
ABSTRACT

COUSINS, WILLIAM BRYAN. Boundary Conditions and Uncertainty Quantification for
Hemodynamics. (Under the direction of Pierre Gremaud.)

We address outflow boundary conditions for blood flow modeling. In particular, we con-

sider a variety of fundamental issues in the structured tree boundary condition. We provide

a theoretical analysis of the numerical implementation of the structured tree, showing that it

is sensible but must be performed with great care. We also perform analytical and numer-

ical studies on the sensitivity of model output on the structured tree’s defining geometrical

parameters. The most important component of this dissertation is the derivation of the new,

generalized structured tree boundary condition. Unlike the original structured tree condition,

the generalized structured tree does not contain a temporal periodicity assumption and is thus

applicable to a much broader class of blood flow simulations. We describe a numerical imple-

mentation of this new boundary condition and show that the original structured tree is in fact

a rough approximation of the new, generalized condition.

We also investigate parameter selection for outflow boundary conditions, and attempt to

determine a set of structured tree parameters that gives reasonable simulation results without

requiring any calibration. We are successful in doing so for a simulation of the systemic arterial

tree, but the same parameter set yields physiologically unreasonable results in simulations of

the Circle of Willis. Finally, we investigate the extension of recently introduced PDF methods

to smooth solutions of systems of hyperbolic balance laws subject to uncertain inputs. These

methods, currently available only for scalar equations, would provide a powerful tool for quan-

tifying uncertainty in predictions of blood flow and other phenomena governed by first order

hyperbolic systems.
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Chapter 1

Introduction

The massive size and complexity of the cardiovascular system prevent the direct application

of high fidelity mathematical models to the whole system. A common approach is to choose a

small subset of arteries to model in detail, while accounting for the remainder of the vascula-

ture through boundary conditions. In this dissertation, I consider solely arterial hemodynamics,

which means that the inflow vessels, i.e., vessels on the boundary of the computational domain

where blood flows into the network, tend to be few in number and of significant size. However,

the outflow vessels, i.e., vessels on the boundary of the computational domain where blood

flows out of the network, are substantially more numerous. Thus, while it may be reasonable

to impose measured data for the inflow vessels, it is typically impractical to obtain measured

data at the many outflow vessels. For this reason, outflow vessels require a boundary condition

that incorporates the effects of the downstream vasculature, rather than impose specific values

on the solutions themselves.

One such boundary condition is the structured tree, developed by Olufsen in [62, 63, 64],

which treats the downstream vasculature as a self-similar branching tree and solves a linearized

blood flow model in this tree to provide a boundary condition. In Chapter 3, I review the

derivation of the structured tree and investigate a variety of issues related to its implemen-

tation. For instance, its use of the convolution theorem raises a number of theoretical and

practical questions. I show that, if implemented with great care, the original numerical imple-

mentation proposed by Olufsen in [62] is valid. In this chapter I also perform analytical and

numerical studies of the structured tree’s dependence on its defining geometrical parameters. I

show that model output depends critically on the chosen minimum vessel radius in the tree.

A substantial drawback of the structured tree condition is that it requires an assumption

of temporal periodicity. This assumption limits the applicability of the structured tree, as a
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number of phenomena such as cardiac arrhythmia and exercise involve flows that are highly

non-periodic. In Chapter 4, I derive a new structured tree condition that does not contain this

periodicity assumption and is thus applicable to all flows. I derive this condition by replacing

the Fourier series approach used by Olufsen with a Laplace transform-based approach. I then

describe a numerical implementation of this condition that does not involve a perilous numerical

inverse Laplace transform. Furthermore, I show how the original, periodic structured tree is a

rough approximation of the newly derived generalized structured tree condition.

Parameter selection for the structured tree and other outflow boundary conditions is chal-

lenging. The structured tree provides a potential method for overcoming this issue since its

defining parameters are physiological quantities that may be measured. Despite this fact, I

discuss in Chapter 5 how a number of authors have needed to calibrate the structured tree

parameters to obtain acceptable simulation results, often obtaining physiologically unreason-

able parameter values in the process. I then investigate the physiologically correct values of

various parameters in the tree with the goal of obtaining reasonable simulation results without

performing any calibration. I obtain reasonable agreement with data for a simulation of the

systemic arterial tree (with no calibration), but I obtain physiologically unreasonable results in

a simulation of the Circle of Willis. It may be possible to fix this issue by considering organ

specific properties of arterial trees–I provide some discussion of this idea in Chapter 7.

Blood flow model predictions require one to specify parameters and boundary conditions

that are not known with exact certainty. A relatively new technique for quantifying the associ-

ated uncertainty in simulation results is to derive a closed partial differential equation for the

evolution of the probability density function of the uncertain model solution. This approach is

currently limited to scalar first order equations; in Chapter 6 I investigate a possible extension

to hyperbolic systems of first order equations. This extension would provide a powerful new

uncertainty quantification tool for blood flow and other phenomena modeled by first order hy-

perbolic systems.

To begin, I briefly overview the human cardiovascular system. I then discuss common blood

flow modeling methodology as well as common techniques to develop 1D models of arteries.

These models, which can provide accurate predictions of flow and pressure in the human body

[73, 64, 9], are the fundamental tool used to model blood flow in this work.

1.1 The Human Cardiovascular System

The human cardiovascular system consists of 4 primary components:

2



1. Blood, consisting primarily of a suspension of red blood cells in plasma

2. The heart, which consists of four chambers: the right atrium, the right ventricle, the left

atrium, and the left ventricle.

3. The systemic circulation, consisting of the systemic arteries, capillaries, and veins

4. The pulmonary circulation, consisting of the pulmonary arteries, capillaries, and veins

The left ventricle of the heart contracts periodically roughly once per second. When this

occurs, oxygenated blood is pumped into the systemic arteries. These arteries form a branch-

ing network whose vessels get perpetually smaller as distance from the heart increases. These

arteries lead to capillaries, which are small vessels with radii comparable to the diameter of a

single red blood cell (roughly 8µm). At this level, oxygen and other nutrients diffuse through

the capillary wall to provide essential nutrients to tissues.

After passing through the capillaries, blood is returned to the right atrium of the heart

through the veins. Blood is then moved to the right ventricle of the heart, which pumps the

blood through the pulmonary circulation. The pulmonary circulation is similar to the systemic

circulation in that it also contains arteries, capillaries, and veins, but the purpose of these

two circulations is quite different. As blood flows through the pulmonary circulation oxygen is

transferred into the blood, after which blood returns to the heart, is pumped out of the left

ventricle, and delivers this oxygen to tissues, thus completing the cycle.

1.2 Modeling the Cardiovascular System

There are a variety of ways that the cardiovascular system can fail to accomplish its important

functions, and mathematical modeling of this system provides a pathway to better understand

or prevent these failures. For example, Marsden et. al. [52] modeled blood flow in patients

with a type of congenital heart defect who have undergone the Fontan surgical procedure,

which diverts blood flow from the veins around the right atrium and directly to the pulmonary

circulation. This procedure is often required to prevent death, but longer term survival rates

of patients who undergo this procedure are only 60% after 10 years [52] with significant risks

of irregular heartbeat and diminished exercise capacity. Since it is difficult to obtain in vivo

measurements of these patients while exercising, Marsden et. al. use mathematical modeling

to analyze the efficiency of multiple variations of the Fontan procedure during exercise.

3
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Figure 1.1: Schematic of the Circle of Willis. The symbols at various vessel ends represent
different boundary conditions imposed at those points (see Chapter 2)

Stroke, a situation where blood is not adequately delivered to brain tissues, is a leading

cause of death and disability [15]. Blood is delivered to the brain primarily through the Cir-

cle of Willis, which is a ring-like structure of arteries located at the base of the brain (see

Figure 1.1). This network contains redundancies, so unsurprisingly individual Circle of Willis

structures vary considerably throughout the population, with 50% of healthy brains containing

at least one underdeveloped or missing artery [6]. Using models of blood flow, Alastruey et. al.

[3] and DeVault [27] quantified to what degree these anatomical variations left one vulnerable

to a sudden vessel occlusion. This idea could be used to estimate an individual’s stroke risk.

Understanding the effects of these anatomical variations in different settings is also relevant for

vascular surgical planning [40].

In the larger arteries, the diameter of red blood cells (roughly 8µm) is small enough compared

to the radius of the vessel to adequately treat blood as a fluid whose motion is determined by

the Navier-Stokes equations [18]. A number of authors have successfully used such 3D models

to simulate blood flow [52, 56, 35, 65, 95, 55]. However, in this work our focus is on simpler

1D models, which can provide accurate predictions of blood flow at a fraction of the cost of 3D

models.
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1.2.1 1D Models

Although the problem of blood flow in arteries is technically a three-dimensional phenomena,

the cylindrical shape of many vessels suggest that a simpler 1D model may be sufficient. The

authors of [65, 56, 35] performed 3D simulations, averaged the resulting solutions over vessel

cross sections, and compared the results to 1D model simulations. They found that predictions

generated by the 1D models were similar to the 3D models, suggesting that 1D models may be

adequate for situations where one is only interested in one dimensional quantities, such as the

blood pressure or flow at a particular spatial point averaged over the cross sectional area of a

vessel.

In order to derive 1D equations, one must make approximations in order to close nonlinear

terms that are not amenable to averaging over cross sections. There are a variety of choices

as to how to go about doing so, with different choices leading to different 1D models. We now

provide an example of such an approach by deriving the 1D model used in this dissertation.

The following derivation is similar to approaches taken by other authors [63, 64, 81, 73], and

corresponds exactly to the 1D system obtained in [26].

We use a cylindrical polar coordinate system to describe the interior of a blood vessel, with

each point inside the vessel identified by a coordinate (x, r, θ), where 0 ≤ x ≤ L, 0 ≤ r ≤
R(x, θ, t), and 0 ≤ θ < 2π. The x coordinate determines the position along the axis of the

vessel, with L being the length of the vessel. r is the radial coordinate and denotes a particular

point’s distance from the axis of the vessel, and R(x, θ, t) denotes the radius of the vessel at a

particular point. Figure 1.2 contains a diagram showing the meaning of the x and r coordinates.

Let ux(x, r, θ, t), ur(x, r, θ, t), and uθ(x, r, θ, t) denote the respective x, r, and θ components

of blood velocity, p(x, r, θ, t) the blood pressure, and let µ and ρ denote the viscosity and density

of blood, respectively. The following assumptions are standard in the field of 1D blood flow

models [53, 2, 26, 30, 32, 79, 73, 91]:

1. The density of blood, ρ, is constant.

2. Gravitational effects are negligible.

3. Blood velocity and pressure are axisymmetric, that is, there is no dependence on θ

4. There is no “swirl,” i.e. uθ = 0

5. The pressure is constant on vessel cross sections, p(x, r, θ, t) = P (x, t).
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Figure 1.2: Diagram showing the meaning of the x and r coordinates

6. The no-slip boundary condition holds on the vessel wall, that is, ux(x,R(x, t), t) = 0. In

the transversal direction, the fluid on the wall is assumed to move with the vessel wall

itself, meaning ur(x,R(x, t), t) = ∂tR(x, t).

The x-momentum and continuity equations of the Navier-Stokes equations are (for a reference,

see [1])

∂ux
∂t

+ ur
∂ux
∂r

+
uθ
r

∂ux
∂θ

+ ux
∂ux
∂x

= −1

ρ

∂p

∂x
+
µ

ρ

[
1

r

∂

∂r

(
r
∂ux
∂r

)
+

1

r2

∂2ux
∂θ2

+
∂2ux
∂x2

]
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂ux
∂x

= 0

Using the above assumptions, these equations reduce to the following:

∂ux
∂t

+ ur
∂ux
∂r

+ ux
∂ux
∂x

= −1

ρ

∂P

∂x
+
µ

ρ

[
1

r

∂

∂r

(
r
∂ux
∂r

)
+
∂2ux
∂x2

]
(1.1)

1

r

∂

∂r
(rur) +

∂ux
∂x

= 0 (1.2)

It is also common to ignore the ∂xxux term. This can be justified by a nondimensionalization
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argument where the axial velocity is assumed to be substantial greater than the radial velocity

[26, 64]. We now drop this ∂xxux term and integrate both equations over the cross-sectional

area of the vessel. In doing so it will be useful to define the flowrate, Q(x, t), and cross-sectional

area, A(x, t):

Q(x, t) , 2π

∫ R(x,t)

0
ux(x, r, t)rdr

A(x, t) , πR(x, t)2

To begin, we integrate the continuity equation (1.2) over vessel cross-sections.

0 = 2π

∫ R

0
∂r(rur)dr + 2π

∫ R

0

∂ux
∂x

rdr

= 2πRur(x,R, t) + 2π

[
∂x

∫ R

0
uxrdr − ∂xRux(x,R, t)R

]
= 2πR∂tR+ ∂xQ

= ∂tA+ ∂xQ

We now integrate the x-momentum equation (1.1) over vessel cross-sections. The integration

of the first term in (1.1) is straightforward:

2π

∫ R

0

∂ux
∂t

rdr = 2π

[
∂

∂t

∫ R

0
uxrdr −

∂R

∂t
uxR

]
= ∂tQ

where in the above we have used the fact that ux = 0 when r = R, which follows from the

no-slip condition. The integrals of the nonlinear terms of (1.1) do not admit a closed form

formulation in terms of A and Q:

2π

∫ R

0
ur
∂ux
∂r

rdr = 2π

[
uruxr

∣∣∣R
0
−
∫ R

0
ux
∂(urr)

∂r

]
= 2π

∫ R

0
ux
∂ux
∂x

rdr

= π

∫ R

0

∂(u2
x)

∂x
rdr

In the above we have used (1.2) and the fact that ux vanishes when r = R. Since P is constant

on cross sections, the computation of the integral of ∂P/∂x is trivial:

1

ρ
2π

∫ R

0

∂P

∂x
rdr =

A

ρ
∂xP.
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The integral of the final term in (1.1) cannot be written in terms of Q and A and requires

information on the derivative of ux in the radial direction at the vessel wall:

2π
µ

ρ

∫ R

0

1

r
∂r(r∂rux)rdr = 2π

µ

ρ
r∂r(ux)

∣∣∣R
0

= 2π
µ

ρ
R∂r(ux)

∣∣∣
r=R

.

We now plug the above results into (1.1)

∂tQ+ 2π

∫ R

0

∂(u2
x)

∂x
rdr +

A

ρ
∂xP = 2π

µ

ρ
R∂r(ux)

∣∣∣
r=R

For the x-momentum equation, it is impossible to obtain a closed equation for A and Q without

additional assumptions. To complete this process, we need to make additional assumptions to

handle the inertial term (the integral of u2
x), the wall friction term (the term on the right hand

side involving ∂r(ux)
∣∣∣
r=R

, and the relationship between P and A. The typical approach to

address these two terms is to assume a particular velocity profile (see [91] for a summary of

various velocity profiles). We assume that the x-component of velocity adheres to the following

profile, where U denotes the cross-sectional average of ux and γ is a parameter that determines

the shape of the profile

ux(x, r, t) =
γ + 2

γ
U(x, t)

[
1−

(
r

R(x, t)

)γ]
This assumption allows us to write the inertial and wall friction terms explicitly in terms of A

and Q:

2π

∫ R

0

∂(u2
x)

∂x
rdr = ∂x

∫ R

0
u2
xrdr − ∂xRu2

x(x,R, t)R

= 2π

[
γ + 2

γ

]2

∂x

(
U(x, t)2

∫ R

0
r
[
1−

( r
R

)γ]
dr

)
= 2π

[
γ + 2

γ

]2

∂x

(
U(x, t)2

∫ R

0

[
r − 2

rγ+1

Rγ
+
r2γ+1

R2γ

]
dr

)
= 2π

(
γ + 2

γ

)2

∂x

(
U(x, t)2R(x, t)2

[
1

2
− 2

γ + 2
+

1

2(γ + 2)

])
=
γ + 2

γ + 1
∂x

(
Q2

A

)

2π
µ

ρ
R∂r(ux)

∣∣∣
r=R

= −2π
µ

ρ
R(γ + 2)U(x, t)

(
Rγ−1

Rγ

)
= −2πµ(γ + 2)

ρ

Q

A
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To finish closing the system, we use the following constitutive law that relates P to A

P − P0 =
4Eh

3r0

(
1−

√
A0

A

)
(1.3)

In the above, P0 is the pressure applied to the wall from outside the vessel, E is Young’s modu-

lus, h is the thickness of the vessel wall, and r0 is the radius of the unstressed vessel (A0 = πr2
0).

The constitutive law (1.3) is derived by treating the arterial wall as a thin elastic shell whose

deformations are axisymmetric [63].

This yields the following 1st-order system of partial differential equations for A and Q:

∂tA+ ∂xQ = 0 (1.4)

∂tQ+
γ + 2

γ + 1
∂x

(
Q2

A

)
+
A

ρ
∂xP = −2πµ(γ + 2)

ρ

Q

A
(1.5)

In Chapter 2 we show that this system is a hyperbolic system of balance laws. Although hyper-

bolic systems are well known for often lacking smooth solutions [47], in the regimes we consider

the solutions appear to be smooth (see Appendix A). This allows these equations to be solved

numerically with little difficulty.
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Chapter 2

Boundary Conditions for

Hemodynamics

To begin our discussion of boundary conditions, we determine the eigenvalues of the Jacobian

matrix of the system (1.4,1.5). If these eigenvalues are real, their signs determine the locations

at which boundary conditions must be imposed. For this system, the Jacobian matrix is

J =


0 1

AP ′(A)

ρ
+ γ̄

Q2

A2
2γ̄
Q

A


where γ̄ = (γ + 2)/(γ + 1). The eigenvalues of this Jacobian are:

γ̄U ±
√

2Eh

3R

where R =
√
A/π and U = Q/A is the cross sectionally averaged blood velocity. In this dis-

sertation, we follow [63] and set Eh/r0 = k1e
k2r0 + k3, where k1 > 0 and k3 = 8.65 × 105.

This means that
√

2Eh/3R =
√

2Eh/3r0

√
r0/R ≥

√
2(8.65)(105)/3

√
r0/R ≈ 759

√
r0/R. We

use a value of γ = 2, so γ̄ = 4/3. Branching parameter data in Section 3.1.1 implies that the

total cross sectional area increases as the distance from the heart increases. Conservation of

flowrate at junctions would then imply that blood velocity tends to decrease as you move down

the arterial network away from the heart. We expect the maximum value of U to occur at the

aorta, where it is roughly 100 cm/s (see Chapter 5). Therefore, we would only expect both

eigenvalues to be positive if r0/R < (400/(3× 759))2 ≈ 0.03. We do not expect for r0/R to be

less than 0.03 in any physiological setting as this would imply that the vessel radius, R is more
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than 30 times bigger than its unstressed radius, r0.

This argument shows that the Jacobian of this system admits two real eigenvalues of differing

signs. Thus the system (1.4,1.5) is hyperbolic and we need to impose one scalar condition at each

end of each vessel. The appropriate boundary conditions depend on a given vessel’s location in

the arterial network being modeled. We classify each boundary as one of the following types:

1. Inflow Boundaries - Points where blood is flowing into the network. Although the velocity

of blood does not have a definite sign for all vessels in the human body, we are able to

determine the direction of blood flow in all boundary vessels in networks simulated in this

document. For example, see vessels 1, 8, and 9 in Figure 1.1.

2. Junctions - Points where a vessel intersects another vessel. For example, see the intersec-

tion of vessels 1, 2, and 3 in Figure 1.1.

3. Outflow Boundaries - Points where blood is flowing out of the network. For example, see

vessels 4, 5, 10, 11, 15, and 16 in Figure 1.1.

Each of these boundary types is fundamentally different. The purpose of inflow and outflow

boundaries is to incorporate what is “outside” the modeling domain. For inflow boundaries, this

corresponds to a relatively small number of larger vessels and the heart. For outflow boundaries,

this corresponds to an enormous number of small arteries, capillaries, and veins. At junctions,

boundary conditions are motivated by continuity and conservation principles.

Inflow Boundary Conditions

In this dissertation, we perform numerous simulations of blood flow in the Circle of Willis,

a ring-like structure of arteries at the base of the brain. At inflow boundaries of the Circle

of Willis, we enforce Q(t)/A(t) = U(t), where U(t) is velocity data measured using digital

transcranial Doppler technology at the Beth Israel Deaconess Medical Center. The raw data

contains 8 “periods” of quasi-periodic noisy data, so we average this data to obtain a smoother

waveform. Specifically, for i = 0, ..., 7, we approximate the following integrals via discrete

Fourier transform

Û ik =
1

T

∫ i+T

i
U(t)eiωktdt

where ωk = 2πk/T , T is the period length. We then take the simple average of these 8 Fourier

representations. The raw and averaged data obtained through this procedure are displayed in

Figure 2.1. When implemented, each of these three curves is placed in phase with the others.

Since each inflow point of the Circle of Willis is roughly the same distance from the heart, we
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Figure 2.1: Inflow velocity data used as a boundary condition in simulations of the Circle of
Willis. The blue curve corresponds to raw, measured velocity data, and the red, dashed curve
is the smoothed data.
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expect these curves will be roughly in phase. Another similar inflow condition is to impose the

flowrate, which we do in a simulation of the systemic arterial tree in Chapter 5.

An alternative inflow boundary condition is to couple the PDE system (1.4,1.5) to a heart

model if the inflow boundary vessel is the aorta. One example of such a model is the time-

varying elastance model [75], which enforces:

E(t) =
plv(t)

Vlv(t)− V0

plv and Vlv are the pressure and volume of the left ventricle, and E(t) is the time-varying

elastance of the left ventricle. An empirical function for E(t) can be found in [77]. Alternative

heart models to the time varying elastance model exist, such as the single-fiber model [7, 12, 24].

Junction Boundary Conditions

At junctions, we require that the pressure be continuous and the flowrate be conserved. Specif-

ically, we impose

m∑
k=1

Q
(k)
IN (t, Lk) =

n∑
k=1

Q
(k)
OUT(t, 0), (2.1)

P
(1)
IN (t, L1) = · · · = P

(m)
IN (t, Lm) = P

(1)
OUT(t, 0) = · · · = P

(n)
OUT(t, 0), (2.2)

where Lk denotes the length of vessel k. Such boundary conditions are common in the field

[26, 9, 73, 63]. Some authors choose to enforce continuity of the total pressure P + 1
2ρU

2 rather

than the continuity of P , that is,

P
(1)
IN (t, L1) +

1

2
ρ

(
Q

(1)
IN (t, L1)

A
(1)
IN (t, L1)

)2

= · · · = P
(m)
IN (t, Lm) +

1

2
ρ

(
Q

(m)
IN (t, Lm)

A
(m)
IN (t, Lm)

)2

(2.3)

= P
(1)
OUT(t, 0) +

1

2
ρ

(
Q

(1)
OUT(t, 0)

A
(1)
OUT(t, 0)

)2

= · · · = P
(n)
OUT(t, 0) +

1

2
ρ

(
Q

(n)
OUT(t, 0)

A
(n)
OUT(t, 0)

)2

(2.4)

The authors of [9] suggest that there is only a negligible difference between (2.2) and (2.4), and

we simply use (2.2) rather than the conservation of total pressure boundary condition in this

work. Additional information on this condition may be found in [53, 3].
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Outflow Boundary Conditions

We use four different types of outflow boundary conditions at various points in this work: the

pure resistor boundary condition, the 3-element RCR Windkessel, the periodic structured tree,

and the generalized structured tree. The pure resistor states that the pressure at each outflow

boundary is proportional to the flowrate at that point. Specifically,

P = R0Q

here R0 is a constant, but R0 can vary between different outlets. The pure resistor boundary

condition can be derived by using Poiseuille’s law within individual vessels and enforcing pres-

sure continuity and flowrate conservation at junctions. Although this boundary condition is

simple to implement and sees some use in practice [78, 95, 31], it often produces physiologically

unreasonable results in general ([9, 36], and Section 5.3 of this work.) Furthermore, this condi-

tion also forces the pressure and flowrate to be in phase, which is not the case physiologically

[36]. Also, it is not obvious how to determine the resistance parameter R0 without direct mea-

surements of pressure and flowrate at each outlet of the arterial network.

The RCR Windkessel boundary condition enforces a relationship between the pressure,

flowrate, and their time derivatives.

CR1R2∂tQ+ (R1 +R2)Q = CR2∂tP + P.

C,R1, and R2 are parameters whose specific values are dependent on the particular outflow

boundary vessel. The Windkessel differs from the pure resistor by incorporating the compliant

effect of the elastic arteries (the Windkessel reduces to the pure resistor condition when C = 0).

The Windkessel can be thought of as an RCR electrical circuit, where P represents voltage and

Q represents current. An unfortunate drawback of the Windkessel model is that the parameters

have limited physiological meaning [100], and in the absence of flow and pressure measurements,

they must be estimated on a vessel by vessel basis. Some rough rules of thumb do exist for

estimating these parameters [73, 91]. Alastruey et. al. [4, 5] also gave methods to estimate the

Windkessel parameters.

The structured tree boundary condition is a physiologically based boundary condition that

is derived by treating the “un-modeled” vascular network outside an outflow vessel as a struc-

tured, self-similar tree of arteries. Within these arteries, a linearized model is solved exactly to

provide a relation between pressure and flowrate at the outflow boundary. This approach will

be discussed at length in Chapter 3. Unfortunately, the original derivation of this condition
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requires an assumption of periodicity in time, which is not the case in a variety of situations.

A generalized version of this condition that is applicable to general, non-periodic flows will be

derived in Chapter 4.

There are a variety of other outflow boundary conditions that we do not consider in detail

in this work. One simple option is to impose the pressure at outlets. Although straightforward

to implement, this condition requires one to have knowledge of the correct pressure. For sim-

ulations with multiple outlets, there is the additional problem of ensuring that the phases of

the imposed pressures are appropriately aligned [36]. Another option, described in [36], is to

impose the velocity at each outlet. The authors of [36] describe a way to do so while ensuring

stability. An obvious limitation of this condition is that it requires one to know the velocity

values at outlets, which is unreasonable in certain cases. In fact, attaining flow information at

the outlets is often the central goal of numerical simulation [3, 27]. Other outflow boundary

conditions include the 4-element Windkessel [60] and the imposition of a single, long tapered

vessel [59].
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Chapter 3

Implementation of The Original

Structured Tree

As discussed in Chapter 2, fully detailed modeling of the entire cardiovascular system is unre-

alistic due to the massive size and complexity of the arterial network. Although it is possible

to partially mitigate this issue by only modeling a small subset of the arterial network in de-

tail, the “un-modeled” network still must be taken into account through boundary conditions.

Therefore, it is necessary to develop boundary conditions that correctly account for the effects

of the un-modeled vasculature.

The structured tree boundary condition, developed by Olufsen, is a physiologically based

boundary condition which relies on solving a blood flow model in a self-similar binary tree of ar-

teries [62, 63, 64]. In Section 3.1, we briefly overview Olufsen’s derivation of the structured tree,

which is based on Womersley’s solution to the linearized Navier-Stokes momentum equation

in a rigid-walled tube. In Section 3.1.3, we provide an alternative derivation that incorporates

elastic arterial walls by solving the linearization of the equations derived in Section 1.2.1.

The structured tree condition provides a condition on the Fourier coefficients of the states,

so its implementation as a boundary condition in the time domain is necessarily nontrivial. In

Section 3.2 we show that the implementation method advocated by Olufsen et. al. in [64] inap-

propriately makes use of the convolution theorem, which raises serious theoretical and practical

questions. Despite this issue, we then show that the specific implementation advocated by

Olufsen et. al. in [64] is valid, but its interpretation as a convolution integral is dangerous and

misleading.

In [62], Olufsen noted that the structured tree condition has a critical sensitivity to the
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parameter that determines where the self-similar arterial tree terminates. In Section 3.3, we

provide an analytical explanation of the cause of this sensitivity. Additionally, we provide

numerical results quantifying the strong dependence of model output on this termination pa-

rameter.

3.1 Derivation of Original Structured Tree

The structured tree boundary condition was originally proposed by Olufsen [62, 63, 64]. Taylor

also considered wave propagation in trees of arteries [86, 87] in a similar manner. Olufsen’s

derivation of the structured tree boundary condition can be broken up into two main compo-

nents. First, Olufsen treats the downstream vasculature as a self-similar binary tree of arteries.

Within this tree, the linearized, axisymmetric Navier-Stokes equations are solved exactly by

assuming that the flow and pressure are periodic in time [64].

3.1.1 Geometry of the Structured Tree

The concept of the structured tree model of the arterial network, as described for instance in

[63], assumes that vessels end by bifurcating into two daughter vessels. Vessels are taken to be

cylindrical. For a parent vessel of radius rp, the radii of the daughter vessels rd1 and rd2 are

determined by two scaling parameters ξ and η

rξp = rξd1 + rξd2 ,

η = (rd2/rd1)2 ,

where η is the ratio of the cross-sectional areas of the two daughter vessels. The meaning of ξ is

less obvious, although ξ = 2 corresponds to conservation of area at the bifurcation. Knowledge

of these two parameters allows us to express the radii of the two daughter vessels in terms of

the radius of the parent

rd1 = α rp, rd2 = β rp,

where α =
(
1 + ηξ/2

)−1/ξ
and β = α

√
η. Additionally, the ratio of a vessel’s length to its radius,

λ, is assumed to be constant. Vessels with radius less than a specified minimum radius, rmin,

terminate, i.e., they do not bifurcate.
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3.1.2 Hemodynamics in the Tree

In [64], Olufsen treats the Navier-Stokes momentum equation in a way similar to Womersley’s

classical solution [101]. Specifically, the flow is assumed to be axisymmetric, the angular com-

ponent of velocity is taken to be zero, body forces are ignored, the vessel is treated as a rigid

pipe with radius r0, and the equations are linearized. The linearization is justified by the fact

that this model is designed to be used in the smaller arteries, where viscous effects become

more important than inertial effects [18]. These simplifications yield the following simplified

form of the Navier-Stokes axial momentum equation:

∂ux
∂t

+
1

ρ

∂P

∂x
=
ν

r

∂

∂r

(
r
∂ux
∂r

)
, (3.1)

where ux is the axial velocity component. Olufsen then assumes ux, P, and Q are periodic in

time with period T .

P (t) =

∞∑
k=−∞

P̂ke
iωkt Q(t) =

∞∑
k=−∞

Q̂ke
iωkt

where Q(x, t) = 2π
∫ r0

0 ux(x, r, t)rdr and ωk = 2πk/T , where T is the period of P and Q.

Equation (3.1) is then multiplied by e−iωkt and integrated in time from 0 to T . The resulting

equation is then solved exactly and integrated over cross sectional area to yield the following

ODE:

Q̂k = −A0

ρ
∂xP̂k (1− Fk) (3.2)

where Fk = 2J1(wk)
wkJ0(wk) , with Jn being the nth order Bessel function, and wk = r0

√
−iωkρ/µ. In

[64], Olufsen uses the continuity equation derived in Section 1.2.1.

∂tA+ ∂xQ = 0

Linearizing this equation about A = A0 yields

C∂tP + ∂xQ = 0, (3.3)

where C = ∂A
∂P

∣∣
P=P0

= 3A0r0/2Eh, which is obtained from the following elastic constitutive

law (see (1.3), Section 1.2.1):

P − P0 =
4Eh

3r0

(
1−

√
A0

A

)
(3.4)
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where E is the elastic modulus, h is the thickness of the vessel wall, r0 is the radius of the

unstressed vessel. Multiplying the linearized continuity equation (3.3) by e−iωkt and integrating

from 0 to T yields the following ODE:

iωkC∂tP̂k + ∂xQ̂k = 0 (3.5)

Equations (3.2) and (3.5) are then solved analytically, yielding

Q̂k(0) = ickCP̂k(L) sin

(
ωk
ck
L

)
+ Q̂k(L) cos

(
ωk
ck
L

)

P̂k(0) = P̂k(L) cos

(
ωk
ck
L

)
+

i

ckC
Q̂k(L) sin

(
ωk
ck
L

)

where ck =
√

(1− Fk)A0
ρC , A0 = πr2

0, and L is the length of the vessel. The solution for P̂k may

be divided by the solution for Q̂k to get an expression for the vascular impedance, Ẑk, where

Ẑk , P̂k/Q̂k:

Ẑk(0) =
Ẑk(L) + i (ckC)−1 tan

(
ωkL
ck

)
1 + ickC tan

(
ωkL
ck

)
Ẑk(L)

, (3.6)

Ẑ0(0) , lim
ωk→0

Ẑk(0) = Ẑ0(L) +
8µλ

πr3
0

. (3.7)

The limit with respect to ωk was done by viewing ωk in the continuous sense. The above

expressions relate the impedance at the end of an individual vessel (x = L) to the impedance

at the beginning of that vessel (x = 0). At junctions, Olufsen assumes that the pressure is

continuous and flowrate is conserved:

P (pa)(L, t) = P (d1)(0, t) = P (d2)(0, t)

Q(pa)(L, t) = Q(d1)(0, t) +Q(d2)(0, t)

Computing the Fourier coefficients of each side of the above expressions yields the following

condition on the impedance at junctions:

1

Ẑ
(pa)
k (L)

=
1

Ẑ
(d1)
k (0)

+
1

Ẑ
(d2)
k (0)

(3.8)

The structured tree model is closed by assuming the impedance at the ends of all terminal

vessels to be equal to a specific constant denoted Ẑterm. This value is typically taken to be 0
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[63, 64]; we take Ẑterm = 0 in all analysis unless otherwise noted. Given merely the radius of

the root vessel, the impedance at the end of that vessel may be calculated for any integer k

using the above results. The geometric scaling laws determine the length and radii of all vessels

in the tree. The terminal impedance is then imposed at the ends of all terminal vessels, and

by repeatedly applying expressions (3.6) and (3.8) in succession, a value for the impedance of

the root vessel is obtained. Figure 3.1 contains a visualization of this process, and an explicit

description is in Appendix A.0.3.

3.1.3 Alternative Formulation

In Section 3.1.2, the momentum equation was solved by treating the vessel as a rigid cylindrical

tube. Here, we linearize and solve the 1D equations (1.4,1.5) derived in Section 1.2.1, which

incorporate elastic arterial walls in the momentum equation. In addition, the work in the fol-

lowing section serves as a general blueprint for how one could derive a structured tree condition

using one’s particular equations of choice. In Section 1.2.1, we derive equations (1.4) and (1.5)

by assuming blood flow follows the axisymmetric, incompressible Navier-Stokes equations. The

effect of gravity is neglected. The equations are then averaged on-cross sections, leading to the

following one-dimensional formulation:

∂tA+ ∂xQ = 0, (3.9)

∂tQ+
γ + 2

γ + 1
∂x

(
Q2

A

)
+
A

ρ
∂xP = −2π(γ + 2)

µ

ρ

Q

A
, (3.10)

where A is the cross-sectional area and Q the flowrate; the density ρ is assumed to be constant,

µ is the viscosity. The system is closed by a constitutive law for the pressure P (3.4). The

parameter γ determines the velocity profile. More precisely, the axial velocity is given by

ux(r, x, t) =
γ + 2

γ
U(x, t)

(
1−

(
r

R(x, t)

)γ)
, (3.11)

where R(x, t) is the radius of the vessel (A = πR2), and U = Q/A is the cross-sectionally

averaged velocity.

In a second step, the system (3.9, 3.10) is linearized in A around the constant value A0 and

in Q around Q = 0. Further, the system is expressed in terms of P and Q, rather than A and
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(a) Impose Ẑterm at leafs (b) Use (3.6)/(3.7) to move
from end to beginning of a
vessel

(c) Use (3.8) to move across
junction

(d) Use (3.6)/(3.7) (e) Use (3.8) to move across
junction

(f) Use (3.6)/(3.7)

(g) Use (3.6)/(3.7) (h) Use (3.8) to move across
junction

(i) Use (3.6)/(3.7)

(j) Use (3.8) to move across
junction

(k) Use (3.6)/(3.7)

Figure 3.1: Visualization of Olufsen’s algorithm for computing the impedance at the root of
the structured tree.
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Q through a linearization of the constitutive equation (3.4). This results in

C ∂tP + ∂xQ = 0 (3.12)

∂tQ+
A0

ρ
∂xP = −2π(γ + 2)

µ

ρ

Q

A0
, (3.13)

where C = ∂A
∂P

∣∣
P=P0

= 3A0r0/2Eh is the compliance. The third and final step consists in

assuming that P and Q are periodic in time and are suitably regular to justify their represen-

tation by Fourier series. We then multiply equations (3.12) and (3.13) by e−iωkt and integrated

in time from 0 to T . This gives the following system for their Fourier coefficients

iωkC P̂k + ∂xQ̂k = 0, (3.14)

(iωk + δ)Q̂k +
A0

ρ
∂xP̂k = 0, (3.15)

where δ = 2µ(γ+2)
ρr20

. Solving the above system yields

Ẑk(0) =
Ẑk(L) + i(dkC)−1 tan

(
ωk
dk
L
)

1 + idkC tan
(
ωk
dk
L
)
Ẑk(L)

, (3.16)

Ẑ0(0) = lim
ωk→0

Ẑk(0) = Ẑ0(L) +
2(γ + 2)µλ

πr3
0

, (3.17)

where dk satisfies d2
k = ωkA0

(ωk−iδ)ρC and λ = L/r0.

The expressions for the impedances (3.16, 3.17) and (3.6, 3.7) are similar. In fact, the values

of the average impedance Ẑ0(0) are identical for a Poiseuille flow, i.e., for γ = 2 in (3.17). For

both models, direct evaluation shows Q̂0(0) = Q̂0(L), i.e., the temporally averaged flow rate is

spatially constant throughout the vessel. Denoting the corresponding value Q, we observe that

both (3.17) (with γ = 2) and (3.7) are simply the Hagen-Poiseuille equation [80]

P (0)− P (L) =
8µLQ

πr4
0

,

where P (x) = P̂0(x). Figure 3.2 displays the root impedance when each of these formulations

is implemented in the structured tree algorithm, showing that the use of these two formulations

yields very similar results.
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Figure 3.2: Modulus and phase of the root impedance generated by the structured tree algo-
rithm using impedance relations (3.6) (blue, solid curve) and (3.16) (red, dashed curve). All
parameter values (see Table 3.1) are from [64].

Table 3.1: Parameters used to generate Figure 3.2.

geometric parameters ξ = 2.76, η = 0.41, λ = 50, rroot = 0.2cm, rmin = 50µm

fluid parameters γ = 2, ρ = 1.06g cm−3, µ = 0.0488g cm−1s−1

elastic relations C = 3πr3/2Eh, Eh/r = k1e
k2r + k3

elastic parameters
k1 = 2.00× 107 gs−2cm−1, k2 = −22.53 cm−1

k3 = 8.65× 105 gs−2cm−1

3.2 Structured Tree Implementation

The purpose of the procedure outlined in Section 3.1 is to provide a boundary condition at out-

flow boundaries of an arterial network in which a more complicated model is solved numerically.

At each outflow boundary, the structured tree gives the following condition:

P̂k = ẐkQ̂k

where P̂k and Q̂k are the respective Fourier coefficients of pressure and flowrate, and Ẑk is the

kth Fourier coefficient of the impedance. Prior to running a simulation, values of Ẑk may be

computed for any k with minimal computational expense. P̂k and Q̂k are the Fourier coeffi-

cients of the state variables, which are not known a priori.
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To illustrate issues involved with implementing the structured tree, we consider the following

initial boundary value problem, which models the flow of blood in a single vessel where measured

velocity data U(t) is imposed at the inlet of the vessel:

(∂t + F∂x)

[
A

Q

]
= G x ∈ (0, L), t > 0 (3.18)

Q(0, t) = U(t)A(0, t) x = 0, t > 0 (3.19)

P̂k(L) = Ẑk(L)Q̂k(L) x = L (3.20)

The precise form of F and G in (3.18) may be found in (1.4,1.5). P and A are related through

the elastic constitutive law (3.4). The structured tree condition (3.20) implicitly introduces the

additional requirement that solutions to (3.18)-(3.20) be periodic in time. This periodicity re-

quirement means that the imposed inflow velocity, U(t), must be periodic to avoid ill-posedness

of the problem.

Due to the periodicity requirement, a natural approach to numerically solving (3.18)-(3.20)

would be to use a Fourier expansion-based method in time. Such an approach would allow for

a direct imposition of the Fourier coefficients of the impedance computed by the structured

tree condition. However, requiring the use of Fourier-based time integration would limit the

applicability of the structured tree as a boundary condition since most numerical methods for

differential equations utilize a serial time-stepping algorithm that does not strictly enforce pe-

riodicity in time.

For the reasons outlined above, it is important to consider how the structured tree condi-

tion should be implemented in conjunction with a serial time-stepping method. The numerical

solution generated by such a method will, of course, not be strictly periodic. This conflicts with

the fact that the structured tree condition requires periodicity. This conflict generates practical

and theoretical questions that require attention.

First, since the numerically computed approximations of these variables are not periodic and

thus do not have Fourier coefficients, how can condition (3.20) be implemented? In Section 3.2.1,

we show that the implementation method advocated by Olufsen et. al. in [7] inappropriately

makes use of the convolution theorem, which raises serious theoretical and practical questions.

Despite this issue, we then show that the specific implementation advocated by Olufsen et. al.

in [7] is valid, but its interpretation as a convolution integral is misleading and introduces a

number of potential pitfalls for users of the structured tree condition. Second, it is not clear in
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what sense non-periodic numerical approximations constitute a solution to the periodic problem

(3.18)-(3.20). The procedure advocated by Olufsen et. al. in [64] is to numerically solve the

problem until the solution converges to a periodic regime, with this periodic limit being taken

as the solution to (3.18)-(3.20) [64]. In Section 3.2.2, we examine various aspects of this process

and quantify the rate of convergence of the solution to a periodic regime through a fixed point

analysis of the linearized problem.

3.2.1 Enforcement of Structured Tree Condition

The structured tree imposes conditions on the Fourier coefficients of the solution. This makes

numerical implementation of the structured tree condition nontrivial since numerically gener-

ated solutions will not be strictly periodic. Additionally, the condition (3.20) must be trans-

formed to an equivalent formulation in the time domain to be used along with a numerical

method for solving differential equations. To deal with these issues, the implementation by

Olufsen et. al. in [64] only considered the most recent “period” of the numerical solution. That

is, at time t, only values Q and P in the time interval [t − T, t] were considered. To obtain

a condition in the time domain, in [64] Olufsen et. al. make use of the convolution theorem,

which states that if the Fourier coefficients of P (t) and Q(t) are related by P̂k = ẐkQ̂k, then

P (t) and Q(t) are related by the following convolution integral [11]:

P (t) =
1

T

∫ T

0
Z(τ)Q(t− τ)dτ, (3.21)

where Z is the function whose Fourier coefficients are Ẑk, and Z and Q are assumed to be

integrable over [t− T, t]. For simplicity, we are omitting the spatial dependency, but it should

be understood that all variables are being evaluated at the end of the vessel (x = L). In [64],

the authors suggest numerically implementing (3.21) by discretizing the convolution integral

via quadrature and approximating Z by an Inverse Discrete Fourier Transform of values of Ẑk.

This yields the following condition at time t = n∆t:

P
(n)
M = ∆t

N−1∑
k=0

Z(k)Q
(n−k)
M (3.22)

where ∆t = T/N , and P ij is an approximation of P (xj , i∆t). Here xj denotes the jth spatial

node and M is the total number of spatial nodes in the vessel. Equation (3.22) provides a

boundary condition for advancing from time (n− 1)∆t to time n∆t. At time (n− 1)∆t, values

of Q
(n−k)
M are known for k > 0 and all values of Z(k) will have been computed as a preprocessing

step. This means that (3.22) is a single equation relating the unknowns P
(n)
M and Q

(n)
M .
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However, as we show in Theorem 3.2.1, the function Z in (3.21) is not integrable. In the

proof of this theorem, we make use of the Riemann-Lebesgue Lemma:

Riemann-Lebesgue Lemma [11]. If Z ∈ L1(0, T ), then

lim
|k|→∞

Ẑk = 0

.

Theorem 3.2.1. The function Z in (3.21) is not integrable

Proof. We show that the expression (3.6) converges to a real, nonzero limit as ωk →∞. Olufsen

evaluates 1−Fk by the use of two different asymptotic expansions (one for ωk ≈ 0, another for

large values of ωk) [63]. For large values of ωk:

1− Fk ≈ 1− 2

r

√
µ

iωkρ

Defining C̄ = L
√

ρC
A0
, D̄ = 2

r

√
µ
ρ (note C̄, D̄ are positive reals), and recalling that ck =√

(1− Fk)A0
ρC , we have

ωkL

ck
= C̄ωk

(
1− D̄/

√
iωk

)−1/2

= C̄ωk
[
1− D̄/

√
2ωk + iD̄/

√
2ωk

]−1/2

=
C̄ωk

4

√
1− D̄

√
2
ωk

+ D̄2

ωk

e−
i
2

arctan(f(ωk))

where f(ωk) = D̄/(
√

2ωk − D̄)

Im

(
ωkL

ck

)
=

−C̄ωk
4

√
1− D̄

√
2
ωk

+ D̄2

ωk

sin

[
1

2
arctan (f(ωk))

]

=
−C̄ωk

4

√
1− D̄

√
2
ωk

+ D̄2

ωk

f(ωk)√(
1 +

√
1 + f(ωk)2

)2
+ f(ωk)2

since limk→∞ f(ωk) = 0 and limk→∞ ωkf(ωk) = +∞, limk→∞ Im
(
ωkL
ck

)
= −∞ and thus
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limk→∞ tan
(
ωkL
ck

)
= 1/i. We use this fact to compute the high-frequency limit of the impedance

lim
k→∞

Ẑrootk (0) = lim
k→∞

Ẑrootk (L) + i (ckC)−1 tan
(
ωkL
ck

)
1 + ickC tan

(
ωkL
ck

)
Ẑrootk (L)

= lim
k→∞

1

ckC
=

√
ρ

A0C

Since ρ, the density of blood, is nonzero, Z is not integrable by the Riemann-Lebesgue Lemma.

Theorem 3.2.1 implies that the standard numerical implementation of the structured tree

condition involves numerically approximating an integral which does not exist. To address this

issue, we introduce a new numerical implementation that does not use the convolution theorem.

To begin, we consider the Fourier series for the pressure at time t = n∆t:

P (L, n∆t) =

∞∑
k=−∞

P̂k(L)eiωkn∆t =

∞∑
k=−∞

ẐkQ̂k(L)eiωkn∆t, (3.23)

We seek an equation relating P (L, n∆t) and Q(L, n∆t). To obtain such an equation, we propose

approximating the infinite series in (3.23) by an N -term partial sum and Q̂k(L) by a Discrete

Fourier Transform of the values {Q(n−N+1)
M , ..., Q

(n)
M }. This approximation yields the following

condition (without any loss of generality, we have taken N to be odd):

P
(n)
M =

N−1
2∑

k=−N−1
2

ẐkQ̃
(N)
k eiωkn∆t (3.24)

where Q̃
(N)
k is the approximation of Q̂k computed by DFT. Specifically,

Q̃
(N)
k ,

1

N

N−1∑
j=0

Q
(n−j)
M e−iωk(n−j)∆t ≈ 1

T

∫ t

t−T
Q(τ)e−iωkτdτ (3.25)

We now show that as N → ∞, the numerical approximation in (3.24) converges to the exact

Fourier Series of P in (3.23). In the following proof we make use of the following relationship

between the true Fourier coefficients of a function and approximations computed by DFT:

Discrete Poisson Summation Formula [14]. If Q has a pointwise convergent Fourier se-

ries representation, then the exact Fourier coefficients of Q, denoted Q̂k, and the approximate

Fourier coefficients of Q computed by a DFT of N values of Q, denoted Q̂
(N)
k , are related by
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the following equality:

Q̂
(N)
k = Q̂k +

∞∑
m=1

(
Q̂k+mN + Q̂k−mN

)
Additionally, we make use of the following lemma stating sufficient conditions for the abso-

lute summability of a function’s Fourier Series.

Lemma 3.2.1. If f is a periodic function on [0, T ], and f ′(t) is continuous on [0, T ], then the

Fourier Series for f is absolutely summable, that is,

∞∑
k=−∞

|f̂k| <∞

Proof. Let f̂k and f̂ ′k denote the kth respective Fourier coefficients of f(t) and f ′(t). These

coefficients are related in the following way:

f̂ ′k =
1

T

∫ T

0
f ′(t)e−iωktdt = iωkf̂k

In the above we have integrated by parts and made use of the periodicity of f(t). The Cauchy-

Schwarz inequality then gives the desired result:

∞∑
k=−∞

|f̂k| ≤

√√√√ ∞∑
k=−∞

(
1

ωk

)2 ∞∑
k=−∞

ω2
k|f̂k|2 = C||f ′||L2[0,T ]

where C <∞ and ||f ′||L2[0,T ] <∞ since f ′(t) is continuous.

We now show that the discrepancy between (3.23) and (3.24), denoted EN , converges to 0

as N →∞.

Theorem 3.2.2. For any T-periodic function Q ∈ C1[0, T ], the approximation in (3.24) is an

asymptotically valid approximation of (3.23) as N →∞. Specifically,

lim
N→∞

N−1
2∑

k=−N−1
2

ẐkQ̃
(N)
k eiωkn∆t =

∞∑
k=−∞

ẐkQ̂ke
iωkn∆t,
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Proof.

EN =

∣∣∣∣∣∣∣
∞∑

k=−∞
Q̂kẐke

iωkn∆t −
N−1

2∑
k=−N−1

2

Q̃
(N)
k Ẑke

iωkn∆t

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

|k|>(N−1)/2

Q̂kẐke
iωkn∆t

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
N−1

2∑
k=−N−1

2

(Q̂k − Q̃k)Ẑkeiωkn∆t

∣∣∣∣∣∣∣
≤ sup

k∈Z
|Ẑk|

 ∑
|k|>N−1

2

Q̂k +

N−1
2∑

k=−N−1
2

∞∑
m=1

|Q̂k+mN |+ |Q̂k−mN |


= 2 sup

k∈Z
|Ẑk|

∑
|k|>N−1

2

|Q̂k|

As shown in Theorem 3.2.1, Ẑk converges to a finite limit as |k| → ∞. This means that the

sequence {Ẑk}k∈Z is bounded. Since Q is T -periodic and in C1[0, T ], {Q̂k} ∈ `1 by Lemma 3.2.1.

This means that

lim
N→∞

∑
|k|>N−1

2

∣∣∣Q̂k∣∣∣ = 0

Therefore limN→∞EN = 0 and the proof is complete.

We now simplify the numerical approximation in (3.24)

N−1
2∑

k=−N−1
2

ẐkQ̃
(N)
k eiωkn∆t =

N−1
2∑

k=−N−1
2

Ẑk

 1

N

N−1∑
j=0

Q
(n−j)
M e−iωk(n−j)∆t

 eiωkn∆t

=
∆t

T

N−1∑
j=0

Q
(n−j)
M

N−1
2∑

k=−N−1
2

Ẑke
iωkj∆t

=
∆t

T

N−1∑
j−0

Q
(n−j)
M Z(j)

This is identical to (3.22), which is the equation obtained when one follows the implementa-

tion procedure suggested in [64], namely, approximating the convolution integral in (3.21) by a

composite right-hand rectangle rule and approximating Z by computing the inverse DFT of N

values of Ẑk. Therefore, Theorem 3.2.2 transitively implies that this implementation proposed

by Olufsen et. al. in [64] is valid.
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In summary, the results in this section suggest that the original implementation suggested

by Olufsen et. al. in [64] is valid. However, the interpretation of “discretizing the integral” in

(3.21) is both incorrect and dangerous. One potential danger is that if one uses a composite

Simpson’s rule instead than the composite right-hand rule, one will obtain an answer that

differs substantially from the result obtained from the composite right-hand rectangle rule.

Furthermore, as the grid is refined, the numerical results using Simpson’s rule will even converge

to an incorrect answer. To illustrate this issue, we consider the simple example where Ẑk = R

for all k ∈ Z, where R is a constant. This means that Z(t) = Rδ(t) where δ(t) is the Dirac

delta function. The convolution integral in (3.21) is thus well defined in a weak sense:∫ t

t−T
Z(τ)Q(t− τ)dτ = RQ(t) (3.26)

Approximating Z by inverse Discrete Fourier Transform gives

Zn =

N−1
2∑

k=−N−1
2

RωknN

= R

(
N−1∑
k=0

ωknN

)
= NRδn

where δn = 1 if n = 0 and δn = 0 otherwise, and ωN = ei2π/N . Approximating the convolution

integral in (3.26) by a composite right hand rule gives

1

T

∫ t

t−T
Z(τ)Q(t− τ)dτ ≈ N∆t

T

N−1∑
k=0

RδkQ(t− k∆t) = RQ(t)

in the above we have used the fact that ∆t = T/N . Thus, we have shown that in the case where

Ẑk is constant, approximating Z by inverse Discrete Fourier Transform and the convolution

integral by a composite right hand rule yields the correct result exactly regardless of mesh size.

Unfortunately, this is no longer true if one uses the composite Simpson’s rule [34]:∫ b

a
f(t)dt ≈ ∆t

3

(
f(t0) + 4f(t1) + 2f(t2) + 4f(t3) + 2f(t4) + · · ·+ 4ftn−1 + f(tn)

)
where tk = a + k∆t, ∆t = (b − a)/n. Applying the composite Simpson’s rule to (3.26) with
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Figure 3.3: Left: Pressure curves obtained from a numerical simulation of the Circle of Willis
using a composite right hand rule (blue) and composite Simpson’s rule (red) to discretize the
convolution integral in (3.21). Right: Results of a grid refinement study, indicating convergence
of both methods as ∆t→ 0. u∗ indicates the limiting solution as ∆t→ 0.

inverse DFT approximation of Z gives:

1

T

∫ t

t−T
Z(τ)Q(τ)dτ ≈ 2

3
RQ(t) (3.27)

again this approximation is independent of the choice of ∆t, but it is wrong. Specifically,

the composite Simpson’s rule with inverse DFT approximation of Z gives a result that is 2/3

times the correct answer. This phenomena persists when the structured tree is implemented

in numerical simulations of blood flow in the Circle of Willis. Figure 3.3 displays the results

of two grid refinement studies who differ only in their discretization of the convolution integral

(3.21). The results for the pressure obtained from discretizing the convolution integral using

composite Simpson’s rule are markedly different from the correct results obtained from the use

of the composite right hand rule. Disturbingly, results from using Simpson’s rule converge to

this incorrect answer as ∆t→ 0.

In summary, the implementation (3.22) originally advocated by Olufsen et. al. in [64] is

valid, but its incorrect use of the convolution theorem is dangerous and misleading. To properly

implement the structured tree, one must take care to implement (3.22) precisely as written.

Since the integral in (3.21) does not exist in a classical sense, seemingly innocent deviations
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from (3.22) can yield incorrect results with no apparent signs of failure.

3.2.2 Convergence of Solution to Periodic Regime

It is not obvious in what sense the non-periodic numerical approximations generated by a serial

time-stepping method constitute a solution to the periodic IBVP. The claim made by Olufsen

et. al. in [64] is that as t→∞, the solution converges to a periodic regime. This periodic limit

should be taken to be the solution of the periodic IBVP. We now numerically investigate the

claim that the solution becomes periodic. To do so, we rewrite the solution ~u = [A,Q] “modulo

T” into a sequence of grid functions ~uk(xm, tn) , ~u(xm, tn + kT ). We also define

∆k~u , max
n=1,...N,xm∈Ω

||~uk(xm, tn)− ~uk−1(xm, tn)||∞,

where N is the number of time steps per period and Ω is the set of all spatial points in the

network. The components of ~uk − ~uk−1 are scaled by their temporal averages to make ∆k~u

a measure of the relative change in the solution from one period to the next. In the case of

the structured tree boundary condition, the issue of convergence is complicated by the fact

that in addition to providing initial data for all unknowns, one must also prescribe an initial

history of the flowrate Q for t ∈ [−T, 0] at the end of each outlet vessel, see (3.22). To examine

well-posedness of the structured tree boundary condition, we examine the following:

1. Does the solution converge to a periodic regime as t→∞? That is, does limk→∞∆k~u = 0?

2. Is this limiting periodic regime independent of the initial history of the flowrate one

chooses to prescribe?

To test the dependence of the solution on the initial history of Q, we solve the problem with

1,000 randomly generated sets of initial histories of Q for the outflow vessels of the Circle of

Willis. We use constant initial histories with values of Q between 0 cm3/s and 10 cm3/s. With

each choice of initial history, the solution converged to the same limiting periodic regime to a

tolerance of ∆k~u < 10−3 in six periods or less. This confirms convergence to a periodic regime

and negligible dependence of the choice of initial history. An example plot of the convergence

of ∆k~u is displayed in Figure 3.4.

For the nonlinear problem, we must resort to this sort of numerical investigation of the

convergence of the solution to a periodic regime. However, the analysis for the linear problem

is amenable to analytical investigation. Discretization of the linearized equations (3.12) and
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Figure 3.4: Convergence of ∆k~u to 0, indicating convergence of the numerical solution to a
periodic regime.

(3.12) using Chebyshev collocation in space and backward Euler time integration yields:[
I ∆t

C D

∆tA0
ρ D (1 + δ∆t) I

][
~Pn+1

~Qn+1

]
=

[
~Pn

~Qn

]

where ~Pn = [Pn0 , ..., P
n
M ]T with Pnk denoting the approximation of P (n∆t, xm). Here ∆t is the

time step size and xm is the mth Chebyshev node. D is the (M + 1) × (M + 1) Chebyshev

differentiation matrix. To account for the inflow boundary condition we replace equation M+1

by Qn+1
0 = qn+1, where qn+1(modNT ) is the imposed periodic flowrate at time (n+ 1)∆t. NT is

the number of time steps per period (NT = T/∆t). To account for the structured tree boundary

condition, we replace equation M + 2 by (3.22), which requires

Pn+1
M =

NT−1∑
k=0

ZkQ
n+1−k
M .

where {Zk} are the values of the inverse discrete Fourier transform of values of Ẑk. This yields

A

[
~Pn+1

~Qn+1

]
=
(
Ĩ +B1

)[ ~Pn

~Qn

]
+

NT−1∑
k=2

Bk

[
~Pn+1−k

~Qn+1−k

]

33



Ĩ is the 2(M + 1)× 2(M + 1) identity matrix altered so ĨM+1,M+1 = ĨM+2,M+2 = 0. A and Bk

are defined as follows:

A =



IM+1
D̃(M+1)

0 · · · 0 −Z0

0 · · · 0 1 0 · · · 0

0

∆A0
ρ D̃

(1)
... (1 + δ∆t)IM

0


, Bk =



0
0

0 · · · 0 Zk

0 0


.

in the above D̃(k) is the Chebyshev differentiation matrix with the kth row deleted. We now

express the map of the solution from period k to period k + 1 as a linear fixed point iteration:

R



~P (k+1)NT

~Q(k+1)NT

~P (k+1)NT+1

~Q(k+1)NT+1

...

~P (k+2)NT−1

~Q(k+2)NT−1


= S



~P kNT

~QkNT

~P kNT+1

~QkNT+1

...

~P (k+1)NT−1

~Q(k+1)NT−1


+


~q 0

~q 1

...

~q NT−1

 (3.28)

where R is a block Toeplitz, block lower triangular matrix where the individual blocks of R are

as follows:

Rij =


A i = j

−(Ĩ +B1) i− j = 1

−Bi−j i− j < 1

S is block Toeplitz, block strictly upper triangular whose individual blocks are as follows:

Sij =


BNT+i−j i < j, (i, j) 6= (1, NT )

−(Ĩ +B1) (i, j) = (1, NT )

0 i ≥ j
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To analyze the convergence of the numerical solution to a periodic regime, we compute the

spectral radius of R−1S. The reason for this is that a necessary and sufficient condition for

convergence of this fixed point iteration for all ~q k is for the spectral radius of R−1S to be strictly

less than 1 (see Theorem 1.3.1 in [46]). R is invertible as long as A is invertible, and numerical

evidence indicates that this is the case. The inverse of R was computed semi-analytically using

a numerically computed inverse of A. The spectral radius was computed using MATLAB’s

eig command. To verify this computation, the spectral radius was computed using two other

approaches. First, the spectral radius was also computed for a numerically computed R−1S

(using MATLAB’s backslash command). Secondly, the spectral radius was computed through

MATLAB’s eig using the option for generalized eigenvalue problems of the form Av = λBv.

The spectral radii computed via each of these three methods agreed to 10 digits in all cases.

We computed the spectral radius for each of the outflowing vessels of the Circle of Willis, and

the results are displayed in Table 4.1. In all cases, the spectral radius is substantially less than

1, indicating convergence of the numerical solution to a periodic regime.

Table 3.2: Spectral radii of R−1S in (3.28) for the right and left Posterior Cerebral Arteries
(PCA), Middle Cerebral Arteries (MCA), and Anterior Cerebral Arteries (ACA).

Vessel R PCA L PCA R MCA L MCA R ACA L ACA

Periodic Spec. Rad. 3.7e-03 4.0e-03 8.7e-03 9.1e-03 6.7e-02 1.2e-03

3.3 Sensitivity to Minimum Radius

In [62], Olufsen performs numerical sensitivity studies with respect to the minimum radius, rmin,

and concluded that the structured tree boundary condition is highly sensitive to this parameter.

We now provide an analytical explanation of this fact by analyzing the DC component of the

root impedance, Ẑroot
0 (0). Consider first that instead of terminating according to a minimum

radius threshold, the tree terminates after a specific number of generations. An induction

argument shows that the DC component of the root impedance of this equi-generational tree,

with N generations, can be expressed as a truncated geometric series:
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Lemma 3.3.1. For an equi-generational tree with N generations

Ẑroot
0 (0) =

8µλ

πr3
root

N∑
i=0

(
1

α3 + β3

)i
(3.29)

Proof. The result follows from a straightforward induction argument. For a tree with a single

vessel (N=0), the DC impedance relation (3.7) implies that

Ẑroot
0 (0) =

8µλ

πr3
root

,

meaning that (3.29) holds for N = 0. Now suppose that (3.29) holds for any tree with N

generations. If d1 and d2 denote the two daughters of the root vessel of a tree with N + 1

generations, then the induction hypothesis implies

Ẑd10 (0) =
8µλ

π(αrroot)3

N∑
i=0

(
1

α3 + β3

)i

Ẑd20 (0) =
8µλ

π(βrroot)3

N∑
i=0

(
1

α3 + β3

)i
Applying the junction relation (3.8) and the single vessel impedance relation (3.7), we have

Ẑroot
0 (0) =

8µλ

πr3
root

+
Ẑd1

0 (0)Ẑd2
0 (0)

Ẑd1
0 (0) + Ẑd2

0 (0)

=
8µλ

πr3
root

+
1/(α3β3)

1
α3 + 1

β3

8µλ

πr3
root

N∑
i=0

(
1

α3 + β3

)i

=
8µλ

πr3
root

N+1∑
i=0

(
1

α3 + β3

)i
By induction, the formula (3.29) holds for all N ≥ 0.

We now use Lemma 3.3.1 to prove a result for the structured tree with the minimum radius

termination criterion described in Section 3.1.1.

Theorem 3.3.1. As rmin → 0, Ẑroot
0 (0) converges to a finite limit if and only if ξ > 3, where

ξ, defined in Section 3.1.1, is the unique real number satisfying

rξpa = rξd1 + rξd2

Proof. To begin, we show that adding a branch to a leaf of a tree increases the DC component
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of the impedance at the root. To compute the DC component of the root impedance, one

successively applies the following two functions repeatedly:

Ẑ0(0) = Ẑ0(L) +
8µλ

πr3
0

(3.30)

Ẑ
(pa)
0 (L) =

Ẑ
(d1)
0 (0) · Ẑ(d2)

0 (0)

Ẑ
(d1)
0 (0) + Ẑ

(d2)
0 (0)

(3.31)

The first of the two above functions is clearly an increasing function of Ẑ0(L). Elementary

calculus shows that the second function is increasing with respect to Ẑ
(d1)
0 (0) and Ẑ

(d2)
0 (0).

For a leaf vessel, Ẑ leaf
0 (L) = Ẑterm = 0. If a branch is added to the end of this leaf vessel,

this changes Ẑ0(L) for that vessel. With the branch added,

Ẑ leaf
0 (L) =

Ẑ
(d1)
0 (0) · Ẑ(d2)

0 (0)

Ẑ
(d1)
0 (0) + Ẑ

(d2)
0 (0)

=

8µλ

πα3r3
leaf

· 8µλ

πβ3r3
leaf

8µλ

παr3
leaf

+
8µλ

πβ3r3
leaf

=
1

α3 + β3

8µλ

πr3
leaf

> 0.

Thus, adding a branch to a leaf vessel increases Ẑ leaf
0 (L) from 0 to a positive number. Since the

DC component of the root impedance, Ẑroot
0 (0), is an increasing function of Ẑ leaf

0 (L), we have

that adding a branch to a leaf vessel increases the DC component of the root impedance.

This allows us to use Lemma 3.3.1 to create upper and lower bounds for the DC component

of the root impedance

8µλ

πr3
root

N1∑
i=0

(
1

α3 + β3

)i
≤ Ẑroot

0 (0) ≤ 8µλ

πr3
root

N2∑
i=0

(
1

α3 + β3

)i
, (3.32)

where N1 and N2 are the smallest and largest generation terminal vessels, respectively. As

rmin → 0, N1 → ∞. Thus (3.32) implies that as rmin → 0, Ẑroot
0 (0) behaves like a geometric

series which converges only when the quantity α3 + β3 is larger than 1. By definition of the
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ξ, α, and β, we have αξ + βξ = 1 and thus

1

α3 + β3
<

1

αξ + βξ
= 1,

for ξ > 3. Therefore, Ẑroot
0 (0) converges as rmin → 0 if and only if ξ > 3.

Table 3.3: Published values for the scaling parameter ξ.

ξ samples sd notes source

2.66 1533 0.081 r ≥ 100µm Suwa et al. [84]

2.71 1455 0.092 r < 100µm Suwa et al. [84]

2.9 157 0.7 Measurements from ICA, ACA, MCA Rossitti et al. [74]

3.0 N/A N/A Theoretical optimum, laminar flow Murray [58]

2.33 N/A N/A Theoretical optimum, turbulent flow Uylings [90]

2.76 N/A N/A Olufsen [63]

Physiological and theoretical values of ξ from the literature are given in Table 3.3. In [58],

Murray develops an expression for the work required to operate a section of vessel, and later cal-

culates that a value of ξ = 3 minimizes this work [57]. Uylings [90] generalizes Murray’s results

to include the possibility of non-laminar flow, leading to ξ = 2.33 for turbulent flow and agree-

ing with Murray’s ξ = 3 flow laminar flow. Olufsen proposes ξ = 2.76 [63]. Additionally, Suwa

et al. [84] and Rossitti et al. [74] have obtained estimated values of ξ by direct measurement.

In Table 3.3, a “sample” refers to a triplet of values (rp, rd1, rd2) measured at a single bifurcation.

While this collection of measured and theoretically determined values for ξ does exhibit

some variation, all of these values share one important characteristic: they are all no bigger

than 3. Thus, using any of these values will result in the average root impedance being highly

sensitive to the choice of rmin for small values of rmin, since the process is akin to truncating a

divergent series.

Figure 3.5 shows numerically computed solution curves at the end of the right middle cere-

bral artery in simulations of the Circle of Willis using values of rmin equal to 20, 40, 60, 80, and

100µm. The details of the numerical simulation are given in Appendix A. The above analytical

result shows that one component of the boundary condition, Ẑroot
0 (0), is sensitive to rmin; these

numerical results confirm that this sensitivity to rmin is also present in the solution itself. For
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instance, merely changing rmin from 40µm to 20µm changes the average pressure at the end of

the right middle cerebral artery from 160 mmHg to 267 mmHg.
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Figure 3.5: Pressure and flowrate curves using rmin = 20, 40, 60, 80, and 100µm. The red (top)
curves correspond to rmin = 20µm and the blue (bottom) curves correspond to rmin = 100µm.
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Chapter 4

The Generalized Structured Tree

Boundary Condition

In Chapter 3, we outlined Olufsen’s derivation of the structured tree boundary condition. This

boundary condition has a number of advantages over its competitors and has been used with

success in [9, 21, 51, 62, 63, 64, 82, 88]. However, the structured tree boundary condition suffers

from a major shortcoming: its assumption of strict flow periodicity does not hold in many phys-

iologically relevant conditions. This limitation, which has also been noted in [35, 95], means

that the structured tree may not be used to simulate conditions such as exercise, cardiac ar-

rhythmia, or sudden vessel occlusion.

Here we develop a generalized structured tree boundary condition that does not involve a

periodicity assumption and is thus applicable to all flow regimes. We do so by replacing the

Fourier Series approach used in Chapter 3 with a Laplace transform approach. Furthermore, in

Section 4.2 we describe how this condition may be implemented without performing a perilous

numerical inverse Laplace transform. In Section 4.4.1, we show that this boundary condition

reduces to the original condition for periodic problems (up to differences in numerical imple-

mentation). We then implement this boundary condition to simulate a variety of non-periodic

phenomena in the Circle of Willis.

Although the original structured tree is derived under the assumption of temporal peri-

odicity, for reasons discussed in Section 3.2 its numerical implementation in no way enforces

temporal periodicity. Thus, it is possible to use the original structured tree to model non-

periodic flows, even in the absence of any justification for doing so. In Section 4.5, we provide

such justification by showing that the numerical implementation of the original structured tree

condition may be viewed as a rough numerical approximation of the generalized structured tree
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condition. This fact, which is confirmed by numerical experiments in Section 4.4.2, implies

that it may be appropriate to use the unaltered original structured tree condition to model

non-periodic phenomena.

4.1 Derivation

4.1.1 Single vessel equations

To begin, we consider the linearized, cross-sectionally averaged Navier-Stokes Equations (3.12),

(3.13)

C ∂tP + ∂xQ = 0

∂tQ+
A0

ρ
∂xP = −2π(γ + 2)

µ

ρ

Q

A0

Instead of expressing the above unknowns in terms of their Fourier coefficients, as done in the

derivation of the original structured tree condition [22, 62, 63, 64, 82], we take the Laplace

transform of the system with respect to time. Assuming zero initial pressure and flow, we

obtain

Cs P̂ + ∂xQ̂ = 0, (4.1)

(s+ δ)Q̂+
A0

ρ
∂xP̂ = 0, (4.2)

where P̂ = L(P ), Q̂ = L(Q) and δ = 2µ(γ + 2)/(ρr2
0). The solutions to (4.1) and (4.2) evaluated

at x = 0 are

Q̂(0, s) = sdsCP̂ (s, L) sinh

(
L

ds

)
+ Q̂(s, L) cosh

(
L

ds

)
,

P̂ (0, s) = P̂ (s, L) cosh

(
L

ds

)
+

1

sdsC
Q̂(s, L) sinh

(
L

ds

)
,

with d2
s = A0/[Cρs(s+ δ)]. Defining the impedance through its Laplace transform

Ẑ(x, s) =
P̂ (x, s)

Q̂(x, s)
, (4.3)

yields, for s 6= 0,

Ẑ(0, s) =
Ẑ(L, s) + 1

sdsC
tanhL/ds

sdsC Ẑ(L, s) tanhL/ds + 1
. (4.4)
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The above equation has a removable singularity at s = 0, which we use to define Z(0, 0) as a

function of Z(L, 0):

Z(0, 0) , lim
s→0

Z(0, s) = Z(L, 0) +
2(γ + 2)µλ

πr3
0

(4.5)

The above formula links the impedance at the beginning of the vessel to the impedance at

its end. For s restricted to the imaginary axis, i.e., s = iω, ω ∈ R, (4.4) corresponds to the

impedance found in Section 3.1.3 (see relation (3.16)), where Fourier series were used.

4.1.2 Extension to structured vascular trees

As was done for the periodic structured tree, we assume that the vascular trees share the

following structure:

1. Vessels end by bifurcating into two daughter vessels; vessels with radii smaller than a

minimal value rmin > 0, terminate, i.e., they do not bifurcate.

2. There are two parameters α and β where 0 < β < α < 1 and for any parent/daughter

vessels

rd1 = αrpa and rd2 = βrpa

where rpa, rd1 and rd2 are the radii of the parent/daughter vessels respectively.

3. There is a positive parameter λ such that for any vessel in the tree

λ = r/L.

We follow [22, 62, 63, 64, 82] to compute the impedance of the entire tree by noting that (4.3),

together with continuity of pressure and conservation of mass at each junction, leads to

1

Ẑpa(L, s)
=

1

Ẑd1(0, s)
+

1

Ẑd2(0, s)
for any s. (4.6)

The impedances at the ends (x = L) of all terminal vessels are assumed to share a common

constant value Ẑterm, which is usually set to Ẑterm = 0 [22, 63, 64]. For any s, a value for the

impedance of the root vessel is obtained by recursively applying relations (4.4) and (4.6).

4.1.3 Algorithm to compute the impedance

Sections 4.1.1 and 4.1.2 describe how to compute Ẑ(s) for a structured tree. Here we describe

a recursive algorithm for performing this task, which is analogous to the original algorithm
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proposed by Olufsen [62]. In the following, the function “singleVesselImp” denotes (4.4).

procedure impedance

Input: r - radius of vessel

Output: ZPA 0

if r < rmin then

ZPA L = Zterm

else

ZD1 = IMPEDANCE(α · r)
ZD2 = IMPEDANCE(β · r)
ZPA L = ZD1 · ZD2/(ZD1 + ZD2)

end if

ZPA 0 = singleV esselImp(ZPA L)

end procedure

The above algorithm is not optimal as it contains redundant evaluations of the impedance.

For example, one will separately compute the impedance corresponding to αβr and βαr even

though these values are the same. A more efficient approach, described in [64] and Appendix A

of this dissertation, is to record previously computed values of the impedance to avoid repeating

calculations.

4.2 Numerical Implementation

Using the construction described in Section 4.1, we compute the Laplace transform of the

impedance corresponding to a given tree. To use this result as a boundary condition in a major

vessel, we note that (4.3) implies

P (t) =

∫ t

0
Z(τ)Q(t− τ) dτ, (4.7)

where all quantities are evaluated at the end of the outflow vessel1 and Z = L−1(Ẑ).

To evaluate (4.7), we use a convolution quadrature approach [48], which utilizes the values

of the Laplace transform Ẑ = L(Z) rather than the values of Z. This allows us to avoid

entirely the delicate numerical inversion of the Laplace transform [67] to go from Ẑ, computed

in Section 4.1, to Z, which we cannot access directly. Furthermore, convolution quadrature

1The end of the outflow vessel is the beginning (x = 0) of the root vessel of the tree. From here on and for
the sake of simplicity, we omit explicit mention of the spatial variables.
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methods are provably convergent even in the case when the inverse Laplace transform of the Ẑ

only exists in a weak sense [50].

4.2.1 Convolution quadrature

For the sake of completeness, the convolution quadrature method is summarized below in the

present context. Applying Mellin’s inversion formula, we obtain

Z(τ) =
1

2πi
lim
T→∞

∫ ν+iT

ν−iT
Ẑ(λ)eλτ dλ, (4.8)

where the integration is taken along the vertical line Re(λ) = ν with ν is greater than the real

part of all singularities of Ẑ. An analysis of the locations of the singularities of Ẑ is provided in

Section 4.3. The convolution quadrature algorithm [48] consists of substituting (4.8) into (4.7),

P (t) =
1

2πi
lim
T→∞

∫ ν+iT

ν−iT
Ẑ(λ) y(λ; t) dλ, y(λ; t) =

∫ T

0
eλtQ(t− τ) dτ (4.9)

and observing that y is the unique solution to the initial value problem

y′ = λy +Q, y(0) = 0. (4.10)

The next step in the convolution quadrature method is to apply a multistep method to (4.10)

and to approximate P (n∆t) by replacing y the integral (4.9) with

k∑
j=0

αjyn+j−k = ∆t

k∑
j=0

βj(λyn+j−k +Q((n+ j − k)∆t)), (4.11)

where ∆t is the time step size and the parameters αj and βj (j = 0, . . . , k) are the coefficients

of the chosen multistep method. Even after approximating y by a multistep method, it is

challenging to directly evaluate the improper integral in (4.9) numerically. The remaining

analysis, also from [48], recasts this integral into a more computationally appealing form.

Consider the formal expansions

Y(ζ) =

∞∑
n=0

ynζ
n and Q(ζ) =

∞∑
n=0

Q(n∆t)ζn.

Multiplying (4.11) by ζn and summing yields

Y(ζ) =

(
Ξ(ζ)

∆t
− λ
)−1

Q(ζ), where Ξ(ζ) =
α0ζ

n + · · ·+ αk
β0ζn + · · ·+ βk

. (4.12)
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Evaluating (4.9) at discrete times n∆t (n = 0, 1, . . . ), we consider an expansion of P similar to

(4.12)

∞∑
n=0

Pnζ
n =

1

2πi
lim
T→∞

∫ ν+iT

ν−iT
Ẑ(λ)Y(ζ) dλ

=
1

2πi
lim
T→∞

∫ ν+iT

ν−iT
Ẑ(λ)

(
Ξ(ζ)

∆t
− λ

)−1

Q(ζ) dλ.

where Pn is the approximation of (4.9) obtained by approximating y by (4.11). Cauchy’s integral

formula leads to

∞∑
n=0

Pnζ
n = Ẑ

(
Ξ(ζ)

∆t

)
Q(ζ). (4.13)

We then expand Ẑ as

Ẑ

(
Ξ(ζ)

∆t

)
=

∞∑
n=0

znζ
n, zn =

1

2πi

∫
|ζ|=r

Ẑ

(
Ξ(ζ)

∆t

)
ζ−n−1 dζ, (4.14)

so that (4.13) becomes
∞∑
n=0

Pnζ
n =

∞∑
n=0

znζ
n
∞∑
n=0

Q(n∆t)ζn.

Equating the like powers of ζ, we approximate the pressure P by

P (n∆t) ≈ Pn =

n∑
j=0

zn−jQ(j∆t). (4.15)

During a simulation, (4.15) is enforced at the end of each outflow vessel.

It remains to compute the weights zn, n = 0, . . . , N , where N is the total number of time

steps. Following [49], this can be efficiently done through a trapezoidal rule approximation of

the Cauchy integral in (4.14). More precisely, we approximate zn by

z̃n =
r−n

M

M−1∑
m=0

Ẑ

(
Ξ(r eim2π/M )

∆t

)
e−inm2π/M , (4.16)

where M is the number of quadrature points.

The z̃n’s can be computed simultaneously using FFT; this requires M evaluations of Ẑ and

O(M logM) arithmetical operations. If Ẑ is computed with an accuracy of ε, one may compute

zn, n = 0, ..., N with accuracy O(
√
ε) by choosing M = N and rN =

√
ε [49]. For safety, we
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typically take M = 2N . We take ε = 10−10, but nearly identical results were obtained for ε

ranging from 10−6 to 10−13. Ξ(ζ) = ζ2/2 − 2ζ + 3/2, which corresponds to the second order

backward differentiation formula.

4.2.2 Impedance Implementation Algorithm

The algorithm for computing the impedance weights zn with the convolution quadrature method

is as follows.

procedure ImpedanceWeights

Input:

tf = final simulation time

∆t = time step size

N = number of time steps (N = tf/∆t)

ε = accuracy of computation of Ẑ

Output:

impedance weights zn, n = 0, ..., N

M = 2N

r = ε1/2N

for m = 0 : M − 1 do

ζ = rei2πm/M

Ξ = 1
2ζ

2 − 2ζ + 3
2

Z(m) = Ẑ (Ξ/∆t)

end for

for n = 0 : N do

zn = r−n

M

∑M−1
m=0 Z

(m)e−i2πmn/M

end for

end procedure

We compute the impedance weights for each outflow vessel prior to running a simulation;

this requires 2N evaluations of Ẑ per outflow vessel. The periodic structured tree condition

requires NT evaluations of the impedance, where NT is the number of time steps per period. If

N is not a small multiple of NT , the algorithm described above could be more costly than the

original structured tree. However, values of zn converge to 0 quickly as n grows (see Figure 4.1).

Therefore, for the generalized structured tree one could simply compute the weights for n ≤ NT

and set zn to 0 for n > NT . This approach would cause no noticeable difference in the solution,
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and would require precisely the same computational cost as the original structured tree.

The evaluation of Ẑ is done directly and requires a few thousand floating point operations

for the vascular trees considered here. One evaluation corresponds to O(`2) floating point

operations, where ` is the number of generations in the structured tree. Typically, ` is no more

than 30. Both boundary conditions can thus be implemented at very low cost.

4.3 Singularities of the Laplace Transform of Impedance

The location of the singularities of the Laplace transform of the impedance plays a critical role

in the implementation of the general structured tree boundary condition. For instance, the

convolution quadrature method requires the existence of a real number ν such that for any

singularity s∗, <s∗ ≤ ν [48]. Additionally, locations of the singularities of Ẑ(s) play a critical

role in Section 4.4, where we compare the general condition to the original, periodic version.

Unfortunately, characterizing the singularities of Ẑ(s) is not trivial since the impedance is only

defined algorithmically as a repeated composition of (4.4) and (4.6). However, by analyzing the

properties of the maps (4.4) and (4.6) individually, we prove that the impedance has only one

singularity with nonnegative real part: a removable singularity at s = 0.

Theorem 4.3.1. If the terminal impedance Ẑterm has nonnegative real part, i.e., <Ẑterm ≥ 0,

then the Laplace transform of the impedance of the structured tree, as defined in Section 4.1,

has no singularities for any s such that <s ≥ 0, s 6= 0. There is a removable singularity at

s = 0.

Proof. The Laplace transform of the impedance is a repeated composition of the maps (4.4)

and (4.6). These formulas are reproduced below:

Ẑ(0, s) =
Ẑ(L, s) + 1

sdsC
tanhL/ds

sdsC Ẑ(L, s) tanhL/ds + 1

1

Ẑpa(L, s)
=

1

Ẑd1(0, s)
+

1

Ẑd2(0, s)

where d2
s = A0/[Cρs(s + δ)], δ = 2µ(γ + 2)/(ρr2

0). Therefore, the possible singularities of the

impedance of the structured tree can be characterized into seven different cases:

Singularities of (4.4)
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1. s = 0

2. ds = 0 or s = −δ

3. For some vessel in the tree, s(s+ δ) is not in the region of analyticity of the square root

function

4. L/ds is a singularity of tanh

5. sdsC tanh(L/ds)Ẑ(s, L) + 1 = 0

Singularities of (4.6)

6. Ẑ(s, 0) = 0

7. For some junction in the tree, Ẑd1(s, 0) = −Ẑd2(s, 0).

The proof consists of eliminating all the above cases. Since the real part of expression (4.4)

is unchanged under complex conjugation of s, we only need to consider the quadrant <s ≥ 0

and =s ≥ 0. Additionally, we use the fact that δ, C, ρ, r0, µ, ν and L are positive real constants

due to their physiological meaning.

It is elementary to check that case 1 corresponds to a removable singularity. Since δ > 0,

case 2 is impossible. By Lemma 4.3.1 below, case 3 cannot be realized. Lemma 4.3.1 also im-

plies that <(L/ds) > 0, therefore case 4 is impossible since the singularities of tanh are purely

imaginary.

Theorem 4.3.2 (below), which deals with the properties of (4.4) and relies on auxiliary Lem-

mas 4.3.2–4.3.6, allows us to eliminate cases 5, 6 and 7. Since Ẑterm has non-negative real part

by assumption, it follows from Theorem 4.3.2 that Ẑ(s, 0) has positive real part for any terminal

vessel. Furthermore, for Ẑd1(s, 0) and Ẑd2(s, 0) with positive real part, the junction condition

(4.6) implies that Ẑpa(s, L) has positive real part as well. Therefore, in any vessel in the tree,

Ẑ(s, 0) has positive real part and Ẑ(s, L) has nonnegative real part, with <[Ẑ(s, L)] = 0 be-

ing possible only for terminal vessels. This fact, combined with Lemma 4.3.5 implies that a

singularity of the type 5 is not possible. Also, since <(Ẑ(s, 0)) > 0 for all vessels in the tree,

singularities of the type 6 and 7 do not exist. This completes the proof of Theorem 4.3.1.
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Theorem 4.3.2. Consider the following family of mappings parameterized by s

Fs(z) =
z + as
bsz + 1

,

where as = 1
sdsC

tanh(L/ds), bs = sdsC tanh(L/ds). For any s 6= 0 with nonnegative real part,

Fs maps the region {z ∈ C;<z ≥ 0} into the region {z ∈ C;<z > 0}.

The proof of the above Theorem relies on several technical lemmas which we now state and

prove.

Lemma 4.3.1. For any nonzero s ∈ C in the first quadrant, i.e., <(s) ≥ 0, =(s) ≥ 0, and

s 6= 0, we have <
√
s(s+ δ) > 0 and =

√
s(s+ δ) ≥ 0 where δ is a positive real number.

=
√
s(s+ δ) = 0 only when s ∈ R.

Proof. Elementary.

Lemma 4.3.2. For s ∈ C such that <(s) ≥ 0 and =(s) ≥ 0, we have

0 ≤ arg(sds) < π/4.

Proof. By definition of ds, see Section 4.1.1, we note

arg(sds) = arg

√
s

s+ δ
=

1

2
(arg(s)− arg(s+ δ)) .

The desired inequalities are then easily obtained due to the fact that δ is real and positive.

Lemma 4.3.3. For z = x+ iy ∈ C such that <(z) > 0, we have

tanh(z) =
sinh(2x)

cosh(2x) + cos(2y)
+ i

sin(2y)

cosh(2x) + cos(2y)

Proof. Elementary

Lemma 4.3.4. For z ∈ C such that <(z) > 0 and =(z) ≥ 0, we have

− arg(z) ≤ arg(tanh(z)) ≤ arg(z).

Equality only occurs when =[z] = 0

Proof. Set z = x+ iy, y > 0. By Lemma 4.3.3,

= (tanh(z))

< (tanh(z))
=

sin(2y)

sinh(2x)
.

49



Thus, the right of the two inequalities in the lemma is equivalent to showing the following for

x > 0, y > 0,
sin(2y)

sinh(2x)
<
y

x
,

We first show that for y > 0, sin(2y)
y < 2. Trivially, limy→0

sin(2y)
y = 2. Also, sin(2y)

y < 2 for

y > 1/2, meaning we only need to consider y ∈ (0, 1/2).

d

dy

sin(2y)

y
=

2y cos(2y)− sin(2y)

y2

The numerator is 0 when y = 0 and d
dy (2y cos(2y)− sin(2y)) = −4y sin(2y) < 0 for y ∈ (0, 1/2)

so 2y cos(2y)− sin(2y) < 0 for y ∈ (0, 1/2), meaning that sin(2y)
y is decreasing on (0, 1/2), giving

the desired result: sin(2y)
y < 2 for y > 0.

We now show that sinh(2x)
x > 2 for all x > 0. Trivially, limx→0

sinh(2x)
x = 2.

d

dx

sinh(2x)

x
=

2x cosh(2x)− sinh(2x)

x2

The numerator is 0 only when 2x = tanh(2x). Since d
dz tanh(z) = sech2(z) < 1 = d

dz z for z > 0,

the only value of x that satisfies 2x = tanh(2x) is x = 0. Therefore, we have that for x > 0,

2x > tanh(2x). Using the fact that cosh(2x) > 0, we have that d
dx

sinh(2x)
x > 0, which implies

that sinh(2x)
x > 2 for all x > 0. This completes the proof of the rightmost inequality in the

lemma, arg(tanh(z)) ≤ arg(z).

We now prove the leftmost inequality in the lemma. To begin, we first show that for y > 0,
sin(2y)
y > −2. Clearly this holds for y > 1/2, so we need only consider y ∈ (0, 1/2). Above we

showed that sin(2y)
y is decreasing for y ∈ (0, 1/2). Since 2 sin(1) > −2, we have that sin(2y)

y > −2

for all y > 0.

Also, our above arguments showed that for all x > 0, − sinh(2x)
x < −2. Therefore, we have

that for all x > 0, y > 0

−sinh(2x)

x
<

sin(2y)

y

since sinh(2x) > 0 for x > 0, this inequality is equivalent to

−y
x
<

sin(2y)

sinh(2x)
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This proves the leftmost of the 2 inequalities stated in the lemma.

Lemma 4.3.5. For s ∈ C such that <(s) ≥ 0 and =(s) ≥ 0, we have <[sds tanh(L/ds)] ≥ 0,

with equality holding only when s = 0

Proof. If s ∈ R, s 6= 0 then the result is obvious. For the case =[s] > 0, we show <[sds tanh(L/ds)] >

0 by showing | arg(sds tanh(L/ds))| < π/2. It follows from Lemma 4.3.1 that <[tanh(L/ds)] > 0

so arg[tanh(L/ds)] > −π/2, which, when combined with Lemma 4.3.2, yields the following:

arg(sds tanh(L/ds)) = arg(sds) + arg(tanh(L/ds)) > −π/2

For =[s] > 0, =[
√
s(s+ δ)] > 0 by Lemma 4.3.1 so we may use Lemma 4.3.4 to obtain the

following:

arg(sds tanh(L/ds)) = arg(sds)+arg(tanh(L/ds)) < arg(s)+arg(ds)+arg(1/ds) = arg(s) < π/2

Lemma 4.3.6. For any s ∈ C where <[s] ≥ 0,=[s] > 0, the following inequality holds

=2(asbs) < 4<(as)<(bs)

where as and bs are defined in Theorem 4.3.2.

Proof. We begin by simplifying the right hand side of the first inequality

<[as] =
1

C
<
[

1

sds
tanh(L/ds)

]
=

1

C|sds|2
(<(sds)<(tanh(L/ds)) + =(sds)=(tanh(L/ds)))

<[bs] = C<[sds tanh(L/ds)] = C (<[sds]<[tanh(L/ds)]−=[sds]=[tanh(L/ds)])

The above results yield a simplified form of <[as]<[bs]:

<[as]<[bs] =
1

|sds|2
(
<[sds]

2<[tanh(L/ds)]
2 −=[sds]

2=[tanh(L/ds)]
2
)

The left hand side of the first inequality may also be simplified:

=[asbs] = =
[ | tanh(L/ds)|2

|sds|2
]
| tanh(L/ds)|2 = −2

| tanh(L/ds)|2
|sds|2

<[sds]=[sds]
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We can use the above results to simplify the first inequality

=2(asbs) < 4<(as)<(bs)

| tanh(L/ds)|4
|sds|4

<[sds]
2=[sds]

2 <
1

|sds|2
(
<[sds]

2<[tanh(L/ds)]
2 −=[sds]

2=[tanh(L/ds)]
2
)

| tanh(L/ds)|4
=[sds]

2

|sds|2
< <[tanh(L/ds)]

2 −=[tanh(L/ds)]
2 tan(arg(sds))

| tanh(L/ds)|4 sin2(arg(sds)) < <[tanh(L/ds)]
2 −=[tanh(L/ds)]

2 tan2(arg(sds))

For simplicity let x , <[L/ds], y , =[L/ds]. We may simplify the above inequality further by

appealing to Lemma 4.3.3 and the identities sin2(θ) + cos2(θ) = 1 and cosh2(θ)− sinh2(θ) = 1:

[cosh(2x)− cos(2y)]2 sin2(arg(sds)) < sinh2(2x)− sin2(2y) tan2(arg(sds))

Denote p , <[sds], q , =[sds]. Substituting p and q into the above inequality gives

(
cosh2(2x)− 2 cos(2y) cosh(2x) + cos2(2y)

) q2

p2 + q2
+ (1− cos2(2y))

q2

p2
< cosh2(2x)− 1

Equivalently,

p2 + q2

p2
<

p2

p2 + q2
cosh2(2x) + 2

q2

p2 + q2
cosh(2x) cos(2y) +

q4

p2(p2 + q2)
cos2(2y)

Multiplying both sides by p2(p2 + q2) gives

(p2 + q2)2 < (p2 cosh(2x) + q2 cos(2y))2

By Lemma 4.3.2, q < p, which means that p2 cosh(2x) + q2 cos(2y) > 0, meaning we may

take the positive square root of both sides of the above inequality. Simple trigonometric and

hyperbolic trigonometric identities then show that the this inequality is equivalent to:

q2

p2
<

sinh2(x)

sin2(y)

Substituting p = <[sds], q = =[sds] gives

tan2(arg(sds)) < cot2(arg(tanh(L/ds)))
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By Lemma 4.3.4 and Lemma 4.3.1, | arg(tanh(L/ds))| < arg(1/ds) < π/2. Therefore,

cot2(arg(1/ds)) < cot2(| arg(tanh(L/ds))|) = cot2(arg(tanh(L/ds))) (4.17)

Furthermore, by assumption we have that <[s] ≥ 0,=[s] > 0 so arg(s) < π
2 . This gives

arg(sds) = arg(s) + arg(ds) <
π

2
− arg(1/ds)

We use these two facts to complete the proof of the theorem by showing that inequality (4.17)

holds. In the following we make use of the fact that arg(sds) and π
2 − arg(1/ds) are in [0, π/2]

(tan2(θ) is increasing for θ ∈ [0, π/2]).

tan2(arg(sds)) < tan2
(π

2
− arg(1/ds)

)
= cot2(arg(1/ds)) < cot2(arg(tanh(L/ds)))

We may now turn to the proof of Theorem 4.3.2. Consider the mapping Fs for a particular

s with nonnegative real part. Since we are only concerned with the real part of Fs, which is

unchanged under complex conjugation of s, we need only consider s ∈ C where <[s] ≥ 0 and

=[s] ≥ 0. We wish to show that for any z ∈ C where <[z] ≥ 0, <[Fs(z)] > 0. Since <[z] ≥ 0,

| arg(z)| ≤ π/2. Lemma 4.3.5 implies | arg(bs)| < π/2, which means that the denominator of

Fs(z), bsz + 1, is not zero (if s = 0 then the denominator is clearly nonzero also). Therefore,

<[Fs(z)] > 0 if and only if:

0 < <
[
(z + as)(bsz + 1)

]
= <[bs] |z|2 + <[asbsz] + < [z] + <[as]

Write z = x+ iy and view the above function of a complex variable z as a function gs of two

real variables x and y. The above inequality is equivalent to the following inequality holding

for all x ∈ [0,∞], y ∈ R.

0 < <[bs][x
2 + y2] + <[asbs]x+ =

[
asbs

]
y + x+ <[as] , gs(x, y)

We may find the minimum of gs easily by analyzing its partial derivatives
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∂

∂x
g(x, y) = 2<[bs]x+ <[asbs] + 1

= 2<(bs)x+ <
(
sd

sd

)
| tanh(L/ds)|2 + 1

By Lemma (4.3.5), bs ≥ 0. Lemma (4.3.2) implies that <[sd/sd] ≥ 0, so gs is increasing

with respect to x. Therefore, the minimum of gs in the right half plane occurs on the imaginary

axis(x = 0) and this minimum may be found easily

min
x≥0,y∈R

g(x, y) = min
y∈R

g(0.y) = <(as)−
=2(asbs)

4<(bs)

Therefore, Theorem 4.3.2 is equivalent to the following inequality holding for all s 6= 0 with

nonnegative real part:

=2(asbs) < 4<(as)<(bs) (4.18)

By Lemma 4.3.6, the above inequality holds, which concludes the proof of the theorem.

4.4 Connection to Periodic Version of Structured Tree

We now investigate how our general structured tree boundary condition compares with the

original boundary condition, which assumes periodicity in time. In Section 4.4.1, we show that

for flow regimes that are periodic, both boundary conditions yield the same analytic solution.

Furthermore, we have found that even in non-periodic regimes, the two boundary conditions

give startlingly similar results. An explanation for this phenomenon is given in Section 4.4.2.

4.4.1 Comparison for Periodic Flows

If P and Q are periodic with period T , then

P̂ (iωk)

Q̂(iωk)
=

∫ T
0 P (t)e−iωktdt

1−eiωkT∫ T
0 Q(t)e−iωktdt

1−eiωkT

=
P̂k

Q̂k
,

where P̂ (iωk) and Q̂(iωk) denote the Laplace transforms of pressure and flowrate evaluated at

iωk with ωk = 2πk/T , and P̂k and Q̂k are the respective Fourier coefficients of P and Q.
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Furthermore, the Laplace transform of the impedance satisfies Ẑ(iωk) = Ẑk, where Ẑk

denotes the kth Fourier coefficient of the impedance (3.16). For periodic flow and pressure,

enforcing Ẑ(s) = P̂ (s)/Q̂(s), as is done in the general structured tree condition derived in

this dissertation, implies Ẑk = P̂k/Q̂k, meaning the periodic boundary condition is also satis-

fied. Thus, in a simulation with periodic inflow velocity data, one obtains the same solution

from the periodic structured tree boundary condition and our general structured tree condi-

tion (neglecting numerical effects introduced by differences in implementation between the two

methods).

4.4.2 Comparison for Non-Periodic Flows

Both the periodic and general structured tree conditions express the pressure as a dot product

(discrete convolution) of flowrate history with impedance weights z`

P (n∆t) =

n∑
`=0

z`Q((n− `)∆t). (4.19)

For the general condition, the impedance weights are determined through the convolution

quadrature method applied to the Laplace transform of the impedance in (4.16). For the

periodic condition, the weights are determined by an inverse discrete Fourier transform of val-

ues of Ẑk , P̂k/Qk, where Ẑk are computed in a manner analogous to Ẑ(s) (see [22] for full

details). Explicitly, the impedance weights for the periodic condition are

z` =


∆t

T

(NT−1)/2∑
k=−(NT−1)/2

Ẑke
iωk`∆t for ` < NT ,

0 for ` ≥ NT ,

(4.20)

where ωk = 2πk/T with T being the assumed period of P and Q. NT is the number of time

steps per period, so implicitly z` = 0 for ` ≥ NT as the periodic condition only considers flow-

rate history over the previous period.

Although the derivation of the periodic structured tree condition requires the pressure and

flowrate to be periodic in time, the resulting numerical implementation, (4.19), in no way

forces the solution to be periodic. Therefore, it is possible to apply the periodic structured

tree boundary condition to any type of flow even in the absence of any justification to do

so. We compare this approach to the general structured tree boundary condition developed

in this dissertation. Figure 4.1 displays the weights generated by each condition for the left

posterior cerebral artery in the Circle of Willis, a ring-like structure of arteries in the human
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Figure 4.1: Comparison of the impedance weights generated by the periodic (blue, solid curve)
and general (red, dashed curve) structured tree boundary conditions.

brain. Details about the Circle of Willis and parameter values used to generate these weights

are given in Appendix A.
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Figure 4.2: Inflow velocity curves for the left internal carotid for each of the three numerical
experiments.

The similarity of the weights for both methods suggest that solutions obtained by using

either boundary condition may be similar, even for non-periodic problems. This hypothesis is

tested via numerical experiments in the Circle of Willis. We consider experiments with three

different velocities applied to the inflowing vessels:
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Experiment 1: Raw, quasi-periodic measured velocity data

Experiment 2: The raw data in experiment 1 that have been averaged and made periodic

with period 1 second

Experiment 3: The periodic data from experiment 2 is used in all vessels except the left

internal carotid artery, whose inflow velocity undergoes a rapid 50% decrease beginning

at t = 2

The velocity for each experiment is displayed in Figure 4.2. Appendix A contains additional

technical details on these simulations, such as discretization scheme, parameter values, and the

network description of the Circle of Willis.

For each simulation, we measure the difference between the periodic and general structured

tree solutions by computing the L2 norm of the difference between the two solutions at each

spatial point for both state variables (A and Q). The solutions at the spatial point in the

Circle of Willis with the largest difference are displayed in Figures 4.3. As expected from the

proximity of the weights, the solutions obtained by the two methods are remarkably similar.
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Figure 4.3: Top row: Left: solutions for a simulation using raw inflow velocity data with the
periodic (blue, solid curve) and general (red, dashed curve) structured tree boundary conditions
(experiment 1). The solution is displayed at the worst point in the network, see text. Right:
logarithm of the absolute value of the difference between the two methods at that point. Middle
row: idem for periodic inflow velocity data (experiment 2). Bottom row: idem for periodic inflow
velocity data that experiences a rapid decrease at t = 2 with the periodic (experiment 3).
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4.5 The Periodic Condition is an Approximation of the General

Condition

The similarity between the periodic and general conditions is not coincidental. We now show

that the numerical implementation of the periodic condition may be viewed as a rough approx-

imation of the general condition Ẑ(s) = P̂ (s)/Q̂(s). Crucial to this argument is the central

result of Section 4.3, which states that Ẑ(s) has only one singularity for <s ≥ 0: a removable

singularity at s = 0. Furthermore, we assume that Ẑ(s) is bounded in the right half plane

<[s] ≥ 0. We provide no analytical justification of this fact; however, based on numerical ex-

periments, it does appear to be the case.

If Q is twice differentiable and Q(0) = Q′(0) = 0, then the following condition is equivalent

to asserting Ẑ(s) = P̂ (s)/Q̂(s), where ẐR = lims →∞Ẑ(s) =
√
ρ/(A0C):

P (t) =

∫ t

0
L−1

[
Ẑ(s)− ẐR

s2

]
(t− τ)Q′′(τ)dτ + ẐRQ(t) (4.21)

Lemma 4.5.1. The improper integral

lim
T→∞

1

2πi

∫ σ+iT

σ−iT
L−1

[
Ẑ(s)− ẐR

s2

]
es(t−τ) ds

converges uniformly with respect to T for τ ∈ [0, t].

Proof. Consider τ ∈ [0, t]

L−1

[
Ẑ(s)− ẐR

s2

]
(t− τ) ,

1

2πi

∫ σ+i∞

σ−i∞

Ẑ(s)− ẐR
s2

es(t−τ)ds

=
∞∑
k=1

1

2πi

(∫ σ+ik

σ+i(k−1)

Ẑ(s)− ẐR
s2

es(t−τ)ds+

∫ σ−i(k−1)

σ−ik

Ẑ(s)− ẐR
s2

es(t−τ)ds

)

,
∞∑
k=1

fk(t)
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|fk(t)| =
1

2π

∣∣∣∣∣
∫ σ+ik

σ+i(k−1)

Ẑ(s)− ẐR
s2

es(t−τ)ds+

∫ σ−i(k−1)

σ−ik

Ẑ(s)− ẐR
s2

es(t−τ)ds

∣∣∣∣∣
≤ 1

2π

(∣∣∣∣∣
∫ σ+ik

σ+i(k−1)

Ẑ(s)− ẐR
s2

es(t−τ)ds

∣∣∣∣∣+

∣∣∣∣∣
∫ σ−i(k−1)

σ−ik

Ẑ(s)− ẐR
s2

es(t−τ)ds

∣∣∣∣∣
)

≤ KZ
eσt

2π

(∣∣∣∣∣
∫ σ+ik

σ+i(k−1)

1

s2
ds

∣∣∣∣∣+

∣∣∣∣∣
∫ σ−i(k−1)

σ−ik

1

s2
ds

∣∣∣∣∣
)

,Mk

where KZ , supν∈R |Ẑ(σ+ iν)− ẐR| <∞ since Ẑ(s) is analytic in this region by Theorem 4.3.1

and bounded as |ν| → ∞ by assumption.

∞∑
k=1

Mk ≤ KZ
eσt

π

(
1

σ2
+

∞∑
k=2

1

k(k − 1)

)
<∞

By Weierstrass, the integral in the inverse Laplace transform operator converges uniformly for

τ ∈ [0, t], which implies the following:

∫ t

t−T
L−1

[
Ẑ(s)− ẐR

s2

]
(t− τ)Q′′(τ)dτ =

∫ t

t−T
lim
T→∞

1

2πi

∫ σ+iT

σ−iT

Ẑ(s)− ẐR
s2

es(t−τ)Q′′(τ)dsdτ

= lim
T→∞

1

2πi

∫ σ+iT

σ−iT

∫ t

t−T

Ẑ(s)− ẐR
s2

e−sτQ′′(τ)dτestds

= L−1

[∫ t

t−T

Ẑ(s)− ẐR
s2

e−sτQ′′(τ)dτ

]
(t)

In (4.21), ẐR = lims → ∞Ẑ(s) =
√
ρ/(A0C), by (3.16). By assumption Ẑ(s) is bounded,

so the inverse Laplace transform of Ẑ(s)/s2 exists and is continuous [109]. For large enough

t,L−1
[
(Ẑ(s)− ẐR)/s2

]
(t) becomes linear. This was observed in extensive numerical experi-

ments with full trees, and we now show this fact analytically for the case of a one vessel tree.

The behavior of L−1
[
Ẑ(s)/s2

]
(t) for large values of time is determined by the behavior of

Ẑ(s)/s2 when s ≈ 0. Using the approximation tanh(L/ds) ≈ L/ds for small s, we obtain the

following for a tree with a single vessel:

Ẑ(s)

s2
≈ ρ

A0CẐterm

(
1

s2
+

a1 − a2

s2(s+ a2)

)
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where a1 = A0Ẑterm/ρL+ δ and a2 = 1/CLẐterm. We may invert this expression analytically

to obtain the following (for t ≥ 0).

L−1

[
Ẑ(s)

s2

]
≈ ρ

A0CẐterm

[
t− (a1 − a2)

(
− 1

a2
2

+
1

a2
t+

1

a2
2

e−a2t
)]

a2 is positive so the exponential term in the above quickly vanishes as t becomes large. In the

case Ẑterm = 0 one obtains the following inverse Laplace transform, which is exactly linear

L−1

[
Ẑ(s)

s2

]
≈ Lρ

A0
(1 + δt)

In implementing the periodic structured tree condition, one must prescribe a value of the

expected period T (typically T ≈ 1). The convergence of L−1
[
(Ẑ(s)− ẐR)/s2

]
(t) to a linear

regime typically occurs rather quickly with respect to t (within 0.1 to 0.3 seconds, i.e. much

smaller than T ), so it is reasonable to approximate (4.21) in the following way:

P (t) =

∫ t

t−T
L−1

[
Ẑ(s)− ẐR

s2

]
(t− τ)Q′′(τ)dτ +

∫ t−T

0
[m(t− τ) + b]Q′′(τ)dτ + ẐRQ(t)

= I + II + ẐRQ(t)

We may evaluate II exactly

II = mt
[
Q′(t− T )−Q′(0)

]
−m

[
τQ′(τ)

∣∣∣τ=t−T

τ=0
−
∫ t−T

0
Q′(τ)dτ

]
+ b

[
Q′(t− T )−Q′(0)

]
= mtQ′(t− T )−m(t− T )Q′(t− T ) +m [Q(t− T )−Q(0)] + b

[
Q′(t− T )−Q′(0)

]
= mTQ′(t− T ) +mQ(t− T ) + bQ′(t− T )
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The integral in the inverse Laplace transform operator (4.8) converges uniformly by Lemma 4.5.1,

so we may exchange the inverse Laplace transform operator and the outer integral.

I =

∫ t

t−T
L−1

[
Ẑ(s)− ẐR

s2

]
(t− τ)Q′′(τ)dτ

=

∫ t

t−T
L−1

[
e−sτ

Ẑ(s)− ẐR
s2

]
(t)Q′′(τ)dτ

= L−1

[
Ẑ(s)− ẐR

s2

∫ t

t−T
e−sτQ′′(τ)dτ

]
(t)

= L−1

[
Ẑ(s)− ẐR

s2

(
Q′(τ)e−sτ

∣∣∣τ=t

τ=t−T
+ s

∫ t

t−T
Q′(τ)e−sτdτ

)]
(t)

= Q′(t)L−1

[
Ẑ(s)− ẐR

s2

]
(0)−Q′(t− T )L−1

[
Ẑ(s)− ẐR

s2

]
(T )

+ L−1

[
Ẑ(s)− ẐR

s

∫ t

t−T
Q′(τ)e−sτdτ

]
(t)

The behavior of a function at t = 0 is determined by the behavior of its Laplace transform for

large s. Specifically,

L−1

[
Ẑ(s)− ẐR

s2

]
(0) = lim

s→∞

Ẑ(s)− ẐR
s

= 0

Using this fact and the approximate linearity of L−1
[
(Ẑ(s)− ẐR)/s2

]
(t), we have

I ≈ −Q′(t− T ) [mT + b] + L−1

[
Ẑ(s)− ẐR

s

∫ t

t−T
Q′(τ)e−sτdτ

]
(t)

= −Q′(t− T ) [mT + b] + L−1

[
Ẑ(s)− ẐR

s

(
Q(τ)e−sτ

∣∣∣τ=t

τ=t−T
+ s

∫ t

t−T
Q(τ)e−sτdτ

)]
(t)

= −Q′(t− T ) [mT + b] +Q(t)L−1

[
Ẑ(s)− ẐR

s

]
(0)−Q(t− T )L−1

[
Ẑ(s)− ẐR

s

]
(T )

+ L−1

[
(Ẑ(s)− ẐR)

∫ t

t−T
Q(τ)e−sτdτ

]
(t)

= −Q′(t− T ) [mT + b]−mQ(t− T ) + L−1

[
(Ẑ(s)− ẐR)

∫ t

t−T
Q(τ)e−sτdτ

]
(t)
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Now approximating the integral corresponding to the inverse Laplace transform operator (4.8)

by a rectangle rule with spacing 2π/T , we have

≈ −Q′(t− T ) [mT + b]−mQ(t− T )

+

N−1
2∑

k=−N−1
2

(Ẑ(iωk + σ)− ẐR)

(
1

T

∫ t

t−T
Q(τ)e−(iωk+σ)τdτ

)
eiωkt

By Theorem 4.3.1 and the (4.8), σ may be any positive real number. Since Ẑ(s) is continuous

for all s with <[s] ≥ 0, we take the limit as σ → 0 to obtain:

I ≈ −Q′(t− T ) [mT + b]−mQ(t− T ) +

N−1
2∑

k=−N−1
2

(Ẑk − ẐR)

(
1

T

∫ t

t−T
Q(τ)e−iωkτdτ

)
eiωkt

If we approximate the Fourier integral of Q by a discrete Fourier transform of Q(t − (N −
1)∆t), ...Q(t), we obtain the following:

I ≈ −Q′(t− T ) [mT + b]−mQ(t− T ) +

N−1
2∑

k=−N−1
2

ẐkQ̃
(N)
k eiωkt − ZRQ(t)

This yields the following approximation of the transient boundary condition

P (t) ≈ I + II + ZRQ(t)s =

N+1
2∑

k=−N+1
2

ẐkQ̃
(N)
k eiωkt =

N−1∑
k=0

zkQ((N − k)∆t)

where zk denote the impedance weights in (3.22) computed by inverse discrete Fourier transform

of values of Ẑk, meaning that the periodic boundary condition is a numerical approximation of

the general boundary condition.

4.5.1 Numerical Issues with the Periodic Condition

The impedance weights for the periodic condition, although fairly close to the weights for the

general condition, are oscillatory (Fig. 4.1). Additionally, even in a simulation with periodic

inflow velocity, the periodic structured tree condition exhibits oscillations near t = 1 (middle

of Fig. 4.3).

Another issue is that even in a simulation with periodic inflow velocity, the solution using
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the periodic condition converges to a periodic regime at a slower rate than the solution obtained

from the general condition. To quantify this, we rewrite the solution “modulo T” into a sequence

of grid functions

Ak(x, tn) = A(x, tn + kT ) and Qk(x, tn) = Q(x, tn + kT ).

We also define quantities which measure the relative change in the solution from one period to

the next

∆kA , max
n=1,...NT
x∈Ω

∣∣∣∣∣Ak+1(x, tn)−Ak(x, tn)
1
NT

∑NT
n=1Ak=1(x, t)

∣∣∣∣∣ ,
and similarly for Qk, where Ω is the set of all spatial points in the network. Figure 4.4 displays

values of ∆k = max{∆kA,∆kQ} for each boundary condition for the simulation of the Circle

of Willis with periodic inflow velocity data (Figure 4.3, middle). Remarkably, the solution from

the general condition converges to a periodic regime at a substantially faster rate than the

solution obtained from the periodic condition.

1 2 3 4 5 6 7
10

−10

10
−5

10
0

Period Number

∆ k

Figure 4.4: Values of ∆k for the periodic (blue, solid line) and general (red, dashed line)
structured tree conditions, showing that the general condition yields a solution converging to
periodicity at a much faster rate than the original, periodic condition.

As done in Section (3.2.2), we provide an analysis of this phenomenon for the linearized

equations (3.12) and (3.13) in a network consisting of a single vessel. Rather than fixing the

velocity at the inlet, we fix the flowrate. Discretizing the system using Chebyshev collocation

in space combined with backward Euler time integration allows us to represent the map from
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the numerical solution at period k to the numerical solution at period k + 1 as a linear fixed

point map. Specifically, if ~z k is the solution at period k, we have

R~z k+1 = S~z k + ~q (4.22)

where ~q is a vector containing imposed inlet flowrate values. To analyze the convergence of

this fixed point iteration we computed the inverse of R semi-analytically and the computed

the spectral radius using MATLAB’s eig command. This was done for each of the outflowing

vessels of the Circle of Willis. The results, displayed in Table 4.1, show that the spectral

radius corresponding to the general condition is many orders of magnitude smaller than the

spectral radius corresponding to the periodic condition. This is in agreement with the behavior

observed in Fig. 4.4, where the solution obtained from the periodic structured tree converged to

a periodic regime substantially slower than the solution obtained from the general structured

tree condition.

Table 4.1: Spectral radii of R−1S in (4.22) for the periodic and general structured tree condi-
tions. See Section (3.2.2) for a detailed description of the contents of R and S.

Vessel R PCA L PCA R MCA L MCA R ACA L ACA

Periodic Spec. Rad. 3.7e-03 3.3e-03 5.8e-03 5.2e-03 1.4e-02 8.0e-03

General Spec. Rad. 4.5e-15 4.5e-14 1.2e-12 6.0e-12 1.4e-16 2.5e-13

The slow convergence rate accompanying the periodic condition can have serious computa-

tional consequences. For example, the authors of [35] report that the periodic structured tree

condition requires 8 periods to converge to a periodic regime in their 3D simulation of the cra-

nial arterial tree, with one period requiring 3 hours of computation time. The results from this

section indicate that the use of the general structured tree condition over the original, periodic

version may yield substantial computational savings, even when one is performing simulations

of blood flow that are periodic in time.

4.6 Conclusions

Unlike most outflow boundary conditions in computational hemodynamics, structured tree

boundary conditions [22, 62, 63, 64, 82] have the advantage of being physiologically based.

However, their derivation is based on Fourier series arguments which only apply to strictly
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periodic flows—a significant restriction in practice.

The new general structured tree boundary condition proposed here is valid for all flows.

The periodic conditions from [22, 62, 63, 64, 82] can be viewed as numerical approximations

to the new one. Our analysis shows that the new and old conditions yield results which are

remarkably similar. One of the practical implications of the present work is that the “tradi-

tional” structured tree boundary conditions may be used for non-periodic flows even though

they were not derived within that framework.

Cost and complexity being similar, the authors believe the new condition should be preferred

over the old one both for periodic flows, as the numerical solution reaches periodicity much

faster, and for general flows, as the new method has better stability properties.
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Chapter 5

Parameter Selection for the

Structured Tree

Despite the fact that the structured tree condition is physiologically based, selecting parameters

for this condition is difficult in practice. Users of this condition have been forced to calibrate

one or more parameters to get reasonable simulation results [9, 22, 63, 64, 81]. This fact is

concerning for two reasons. First, although parameter calibration is often necessary for many

models, it comes at the cost of a number of numerical simulations and can be difficult in the

absence of experimental data. Second, the parameters in the structured tree represent physi-

ological quantities, but the parameter values obtained by calibration are often physiologically

unreasonable and often vary considerably between different outlet vessels within the same sim-

ulation [9, 22, 63, 64].

In this section, we attempt to answer the following question: Using the structured tree,

is it possible to obtain reasonable simulation results without calibration while also using the

same parameters for all outlet vessels? To do so, we reexamine various structural properties of

arterial trees and the mechanics of blood flow in these trees. Specifically, we extend the tiered

branching structure proposed by Steele et.al. [82, 81], incorporate non-continuum effects of

blood flow in the microcirculation, and use a nonzero value of the terminal impedance at the

leaves of the tree. By doing so, we find that we get reasonable results in a simulation of the

systemic arterial tree without any calibration whatsoever. However, these parameter sets do

not generate physiologically reasonable results in a simulation of the Circle of Willis. This may

be due to organ specific aspects of arterial trees (see Section 5.4).

Unfortunately, the tiered branching structure we use comes at a substantial computational

cost. To effectively eliminate this cost, we fit the Windkessel parameters to match the structured
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tree impedance as closely as possible. We find that, for a given set of structured tree parameters,

it is possible to determine a set of Windkessel parameters so that there is only a small difference

between simulation results from the two boundary conditions. We perform this optimization

procedure for a variety of root radii, and the end result is an extremely simple method to

estimate Windkessel parameters for an outlet vessel of any radius that matches the structured

tree with the tiered branching structure.

5.1 A Closer Look at Structured Tree Parameters

Since the structured tree is derived from physiological principles, many of its parameters rep-

resent physical, measurable quantities (i.e. the vessel length-to-radius ratio, λ). Unfortunately,

to obtain reasonable results, a number of authors have been forced to use parameter values

that are physiologically questionable. For example, the authors of [22] use minimum radius

values ranging from 80µm to 200µm. The authors of [9, 64] use minimum radius values ranging

from 100µm to 300µm. As discussed in Section 5.1.5, these values are too large and, most

importantly, there is no rule of thumb as to how one should select minimum radius values to

get reasonable simulation results.

We now investigate the proper parameter values for the structured tree condition. Specifi-

cally, we consider tiered branching structures, blood viscosity properties in the microcirculation,

and appropriate pressure values at the terminal sites of the structured tree. We find that these

changes allow the structured tree to give acceptable results using physiologically reasonable

parameter values without performing any calibration procedures or ad-hoc parameter adjust-

ments in a simulation of the systemic arterial tree. However, the same parameter set yields

unacceptable results in a simulation of the Circle of Willis.

5.1.1 Branching Parameters

In [81], Steele et. al. discussed the idea of using a tiered branching structure, rather than

a single set of branching parameters for the entire tree. The parameters used in this work

are included in Table 5.1, where ξ is the parameter satisfying rξpa = rξd1 + rξd2 , and ζ satisfies

ζ = rd2/rd1 .

Table 5.2, which contains theoretical and measured values of ξ, suggests that the tiered

structure used by Steele et. al. in [81] is accurate. Although there is some variation in the indi-

vidual values of ξ, the values show a clear trend of being roughly 2.5 for the larger vessels, and
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Table 5.1: Tiered branching parameter structure used by Steele et. al. in [81]

Radius Range ξ ζ

250µm < r 2.50 0.4

50µm≤ r ≤ 250µm 2.76 0.6

r < 50µm 2.90 0.9

Table 5.2: Measured and theoretical values of the branching parameter ξ. A “sample” refers
to a triplet of values of rpa, rd1 , rd2 measured at a single junction.

ξ Num. Samples SD Notes Source

2.66 1533 0.081 r ≥ 100µm Suwa et. al. [84]

2.71 1455 0.092 r < 100µm Suwa et. al. [84]

2.9 157 0.7 Measurements from ICA, ACA, MCA Rossitti et. al. [74]

3 N/A N/A Theoretical optimum, laminar flow Murray [58]

2.33 N/A N/A Theoretical optimum, turbulent flow Uylings [90]

2.76 N/A N/A Olufsen [63]

2.55 183 0.03 r ≥ 800µm [8]

2.64 0.64 rroot ≤ 140µm [42]

2.32 0.18 rroot > 140µm [42]

2.82
912 total

r < 80µm
[92]2.50 80µm≤ r ≤ 400µm

2.35 400µm< r

2.81 30µm≤ r ≤ 80µm, measured data [99]

closer to 3 for the smaller vessels. Furthermore, this behavior fits with the theoretical optima

determined by Uylings and Murray. Under laminar flow conditions, Murray claimed that ξ = 3

is optimal [58]. Uylings claimed that ξ = 2.33 was optimal under turbulent flow conditions.

In the larger arteries such as the aorta, the Reynolds number is O(1000) and some turbulence

is present, whereas in the smaller arteries the Reynolds number is substantially lower and the

flow is laminar [18, 66]. Therefore, if the structure of the arterial system adheres to the optima

suggested by Uylings and Murray, ξ would be closer to 2.33 for the larger arteries and closer to 3

for the smaller arteries, which agrees precisely with the trend of the measured data in Table 5.2.

The radius dependence of the asymmetry parameter ζ is less clear, but available data does
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Table 5.3: Asymmetry ratio data from VanBavel and Spaan [92]. A “sample” refers to a pair
of values of (rd1 , rd2) from a single junction.

Parent Radius (µm) Number of Samples Median ζ

< 60 326 0.765
60-100 425 0.582
100-150 193 0.546
150-280 352 0.501
180-1000 210 0.415
> 1000 157 0.400

support the general trend in the tiered structured devised by Steele et. al. Table 5.3 displays

measured values of ζ = rd2/rd1 for a variety of different radii. This data shows a clear trend of

bifurcations being more symmetric for the smaller arteries. Kalsho and Kassab obtained similar

findings in data from pig hearts, with ζ trending upward from roughly 0.1 for the largest vessels

to 0.7 for the smaller arteries [43].

5.1.2 Vessel Length-to-Radius Ratio

A tiered set of parameters for λ is not incorporated in the tiered branching structure of Steele

et. al. [81]. Rather, for each tree they use a constant value of λ that differs between different

trees. These authors vary λ as a mechanism to control the relative impedance between dif-

ferent outlets, and use values of 20-80 for different trees. Although using different values of λ

may be appropriate to account for organ specific aspects of these trees (see Section 5.4), this

approach requires some calibration to ensure appropriate flow distributions and pressure ranges.

We now discuss how the length-to-radius ratio, λ, also exhibits a tiered structure. Nordslet-

ten et. al [61] provided detailed data-based analysis on how the length-to-radius relationship

varies with the vessel radius itself by grouping vessels according to their Strahler order. The

Strahler ordering procedure, originally described in [83], labels all terminal vessels as order 0.

When two vessels of order i merge, the parent vessel at this junction is assigned order i+ 1. If

two vessels of differing orders merge a at a junction, the order of the parent vessel is set equal

to the larger of the two daughter orders. For example, when two order 0 vessels merge, the

parent vessel at this junction is assigned order 1. When an order 0 and order 1 vessel merge,

the associated parent is assigned order 1.

The data from Nordsletten et. al., reproduced in Table 5.5, implies that λ is larger for the
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Table 5.4: Tiered λ structure proposed here combined with the tiered branching parameter
structure used in [81].

Radius Range λ ξ ζ

250µm < r 10 2.50 0.4

50µm≤ r ≤ 250µm 20 2.76 0.6

r < 50µm 30 2.90 0.9

smaller vessels. These authors only included the radius and length data in their publication–we

have extrapolated this data to compute rough estimates of λ by dividing these two values. This

should only be taken as a rough estimate as we are estimating the average of L/r by the average

of L divided by the average of r. Van Bavel et. al. fit a power law to measured data and obtained

L ≈ 16.6r0.73. If we used this power law to define a radius dependent length-to-radius ratio as

λ = 16.6r−.27, we would see that λ decreases as r increases since ∂λ/∂r = −4.48r−1.27 < 0.

We seek a set of parameter values for the structured tree that generates physiologically

reasonable results without varying these parameters between different trees or performing any

calibration. We propose appending a tiered λ structure to the tiered ξ and ζ structure used by

Steele et. al. In [108], Zamir computes an average λ of 20 from a measured data set. Zamir also

finds that λ has a limiting maximum value of 70, and this value is only approached in a small

subset of the smaller arteries in the dataset. To match the mean value suggested by Zamir and

the property that λ decreases as r increases [61, 92], we propose appending the tiered structure

of Steele et. al. with a tiered structure for λ, with λ ranging from 10 to 30 (see Table 5.4).

5.1.3 Radius Dependent Viscosity

The effective viscosity of blood varies depending on the size of the tube through which it is

flowing. This is due to the fact that in smaller arteries and capillaries whose diameter is not

much larger than that of a red blood cell, red blood cells aggregate in the center of the vessel.

A cell-free layer consisting primarily of plasma lines the interior vessel wall, and the net effect,

originally noted experimentally by Fahraeus and Lindqvist, is to reduce the effective viscosity of

blood as the vessel radius decreases [28]. The effective viscosity here is derived from Poiseuille’s

law [18]:

∆P = 8
µLQ

πr4
. (5.1)
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Table 5.5: Data from Nordsletten et. al. [61]. We have computed and appended the left-
most column of λ values by dividing the length and radius values originally published in [61].
Computed values of λ are rounded to the nearest integer.

Strahler Order N Samples Length (mm) Radius (µm) λ

0 29,566 312 10.08 31
1 13,070 423 13.90 30
2 4373 404 20.06 20
3 1245 656 29.87 22
4 578 1001 39.29 25
5 247 511 44.23 12
6 90 1031 53.87 19
7 24 2516 86.15 29
8 6 8975 139.83 64
9 3 1440 191.42 8
10 1 185 216.10 1

where ∆P is the pressure gradient between the beginning and end of a vessel, L and r are the

length and radius of the vessel, and Q is the flowrate. The effective viscosity is obtained by

solving for µ after measuring all other quantities in (5.1). Fahraeus and Lindqvist’s findings

have been further confirmed experimentally in [70, 10, 33, 37, 38, 72] and have been confirmed

via a numerical particle dynamics method in [29].

In [71], Pries et.al. attempted to investigated the agreement of the Fahraeus and Lindqvist

effect with in vivo data, as opposed to the in vitro data used by most studies. Although they did

find that the effective viscosity does initially decrease as vessel radius decreases, eventually this

effective viscosity reaches a local minimum and begins to increase as radius gets smaller. Based

on this data, they proposed the following relative effective viscosity fit for a normal hematocrit

value of 0.45:

ηvivo =

[
1 + (η∗0.45 − 1)]

(
D

D − 1.1

)2
](

D

D − 1.1

)2

η∗0.45 = 6e−0.085D + 3.2− 2.44e−0.06D0.645

where D is the vessel diameter in microns. Instead of a constant viscosity value, we use the

above diameter dependent viscosity.

72



5.1.4 Terminal Impedance

The structured tree requires a value of Ẑterm to be imposed at the ends of all terminal vessels.

The typical convention is to simply set this value to 0 [63, 64, 81, 22, 23]. However, we will

show that the correct value of Ẑterm is quite large. Suppose Qroot and Proot are the average flow

and pressure at the root of a structured tree. This means that the average root impedance, Ẑ0,

is equal to Proot/Qroot. If the root vessel denotes a medium sized artery, a reasonable estimate

for Proot would be 80mmHg. The location of the terminal sites of the tree will lie in the very

small arteries or capillaries, meaning that the pressure there, Pterm, will be roughly 30mmHg

[18]. Therefore, the average pressure decreases by a factor 2-3 from the root to the leaves of

the tree. However, Qroot must be distributed amongst all of the millions of terminal vessels.

This analysis suggests that Ẑterm,0 is roughly one million times larger than Ẑ0. Since Ẑ0 itself

is already O(104) or larger (see Figure 3.2), this would mean that Ẑterm is O(109) 6= 0.

The above argument makes only a rough estimate as to the magnitude of Ẑterm. To obtain

exact values of Ẑterm, one would need to know the how the flowrate coming in from the root

of the tree is distributed to its millions of terminal vessels. It may be possible to estimate the

average flowrate through each of the different terminal vessels, although this would be com-

plicated due to the large number of different radii values of the various leafs. However, the

estimation of higher Fourier coefficients of the flowrate would be even more intricate. Instead

of attempting to estimate the terminal impedance, we show how to incorporate more easily

estimable terminal pressure values. At this time, we have only developed a simple algorithm

for the case when this terminal pressure is constant in time.

To impose P (t) = Pterm at the terminal vessels of the structured tree, we slightly modify

the definition of Ẑk. Instead of letting Ẑk = P̂k/Q̂k, we define Ẑk as follows:

Z̃k ,
P̂k − P̂k,term

Q̂k
(5.2)

Since Pterm is constant in time, P̂k,term = 0 for k 6= 0, we have only changed the definition of

the impedance for the k = 0 Fourier mode. For the original structured tree, the impedance is

propagated from the end to the beginning of a vessel using Poiseuille’s law:

P̂0(x = 0) = P̂0(x = L) +
8µλ

πr3
Q̂0

therefore the impedance relation for the 0th Fourier mode is the same as when Ẑk was defined
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simply as Ẑk = P̂k/Q̂k. Specifically, subtracting Pterm from both sides and dividing by Q̂0 gives

Ẑ0(0) = Ẑ0(L) +
8µλ

πr3

this is exactly the same as the original DC impedance relation in Chapter 3 (see 3.17). The

junction condition (3.8) also remains unchanged after this definition change of Ẑk. Furthermore,

the appropriate terminal impedance for the impedance defined in (5.2) is 0 since what we wish

to impose at the terminal sites is P̂0 = Pterm and P̂k = 0 for k 6= 0. Therefore, to compute

actual values of the terminal pressure incorporating impedance, one need only run the original

algorithm with Ẑterm = 0. The difference arises only in the implementation, with P and Q

being related by the following:

P (t) = Pterm +

∫ t

t−T
Q(τ)Z(t− τ) dτ

The only difference in this formulation and the original structured tree is the addition of the

constant Pterm to the convolution integral. For reasons discussed in Section 3.2, the above con-

volution integral should only be interpreted only in a weak since, and numerically it should be

implemented strictly according to (3.22) with the terminal pressure added to the summation.

[62, 18] suggest that the pressure in the smallest capillaries is roughly 25-35 mmHg. In practice,

we use a value of P̂term = 30 mmHg.

5.1.5 Minimum Radius

As described in Section 3.1.1, the structured tree requires the user to prescribe a value of

minimum radius, rmin. This value serves as a termination criterion for the tree, with vessels

whose radius is less than rmin simply terminating (rather than bifurcating). Choosing rmin is

challenging since this parameter is more artificial than the other branching parameters. The

reason for this is that, in the human cardiovascular system, vessels do not merely terminate.

Arteries perpetually branch while decreasing in size and eventually branch into capillaries.

These capillaries decrease in size down to a radius of roughly 3µm [70], and then begin to

merge together while increasing in size and eventually become veins. These veins then deliver

blood back to the right atrium of the heart [18], meaning that there are no true terminal vessels.

Table 5.6 contains various rmin values used in implementations of the structured tree. These

values highlight two practical issues that make the selection of rmin difficult. First, with the

exception of the two studies by Steele, [82, 81], large values of rmin are used, meaning that a

large portion of the arterial tree is being completely neglected. Steele uses the tiered branching
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Table 5.6: Minimum radius values used in a variety of implementations of the structured tree
condition. A ∗ by a minimum radius value indicates that this study used a tiered branching
structure, rather than a single set of branching parameters.

rmin Values Source

80 µm - 200 µm Cousins et. al. [22]
100 µm - 300 µm Olufsen et. al [64]
100 µm - 600 µm Olufsen [63]

4 µm∗ Steele [82]
3 µm∗ Steele et. al. [81]
20 µm Torii et. al [88]

structured described in Section 5.1.1, while the other authors use a single set of branching pa-

rameters. Second, and most importantly, there is a tremendous variation in the values of rmin,

even between different outlet vessels of the same simulation. Furthermore, there is no reliable

rule of thumb to select rmin, meaning that users of the structured tree are forced to perform

calibration procedures [22].

A natural minimum radius choice is 3µm, the radius of the smallest capillaries. For the

simulations in Section 5.2, we use this natural choice of rmin = 3µm.

5.2 Simulation Results

We now perform a simulation of the systemic arterial tree using the structured tree with pa-

rameters described in Section 5.1. The only inlet in this network is the aorta; at this point we

impose flowrate values measured by magnetic resonance techniques. We compare the simula-

tion results to flowrate data at various points in the arterial tree. This data, as well as the

radii and length data for the systemic arterial tree, was provided graciously by Mette Olufsen.

This comparison is displayed in Figure 5.1, which shows that we have reasonable agreement

between the simulation and data. Although we do not have measured pressure data, we display

the computed pressure at various locations in Figure 5.2. We would expect the pressure in the

aortic arc (top right of Figure 5.1) to range roughly between 80/120 mmHg. The computed

pressure ranges between 70 mmHg and 140mmHg, so the average pressure is fairly accurate

but the variation between the maximum and minimum pressures is too large.

The agreement of these simulation results with data is noteworthy for two reasons. First,
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Figure 5.1: Computed (blue, solid curve) and measured (black, dot-dashed curve) flowrate
values in various locations in the systemic arterial tree. The computed values were obtained
using the structured tree boundary condition with parameters from Section 5.1.
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Figure 5.2: Computed pressure values at various locations in the systemic arterial tree using
the structured tree condition with parameters from Section 5.1.
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we used the same set of tree parameters for each outlet vessel in the network. Second, this

parameter set was determined without any calibration of any kind and is based only on measured

values from the literature. However, when we apply these same parameter sets to a simulation

of the Circle of Willis, we no longer get physiologically reasonable results. The pressure values

in this simulation are substantially larger than the correct physiological values (see Figure 5.3.

Possible explanations of this discrepancy are given in Section 5.4.

5.3 Systematic Boundary Condition Comparison

A drawback to the tiered branching structure is that it substantially increases the computational

cost of the structured tree. The self-similar structure induced by the single set of branching

parameters means that, in a tree with N generations, there are only O(N2) different vessel radii

values, and the computational cost is thus also O(N2), where N is roughly 20. (see Appendix A

for a description of this algorithm). However, for the tiered branching structure this is no longer

the case. For an N generation tree with k tiers, the computational cost is O(Nk+1) since this

is the number of distinct vessel radii. Although the computational cost per distinct vessel is

small (1 evaluation of hyperbolic tangent and a few basic arithmetic operations, see (3.16)),

these small costs can add up for tiered trees. For example, it takes ≈ 1 second to compute the

vector of impedance weights for a tree with a global set of parameters, but it takes roughly 2−3

minutes to perform the same computation for a 3-tiered tree (see Appendix A for a description

of the computing environment). Considering the fact that this process must be repeated for

each outlet of the network, the computational cost can become unwieldy for tiered trees.

We now investigate the fundamental differences between the pure resistor, Windkessel, and

structured tree boundary conditions. Our goal here is to determine if it is possible to “fit” the

pure resistor and/or Windkessel to the structured tree condition to eliminate the computational

cost of the tiered branching structure. Although the derivations of these boundary conditions

vary substantially, this fact alone does not imply that the simulation results obtained with these

conditions will be vastly different. Of course, if the Windkessel and structured tree conditions

are compared with each condition being supplied with an arbitrary chosen parameter set, their

associated simulation results will likely differ. This fact motivates our definition of the concept

of boundary condition equivalence: if for every possible choice of structured tree parameters

there exists a set of Windkessel parameter such that the simulation results generated using

these two conditions are identical, then we say these two boundary conditions are equivalent.

For example, the following hypothetical boundary condition is trivially equivalent to the pure

resistor condition:

P = 2KQ
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Figure 5.3: Computed pressure and flowrate values in the Circle of Willis using the structured
tree boundary condition with parameters from Section 5.1.
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Table 5.7: Ranges for randomly generated structured tree parameter sets

Parameter Range

ξ 2.3 ≤ ξ ≤ 3

η 0.3 ≤ η ≤ 0.6

λ 20 ≤ λ ≤ 70

rmin 0.003 cm≤ rmin ≤ 0.02 cm

since this boundary condition would generate results that agree exactly with the pure resistor

condition if the resistance parameter R0 were chosen to be equal to 2K. The Windkessel and

structured tree conditions do not share such an obvious connection. However, we now perform

a number of numerical experiments that suggest that these conditions are nearly equivalent.

Alternatively, these experiments also show that the pure resistor condition yields differences

in simulation results that cannot be eliminated by a careful selection of the resistance parameter.

To investigate the difference between these three boundary conditions, we perform a variety

of numerical experiments of blood flow in the Circle of Willis. Details of these experiments may

be found in Appendix A. For each of the six outlet vessels in the Circle of Willis, we randomly

generate a set of structured tree parameters, with each parameter being selected uniformly from

specified ranges. These ranges are given in Table 5.7.

For each structured tree parameter set, we determine the set of Windkessel parameters that

most closely fit the structured tree impedance. To do so, we compute the Fourier coefficients

of the Windkessel condition, which states:

CR1R2∂tQ+ (R1 +R2)Q = CR2∂tP + P.

Taking the Fourier coefficients of both sides gives

P̂k

Q̂k
=
iωkCR1R2 +R1 +R2

1 + iωkCR2

The structured tree gives us a direct way of computing P̂k/Q̂k, and we use this information to

determine the values of Windkessel parameters (R1, R2, C). We enforce that the two conditions
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Table 5.8: Numerical values of difference between numerical simulations of the Circle of Willis
using the structured tree and Windkessel boundary conditions. The largest, median, and small-
est difference rows correspond to the top, middle, and bottom plots in Figure 5.4.

Difference Variable Vessel

Largest Difference 0.073 Flowrate R Middle Cerebral Artery

Median Difference 0.031 Flowrate Anterior Communicating Artery

Smallest Difference 0.016 Pressure L Anterior Cerebral Artery

agree exactly for the 0th Fourier coefficient, which requires that Ẑ0 = R1 +R2

f(R1, C) =
n∑
k=1

∣∣∣∣∣Ẑk − iωkCR1(Ẑ0 −R1) + Ẑ0

1 + iωkC(Ẑ0 −R1)

∣∣∣∣∣
2

.

The optimization is performed using the Levenberg-Marquardt algorithm in the “lsqnonlin”

function in MATLAB (2011a, The MathWorks, Natick, Massachusetts, U.S.A.). We use n = 20.

Numerical experiments in Appendix A suggest that the solutions to our model are smooth,

meaning their Fourier coefficients are small for large values of k. Furthermore, our results

were insensitive to changes in n. The pure resistor boundary condition enforces P = RQ,

where R is the resistance parameter. To estimate this resistance parameter, we simply set

R = Ẑ0 = R1 +R2.

We ran 50 simulations of the Circle of Willis, where for each simulation each outflow vessel

was prescribed a randomly generated structured tree parameter set according to Table 5.7. We

then found the Windkessel and resistance parameters that best fit these randomly generated

parameter sets by the optimization procedure described above. We then ran simulations of

the Circle of Willis with the structured tree, Windkessel, and resistor conditions. For each of

these simulations, we computed the L∞ norm (in space and time) of the difference between the

solutions. To compare the structured tree and Windkessel conditions, we include results from 3

selected simulations in Figure 5.4. The top plot corresponds to the simulation with the largest

difference between the structured tree and Windkessel solutions, the middle plot displays the

simulation with the median difference out of all of the simulations, and the bottom plot displays

the simulation with the smallest difference. The plotted state variable was chosen to be the so-

lution value/spatial location combination where this L∞ difference between the structured tree

and Windkessel is attained. Figure 5.5 contains analogous results for the pure resistor condition.
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Figure 5.4: Comparison between the structured tree (blue, solid curve) and Windkessel (red,
dashed curve) for simulations of the Circle of Willis with randomly generated tree parameters.
The top plot displays the largest difference between the two, the middle plot displays the median
difference, and the bottom plot is the smallest difference.
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Table 5.9: Numerical values of difference between numerical simulations of the Circle of Willis
using the structured tree and pure resistor boundary conditions. The largest, median, and
smallest difference rows correspond to the top, middle, and bottom plots in Figure 5.5.

Difference Variable Vessel

Largest Difference 0.301 Flowrate R Middle Cerebral Artery

Median Difference 0.145 Flowrate R Anterior Cerebral Artery

Smallest Difference 0.060 Flowrate Anterior Communicating Artery

The results comparing the structured tree and Windkessel conditions in Figure 5.4 and

Table 5.8 indicate that, for simulations of the Circle of Willis, these two boundary conditions

are nearly equivalent. In the absolute worst case, the solutions from these two conditions differ

by no more than 7%, with the median L∞ difference being roughly 3%. The pure resistor

boundary condition, on the contrary, is clearly not equivalent to the structured tree. Even after

fitting the resistance parameter to match the tree, results from these two boundary conditions

can differ by as much as 30%, with a median difference of around 15%. Additionally, the pure

resistor condition produces qualitatively different flowrate curves in the top and middle plots

of Figure 5.5, and lacks the pronounced peak that is present in the structured tree results when

t ≈ 0.15. Azer and Peskin also found substantial differences between the structured tree and

pure resistor conditions [9].

Although the pure resistor condition is clearly incapable of matching the results of the

structured tree, the numerical evidence in this section suggests that the Windkessel condition

can give similar results if its parameters are tuned to the structured tree impedance. We stress

that this fact alone does not imply that one can simply use the Windkessel rather than the

structured tree. To obtain similar results between the two conditions, we first had to generate

impedance spectra for the structured tree to produce the cost function used to optimize the

Windkessel parameters.

The above results suggest that the Windkessel condition can give similar results to the

structured tree if the Windkessel parameters are tuned to match the structured tree impedance.

We now fit the Windkessel to the structured tree for a variety of different values of rroot using

the structured tree parameters described in Section 5.1. We then approximate each of the

Windkessel fits by a power law function of rroot. Then, rather than perform a costly simulation

using 3-tiered structured tree, one can attain similar results by merely using these fits. Since we

have already computed these fits, the marginal computational cost for a simulation using these
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Figure 5.5: Comparison between the structured tree (blue, solid curve) and pure resistor (red,
dashed curve) for simulations of the Circle of Willis with randomly generated tree parameters.
The top plot displays the largest difference between the two, the middle plot displays the median
difference, and the bottom plot is the smallest difference.
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fits is only the cost of the numerical PDE solve and no additional impedance computation for

3-tiered trees is required. For each outlet vessel, the user may simply plug the root radius into

the fits in Figure 5.6 to obtain values of R1, R2, and C that correspond to the structured tree

with the tiered structure and radius dependent viscosity described in Section 5.1. The nonzero

terminal pressure is not incorporated in these fits, but is included the implementation of the

Windkessel condition:

CR1R2∂tQ+ (R1 +R2)Q = CR2∂tP + P − Pterm.

The power law fits in Figure 5.6 provide a way around the computational cost of the tiered

structured tree. A user may simply use these power law fits to determine a set of Windkessel

parameters that most closely fit the structured tree with the tiered parameter structure de-

scribed in Section 5.1. The results for the systemic arterial tree simulation (Figures 5.7 and

5.8) and the Circle of Willis simulation show that the Windkessel with these power law fits

generates very similar results to the tiered structured tree.

5.4 Conclusion

We have attempted to determine a parameter set for the structured tree that gives reasonable

simulation results without requiring calibration while still using the same set of branching pa-

rameters for each outlet. In order to determine such a parameter set, we examined various

structural and mechanical aspects of the structured tree and found that some aspects of the

structured tree were physiologically incorrect. After incorporating these changes, we were able

to provide reasonably accurate simulation results for the systemic arterial tree without any cali-

bration with a single parameter set used across all outlet vessels. Unfortunately, this parameter

set yielded poor results for simulations of the Circle of Willis.

One possible way to improve our parameterization would be to use different branching

parameters for trees in different organs of the body. Although this approach would be more

complicated than a single set of branching parameters, organ specific branching parameters

may be more physiologically correct [62, 81]. Examining the organ-specific differences of these

branching parameters may provide a way to prescribe outflow boundary condition parameters

that give reasonable simulation results without calibration. Such a parameterization would

make it drastically easier to impose outflow boundary conditions, as a user would need to

provide only the radius of the outlet vessel to uniquely determine a set of outflow boundary

condition parameters.
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Figure 5.7: Computed structured tree (blue, solid curve), Windkessel with fitted parameters
(red, dashed curve), and measured (black, dot-dashed curve) flowrate values in various locations
in the systemic arterial tree. The computed values were obtained using the structured tree
boundary condition with parameters from Section 5.1.
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Figure 5.8: Computed pressure values at various locations in the systemic arterial tree using
the structured tree condition using the structured tree (blue, solid curve) and the associated
Windkessel fit (red-dashed curve).
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Figure 5.9: Computed pressure and flowrate values in the Circle of Willis using the structured
tree (blue, solid curve) with parameters from Section 5.1 and the associated Windkessel fits
(red, dashed curve).
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Chapter 6

Uncertainty Quantification

In order to perform the blood flow simulations used in the prior chapters of this dissertation,

we have used data and assumptions which contain some degree of uncertainty. For example,

we used measured inflow velocity and anatomical data for the Circle of Willis, both of which

contain measurement error. In order to derive a 1D model, we made a number of simplifying

assumptions about the nature of the flow. The structured tree assumes a self-similar branching

structure for the small arteries which, although reasonable, is an imperfect idealization. The

uncertainty accompanying each of these model components implies that the simulation results

themselves also contain uncertainty.

Quantifying the effects that these types of uncertainties have on simulation results gives

insights on the reliability of model predictions. For example, Chen et. al. [19] quantified

the uncertainty in flow and pressure in simulations of the systemic arterial tree introduced by

uncertainty in boundary conditions and parameters. They found that uncertainty in the solu-

tion was due primarily to uncertainty in the imposed flowrate values at the inlet. They also

found that uncertainties in the unstressed radius of the vessel (r0) and resistance values used at

outlets also provided a substantial contribution to the simulation uncertainty. Other authors

have also performed uncertainty quantification studies for blood flow, examining the impacts of

uncertain radius of abdominal aortic aneurysms [76] and uncertainty in the elastic properties

of the arterial wall [105].

The above uncertainty quantification studies for blood flow models quantified simulation

uncertainty using polynomial chaos methods. Although polynomial chaos approaches may be

the most efficient choice in many settings, these methods suffer from scalability issues when the

dimensionality of the uncertain input space is sufficiently high dimensional. [102]. PDF/CDF

methods are recently proposed alternatives to polynomial chaos and involve deriving a deter-
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ministic differential equation for the evolution of the probability density function or cumula-

tive distribution function for the uncertain model solution [85, 97, 98, 93, 45, 94]. Although

PDF/CDF methods have a number of desirable properties, their currently can only be used

for first order scalar equations. We investigate the extension of these methods to first order

hyperbolic systems, which would provide a powerful new tool for uncertainty quantification

for blood flow and other phenomena described by such equations. Unfortunately, we find that

there are roadblocks which make such an extension difficult. We also find that similar issues

make it difficult to obtain PDF equations for non-smooth solutions to scalar conservation laws.

6.1 PDF Equations

A common paradigm used to quantify the uncertainty in the simulation caused from uncertainty

in model parameters and boundary conditions is to treat these uncertain inputs as random vari-

ables/fields. This implies that the associated model solution is also a random field. One then

computes a probabilistic description of this model output. To frame our discussion of PDF

methods, we briefly discuss two of the most prominent methods for uncertainty quantification:

Monte Carlo sampling and polynomial chaos.

Monte Carlo sampling computes a probabilistic description of the model solution by gener-

ating many realizations of the random inputs and then compute the solution corresponding to

each realization. The statistics of these realizations are then used to approximate those of the

uncertain model solution. This process, termed Monte Carlo sampling, is broadly applicable

but converges at a rate of 1/
√
N , where N is the number of realizations [16].

Polynomial chaos methods represent an alternative approach [103]. Although the uncertain

model inputs are random, the map from these inputs to the model solution is deterministic.

Polynomial chaos methods approximate this map by polynomials, which means polynomial

chaos is extremely efficient if this map is smooth and there are a small-to-moderate number of

random inputs [103, 106, 107, 102, 104]. One may then approximate quantities such as the mean

and variance of the model solution by computing the mean and variance of this polynomial ap-

proximation. Unfortunately, the computational cost of this approach grows exponentially with

respect to the number of random inputs rendering it unusable when the number of random

inputs is large, even when techniques such as sparse grid collocation are used [102].

Any random variable X possesses a cumulative distribution function (CDF), FX(a), where

FX(a) , P(X ≤ a). In certain cases, a random variable X will also possess a probability
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density function (PDF), denoted pX(a), where pX(a) = ∂
∂aFX(a). In the context of a differ-

ential equation with random inputs, one seeks to characterize the stochastic properties of a

random field u(x, t, ω), leading one to consider the PDF and CDF of this random field, de-

noted pu(U, x, t) and Fu(U, x, t) respectively. A recently introduced method for uncertainty

quantification method is to determine a single closed partial differential equation determining

the evolution pX(a) or FX(a) [85, 97, 98, 93, 45, 94]. These PDF and CDF equations have a

number of advantages over competing methods such as Monte Carlo simulation and polynomial

chaos:

1. One obtains a complete probabilistic description of the model solution.

2. It does not suffer from the “curse of dimensionality” inherent in polynomial chaos expan-

sions and is thus suitable even for problems with a large number of random inputs.

3. These equations can yield theoretical insights into the qualities of the random model

solution. For instance, for some nonlinear models the associated equations can be linear

and may be solved analytically. An example of this phenomena is given in Section 6.1.1.

We now investigate the possibility of deriving PDF equations for 1st order systems of hyperbolic

balance laws. This approach would allow us to perform novel and computationally efficient

uncertainty quantification studies for blood flow problems. We begin by considering the scalar

balance law case in Section 6.1.1 before moving on to systems in Section 6.1.2. Although we

are able to derive useful equations for some special cases, we find that the task of deriving

closed PDF equations for systems suffers from some fundamental difficulties not present in the

scalar case. The character of these difficulties does, however, suggest some possible changes in

approach that could make it possible to derive useful PDF equations.

6.1.1 Scalar Balance Laws

To begin, we outline the derivation of a deterministic equation for the PDF of a solution to a

scalar balance law subject to random initial data. The following derivation of the PDF equation

for this scalar problem is not new and may be found in [85, 97]. To begin, consider the following

scalar equation with random initial data:

∂u

∂t
+
∂f(u)

∂x
= g(u), x ∈ R, t > 0 (6.1)

u(x, 0, ω) = u0(x, ω) (6.2)

ω ∈ Ω, where (Ω,F ,P) is a probability space. To derive an equation for the PDF of the above

stochastic problem, the authors of [85] consider the following representation for the PDF of u,
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denoted p(U, x, t):

p(U, x, t) = E [Π(U − u(x, t, ω)]

where Π(U, x, t, ω) , δ(U−u(x, t, ω)), where δ denotes the Dirac delta function. The advantage

of this representation of the PDF is that it exhibits nice properties when differentiated. For

example, the time derivative of the PDF p satisfies

∂p

∂t
= E

[
∂

∂t
Π

]
= E

[
∂Π

∂u

∂u

∂t

]
= E

[
−∂Π

∂U

∂u

∂t

]
.

Since Π = δ(U − u)

− ∂

∂U
(pg(U)) = − ∂

∂U
(E[Π]g(U)) = −E

[
∂

∂U
Πg(U)

]
= −E

[
∂Π

∂U
g(u)

]
.

The x derivative of p satisfies

∂p

∂x
= E

[
∂

∂x
Π

]
= E

[
∂Π

∂u

∂u

∂x

]
= E

[
−∂Π

∂U

∂u

∂x

]
.

Combining this with the fact that Π = δ(U − u) gives

E
[
−∂Π

∂U
f ′(u)

∂u

∂x

]
= − ∂

∂U
E
[
Πf ′(U)

∂u

∂x

]
= f ′(U)

∂p

∂x
+ f ′′(U)

∫ U

−∞

∂p

∂x
(U ′, x, t) dU ′.

The legitimacy of some of the above steps, such as the using the chain rule to the only weakly

differentiable function Π, may be justified rigorously [45]. To use the above relationships to

derive an equation for the PDF of u, multiply (6.3) by −∂Π/∂U and take the expectation of

both sides of the resulting equations. The above derivative identities give the following:

∂ρ

∂t
+ f ′(U)

∂p

∂x
+ f ′′(U)

∫ U

−∞

∂p

∂x
(U ′, x, t) dU ′ +

∂

∂U
(pg(U)) = 0 (6.3)

The initial data for this equation is the PDF of u0 in (6.2):

p(U, x, 0) = pu0(U, x)

This simple example illustrates the advantages of the PDF equation approach. Equation (6.3)

is a linear, scalar, first order partial differential equation in 2 space dimensions (x and U).

Solving this equation gives the PDF of the stochastic solution up to controllable numerical

discretization error. While a method such as polynomial chaos would struggle if the initial data
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were a random field with high dimensionality, complicated initial data does not increase the

complexity of the PDF equation approach since one only need prescribe the initial PDF.

6.1.2 Systems of Hyperbolic Balance Laws

Prior studies have considered scalar equations, and deterministic equations for the PDF of

stochastic solutions to first order systems has not been developed [85, 97, 98, 93, 45, 94]. We

now attempt to extend these PDF methods to first order hyperbolic systems of balance laws.

PDF equations for such systems would provide a useful uncertainty quantification tool for

blood flow, as well as other phenomena modeled with such first order systems. The derivation

of a PDF equation for scalar equations required the solutions to be smooth–we maintain this

smoothness assumption here as this appears to be the case for solutions to our blood flow model.

A system of first order balance laws may be written in the following form:

∂u

∂t
+
∂f(u)

∂x
= g(u), x ∈ [a, b], t > 0 (6.4)

where u(x, t, ω) = [u1(x, t, ω), ..., uN (x, t, ω)]T , f : RN → RN , and g : RN → RN and the

Jacobian of f is diagonalizable with real eigenvalues for all u. For now, we assume u, f , and g

are smooth functions. ω ∈ Ω, where (Ω,F ,P) is a probability space. We consider randomness

in the solution u introduced by random initial and boundary conditions.

u(a, t, ω) = uL(t, ω)

u(b, t, ω) = uR(t, ω)

u(x, 0, ω) = u0(x, ω)

To develop equations for the probability density function of u subject to random inputs, we

consider the generalized function Π:

Π(x, t, U1, ..., UN ) ,
N∏
i=1

δ(Ui − ui).

The significance of Π is that E[Π] = ρ(x, t, U1, ...UN ), where ρ is the joint PDF of u1, ...uN .

Differentiating Π with respect to t gives, weakly,

∂Π

∂t
=

N∑
i=1

∂Π

∂ui

∂ui
∂t

= −
N∑
i=1

∂Π

∂Ui

∂ui
∂t

.
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Multiplying the ith equation of (6.4) by −∂Π/∂Ui and summing the resulting N equations gives

∂Π

∂t
−

N∑
i=1

∂Π

∂Ui

∂f(ui)

∂x
= −

N∑
i=1

∂

∂Ui
(Πgi(U)) ,

where U = [U1, ..., UN ]T . Taking expectations of this scalar equation gives

∂ρ

∂t
−

N∑
i=1

E
[
∂Π

∂Ui

∂fi(u)

∂x

]
= −

N∑
i=1

∂

∂Ui
(gi(U)ρ) ,

where ρ is the joint probability density function of u1, ..., .un. We may write this equation more

compactly as

∂ρ

∂t
− E [∇UΠ · ∂xf(u)] = −∇U · (ρg), (6.5)

where ∇U =
(

∂
∂U1

, ..., ∂
∂UN

)
.

Equation (6.5) is not in a computationally useful form since it is not closed due to the

E[∇UΠ · ∂xf(u)] term. A simple closure model is to take the expectation of this product to be

the product of the expectations. This gives the following closed, but now inexact, equation for

ρ:

∂ρ

∂t
− ∂xE[f(u)] · ∇Uρ = −∇U · (ρg). (6.6)

This equation is closed since we may compute the expectation of f(u) directly from ρ. This

closure is exact if ∂UiΠ and ∂xfi(u) are independent. To examine the accuracy of this closure

model we use (6.6) to model the evolution of ρ for constant coefficient systems with a variety

of different random initial data.

Consider equation (6.4) with f(u) = Au, g(u) = 0, where A is an N × N matrix with

constant entries and is diagonalizable with real eigenvalues. In this case, (6.4) reduces to

∂u

∂t
+A

∂u

∂x
= 0 (6.7)

let ud be a deterministic solution to this equation with periodic boundary conditions in space

and the following deterministic initial data:

ud(x, 0) = u0
d(x)

Let ξ = [ξ1, ..., ξN ]T be a vector of independent random variables. Then the solution to (6.7)
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with random in initial data u0
d(x) + ξ is u(x, t) = ud(x, t) + ξ. We may use this fact to write

the distribution of u(x, t) in terms of the distribution of ξ.

ρ =
N∏
i=1

ρξi(Ui − udi) (6.8)

where ρξi is the probability density function of ξi. The derivation of the above formula for ρ is

straightforward and makes use of the fact that the ξi are independent. The significance of this

result is that the true PDF satisfies the closed equation (6.6) exactly :

∂ρ

∂t
=

N∑
i=1

∂ρ

∂Ui

∂ui
∂t

= −∇Uρ ·
∂u

∂t
= ∇Uρ ·A

∂u

∂x
=
∂(Aud)

∂x
· ∇Uρ

As additional validation of this result, we solve the following 1st-order system subjected to

additive initial noise with independent components:

∂

∂t

[
v

w

]
+

[
0 −c2

−1 0

]
∂

∂x

[
v

w

]
= 0 (6.9)

the random initial data is:

v(x, 0) = sin(x) + ξv

w(x, 0) = cos(x) + ξw

where ξv and ξw are N (0, 1) and independent. We use a value of c = 1.5. This system

corresponds to the scalar second order wave equation, utt = c2uxx, with v = ut and w = ux.

We numerically solve (6.6) for the above system via a 1st order upwind scheme in V and W .

We compute expectations with a composite 2D trapezoidal rule and use centered difference

scheme in x. The results, displayed in Figure 6.1, differ minimally from the true probability

density function due to numerical discretization error (see Figure 6.2 for values of this error).

We stress that the computational domain is larger than the plotting domain used in Figure 6.1.

Equation (6.6) was solved for −6 ≤ V,W ≤ 6.

We now consider (6.9) with the following multiplicative initial noise

v(x, 0) = ξvv
0
d(x) = ξv(sin(x) + 2)

w(x, 0) = ξww
0
d(x) = ξw(cos(x) + 2)

where ξv and ξw are independent standard normally distributed random variables. Analytically
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Figure 6.1: The numerical solution of (6.6) and the true PDF for (6.9) with additive initial
noise at x = 2 for times t = 0, 0.5, and 1.
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Figure 6.2: The L2 (red, dashed line) and L∞ (blue, solid line) norms (in V and W ) of the
error in the approximation of the PDF for the wave equation first order system with additive
initial noise at x = 2 for various times.

solving for v and w gives:

[
v(x, t)

w(x, t)

]
=


ξv
2

(v0
d(x+ ct) + v0

d(x− ct)) +
cξw
2

(w0
d(x+ ct)− w0

d(x− ct))

ξv
2c

(v0
d(x+ ct)− v0

d(x− ct)) +
ξw
2

(w0
d(x+ ct) + w0

d(x− ct))

 = B(x, t)

[
ξv

ξw

]

thus v and w are time and space dependent linear combinations of ξv and ξw, meaning that the

joint PDF of v and w may be expressed analytically as follows:

ρ(x, t, V,W ) =

ρξvξw

(
B−1(x, t)

[
V

W

])
|B(x, t)| (6.10)

where ρξvξw is the joint PDF of ξv and ξw. |B(x, t)| denotes the determinant of B(x, t). In this

case, ρξvξw(V,W ) = ρξv(V )ρξw(W ) since ξv and ξw are independent. Unfortunately, as shown

in Figure 6.3, the solution to the closed probability density function equation (6.6) differs

considerably from the true PDF given by (6.10). Specifically, the solution to (6.6) is stationary
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in time since the spatial derivatives of the initial expectations of v and w are 0, since

∂

∂x
E [w(x, 0)] =

∂

∂x
E[w0

d(x)ξw] = E[ξw]
∂

∂x
w0
d(x) = 0

∂

∂x
E [v(x, 0)] =

∂

∂x
E[v0

d(x)ξv] = E[ξv]
∂

∂x
v0
d(x) = 0

where in the above we used E[ξv] = E[ξw] = 0. Therefore the solution to (6.6) satisfies ∂
∂tρ = 0.

As displayed in Figure 6.3 and Figure 6.4, the true probability density function in (6.10) is

not stationary in time. We again stress that the computational domain is larger than the

plotting domain in Figure 6.3. Equation 6.6 is solved for −15 ≤ V,W ≤ 15 to ensure that it

is appropriate to impose 0 boundary conditions in V and W . Although the closed probability

density function equation (6.6) does a poor job of approximating the true probability density

function for this problem, the means corresponding to the approximate and true probability

density functions appear to be rather close (see Figure 6.3. We now show that this is not a

coincidence.

Although the closed PDF equation (6.6) inaccurately propagates the joint density function

of the solution, the mean corresponding to the approximate distribution appears to be correct.

We show that, for any system of the form (6.4), the closed PDF equation (6.6) treats the means

of the individual solution components consistently with the true PDF. To begin, multiply the

closed PDF equation by Ui and integrate with respect to U1, ..., UN over RN .

∂E[ui]

∂t
−

N∑
j=1

∂

∂x
E[fj(u)]

∫
RN

Ui
∂ρ

∂Uj
dU = −

N∑
j=1

∫
RN

Ui
∂(ρgj(U))

∂Uj
dU

assuming ρ decays sufficiently fast to 0 as |Ui| → ∞ for all i, integrating by parts shows that

the above equation reduces to

∂E[ui]

∂t
+
∂E[fi(u)]

∂x
= E[gi(u)]

this is precisely the equation one obtains by taking the expectation of the original balance

law (6.4). Thus, although the probability density function equation with the simple closure,

(6.6), does not provide a good pointwise approximation of the probability density function, it

may evolve the means of the random solution exactly for general nonlinear 1st order systems

with smooth solutions (to formally prove this fact would require a well-posedness result for the

closed equation, which we have not established). We mention that this analysis only applies to

deterministic f and g. Systems of balance laws with random fluxes and right hand sides may

not have this property.
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Figure 6.3: The numerical solution of (6.6) and the true PDF for (6.9) with multiplicative
initial noise at x = 2 for t = 0, 0.5, 1.
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Figure 6.4: The L2 (red, dashed line) and L∞ (blue, solid line) norms (in V and W ) of the error
in the approximation of the PDF for the wave equation first order system with multiplicative
initial noise at x = 2 for various times.

Higher order moments are not treated properly by this closed PDF equation. Values of

E[u2
i ] predicted by the closed PDF equation evolve according to

∂E[u2
i ]

∂t
−

N∑
j=1

∂

∂x
E[fj(u)]

∫
RN

U2
i

∂ρ

∂Uj
dU = −

N∑
j=1

∫
RN

U2
i

∂ρgj(U)

∂Uj
dU

we obtained the above equation by multiplying (6.6) by U2
i and integrating with respect to

U1, ..., UN over RN . Assuming ρ decays to 0 sufficiently fast as |Ui| → ∞ for all i, integrating

the above equation by parts gives

∂E[u2
i ]

∂t
+ 2E[ui]

∂

∂x
E[fi(u)] = 2E[uigi(u)] (6.11)

However, multiplying the ith equation of the original system (6.4) by 2ui and taking the ex-

pectation gives

∂E[u2
i ]

∂t
+ 2E[ui

∂

∂x
fi(u)] = 2E[uigi(u)]
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equivalently,

∂E[u2
i ]

∂t
+ 2E[ui]

∂

∂x
E[fi(u)] + 2Cov

(
ui,

∂

∂x
fi(u)

)
= 2E[uigi(u)] (6.12)

where Cov(X,Y ) denotes the covariance of X and Y . An examination of the equation governing

the true evolution of E[u2
i ], (6.12), and the associated moment evolution equation (6.11) derived

from the closed PDF equation (6.6) reveals that the closed PDF equation inaccurately evolves

these higher order moments. Equations (6.11) and (6.12) provide insight as to why the closed

PDF equation is exact for additive, spatially constant noise, since ∂
∂xf(u) is deterministic and

thus the covariance term in (6.12) is 0, meaning (6.12) and (6.11) agree exactly.

Unfortunately, this inaccuracy in the evolution of the second order moments is unlikely to

be fixed by simply improving the quality of the closure approximation. The reason is that a

single closed evolution equation for ρ(x, t, V,W ) cannot exist. To show this, we consider the 1st

order constant coefficient system corresponding to the wave equation (6.9) with general random

initial data:

v(x, 0, ω) = v0(x, ω)

w(x, 0, ω) = w0(x, ω)

the solution can be written down analytically in terms of v0 and w0:

v(x, t, ω) =
1

2
(v0(x+ ct, ω) + v0(x− ct, ω)) +

c

2
(w0(x+ ct, ω)− w0(x− ct, ω)) (6.13)

w(x, t, ω) =
1

2c
(v0(x+ ct, ω)− v0(x− ct, ω)) +

1

2
(w0(x+ ct, ω) + w0(x− ct, ω)) (6.14)

The distribution of v and w is not determined uniquely by the initial pointwise distributions

of v0 and w0. For example, determining the distribution of v(x, t) would require, among other

things, the joint distribution of v0(x + ct, ω) and v0(x − ct, ω). This spatial correlation infor-

mation is entirely unaccounted for by the pointwise probability density function of v0, meaning

that a closed equation for the time evolution of the joint probability density function of v and

w does not exist.

The following two examples illuminate the concern highlighted in the previous paragraph.

First, we consider the following random initial data for v and w:

v(x, 0) =

{
ξ x > 0

−ξ x < 0
, w(x, 0) =

{
η x > 0

−η x < 0
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where ξ, η ∼ N (0, 1) and ξ and η are independent. We consider solutions to (6.9) with this

initial data at for t = 1,−2 < x < 2 with c = 2. For such values of x and t, x − ct < 0 and

x+ ct > 0, so v(x, 1) = 2η ∼ N (0, 4) and w(x, 1) = ξ/2 ∼ N (0, 1
4).

If we prescribed v(x, 0) = ξ, w(x, 0) = η, with ξ and η still N (0, 1), the initial joint PDF of

the solution would be identical to the above example. However, the joint PDF in this example

remains constant with respect to time, in stark contrast to the above example. Therefore, there

is no single closed evolution equation for the joint PDF of v and w in this first order system.

These arguments suggest that the only hope for deriving closed PDF equations for first order

systems is to include spatial correlation information in the PDF evolution criteria.

6.1.3 Hyperbolic Conservation Laws

A system of conservation laws in one space dimension refers to a system of first order partial

differential equations of the following form [47]:

∂tu+ ∂xf(u) = 0, x ∈ R, t > 0

u(x, t) = u0(x)
(6.15)

where f : U ⊂ Rd → Rd, u0 denotes the initial data prescribed at t = 0. The system (6.15)

is termed hyperbolic if the Jacobian matrix of f has d real eigenvalues and a basis of eigen-

vectors for any u. Hyperbolic conservation laws are mathematically noteworthy in that that

globally smooth solutions usually do not exist, even for smooth initial data. However, a rigorous

existence-uniqueness theory exists for weak (non-smooth and often discontinuous) solutions to

(6.15) for the scalar case (d = 1) and for certain types of systems [47]. These equations arise in

a variety of areas, such as gas dynamics [20], magneto-hydrodynamics [25], nonlinear elasticity

[25], and traffic flow [41].

The peculiar nature of this family of equations complicates the task of uncertainty quan-

tification for conservation laws with random inputs. For instance, polynomial chaos methods

typically use a globally defined set of orthogonal polynomials to approximate the solution u.

When u is discontinuous, this method of approximation converges slowly and suffers from

well-known Gibbs’ oscillations. These oscillations can have catastrophic consequences for con-

servation laws. For instance, a component of u could be a physical quantity such as density

and the form of f may have components that require this density to be positive (such as a

square root), and Gibbs’ oscillations could inadvertently cause this density to be negative. This

issue spurred the development of the Intrusive Polynomial Moment Method [68], which is a

Polynomial Chaos-like method which utilizes a nonlinear projection of u to bound the compo-
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nents of u within certain ranges. Although it does achieve this goal, it requires repeated costly

optimizations that limit its usefulness. Alternative methods for uncertainty quantification for

conservation laws include Multi-Level Monte Carlo Methods [54], Multi-Element Polynomial

Chaos [96], and iterative stochastic spectral representations [69].

We now investigate the possibility of developing a closed equation for the evolution of the

random solution to a scalar conservation law in one space dimension with random initial data:

∂tu(x, t, ω) + ∂xf(u(x, t, ω)) = 0, x ∈ R, t > 0 (6.16)

u(x, t, ω) = u0(x, ω) (6.17)

where ω ∈ Ω with Ω being the sample space of some probability space (Ω,F , P ). If the solutions

u are smooth, then the probability density function ρu(U, x, t) satisfies the following simplified

form of (6.3).

∂ρu
∂t

+ f ′(U)
∂ρu
∂x

+ f ′′(U)
∂

∂x

∫ U

−∞
ρu(U ′, x, t) dU ′ = 0

in this case, we may integrate the above equation with respect to U to obtain an equation for

the cumulative distribution function of u(x, t, ω), which we denote Fu(U, x, t):

∂Fu
∂t

+ f ′(U)
∂Fu
∂x

= 0 (6.18)

Fu(U, x, 0) = P(u0(x, ω) ≤ U) (6.19)

Equation (6.18) implies that the CDF for a smooth solution to a nonlinear scalar conservation

law with random initial data obeys a family of linear advection equations parameterized by a,

which may be solved analytically. To further illustrate the advantages that this CDF approach

enjoys over alternative methods for uncertainty quantification, we consider Burgers’ equation

with random sinusoidal initial data (6.20), (6.21) whose solutions are smooth for t < 1:

∂tu+ ∂x

(
1

2
u2

)
= 0, x ∈ R, t ≥ 0 (6.20)

u(x, t = 0, ξ) = u0(x, ξ) = sin(x) + ξ ξ ∼ U(0, 1) (6.21)

Methods such as Polynomial Chaos and Monte Carlo sampling require one to solve Burgers’

equation multiple times with varying values of ξ to generate a probabilistic description of

u. Unfortunately, unlike the CDF equation, (6.20), (6.21) only admits an implicitly defined
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Figure 6.5: Time evolution of the CDF of the solution (6.20), (6.21) at t = 0, 0.2, 0.4, 0.6, and
0.8 as computed from (6.18), left, and Monte Carlo simulation with 1000 realizations of ξ, right.
Solutions for Monte Carlo are obtained by solving (6.22)

solution:

u = sin(x− tu) + ξ (6.22)

Therefore, to solve Burgers’ equation once, one must solve the nonlinear equation (6.22), which

would likely be done numerically. Furthermore, for Polynomial Chaos and Monte Carlo sam-

pling, one must solve this nonlinear equation many times and then use this ensemble of solutions

to obtain an approximate probabilistic description of u. Alternatively, when using the CDF

equation, one need only solve (6.18) once to obtain an exact value of the probability that

u(x, t, ω) ≤ U . This benefit is apparent in Figure 6.5, which displays snapshots of the evolution

of Fu(1, x, t) computed from the CDF equation, as well as Monte Carlo sampling with 1000

realizations. Due to the linearity of the CDF equation, it may be solved analytically with ease.

Furthermore, this solution of the CDF equation provides an analytic description of the CDF,

which yields insights into the time-evolution of the CDF that are not possible from Polynomial

Chaos or Monte Carlo methods.

Unfortunately, this CDF equation is incorrect for non-smooth solutions, which is not sur-

prising as the smoothness of u was used in the derivation of this equation. Due to the ubiquity of

non-smooth solutions to nonlinear scalar conservation laws, the usefulness of the CDF equation

(6.18) is limited. For an example of the failure of this CDF equation for non-smooth solutions,
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we consider Burgers’ equation with the following random Riemann initial data

u(x, 0, ξ) =

{
ξ ∼ U(0, 1) x < 0

0 x > 0

The associated stochastic solution for t > 0 is a shock traveling with random speed s = ξ/2.

u(x, t, ξ) =

{
ξ ∼ U(0, 1) x < s(ξ)t

0 x > s(ξ)t

The CDF of this random solution, which does not satisfy the CDF equation (6.18), is (for

0 ≤ U ≤ 1)

Fu(U, x, t) =


U x < Ut/2

2x/t Ut/2 < x < t/2

1 t/2 < x

The above formula for Fu was derived by considering the regions x ≤ 0, 0 < x < Ut/2,

Ut/2 < x < t/2, and t/2 < x individually.

We now consider two examples that suggest that the closed evolution equations for the
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Figure 6.6: Time evolution of the CDF, right, and the solution to (6.18), left, for Burgers’
equation with a random shock at t = 0, 0.2, ..., 1.6

evolution of the pointwise CDF of any kind do not exist for non-smooth solutions to scalar

conservation laws in general. First we consider Burgers’ equation with the following random
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Riemann initial data:

u(x, 0, ξ) =

{
ξ x < 0

−ξ x > 0

where ξ is uniformly distributed between 0 and 1. The solution corresponding to this initial

data is a shock moving with speed 0, which implies that the CDF of u is constant in time:

Fu(U, x, t) =

{
1[0,1](U) x < 0

1[−1,0](U) x > 0

where 1 denotes the indicator function. We now consider Burgers’ equation with the following

initial data:

u(x, 0, η, γ) =

{
η x < 0

γ x > 0

where η is uniformly distributed between 0 and 1, γ is uniformly distributed between -1 and

0, and η and γ are independent. Notice that the initial CDF of u is identical to the above

example. The associated stochastic solution is:

u(x, t, η, γ) =

{
η x < s(η, γ)t

γ x > s(η, γ)t

The solution is a shock since η > γ for all possible realizations of these variables, and the shock

speed s = (η + γ)/2 by the Rankine-Hugoniot condition. Unlike the first example, the CDF

for this problem is not constant in time. For instance, for first example Fu(0, 1, 4) = 1 since

u(1, 4, ω) = −ξ < 0 for all realizations of ξ. However, for the current example we have that

u(x, t, ω) ≤ 0 if and only if u(x, t, ω) = γ, so

Fu(0, 1, 4) = P (1 > 4s(η, γ)) = P
(
η + γ ≤ 1

2

)
= 1−

∫ 1

1/2

∫ 0

1/2−η
dγdη = 7/8.

These two examples show that the initial CDF alone is inadequate to determine the stochastic

properties of the solution for future times. Therefore, unlike the smooth case, there does

not exist a single closed evolution equation for the CDF of non-smooth solutions to scalar

conservation laws in general.
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6.2 Conclusions

PDF equations are a powerful tool for understanding the propagation of uncertainty for scalar

first order equations subject to random inputs. Unfortunately, our arguments in this section

show that it is impossible to derive a single closed equation for the evolution of the PDF of

stochastic solutions to systems of hyperbolic balance laws. Additionally, we showed that such

an equation does not exist for non-smooth solutions to scalar conservation laws.

The reason for this difficulty is that the evolution of PDFs for such problems is dependent

on more than the simple pointwise PDF of the stochastic solution. Specifically, the evolution of

the uncertainty in the solution depends on spatial correlation information that is not accounted

for by the pointwise PDF. This cause of failure provides motivation for an alternative approach,

which is to alter the definition of Π to include such correlation information. For example, we

could define Π as

Π(U, x, t, U ′, x′, t′) , δ(U − u(x, t))δ(U ′ − u(x′, t′)).

A similar form of Π was considered in [93] to treat second order scalar equations. The expecta-

tion of Π defined above would now be the joint PDF of u(x, t) and u(x′, t′). It may be possible

to derive evolution equations for this distribution. Such evolution equations would provide

richer statistical information than the simple pointwise PDF, and would also provide a new

method for uncertainty quantification for blood flow models and other phenomena governed by

first order hyperbolic systems. As discussed in Section 6.1, this method would be particularly

efficient to handle the large number of uncertainties associated with these blood flow models.
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Chapter 7

Conclusions

The structured tree boundary condition provides a physiologically based, yet computationally

cheap, alternative to outflow boundary conditions such as the Windkessel and pure resistor.

Our derivation of the generalized structured tree in Chapter 4 removes the temporal periodic-

ity restriction present in the original structured tree, meaning that the structured tree can now

be used to model all flow regimes. This generalized condition also exhibits better numerical

convergence properties, even for simulations that are periodic in time. Additionally, we showed

that the original structured tree is an approximation of this generalized condition, which means

that it may be justified to apply the original structured tree, unaltered, to non-periodic simu-

lations.

Another advantage of the structured tree is that its parameters may be directly measured

due to their physiological nature. The structured tree thus has the potential to allow for rea-

sonable simulation results without parameter calibration procedures. In order to avoid such

calibration procedures, we closely examined the geometry of trees of small arteries and the me-

chanical properties of blood flow in these trees to determine a physiologically appropriate set

of structured tree parameters. We then proposed a single set of parameters that incorporated

tiered branching structures, non-continuum effects of blood flow in the arterioles and capillaries,

and a nonzero terminal impedance. We found that using this single set of parameters for all

outlets yielded physiologically reasonable results in a simulation of the full systemic arterial

tree. However, these parameters yielded non-physiological results in simulations of the Circle

of Willis.

One possible explanation for our inability to avoid calibration altogether is that our study

of branching properties of arterial trees was not detailed enough. It may be possible to avoid

calibration by incorporating organ specific properties of arterial trees. These trees are con-
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strained by the particular shape of the organ that they inhabit, and different organ shapes may

induce different tree branching properties. In addition to measured data, it may be possible to

determine these organ specific properties by performing a constrained constructive optimiza-

tion procedure to grow “optimal” trees within various organ geometries. Such a procedure has

already been performed by Karch et. al [44] to study the structure of the arterial tree between

the epi- and endocardial layers of the human heart.
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Appendix A

Simulation Details

In this section, we describe the numerical approaches used to discretize the system of partial dif-

ferential equations (1.4,1.5) along with the boundary conditions. We combine a backward Euler

time integration scheme along with a Chebyshev collocation method in space. In Section A.0.6,

we show convergence of this scheme by numerical experiment. Also, in Section A.0.6 we present

a boundary condition validation experiment showing that the structured tree condition is sat-

isfied, a fact that is not obvious due to its convoluted implementation (see Section 3.2.1).

All computations were performed using MATLAB® (2011a, The MathWorks, Natick, Mas-

sachusetts, U.S.A.). All computations were performed on a MacBook Pro laptop with a 3.06

GHz Intel Core 2 Duo processor.

A.0.1 Spatial Discretization

We use a Chebyshev collocation method to approximate the spatial derivatives of the system

of partial differential equations governing A and P . The idea of a collocation method is to con-

struct an interpolant approximation of the solution that satisfies the partial differential equation

exactly at the interpolation points. Chebyshev collocation methods use a global polynomial

interpolant with the Chebyshev nodes xj = cos(jπ/N), j = 0, ..., N serving as the interpolation

nodes for a degree N interpolant. These nodes correspond to the interval [−1, 1]; arbitrary

intervals can be handled by a trivial linear map of [−1, 1] to the desired interval. For instance,

we work in the region x ∈ [0, L], where L is the length of a particular vessel.

When the underlying function is smooth, Chebyshev collocation is computational efficient

and has low storage requirements since it delivers high accuracy with a small number of spatial

nodes[13, 17, 39, 89]. This fact is also clear from our numerical convergence study in Ap-

pendix A.0.6. We illustrate this method by deriving a Chebyshev collocation semidiscretization
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of the following advection equation:

∂tu(t, x) + ∂xu(t, x) = 0, x ∈ [−1, 1], t > 0

u(0, x) = f(x), x ∈ [−1, 1]

u(t,−1) = g(t) t > 0

The formula for this interpolant approximation is

u(x, t) ≈ UN (x, t) =
N∑
i=0

ui(t)`i(x)

where xj is the jth Chebyshev node. ui(t) is an approximation of ui(xj) and `i(xj) = δij are

the Lagrange interpolating polynomials, which are given by the following formula

`i(x) =
N∏

j=0,j 6=i

x− xj
xi − xj

The x derivative of UN (x, t) at any of the Chebyshev nodes may be computed explicitly as

follows

∂xUN (xi, t) =
N∑
j=0

uj(t)`
′
j(xi)

The above may be written compactly in terms of a matrix vector product:

∂x ~uN = DN ~uN

where ~uNi = ui(t) and D is the Chebyshev differentiation matrix whose entries are (DN )ij =

`′j(xi). Formulas for the entries of DN are given in [89]. Although the above spectral differ-

entiation procedure can be implemented via fast transform methods for O(N log(N)) floating

point operations [89], we perform this step by direct matrix multiplication. The difference in

computational cost is insignificant in our simulations since the high accuracy of the Chebyshev

collocation method allows us to use a small number of nodes (in all simulations in this work,

N is no more than 10).

Requiring that UN satisfy the advection equation exactly at the Chebyshev nodes gives the
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following system of N + 1 ordinary differential equations

∂t ~uN +DN ~uN = 0, t > 0

~ui(0) = f(xi), i = 1, ..., N

~u0(t) = g(t), t > 0

the above system may then be solved by a variety of methods for ordinary differential equations,

but care must be taken to ensure that the eigenvalues of DN lie within the region of absolute

stability of the chosen time integration method to ensure stability.

We obtain the semidiscrete Chebyshev collocation system corresponding to the blood flow

equations (1.4) and (1.5) through the approach outlined above. Without incorporating bound-

ary conditions, this semidiscretized system is

∂t ~AN = −DN
~QN (A.1)

∂t ~QN = −γ + 2

γ + 1
DN

[
( ~QN . ∗ ~QN )./ ~AN

]
− 1

ρ
~AN . ∗DNP ( ~AN )− 2π(γ + 2)

µ

ρ

(
~QN ./ ~AN

)
(A.2)

~AN = [A0(t), ..., AN (t)]T and ~QN = [Q0(t), ..., QN (t)]T , where Qi(t) ≈ Q(t, xi) and Ai(t) ≈
A(t, xi). In the above semidiscrete system, ~x.∗~y and ~x./~y denote component-wise multiplication

and division of vectors. P ( ~AN ) is evaluated in a component-wise sense as well.

A.0.2 Time Discretization

To solve the semidiscrete system (A.1) and (A.2), we use the backward Euler method. Specifi-

cally, for the system y = f(t, y), the backward Euler approximation of y(tn+1), denoted yn+1,

satisfies the following system of equations [34]:

yn+1 = yn + ∆tf(tn+1, yn+1)

where ∆t is the time step size and tn = n∆t. The backward Euler method is termed an implicit

method because in order to determine yn+1, one must solve the above system of equations,

rather than evaluate an explicit formula of yn and tn. Let ~AnN and ~QnN denote approximations

to ~AN (n∆t) and ~QN (n∆t), respectively. The backward Euler system for ~An+1
N and ~Qn+1

N is[
~An+1
N

~Qn+1
N

]
=

[
~AnN
~QnN

]
+ ∆tF

([
~An+1
N

~Qn+1
N

])
(A.3)
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where F denotes the right hand side of (A.1), (A.2). This system still requires modification to

account for boundary conditions. We describe how we take boundary conditions into account

in Appendix A.0.3. This resulting system is then solved with Newton’s method with a direct

linear solve. The Jacobian is computed analytically, and Newton iteration is performed until

the ∞-norm of the residual is less than 10−7.

Although the backward Euler method is only first order, it has excellent stability properties

and, for this problem, it gives reasonably accurate results without requiring an excessively

small time step size. More specific error information, along with the results of a numerical

convergence study, are given in Appendix A.0.6. The implicit nature of backward Euler is not a

computational hindrance due to the fact that the computational cost of the Jacobian is minimal

since we have determined this Jacobian analytically. Furthermore, with backward Euler we are

able to enforce the boundary conditions without the use of more sophisticated techniques such

as penalty methods, which are often required to ensure stability for hyperbolic problems [39].

A.0.3 Numerical Implementation of Boundary Conditions

In each vessel, one boundary condition is imposed at the beginning of that vessel (x = 0) and

one condition is imposed at the end. The particular form of the condition depends on a ves-

sel’s location within the arterial network (see Section 2). All types of boundary conditions are

enforced numerically by replacing 2 of the equations in the backward Euler system (A.3) with

boundary condition equations. This system is then solved by Newton’s method with a direct

linear solve with an analytically computed Jacobian.

The equations corresponding to the velocity inflow condition, the junction conditions, and

the pure resistor outflow condition are trivial to implement since these are merely algebraic

relations between the state variables. The implementation of the Windkessel requires a time

discretization of the time derivatives of the states. We enforce the following discrete condition:

CR1R2
Qn+1
N −QnN

∆t
+ (R1 +R2)Qn+1

N = CR2
P
(
An+1
N

)
− P (AnN )

∆t
+ P

(
An+1
N

)
.

The implementation of the structured tree condition is considerably more complicated since it

is not formulated in the time domain. For the periodic structured tree described in Chapter 3,

we impose the following at each outflow boundary when computing the numerical solution at
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time tn+1:

P (An+1
N ) = ∆t

NT−1∑
k=0

Z(k)Qn+1−k
N (A.4)

NT is the number of time steps per period. N is the number of spatial points in the ves-

sel. The values of Z(k) are computed by an inverse discrete Fourier transform of values of

Ẑk. The values of Ẑk are computed as described in Algorithm 1. This procedure is performed

for each of the outflow vessels in the network being modeled. For additional details, consult

Section 3.1.3. We note that although the parameters α, β, λ, rmin, µ, ρ, γ, C are required for

the functions impedancePeriodic and impedanceWeightsPeriodic, they are not explic-

itly listed as such to simplify the pseudocode. Condition (A.4) requires one to store the most

recent NT − 1 values of Q at each boundary. One must thus specify an initial history of

Q−NT+2
N , ..., Q−1

N at each outflow boundary. As discussed in Section 3.2.2, this choice is largely

irrelevant for one-dimensional simulations and these flowrate history values may merely be set

to 0.

The value of Ẑk in a particular vessel is determined uniquely by the radius of that vessel due

to the tree structure described in Section 3.1.1. In the ith generation of a tree, there are only

i+1 possible vessel radii: rrootα
i+1, rrootα

iβ, ..., rrootβ
i+1. Therefore, even though in a tree with

N generations there are 2N actual vessels, there are only O(N2) different vessel radii values.

Algorithm 1 takes advantage of this fact to ensure that the impedance is computed with O(N2)

work, which is achieved at a modest storage cost. The generalized structured tree condition

derived in Chapter 4 is free from the periodicity assumption used in the original structured

tree. The discretized generalized structured tree condition is:

P (An+1
N ) =

n+1∑
j=0

z(j)Qn+1−j
N (A.5)

When computing the numerical solution at time tn+1, the values of Qn+1−j
N are known for j ≥ 1,

meaning (A.5) forms a nonlinear scalar equation relating An+1
N and Qn+1

N . The values of zj are

computed prior to running the simulation through a convolution quadrature algorithm. The

algorithm used for this preprocessing step is described in Algorithm 2. For additional details

on the generalized structured tree condition, see Chapter 4. For additional details on the con-

volution quadrature method, see Section 4.2.1 and [48, 49, 50].

124



Algorithm 1 Method to compute Z(k) in A.4

Input: rroot,∆t, α, β, λ, rmin, µ, ρ, γ, C.
function impedanceWeightsPeriodic(rroot,∆t)

return NT ← T/∆t . ∆t is chosen so that N is an integer
for k = 0 : (NT − 1)/2 do

ωk ← 2πk/T
maxGens ← ceil(log(rmin/rroot)/ log(α)) +1
table ← maxGens × maxGens matrix of NaN’s
Ẑk ←impedancePeriodic(ωk, rroot, 1, 1,table)
Ẑ−k ← (Ẑk)

∗

end for
Z ← IFFT(Ẑ) . Ẑ is a vector with entries Ẑk
return Z

end function

function impedancePeriodic(ωk, rroot, Nα, Nβ,table)
r ← rrootα

Nα−1βNβ−1

if r < rmin then
ZL← Zterm

else
if table(Nα + 1, Nβ) is NaN then

[ZD1,table]← impedancePeriodic(ωk, rroot, Nα + 1, Nβ,table)
else

ZD1← table(Nα + 1, Nβ)
end if

if table(Nα, Nβ + 1) is NaN then
[ZD2,table]← impedancePeriodic(ωk, rroot, Nα, Nβ + 1,table)

else
ZD2← table(Nα, Nβ + 1)

end if
ZL← ZD1 · ZD1/(ZD1 + ZD2) . Junction condition (3.8)

end if

if ωk = 0 then
Z0← ZL+ 2(γ+2)µλ

πr3
. See (3.17)

else

Z0←
ZL+i(dkC)−1 tan

(
ωk
dk
L
)

1+idkC tan
(
ωk
dk
L
)
ZL

. See (3.16)

end if
table(Nα, Nβ)← Z0
return Z0,table

end function
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Algorithm 2 Algorithm to compute z(j) in (A.5)

Input:

tf = final simulation time

∆t = time step size

ε = accuracy of computation of Ẑ in impedanceGen

rroot,∆t, α, β, λ, rmin, µ, ρ, γ, C = parameters determining the tree

function ImpedanceWeights(rroot,∆t)
Ntf ← tf/∆t . ∆t is chosen so Ntf is an integer
M ← 2Ntf

r ← ε1/(2Ntf )

maxGens ← ceil(log(rmin/rroot)/ log(α)) +1
table ← maxGens × maxGens matrix of NaN’s
for m = 0 : M − 1 do

ζ ← rei2πm/M

Ξ← 1
2ζ

2 − 2ζ + 3
2

Ẑ(m) ← impedanceGen(Ξ/∆t, rroot,1,1,table)
end for

for n = 0 : Ntf do

zn ← r−n

M

∑M−1
m=0 Ẑ

(m)e−i2πmn/M

end for
return z . z is vector with entries zn

end function

function impedanceGen(s, rroot, Nα, Nβ,table)
r ← rrootα

Nα−1βNβ−1

if r < rmin then
ZL← Zterm

else
if table(Nα + 1, Nβ) is NaN then

[ZD1,table]← impedanceGen(s, rroot, Nα + 1, Nβ,table)
else

ZD1← table(Nα + 1, Nβ)
end if
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Algorithm 2 Algorithm to compute z(j) (continued)

if table(Nα, Nβ + 1) is NaN then
[ZD2,table]← impedanceGen(s, rroot, Nα, Nβ + 1,table)

else
ZD2← table(Nα, Nβ + 1)

end if
ZL← ZD1 · ZD1/(ZD1 + ZD2) . Junction condition (4.6)

end if

if s = 0 then

Z0← ZL+
2(γ + 2)µλ

πr3
. See (4.5)

else

Z0←
Ẑ(L, s) + 1

sdsC
tanhL/ds

sdsC Ẑ(L, s) tanhL/ds + 1
. See (4.4)

end if
table(Nα, Nβ)← Z0
return Z0,table

end function

A.0.4 Network Descriptions

In this work, we treat individual arteries as 1D domains, and arterial networks are handled by

connecting these 1D domains together. The one-dimensional modeling approach means that we

only need to prescribe lengths (denoted L) and connectivity information to completely describe

a model arterial network. We also need to prescribe values of the unstressed vessel radius, r0(x),

for x ∈ [0, L] for each vessel in the network, but r0(x) only enters the model as a parameter

(see (1.3)).

To describe the Circle of Willis network, we use data collected by Dr. Vera Novak at Har-

vard Medical School via magnetic resonance imaging (MRI). Figure A.1 contains a schematic

displaying the structure of the Circle of Willis, and Table A.1 contains specific vessel lengths

and unstressed radii. For the Circle of Willis, we use a constant value of r0 within each vessel.

In Chapter 5, we performed simulations of the full systemic arterial tree. Network geom-

etry data for the arterial tree is from Olufsen [62, 63, 64]. A rough diagram of this network

is displayed in Figure A.2 and specific radii and length values are given in Table A.2. In this

table, rt refers to the unstressed vessel radius at the inlet of the vessel (x = 0), and rb is the

unstressed radius at the outlet of the vessel (x = L). For 0 < x < L, r0(x) is determined by
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Table A.1: Names and measured length/radii data (in cm) for the Circle of Willis (Figure A.1).
Data are from [26]. BA–Basilar Artery, PCA–Posterior Cerebral Artery, PCoA–Posterior Com-
municating Artery, ICA–Internal Carotid Artery, MCA–Middle Cerebral Artery, ACA–Anterior
Cerebral Artery, AcoA–Anterior Communicating Artery. An * accompanying a data value in-
dicates that this value was estimated rather than directly measured.

No. Name r0 L

1 BA 0.15 0.825

2 R. PCA 1 0.112* 0.333*

3 L. PCA 1 0.112* 0.333*

4 R. PCA 2 0.110 0.756

5 L. PCA 2 0.110 0.756

6 R. PCoA 0.0986* 1.00

7 L. PCoA 0.0986* 1.00*

8 R. ICA 0.210 4.81

9 L. ICA 0.210 4.81

10 R. MCA 0.134 2.11

11 L. MCA 0.134 2.11

12 R. ACA 1 0.170 1.07

13 L. ACA 1 0.100 1.07

14 ACoA 0.100 0.20

15 R. ACA 2 0.115 2.30

16 L. ACA 2 0.115 2.30
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Figure A.1: Schematic of the Circle of Willis.

the formula r0 = rt(rb/rt)
x/L.

A.0.5 Parameter Values

The parameter values in Table A.3, from [64], are used for each simulation in this study. The

only exception is the systemic arterial tree simulation in Chapter 5, where a radius dependent

viscosity was used for the smaller arteries in the structured tree model.

A.0.6 Convergence Study

We now analyze the convergence of the discretization scheme for the system (1.4,1.5,). If the

solutions are smooth, Chebyshev collocation methods typically converge rapidly [13, 39, 89]. In

Figure A.3, we see precisely this behavior. Using 17 points per spatial vessel, the discretization

error is only 10−12. To compute an approximation of the discretization error, the solution for

various values of N was compared to a numerical solution using N = 33. We used a fixed

∆t = 0.001 for this spatial grid refinement study. The errors listed in Table A.4 and in dis-

played in Figure A.3 use the L1-norm. Due to the rapid convergence with respect to N , we
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Figure A.2: Schematic of the systemic arterial tree network used in Chapter 5. The trees
attached to each outlet vessel symbolizes the use of the structured tree to model the downstream
domain.
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Table A.2: Names and length/radii data for the systemic arterial tree network used in the
simulations in Chapter 5. Data are from Olufsen [62, 64].

No. Artery L(cm) rt(cm) rb(cm)

1 Ascending Aorta 7.0 1.25 1.14
5 Aortic Arch 1.8 1.14 1.11
7 Aortic Arch 1.0 1.11 1.09
9 Thoracic Aorta 18.18 1.09 0.85
11 Abdominal Aorta 2.0 0.85 0.83
13 Abdominal Aorta 2.0 0.83 0.80
15 Abdominal Aorta 1.0 0.80 0.79
17 Abdominal Aorta 6.0 0.79 0.73
19 Abdominal Aorta 3.0 0.73 0.70
20 External Iliac 6.5 0.45 0.43
21 Femoral 13.0 0.43 0.40
24 Femoral 44.0 0.40 0.30
22 Internal Iliac 4.5 0.20 0.20
23 Deep Femoral 11.0 0.20 0.20
2 Anonyma 3.5 0.70 0.70

3, 8 Subcl. and Brach. 43.0 0.44 0.28
4 R. Com. Carotid 17.0 0.29 0.28
6 L. Com. Carotid 19.0 0.29 0.28
10 Celiac Axis 3.0 0.33 0.30
12 Sup. Mesenteric 5.0 0.33 0.33

14,16 Renal 3.0 0.28 0.25
18 Inf. Mesenteric 4.0 0.20 0.18
25 Radial 23.5 0.174 0.142
26 Ulner 6.7 0.215 0.215

131



Table A.3: Parameter values used for simulations in this dissertation

Parameter Value Description

ρ 1.06 g cm−3 density of blood

γ 2 velocity profile parameter

µ 0.0488 cm−1s−1 viscosity of blood

C 3πr3/2Eh vessel compliance ∂A/∂P

Eh/r k1e
k2r + k3 E = vessel wall elastic modulus, h = vessel wall thickness

k1 2.00× 107gs−2cm−1

k2 -22.53 cm−1

k3 8.65× 105gs−2cm−1

Table A.4: Convergence of numerical solutions to the Circle of Willis with respect to the
number of spatial points per vessel.

Windkessel Structured Tree

N E N E

2 1.02e-06 2 9.52e-07
4 9.43e-08 4 9.39e-08
8 6.70e-11 8 6.63e-11
16 1.48e-12 16 1.41e-12

use N = 8 for all simulations of the Circle of Willis since this value appears to be more than

sufficient to ensure reasonable accuracy.

We also investigate the convergence of this discretization scheme with respect to time step

size, ∆t. The numerical approximations converge with order 1 with respect to ∆t, which is

expected for backward Euler [34]. Based on the specific error values in Table A.5 and Table A.6,

we use a value of ∆t = 0.025 seconds since this appears to be sufficient to ensure 1% accuracy

of the numerical solutions. To approximate the error of a particular numerical solution, we

compare that solution with another numerical approximation computed with a value of ∆t five

times smaller than the smallest time step size in Table A.5 and Table A.6. All simulations in

the temporal grid refinement used a fixed value of 9 spatial points per vessel.
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Figure A.3: Convergence of numerical simulations of the Circle of Willis with respect to the
number of spatial points per vessel for a fixed time step size of ∆t = 0.001. The blue curve
was generated for the Windkessel boundary condition, and the red curve uses the periodic
structured tree. In the vertical axis label, u∗ denotes a numerical solution computed with 33
spatial points per vessel (N = 32).

Table A.5: Convergence of numerical solutions to the Circle of Willis with respect to time step
size using the Windkessel boundary condition.

∆t E E(2∆t)/E(∆t)

0.100000 3.75e-02 NaN

0.050000 2.13e-02 1.760122

0.025000 1.13e-02 1.877645

0.012500 5.93e-03 1.912231

0.006250 2.95e-03 2.009360

0.003125 1.36e-03 2.164632
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Table A.6: Convergence of numerical solutions to the Circle of Willis with respect to time step
size using the structured tree boundary condition.

∆t E E(2∆t)/E(∆t)

0.100000 3.21e-02 NaN

0.050000 1.63e-02 1.967751

0.025000 8.74e-03 1.865431

0.012500 4.58e-03 1.909398

0.006250 2.29e-03 1.995762

0.003125 1.07e-03 2.137076
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Figure A.4: Convergence of numerical simulations of the Circle of Willis with respect to ∆t
for a fixed number of spatial points per vessel (N = 8). The blue curve was generated using
the Windkessel boundary condition, and the red curve uses the periodic structured tree. In
the vertical axis label, u∗ denotes a numerical solution computed with a value of ∆t five times
smaller than the smallest value of ∆t listed in Table A.5.
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