergence 1.80 1.79 1.84
Order
Table 5.14b More Error Analysis for Grid Refinement of Example 5.2.3.
k=0 K=10+10i k=1+2i
Mesh Error Rate Error Rate Error Rate
32 5.2950678E-02 7.0444768E-02 5.9067049E-02
64 1.2893373E-02 2.04 2.1849600E-02 1.69 1.4873880E-02 1.99
128 4.8007356E-03 1.43 7.1862374E-03 1.60 5.2856641E-03 1.49
256 6.5230164E-04 2.88 1.0328548E-03 2.80 7.3415854E-04 2.85
512 4. 5758565E-04 0.52 6.6852508E-04 0.62 5.0220057E-04 0.55
Convergence 1.80 1.78 1.81
Order
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Ucomp Example2 Case3, k=100+100i, tol=1.0E-5

Figure 5.17. Computed Solution for Problem Two
with An Arbitrary Flower Petal Interface k=100+100i, m=256, n=128.

Error Example2 Case3, k=100+100i, tol=1.0E-5

x 10

[T cormp — U ewact|

Figure 5.18. Error of Computed Solution for Problem Two
with An Arbitrary Flower Petal Interface k=100+100i, m=256, n=128.
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Order of Convergent
Problem 2 with Arbitrary Interface
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5.19 Convergence Order Comparison for Problem Two
with An Arbitrary Flower Petal Interface.
Table 5.15 Convergence Analysis for Example 5.2.3.
k=100i k=100 k=100+100i k=0 k=10+10i k=1+2i
Coefficient |, 9976 -0.9953 09966 | -0.9851 | -0.9876 | -0.9862
Correlation
Slope -1.8044 -1.7898 -1.8400 -1.8014 -1.7842 -1.8096
Intercept 2.9346 6.0977 3.7028 4.6308 5.1031 4.8500
Sest 0.2307 0.3180 0.2774 0.5734 0.5180 0.5554
Min
959% C.I. -2.0365 -2.1098 -2.1192 -2.3783 -2.3054 -2.3685
Max -1.5722 -1.4698 15609 | -1.2244 | -1.2629 | -1.2508
95% C.I. ' ' ' ' ' '
P-value 0.0750 0.1278 0.1658 0.3534 0.2792 0.3577
Accept
Ho cq=-_2 Yes Yes Yes Yes Yes Yes
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Table 5.16 Computing Cost Analysis: Number of Iteration for Example 5.2.1.

Mesh | k=100i | k=100 | k=100+100i | k=0 | K=10+10i | k=1+2i
32 9 14 10 8 8 9
64 9 12 9 7 7 8
128 9 12 10 8 8 9
256 9 12 10 9 9 8
512 9 12 10 9 9 9

Table 5.17 Computing Cost Analysis: Number of Iteration for Example 5.2.2.

Mesh | k=100i | k=100 | k=100+100i | k=0 | k=10+10i | K=1+2i
32 9 10 11 8 10 9
64 9 12 10 7 9 8
128 8 12 10 9 10 9
256 8 11 10 9 10 8
512 8 12 10 9 10 9

Table 5.18 Computing Cost Analysis: Number of Iteration for Example 5.2.3.

Mesh | k=100i | k=100 | k=100+100i | k=0 | K=10+10i | k=1+2i
32 10 11 12 11 12 12
64 9 11 10 11 11 11
128 14 16 15 15 16 15
256 10 13 11 13 13 12
512 17 17 15 18 19 18

5.3 Discussion

The entire numerical experiment are consisted of two group of problem, three set of
interface, six different wave numbers and five increasing mesh size from 32 to 512. So we

have total 180 original measurements for the error between exact solution and computed
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solution; 180 number of iteration for the solver performs. We consider different mesh size
but same problem, same interface and same wave number as one convergence test block in

this dissertation.

Correlation study is conducted for every block of convergence on the correlation of
the logarithm of computational error and logarithm of mesh size. More specifically the
Pearson Product Moment Correlation Coefficient (PPMC) is computed, for the logarithm of
the mesh size n as the independent variable, and the logarithm of the complex number norm
of error as the dependent variable. The correlation coefficients are overwhelmingly close to
—1.0. (See row of Coefficient Correlation at the statistical analysis tables). This shows there
is strong negative linear relationship between the variables. The larger the mesh size, the
smaller the error of the computed solution toward to exact solution. This is in line with what

we have found later in linear regression analysis.

Linear regression is also conducted to find the line of best fit for every block of
convergence [28]. There are 36 convergence order numbers. Their average value is 1.913
with standard deviation of 0.097. (See the row of Slope at statistical analysis tables). This

shows that our computed solutions convergence to exact solution at the order very close to 2.

T-test is performed for each of convergence order (i.e. slope of linear convergence

model, we write it as a notation for the rest of this discussion) [28]. See Rows of Sest

(Standard Error of Estimate), Min.95% C.I. (Minimum Value of 95% Confident Interval),
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Max.95% C.I. (Maximum Value of 95% Confident Interval) and P-value in the statistical
analysis tables. Below is the summary:

Table 5.19 Summary of the Statistics Analysis for Convergence.

Catalog T-test Conclusion Frequency

Conv Order > -2 Enough Evident (a=0.01) to reject Hy. a = -2 1

Conv.Order = 2" | Weak Evident (a=0.01) not to reject Hp.a= -2 | 4

Conv.Order = -2 Strong Evident (a=0.05) to accept Hy. a = -2 27

Conv.Order = -2~ | Weak Evident (¢=0.01) not to reject Hp. a=-2 | 2

Conv.Order < -2 Enough Evident (a=0.01) to reject Hy. a = -2 2

Please notice that there are few cases (total 3 as 8.3%) that we have to reject the claim of
second order convergence one way or the other. This is because that there are small number
of observations and thus narrow standard deviation for the data. The data is overwhelmingly

normal distributed, and strongly support the claim of second order convergence.

Therefore, we are very confident that this method is second order convergence.

The convergence order for computational error is not affected by different functions
and the geometry shapes of different interfaces. Our experimental functions and interfaces
are all piecewise smooth. So, there exist remote isolated points which require special
attention. For example, when conducting least square interpolation for the left most and right

most bottom irregular points near the interface, we have to introduce the exact boundary
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condition instead of relying only on the values from neighborhood points. The second order
convergence for the least square interpolation is very crucial for the augment strategy and

success of the entire project.

Our algorithm and its executions are stable, robust and efficient. We have 2 groups of
test functions, three interfaces with level set, six wave numbers including from zero to
100+100i, and mesh size ranged from 32 to 512. The algorithm is always capable to return
the approximate solution without hiccup. And the iteration of FFT solver remains relatively
constant, independent to the problem, interface, wave number and mesh size, only varies

with the GMRES error toleration.

Further, some random extreme parameters are experimented as individual cases. For
example, when experiments with large wave number like, k=10000, or 100001, the
convergence order is affected compare to other wave number under the same mesh size,
which are in line with other researchers’ finding. Another example, when using large mesh
size, like m=1024, 2048, the computational solution are still achieved second order
convergence, through the computing time is couple hours long. As long as the Schur
complement residual is relatively large compare with the GMRES error toleration, our
method will return the solution with approximate second order of convergence. In future,
execution updates, such as operating in a superior computer with fast CPU and huge

memory, will be sure to improve perform of this algorithm.
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CHAPTER 6

Conclusions

6.1 Research Conclusions

This dissertation has extended the Immersed Interface Method to two dimensional
Helmholtz / Poisson equation problem in complex number space, the partial differential
equation also have discontinuities and singularities in the coefficients and the solutions. In

the process, we have achieved following.

e Developing new two-dimensional Fast Fourier Transformation method in complex
number space to solve Helmholtz / Poisson equations on rectangular domains. This
method is second order convergence with respect to the mesh size, it is stable and
efficient. (Chapter 2).

e Analyzing and extending the Immersed Interface Method in two-dimensional
Helmbholtz / Poisson equation problem in complex number space with discontinuous
and singularities. (Chapter 3).

¢ Investigating and modifying the Augment Strategy for function in complex number
space which involves least square interpolation, Schur complement and GMRES

(Chapter 4).
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¢ Implementing all above methods/algorithms/strategies in numerical experiments, the
numerical el Oxperiments are successful and the results are consistent with our

analytical prediction. (Chapter 5).

6.2 Future Research Work

In the future we would like to conduct further numerical investigation about other boundary
conditions, i.e. Neumann and Robin conditions. Although the main theatrical analysis is
presented in Chapter Two, the change of boundary condition may be required many
subroutines and functions due to the nature of our interface, which demands more time and
energy. Additional test examples in complex number space are also needed. We have so far

explored wide range of wave number from 0 to 100+100i, but just two examples.

There are other plan of work can be considered, maybe in a long term effect. There are high
convergence order Immersed Interface Method existing for two dimensional real-numbered
Poisson and /or Helmholtz problem with discontinuous coefficients and solution. It would be
an interesting challenge to extend it to complex number space. Another possible direction
worth exploring is the three dimensional Poisson / Helmholtz problems in complex number

space. They may have lots of real world application in electromagnet.
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Appendix A
PROLOGUE OF THE PACKAGE FFT POISSON COMPLEX3
A FORTRAN CODE FOR SOLVING DOUBLE PRECISON COMPLEX NUMBER

HELMHOLTZ PROBLEM

subroutine fft poisson complex3(m,n,fh.k,u)

Cokskskeskskskskskskokskskokskskokskskokskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskok
C

C Fast Fourier Transformation solver in retangular domain

C
Cosksstoksotokskotokskokokskoiokskokosksokoksokoksoioksoioksokoksoksksoksksokskskokskokokskokokskokskskokokskoksksokskskokokskokok

This function solves the 2-D Helmholtz problem
Uxx +Uyy +kU-=f(x,v)
using the Fast Fourier Transformation in complex number.

The domain is defined on a retangular region with equal sized
mesh spacing, but the size m and n may be different.

inputs:
m = # of row of the grid matrix

n = # of col of the grid matrix
f = matrix of modified rhs values evaluated at interior meshpoints
h = mesh spacing for x and y, hx=hy=h
k = constant in above formula
outputs:

u = solution to PDE at interior meshpoints

oNeoNoNeoEoNeoNoNeONONOHNONOHNONONP NGOG OO IO
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working spaces:
vm: m X m matrix for discrete Fourier transformation
vn: n X n matrix for discrete Fourier transformation
lambdam: 1 X m eigenvalue for discrete Fourier transformation
lambdan: 1 X n eigenvalue for discrete Fourier transformation
fbar: m X n matrix, discrete Fourier transformation f
ubar: m X n matrix, discrete Fourier transformation u
z: m X n matrix, middle value

Subrountinges called:
Matrix3Multi: Multiplication of 3 matrix A(mXm) X B(mXn) X C(nXn)
ConstantMultiMatrix: constant multiplation to matrix

Precision: double complex (f-g,k, r—z)
double precision (a-e, h, 1, 0—q)
integer (m, n)

Written by Sidong Max Zhang, February, 2012

oNoNoNeoNoNoNoNeoNeONoNONONONONOHOHNOHONOHNONPHONO PG

Ceststekstcekeseksokeksokskeoksiokokskoksokokokskeeksokoksokoksokokokskeeksokokokoksokokokskeokkokoksokokokokek
C

C END OF DOCUMENTATION FOR fft poisson complex3

C
Ceoksokssokokekokssoksokolokokekokesioksiokolokokerokseioksokokokokekokssoksokokokokokk
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Appendix B
PROLOGUE OF THE PACKAGE GMRES
A FORTRAN CODE FOR SOLVING COMPLEX NUMBER SCHUR COMPLEMENT

RESIDUAL EQUATION USING GMRES METHOD

subroutine gmres(nlmax, mm, m, n, nl, n2, imax, a, b, ¢, d, h, phi, x, v,
1 cinfo, zinfo, index, index2, zelmbda, uj, unj, u, f,
zx0, zbf, tol, svdcl, svde2, iter, error)

Corsksteskskstokskooskskookskokosksokskskokoskskookskokskskoksksokosksokosksokoksokoksoksksokskookskokokskokokskokskskokskskokskskokoksk
C

C  GMRES for Schur complement residual equation

C
Cokskskeskskskskskskokskskokskskokskskokskskokskskoskskskokskskoskskskoskskskoskskskoskskskokskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskok

This subroutine solves
(D-CA™ (-1)B)G=CA" (-1)F 1

using the Generalized Minimum Residual method for complex number.
to solve Schur complement in the Immersed Interface Method package

inputs:
nlmax =maximum number of irregular point allowed
mm = The number of previous vector used, (mm=80), for example
# of row of the grid matrix
n = # of col of the grid matrix
nl = exact number of irregular point along the interface
n2 = exact inside irregular point along the interface
imax = maximum number of iteration allowed
a, b,c,d = left, right, bottom and top boundary
h = mesh spacing for x and y, hx=hy=h
phi = zero level set function for interface
X,y = grid points, x(0:m), y(0:n)

m

O OO OO OO0 000000000000 0.,
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cinfo = irregular point information

zinfo = irregular point informtion

index =index for the irregular point

index2 =index for the inside irregular pint

zelmbda = wave number in the original equation

uj = [u] u jump condition on the interface

unj = [u n] un jump condition on the interface

u = initial computed solution

f = matrix of modified rhs values evaluated at interior meshpoints
zx0 = initial residual of the Schur complement

zbf = residual of the Schur complement

tol =maximum norm 2 error allowed

svdcl = coefficient of the least square interpolation 1
svdc2 = coefficient of the least square interpolation 2

error = norm 2 error

outputs:
u = solution to PDE at interior meshpoints
iter = number of iteration performed

working spaces:

zhg:

v

vk:

7S

zx11:

zhj:

ztemp:

oNeoNoNoNoNeoNoNeoNeoNoNeoNoNeoNoNeoNoNeo NN NoONOHONOHONOHNONONONONOIO IO IeNeNe oo eI

Subrountinges called:
matvetl computing matrix A and vector x, then find A" (-1)x
resid return vector zr=zb-zx
DZNRMZ returns the euclidean norm of a vector
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ZSCAL scales a vector by a constant
ZDOTC forms the dot product of a vector

Precision: double complex (f-g,u-w,z)

integer (i—n)

C

C

C

C

C

C

C double precision (a-e,h, o-t, x—v)
C

C

C

C

C Written by Sidong Max Zhang, October, 2012

C
Cokskskeskskskskskskokskskokskskokskskokskskokskskokskskokskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskoskskskskskskoskskskok
C

C END OF DOCUMENTATION FOR GMRES

C
Coskskstokskoiokskoiokskokoskskoioksoioksokosksokoksoioksoksksokosksoksksokskskokskskokskokokskokokskokskskokskskoksksokskskokokskokok
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