
ABSTRACT 

ZHANG, SIDONG MAX. The Immersed Interface Method for Two Dimensional Poisson / 
Helmholtz Equations in Complex Number Space. (Under the direction of Dr. Zhilin Li.)  
 

This thesis describes an expanded Immersed Interface Method for solving the two-

dimensional Helmholtz /Poisson equations in the complex number space with an interface. 

Across the interface, the coefficient of the Helmholtz equation may have a finite 

discontinuity, and the source term of the Helmholtz /Poisson equations can have singular 

source terms. The solution and its normal derivatives can have discontinuities across the 

interface. Then we apply the developed method for solving Helmholtz /Poisson equations on 

irregular domains using the augmented immersed interface method.  

 

This dissertation utilizes a combination of methodologies including the immersed interface 

method, Fast Fourier Transformation algorithm, augmented strategies,  least squared 

interpolations, and the Generalized Minimal Residual method (GMRES) in complex number 

space for the Schur complement system. This expanded IIM is structured that the computed 

solutions are second order convergent towards the exact solution. Moreover, the cost of 

computation is designed to be efficient when solving the Schur complement system with 

almost constant number of iterations.  

 

This dissertation also includes numerical experiments that have two different type problems. 

The results have confirmed the theoretical analysis expectation. The computed solutions 

showed statistically second order convergence. The proposed method is efficient, robust for 

wide range of real or complex wave numbers.  
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CHAPTER 1  

Introduction 

 

In this dissertation, we studies two-dimensional Helmholtz Equation in complex number 

space in general irregular domains with a Dirichlet boundary condition:  
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    (1.1)  

These particular equations are used describe many problems related to steady-state 

oscillations in different media, such as mechanical, acoustical, thermal and electromagnetic 

phenomena. These problems also have been widely used in military and civil engineering 

communities.  

 

In reality of the electromagnetic field models, the domains are more than likely to have 

discontinuous media with general irregular interfaces, and the models may have a complex 

wave number (k) which represents both electric and magnetic charges. These phenomena 

present extra challenges for the researchers and engineers, because the traditional methods 

are usually designed for rectangular domains, and real wave numbers. This dissertation is 

trying to make progress in answering these challenges.  
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1.1 The Application Problem and its Difficulty 

 

Developed by Maxwell and Hertz, the theory describing electromagnetic waves can be 

written in the format of Helmholtz equation [14,27].  

 

For example in [9,43], Figure 1.1, demonstrates the electromagnetic scatting from a two-

dimensional open cavity filled with inhomogeneous media. The ground plane and the walls 

of the open cavity are assumed as perfect electric conductors (PEC), and the interior of the 

open cavity is filled with non-magnetic materials which may be inhomogeneous. The half 

space above the ground plan is filled with a homogenous and isotropic medium with its 

permittivity ε and permeability µ. Also, the electromagnetic scattering by the cavity is 

governed by the Helmholtz equation along with Sommerfeld’s radiation conditions imposed 

at infinity.  

 

Figure 1.1 Diagram of an Electromagnetic Wave Model. 
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 Due to difficulties in designing the finite difference approximations close to a curved 

boundary, the irregular domain will be embedded into a larger rectangle domain. So, the 

original differential equation is extended to the rectangular domain correspondingly by 

introducing the following jump conditions across the interface, where the interface Γ is the 

boundary of the original domain.  
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Figure 1.2 Rectangular Domain with An Embed Arbitrary Interface. 

 

Therefore, the harmonic Maxwell equation is reduced to Helmholtz equation format: 
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Another advantage of embedding an irregular domain into a rectangular domain is that it is 

almost no computing cost in generation the grid under Cartesian coordination.
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1.2 Helmholtz and Poisson Equations  

 

The Helmholtz equation in rectangular domain has the following form  

Φ−=+∆ kuu  .       (1.2) 

The particular two-dimensional Helmholtz equation in the Cartesian coordinate system:  
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where k is the wave number (in some reference, it is expressed as k2); f is a source. To 

simplify our notation, we write the right-hand as f(x, y) instead of −Φ(x, y) in this 

dissertation. If k=0, then (1.3) became a Poisson equation: 

),(
2

2

2

2

yxf
y

u

x

u
=

∂

∂
+

∂

∂
 .      (1.3a) 

For a homogeneous Helmholtz equation with f≡0, the general analytic solution exists, and 

can be written as a combination of following particular solutions 
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 (1.4) 

For inhomogeneous Helmholtz equation in the rectangle domain (say 0 ≤ x ≤ a, 0 ≤ y ≤ b), 

with Dirichlet boundary condition as prescribed: 
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The solution can be written analytically in an integral equation involving Green’s function 
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where the Green’s function G(*) has the following forms of representation: 
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Though, we can analytically give out the solution for rectangular domains and 

boundary condition [41], they will become very complicated and not practical for physics 

and engineering use when the domain is general and irregular. Thus, numerical methods and 

solutions are still required and in high demand [35].   
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1.3 Review of Existing Numerical Methods 

 

For a problem defined on an irregular domain, the method most often used is the 

embedding technique. We will discuss in detail later in chapter 3 and 4 of this dissertation. 

Then the problem can be treated as a special interface problem. Therefore, the terminology of 

interface problems is introduced to include the problems defined on irregular domains.  

 

There are many algorithms and methods discussed in research papers in the literature 

that address the interface problem. For example, smoothing method for discontinuous 

coefficients, harmonic averaging for discontinuous coefficients, immersed boundary method, 

numerical integral equation method, ghost fluid method, and immersed interface method are 

the most frequently referenced in the related fields. This dissertation just focus on the two 

dimensional method that has closest relation to our algorithm, that is the Immersed Boundary 

method, the numerical integral equation method, and existing Immersed Interface Method.  

 

 

1.3.1 Immersed Boundary (IB) method 

 

This Immersed Boundary method was originally developed by Peskin [29, 30, 31, 32, 

33] to model the blood flow in a human heart, and has been applied to many other problems, 

particularly in biophysics.  
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One of the most important ideas in the IB method is the use of a discrete delta 

function to distribute a singular source to nearby grid points. The commonly used discrete 

delta functions in one dimension are as following.  
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In two dimensions, the discrete delta function often is the product of one dimensional 

discrete delta functions, such as )()(),( yxyx
εεε

δδδ = . And the discretized Helmholtz 

equation at (xi, yj) became  
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where ks is the number of discrete points {(xi*, yj*)} on the interface, {γk}’s are the 

coefficients that involved in the finite difference scheme, h is the mesh spacing. In this way, 

the singular source is distributed to nearby grids points in a neighborhood of the interface Γ.  

 

The Immersed Boundary method is robust and simple to implement. It has been 

applied to many problems in mathematical biology and computational fluid mechanics [1, 2, 

4, 5, 7, 8, 10, 11, 12, 39, 42, 44]. Various work has been developed to improve the accuracy 

of the IB method, and it is most time first order convergence results [29, 31,30], with some 

occasional second order convergence [17, 34]. But, there is not yet any complete analytical 

convergence proof for the IB method [30]. However, stability analysis of the IB method is 

given in [37, 38] for a membrane problem. 

 

 

1.3.2 Integral Equation Method  

 

 Greenhaum, Mayo and their collaborators [23, 24, 25, 26] are among the few who 

first combined integral equation based on the single and double layer theory with finite 

difference methods to solve a Poisson equation on an irregular domain. The irregular domain 

is embedded into a larger rectangle, and then the problem is recast as an elliptic interface 

problem such that the solution is harmonic in the rectangle, excluding the boundary. Taylor 

expansions at irregular grid points and the integral representation of the particular solution 

near the irregular boundary are used. The source strength is determined from an integral 

equation. The jump conditions are derived from the integral equation and are used to derive 
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the finite difference schemes at all grid points in the rectangular domain so that a fast Poisson 

solver can be used.   

 

 By solving the integral equation and a regular Poisson equation, the algorithm is 

somehow second order accuracy in L∞ norm. The numerical integral equation methods are 

most effective for homogeneous source terms and certain boundary conditions. Although this 

method still can be applied for nonhomogeneous source terms and different boundary 

conditions if with some extra effort. The implementations of these methods, especially when 

they are coupled with the fast multipole method, are difficult.    

 

 

1.3.3 Immersed Interface Method  

 

Immersed Interface Method is first developed by LeVeque and Li in 1994 [19]. It is 

motived by Peskin’s IB method, but there are remarkable improvements in IIM. IIM is a 

sharp interface method which the discontinuities or the jump condition are enforced exactly 

by prior knowledge or approximately through Augmented strategy [20, 16].  

In general cases, standard finite difference methods are used in discretization. At the 

grid point near or on the interface, a correction term is added according to the jump condition 

to ensure point-wise convergence. By this approaching, IIM can still take advantage of 

existing numerical algorithm to solve the differential equation system. In most cases, IIM can 

achieve second order global accuracy under the infinity norm L∞ . 
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This dissertation is trying further expending Immersed Interface Method into 

complex-numbered wave number and function, while thus preserving its advantages, like 

efficient and stable solution with second order convergence.  

 

 

1.4 Outline of the thesis 

 

Chapter One surveys the general IIM background and literature. The fundamental 

concepts such as interface problems and jump condition are introduced. The last section 

describes the structure of this thesis. 

  

In Chapter Two, we studied the solution for Poisson and Helmholtz equations in 

rectangular domains without interface jump conditions. A new Fast Fourier Transformation 

method is derived and analyzed for the efficiency and stability. 

 

 In Chapter Three, we introduced correction terms at irregular grid points such that the 

proposed algorithm is 2nd order convergence.  

 

 In Chapter Four, we further studied some unknown interface conditions. Augmented 

Strategies are used to assume one of the unknown interface variables, and estimated by 

weighed least square interpolation, then we created Schur complement system. Finally, 

GMRES method was used to solve for the whole system.  
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 Two examples of numerical experiments are presented in Chapter Five. Under 

different functions, interface condition and computing circumstances, all results are in line 

with our previous analysis.  

 

The last chapter summarizes the contributions we have achieved and discusses 

several possible future research topics.  

 

At the end of the thesis is a list of papers, books and presentations which this research 

has referenced.  
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CHAPTER 2  

ZFFT methods for solving two dimensional Poisson / 

Helmholtz Equation in Rectangular Domains 

 

The Fast Fourier Transformation (FFT) method for solving two dimensional Poisson’s 

equations was first introduced by Cooley and Tukey [15] in 1965. It was focused on squared 

domains with uniformed mesh space. The main idea of this method is to take advantage of 

some beautiful properties of the discrete Fourier transformation, which is able to decompose 

the tridiagonal matrix into multiplication of eigenvalues and their eigenvectors. Therefore, by 

substituting the variables back and forth twice, the FFT method only needs O(NlogN) 

multiplications instead of computing  the inverse of the matrix, thus it is much faster.  

 

In 1984, Swarztrauber further developed the FFT method for rectangular domains [40]. He 

first converted the two-dimensional solution ui,j into 1-dimensional vector umi+j, and turned 

the finite difference scheme into a tridiagonal block matrix, and then solve the linear 

equations system using row reduction  method. This method achieved O(NlogN) (N=m×n) 

efficiency. But it is somehow confusing, and not easy to understand and implement.   

 

To ensure the efficiency of our computing, the FFT method in this dissertation is designed 

for rectangular domains. For inscribing an arbitrary shape into another geometry shape, a 

rectangular is more than likely to cover less area than a square. Thus the rectangular 

constructs less grid points, and therefore less computation.  
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In addition, we also need double complex precision for our data to keep rounding errors from 

distorting our computing result. For example, we need the Schur complement residues in 

very high precision so that the jump condition in the interface can be accurately obtained.   

 

However, there is no existing FFT method that fit for our requirements at the time. Besides, 

modern day computing environment is completely different from the 60s to 80s, the old 

Fortran code that developed at that time may be obsolete and may not be complied smoothly 

nowadays. So, we decided to develop our very own Fast Fourier Transformation methods for 

rectangular domains with double complex precision. We would like to call the new algorithm 

ZFFT, it is because this Fast Fourier Transformation method is dealing with complex number. 

There three slightly variation of the algorithms total, we are going to introducing them one by 

one. 

 

 

2.1 ZFFT Method with hx ≠ hy, and m = n  

 

First, we consider the discrete finite difference equation for Poisson equation in a rectangular 

domain with the standard 5 point finite difference scheme at a rectangular domain can be 

written as   

njif
h

uuu

h

uuu
ij

y

ijjiji

x

ijjiji
,,1,,

22

2

1,1,

2

,1,1
L=≈

−+

+

−+
−+−+

,  (2.1) 
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where hx and hy are the mesh spaces in their respect x-axis and y-axis direction, and we 

assume that hx ≠ hy, and m = n. Notice that fi,j is the right hand side value intergraded with 

boundary condition. To rewrite (2.1) in matrix format 

FUT
h

TU
h

yx

≈+
22

11
 ,       (2.2) 

where  
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Apply discrete Fourier Transformation to each column of T, then T=V-1DV. (2.2) became  
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It is worth to point out that V has another beautiful property that  

V
n

V
1

21

+

=
−  .         (2.4)  

Multiply hx
2hy

2, and V from left and V-1 from right to (2.3) at both sides, then  

1221212 −−−

=+ FVVhhDVUVhDVUVh
yxxy

 .     (2.5) 

Now, let 
nnji

uVUVU
,,

1
)(==

− , and 
nnjiyx

fVFVhhF
,,

122
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−  , then 

FDUhUDh
xy
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Since D is diagonal matrix, then Ū in (2.5) can be easily solved  

njiwhere
hh

f
u

jxiy
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ji
K1,,

22

,

,
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+

=

λλ
 .     (2.7) 

Further, for Helmholtz equation, (2.7) can be  

njiwhere
khhhh

f
u

yxjxiy

ji

ji
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2222

,

,
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=

λλ
.    (2.8)  

 

Once we have Ū, then reverse discrete Fourier Transformation,  

VUVU
1−

=  .         (2.9)  

 

This Fast Fourier Transformation method is directly derived from the traditional 

method for square domain. The tridiagonal matrix T is n×n square matrix. However, we 

estimate the locate truncation error through (2.1), we can find out that it may not guaranteed 

to be second order convergence for the computed solutions. So we keep on working on the 

next method.  

 

 

2.2 ZFFT Method with hx = hy, and m ≠ n 

 

In this method, we still start the finite difference equation for Poisson equation in a 

rectangular domain with the standard 5 point finite difference scheme. This time, the mesh 

spacings toward the x-axis and the y-axis directions are equal (h = hx = hy), but the number of  
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grid points in that 2 direction are not equal (n ≠ m). It can be written as   
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Notice that fi,j is the right hand side value intergraded with boundary condition. Rewrite (2.10) 

in matrix format 
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By discrete Fourier Transformation, Ts= Vs
-1DsVs, s = m, n, then 

FhVDUVUVDV
nnnmmm

211
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 .      (2.13) 

 

Again, Multiplying h2, Vm from left and Vn
-1 from right at both sides of the (2.13), we have  

1211 −−−
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FVVhDUVVUVVD  .     (2.14) 

 

Let  
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1
)(==

−  ,  and  
nmjinm

fFVVhF
,,

12
)

~
(

~
==

−  .  (2.15) 

Then substitute (2.15) into (2.14), it become 
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Since Dm and Dn in (2.16) are diagonal, we can simply solve (2.16) for Ū,  
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Similarly, for Helmholtz equation  
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u
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Reverse the discrete Fourier transformation, we get  

nm
VUVU

1−
=   .        (2.19)  

 

This method uses traditional equal mesh spacing, while the numbers of grid points are 

different in x-axis and y-axis direction. It is most compliable with the traditional numerical 

analysis, and we can still take advantage of many existing software packages. In this method, 

we have to construct two different set of discrete Fourier Transformation in (2.13), which 

cost little extra computing. When it was used iteration like GMRES, we can store and re-use 

them rather constructing from new each time. More important, the locate truncation error can 

be estimated as usual, which we will prove later that it is second order convergence for the 

computed solution against exact solution. So we decided to use this ZFFT II method for the 

rest of our dissertation.  
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2.3 ZFFT Method with hx ≠ hy, and m ≠ n 

 

For the completeness of this academic exploration, we want to further study the method with 

rectangular mesh spacing and unequal number of grid points. Let us consider discrete 

Poisson equation with, hx ≠ hy and m ≠ n, then 
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Notice that fi,j is the right hand side value intergraded with boundary condition. Rewrite (2.20) 

as matrix format, then  
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,       (2.21) 

where Tm and Tn are defined in (2.12) 

 

Apply discrete Fourier Transformation to each column of Ts , i.e.  
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Then, we have  

FhhVDUVhUVDVh
yxnnnxmmmy
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Now, Multiplying hx
2hy

2, Vm from left and Vn-1 from right for both sides of (2.23), then 
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Let  
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then (2.24) become  
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Since Dm and Dn are diagonal, it is easy to solve (2.26) for Ū,  
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Similarly, for Helmholtz equation,  
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Once we have Ū, then by the reversed discrete Fourier Transformation (2.19), it is easy to get 

the solution U.  

 

This third ZFFT method is the combination of ZFFT method I and ZFFT method II. It is a 

generalized algorithm that solves Poisson or Helmholtz equation. In practice of this research, 

it is an over kill to simulate the rectangular shape by both measures of rectangular grid shape 

and unequal mesh size. However, somebody may need this method for future research 

someday.  
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2.4 ZFFT Method Summary 

 

We mainly focus on the second complex-numbered Fast Fourier Transformation method 

(ZFFT II) in rectangular domain for this summary. Other methods in this chapter are almost 

identical. Here is the step by step approaching of the algorithm 

 

1. Perform discrete Fourier Transformation on F, get  
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2. Compute middle solution Ū:  
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3. Perform reversed discrete Fourier Transformation on Ū, get  
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2.5 Efficiency Analysis 

 

From previous section, we can see that the cost of step Two is 3×m×n operation, and step 

One and Three is seems to be a triple matrix multiplication each. If we do use the 
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straightforward matrix multiplication method, then the cost is m×m×n+ m×n×n flops, which 

is O(m3). However, the triple matrix multiplication actually represents the Discrete Fourier  

Transformation. Thus, we can use convolutions and recursive algorithm, therefor the 

computation cost is reduce the (m2 log2 m) [6]. Here is the process for VmFVn as an example. 

 

Let Fj={f1j,f2j, … , fmj}
T be the the jth column of the F matrix, and  
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 ω is also known as a principal (m+1)th root of unity. The DFT of Fj is just the polynomial 

(2.32) evaluation at the points {ω0, ω1, ω2, …, wm-1}. Conversely, the inversed DFT is the 

polynomial interpolation producing the coefficients of a polynomial given its values at {ω0, 

ω
1, ω2, …, wm-1}. 

 

Assume m=2s , then we divide the polynomial (2.32) into two equal pieces.  
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From above, to evaluate two polynomials aodd and aeven of degree m/2-1 at (ωj)2 . But this is 

really just m/2 points  ω2j for 0 ≤ j ≤ m/2−1 since 
)

2
(2

2

m
j

j
+

= ωω . Thus evaluating a 

polynomial of degree m-1=2s-1 at all m (m)th roots of unity is the same as evaluating two 

polynomials of dgree m/2-1 at all m/2 (m/2)th roots, and then combining the results with m  
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multiplication additions. This can be done recursively with following algorithm 
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Therefore, the computing cost of each column of a m×n matrix is 
2

3
log

2

m

m ⋅ , and by same 

method, the cost of each row of each column of a m×n matrix is 
2

3
log

2

n

n ⋅  . So, the total 

computing cost for a m×n matrix is ( ))log( nmnmO ⋅⋅⋅ . The recursive method requires huge 

memory for stocking of heap, which was not available in the 6os or 80s.  Also for small 

number mesh size, there are no significant different from recursive method compare to direct 

matrix multiplication.   

 

 

2.6 Error Analysis 

 

Since we have u(x, y): R2
� C, then we can write  

u(x, y) = v(x, y) + i⋅w(x, y)     where v, w : R2
�R . 
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First, let us consider the locate truncation error (LTE) for the standard 5-point finite 

difference scheme for real function v(x,y) at grid point (xi, yj).  

2
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where i=1,…, m; j=1,…, n, and vij =v(xi, yj) . By Taylor expansion;  
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Substitute (2.35) into (2.34), and simplify 

)()()(
12

1
)(

23

4

4

4

4

2 hOhO
y

v

x

v
hvLTE

ij
=+

∂

∂
+

∂

∂
= .    (2.36) 

By the same method, we can have the locate truncation error for w 
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Finally, with the norm for complex number, the locate truncation error for u is  
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Furthermore, T is diagonally dominant, thus the global error is O(h2) for Poisson 

equations. Very similar for Helmholtz equation, if the exact solution exists, i.e.  

.,,1;,,1,
)()(2 njmikh n

j
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i
LL ==−−≠ λλ     (2.34) 

Then the location truncation error is O(h2) and the global error is also O(h2). 
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CHAPTER 3  

Immersed Interface Method for Two dimensional Poisson 

/ Helmholtz Equation in Complex Number Space 

 

In this chapter, we try to develop an improved finite difference scheme to handle the 

discontinuous f and coefficients cross the interface in complex number space. The real 

number two-dimensional elliptic interface problem was solved using immersed interface 

method [20]. Our approach is also based on immersed interface method, and very similar to 

the real number one. The goal of our approach is to obtain a finite difference scheme that 

works with discontinuous f and second order convergence guaranteed.  

 

 

3.1 Interface Embedding  

 

Let  Ω be a convex domain in two dimensions within there is an irregular interface Γ. Let  Ω+  

and Ω- be the two regions of the interface, see following Figure 3.1.  

. 
Figure 3.1 Function Domain and Embed Interface.  
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We are considering the following Helmholtz / Poisson problem  

Ω=++ infkUUyyUxx ,  .     (3.1) 

With some boundary condition on ∂Ω and jump conditions on the interface Γ.  

wuuu =−=
−+

Γ
][ .        (3.2) 
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][ .       (3.3) 

 

In this study, we assume that the interface Γ is arbitrarily smooth, Ω is piecewise 

smooth, k and f are piecewise continuous in Ω+ and Ω- respectably, and along the interface, 

w has continuous second derivatives and q has continuous first derivatives. Then the solution 

u has piecewise second order derivatives components in Ω, that is u ∈ C2 in Ω+ or Ω-, but not 

in Ω . 

Since the f and/or k may be discontinuous across the interface, the solution and its 

derivatives may also be non-smooth or even discontinuous across the interface. Therefore the 

traditional standard finite difference schemes will not work properly for this class of 

problems. 

  

Below is outline of our approach, step by step: 

• Select a point (xi
*,yj

*) on interface Γ near grid point (xi, yj ). 

• Apply a local coordinate transformation in the directions normal and tangential to Γ 

at (xi
*,yj

*). 

• Derive the interface relations relating + or − values at (xi
*,yj

*) in local coordinates. 
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• Choose some additional points to form a modified stencil.  

• Setup and solve a system of linear equations for the coefficients γk’s. 

• Compute the correction term Cij . 

• Add Cij into standard finite difference scheme for PDE, then solve. 

 

 

3.2 Local Coordinate Transformation 

 

 Unless otherwise stated, we are using uniformed mesh grid size, hx=hy and the 

traditional standard five-point finite difference stencil in our study.  

 

 Definition: a grid point is called regular if all the grid points in the centered 5-point 

stencil are on the same side of the interface; otherwise, a grid point is called irregular if not 

all the grid points in the centered 5-point stencil are on the same side of the interface. 

 

 For example, in Figure 3.1, point 3, 4, 7 are regular grid points, while point 

1,2,5,6,8,9 are irregular grid points.  
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Figure 3.2 Interface, Regular and Irregular Points. 

 

 We consider a fixed point (x*,y*) on the interface, and define a local ξ-η coordinate 

system by  





−+−−=

−+−=

.cos*)(sin*)(

,sin*)(cos*)(

θθη

θθξ

yyxx

yyxx
       (3.4) 

where θ is the angle between the x-axis and the normal direction, pointing to the direction of 

a specified side, say the “+” side. At the point (x*, y*), the interface Γ can be written as  

0)0(',0)0()( === χχηχξ with .      (3.5) 

 

The curvature of the interface at (x*,y*) is χ’’.  
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Figure 3.3 An Irregular Grid Point, its Orthogonal Projection, and the Local Coordination. 

 

 Note that under the local coordinate transformation (3.4), the partial differential 

equation (3.1) remains unchanged, that is:  

][][ fkuuu =++ ηηξξ .      (3.1a) 

 

 

3.3 Interface Relations 

 

 Let (x*, y*) be a point on the interface Γ. Assume that u(x,y) has second order 

derivative in the neighborhood of (x*, y*) corresponding to the local coordinates at (0, 0). 

Then from jump condition (3.2), we can immediately have  

wuu +=
−+ .        (3.6) 
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Since (3.5), we can use the notation [u] = w(η) and [un] = g(η) in local coordinate 

system. Differentiating (3.2) with respect to ξ along the interface, we get  

guu +=
−+

ξξ .        (3.7) 

Differentiating (3.2) with respect to η along the interface, we get 

)(']['][ ηχ ηξ wuu =+ .       (3.8) 

Setting η=0, we get  

'wuu +=
−+

ηη .        (3.9) 

 Differentiating (3.8), we obtain  

)('']['][]['''][ ηχ
η

χχ ηηξηξξ wuuu
d

d
u =+++ . 

Setting η=0, we get 

'''')( wuuuu +−+=
+−−+

χξξηηηη .      (3.10) 

In local coordinates, (3.3) can also be written as  

2
)'(1'' χχχ ηξηξ ++−=−

−−++

guuuu .     (3.11) 

Differentiating (3.11) with respect to η along with the interface, we have  

).
)'(1

''')(
)'(1)(('

''')('''')('

2

2

χ

χχη
χη

χχ
η

χχχ
η

χ ηηξηξξηηξηξξ

+

+++

−−+=−−+
−−−−++++

g
g

uu
d

d
uuuu

d

d
uu

  (3.12) 

Setting η=0, we get 

''')( guuuuuu ++−+−=
−−++−+

ξηηηξξξη χ .      (3.13) 

From (3.1a), we have  
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−+−+−−++

−=−+−−+ ffkukuuuuu ηηξξηηξξ .      

Solving for uξξ
+, then  

][ fkwuuuu +−−+=
+−−+

ηηηηξξξξ .      (3.14) 

 

 These interface relation are used in deriving the finite difference method in later 

section discussing correction term.  

 

 

3.4 The Finite Difference Scheme of the IIM 

 

 At regular grid points (xi, yj), we can use the standard central five-point stencil finite 

difference schemes 

.
2

),(

,
2

),(

,1,1,

,,1,1

y

jijiji

jiyy

x

jijiji

jixx

h

uuu
yxu

h

uuu
yxu

−+

≈

−+

≈

−+

−+

    (3.15) 

 If the solution is 2nd order continuous or higher, then it relatively easy to show that 

the locate truncation error in these points are O(h2) in previous chapter.   

 

 We now focus on irregular grid points, which the solutions are discontinuous across 

interface. Taking an irregular grid point (xi, yj), we try to develop the modified finite 

difference scheme like following  

ijijij

k

k

jjiik Cfkuu
s

kk

+=+∑
=

++

1

,
γ  ,     (3.16) 
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where the summation is take over ks neighborhood points center at (xi, yj), and γs are the 

coefficients of the finite difference scheme. Our goal is to find proper coefficients γs and Cs, 

such that the finite difference scheme is still second order accurate 

 

 Generally speaking, the wave number k is usually constant. And we would like 

coefficient γs still keep as same as the ones in standard 5-point central finite difference 

scheme. That is, the coefficients are γk =1/h2 for the four neighbors of (xi, yj), and −4/ h2 for 

the master grid point (xi, yj).  

 

 

3.5 Correction Terms at Irregular Grid Points 

 

The Taylor expansion of u(xi+ik, yj+jk) about (xi, yj) under the local coordinates is  

),(
2

1

2

1

),(),(

322
hOuuu

uuuuyxu

kkkk

kkjjii
kk

++++

++==

±±±

±±±

++

ηηξηξξ

ηξ

ηηξξ

ηξηξ

  (3.17) 

 

where the “+” or “−” sign is chosen depending on whether (ξk, ηk) lies on the “+” or “−” 

side of interface Γ. After the expansions of all terms, u(xi+ik, yj+jk), used in the finite 

difference equation (3.16), the local truncation error Tij can be espressed as a linear 

combination of the values u±, uξ
±, uη

±, uξξ
±, uξη

± , uηη
± as following    
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  (3.18) 

The quantities f± are the limiting values of the function f at (xi
*, yj

*) from the “+” or “−” side 

of the interface. The coefficients {aj} depend only on the position of the stencil relative to the 

interface. They are independent of the PDE, u, k, f and the jump conditions w and g. If we 

define the index set K+ and K− by  

}""),(:{ Γ±=
± ofsidetheoniskK

kk
ηξ . 

Then the {aj}’s are given by  
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     (3.19) 

Using the interface relations from (3.6) to (3.14), we can eliminate the quantities from 

one side, say “+” side, using the quantities from the other side, say “−” side, and combining 

likely terms and rearrange  
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where  

).'']([)''''(

''')''('

81084

10126122

wkwfagaaa

wawaagawaT
ij

−++−++

++++=

∧

χχ

χ
    (3.21) 

 

Luckily, if we choose the coefficients γs as for standard 5-point central finite 

difference scheme, then following equations are satisfied 
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In addition, let  

),'']([)''''(

''')''('

81084

10126122

wkwfagaaa

wawaagawaTC
ijij

−++−++

++++==

∧

χχ

χ
   (3.23) 

here, Cij depends on the curvature (w’’) of the interface, which means it is difficult to get an 

analytic expression for the correction terms.  

 

Thus, we have a method that the local truncation error at (xi
*, yj

*) in (3.18) is second 

order convergence guaranteed in theory. Later in our numerical experiments results, the 

global truncation errors are second order convergence under L∞ norm. 
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Since the standard 5-point central finite difference scheme is used, and only the right-

hand sides of the finite difference equations need to be modifies by adding a correction term. 

So the Fast Fourier Transformation solver as we described in previous chapter can be applied 

to solve the system of finite difference equations. This makes the Immersed Interface Method 

very efficient because the computational cost on the irregular points is relatively small. 

Further in next chapter, under the augmented strategy, this IIM method still can be used 

effectively even when one of the jump conditions [u] or [un] is unknown.  
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CHAPTER 4  

Augmented Strategies 

 

 In many interface problems, the jump conditions for the solution U and the derivative 

of the solution Un in the interface are coupled together, and one of them are usually unknown. 

 We start with assume the unknown jump condition as some augmented variable g of 

codimension, and its discrete form G. The approximate solution U and the augmented 

variable G together form a large linear system representing the original problem, thus it was 

relatively easy to be understood but sometime too big to solved. Then, by eliminate U from 

the matrix vector equations, we try to solve for the augmented variable G using the Schur 

complement system, which is generally much smaller than that for U. GMRES iterative 

method is used first solving the original problem, with assumed initial augmented variable; 

then finding the residual of the constraint using the computed approximate solution given the 

augmented variable.  

 Augmented method do not required a Green’s function, and no need to set up the 

system of equations; and it can be applied to general PDEs with or without source term. All 

boundary conditions shall be working just fine. Only high precision data type required when 

implementation Schur complement. The only way to derive an accurate algorithm in that 

kind of problem is perhaps the augmented approach.  

The original idea of the augmented strategy for the interface problem is introduced in 

[21] to solve elliptic interface problems, and then further developed in [22] applied to 

generalized Helmholtz equation on irregular domains.  
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4.1 The Augmented Variable  

 

 In this dissertation, we only studied Dirichlet boundary condition. Other boundary 

condition such as Neumann and Robin, however, can be derived using same methodology.  

 

 Since Dirichlet boundary condition, we have already know the solution u at boundary, 

u=w(x,y), (x,y)∈Γ. so it is natural to select the normal derivative [un] as the augmented 

variable g.  Further by discretization, we can write [u]Γ as W={W1, W2, … Wnb} and [un] Γ as 

G={G1, G2, … Gnb}.  

 

 

4.2 Discrete System of Equations in Matrix-Vector Form 

 

 From previous chapter, we knew that the correction term Cij depends on {Gk} and 

{Wk} continuously. Then the Helmholtz equation (1.2) can be written as following discrete 

from 

FGWBAU =+ ),( ,      (4.5) 

where U and F are the vectors formed by {Uij} and {Fij}. From (3.23), we knew that B(W,G) 

is a linear function of W and G, and can be written as  

WBBGGWB
1

),( −=  ,     (4.6) 

where B and B1 are two matrices with entries. Thus (4.5) becomes 

11
FWBFBGAU =+=+ .     (4.7) 
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 On the other hand, if the solution U from the system (4.7) is known, we can 

interpolate {Uij} linearly to get )}({
kn

XU
± , which is an approximation to the normal derivative 

from each side of the interface at {Xk}, 1 ≤ k ≤ nb . The interpolation scheme is very 

important to the accuracy of our augmented algorithm, we will discuss it in more detail next 

section. Since the interpolation is linear, we can represent it as following 

WDGCU =+ ,      (4.8) 

where C and D are the linear interpolation scheme to approximate W. 

 

 Combining (4.7) and (4.8) together, we have  









=

















W

F

G

U

DC

BA
1 .      (4.9) 

Remark: A, B, C and D represent the operation of their respect scheme, and they may not be 

written explicitly into matrix format.  

 

 

4.3 Least Squared Interpolation 

 

In this study, we involved the complex number least squared interpolation scheme from a 

Cartesian grid to form interface. It is almost identical to the work in real number [18]. The 

performing of this least square interpolation scheme is crucial to the accuracy and the 

iterations of the GMRES, and thus irreplaceable to whole augmented method. 

 

 The interpolation scheme for approximating U-
n can be written as  
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jjiikn CUyxU

1
,
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**),( γ  .   (4.10) 

where ks  is the number of grid points involved in the interpolation scheme, ( xi*, yj*)  is the 

closest grid point to the projected interface point (x*, y*), C is the correction term and γk. is 

the coefficients for the interpolation. Note that γk and C are depend on (x*, y*). It is clear that 

we have to determine the coefficients {γk} and C to complete the interpolation. 

 

 The coefficients {γk} are determined by minimizing the interpolation error of (4.10) 

when Ui*+ik, j*+jk is substituted with the exact solution u(xi*+ik, yj*+jk). Using the local 

coordinates system 





−+−−=

−+−=

.cos*)(sin*)(

,sin*)(cos*)(

θθη

θθξ

yyxx

yyxx
    (4.11) 

Centered at the point (x*, y*), and denoted the local coordinates of (xi*+ik, yj*+jk) as (ξk, ηk), 

we have the following from the Taylor expansion at (x*, y*) or (0,0) in the local coordinates: 
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 (4.12) 

where the “+” or “-“ sign is chosen depending on whether (ξk, ηk) lies on the “+” or “-“ side 

of the interface Γ, and u±, uξ
±, …, uηη

±  are evaluated at local coordinates (0,0), or (x*,y*) in 

the original coordinates system. Be careful with these two coordinate system, they are 

confusing yet necessary for different computing function.   

 We carry out this expansion for all the grid points involved in the interpolation 

scheme and adding them together, that is plug all (4.12) (k=1, …, ks) into (4.10). Afternoon  
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combining likely terms and re-arrange them, we have  
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where the {ai} are defined as following  
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     (4.14) 

Since u+=u-+w and un
+=un

-+g. and the interface relations. We can express all the quantities 

from the “+” side in (4.13) in terms of those from the “-“ side and the known quantities. 

Thus , when Ui*+ik, j*+jk is substituted for the exact solution u(xi*+ik, yj*+jk) , (4.10) can be 

written as  
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To minimize the interpolation error, we should set the following linear system of equations 

for the coefficients {γk} by matching the terms of u-, uξ
-, …, uξη

-  : 
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     (4.15) 

If the linear system (4.15) has a solution, then we can obtain a second-order interpolation 

scheme for the normal derivative un
- by choose an appropriate correction term C. From (4.12) 

and (4.15), we can see that the system of equations for the {γk} is independent of the jump 

conditions which means we can calculate {γk} outside of GMRES iteration.  

In this study, we choose between 6 to 16 closest grid points to (x*,y*) as the 

interpolation stencil. If less than 6 different grid points (ks > 6) in a neighborhood of (x*,y*) 

are used in the interpolation, we will have an under-determined system of linear equation 

system. If more than 16 points are chosen, then the computing cost will be very high without 

significant accuracy improvement.   

 We chose SVD method to solve (4.15). The SVD algorithm is very stable and can be 

found in many software packages, such as Linpack and Lapack. The SVD solution has the 

smallest 2-norm among all feasible solutions   
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. 

For such a solution, the magnitude of γk
* is well under control, which in important to the 

stability of the entire algorithm. Once the {γk}’s are computed, then the {ak}’s can be 

obtained quickly. Now the correction term C is determined from following: 
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Further, through the relation un
+=un

-+g, we can obtain 
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1

*,**)*,( γ  .     (4.17) 

 

In this study, the interface is represented by the zero set of a level set function, the 

least squares interpolation is used to approximate the surface derivatives using their values at 

the orthogonal projections of irregular grid points. The accurate with local support is second-

order. It is robust in smooth error distribution. The trade-off is that we have to solve a an 

underdetermined 6× ks linear system of equations (ks ≥ 6), which is manageable.   

 

 

4.4 Schur complement system 

 

It is possible to directly solve the linear equation system in (4.9). However, by doing so, we 

have to deal with a matrix of O((m × n × nb )
2). This is way too much computing cost without 

an existing fast solver. The more efficient way is to using Schur complement and GMRES 

method, which we can also take advantage of new FFT passion solver we discussed in 

previous chapter.  

 By solving for U from (4.7), then substitute it back into (4.8), we can eliminating U 

from (4.9), and now have another much smaller O((nb)
2) linear system  

1

11 )( FCAWGBCAD
−−

−=−  ,      (4.18) 

on the left hand side of the equation, D-CA-1B is the Schur complement of A. If the least 

square interpolation C is second order approximation to the continuous jump condition on the 

interface, then the Schur complement can be prove as invertible.  
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To solve (4.15), we first evaluate the right-hand side of the Schur complement. Set 

initial value G = 0, then solve (4.5) or (4.7) to get U(0) which is A-1F1 from (4.7). Now the 

residual of the Schur complement for G=0 is  

)0(
1

1
CUWFCAW −=−

− . 

Second we evaluate the matrix-vector multiplication need by GMRES iteration. Solve 

the coupled system (4.7) to get U(G), interpolate U(G) as CU(G), then compute the residual 

as )()( GCUDGR −= .  

 

 

4.5 Solving by GMRES 

 

Since the coefficient matrix of the Schur complement is no guarantee to be symmetric 

positive definite, the GMRES iterative method is preferred, because GMRES method 

requires only matrix-vector multiplication. 

 The Generalized Minimum RESidual (GMRES) method for real number was first 

proposed by Saad and Schultz [36] in 1986, later extended to complex number space by 

Fraysse and Giraud and Gratton [13] in 2005. It is among the most widely used Krylov 

solvers for the iterative solution of general large, sparse and non-symmetric (or non 

Hermitian) linear system. However, GMRES method in this study is still customized to fit 

our specific computational requirement.  

The number of GMRES iteration depends on the condition number of the Schur 

complement, which seems to be proportional to 1/h. Therefore, the number of iteration will 

grow linearly as we decrease the mesh size.  
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 To improve our computing performs, we use the weighted least squares interpolation 

(in previous section) to approximate un
+ or un

- , then use following formula respectively  

][][
nnnn

uguorugu +−=+−=
+−  

to force the solution to satisfy the flux jump condition, and then updated by the GMRES 

method. This is a precondition for the Schur complement system. 

 With this modification, the number of iteration for solving the Schur complement 

system seems be a constant and independent of the mesh size h. The numerical experiments 

have verified that conclusion. This precondition is an acceleration process and with no 

modification of the algorithm, and little computational cost.  
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CHAPTER 5 

Numerical Experiments Results 

 

We have performed a number of numerical experiments using Immersed Interfaced 

Method with Augmented Strategy. The results confirmed our analysis that the our method is 

second order convergence for Helmholtz / Poisson problem in complex number space with 

arbitrary interface.   

 

 All our computations were done using IBM Thinkpad R51 or HP Pavilion a706n 

Linux and later on Dell Latitude E6520 laptop computer. These are ordinary business or 

family computers which usually work with 2.1GHz CPU and 2GB memory, they are not very 

powerful machine. But the computing can be achieved in seconds or a few minutes, depends 

on the mesh size. For mesh size m=128 or less, the results are immediately printed out, and 

recorded CPU time is merely zero. For typical mesh size m=256, the computing can be 

finished in usually in 2 to 3 minutes. Once I had tried m=2048, and the computation took 

about 2 hours. 

 

All project program are written/rewritten and complied using open source Fortran 

GNU 95 (http://www.g95.org ). G95 is viewed as mildly fast. G95 has another advantage is 

its compatibility with other version, like legacy Fortran77, or propertied Intel’s Visual 

Fortran. So we can use some existing packages like Linpack, FishPack without any 

modification. But the best advantage is its ability of cross-platforms, including Windows,  
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Unix/Linux and Mac. We can write the code once, and run it everywhere. G95 does not come 

with an Intergraded Developing Environment (IDE), and it relay on old-fashioned debug 

technical skill. However, Zeus (http://www.zeusedit.com) provides a free version editor that 

is very helpful.  

 

The source codes are mostly upgraded from its real number IIM source code. Almost 

all the subroutines and functions have changed from double precision to double complex. 

The geometry functions and /or subroutines are modified to compatible with the sub-

immersed boundary condition from original fully immersed interface condition. Complex 

number norm is created to replace the real number norm in the GMRES subroutine. The Fast 

Fourier Transformation solver for Poisson / Helmholtz problem is complete new method 

which is detailed described in Chapter Two.    

 

The Error in the result table is defined as below using L∞ morn.  
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,  (5.1) 

where uij is the computed solution at (xi, yj), while u(xi, yj) the exact solution, n is the mesh 

size. We also display the rate of two successive errors. 
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For a first order convergence method, the rate approaches to 1; and for a second order 

convergence method, the rate approaches to 2. The overall convergence order is displayed at  
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the bottom of the table, using least square linear regression for logarithm of error vs. 

logarithm of mesh size. The formula for the slope (noted as a) is following 

2

2 )log())(log(

)log()log())log()(log(
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s
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,    (5.3) 

where ns is the total number of mesh size. The order of convergence is actually the negative 

slope of the linear regression model. It can be treated an overall rate for the entire test block. 

The complete linear regression model is also call called best fit line which can be written  

bnaError += )(log)(log
22

,       (5.4) 

where a stated in (5.3) and b is the intercept of the linear model, and the formula is  
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A hypothesis test (say, t-test) is performed for the convergence order / slope of the linear 

model of each test block at significant level of α. Here α is the probability of Type I error, 

when the Null Hypothesis is rejected but it is true in fact. This is to ensure that the method 

developed in this dissertation is truly second order convergence.  

)(2:);(2:
10

tailedtwoaHclaimaH −−≠−= . 

We choose α=0.05 (for strong evidence) or 0.01 (for weak evidence). The degree of freedom 

is n − 2 = 5 − 2 = 3. So, tα/2=3.182 when α=0.05; tα/2=5.841 when α=0.01. The confident 

interval is constructed as  

 



 

48 
 

xx

est

xx

est

S
Staa

S
Sta

11

2/2/ αα
+≤≤−

))

,     (5.6) 

where a
)

 is the computed convergence order from observation, and a  is “true” convergence 

order from our method, and Sest is the standard error of the estimate which is the standard 

deviation of the observed log2(En) values about the predicted log2(En
’) values 
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And Sxx is the sum of squared difference for independent variables.  
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where xi is the value of logarithm of the mesh size, )(log
2
n , and n=32, 64, 128, 256 and 512.  

 

If a  = −2.00 fall between our confidence interval with α = 0.05, then there is 

significant evidence not to reject the claim that this method is the second order convergence 

for this test block. If a  = −2.00 fall between our confidence interval with α = 0.01, then there 

is evidence to not to reject the claim that this method is second order convergence for this 

test block. If a  = −2.00 fall outside the confidence interval with α = 0.01, then there is 

significant evidence to reject the claim that this method is the second order convergence for 

this test block.  

 

In addition, P-value is also computed through inversed t-distribution function with 

d.f. = 3 from ttest value   
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We also conducted Pearson Product Moment Correlation Coefficient (PPMC) for the 

relationship in each block. This Correlation Coefficient is commonly known as r 
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If the value of r is close to +1, then there is a strong positive linear relationship 

between the variables; If the value of r is close to −1, then there is a strong negative linear 

relationship between the variables; If the value of r is close to 0, then there is a no or weak 

linear relationship between the variables [3].  

 

We use three different geometry boundaries as irregular interfaces in our numerical 

experiments. They are half circle, half oval and arbitrary half flower shape as following   
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An Arbitrary Half Flower Petal Interface. 

Figure 5.1 Domains and Interfaces. 
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5.1 Numerical Example 1  

 In this example, we consider a problem with a discontinuous source term f, and the 

differential equation is   

,),(, Ω∈=++ yxfkuuu
yyxx

     (5.4) 

with exact solution as  
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and if k=0 then the source terms is   
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The interface and the wave number k are given in each individual case. the Dirichlet 

boundary condition and jump condition [u]Γ=w will be determined by the exact solution 

accordingly. Beware that the other jump condition [un] Γ = g is unknown 

 

 

Case 1.1 Half Circular Interface 

Let the domain Ω= {(x, y): −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1 }, and  

Interface: 
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Subdomain that is outside interface:  Ω+ = Ω / Ω−  . 
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Table 5.1a Error Analysis for Grid Refinement of Example 5.1. 

 K=100i  k=100  k=100+100i  

Mesh Error Rate Error Rate Error Rate 

32 4.6002536E-02  3.3543979E-01  7.2610372E-02  

64 1.0881148E-02 2.08 4.6449764E-02 2.85 1.6160096E-02 2.17 

128 3.4165863E-03 1.67 1.5463574E-02 1.58 4.9224887E-03 1.71 

256 8.4377786E-04 2.02 3.3379200E-03 2.21 1.2196654E-03 2.01 

512 2.1049513E-04 2.00 8.2083288E-04 2.03 3.0374241E-04 2.01 

Convergence  

Order 
1.92  2.11  1.95  

 

 

Table 5.1b More Error Analysis for Grid Refinement of Example 5.1. 

 k=0 
 

k=10+10i 
 

K=1+2i  

Mesh Error Rate Error Rate Error Rate 

32 4.2429899E-02 
 

7.0610581E-02 
 

4.7572807E-02  

64 1.0470141E-02 2.02 1.7668004E-02 2.00 1.1739928E-02 2.02 

128 2.6140307E-03 2.00 4.4181842E-03 2.00 2.9297816E-03 2.00 

256 7.3682237E-04 1.83 1.1027800E-03 2.00 7.8627861E-04 1.90 

512 1.8355658E-04 2.00 2.8224852E-04 1.97 1.9748188E-04 1.99 

Convergence  

Order 
1.95 

 
1.99 

 
1.97  
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Figure 5.2 Computed Solution for Problem One  
with A Half Circle Interface, k=100+100i, m=256, n=128. 

 
 
 
 

 

Figure 5.3 Error of Computed Solution for Problem One  
with A Half Circle Interface, k=100+100i, m=256, n=128. 
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Figure 5.4 Convergence Order Comparision 
for Problem One with a half circle interface. 

 

 

Table 5.2 Convergence Analysis for Example 5.1.1. 

 
k=100i k=100 k=100+100i k=0 k=10+10i k=1+2i 

Coefficient 

Correlation 
-0.9995 -0.9967 -0.9995 -0.9999 -1.0000 -0.9999 

Slope 

 
-1.9232 -2.1148 -1.9530 -1.9534 -1.9935 -1.9725 

Intercept 

 
5.1462 8.7044 5.9180 5.1672 6.1379 5.4394 

Sest 0.1095 0.3144 0.1093 0.0591 0.0121 0.0373 

Min 

95% C.I. 
-2.0334 -2.4312 -2.0630 -2.0129 -2.0057 -2.0100 

Max 

95% C.I. 
-1.8130 -1.7984 -1.8431 -1.8940 -1.9813 -1.9349 

P-value 0.1134 0.3318 0.2672 0.0882 0.1909 0.1019 

Accept 

2:
0

−=aH  
Yes Yes Yes Yes Yes Yes 
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Case 1.2 Half Oval Interface   

Let domain Ω= {(x,y): −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1 }, and  

interface  
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Subdomain that is outside the interface Ω+ = Ω / Ω−  . 

 

Table 5.3a Error Analysis For Grid Refinement of Example 5.1.2. 

 
k=100i 

 
k=100 

 
k=100+100i 

 
Mesh Error Rate Error Rate Error Rate 

32 3.8657325E-02 
 

4.4417541E-02 
 

6.0811784E-02 
 

64 8.7199213E-03 2.15 1.1272433E-02 1.98 1.3027898E-02 2.22 

128 2.6332450E-03 1.73 3.4108313E-03 1.72 3.9079273E-03 1.74 

256 8.2955764E-04 1.66 9.1640248E-04 1.90 1.1840489E-03 1.72 

512 2.2077671E-04 1.91 2.4399532E-04 1.91 3.1353999E-04 1.92 

Convergence 

Order 
1.83 

 
1.86 

 
1.87 

 

 

 

Table 5.3b More Error Analysis For Grid Refinement of Example 5.1.2. 

 k=0 
 

K=10+10i  k=1+2i 
 

Mesh Error Rate Error Rate Error Rate 

32 4.2351202E-02 
 

6.4132756E-02  4.9644458E-02 
 

64 1.0529019E-02 2.01 1.6197542E-02 1.99 1.2348346E-02 2.01 

128 2.6216007E-03 2.01 4.0506224E-03 2.00 3.0729950E-03 2.01 

256 6.5443496E-04 2.00 1.0100359E-03 2.00 7.6676177E-04 2.00 

512 1.6352861E-04 2.00 2.5205691E-04 2.00 1.9147906E-04 2.00 

Convergence 

Order 
2.00 

 
2.00  2.00 
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Figure 5.5 Computed Solution for Problem One  
with A Half Oval Interface, k=100+100i, m=256, n=128. 

 
 
 
 

 

Figure 5.6 Error of Computed Solution for Problem One 
with A Half Oval Interface, k=100+100i, m=256, n=128. 
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Figure 5.7 Convergence Order Comparison for Problem One with A Half Oval Interface. 
 
 
 
 

Table 5.4 Convergence Analysis for Example 5.1.2. 

 
k=100i k=100 k=100+100i k=0 k=10+10i k=1+2i 

Coefficient 

Correlation 
-0.9981 -0.9997 -0.9979 -1.0000 -1.0000 -1.0000 

Slope -1.8354 -1.8522 -1.8785 -2.0054 -1.9965 -2.0057 

Intercept 6.1810 6.5784 7.0828 7.4695 8.0215 7.7008 

Sest 0.1796 0.0733 0.1919 0.0021 0.0067 0.0017 

Min 

95% C.I. 
-2.0162 -1.9259* -2.0715 -2.0075* -2.0033 -2.0074* 

Max 

95% C.I. 
-1.6547 -1.7785* -1.6854 -2.0033* -1.9898 -2.0040* 

P-value 0.0626 0.0078 0.1389 0.0039 0.2009 0.0017 

Accept 

2:
0

−=aH
 

Yes No Yes No Yes N0 

*: a=−2 is fall outside of the confident interval with α=0.01. 
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Case 1.3 Arbitrary Half Flower Petal Interface  

Let domain Ω= {(x,y): −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1 }, and the interface  
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The subdomain that is outside the interface Ω+ = Ω / Ω−  . 

 

Table 5.5a  Error Analysis for Grid Refinement of Example 5.1.3. 
 

 K=100i  K=100  K=100+100i  

Mesh Error Rate Error Rate Error Rate 

32 5.1913879E-02 
 

4.1377305E-01 
 

8.4508015E-02 
 

64 1.0052570E-02 2.37 8.2334070E-02 2.33 1.4939966E-02 2.50 

128 3.0053951E-03 1.74 2.3477317E-02 1.81 4.3482050E-03 1.78 

256 8.3011452E-04 1.86 7.2167304E-03 1.70 1.1887442E-03 1.87 

512 2.2101530E-04 1.91 1.5688298E-03 2.20 3.1446435E-04 1.92 

Convergence 

Order 
1.93 

 
1.96 

 
1.98 

 

 
 
 

Table 5.5b More Error Analysis for Grid Refinement of Example 5.1.3. 
 

 K=0  K=10+10i  K=1+2i  

Mesh Error Rate Error Rate Error Rate 

32 5.3374629E-02 
 

7.0759979E-02 
 

5.9816160E-02  

64 1.2864436E-02 2.05 2.2450431E-02 1.66 1.4717447E-02 2.02 

128 4.8032416E-03 1.42 7.2590087E-03 1.63 5.3513614E-03 1.46 

256 6.5180997E-04 2.88 1.1405516E-03 2.67 7.3578566E-04 2.86 

512 4.5682590E-04 0.52 6.5899523E-04 0.79 5.0810818E-04 0.54 

Convergence 

Order 
1.80 

 
1.78 

 
1.81  
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Figure 5.8. Computed Solution for Problem One 
with An Arbitrary Flower Petal Interface, k=100+100i, m=256, n=128. 

 

 

 

 

Figure 5.9. Error of Computed Solution for Problem One 
with An Arbitrary Flower Petal Interface, k=100+100i, m=256, n=128. 
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Figure 5.10 Convergence Order Comparison for Problem One  
with An Arbitrary Flower Petal Interface. 

 

 

Table 5.6 Convergence Analysis for Example 5.1.3. 

 
k=100i k=100 k=100+100i k=0 k=10+10i k=1+2i 

Coefficient 

Correlation 
-0.9976 -0.9972 -0.9968 -0.9908 -0.9918 -0.9913 

Slope -1.9642 -1.9334 -2.0235 -2.0488 -1.9494 -2.0495 

Intercept 7.3523 10.1501 8.3788 8.1677 8.0757 8.3452 

Sest 0.2157 0.2311 0.2566 0.4418 0.3963 0.4299 

Min 

95% C.I. 
-2.1813 -2.1660 -2.2817 -2.4934 -2.3482 -2.4820 

Max 

95% C.I. 
-1.7471 -1.7008 -1.7654 -1.6042 -1.5507 -1.6169 

P-value 0.6360 0.4296 0.7906 0.7500 0.7136 0.7400 

Accept 

2:
0

−=aH
 

Yes Yes Yes Yes Yes Yes 
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Table 5.7 Computing Cost Analysis: Number of Iteration for Example 5.1.1. 

Mesh k=100i k=100 k=100+100i k=0 k=10+10i K=1+2i 

32 15 10 11 8 10 9 

64 13 10 10 8 10 9 

128 13 10 11 8 10 9 

256 13 10 11 8 10 9 

512 13 10 11 8 9 9 

 

 

Table 5.8 Computing Cost Analysis: Number of Iteration for Example 5.1.2. 

Mesh k=100i k=100 k=100+100i k=0 K=10+10i k=1+2i 

32 10 10 11 8 10 8 

64 10 12 11 9 10 9 

128 10 12 10 10 11 10 

256 9 12 10 9 11 9 

512 9 12 10 9 11 9 

 

 

Table 5.9 Computing Cost Analysis: Number of Iteration for Example 5.1.3. 

Mesh k=100i k=100 k=100+100i k=0 k=10+10i k=1+2i 

32 11 12 13 11 12 11 

64 10 12 11 11 12 11 

128 16 17 17 17 16 16 

256 11 14 12 12 13 12 

512 18 17 19 17 20 19 
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5.2 Numerical Example 2  

 In this example, we consider a problem with a discontinuous source term f, and the 

differential equation is   

,),(, Ω∈=++ yxfkuuu
yyxx

     (5.4) 

with exact solution as  
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x

     (5.8) 

and if k=0 (Poisson equation), then the source terms is   

Ω∈= ),(,0 yxf .       (5.9) 

 

The interface and the wave number k are given in each individual case, the Dirichlet 

boundary condition and jump condition [u]Γ=w will be determined accordingly. Beware that 

the other jump condition [un] Γ=g is unknown 

 

 

Case 2.1 Half Circular Interface 

Let the domain Ω= {(x, y): −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1 }, and  

Interface: 
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Subdomain that is outside interface:  Ω+ = Ω / Ω−  . 
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Table 5.10a  Error Analysis for Grid Refinement of Example 5.2.1. 

 
K=100i 

 
k=100 

 
k=100+100i 

 
Mesh Error Rate Error Rate Error Rate 

32 1.9172309E-02 
 

1.3101805E-01 
 

2.8496815E-02 
 

64 4.9807631E-03 1.94 2.1360192E-02 2.62 7.1232807E-03 2.00 

128 1.3884691E-03 1.84 6.3771377E-03 1.74 1.9176186E-03 1.89 

256 3.4969866E-04 1.99 1.4476327E-03 2.14 4.7597509E-04 2.01 

512 8.8140329E-05 1.99 3.6014252E-04 2.01 1.1939369E-04 2.00 

Convergence 

Order 
1.94 

 
2.09 

 
1.97 

 

 

 

Table 5.10b More Error Analysis for Grid Refinement of Example 5.2.1. 

 k=0 
 

K=10+10i  k=1+2i 
 

Mesh Error Rate Error Rate Error Rate 

32 4.2454093E-02 
 

4.2454093E-02  4.7394051E-02 
 

64 1.0469232E-02 2.02 1.0469232E-02 2.02 1.1685877E-02 2.02 

128 2.6134649E-03 2.00 2.6134649E-03 2.00 2.9153959E-03 2.00 

256 7.3696011E-04 1.83 7.3696011E-04 1.83 7.7192953E-04 1.92 

512 1.8364497E-04 2.00 1.8364497E-04 2.00 1.9422000E-04 1.99 

Convergence 

Order 
1.95 

 
1.95  1.98 
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Figure 5.11 Computed Solution for Problem Two 
with A Half Circle Interface, k=100+100i, m=256, n=128. 

 

 

 

Figure 5.12. Error of Computed Solution Problem Two 
with A Half Circle Interface, k=100+100i, m=256, n=128. 
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Figure 5.13 Convergence Order Comparison for Problem Two with An Half Circle Interface. 
 
 
 
 

Table 5.11 Convergence Analysis for Example 5.2.1. 
 

 
k=100i k=100 k=100+100i k=0 k=10+10i k=1+2i 

Coefficient 

Correlation 
-0.9999 -0.9983 -1.0000 -0.9999 -0.9999 -1.0000 

Slope -1.9362 -2.0897 -1.9701 -1.9534 -1.9534 -1.9782 

Intercept 3.9939 7.2989 4.7187 5.1674 5.1674 5.4654 

Sest 0.0488 0.2232 0.0340 0.0595 0.0595 0.0319 

Min 

95% C.I. 
-1.9853* -2.3143 -2.0044 -2.0133 -2.0133 -2.0103 

Max 

95% C.I. 
-1.8871* -1.8651 -1.9359 -1.8935 -1.8935 -1.9461 

P-value 0.0257 0.2933 0.0694 0.0896 0.0896 0.1192 

Accept 

2:
0

−=aH
 

Maybe Yes Yes Yes Yes Yes 

 
*: a=−2 falls between 99% confident Interval [-2.0264,-1.8460]. 
 
 



 

65 
 

Case 2.2 Half Oval Interface   

Let domain Ω= {(x,y): −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1 }, and  interface 
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0
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0
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Subdomain that is inside the interface:  

 


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
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≤≤≤≤−==≤+=Ω − 10,11,25.0,5.0,1:),(:
002

0

2

2

0

2

yxba
b

y

a

x
yx . 

Subdomain that is outside the interface Ω+ = Ω / Ω−  . 

 

Table 5.12a  Error Analysis for Grid Refinement of Example 5.2.2. 

 
k=100i 

 
k=100 

 
k=100+100i 

 
Mesh Error Rate Error Rate Error Rate 

32 1.3909343E-02 
 

1.3494268E-02 
 

2.1417184E-02 
 

64 3.5219551E-03 1.98 3.4273603E-03 1.98 5.1010118E-03 2.07 

128 1.1136624E-03 1.66 1.0692560E-03 1.68 1.5781984E-03 1.69 

256 3.9142595E-04 1.51 2.7907968E-04 1.94 5.4499299E-04 1.54 

512 9.8978365E-05 1.98 7.4918455E-05 1.90 1.3846264E-04 1.98 

Convergence 

Order 
1.74 

 
1.86 

 
1.78 

 

 

 

Table 5.12b More Error Analysis for Grid Refinement of Example 5.2.2. 

 K=0 
 

k=10+10i 
 

K=1+2i  

Mesh Error Rate Error Rate Error Rate 

32 4.2345275E-02 
 

6.3370572E-02 
 

4.9557268E-02  

64 1.0527419E-02 2.01 1.6014427E-02 1.99 1.2323084E-02 2.01 

128 2.6216757E-03 2.01 4.0061370E-03 2.00 3.0667723E-03 2.01 

256 6.5430825E-04 2.00 9.9966997E-04 2.00 7.6546386E-04 2.00 

512 1.6348735E-04 2.00 2.4947955E-04 2.00 1.9119254E-04 2.00 

Convergence 

Order 
2.00 

 
2.00 

 
2.00  
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Figure 5.14. Computed Solution for Problem Two 
with A Half Oval Interface, k=100+100i, m=256,n=128. 

 

 

 

Figure 5.15. Error of Computed Solution for Problem Two 
with A Half Oval Interface, k=100+100i, m=256, n=128. 
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Figure 5.16 Convergence Order Comparison for Problem Two with A Half Oval Interface. 

 

 

Table 5.13  Convergence Analysis for Example 5.2.2. 

 
k=100i k=100 k=100+100i k=0 K=10+10i k=1+2i 

Coefficient 

Correlation 
-0.9989 -0.9997 -0.9988 -1.0000 -1.0000 -1.0000 

Slope -1.7439 -1.8604 -1.7773 -2.0042 -1.9979 -2.0045 

Intercept 2.4575 3.0666 3.2155 5.4567 6.0169 5.6852 

Sest 0.1504 0.0766 0.1611 0.0027 0.0067 0.0027 

Min 

95% C.I. 
-1.8953* -1.9375** -1.9394*** -2.0069# -2.0047 -2.0072## 

Max 

95% C.I. 
-1.5925* -1.7833** -1.6152*** -2.0014# -1.9912 -2.0018## 

P-value 0.0126 0.0104 0.0221 0.0169 0.4016 0.0132 

Accept 

2:
0

−=aH
 

Maybe Maybe Maybe Yes Yes Maybe 

 
*: a=−2 fall between 99% Confident Interval [-2.0218,-1.4660]. 
**: a=−2 fall between 99% Confident Interval [-2.0019, -1.7189]. 
***: a=−2 fall between 99% Confident Interval [-2.0748, -1.4797]. 
#: a=−2 fall between 99% Confident Interval [ -2.0092, -1.9991]. 
##: a=−2 fall between 99% Confident Interval [ -2.0094, -1.9995]. 
 



 

68 
 

Case 2.3 Arbitrary Half Flower Petal Interface  

Let domain Ω= {(x,y): −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1 }, and the interface  
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So, the subdomain that is inside the interface 
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The subdomain that is outside the interface Ω+ = Ω / Ω−  . 

Table 5.14a  Error Analysis for Grid Refinement of Example 5.2.3. 

 
 
 

Table 5.14b More Error Analysis for Grid Refinement of Example 5.2.3. 

 
K=100i 

 
k=100 

 
K=100+100i 

 
Mesh Error Rate Error Rate Error Rate 

32 1.7045674E-02 
 

1.1645818E-01 
 

2.6767626E-02 
 

64 3.5129496E-03 2.28 4.1921111E-02 1.48 4.9592515E-03 2.43 

128 1.1078943E-03 1.66 1.5779112E-02 1.41 1.5496942E-03 1.68 

256 3.9008112E-04 1.51 3.1673795E-03 2.32 5.4311581E-04 1.51 

512 9.8402477E-05 1.99 8.5726590E-04 1.88 1.3750733E-04 1.98 

Convergence 

Order 
1.80 

 
1.79 

 
1.84 

 

 k=0 

 
K=10+10i  k=1+2i 

 
Mesh Error Rate Error Rate Error Rate 

32 5.2950678E-02 
 

7.0444768E-02  5.9067049E-02 
 

64 1.2893373E-02 2.04 2.1849600E-02 1.69 1.4873880E-02 1.99 

128 4.8007356E-03 1.43 7.1862374E-03 1.60 5.2856641E-03 1.49 

256 6.5230164E-04 2.88 1.0328548E-03 2.80 7.3415854E-04 2.85 

512 4.5758565E-04 0.52 6.6852508E-04 0.62 5.0220057E-04 0.55 

Convergence 

Order 
1.80 

 
1.78  1.81 
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Figure 5.17. Computed Solution for Problem Two  
with An Arbitrary Flower Petal Interface k=100+100i, m=256, n=128. 

 

 

 

Figure 5.18. Error of Computed Solution for Problem Two 
with An Arbitrary Flower Petal Interface k=100+100i, m=256, n=128. 
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5.19 Convergence Order Comparison for Problem Two 
with An Arbitrary Flower Petal Interface. 

 
 
 
 

Table 5.15  Convergence Analysis for Example 5.2.3. 
 

 
k=100i k=100 k=100+100i k=0 k=10+10i k=1+2i 

Coefficient 

Correlation 
-0.9976 -0.9953 -0.9966 -0.9851 -0.9876 -0.9862 

Slope -1.8044 -1.7898 -1.8400 -1.8014 -1.7842 -1.8096 

Intercept 2.9346 6.0977 3.7028 4.6308 5.1031 4.8500 

Sest 0.2307 0.3180 0.2774 0.5734 0.5180 0.5554 

Min 

95% C.I. 
-2.0365 -2.1098 -2.1192 -2.3783 -2.3054 -2.3685 

Max 

95% C.I. 
-1.5722 -1.4698 -1.5609 -1.2244 -1.2629 -1.2508 

P-value 0.0750 0.1278 0.1658 0.3534 0.2792 0.3577 

Accept 

2:
0

−=aH
 

Yes Yes Yes Yes Yes Yes 
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Table 5.16 Computing Cost Analysis: Number of Iteration for Example 5.2.1. 

Mesh k=100i k=100 k=100+100i k=0 K=10+10i k=1+2i 

32 9 14 10 8 8 9 

64 9 12 9 7 7 8 

128 9 12 10 8 8 9 

256 9 12 10 9 9 8 

512 9 12 10 9 9 9 

 

 

Table 5.17 Computing Cost Analysis: Number of Iteration for Example 5.2.2. 

Mesh k=100i k=100 k=100+100i k=0 k=10+10i K=1+2i 

32 9 10 11 8 10 9 

64 9 12 10 7 9 8 

128 8 12 10 9 10 9 

256 8 11 10 9 10 8 

512 8 12 10 9 10 9 

 

 

Table 5.18 Computing Cost Analysis: Number of Iteration for Example 5.2.3. 

Mesh k=100i k=100 k=100+100i k=0 K=10+10i k=1+2i 

32 10 11 12 11 12 12 

64 9 11 10 11 11 11 

128 14 16 15 15 16 15 

256 10 13 11 13 13 12 

512 17 17 15 18 19 18 

 

 

5.3 Discussion  

 

The entire numerical experiment are consisted of two group of problem, three set of 

interface, six different wave numbers and five increasing mesh size from 32 to 512. So we 

have total 180 original measurements for the error between exact solution and computed  
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solution; 180 number of iteration for the solver performs. We consider different mesh size 

but same problem, same interface and same wave number as one convergence test block in 

this dissertation.  

 

Correlation study is conducted for every block of convergence on the correlation of 

the logarithm of computational error and logarithm of mesh size. More specifically the 

Pearson Product Moment Correlation Coefficient (PPMC) is computed, for the logarithm of 

the mesh size n as the independent variable, and the logarithm of the complex number norm 

of error as the dependent variable. The correlation coefficients are overwhelmingly close to 

−1.0. (See row of Coefficient Correlation at the statistical analysis tables). This shows there 

is strong negative linear relationship between the variables. The larger the mesh size, the 

smaller the error of the computed solution toward to exact solution. This is in line with what 

we have found later in linear regression analysis. 

 

Linear regression is also conducted to find the line of best fit for every block of 

convergence [28]. There are 36 convergence order numbers. Their average value is 1.913 

with standard deviation of 0.097. (See the row of Slope at statistical analysis tables). This 

shows that our computed solutions convergence to exact solution at the order very close to 2. 

 

T-test is performed for each of convergence order (i.e. slope of linear convergence 

model, we write it as a notation for the rest of this discussion) [28]. See Rows of Sest 

(Standard Error of Estimate), Min.95% C.I. (Minimum Value of 95% Confident Interval), 
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Max.95% C.I. (Maximum Value of 95% Confident Interval) and P-value in the statistical 

analysis tables. Below is the summary:  

Table 5.19 Summary of the Statistics Analysis for Convergence. 

Catalog T-test Conclusion Frequency 

Conv Order > −2 Enough Evident (α=0.01) to reject H0: a = −2 1 

Conv.Order = −2+ Weak Evident (α=0.01) not to reject H0: a = −2 4 

Conv.Order = −2 Strong Evident (α=0.05) to accept H0: a = −2 27 

Conv.Order = −2− Weak Evident (α=0.01) not to reject H0: a = −2 2 

Conv.Order < −2 Enough Evident (α=0.01) to reject H0: a = −2 2 

 

Please notice that there are few cases (total 3 as 8.3%) that we have to reject the claim of 

second order convergence one way or the other. This is because that there are small number 

of observations and thus narrow standard deviation for the data. The data is overwhelmingly 

normal distributed, and strongly support the claim of second order convergence.  

 

Therefore, we are very confident that this method is second order convergence.  

 

 The convergence order for computational error is not affected by different functions 

and the geometry shapes of different interfaces. Our experimental functions and interfaces 

are all piecewise smooth. So, there exist remote isolated points which require special 

attention. For example, when conducting least square interpolation for the left most and right 

most bottom irregular points near the interface, we have to introduce the exact boundary  

 



 

74 
 

condition instead of relying only on the values from neighborhood points. The second order 

convergence for the least square interpolation is very crucial for the augment strategy and 

success of the entire project.  

 

Our algorithm and its executions are stable, robust and efficient. We have 2 groups of 

test functions, three interfaces with level set, six wave numbers including from zero to 

100+100i, and mesh size ranged from 32 to 512. The algorithm is always capable to return 

the approximate solution without hiccup. And the iteration of FFT solver remains relatively 

constant, independent to the problem, interface, wave number and mesh size, only varies 

with the GMRES error toleration.  

 

Further, some random extreme parameters are experimented as individual cases. For 

example, when experiments with large wave number like, k=10000, or 10000i, the 

convergence order is affected compare to other wave number under the same mesh size, 

which are in line with other researchers’ finding. Another example, when using large mesh 

size, like m=1024, 2048, the computational solution are still achieved second order 

convergence, through the computing time is couple hours long. As long as the Schur 

complement residual is relatively large compare with the GMRES error toleration, our 

method will return the solution with approximate second order of convergence. In future, 

execution updates, such as operating in a superior computer with fast CPU and huge 

memory, will be sure to improve perform of this algorithm.  
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CHAPTER 6  

Conclusions 

 

6.1 Research Conclusions 

 

 This dissertation has extended the Immersed Interface Method to two dimensional 

Helmholtz / Poisson equation problem in complex number space, the partial differential 

equation also have discontinuities and singularities in the coefficients and the solutions. In 

the process, we have achieved following.  

 

• Developing new two-dimensional Fast Fourier Transformation method in complex 

number space to solve Helmholtz / Poisson equations on rectangular domains. This 

method is second order convergence with respect to the mesh size, it is stable and 

efficient. (Chapter 2). 

• Analyzing and extending the Immersed Interface Method in two-dimensional 

Helmholtz / Poisson equation problem in complex number space with discontinuous 

and singularities. (Chapter 3). 

• Investigating and modifying the Augment Strategy for function in complex number 

space which involves least square interpolation, Schur complement and GMRES 

(Chapter 4). 
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• Implementing all above methods/algorithms/strategies in numerical experiments, the 

numerical e10xperiments are successful and the results are consistent with our 

analytical prediction. (Chapter 5).  

 

 

6.2 Future Research Work 

 

In the future we would like to conduct further numerical investigation about other boundary 

conditions, i.e. Neumann and Robin conditions. Although the main theatrical analysis is 

presented in Chapter Two, the change of boundary condition may be required many 

subroutines and functions due to the nature of our interface, which demands more time and 

energy. Additional test examples in complex number space are also needed. We have so far 

explored wide range of wave number from 0 to 100+100i, but just two examples.     

 

There are other plan of work can be considered, maybe in a long term effect. There are high 

convergence order Immersed Interface Method existing for two dimensional real-numbered 

Poisson and /or Helmholtz problem with discontinuous coefficients and solution. It would be 

an interesting challenge to extend it to complex number space. Another possible direction 

worth exploring is the three dimensional Poisson / Helmholtz problems in complex number 

space. They may have lots of real world application in electromagnet.  
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Appendix A  

PROLOGUE OF THE PACKAGE FFT_POISSON_COMPLEX3  

A FORTRAN CODE FOR SOLVING DOUBLE PRECISON COMPLEX NUMBER 

HELMHOLTZ PROBLEM 

 

    subroutine fft_poisson_complex3(m,n,f,h,k,u) 
 

C********************************************************************** 

C                                                                       

C   Fast Fourier Transformation solver in retangular domain 

C 

C********************************************************************** 

C 

C This function solves the 2-D Helmholtz problem   

C 

C        U_xx + U_yy + k U = f(x,y) 

C 

C using the Fast Fourier Transformation in complex number.  

C The domain is defined on a retangular region with equal sized  

C mesh spacing, but the size m and n may be different.  

C 

C---------------------------------------------------------------------- 

C  

C inputs: 

C   m = # of row of the grid matrix 

C   n = # of col of the grid matrix 

C   f = matrix of modified rhs values evaluated at interior meshpoints 

C   h = mesh spacing for x and y, hx=hy=h 

C   k = constant in above formula 

C 

C---------------------------------------------------------------------- 

C  

C outputs: 

C   u = solution to PDE at interior meshpoints 

C 

C---------------------------------------------------------------------- 
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C 

C working spaces: 

C  vm: m X m matrix for discrete Fourier transformation    

C  vn: n X n matrix for discrete Fourier transformation  

C  lambdam: 1 X m eigenvalue for discrete Fourier transformation 

C  lambdan: 1 X n eigenvalue for discrete Fourier transformation 

C  fbar: m X n matrix, discrete Fourier transformation f 

C  ubar: m X n matrix, discrete Fourier transformation u  

C  z: m X n matrix, middle value  

C 

C---------------------------------------------------------------------- 

C 

C Subrountinges called: 

C  Matrix3Multi: Multiplication of 3 matrix  A(mXm) X B(mXn) X C(nXn) 

C  ConstantMultiMatrix: constant multiplation to matrix 

C 

C---------------------------------------------------------------------- 

C 

C Precision: double complex (f-g,k,r-z) 

C        double precision (a-e,h,l,o-q) 

C            integer (m, n)  

C 

C---------------------------------------------------------------------- 

C 

C Written by Sidong Max Zhang, February, 2012 

C 

C********************************************************************** 

C 

C                END OF DOCUMENTATION FOR fft_poisson_complex3 

C 

C********************************************************************** 
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Appendix B 

PROLOGUE OF THE PACKAGE GMRES  

A FORTRAN CODE FOR SOLVING COMPLEX NUMBER SCHUR COMPLEMENT 

RESIDUAL EQUATION USING GMRES METHOD 

 

 subroutine gmres(n1max,mm,m,n,n1,n2,imax,a,b,c,d,h,phi,x,y, 

     1      cinfo,zinfo,index,index2,zelmbda,uj,unj,u,f, 

     2      zx0,zbf,tol,svdc1,svdc2,iter,error) 

 

C********************************************************************** 

C                                                                       

C   GMRES for Schur complement residual equation 

C 

C********************************************************************** 

C 

C This subroutine solves   

C 

C        (D-CA^(-1)B)G=CA^(-1)F_1 

C 

C using the Generalized Minimum Residual method for complex number.  

C to solve Schur complement in the Immersed Interface Method package 

C 

C---------------------------------------------------------------------- 

C  

C inputs: 

C   n1max =maximum number of irregular point allowed 

C   mm = The number of previous vector used, (mm=80), for example 

C   m = # of row of the grid matrix 

C   n = # of col of the grid matrix 

C   n1 = exact number of irregular point along the interface 

C   n2 = exact inside irregular point along the interface 

C   imax = maximum number of iteration allowed  

C   a, b,c,d = left, right, bottom and top boundary  

C   h = mesh spacing for x and y, hx=hy=h 

C   phi = zero level set function for interface 

C   x,y = grid points, x(0:m), y(0:n) 

 



 

86 
 

C   cinfo = irregular point information  

C   zinfo = irregular point informtion 

C   index =index for the irregular point 

C   index2 =index for the inside irregular pint 

C   zelmbda = wave number in the original equation 

C   uj = [u] u jump condition on the interface 

C   unj = [u_n] u_n jump condition on the interface 

C   u = initial computed solution  

C   f = matrix of modified rhs values evaluated at interior meshpoints 

C   zx0 = initial residual of the Schur complement 

C   zbf = residual of the Schur complement 

C   tol =maximum norm 2 error allowed  

C   svdc1 = coefficient of the least square interpolation 1 

C   svdc2 = coefficient of the least square interpolation 2 

C   error = norm 2 error 

C 

C---------------------------------------------------------------------- 

C  

C outputs: 

C   u = solution to PDE at interior meshpoints 

C   iter = number of iteration performed 

C 

C---------------------------------------------------------------------- 

C 

C working spaces: 

C  zhg:  

C  v:  

C  vk:  

C  zs:  

C  zx11:  

C  zhj:  

C  ztemp:   

C 

C---------------------------------------------------------------------- 

C 

C Subrountinges called: 

C   matvet1 computing matrix A and vector x, then find A^(-1)x  

C   resid return vector zr=zb-zx 

C   DZNRM2 returns the euclidean norm of a vector 
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C   ZSCAL scales a vector by a constant 

C   ZDOTC forms the dot product of a vector 

C 

C---------------------------------------------------------------------- 

C 

C Precision: double complex (f-g,u-w,z) 

C        double precision (a-e,h,o-t,x-y) 

C            integer (i-n)  

C 

C---------------------------------------------------------------------- 

C 

C Written by Sidong Max Zhang, October, 2012 

C 

C********************************************************************** 

C 

C                END OF DOCUMENTATION FOR GMRES 

C 

C********************************************************************** 

 


