
ABSTRACT

WILLERT, JEFFREY ALAN. Hybrid Deterministic/Monte Carlo Methods for Solving the
Neutron Transport Equation and k-Eigenvalue Problem. (Under the direction of C.T. Kelley.)

The goal of this thesis is to build hybrid deterministic/Monte Carlo algorithms for solving the

neutron transport equation and associated k-eigenvalue problem. We begin by introducing and

deriving the transport equation before discussing a series of deterministic methods for solving

the transport equation. To begin we consider moment-based acceleration techniques for both the

one and two-dimensional fixed source problems. Once this machinery has been developed, we

will apply similar techniques for computing the dominant eigenvalue of the neutron transport

equation. We’ll motivate the development of hybrid methods by describing the deficiencies

of deterministic methods before describing Monte Carlo methods and their advantages. We

conclude the thesis with a chapter describing the detailed implementation of hybrid methods

for both the fixed-source and k-eigenvalue problem in both one and two space dimensions. We’ll

use a series of test problems to demonstrate the effectiveness of these algorithms before hinting

at some possible areas of future work.
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Chapter 1

Introduction

The goal of our work is to construct, or improve, methods for solving the neutron transport

equation in the most efficient and precise manner possible. This equation governs the distri-

bution of neutrons in space, angle and energy and its solution is essential for constructing and

calibrating nuclear reactors, radiation shielding, medical imaging, and a wide range of other

applications. Generally, we let ψ(~r,E, Ω̂, t) dV dΩ̂ dE dt denote the total path length traversed

by all particles within some differential volume dV about the position ~r in R3, with energies

within dE about E, traveling in directions dΩ̂ about Ω̂ during a time dt about t. In the most

general case, the neutron transport equation is

1

v

∂ψ

∂t
+ Ω̂ · ∇ψ + Σt(~r,E)ψ(~r,E, Ω̂, t)

=

∫
4π
dΩ̂′

∫ ∞
0

dE′Σs(E
′ → E, Ω̂′ → Ω̂)ψ(~r,E′, Ω̂′, t) +

χ(~r,E, t)

4π

∫ ∞
0

dE′
∫

4π
dΩ̂′ ν(~r,E′, t)Σf (~r,E′, t′)ψ(~r,E′, Ω̂′, t) + s(~r,E, Ω̂, t), (1.1)

where ~r = (x, y, z)T describes the position within the medium. Ω̂ describes the direction that

particles are traveling. We represent integration over all directions in the following manner:∫
4π
· dΩ̂ ≡

∫ 2π

0

∫ π

0
· sin(θ)dθdω

The function s is a known source. We also must specify a boundary condition

ψ(~rs, E, Ω̂, t) = ψb(~rs, E, Ω̂, t) (1.2)

for Ω̂ · ês < 0 for all ~rs on the surface in the case of a non-reentrant boundary where ês is the

unit outward normal. Throughout this thesis, we will assume all boundaries are non-reentrant.
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For the time dependent form, we must also specify an initial condition:

ψ(~r,E, Ω̂, 0) = ψ0(~r,E, Ω̂). (1.3)

Before we continue, let’s discuss the derivation of the neutron transport equation [7].

1.1 Deriving the Transport Equation

Our goal in this study is to determine the distribution of neutrons in a system. Given some

system configuration, we need to be able to accurately predict the balance of neutrons and this

can be accomplished by solving the neutron transport equation. However, before we can use this

equation, we must understand every piece of it. To aid in our understanding of the equation,

we’ll go through a step by step derivation. We can describe the distribution of neutrons in

space, angle, and energy by a function n = n(~r,E, Ω̂, t).

The balance of neutrons in a reactor is governed by the material composition within the

reactor as well as the way in which neutrons interact with matter, neutron sources and contri-

butions from external boundaries. It should be clear that neutrons will interact differently with

different materials based upon their physical structure. It will be beneficial in our study to

begin this derivation by looking at several material properties that, in effect, help us describe

the distribution of neutrons in a system.

1.1.1 Basic Definitions

When a neutron undergoes an interaction with matter, several things can happen. First, the

neutron can scatter. By this we mean that the neutron hits a nucleus and bounces off with

a new direction and energy. Secondly, a neutron can be absorbed by a nucleus. In some

absorption reactions, the nucleus can undergo fission and produce more neutrons. For now,

we’ll simply stick with these three options: scattering, absorption, and fission. We begin with

a few definitions:

Definition 1. Σs is called the macroscopic scattering cross-section. Σs is equal to the probability

of undergoing a scattering reaction per unit path length traveled.

Definition 2. Σa is called the macroscopic absorption cross-section. Σa is equal to the proba-

bility of undergoing an absorption reaction per unit path length traveled.

Definition 3. Σf is called the macroscopic fission cross-section. Σf is equal to the probability

of undergoing a fission reaction per unit path length traveled. The quantity ν denotes the mean

number of neutrons created per fission event.
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Definition 4. Σt is called the macroscopic total cross-section and is equal to Σs + Σa. Σt can

be interpreted as the probability per unit path length traveled that a neutron will incur a reaction

with a nucleus in the medium.

Let us discuss these three cross-sections in a bit more detail before moving on. First, it

is important to note that Σs, Σa and Σt are all functions of energy, position, and time. In

addition, Σs is a function of the incoming angle, as well as the post-interaction angle and

energy. It makes sense that these quantities should differ for different materials that comprise

the reactor. Furthermore, as the energy of a neutron changes, its speed changes and this will

affect the probability of undergoing various types of reactions. Lastly, as time progresses, the

material properties of the reactor will change. This is immediately clear when we consider the

burn-up of fuel or heating of materials. For this reason, we usually represent Σt = Σt(~r,E, t) and

follow a similar convention for Σs and Σa. The scattering cross-section has a more complicated

representation and will be discussed in greater detail later.

In order to understand these cross-sections further, let us look at a simple example. Suppose

Σs/Σa = 9. This tells us that on average, in an infinite medium a neutron will undergo 9

scattering interactions before it is absorbed. If Σs/Σa = 9, we can see that Σs/Σt = .9. This

tells us that given an interaction, the probability that the neutron scatters is .9.

Let us further examine the quantity Σa. Σa refers to the probability of undergoing an

absorption reaction per unit path length. Now, if we let v denote the speed of a particle, we

can see that Σav is equal to the mean number of absorption reactions per second. If we have

n neutrons per cm3, Σavn is equal to the absorption reaction rate density, that is, the rate at

which neutrons are being absorbed per cm3. Then, if V represents some volume in the reactor,

V vΣan represents the loss rate in that volume due to absorption.

Let ν be equal to the average number of neutrons created per fission event. Then, the

quantity V vΣfνn is equal to the fission production rate in V, or the rate at which neutrons

are produced due to fission. This type of analysis will help us throughout our derivation of the

neutron transport equation.

As previously mentioned, Ω̂ refers to the direction that a neutron travels. In general Ω̂ =

Ω̂(θ, ω) = [sin(θ) cos(ω), sin(θ) sin(ω), cos(θ)]T . We notice that Ω̂ is a unit vector in the direction

of motion.

During a scattering reaction, it is common for both energy and direction to change. Gen-

erally, we let E and Ω̂ represent the initial energy and direction, respectively, and E′ and Ω̂′

denote the energy and direction after the collision. For this reason, Σs = Σs(E
′ → E, Ω̂′ → Ω̂).

However, we can break this scattering cross-section down into more understandable pieces.

In general, we can say that Σs(E
′, Ω̂′ → E, Ω̂) = Σs(E

′) · P (E′, Ω̂′ → E, Ω̂), where Σs(E
′)

is the probabilily that a neutron with energy E′ will scatter when it undergoes an interaction.

P (E′, Ω̂′ → E, Ω̂) is the probability that, given a scattering reaction occurs, the particle will
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change direction from Ω̂′ to Ω̂ and change energy from E′ to E. Using our knowledge of

probability, it is easy to see that∫ ∞
0

dE

∫
4π
dΩ̂P (E′, Ω̂′ → E, Ω̂) = 1. (1.4)

Now, we can see that∫ ∞
0

dE

∫
4π
dΩ̂Σs(E

′ → E, Ω̂→ Ω̂′) =

∫ ∞
0

dE

∫
4π
dΩ̂Σs(E

′) · P (E′, Ω̂′ → E, Ω̂)

= Σs(E
′)

∫ ∞
0

dE

∫
4π
dΩ̂P (E′, Ω̂′ → E, Ω̂)

= Σs(E
′)

1.1.2 Derivation

As was previously mentioned, n(~r, Ω̂, E, t) is the neutron density function, sometimes referred

to as the neutron distribution function. This function n is such that n(~r, Ω̂, E, t) d3r dΩ̂ dE

is equal to the expected number of particles in some volume d3r about ~r, with energies in dE

about E, traveling in directions dΩ̂ about Ω̂ at time t.

In order to derive the transport equation, we need a balance relation describing the move-

ment of neutrons in phase space. Let us define a volume in phase space, P . Our phase space

consists of 3 variables (6 dimensions), ~r, Ω̂, and E. We will refer to the quantity d3r dΩ̂ dE as

the differential volume in phase space.

In its most basic form, the neutron balance equation can be given by:

[change rate in P ] = [neutrons entering P ]− [neutrons leaving P ].

If we want to determine the number of neutrons in P , we can integrate n(~r, Ω̂, E, t) over the

spatial volume ∆V , range of directions ∆Ω̂ and energy range ∆E. Let us define N(t) as the

number of neutrons in P at time t.

N(t) =

∫
∆V

∫
∆E

∫
∆Ω̂

n(~r, Ω̂, E, t)dΩ̂dEd3r (1.5)

Now, we can represent the change rate in the phase volume P as dN/dt.

Methods in which neutrons can enter the phase volume P :

1. Neutrons can be supplied by an external source

2. Neutrons can enter due to fission
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3. Neutrons can scatter into the phase volume (inscattering)

4. Neutrons can leak into the phase volume (neutrons change location in space)

Methods in which neutrons can leave the phase volume P :

1. Neutrons can scatter out of the phase volume (outscattering)

2. Neutrons can be absorbed in the phase volume

3. Neutrons can leak out of the phase volume (neutrons change location in space)

If we can describe the rate at which all of these gains and losses occur, we will have a balance

relation describing the distribution of neutrons in phase space. We will derive some of these

terms, while others will simply be given. For most terms, the derivations are quite similar.

We’ll look at each term in the equation in terms of gains and losses.

Gains

1. External Source: This requires no formal derivation. This is simply a source term

describing the rate at which neutrons enter the phase volume due to an specified external

source. When solving the transport equation, this will be considered data like the mate-

rial properties in the system. This source is described by:

Sext(~r, Ω̂, E, t) =
# of neutrons

cm3 ·MeV · ster · sec
(1.6)

where MeV stands for mega-electron volts and ster stands for steradians, the SI unit of

solid angle, the three-dimensional analog to radians which describe the span of an angle

in the plane.

Now, the rate at which neutrons enter the phase box due to this external source is given

by: ∫
∆V

d3r

∫
∆E

dE

∫
δΩ̂
dΩ̂ Sext(~r, Ω̂, E, t) (1.7)

2. Fission Source: Recall that Σf is equal to the number of interactions per unit path

length of a neutron and v(E)Σf is equal to the interaction rate per neutron (here v = v(E)

since the speed is exactly determined by the energy of a neutron as it is assumed to behave

like a classical point particle) [21]. Now, the quantity

v(E)Σf (~r,E, t)n(~r, Ω̂, E, t)d3rdΩ̂dE (1.8)
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represents the fission rate in d3r about ~r caused by neutrons with energies within dE

about E with directions dΩ̂ about Ω̂ at time t. Thus,∫
∆V

d3r

∫
∆E

dE

∫
δΩ̂
dΩ̂ v(E)Σf (~r,E, t)n(~r, Ω̂, E, t) (1.9)

describes the fission rate within the phase box. However, we are not just interested in

the fission rate within the phase box, we are interested in the rate at which neutrons are

produced due to fission within the phase box.

We can see that the number of neutrons produced due to fission events in d3r about ~r

caused by neutrons with energies in dE about E and with directions dΩ̂ about Ω̂ at time

t is given by

ν(~r,E, t)Σf (~r,E, t)v(E)n(~r, Ω̂, E, t) d3r dΩ̂ dE (1.10)

where, as a reminder to the reader, ν is the mean number of fission neutrons produced

per fission event.

This is not enough to determine how many neutrons are entering the phase box, however.

We must know more information about the neutrons being produced; we must know the

direction they are traveling when they are produced as well as their energy. We can

assume that the fission neutron directions are distributed isotropically. That is, there

is no preference of direction for fission neutrons, or one could say that there is equal

probability of having any initial direction when produced due to fission. However, fission

neutrons may be born with a variety of energies, and this spectrum is described by χ(E).

Therefore, χ(E)dE describes the fraction of fission neutrons born with energies in dE

about E. Now, we’re able to described the rate at which neutrons enter the phase box

due to fission. This quantity is given by:∫
∆V

d3r

∫
∆E

dE

∫
δΩ̂
dΩ̂

χ(E)

4π

∫ ∞
0

dE′
∫

4π
dΩ̂′ ν(~r,E′, t)Σf (~r,E′, t′)v(E′)n(~r, Ω̂′, E′, t)

It is important to make the distinction in the above quantity, E′ describes the energy of

the neutron causing the fission event, while E describes the energy of the fission neutrons.

3. Inscattering: The term inscattering refers to neutrons which scatter into the phase

volume. This essentially means that after undergoing a scattering reaction, the neutrons

have angles in ∆Ω̂ about Ω̂ and energies in ∆E about E. Given the previous derivations,

this quantity is relatively easy to describe:∫
∆V

d3r

∫
∆E

dE

∫
∆Ω̂

dΩ̂

∫ ∞
0

dE′
∫

4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂, t)v(E)n(~r, Ω̂′, E′, t)
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The term above describes the rate at which neutrons scatter into the phase box.

4. Leakage into the Phase Box: Leakage into and out of the phase box will be handled

simultaneously in its own section.

Losses

1. Absorption: When neutrons undergo collisions, it is possible that the neutron is ab-

sorbed. Recall that the quantity

Σa(~r,E, t)v(E)n(~r, Ω̂, E, t)

is the rate at which neutrons are absorbed per cm3. Therefore, the rate at which neutrons

are absorbed within the phase box is given by∫
∆V

d3r

∫
∆E

dE

∫
∆Ω̂

dΩ̂ Σa(~r,E, t)v(E)n(~r, Ω̂, E, t).

2. Outscattering: The term outscattering refers to the loss of neutrons which begin inside

the phase volume but leave the phase volume due to scattering. This quantity is far more

simple than the inscattering term because we do not concern ourselves with the final

direction and energy of the scattered neutrons. We only care about the rate at which

neutrons scatter within the phase volume. While some neutrons may undergo a scatter

and remain within the phase volume, this quantity is taken care of in the inscattering

term.

We can describe the rate at which neutrons outscatter by∫
∆V

d3r

∫
∆E

dE

∫
∆Ω̂

dΩ̂ Σs(~r,E, t)v(E)n(~r, Ω̂, E, t).

Leakage

Instead of computing different quantities as far as gains and losses, we will instead derive one

term that incorporates the net leakage of neutrons in our system.

Consider some arbitrary surface dS with unit normal vector ~en. We can describe the net

rate at which neutrons cross the area dS around ~r having energies within dE about E, traveling

in directions within dΩ̂ about Ω̂ at time t by

Ω̂ · ~en v(E)n(~r,E, Ω̂, t) dS dE dΩ̂.
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Now, the rate at which neutrons leave the phase box is given by∫
S∆V

ds

∫
∆E

dE

∫
∆Ω̂

dΩ̂ Ω̂ · ~en v(E)n(~r,E, Ω̂, t)

where S∆V denotes the surface of ∆V . If we apply the divergence theorem, we can get this

quantity in more recognizable (and useful) terms:∫
∆V

d3r

∫
∆E

dE

∫
∆Ω̂

dΩ̂ Ω̂ · ∇v(E)n(~r,E, Ω̂, t)

1.1.3 The Transport Equation

Now that we have all of our gains, losses and leakage terms, we can put it all together to form

the neutron transport equation. We will write this as:

[rate of change] + [loss rate] = [gain rate]. (1.11)

We have:∫
∆V

d3r

∫
∆E

dE

∫
∆Ω̂

dΩ̂
∂n(~r,E, Ω̂, t)

∂t
+ Ω̂ · ∇v(E)n(~r,E, Ω̂, t)

+ Σs(~r,E, t)v(E)n(~r, Ω̂, E, t) + Σa(~r,E, t)v(E)n(~r, Ω̂, E, t)

=

∫
∆V

d3r

∫
∆E

dE

∫
∆Ω̂

dΩ̂

∫ ∞
0

dE′
∫

4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂, t)v(E)n(~r, Ω̂′, E′, t)

+
χ(E)

4π

∫ ∞
0

dE′
∫

4π
dΩ̂′ ν(~r,E′, t)Σf (~r,E′, t′)v(E′)n(~r, Ω̂′, E′, t)

+ Sext(~r, Ω̂, E, t)

Since ∆V , ∆E and ∆Ω̂ are all arbitrary we can conclude that the two integrands are

equivalent everywhere within our domain. Thus, we have

∂n(~r,E, Ω̂, t)

∂t
+ Ω̂ · ∇v(E)n(~r,E, Ω̂, t)

+ Σs(~r,E, t)v(E)n(~r, Ω̂, E, t) + Σa(~r,E, t)v(E)n(~r, Ω̂, E, t)

=

∫ ∞
0

dE′
∫

4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂, t)v(E)n(~r, Ω̂′, E′, t)

+
χ(E)

4π

∫ ∞
0

dE′
∫

4π
dΩ̂′ ν(~r,E′, t)Σf (~r,E′, t′)v(E′)n(~r, Ω̂′, E′, t)

+ Sext(~r, Ω̂, E, t)

8



Furthermore, we know that Σa + Σs = Σt, we can simplify slightly

∂n(~r,E, Ω̂, t)

∂t
+ Ω̂ · ∇v(E)n(~r,E, Ω̂, t) + Σt(~r,E, t)v(E)n(~r, Ω̂, E, t)

=

∫ ∞
0

dE′
∫

4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂, t)v(E)n(~r, Ω̂′, E′, t)

+
χ(E)

4π

∫ ∞
0

dE′
∫

4π
dΩ̂′ ν(~r,E′, t)Σf (~r,E′, t′)v(E′)n(~r, Ω̂′, E′, t) + Sext(~r, Ω̂, E, t)

Now, we see that most terms include the quantity v(E)n(~r,E, Ω̂, t). We generally simplify

the transport equation by defining ψ(~r,E, Ω̂, t) = v(E)n(~r,E, Ω̂, t). ψ is referred to as the

angular flux. Substituting this quantity into the transport equation yields the following integro-

differential equation:

1

v(E)

∂ψ(~r,E, Ω̂, t)

∂t
+ Ω̂ · ∇ψ(~r,E, Ω̂, t) + Σt(~r,E, t)ψ(~r,E, Ω̂, t)

=

∫ ∞
0

dE′
∫

4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂, t)ψ(~r,E′, Ω̂′, t)

+
χ(~r,E, t)

4π

∫ ∞
0

dE′
∫

4π
dΩ̂′ ν(~r,E′, t)Σf (~r,E′, t′)ψ(~r,E′, Ω̂, t) + Sext(~r, Ω̂, E, t) (1.12)

We will refer to Equation 1.12 as the three-dimensional, time-dependent, energy-dependent,

angularly-dependent neutron transport equation, or the 3-D neutron transport equation for

short.

1.1.4 Initial and Boundary Conditions

It is also important to develop boundary conditions for the neutron transport equation. We’ll

focus primarily on three types of boundary conditions [21]:

1. Known surface source

2. Vacuum boundary conditions (no incoming neutrons)

3. Reflective boundary conditions

We’ll discuss each of these boundary conditions in the following sections.

Known Incoming Surface Source

The first example of an explicit boundary condition comes from a known incoming surface

source. In this case, we specify some distribution of neutrons for each ~r on the boundary,

ψ(~r, Ω̂, E, t) = ψ̃(~r, Ω̂, E, t), (1.13)
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in which n̂ · Ω̂ < 0 where n̂ is the outward directed normal to the surface at the point ~r.

Vacuum boundary conditions are a second example of explicit boundary conditions and are

special case of the known incoming surface source in which ψ̃ = 0. We will commonly use

vacuum boundary conditions throughout our discussion for the remainder of this thesis.

Reflective Boundary Conditions

The only implicit boundary conditions which we will consider are reflective boundary conditions.

In this case, the incoming flux from the boundary is set equal to the outgoing flux at the same

location with the angle reflected [21]. Mathematically speaking, we write

ψ(~r, Ω̂, E, t) = ψ(~r, Ω̂′, E, t), (1.14)

in which ~r is on the boundary, n̂ · Ω̂ < 0 and

n̂ · Ω̂ = −n̂ · Ω̂′ and (Ω̂× Ω̂′) · n̂ = 0. (1.15)

Initial Condition

For the initial condition, we must simply describe the initial distribution of neutrons in phase

space,

ψ(~r, Ω̂, E, 0) = ψ̃(~r, Ω̂, E). (1.16)

1.2 Discretizing the Transport Equation in Energy and Angle

In general, we cannot solve Equation 1.12 in its continuous form. For this reason, we must

discretize the Equation 1.12 in time, energy, angle and space. For the majority of this thesis

we will concern ourselves only with solving the time-independent problem, so let us drop the

time dependence in Equation 1.12:

Ω̂ · ∇ψ(~r,E, Ω̂) + Σt(~r,E)ψ(~r,E, Ω̂) =

∫ ∞
0

dE′
∫

4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂)ψ(~r,E′, Ω̂′)

+
χ(E)

4π

∫ ∞
0

dE′
∫

4π
dΩ̂′ ν(~r,E′)Σf (~r,E′)ψ(~r,E′, Ω̂) + Sext(~r, Ω̂, E) (1.17)

1.2.1 Energy Discretization

We’ll first discretize the Equation 1.17 in energy and, once that is complete, discretize in angle.

To do so, we’ll follow the method described in [21]. To begin, let’s divide the energy spectrum

into G energy ranges, [EG, EG−1], [EG−1, EG−2], ... , [Eg, Eg−1], ... , [E1, E0], where EG = 0
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and E0 is to be chosen sufficiently large such that the number of particles with energies higher

than E0 may be disregarded.

We say that a neutron is in group g if its energy lies in the interval [Eg, Eg−1]. Our goal with

the “multigroup” approximation is to determine the angular flux, ψ, in each of the G groups.

We’ll define the group angular flux, ψg, by

ψg(~r, Ω̂) =

∫ Eg−1

Eg

ψ(~r, Ω̂, E) dE ≡
∫
g
ψ(~r, Ω̂, E) dE. (1.18)

Furthermore, we wish to define the multi-group cross-sections in such a way that we preserve

reaction (total, fission, scattering, absorption) rates in each group.

Now, the energy integrals in Equation 1.17 can be represented

∫ ∞
0
· dE′ =

G∑
g′=1

∫
g′
· dE′.

With this in mind, we’ll integrate Equation 1.17 over a single energy group, g, and we find

Ω̂ · ∇
∫
g
dE ψ(~r,E, Ω̂) +

∫
g
dE Σt(~r,E)ψ(~r,E, Ω̂)

=

G∑
g′=1

∫
g
dE

∫
g′
dE′

∫
4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂)ψ(~r,E′, Ω̂′)

+

∫
g
dE

χ(E)

4π

G∑
g′=1

∫
g′
dE′

∫
4π
dΩ̂′ ν(~r,E′)Σf (~r,E′)ψ(~r,E′, Ω̂) +

∫
g
dE Sext(~r, Ω̂, E) (1.19)

As in [21], let us suppose that the group angular fluxes are separable in energy. That is,

ψ(~r, Ω̂, E) = f(E)ψg(~r, Ω̂), (1.20)

for all E ∈ [Eg, Eg−1]. We interpret f(E) as a normalized weighting function (a distribution of

the particles throughout the energy interval) such that∫
g
dE f(E) = 1.

11



Now, we can substitute Equation 1.20 into Equation 1.19 and we obtain

Ω̂ · ∇ψg(~r, Ω̂) +

∫
g
dE Σt(~r,E)f(E)ψg(~r, Ω̂)

=

∫
g
dE Sext(~r, Ω̂, E) +

G∑
g′=1

∫
g
dE

∫
g′
dE′

∫
4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂)f(E′)ψg(~r, Ω̂
′)

+

∫
g
dE

χ(E)

4π

G∑
g′=1

∫
g′
dE′

∫
4π
dΩ̂′ ν(~r,E′)Σf (~r,E′)f(E′)ψg(~r, Ω̂

′) (1.21)

At this point, we’ll begin defining the new multi-group cross-sections by

Σt,g(~r) =

∫
g
f(E)Σt(~r,E) dE (1.22)

νgΣf,g(~r) =

∫
g
f(E)ν(~r,E′)Σf (~r,E) dE (1.23)

Σs,g′→g(~r, Ω̂
′ · Ω̂) =

∫
g
dE

∫
g′
dE′f(E′)Σs(~r,E

′ → E, Ω̂′ · Ω̂), (1.24)

the multi-group fission spectrum by

χg =

∫
g
χ(E) dE (1.25)

and the group source term by

Sext,g(~r, Ω̂) =

∫
g
Sext(~r, Ω̂, E) dE. (1.26)

Using Equations 1.22 - 1.26, we can simplify Equation 1.21 and obtain the multi-group

transport equation

Ω̂ · ∇ψg(~r, Ω̂) + Σt,gψg(~r, Ω̂) = Sext,g(~r, Ω̂) +
G∑

g′=1

∫
4π
dΩ̂′ Σs,g′→g(~r, Ω̂

′ → Ω̂)ψg′(~r, Ω̂
′)

+
χg
4π

G∑
g′=1

∫
4π
dΩ̂′ νg′Σf,g′(~r)ψg′(~r, Ω̂

′) (1.27)
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1.2.2 Angular Discretization

In multiple dimensions, we begin the angular discretization process by representing the angular

flux in terms of spherical harmonics

ψg(~r, Ω̂) =
∞∑
l=0

l∑
m=−l

Y ∗l,m(Ω̂)φml (~r) (1.28)

where Yl,m is given by [21]

Yl,m(Ω̂) =
(2l + 1)(l −m)!

(l +m)!
Pml (µ)eiωm (1.29)

in which µ is the cosine of the polar angle, θ, and ω is the azimuthal angle from spherical coordi-

nates. Spherical coordinates are the natural way to represent angles in three space dimensions.

Here, Pml is the associated Legendre function defined by the formula

Pml (µ) = (−1)m(1− µ2)m/2
dm

dµm
Pl(µ) (1.30)

in which P 0
l (µ) = Pl(µ), the lth Legendre polynomial. With this definition, we see that the

spherical harmonics are orthogonal in the sense that∫
dΩ̂ Yl,m(Ω̂)Y ∗l′,m′(Ω̂) = 4πδll′δmm′ . (1.31)

Furthermore, the Legendre addition theorem [21] states

Pl(µ0) = Pl(Ω̂ · Ω̂′) =
l∑

m=−l

1

2l + 1
Y ∗l,m(Ω̂)Yl,m(Ω̂′). (1.32)

Now, we may represent the group-to group scattering cross-section Σs,g′→g(~r, Ω̂
′ ·Ω̂) in terms

of Legendre polynomials

Σs,g′→g(~r, µ0) =

∞∑
l=0

Σs,l,g′→g(~r)Pl(µ0), (1.33)

where µ0 = Ω̂′ · Ω̂.
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Finally, we may represent the scattering term in Equation 1.27 by

G∑
g′=1

∫
g
dE

∫
g′
dE′

∫
4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂)f(E′)ψg(~r, Ω̂
′)

=
∞∑
l=0

l∑
m=−l

Y ∗l,m(Ω̂)
G∑

g′=1

Σs,l,g′→gφ
g′

l,m(~r) (1.34)

where φg
′

l,m is given by

φgl,m =

∫
4π
dΩ̂ Yl,m(Ω̂)ψg(~r, Ω̂). (1.35)

We’ll use this new representation of the scattering term for Equation 1.27 before discretizing

in angle:

Ω̂ · ∇ψg(~r, Ω̂) + Σt,gψg(~r, Ω̂) = Sext,g(~r, Ω̂) +
∞∑
l=0

l∑
m=−l

Y ∗l,m(Ω̂)
G∑

g′=1

Σs,l,g′→gφ
g′

l,m(~r)

+
χg(~r)

4π

G∑
g′=1

∫
4π
dΩ̂′ νgΣf,g′(~r)ψg′(~r, Ω̂). (1.36)

At this point, we are ready to begin the angular discretization of the transport equation

given by Equation 1.36. We will use the discrete ordinates (Sn) method for discretizing in

angle. Using this method, we consider the transport equation evaluated only at a finite set of

angles Ω̂n = (µn, ηn, ξn)1 such that µ2
n + η2

n + ξ2
n = 1. We wish to handle reflective boundary

conditions with ease so we demand that if Ω̂n = (µn, ηn, ξn) is in our quadrature set, so is

Ω̂n′ = (±µn,±ηn,±ξn)

Furthermore, we would like to retain solution invariance under 90◦ rotations for problems

with this type of rotational symmetry. Therefore, if the angle Ω̂ = (a, b, c) is in our angular

quadrature set, so must be (a, c, b), (b, a, c), (b, c, a), (c, a, b) and (c, b, a). With this plane- and

rotational symmetry in mind, we can choose a set of N angles in the first octant and use these

symmetry rules to produce the angles in the other octants.

Once our quadrature set has been chosen, we can represent the transport equation along

1In this definition, µn is not the polar angle used to define the spherical harmonics. This notation has been
used to remain consistent with the popular text [21]. Relating this notation, we have µn =

√
1 − µ2 cos(ω),

ηn =
√

1 − µ2 sin(ω), and ξn = µ
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these 8N (or in 2-D, 4N) discrete angles. This yields a system of equations,

Ω̂n · ∇ψg,n(~r) + Σt,gψg,n(~r) = Sext,g,n(~r) +
∞∑
l=0

l∑
m=−l

Y ∗l,m(Ω̂n)
G∑

g′=1

Σs,l,g′→gφ
g′

l,m(~r)

+
χg
4π

G∑
g′=1

8N∑
i=1

dΩ̂′ νgΣf,g(~r)ψg,n(~r)wn. (1.37)

where

ψg,n(~r) = ψg(~r, Ω̂n) (1.38)

and the wn’s are the associated quadrature weights.

Now, Equation 1.37 is ready for spatial discretization. This will be handled in Chapters 2

and 3 for one- and two-dimensional Cartesian geometries, respectively. In the case of isotropic

scattering, Equation 1.37 simplifies dramatically:

Ω̂n · ∇ψg,n(~r) + Σt,gψg,n(~r) =

Sext,g,n(~r) +
1

4π

G∑
g′=1

Σs,g′→gφg′(~r) +
χg(~r)

4π

G∑
g′=1

νg′Σf,g′(~r)φg′(~r). (1.39)

We call φ(~r) the scalar flux. The scalar flux is the zeroth angular moment of the angular flux,

given by

φ(~r) =

∫
4π
dΩ̂ ψ(~r, Ω̂). (1.40)

Furthermore, suppose that ψ depends spatially only on a single variable, z. In this case,

the transport equation simplifies to the one-dimensional case

µ
∂

∂z
ψg(z, µ) + Σt,gψg(z, µ) = Sext,g(z, µ) +

1

2

G∑
g′=1

Σs,g′→gφg′(z) +
χg
2

G∑
g′=1

νg′Σf,g′φg′(z).(1.41)

We’ll refer to Equation 1.41 as the one-dimensional neutron transport equation with isotropic

scattering.

In the following chapters, we will discuss various methods for solving the one- and two-

dimensional transport equations. In these chapters we’ll describe the algorithms, discuss their

merits and provide numerical results displaying solution accuracy and convergence rates. We’ll

look at two major classes of methods, deterministic and stochastic, before investigating the

intersection of these two classes, hybrid methods.
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1.3 The k-eigenvalue Problem

When analyzing a nuclear reactor it is vital to determine the criticality which we quantify

using the multiplication factor, keff , of the reactor [23, 17, 21]. If keff > 0, the reactor is

supercritical, meaning that neutrons are being produced faster than they are being destroyed.

If keff = 1, the reactor is critical and the number of neutrons in each generation remains

constant. If keff < 0, the reactor is subcritical.

We can compute keff by determining the largest value of k which satisfies the following

problem for some non-zero angular flux:

Ω̂ · ∇ψ(~r,E, Ω̂) + Σt(~r,E)ψ(~r,E, Ω̂)

=

∫ ∞
0

dE′
∫

4π
dΩ̂′ Σs(~r,E

′, Ω̂′ → E, Ω̂)ψ(~r,E′, Ω̂′)

+
χ(~r,E)

4πk

∫ ∞
0

dE′
∫

4π
dΩ̂′ ν(~r,E′)Σf (~r,E′)ψ(~r,E′, Ω̂). (1.42)

1.4 Organization of this Thesis

In Chapter 2, we explore methods for solving the 1-D steady-state neutron transport equation.

We begin the chapter by deriving the integral transport equation before discussing the spatial

discretization of the transport equation. From here, we introduce source iteration, the most

simple method for solving the steady-state neutron transport equation. At this point, we’ll

begin discussing methods for accelerating the solution to the transport equation.

In Chapter 3, we repeat our work from Chapter 2 in 2-D. The majority of this chapter deals

with the two-dimensional spatial and angular discretizations and the method for executing a

2-D transport sweep.

In Chapter 4, we consider various methods for computing the dominant eigenvalue, keff ,

as in Equation 1.42. Much like Chapter 2, we begin by discussing the most simple method for

computing keff known as power iteration. Then, we’ll look at several methods for accelerating

the convergence of the eigenvalue.

In Chapter 5, we look at stochastic methods for solving the neutron transport equation.

We begin with motivating the choice to incorporate Monte Carlo simulations in the solution

of the transport equation. We first look at solving a 1-D steady-state transport problem using

Monte Carlo methods. Next, we look at representing a transport sweep using a Monte Carlo

simulation.

Chapter 6 looks at combining deterministic accelerators to accelerate Monte Carlo solutions

to the neutron transport equation. We refer to these algorithms as “hybrid methods” for solving

the neutron transport equation. We discuss the various challenges encountered when using
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Monte Carlo transport sweeps inside deterministic accelerators and the algorithmic changes

required to accommodate these stochastic function evaluations.
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Chapter 2

Deterministic Solutions to the 1-D,

Mono-energetic Transport Equation

in Slab Geometry

In this chapter we will consider several methods for solving the one-dimensional, fixed-source

neutron transport equation in slab geometry. We will begin by deriving the integral equation

for 1D neutron transport. From here, we will begin the discussion of solution methods with

source iteration, as it is the simplest solution method and an understanding of source iteration

is prerequisite for all other methods. Once source iteration has been implemented and we

are comfortable with the idea of a transport sweep, we will begin developing more advanced

methods. We’ll attempt to accelerate convergence using both known mathematical acceleration

techniques alongside physics-based accelerators. All of the accelerators use transport sweeps at

the heart of the algorithm.

2.1 Problem Definition

In this chapter we will focus our attention to solving the mono-energetic 1-D neutron transport

equation in slab geometry with isotropic scattering:

µ
∂ψ

∂x
(x, µ) + Σtψ(x, µ) =

1

2
[Σsφ(x) +Q(x)] (2.1)

for x ∈ (0, τ) where ψ(x, µ) is the angular flux at the point x traveling in the direction µ. We

have the following boundary conditions:

ψ(0, µ) = F0(µ), µ > 0; ψ(τ, µ) = Fτ (µ), µ < 0 (2.2)

18



These boundary conditions essentially describe the number of particles entering from the left

end of the slab and the number of particles entering from the right side of the slab.

The direction cosine µ is given by µ = cos(θ). The relationship between µ and θ can seen

in Figure 2.1.

Figure 2.1: Slab of width τ

Our goal is to solve this problem in an iterative manner to a high degree of accuracy with

as little computational effort as possible.

2.2 Source Iteration

In order to solve Equation 2.1 we propose an iterative scheme:

1. Begin with an initial guess φ0(x).

2. Given φ0(x), solve Equation 2.1 for ψ1(x, µ).

3. Let φ1(x) =
∫ 1
−1 ψ1(x, µ)dµ.

4. Continuing this iteration until successive functions φ are sufficiently “close” yields a solu-

tion. That is, given φn(x), compute ψn+1(x). Then compute φn+1(x) =
∫ 1
−1 ψn+1(x, µ)dµ.
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2.2.1 Deriving the Integral Transport Equation

Before describing the source iteration algorithm in greater detail, let us motivate this action

by deriving the integral transport equation in one-dimension. We’ll perform an analysis along

the same lines as found in [16]. For simplicity, let us assume that both the total and scattering

cross-sections are constant.

We begin by manipulating the transport equation using a linear change of variables. Letting

z = Σtx, we have

µΣt
∂ψ(z, µ)

∂z
+ Σtψ(z, µ) =

1

2
[Σsφ(z) +Q(z)] .

Now, dividing both sides by the total cross section, Σt, and letting c = Σs/Σt and S(x) =

Q(x)/Σt, we find

µ
∂ψ

∂z
+ ψ(z, µ) =

1

2
[cφ(z) + S(z)] (2.3)

Here, since x ∈ [0, τ ], we must have z ∈ [0, X] where X = τ/Σt.

Now, returning back to x as our spatial variable, for positive µ we compute:

µ
∂ψ

∂x
+ ψ(x, µ) =

1

2
[cφ(x) + S(x)]

e
x
µ

(
µ
∂ψ

∂x
+ ψ(x, µ)

)
= e

x
µ

1

2
[cφ(x) + S(x)]

µ
∂

∂x

[
e
x
µψ(x, µ)

]
=

1

2
e
x
µ [cφ(x) + S(x)]

∂

∂x

[
e
x
µψ(x, µ)

]
=

1

2µ
e
x
µ [cφ(x) + S(x)]∫ y

0

∂

∂x

[
e
x
µψ(x, µ)

]
dx =

∫ y

0

1

2µ
e
x
µ [cφ(x) + S(x)] dx

e
y
µψ(y, µ)− ψ(0, µ) =

∫ y

0

1

2µ
e
x
µ [cφ(x) + S(x)] dx

ψ(y, µ) = e
− y
µ

∫ y

0

1

2µ
e
x
µ [cφ(x) + S(x)] dx+ e

− y
µF0(µ)

ψ(y, µ) =

∫ y

0

1

2µ
e

(x−y)
µ [cφ(x) + S(x)] dx+ e

− y
µF0(µ)

ψ(y, µ) =

∫ y

0

1

2µ
e
−|x−y|
|µ| [cφ(x) + S(x)] dx+ e

− y
|µ|F0(µ)
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For negative µ, we integrate backwards and obtain a similar expression:

ψ(y, µ) = −
∫ X

y

1

2µ
e

(x−y)
µ [cφ(x) + S(x)] dx+ e

(X−y)
µ FX(µ)

ψ(y, µ) =

∫ X

y

1

2|µ|
e
−|x−y|
|µ| [cφ(x) + S(x)] dx+ e

−|X−y|
|µ| FX(µ)

Now, we can transform these two equations for ψ into a single relation for φ by noticing

that

φ(x) =

∫ 1

−1
ψ(x, µ) dµ

=

∫ 1

0
ψ(x, µ) dµ+

∫ 0

−1
ψ(x, µ) dµ. (2.4)

Applying Equation 2.4, we have

φ(y) =

∫ 1

0

∫ y

0

1

2µ
e
−|x−y|
|µ| [cφ(x) + S(x)] dxdµ+

∫ 1

0
e
− y
|µ|F0(µ)dµ

+

∫ 0

−1

∫ X

y

1

2|µ|
e
−|x−y|
|µ| [cφ(x) + S(x)] dxdµ+

∫ 0

−1
e
−|X−y|
|µ| FX(µ)dµ.

We can split both the first and third terms in the above expression into two integrals:

φ(y) =

∫ 1

0

∫ y

0

1

2µ
e
−|x−y|
|µ| cφ(x)dxdµ+

∫ 1

0

∫ y

0

1

2µ
e
−|x−y|
|µ| S(x)dxdµ

+

∫ 1

0
e
− y
|µ|F0(µ)dµ+

∫ 0

−1

∫ X

y

1

2|µ|
e
−|x−y|
|µ| cφ(x)dxdµ

+

∫ 0

−1

∫ X

y

1

2|µ|
e
−|x−y|
|µ| S(x)dxdµ+

∫ 0

−1
e
−|X−y|
|µ| FX(µ)dµ.

Now, we can combine the integrals containing the scalar flux and source by switching the

order of integration:

φ(y) =

∫ X

0

∫ 1

0

1

2η
e
−|x−y|

η cφ(x)dηdx+

∫ X

0

∫ 1

0

1

2η
e
−|x−y|

η S(x)dηdx

+

∫ 1

0
e
− |y||µ|F0(µ)dµ+

∫ 0

−1
e
−|X−y|
|µ| FX(µ)dµ.

Finally, we rearrange terms and are left with following integral equation:

φ(y)−
∫ X

0
k(x, y)φ(x) dx = g(y)
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where

k(x, y) =
c

2
E(|x− y|)

E(|x− y|) =

∫ 1

0

1

η
e
−|x−y|

η dη

g(y) =

∫ X

0

1

2
E(|x− y|)S(x) dx+

∫ 1

0
e
− y
ηF0(η)dη +

∫ 1

0
e
−|X−y|

η FX(−η)dη.

At this point, it is easy to see that solving the transport equation is equivalent to solving

the following integral equation:

φ+K(φ) = g

where

K(φ(x)) =

∫ X

0
k(x, y)φ(x) dx.

Now, we realize source iteration by

φ(n+1) = K(φ(n)) + g.

It is important to show that source iteration converges when the domain is finite and c < 1.

We state this as a theorem as the result provides a backbone for the remainder of this thesis.

Theorem 1. Source iteration will converge whenever either X <∞ or c < 1. [6]

Proof. We wish to show that ‖K‖ < 1 for some choice of operator norm. Then, by Theorem 4

(Appendix A), the iteration will converge.

We will proceed by using the 1-norm, given by

‖u‖ = ‖u‖1 ≡
∫ X

0
|u(x)|dx.

Now, we will prove Theorem 1 by showing that

‖Ku‖ < ‖u‖.
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We have, ∫ X

0
|K(φ)(y)|dy =

∫ X

0

∣∣∣∣∫ X

0
k(x, y)φ(x)dx

∣∣∣∣ dy
≤

∫ X

0

∫ X

0
|k(x, y)||φ(x)| dx dy

=

∫ X

0

∫ X

0
|k(x, y)||φ(x)| dy dx

=

∫ X

0
|φ(x)|

[∫ X

0
|k(x, y)|dy

]
dx

=
c

2

∫ X

0
|φ(x)|

[∫ X

0
|E1(|x− y|)| dy

]
dx

=
c

2

∫ X

0
|φ(x)|

[∫ X

0
E1(|x− y|)| dy

]
dx (2.5)

≤ c

2

∫ X

0
|φ(x)|

[∫ ∞
−∞

E1(|x− y|)dy
]
dx (2.6)

=
c

2

∫ X

0
|φ(x)|

[∫ ∞
−∞

E1(|z|)dz
]
dx

=
c

2

∫ X

0
|φ(x)|dx

∫ ∞
−∞

E1(|z|)dz

=
c

2
‖φ‖

∫ ∞
−∞

E1(|z|)dz. (2.7)

Furthermore, we can see that∫ ∞
−∞

E1(|z|)dz = 2

∫ ∞
0

E1(y)dy

= 2

∫ ∞
0

∫ 1

0

1

η
e−y/ηdηdy

= 2

∫ 1

0

1

η

[∫ ∞
0

e−y/ηdy

]
dη

= 2

∫ 1

0

1

η
· η dη

= 2

∫ 1

0
1 dη

= 2 (2.8)
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Combining the results from Equations 2.7 and 2.8, we have

‖Kφ‖ ≤ c

2
‖φ‖ ·

∫ ∞
−∞

E1(|z|)dz

=
c

2
‖φ‖ · 2

= c‖φ‖

Now, if c < 1, we have ‖K‖ < 1 and the iteration converges. Furthermore, if φ(x) is non-

zero everywhere, we see that the inequality between Equations 2.5 and 2.6 should be a strict

inequality when X <∞. Therefore, when X <∞, we have ‖K‖ < 1 even if c = 1.

2.2.2 Discretizing the Transport Equation

In order to solve the transport equation with source iteration, we need a method for computing

φ(n+1) given φ(n). To do this, we must discretize the transport equation and iterate on the

discrete solution. Before introducing the discretized equations, let us familiarize ourselves with

the domain. Consider Figure 2.2:

Figure 2.2: Cell faces take on half-integer indices and cell-centers take on integer indices.

In 1-D, we may choose to compute fluxes at either cell faces or cell centers. For the remainder

of this chapter, let us choose to compute cell-face values of the angular flux. We’ll compute

the angular flux at all grid-points with half-integer values (ψi+ 1
2

= ψ(xi+ 1
2
)). Furthermore, we

will compute the scalar flux at cell centers (φi = φ(xi)). In this case, φi represents the average

scalar flux over the ith cell.

This choice of stencil leads to the following diamond difference discretization [2]:

µk

ψk
i+ 1

2

− ψk
i− 1

2

∆xi
+ Σt

ψk
i+ 1

2

+ ψk
i− 1

2

2
= Σsφi + qi (2.9)

φi =
∑
k

wk

(
ψi− 1

2
+ ψi+ 1

2

2

)
(2.10)
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where ψk
i+ 1

2

= ψ(xi+ 1
2
, µk) and ∆xi = xi+ 1

2
−xi− 1

2
. The µk’s are chosen to be Gauss nodes and

the wk’s as their corresponding weights.

For positive µk, we can solve Equation 2.9 for ψk
i+ 1

2

:

ψk
i+ 1

2

=

(
µk

∆xi
− Σt

2

)
ψk
i− 1

2

+ Σsφi + qi

µk

∆xi
+ Σt

2

(2.11)

Now, given an explicit boundary condition on the left boundary (x = 0), we can march

across the domain. Similarly, for negative µk we can solve Equation 2.9 for ψk
i− 1

2

. This allows

us to propagate information across the domain beginning from the right boundary (x = X).

This idea is referred to as a “transport sweep” and can be visualized in Figure 2.3:

Figure 2.3: For µ > 0, information propogates across the medium originating from the left
boundary. For µ < 0, information from the right boundary is propogated across the medium.

As we can see, as we increase the number of spatial cells and increase the number of angles

in our quadrature, a transport sweep can become computationally expensive. This is not a huge

issue in one-dimension, but we’ll see that this problem is compounded in multiple dimensions.

We are not limited to using the previous discretization, however. In some cases, it may be

advantageous to compute both the angular and scalar fluxes at cell faces. The choice of which

discretization we use is often dependent on what type of accelerations schemes we would like

to use. These will be discussed in further detail in the upcoming sections.

25



2.2.3 Analyzing Source Iteration

Source iteration converges whenever the width of the slab is finite and/or the ratio Σs/Σt < 1,

however we are not guaranteed that source iteration will converge in a timely manner. When

Σs/Σt ≈ 1 and the mean-free-path (1/Σt) of a neutron is far shorter than the width of the

slab, convergence may take hundreds or thousands of iterations to converge [2]. Since each

iteration is on the order of n · k work, this can be quite expensive, and recall, this is for a 1-D

calculation. Each iteration will become more expensive as we reach higher dimensions, add in

multiple energy groups and assume anisotropic scattering.

The following theorem helps us to quantify how poorly source iteration may perform in

certain problem regimes.

Theorem 2. Suppose Equation 2.1 for x ∈ [−∞,∞] has a solution ψ∗(x, µ). Define an error

function, e(k)(x, µ) = ψ∗(x, µ)− ψ(k)(x, µ) where the ψ(k) are the sequence of iterates produced

by source iteration. Then we have ∣∣∣e(k)(x, µ)
∣∣∣ ≤ B · ck (2.12)

where B is a constant determined by the initial error and c = Σs/Σt is the scattering ratio.

Proof. We’ll prove this theorem using the method described in [2]. Consider the exact transport

equation (Equation 2.13) and the source iteration scheme (Equation 2.14) for an infinite medium

(x ∈ [−∞,∞]),

µ
∂ψ∗

∂x
(x, µ) + Σtψ

∗(x, µ) =
1

2

[
Σs

∫ 1

−1
ψ∗(x, µ′)dµ′ +Q(x)

]
(2.13)

µ
∂ψ(k+1)

∂x
(x, µ) + Σtψ

(k+1)(x, µ) =
1

2

[
Σs

∫ 1

−1
ψ(k)(x, µ′)dµ′ +Q(x)

]
. (2.14)

Subtracting Equation 2.14 from 2.13 yields the following equation for the error

µ
∂e(k+1)

∂x
(x, µ) + Σte

(k+1)(x, µ) =
1

2

[
Σs

∫ 1

−1
e(k)(x, µ′)dµ′

]
. (2.15)

Equation 2.15 relates the current error to the previous error, and iteratively, the current error

to the initial error.

Now, consider expanding the kth error, e(k), as a Fourier integral,

e(k)(x, µ) =

∫ ∞
−∞

A(k)(λ, µ)eiΣtλxdλ. (2.16)
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Substituting Equation 2.16 into Equation 2.15, we have∫ ∞
−∞

[
Σt(iλµ+ 1)A(k+1)(λ, µ)− Σs

2

∫ 1

−1
A(k)(λ, µ′)dµ′

]
eiΣtλxdλ = 0. (2.17)

Therefore, we must have

A(k+1)(λ, µ) =
c

2

1

1 + iλµ

∫ 1

−1
A(k)(λ, µ′)dµ′ (2.18)

for λ ∈ R and for µ ∈ [−1, 1]. We assume that c < 1 so that Theorem 1 guarantees convergence.

Integrating Equation 2.18 over all µ yields∫ 1

−1
A(k+1)(λ, µ′)dµ′ = ω(λ)

∫ 1

−1
A(k)(λ, µ′)dµ′ (2.19)

in which

ω(λ) ≡ c

2

∫ 1

−1

1

1 + iλµ
dµ (2.20)

= c

∫ 1

0

1

1 + λ2µ2
dµ (2.21)

=
c

λ
tan−1 λ. (2.22)

Then, for all k ≥ 0, Equation 2.19 implies∫ 1

−1
A(k)(λ, µ′)dµ′ = ω(λ)k

∫ 1

−1
A(0)(λ, µ′)dµ′ (2.23)

Applying Equation 2.18 to the left-hand side of Equation 2.23 yields

A(k+1)(λ, µ) =
c

2

ωk

1 + iλµ

(∫ 1

−1
A(0)(λ, µ′)dµ′

)
(2.24)

Now, we have an explicit formula for the error based on the initial error for all k ≥ 0, as

given by

e(k+1)(x, µ) =

∫ ∞
−∞

c

2

ωk

1 + iλµ

(∫ 1

−1
A(0)(λ, µ′)dµ′

)
eiΣtλxdλ. (2.25)
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We can bound the (k + 1)st error as follows,

∣∣∣e(k+1)(x, µ)
∣∣∣ ≤ c

2

∫ ∞
−∞
|ω(λ)|k

∣∣∣∣∫ 1

−1
A(0)(λ, µ′)dµ′

∣∣∣∣ dλ
=

[
c

2

∫ ∞
−∞

∣∣∣∣∫ 1

−1
A(0)(λ, µ′)dµ′

∣∣∣∣ dλ]σkSI
= B · σkSI , (2.26)

where B is a constant based on the Fourier expansion coefficient of the initial error and spectral

radius of the source iterations scheme is given by

σSI = max
λ∈R

ω(λ) = max
λ∈R

( c
λ

tan−1 λ
)

= ω(0) = c. (2.27)

Clearly, as c→ 1 and in the case of an infinite medium, the iteration may become arbitrarily

slow. When c = .99, it will take over 200 iterations to decrease the error by a single order of

magnitude. When c = .999, over 2000 iterations will be required to decrease the error by an

order of magnitude. This helps motivate us to put forth effort in developing efficient and robust

accelerators to solve the neutron transport equation.

Before moving on, we can perform further analysis of the source iteration scheme that will

aid us in building these accelerators. As in [2], let us assume that the initial error consists of a

single Fourier mode,

e(0)(x, µ) = a(µ)e−Σtλx. (2.28)

Then, for all iterates k ≥ 0, the error is comprised of this single Fourier mode and the above

derivation demonstrates

e(k+1)(x, µ) = ωk(λ)

[
c

2

1

1 + iλµ

(∫ 1

−1
a(µ′)dµ′

)]
eiΣtλx. (2.29)

Source iteration will converge slowest for modes in which λ is nearly 0. In other words, the

slowest converging components of the solution have weak spatial dependence, or are the long-

wavelength components of the solution [2].

We can demonstrate this numerically with the following example. We have computed the

solution to a one-dimensional, single-speed transport equation in homogenous slab geometry

(Σs = 9.9, Σt = 10, τ = 10) using 100 grid points. Call this solution φ∗. Now, let us perturb
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this solution,

φ(0) = φ∗(x) + .01 sin
(πx
τ

)
+ .01 sin

(
40πx

τ

)
.

Figure 2.5 shows the initial error along with the error after 25, 50, and 100 iterations.
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Figure 2.4: We see that the long wavelength error mode converges at a much slower rate than
the short wavelength error mode.

After only 25 iterations the high-frequency error mode as been nearly completely damped,

however the long-wavelength mode still persists even after 100 iterations. This analysis suggests

that any numerical acceleration techniques should work to resolve the long-wavelength modes
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of the solution, as standard source iterations will quickly resolve the high-frequency modes,

while simultaneously ensuring that high-frequency errors are not amplified.

2.3 Using Krylov Methods to Solve the Transport Equation

In general, source iteration is not a feasible method for solving the neutron transport equation.

Even for relatively simple problems, one energy group and 1-D, these problems can require

thousands of iterations in order to converge to the desired tolerance. For this reason, we need

to employ more advanced methods to cut down on the amount of work required to obtain a

solution. In the nuclear engineering community, algorithms which attempt to cut down the

number of transport sweeps required to converge are often referred to as “accelerators.”

In order to utilize Krylov methods to solve this problem, we need to represent this problem

as a linear system of equations. Early in this chapter we showed that we could represent source

iteration using operator notation as:

φ(n+1) = K(φ(n)) + g (2.30)

where K is a linear operator.

Equation 2.30 has converged if φ(n) = φ(n+1). Instead of using source (or Picard) iteration to

solve this problem, we should be able to increase the rate of convergence by using Krylov meth-

ods. In this case, we’ll describe the problem slightly differently, writing the integral equation

as:

φ(x)−K(φ)(x) = g(x) (2.31)

(I −K)φ(x) = g(x) (2.32)

where I is the identity function.

Once we discretize, this becomes a linear system of equations

A~φ = ~g. (2.33)

where A comes from the discretization of I −K.

It is important to note that even though we can abstractly represent this problem as a linear

system of equations, we never form the matrix A. In many cases, computing the coefficient

matrix A would require more numerical work than the solution to the transport equation.

Furthermore, for the Krylov methods which we will employ, a representation of the matrix is

not necessary. Instead, we must only be able to write a formula (or routine) to compute the

action of the matrix A on the vector φ.
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2.3.1 GMRES

One of the most common Krylov methods is GMRES, which stands for Generalized Minimum

RESidual. When solving A~x = ~b, GMRES minimizes ||~b−A~x||2 over the space x0 +Kk, where

Kk denotes the kth Krylov subspace [15]. This is defined as

Kk = span(r0, Ar0, ...A
k−1r0) (2.34)

GMRES is guaranteed (in the absence of roundoff error) to converge in n or less iterations

when the dimension of the problem is n (i.e. x is a vector of length n). We prove this fact in

Appendix A.

For well-conditioned problems (problems where K(A) = ||A|| · ||A−1|| ≈ small), GMRES

can converge quite quickly. The convergence behavior is determined by the spectrum of A,

or the set of eigenvalues of A. It can be shown ([1]) that GMRES performs best when these

eigenvalues are grouped in a few tight clusters.

The other selling point for GMRES is that we do not actually need to form the matrix A.

Instead, we only need a matrix-vector-product (hereafter referred to as a “matvec”), that is,

a routine that can compute the action of A on a vector. For the neutron transport problem,

creating the actual matrix could require far too much work to be a reasonable solution, so we

can take advantage of this property of GMRES. A more detailed discussion of GMRES can be

found in Appendix A.

2.3.2 Building the Matrix-Vector-Product

For the neutron transport problem, our matvec is straightforward to build. Our matvec, M ,

must represent the action of (I −K) on a vector. The matrix, M , is simply the discrete version

of the operator (I −K).

If we recall our discussion of source iteration, we have a mapping that takes φl to φl+1. We

can represent this as G(φl) = φl+1. We’ve found our solution when G(φ) = φ. Furthermore, in

the previous section, we found that φ = Kφ+ b. Combining these two facts, we can see that

G(φ) = Kφ+ b. (2.35)

Therefore, the action of A on a vector can be represented as Kφ = G(φ)− b. If we need to

compute b, we can see that b = G(~0).

Now, our matvec, M , can be explicitly defined:

Mφ = (I −K)φ = φ− (G(φ)− b) = φ−G(φ) + b = φ−G(φ) +G(~0) (2.36)
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Now, we ask GMRES to solve the problem M~φ = ~b. We’ll briefly note that formulating the

problem in this way is a good choice. GMRES operates on vectors that are the same dimension

as φ, not the dimension of ψ. When n (number of spatial cells) and k (number of angular cells)

are large, this choice can save us a great deal of computational work and memory.

2.3.3 Other Krylov Methods

It is important to note that GMRES is not our only choice of Krylov methods for solving

this problem. For large problems, GMRES may not be an option due to memory concerns.

Recall, for every iteration, GMRES must store an additional Krylov vector as demonstrated in

Equation 2.34. If a problem requires many iterations, memory limits may hinder our ability to

use GMRES. This leaves us with two options: GMRES(m) or low-storage Krylov methods.

GMRES(m), or GMRES with restarts, attempts to remedy the issue of limited memory by

storing a maximum of m Krylov vectors. After m iterations, we check to see if the solution has

converged. If it has not, we take the current solution and use it as an intial guess for the next

pass of GMRES.

This will generally slow down convergence since we are throwing away all of the information

that we have built up in our Krylov basis in order to make room for more Krylov vectors.

However, this helps us get around memory issues that plagued us when storing the full Krylov

basis.

Our other option is a low-storage Krylov method. Two examples of these are TFQMR

and BiCGSTAB. The storage for both of these algorithms is bounded throughout the linear

iteration. However, each of these methods come with some inherent danger. Both of these

methods are subject to break down within the iteration, generally due to a division by zero

[15]. Furthermore, the convergence theory for these two methods is far less developed that

that of GMRES. For this reason, we usually only turn to these methods when issues arise

with GMRES. In practice, for solving these neutron transport problems, both TFQMR and

BiCGSTAB generally require more function evaluations (transport sweeps) than GMRES in

order to meet the convergence criteria.

2.4 Anderson Acceleration

Anderson Acceleration [29] was originally formulated by D.G. Anderson in the mid 1960s. In

general, a fixed-point iteration solves the problem x = G(x) using the following steps:

• Start with initial iterate x0

• xk+1 = G(xk), until convergence.
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While this algorithm is very simple, convergence may be very slow for some problems [29].

Many problems of the form x = G(x), where G is a nonlinear map may be recast in the form

F (x) = x − G(x) and solved with Newton’s method. In some situations, this may be a huge

advantage. In other situations, it may be beneficial to avoid the root-finding formulation and

keep the problem in fixed-point form [29]. In this case, one can attempt to increase convergence

rates using Anderson Acceleration:

Anderson Acceleration(m) - m vector storage

Given x0 and m ≥ 1.
Compute x1 = G(x0).
for k = 1, 2, ... do

Set mk = min{m, k}.
Set Fk = (fk−mk , ..., fk), where fi = G(xi)− xi.
Compute α(k) = (α

(k)
0 , ..., α

(k)
mk)T where

α(k) = argminα‖Fkα‖2 s.t.

mk∑
i=0

αi = 1 (2.37)

Set xk+1 =
∑mk

i=0 α
(k)
i g(xk−mk+i)

end for

In general, we may choose to keep the number of vectors, m, that we store small for two

reasons:

1. These vectors may be quite large and storage may become a concern.

2. The minimization 2.37 may become expensive to solve or the problem may become ill-

conditioned.

It has been shown that in the case of a linear function G, Anderson Acceleration behaves

much like GMRES [29], but in the case of nonlinear functions, much less theory exists.

In the case of neutron transport, source iteration can be represented as a fixed-point problem,

φ = G(φ). We can apply Anderson Acceleration to achieve faster convergence in many regimes.

Anderson Acceleration, or the intimately related accelerator, Nonlinear Krylov Acceleration,

has been applied to the k-eigenvalue problem in [4].
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2.5 High-Order/Low-Order Accelerators

One of the major ways nuclear engineers have tried to speed up the solution to the neutron

transport equation is by coupling the neutron transport equation to the closely related diffusion

equation. It can be shown that for highly scattering media (i.e. materials where Σs/Σt ≈ 1),

that diffusion models can approximate transport in some regions of the domain. Luckily for

us, the diffusion equation is very easy to solve, especially in 1-D where solving the diffusion

equation requires only a tridiagonal matrix solve.

Since the 1960’s and 1970’s it has been a trend in the nuclear engineering community to

couple the high-order neutron transport equation to a low-order diffusion equation in such a

way as to minimize the number of transport sweeps required to converge to a solution [2, 14].

The idea is that if we can use the diffusion equation to gain better approximations, we are

willing to invest some time in solving the easy-to-solve diffusion problem if it means we will

spend less time executing transport sweeps. The two equations are coupled in such a way that

when the transport equation is solved, the diffusion equation is satisfied simultaneously.

There are many models and variants of this process available, but we will primarily focus on

Quasi-Diffusion (QD) [14, 2] and Nonlinear Diffusion Acceleration (NDA) as described in [18].

Quasi-Diffusion has a long history and the ideas that were developed for quasi-diffusion are the

basis for many of these High-order/Low-order solvers. I will describe the process of nonlinear

diffusion acceleration (NDA) and show that when the high-order (HO) problem is solved, then

necessarily the low-order (LO) problem is solved; that is, if φHO is the solution to the high order

problem and φLO is the solution to the low order problem, then upon convergence, φHO = φLO.

In general, achieving consistency between the HO and LO problem has been troublesome and

has been called “the tyranny of consistent low-order discretization” [2]. This nonlinear problem

is traditionally solved using Picard iteration or successive substitution, but we can speed up

this process by using a Jacobian-Free Newton-Krylov method as a nonlinear solver. In this

case, we will refer to the method as JFNK-NDA.

2.5.1 Nonlinear Diffusion Acceleration (NDA)

In this description of NDA, we will follow closely the development described in [18], filling

in gaps and providing more detail when necessary. Before continuing, we need to define the

current, J , as follows

J(x) =

∫ 1

−1
µψ(x, µ)dµ (2.38)
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and we should recall that

φ(x) =

∫ 1

−1
ψ(x, µ)dµ. (2.39)

Now, let us compute the 0th moment of the transport equation:∫ 1

−1

[
µ
∂

∂x
ψ(x, µ) + Σtψ(x, µ)

]
dµ =

∫ 1

−1

[
1

2
(Σsφ(x) +Q(x))

]
dµ∫ 1

−1
µ
∂

∂x
ψ(x, µ)dµ+ Σt

∫ 1

−1
ψ(x, µ)dµ =

∫ 1

−1

[
1

2
(Σsφ(x) +Q(x))

]
dµ

∂

∂x

∫ 1

−1
µψ(x, µ)dµ+ Σt

∫ 1

−1
ψ(x, µ)dµ =

∫ 1

−1

[
1

2
(Σsφ(x) +Q(x))

]
dµ

∂

∂x
J(x) + Σtφ(x) = Σsφ(x) +Q(x)

∂

∂x
J(x) + (Σt − Σs)φ(x) = Q(x) (2.40)

We can rewrite Eq. 2.40 as

dJ

dx
+ (Σt − Σs)φ = Q. (2.41)

Now, as in [18], we formulate the current as a combination of the Fick’s law diffusion

approximation alongside a drift term

J = − 1

3Σt

dφ

dx
+ D̂φ (2.42)

where D̂(x) is defined in such a way as to ensure consistency between the high-order and low-

order problem. D̂ is computed by using high-order scalar fluxes and currents that come directly

from taking moments of the high-order angular flux.

Combining Eq. 2.42 and Eq. 2.41 yields the Low-Order Problem for NDA:

d

dx

[
− 1

3Σt

dφ

dx
+ D̂φ

]
+ (Σt − Σs)φ = Q. (2.43)

Discretizing the NDA Equations

In order to implement NDA, we need to discretize Eqs. 2.42 and 2.43. Discretizing Eq. 2.42

yields

JHO
i+ 1

2

= − 1

3Σt

φHOi+1 − φHOi
∆x

+
D̂i+ 1

2

2

(
φHOi+1 + φHOi .

)
(2.44)

35



We use Eq 2.44 to define the D̂ term. We notice that all other terms in Eq 2.44 are

comprised of high-order components. This is what guarantees the consistency between the

high- and low-order problems. Solving for the D̂ term gives us

D̂i+ 1
2

=

JHO
i+ 1

2

+ 1
3Σt

(
φHOi+1−φHOi

∆x

)
φHOi+1+φHOi

2

. (2.45)

Now, we are ready to discretize the low-order equation, Eq. 2.43, and we get

− 1

3Σt

φi+1 − 2φi + φi−1

∆x2
+
D̂i+ 1

2

2∆x
(φi+1 + φi)−

D̂i− 1
2

2∆x
(φi + φi−1) + (Σt − Σs)φi = Qi. (2.46)

Consistency of HO and LO Equations

Suppose we have found a solution to the high-order problem, φ∗ = (φ∗1 · · ·φ∗n)T . Then, we know

that Eq. 2.9 is satisfied. That is, we have

µk
ψk
i+ 1

2

− ψk
i− 1

2

∆x
+ Σt

ψk
i+ 1

2

+ ψk
i− 1

2

2
=

1

2
Σsφ

∗
i +

1

2
Qi (2.47)

where ψ must also be the true ψ since it is computed using φ∗.

We sum both sides over all µk to find that we must have

Ji+ 1
2
− Ji− 1

2

∆x
+

Σt

2
φ∗i = Σsφ

∗
i +Qi (2.48)

where the right hand side is simply multiplied by 2 since each term is independent of µ and∑
k w

k = 2.

Now, let us substitute this solution into Eq. 2.46. This yields

− 1

3Σt

φ∗i+1 − 2φ∗i + φ∗i−1

∆x2
+
D̂i+ 1

2

2∆x

(
φ∗i+1 + φ∗i

)
−
D̂i− 1

2

2∆x

(
φ∗i + φ∗i−1

)
+ (Σt − Σs)φ

∗
i = Qi.

Substituting in the definition of D̂ gives

− 1

3Σt

φ∗i+1 − 2φ∗i + φ∗i−1

∆x2
+
Ji+ 1

2

∆x
+

1

3Σt

φ∗i+1 − φ∗i
∆x2

−
Ji− 1

2

∆x
− 1

3Σt

φ∗i − φ∗i−1

∆x2
+ (Σt − Σs)φ

∗
i = Qi.

Combining the J
∆x terms and canceling φ∗’s leaves us with exactly Equation 2.48, thus showing

the high-order and low-order problems are consistent.

We also must derive boundary conditions for the low-order problem. In the case of a
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reflective boundary, we must enforce that the derivative of the scalar flux is zero at the boundary.

Vacuum boundaries are handled in a slightly more sophisticated manner.

For vacuum boundaries, we proceed as in [18]. We begin by enforcing consistency between

the high-order and low-order problems at the boundary,

JLO1
2

φLO1

=
JHO1

2

φHO1

. (2.49)

We continue by discretizing the neutron balance equation, the 0th angular moment of the

neutron transport equation. This yields

JLO3
2

− JLO1
2

∆x
+ (Σt − Σs)φ

LO
1 = Q1. (2.50)

Now, we use Equation 2.44 to compute an expression for JLO3
2

,

JLO3
2

= − 1

3Σt

φLO2 − φLO1

∆x
+
D̂ 3

2

2

(
φLO2 + φLO1 .

)
(2.51)

We can write JLO1
2

in terms of φLO1 using Equation 2.49,

JLO1
2

=
JHO1

2

φHO1

φLO1 . (2.52)

Substituting Equations 2.51 and 2.52 into Equation 2.50, yields a single linear equation with

unknowns φLO1 and φLO2 . The high-order solution provides D̂, JHO1
2

, and φHO1 .

Implementing Picard NDA

In the most simple implementation of NDA, we solve alternately the high-order and low-order

equations. We iterate according to the process described in [18]:

1. Given a scalar flux, φn, execute a single transport sweep to yield ψn+ 1
2 .

2. Take the new angular flux, ψn+ 1
2 , and compute D̂n+ 1

2 and the boundary conditions.

3. Solve the low-order problem, 2.46, for φn+1.

4. Repeat until convergence.

We can represent this process as a new fixed-point problem, φ = GNDA(φ). In practice, we

see that Picard NDA is an vast improvement over source iteration when the medium is highly
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scattering. This is demonstrated in the results section at the end of this chapter. According to

[18], Picard-NDA may encounter trouble when the optical depth of a cell, ∆x ·Σt, is large and

may fail to converge. We have found that applying Anderson Acceleration to the fixed-point

problem can increase the rate of convergence and make the algorithm more robust. However,

in practice we may wish to abandon Picard-NDA and instead turn to a more robust method

of implementation; we utilize a Jacobian-Free Newton-Krylov method to solve this coupled

high-order/low-order system which we will discuss in the next section.

Analyzing Picard-NDA

In Section 2.2.3, we observed that source iteration damped high-frequency error modes quickly,

whereas the long-wavelength error mode took hundreds of iterations to resolve. Let us consider

a similar example. We’ll use the same perturbation to the exact solution,

φ(0) = φ∗(x) + .01 sin
(πx
τ

)
+ .01 sin

(
40πx

τ

)
,

and observe how these error modes are eliminated using Picard NDA.

Figure 2.5 shows the initial error along with the error after 1 and 10 iterations.

As we can see, after a single iteration, the high-frequency error mode has been damped con-

siderably. Furthermore, the long-wavelength error mode has been nearly completely eliminated.

Using the diffusion equation as a low-order equation effectively removes these long-wavelength

error modes.

Implementing JFNK-NDA

In order to use Newton’s method to solve this nonlinear problem, we need to pose this question

in a different form. We need to create a function, F , which takes as input φ and is identically

zero when φ satisfies the transport equation. The computations done here are similar to that of

the iteration process for Picard NDA, but are changed slightly as to couple the high-order and

low-order equations. Once we build this function, F (φ), we will feed it to the Newton-Krylov

code which will solve F (φ) = 0.

The function F is built as follows, as described in [18]:

1. Begin by inputting φ, a vector, which is a descretized version of φ(x).

2. Execute a transport sweep using φ taken as the input for F . The result of this trans-

port sweep is ψHO. The transport sweep is accomplished using the discretized transport

equation, Equation 2.9.
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Figure 2.5: We see that both short- and long-wavelength error modes are damped quickly using
Picard NDA.

3. Given ψHO we can compute D̂. This is accomplished by solving the following equation

for D̂:

JHO
i+ 1

2

= − 1

3Σt

φHOi+1 − φHOi
∆x

+
D̂i+ 1

2

2

(
φHOi+1 + φHOi .

)
(2.53)

In order to solve for D̂, we will first need to compute two other values:

JHO
i+ 1

2

=

∫ 1

−1
µψHO

i+ 1
2

dµ (2.54)

φHOi =
1

2

∫ 1

−1

(
ψHO
i+ 1

2

+ ψHO
i− 1

2

)
dµ (2.55)

We notice here that due to its construction, if φ has length n, D̂ must have length n− 1.

Therefore, D̂ is computed at each cell face, except for the left and right boundaries of the

domain.
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4. Now, using the current values for φHO and JHO, we need to compute the boundary

conditions. In [18], computing the boundary condition requires (at the left endpoint) the

values JHO1
2

and φHO0 . Using these moments, we can write an equation for φLO0 .

5. Given a new φ, D̂, and boundary conditions, we can compute F (φ). This is done using

the equation below:

Fi = − 1

3Σt

φi+1 − 2φi + φi−1

∆x2
+
D̂i+ 1

2

2∆x
(φi+1 + φi)−

D̂i− 1
2

2∆x
(φi + φi−1) + (Σt − Σs)φi −Qi

(2.56)

Using Newton-GMRES to solve F (φ) = 0 provides a noticeable decrease in work. However,

like with most iterative methods, preconditioning is extremely important. As we know, the

goal of a preconditioner is to redistribute the spectrum of the linear operator in such a way as

to please the iterative solver.

In [18], the suggested preconditioner is the inverse of the linear operator M :

M =
∂

∂x

[
1

3Σt

∂

∂x
+ D̂k

]
+ (Σt − Σs) (2.57)

where D̂k denotes the value of D̂ during the kth nonlinear iteration.

At times, we may simplify this preconditioner slightly to make the implementation easier.

In the simplified case, we use the inverse of M̄ :

M̄ =
∂

∂x

[
1

3Σt

∂

∂x

]
+ (Σt − Σs) (2.58)

While M̄ does not approximate the inverse as well as M , it is still a remarkable improvement

of the non-preconditioned problem. In general, we see that using the full preconditioner, M ,

reduces the number of function evaluations slightly over M̄ . In Chapter 6, we find that noisy

evaluations of D̂ may make the simplified preconditioner a better choice.

2.5.2 Quasi-Diffusion (QD)

Much like Nonlinear Diffusion Acceleration, or NDA, Quasi-Diffusion is a moment based ac-

celerator [14, 2, 18]. With Quasi-Diffusion, we compute the zero-th and first moments of the

transport equation. Recall from the previous section that the 0th moment can be written as:

dJ

dx
+ (Σt − Σs)φ = Q. (2.59)
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Now, let us compute the 1st moment of the transport equation:∫ 1

−1

[
µ2 ∂

∂x
ψ(x, µ) + Σtµψ(x, µ)

]
dµ =

∫ 1

−1

[
1

2
(Σsµφ(x) + µQ(x))

]
dµ∫ 1

−1
µ2 ∂

∂x
ψ(x, µ)dµ+ ΣtJ = 0

∂

∂x

∫ 1

−1
µ2ψ(x, µ)dµ+ ΣtJ = 0

∂

∂x

∫ 1

−1
µ2ψ(x, µ)dµ

(∫ 1
−1 ψ(x, µ)dµ∫ 1
−1 ψ(x, µ)dµ

)
+ ΣtJ = 0

∂Eφ

∂x
+ ΣtJ = 0 (2.60)

where

E(x) =

∫ 1
−1 µ

2ψ(x, µ)dµ∫ 1
−1 ψ(x, µ)dµ

. (2.61)

E(x) is known as the Eddington tensor [2, 18], or in one-dimension, the Eddington Factor.

In Equation 2.60 we solve for J to find

J = − 1

Σt

∂Eφ

∂x
. (2.62)

Now, we can substitute Equation 2.62 into Equation 2.41 to create our Low-Order Equation

for Quasi-Diffusion. This yields

d

dx

(
− 1

Σt

∂Eφ

∂x

)
+ (Σt − Σs)φ = Q. (2.63)

Prior to discretization, no approximations have been made and Equation 2.63 is exact. Upon

discretization, Equation 2.63 becomes(
−1

Σt

)
EHOi+1φi+1 − 2EHOi φi + EHOi−1φi−1

∆x2
+ (Σt − Σs)φi = Qi. (2.64)

In Equation 2.64, EHO is computed using the high-order angular flux computed by executing

a transport sweep using the previous scalar flux to build the scattering source.

Picard (Classic) Quasi-Diffusion

Picard, or Classic, Quasi-Diffusion works quite similarly to Picard NDA. We cycle back and

forth between the high- and low-order problems until we have found a solution. The iteration

process is as follows:
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1. Begin with some initial guess φ0. Set iteration counter i = 0.

2. Execute a transport sweep to recover ψi+ 1
2
.

3. Use ψi+ 1
2

to compute Ei+ 1
2
.

4. Solve Equation 2.63 for φi+1 with E = Ei+ 1
2
.

5. Check to see if ||φi+1 − φi||2 < tolerance. If so, return declaring φi+1 the solution.

Otherwise, increment i = i+ 1 and return to Step (2).

Again, much like NDA, Quasi-Diffusion provides a significant reduction in work. However,

while in the continuous form, if φ∗ is a solution to the high-order problem, it is guaranteed to

be a solution to the low-order problem, without a correction term, QD lacks this consistency

in the discrete case. This means that upon convergence, we may not have φHO = φLO. We can

fix this by adding a correction term, γ, in Equation 2.63:

d

dx

(
− 1

Σt

∂Eφ

∂x
+ γφ

)
+ (Σt − Σs)φ = Q. (2.65)

The consistency term (or correction term), γ is given by

JHO = − 1

Σt

dEHOφHO

dx
+ γφHO. (2.66)

Solving for γ and discretizing yields

γi+1/2 =

1
Σt

EHOφHOi+1−EHOφHOi
∆x + JHOi+1/2

φHOi+1/2

. (2.67)

In essence, γ is used only to match the discretization errors in the high-order and low-order

equations. As the mesh is refined, γ should approach zero everywhere in the domain. We can

see that the formulas for γ and D̂ from NDA look very similar, however they serve different

purposes. While D̂ makes the continuous form of the NDA low-order equation consistent with

the high-order equation, the QD low-order problem is already consistent in its continuous form.

2.6 Diffusion Synthetic Acceleration

Diffusion Synthetic Acceleration (DSA) [2] can be thought of as a preconditioned source iter-

ation. With source iteration, we took an approximation to the scalar flux, φ(n), executed a

single transport sweep to recover ψ(n+1), and then integrated the angular flux to recover the

42



new scalar flux, φ(n+1). These physics-based preconditioned Picard iterations apply an update

formula before computing φ(n+1).

Diffusion Synthetic Acceleration works as follows:

1. Input φ(n).

2. Execute a single transport sweep to recover ψ(n+ 1
2

).

3. Integrate over angle to recover φ(n+ 1
2

).

4. Compute ∆φ = φ(n+ 1
2

) − φ(n).

5. Solve the modified diffusion equation for F ,

− d

dx

1

3Σt(x)

dF

dx
(x) + Σa(x)F (x) = Σs∆φ. (2.68)

subject to the boundary conditions

F (0)− 2

3Σt(0)

dF

dx
(0) = 0, in the case of a left vacuum boundary, and,

dF

dx
(τ) = 0, in the case of a right reflective boundary..

6. Apply the update formula φ(n+1) = φ(n+ 1
2

) + F

This process, through a series of steps, takes as input φ(n) and returns a new scalar flux

φ(n+1). We can represent this as

φ(n+1) = GDSA(φ(n)). (2.69)

Much like source iteration, we have found the solution to the neutron transport equation when

we’ve found φ such that

φ = GDSA(φ). (2.70)

It is expected that the DSA preconditioned source iteration will converge in significantly fewer

iterations than source iteration. It is important to note that there is a small cost incurred by

computing the DSA update, but in 1-D, it amounts to a single tri-diagonal matrix solve. This

work is inconsequential compared to that of a transport sweep, so it is generally ignored.

Much like with source iteration or Picard-NDA, we can also apply Anderson Acceleration

to the fixed-point problem φ = GDSA(φ). Furthermore, the fixed-point map GDSA is an affine

map. Through a little bit of reorganization, we can solve the DSA fixed-point problem using

GMRES as well.
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2.7 Results

In this section, we discuss the convergence results for a series of test problems. This set of test

problems will attempt to isolate difficult problems where source iteration converges slowly. We

will see that most of these algorithms will be a huge improvement over source iteration.

2.7.1 Test Problems

The tests in Table 2.1 have scattering ratios of c = .9, .99, and .999. As the scattering ratio

increases, source iteration takes more iterations to converge. We consider tests with different

domain lengths τ = 1 and 10, or 10 and 100 mean-free-paths, respectively. Furthermore, we

use different spatial meshes to demonstrate the robustness of the various algorithms.

Table 2.1: One-Dimensional, One-Group, Slab Geometry Test Problems

Test 1 2 3 4 5

Σs 9 9.9 9.9 9.9 9.99

Σt 10 10 10 10 10

τ 1 1 10 10 10

Nx 50 50 50 500 500

For each test problem, we will converge the solution to a tolerance of 10−8. In all cases

where Anderson acceleration is used to accelerate convergence, we will store 5 vectors in the

history. For Newton’s method, we will choose our forcing term η = .01 for each test and limit

ourselves to 15 Krylov iterations per Newton, though this cap is never reached.

Table 2.2 displays the convergence results for the tests described in Table 2.1. We compare

11 methods, including source iteration to give us a baseline iteration count. In Table 2.2 the

iteration counts only account for the number of transport sweeps to convergence. In many of

the algorithms (NDA, DSA, QD) we require a low-order matrix solve at each iteration. The

matrix solves involve a tri-diagonal system which can be handled very efficiently in MATLAB.

This work is negligible compared to the work required for a transport sweep and therefore is

ignored. For example, when using Picard-DSA to solve the transport equation in MATLAB,

the time spent in the diffusion solve is merely .13% of the time spent computing a transport

sweep when 500 spatial grid points and 20 angular grid points are used.

Looking at Table 2.2, we can see that many of these algorithms are very competitive. For

all test problems, GMRES-DSA performs exceptionally well. Additionally, for test problems

1, 2, 4 and 5 Anderson Accelerated NDA/QD perform very well. Anderson Accelerated DSA
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Table 2.2: One-Dimensional, One-Group, Slab Geometry Test Problems Convergence Results

Method Test 1 Test 2 Test 3 Test 4 Test 5

Source Iteration 123 454 1579 1513 11869

GMRES 12 13 27 53 59

Picard NDA 11 12 DNC1 12 13

Picard QD 10 12 DNC1 12 13

JFNK-NDA 17 19 32 19 21

Picard - DSA 17 23 14 23 26

GMRES - DSA 7 7 7 7 7

Anderson Accelerated SI 20 32 222 212 1022

Anderson Accelerated NDA 8 9 33 9 10

Anderson Accelerated QD 8 9 30 9 10

Anderson Accelerated DSA 9 9 10 10 11

performs very well across the board as well. Furthermore, for test problems 1, 2, 4 and 5,

Picard NDA and Picard QD require only a few extra transport sweeps.

Special attention should be paid to Test Problem 3. This problem was chosen since it is

known [18] that Picard-NDA diverges for some problems in which cells become too thick. For

this test, each cell is quite large in terms of mean-free-paths (2 m.f.p’s per cell). Compare this

to Test Problem 4 in which each cell is only one-fifth of a mean-free-path wide. It is clear that

for Test Problem 3, the mesh is not fine enough to resolve the physics appropriately and thus

Picard-NDA cannot converge.

2.8 Moving Forward

At this point, we have offered a very thorough treatment of the state-of-the-art methods for

solving 1-D, single-material, single-group fixed source problems with isotropic scattering. This

chapter has highlighted the idea of the transport sweep which will be used within each of the

algorithms throughout the remainder of this thesis. The lessons we have learned from these

simple problems will guide us when we move to multiple dimensions, multi-material, multi-group

problems and when we begin solving the k-eigenvalue problem.

Table 2.2 will guide our focus when we begin looking at more difficult problems with the

exception of Quasi-Diffusion. When we move to multi-dimensional hybrid problems where the

transport sweep is executed using Monte Carlo simulation, we will ignore QD for a few basic

reasons. The main reason we will ignore QD is because it requires us to resolve the Eddington

tensor. Trying to tally a tensor using Monte Carlo simulation will be very tedious and extremely

1Did not converge due to spatial mesh size.
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noisy. It will require far too many Monte Carlo realizations to get an accurate representation

of the tensor. For this reason, we’ll focus our attention towards NDA and DSA which do not

require us to tally this noisy quantity.
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Chapter 3

Solving the 2D Transport Equation

Much like we did in Chapter 2, let us consider several methods for solving the 2-D neutron

transport equation. We’ll begin by describing the 2-D transport equation and work to gain a

functional understanding of the problem domain. After this, we’ll discuss the transport sweep

in two spatial dimensions. Once we have a method for executing a transport sweep, we’ll

discuss the implementation of source iteration. Finally, we’ll revisit the acceleration techniques

encountered in Chapter 2.

3.1 Introduction

In Chapter 1 we derived the full 3-D transport equation, Equation 1.12. For now, let us ignore

the fission term and consider time-independent, fixed source problems. In this case, Equation

1.12 reduces to

Ω̂ · ∇ψ(~r,E, Ω̂) + Σt(~r,E)ψ(~r,E, Ω̂)

=

∫ ∞
0

dE′
∫

4π
dΩ̂′ Σs(~r, Ω̂

′ → Ω̂, E′ → E)ψ(~r,E′, Ω̂′) + Sext(~r, Ω̂, E) (3.1)

We cannot solve the transport equation in its full continuous form, so we must discretize

Equation 3.1 in space, energy and angle and we will follow the example set in [21]. First, we

perform the energy discretization, yielding the system of multigroup equations. The multigroup

equations were derived in Section 1.2.1. Thus, for g = 1, ..., G, we have:

Ω̂ · ∇ψg(~r, Ω̂) + Σg
t (~r)ψ(~r, Ω̂) =

G∑
g′=1

∫
4π
dΩ̂′ Σg′→g

s (~r, Ω̂ · Ω̂′)ψg′(~r, Ω̂′) + Sgext(~r, Ω̂) (3.2)

In order to represent this equation more succinctly, we’ll represent the right hand side as a
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single function, Q(~r, Ω̂):

Ω̂ · ∇ψg(~r, Ω̂) + Σg
t (~r)ψ(~r, Ω̂) = Qg(~r, Ω̂)

where

Qg(~r, Ω̂) =
G∑

g′=1

∫
4π
dΩ̂′ Σg′→g

s (~r, Ω̂ · Ω̂′)ψg′(~r, Ω̂′) + Sgext(~r, Ω̂).

In Section 1.2.2, we discussed the angular discretization of the transport equation. This leaves

us with a system of equations

Ω̂n · ∇ψgn(~r) + Σg
t (~r)ψn(~r) = Qgn(~r) for g = 1, ..., G, and n = 1, ..., 4N (3.3)

with the following definitions:

ψgn(~r) = ψg(~r, Ω̂n)

Qgn(~r) = Qg(~r, Ω̂n).

After discretizing in energy and angle, we are left with the task of discretizing in space.

We’ll devote the next subsection to accomplishing this task.

3.1.1 Spatial Domain and Spatial Discretization

We will only consider rectangular domains in this section and discretize using rectangular grid

cells. Suppose we consider I spatial cells in the x-direction and J spatial cells in the y-direction.

This results in an x− y domain as seen in Figure 3.1.

Here, we notice that cell centers are indexed by integers and cell edges are indexed by

half integers. We choose to discretize the domain such that each cell is comprised of a single

material. That is, the total, scattering, absorption and fission cross-sections are constant within

a given cell, and thus can be represented as Σi,j . This may mean that we need to approximate

cross-section for cells in which multiple materials would be present, for example along a curved

material interface.

For each cell and each angle, we’ll define a cell-averaged flux

ψn,i,j =
1

∆xi∆yj

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

ψn(x, y) dy dx (3.4)
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Figure 3.1: x− y domain for 2D transport

49



and cell-edge fluxes

ψn,i+ 1
2
,j =

1

∆yj

∫ y
j+ 1

2

y
j− 1

2

ψn(xi+ 1
2
, y) dy (3.5)

ψn,i,j+ 1
2

=
1

∆xj

∫ x
i+ 1

2

x
i− 1

2

ψn(x, yj+ 1
2
) dx. (3.6)

Now, integrating Equation 3.3 over a single grid-cell and dividing by ∆xi∆yj yields

1

∆xi∆yj

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

(
Ω̂n · ∇ψgn(~r) + Σg

t (~r)ψn(~r)
)
dy dx

=
1

∆xi∆yj

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

Qn(~r) dy dx.

After some algebra, we find that

µn
∆xi

(
ψn,i+ 1

2
,j − ψn,i− 1

2
,j

)
+

ηn
∆yj

(
ψn,i,j+ 1

2
− ψn,i,j− 1

2

)
+ Σt,i,jψn,i,j = qn,i,j

where

qn,i,j =
1

∆xi∆yj

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

Qn(x, y) dy dx. (3.7)

As is noted in [21], no approximations have been made in the spatial discretization at this

point in time. However, as it is written, Equation 3.7 has too many unknowns. We need a way

to relate the cell-averaged angular flux to the cell-edge fluxes. We do this using the diamond

difference approximation:

ψn,i,j =
1

2

(
ψn,i+ 1

2
,j + ψn,i− 1

2
,j

)
(3.8)

ψn,i,j =
1

2

(
ψn,i,j+ 1

2
+ ψn,i,j− 1

2

)
(3.9)

Now, let us assume that for a given cell (i, j) and Ω̂n such that µn > 0 and ηn > 0 the

cell-edge fluxes on the left and bottom boundaries are known. Now, we have three equations

(Equations 3.7, 3.8, 3.9) and three unknowns (ψn,i,j , ψn,i+ 1
2
,j , ψn,i,j+ 1

2
). This linear system is

trivial to solve; we can compute the cell-averaged flux by utilizing the following equation

ψn,i,j =

[
Σt,i,j +

2µn
∆xi

+
2ηn
∆yj

]−1 [
qn,i,j +

2µn
∆xi

ψn,i− 1
2
,j +

2ηn
∆yj

ψn,i,j− 1
2

]
(3.10)

and substituting this value into the diamond difference relations we can obtain the unknown
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cell-edge fluxes. In fact, as long as one of the vertical cell-edge fluxes and one of the horizontal

cell-edge fluxes is known, we can solve Equation 3.7 for a given cell. We’ll use this idea when

completing the 2D transport sweep.

3.1.2 2D Transport Sweep

Much like we did in one spatial dimension, we’ll sweep the mesh one angle at a time. Let us

choose one of the discrete angles Ω̂n such that µn > 0 and ηn > 0 and, for now, let us assume

that all of the boundary conditions are explicit (not dependent on the flux near the boundary).

Then, the cell-edge incoming fluxes are known for all exterior edges where either x = x 1
2

or

y = y 1
2
, as shown in Figure 3.2.

Figure 3.2: For µn > 0, ηn > 0, the cell-edge incoming angular fluxes denoted by red-circles are
known since the boundary conditions are explicit.

Now, let us consider cell (1, 1). As we can see in Figure 3.3, two cell-edge fluxes are known

for cell (1, 1), so we can compute the cell-averaged flux ψn,1,1 using Equation 3.10.

Then, using the diamond difference relations, we can compute the cell-edge fluxes on the

top and right boundaries of cell (1, 1), as shown in Figure 3.4.

Moving along, we can now sweep right across the first row of our grid, computing the
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Figure 3.3: For µn > 0, ηn > 0, the cell-edge fluxes denoted by red-circles are known since the
boundary conditions are explicit. The cell-centered value, denoted by the green diamond, can
be computed using Equation 3.10.

Figure 3.4: Given the cell-edge fluxes on the left and bottom boundaries along with the cell-
averaged flux, we can compute the cell-edge fluxes, denoted by blue squares, on the top and
right boundaries using Equations 3.8 and 3.9.

cell-averaged fluxes and the unknown cell-edge fluxes, as demonstrated in Figure 3.5.

After the first row is complete, we can repeat this process in the second row. Since the first

row has been completed, cell (1, 2) now has a known flux on the left and bottom boundaries,

allowing us to compute the cell-averaged flux for this cell. This is shown in Figure 3.6.

We continue this process of beginning in the first cell in a given row and sweep to the right

across the grid until we have computed all of the unknown cell-averaged and cell-edge fluxes
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Figure 3.5: We proceed to the right across the first row computing the unknown cell-averaged
and cell-edge fluxes.

Figure 3.6: Evaluating unknown fluxes in the second row of our grid.

in that row. Once that row is complete, we move on to the next row, until we have swept to

the top of the grid. At this point, we repeat this entire process for the next angle in the first

quadrant.

We step through angles in Quadrants II, III and IV in a similar manner. For example, for

angles in Quadrant III (µ < 0, η < 0), the boundary conditions are known for cell-edges lying

on the top of the grid and the right side of the grid. For these angles, we start in the top right

corner of the grid and sweep left, then down, similar to the way we swept through the grid for

angles in Quadrant I.
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3.1.3 Dealing with Reflective Boundary Conditions

In the previous section, we dealt only with rectangular domains in which all of the boundary

conditions were explicit (either a vacuum or given by a function which does not depend on

either the angular or scalar flux near the boundary). However, reflective boundary conditions

play a major role in reactor modeling and require some advanced treatment.

Left Boundary Reflective

We’ll begin by looking at a single reflective boundary condition, and let us choose for it to

be the left boundary as shown in Figure 3.7. Now, let’s pick a pair of angles Ω̂1 = (µ, η)

and Ω̂2 = (−µ, η) where both µ > 0 and η > 0. Then for a point ~r0 on the left boundary,

ψ(~r0, Ω̂1) = ψ(~r0, Ω̂2), as shown in Figure 3.8.

Figure 3.7: Spatial domain with three explicit boundaries (single black line) and one reflective
boundary (triple black line).

After considering Figures 3.7 and 3.8, it should be clear that we must know the value of

ψ(~r0, Ω̂2) before we can begin a sweep across the domain for an angle Ω̂1. In this case, we sweep

the domain in the following manner:

1. Choose an angle Ω̂ = (−µ, η) where µ, η > 0.

2. Beginning from the first row, right-most cell of the domain, sweep left across the domain

until we encounter the left boundary.
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Figure 3.8: Particles encountering the reflective boundary with angle Ω̂2 are reflected off in a
new direction Ω̂1.

3. Set ψ(~r0, Ω̂) = ψ(~r0, Ω̂
∗) where Ω̂∗ = (µ, η).

4. Sweep right across the domain until we encounter the right boundary.

5. Repeat steps 2 - 4, moving up one row at a time, until we’ve swept the entire domain.

This sweep method is depicted in Figure 3.9. We use this scheme for all pairs of angles

with η > 0. When η < 0, we use a similar scheme for sweeping the domain, but instead of

starting in the lower-right corner of the domain, we begin from the upper right corner of the

domain. One should notice that this sweep method is no more expensive than a sweep with

all four boundaries explicit. The same number of passes left and right across the domain take

place, only the order in which they’re performed has changed. This is not the case in the next

section when we consider reflective boundaries on the left and right.

Left and Right Boundary Reflective

In the previous case, with only one reflective boundary, we were easily able to determine incom-

ing fluxes on the left boundary by simply executing a sweep from right to left in the reflected

direction Ω̂∗. By utilizing the known incoming flux on the right boundary, we can propagate

flux information across the domain to the left boundary and now have all the information re-

quired to sweep back across the domain. This becomes far more complicated when a pair of

opposing boundaries are both reflective. In this case, the incoming flux on the right boundary

is dependent on the incoming flux on the left boundary and vice versa. With this problem con-
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Figure 3.9: Particles encountering the reflective boundary with angle Ω̂2 are reflected off in a
new direction Ω̂1.

figuration, we are forced to iterate on the boundary conditions in order to determine incoming

fluxes on each side.

In this case, we sweep the domain according to the following plan:

1. Choose an angle Ω̂ = (−µ, η) where µ, η > 0.

2. Beginning from the first row, right-most cell of the domain, make an initial guess for

ψ(~rright, Ω̂) = Ψold
right.

3. Sweep left across the domain until we encounter the left boundary.

4. Set ψ(~r0, Ω̂) = ψ(~rleft, Ω̂
∗) where Ω̂∗ = (µ, η).

5. Sweep right across the domain until we encounter the right boundary.

6. Let Ψnew
right = ψ(~rright, Ω̂

∗).

7. If ‖Ψnew
right −Ψold

right‖ < τ where τ is a user-defined convergence tolerance, move on to Step

8, otherwise set Ψold
right = Ψnew

right and repeat Steps 2 - 6.

8. Move up to the next row and repeat Steps 2 - 7 until we’ve swept the entire domain.
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This scheme can be visualized in Figure 3.10.

Figure 3.10: We must iterate on the incoming flux until we’ve reached an acceptable level of
convergence when there is a pair of opposing reflective boundaries.

Again, we use this scheme for all pairs of angles Ω̂ and Ω̂∗ with η > 0. When η < 0, we

start at the top of the grid and work our way down using a similar scheme. It is important

to note that the mesh sweep for this configuration can be several times more expensive than

a mesh sweep when all boundaries are explicit. For optically thick problems, in practice we

see that 2 - 4 iterations are needed for the boundary conditions to converge, depending on the

accuracy of our initial guess. For smaller domains where the flux from the boundary has a

greater impact on the entire grid, more iterations may be required. If all boundary conditions

are guessed exactly correct, this scheme will be exactly as expensive as the case of all explicit

boundary conditions, but in general we should expect a sweep for this configuration to be at

least twice as expensive.
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Left and Bottom Boundary reflective

The final case which we will consider at this point is the configuration in which we have reflective

boundaries on a single corner and explicit boundary conditions elsewhere. For simplicity, let

us only consider the lower-left corner to be the corner with reflective boundary conditions, as

shown in Figure 3.11.

Figure 3.11: In this configuration the left and bottom boundaries are reflective and the remain-
ing boundaries have explicit boundary conditions.

It should be clear that the incoming fluxes are known for both the top and right boundaries.

Since these incoming fluxes are known, we can execute a mesh sweep for all angles Ω̂ = (−µ,−η)

with µ, η > 0. For these angles we’ll sweep from right to left, top to bottom.

After the sweep along Ω̂ has been completed, we now have partial information for the

incoming fluxes on the left and bottom boundaries. Now, on the bottom boundary, we know

the incoming flux for all directions Ω̂∗ such that µ < 0 and η > 0. Similarly, on the left

boundary, we know the incoming fluxes for all directions Ω̂∗∗ with µ > 0 and η < 0. With this

information, we can sweep all angles Ω̂∗ starting from the lower-right corner and all angles Ω̂∗∗

starting from the upper-left corner.

Finally, after all angles Ω̂, Ω̂∗, and Ω̂∗∗ are completed, we have complete knowledge of the
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incoming fluxes on the left and bottom boundaries. Therefore, we can finish the mesh sweep

by sweeping all angles Ω̂∗∗∗ where µ, η > 0 starting from the lower-left corner.

It is important to note that while we’ve had to change the order in which the mesh is swept,

the sweep for configurations with a reflective corner is no more expensive than a sweep for a

configuration with all explicit boundary conditions. While we do not initially have information

regarding incoming fluxes on the left and bottom faces of the domain, we can obtain this

information without iterating. For this reason, the sweep for a configuration with a reflective

corner is most similar to the case where one reflective boundary exists.

3.1.4 Dealing with Negative Fluxes

It is important to note that for a given cell, even if the incoming fluxes are both positive, it is

possible for the outgoing fluxes to become negative. Suppose that both ψi− 1
2
,j and ψi,j− 1

2
are

both known and positive. Then we can compute the cell-averaged flux using Equation 3.10.

Then, by rearranging the diamond difference relations, we can compute ψi+ 1
2
,j and ψi,j+ 1

2
by

ψn,i+ 1
2
,j = 2

(
ψn,i,j −

1

2
ψn,i− 1

2
,j

)
(3.11)

ψn,i,j+ 1
2

= 2

(
ψn,i,j −

1

2
ψn,i,j− 1

2

)
(3.12)

This tells us that if either ψn,i,j <
1
2ψn,i− 1

2
,j or ψn,i,j <

1
2ψn,i,j− 1

2
, at least one of the outgoing

fluxes will be negative. If Σt is large compared to ∆x and ∆y, there is a good possibility of

encountering negative fluxes for cells where qi,j (the source) is small [21]. It is important to

note that as we make the angular mesh more dense, we will need to refine the spatial mesh as

well. We can see this by taking a closer look at Equation 3.10.

Negative fluxes do not reflect reality (they correspond to a negative distribution of neutrons)

and should be avoided. There are two simple ways to alleviate this issue. First, we can use

a finer mesh so that ∆x and ∆y are smaller in comparison to Σt. This is not necessarily an

ideal solution, however. A finer mesh means more computation. If we double the number of

cells in both the x− and y−directions, we essentially quadruple the size of the problem. This

increases the cost, in terms of memory and time, of solving this problem and this cost may

become unreasonable before we’ve decreased cell sizes enough to avoid negative fluxes.

A second way to avoid negative fluxes is to set them equal to zero whenever they’re encoun-

tered. That is, after the out-going fluxes are computed for a given cell, we check each of the

outgoing fluxes and if either of them are negative, we set offending fluxes equal to zero.

A third way to avoid negative fluxes does exist, but does not use the diamond difference

relation for computing outgoing fluxes. Instead, we solve for the exact angular flux along
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characteristics by assuming a constant source inside the cell. This is referred to as the step

characteristics method [21, 19] and will be discussed briefly in the next section.

Depending on our method for solving the problem, refining the mesh is potentially a better

option if it is feasible. It may also be acceptable to allow negative fluxes for a few iterations.

It can often be the case that as the scattering source gets larger we will eventually avoid these

negative fluxes in later iterations. It is sometimes the case that while the angular flux may be

negative at a location (x, y) for some direction Ω̂n, it may be positive for all other directions.

In general, this problem should be addressed on a case by case basis.

3.1.5 Step Characteristics Discretization

In this section we will briefly derive the step characteristics method as found in [19]. We find

that this discretization is useful for large 2-D problems in which we cannot afford to refine the

mesh.

We assume that neutrons travel in straight lines between collisions and that these straight

lines are characteristics of transport equation, which are given by

dψ

ds
+ Σtψ = Q. (3.13)

We will assume that within a given cell, Q and Σt are constant. We can integrate Equation

3.13 to recover

ψ = ψ0e
−Σts +

∫ s

0
Qe−Σt(s−t)dt (3.14)

in which ψ0 is the angular flux on the boundary and s is the distance along the characteristic

to a point on the boundary.

Without loss of generality, let us assume that we are considering an angle in the first

quadrant (µ > 0 and η > 0). Furthermore, let us assume that the angular flux on the left and

bottom boundaries of the cell do not vary in the y and x-directions, respectively. That is, we

assume the angular flux along horizontal and vertical lines (cell-boundaries) in space can be

written as step functions which depend on angle.

Now, let us draw a characteristic originating from the lower left corner of the cell. We can

visualize this cell in Figure 3.12. Furthermore, let us translate the domain so the bottom left

corner of the cell is coincident with the origin. Now, the angular flux at any point above or

below the characteristic line can be written as

ψbelow(x, y, µ, η) = Q(1− e−Σty/η)/Σt + ψbottome
−Σty/η (3.15)

ψabove(x, y, µ, η) = Q(1− e−Σtx/µ)/Σt + ψlefte
−Σtx/µ. (3.16)
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Figure 3.12: Configuration of cell for development of the step characteristics method.

Then, we can compute the average angular flux on the top and right boundaries using the

following formulas

ψright(∆x, y, µ, η) =
1

∆y

∫ ∆y

0
ψ(∆x, y, µ, η)dy (3.17)

ψtop(x,∆y, µ, η) =
1

∆x

∫ ∆x

0
ψ(x,∆y, µ, η)dx. (3.18)

It turns out that we can write an explicit formula for the average angular flux along the top

and right boundaries. We have

ψright = S + (ψleft − S)(1− ρ)e−α + (ψbottom − S)ρ(1− e−α)/α (3.19)

ψtop = S + (ψleft − S)(1− e−α)/α (3.20)
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if ρ < 1 and

ψright = S + (ψbottom − S)(1− e−β)/β (3.21)

ψtop = S + (ψleft − S)(1− e−β)/(ρβ) + (ψbottom − S)(1− 1/ρ)e−β (3.22)

if ρ > 1, where S, α, β and ρ are given by

S = Q/Σt

α = Σt∆x/µ

β = Σt∆y/η

ρ = α/β.

The value of ρ determines whether the characteristic passes through the top of the cell or the

right side boundary. Now, the cell average angular flux can be recovered by a rearrangement

of the relation

µ
ψright − ψleft

∆x
+ η

ψtop − ψbottom
∆y

+ Σtψave = S. (3.23)

This discretization guarantees that angular flux remains positive at all points in the domain.

Unfortunately, this discretization is not second order accurate like the diamond difference dis-

cretization [19]. However, we will employ the step characteristics method for the 2-D eigenvalue

problems considered in Chapter 4.

3.2 Source Iteration

As in one dimension, the most straightforward method for solving the 2-D transport equation

is source iteration. Given a source term Q(~r, Ω̂), we can solve the equation

Ω̂ · ∇ψ(~r, Ω̂) + Σt(~r)ψ(~r, Ω̂) = Q(~r, Ω̂)

using the transport sweep described in Section 3.1.2. However, unless we are working in a non-

scattering and non-fissioning environment, we do not know the total source term, Q, exactly.

Recall, for a one-speed problem, Q is given by

Q(~r, Ω̂) =

∫
4π
dΩ̂′ Σs(~r, Ω̂ · Ω̂′)ψ(~r, Ω̂′) + Sext(~r, Ω̂)

so in order to compute Q, we must already know the angular flux.

As in 1-D, we solve this problem iteratively. We take an initial guess, ψ(0), and use the
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following relation to produce new iterates:

Q(n+1)(~r, Ω̂) =

∫
4π
dΩ̂′ Σs(~r, Ω̂ · Ω̂′)ψ(n)(~r, Ω̂′) + Sext(~r, Ω̂) (3.24)

Ω̂ · ∇ψ(n+1)(~r, Ω̂) + Σt(~r)ψ
(n+1)(~r, Ω̂) = Q(n+1)(~r, Ω̂) (3.25)

The differences between source iteration in one and two dimensions are minute. Generally,

since we cannot deal with the angular variable continuously, we represent that scattering term

in terms of Legendre polynomials. In this case, instead of storing the angular flux, we choose

to store several angular moments of the angular flux. These can be computed on the fly during

a transport sweep. Fortunately, this means that the angular flux never needs to be stored. In

2-D, the group angular flux is a 4-D array whereas the group scalar flux and higher moments

of the angular flux are only 2-D arrays.

In some cases, which we will demonstrate, source iteration may take hundreds or thousands

of iterations to converge. As the spatial domain gets bigger, more energy groups are used and

the angular grid is refined, this becomes an extremely expensive problem to solve. In this case,

source iteration is not a reasonable method for solving the transport equation. Instead, more

sophisticated methods like linear iterative solvers (e.g. Krylov methods), Diffusion Synthetic

Acceleration or moment systems are used to accelerate convergence.

3.2.1 Multigroup Transport Sweep

At each iteration, we must execute a single transport sweep which we will represent

Ψ(n+1) =
1

4π
L−1

[
(SU + S + SL)Φ(n) + ~Q

]
, (3.26)

in which L represents the streaming and absorption terms, S represents the in-group scattering,

SL represents the down-scattering matrix, and SU represents the up-scattering contribution.

However, in reality, we usually only execute the transport sweep one group at a time. For the

first group, we build the scattering source using the group scalar fluxes entirely from iteration

(n). However, for group 2, we can build the scattering source using the first group scalar flux

we just computed at iteration level iteration (n+ 1) and the rest of the scattering source from

group fluxes at iteration level (n). In this sense, we should write

Ψ(n+1) =
1

4π
L−1

[
(SU + S)Φ(n) + SLΦ(n+1) + ~Q

]
(3.27)

to indicate that we are using the most current group scalar fluxes when computing the scattering

source for each group. In general, we represent this transport sweep using either Equation 3.26

or Equation 3.27, but we keep in mind the order in which this sweep is executed in practice.

63



3.3 Linear Iterative Methods

Just like we did in Chapter 2, we can represent the transport equation as an integral equation

in terms of the scalar flux φ. In this sense, the transport equation can be again written as

φ = Kφ+ g.

K and g now reflect the 2D nature of the problem, but we can define these operators in the same

way we did in one spatial dimension. If we let G(φ) represent the action of a two-dimensional

mesh sweep, we can write the operator K and g in terms of G. We have

g = G(~0) (3.28)

Kφ = G(φ)−G(~0). (3.29)

Therefore, solving the two-dimensional transport equation is as simple as solving the linear

system,

Mφ = g,

where

Mφ = φ−G(φ) +G(~0).

We’ll notice this is no different than one-dimension, except that φ has dimension Nx×Ny where

Ni represents the number of cells in the i-direction.

Applying Krylov methods to this system of linear equations is no more difficult than it was

in one-dimension, aside from memory concerns. Just as in Chapter 2, we can try to solve this

system with GMRES, TFQMR or BiCGSTAB. However, with the increased dimensionality, we

may not be able to store the entire Krylov basis built by GMRES in memory. In this case,

we’ll remind the reader that we can attempt to use GMRES with restarts, low-storage Krylov

methods, or turn to one of the other accelerators discussed in Chapter 2.

3.4 Nonlinear Diffusion Acceleration

In Chapter 2, we demonstrated that nonlinear diffusion acceleration, likewise JFNK-NDA, was

highly effective in accelerating the convergence of the solution of the neutron transport equation.

In two spatial dimensions, we can accelerate source iteration using an identical formulation. We
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begin with the multi-group formulation of the neutron transport equation

Ω̂ · ∇ψg + Σt,gψg =
1

4π

 G∑
g′=1

Σg′→g
s φg′ +Qg


before computing the zeroth angular moment. As in 1-D, we have

φg =

∫
4π
ψg dΩ̂

~Jg =

∫
4π

Ω̂ ψg dΩ̂.

Now, unlike 1-D, the current, ~J , is a vector. Generally, we write ~J = [Jx, Jy]
T in which

Jx,g =

∫
4π
µ ψg dΩ̂

Jy,g =

∫
4π
η ψg dΩ̂.

Given our description of the current, we can now write the zeroth angular moment of the

transport equation for group g,

∇ · ~Jg + (Σt,g − Σg→g
s )φg =

∑
g′ 6=g

Σg′→g
s φg′ +Qg. (3.30)

Again, the neutron diffusion equation can be derived by using Fick’s law for the current,

~Jg = − 1

3Σt,g
∇φg,

which yields

∇ ·
(
− 1

3Σt,g
∇φg

)
+ (Σt,g − Σg→g

s )φg =
∑
g′ 6=g

Σg′→g
s φg′ +Qg. (3.31)

Just as in one spatial dimension, solving the neutron diffusion equation would be desirable

over solving the neutron transport equation as all that is required is a single sparse, banded

matrix inversion. However, we must recall that the neutron diffusion equation and the neutron

transport equation are not consistent [18, 2]. That is, if φ∗ is a solution to the neutron transport

equation, it is not generally the solution to the neutron diffusion equation.

As in Chapter 2 and [18, 23], we supplement Fick’s law with a drift term, D̂, so that

upon convergence, the augmented diffusion equation is consistent with the neutron transport
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equation. We write

~Jg = − 1

3Σt,g
∇φg + D̂gφg. (3.32)

This vector equation can be broken down into its two components,

Jx,g = − 1

3Σt,g

dφg
dx

+ D̂x,gφg (3.33)

Jy,g = − 1

3Σt,g

dφg
dy

+ D̂y,gφg. (3.34)

Substituting this definition of the group current (3.32) into Equation 3.30 yields a consistent

diffusion equation,

∇ ·
(
− 1

3Σt,g
∇φg + D̂gφg

)
+ (Σt,g − Σg→g

s )φg =
∑
g′ 6=g

Σg′→g
s φg′ +Qg (3.35)

or

d

dx

[
− 1

3Σt,g

dφg
dx

+ D̂x,gφg

]
+

d

dy

[
− 1

3Σt,g

dφg
dy

+ D̂y,gφg

]
+ (Σt,g − Σg→g

s )φg =
∑
g′ 6=g

Σg′→g
s φg′ +Qg. (3.36)

In general, writing this equation in detail is too cumbersome, so we will write the system of

G equations in operator notation,

DΦ = (SL + SU ) Φ + ~Q, (3.37)

in which

DgΦ = ∇ ·
(
− 1

3Σt,g
∇φg + D̂gφg

)
+ (Σt,g − Σg→g

s )φg,

SL,gΦ =
∑
g′<g

Σg′→g
s φ′g,

SU,gΦ =
∑
g′>g

Σg′→g
s φ′g.

3.4.1 Picard NDA

As we’ve done previously, we’ll represent that transport equation using operator notation

LΨ =
1

4π

[
(SU + S + SL)Φ + ~Q

]
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so that we can represent the action of a transport sweep as an inversion of L. That is, we’ll

write

Ψ =
1

4π
L−1

[
(SU + S + SL)Φ + ~Q

]
Now, we describe Picard NDA in Algorithm 3.4.1

Algorithm 3.4.1: Picard NDA

Input Φ(0) and loop counter n = 0.
while Scattering source not converged do

Update counter, n = n+ 1.
Execute transport sweep:

ΨHO =
1

4π
L−1

[
(SU + S + SL)Φ(n) + ~Q

]
Update high-order moments:

ΦHO =

∫
4π

ΨHO dΩ̂

~JHO =

∫
4π

Ω̂ ΨHO dΩ̂

Compute D̂(n+1) = D̂(ΦHO, ~JHO).
Solve the NDA Low-Order problem, Equation 3.37 for Φ(n+1):

D(n+1)Φ(n+1) = (SL + SU ) Φ(n+1) + ~Q

end while

As in 1-D, we see that Picard NDA is very effective compared to source iteration in solving

problems with high scattering ratios. Let us consider a simple test problem given by Table 3.1.

Table 3.1: Test Problem for Convergence Comparisons

Groups Σs Σt τx τy Nx Ny

1 9.95 10 1 1 50 50

We’ll analyze the convergence of Picard NDA and Source Iteration by perturbing the solution
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to this problem and using it as the initial iterate for each algorithm. This initial iterate will be

given by

Φ(0)(x, y) = Φ∗(x, y) + .1 [sin(20πx/τx) + sin(20πy/τy) + sin(πx/τx) + sin(πy/τy)] .

This represents a high frequency error mode along with a low frequency error mode. We’ll

compare the convergence of Source Iteration and Picard NDA using Φ(0) as an initial iterate.

Figures 3.13 and 3.14 plot errors over the course of several iterations.

These figures clearly demonstrate how effective Picard NDA can be over Source Iteration.

In Figure 3.13, we can see that after 50 source iterations, the infinity norm of the error has

only been decreased by a single order of magnitude. Source iteration has effectively damped

the high frequency error mode, however the low frequency mode still persists. After another 50

iterations, the low frequency error mode has been damped further, but still exists.

In Figure 3.14 we see that Picard NDA handles both the high and low frequency error modes

effectively in relatively few iterations. After 1 iteration, the error has been lowered by an entire

order of magnitude. Each additional iteration reduces the error by roughly a single order of

magnitude. After 5 iterations the maximum error is less than 10−5. After 10 iterations the

maximum error is roughly 1.3×10−9. Compare this to source iteration, in which the maximum

error after 10 iterations is roughly 1.3× 10−1.

These results are nearly identical to the results produced in Chapter 2.

3.4.2 JFNK-NDA

As in Chapter 2, we can cast the NDA algorithm as a system of nonlinear equations and use a

Jacobian-Free Newton-Krylov method to solve the system. In this case, we write the system as

F (Φ) ≡ [F1(Φ) F2(Φ) · · ·FG(Φ)]T = 0, (3.38)

in which

Fg(Φ) =
[
DgΦ(n+1) − (SL,g + SU,g)

]
Φ(n+1) +Qg. (3.39)

We remind the reader that

DgΦ = ∇ ·
(
− 1

3Σt,g
∇φg + D̂g(Φ)φg

)
+ (Σt,g − Σg→g

s )φg,

SL,gΦ =
∑
g′<g

Σg′→g
s φg′ ,

SU,gΦ =
∑
g′>g

Σg′→g
s φg′ ,
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Source Iteration Convergence Demonstration
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Figure 3.13: Source iteration damps high frequency error modes quickly, however low frequency
errors persist.

in which the nonlinearity in F is due to the dependence of D̂ on Φ.

We evaluate F in the following order:

1. Input Φ.
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Picard NDA Converence Demonstration
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Figure 3.14: NDA damps both high and low frequency error modes quickly.

2. Execute a single transport sweep, recover ΨHO.

3. Compute high-order moments ΦHO and ~JHO.

4. Compute D̂ = D̂(ΦHO, ~JHO).
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5. Compute F (Φ).

We solve F (Φ) = 0 using Newton-GMRES. That is, given an initial iterate, Φ(0), we iterate

Φ(n+1) = Φ(n) − F ′(Φ(n))−1F (Φ(n))

where the Newton step is computed by applying GMRES to the linear problem

F ′(Φ(n))−1s = −F (Φ(n)).

We precondition the linear solve with the matrix M−1, where M is given by

M = D − (SL + SU )

where D is evaluated using the D̂ from the most recent evaluation F .

3.5 Test Problems

As in Chapter 2, we’ll compare the methods we’ve discussed for solving the 2-D transport

equation on a set of test problems. These three tests are summarized in Table 3.2. Each of

these test problems is set in two groups and the domain is comprised of a single material. For

tests 1 and 2, we’ll use vacuum boundary conditions on each boundary. For test 3, we’ll consider

a reflective boundary along the x- and y-axes.

We’ll apply source iteration, GMRES, Picard NDA and JFNK-NDA to each of these prob-

lems and compare the iteration statistics. For each test, we’ll use an S8 angular discretization.

Furthermore, we will abandon the diamond difference discretization for the step characteristics

discretization in space.

Table 3.3 demonstrates the convergence behavior for the test problems described in Table

3.2 for four methods; Source Iteration, GMRES, JFNK-NDA, and Picard NDA. As we can see,

as the scattering ratio increases, source iteration becomes more and more inefficient. For Test

3, it requires over 2500 transport sweeps to reduce the residual to a tolerance of 10−8. GMRES

reaches the same convergence criterion in only 134 iterations. For all 3 test problems, both

Picard NDA and JFNK-NDA perform very well, converging in under 20 iterations for each test

problem.

3.6 Conclusions

Moving forward, our goal will be to compute the dominant eigenvalue of the transport equation,

known as keff , or k-effective. The results from Chapters 2 and 3 will influence our choice in
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Table 3.2: Test Problem for Convergence Comparisons

Tests

Parameter 1 2 3

Group 1 2 1 2 1 2

Σt .5 2 1 3 5 10

Σ1→g
s 0.40 0.05 0.90 0.10 4.00 1.00

Σ2→g
s 0.00 1.95 0.50 2.40 0.00 9.95

τx 5 1 10

τy 5 5 10

Nx 50 50 100

Ny 50 50 100

Table 3.3: Transport Sweeps to Convergence

Tests

Method 1 2 3

Source Iteration 200 55 2506

GMRES 19 15 134

Picard NDA 11 11 11

JFNK-NDA 16 14 14

algorithms for solving the k-eignevalue problem. We have seen how effective NDA-based algo-

rithms can be for accelerating the fixed-source problem. We will demonstrate in the following

chapter how NDA can be used in a very similar manner to accelerate the convergence of the

eigenvalue calculation.

Much like we did with the fixed-source problem, we can use NDA for the eigenvalue problem

to shift a large portion of the work from high-order transport sweeps to low-order diffusion

equation solves. This leads to two eigenvalue algorithms, NDA-PI and NDA-NCA, both of

which will be discussed at length in the following chapter.
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Chapter 4

Criticality Calculations

All of the work performed in Chapters 2 and 3 has been in preparation for this chapter, in

which we explore numerical methods for computing keff , or the dominant eigenvalue of the

neutron transport equation. Calculation of keff can be difficult and computationally expensive,

especially for practical reactor configurations, in which the dominance ratio is very near to 1.

If we order the eigenvalues so that |ki| > |kj | for all i < j, the dominance ratio, ρ, is defined

to be the ratio of the magnitude largest eigenvalue (keff = k1) to the magnitude of the second

largest eigenvalue [17, 23]. That is,

ρ =
|k2|
|keff |

.

In the previous chapters, we’ve developed methods to solve

(I − K) Φ = g,

where the right hand side, g, represents some fixed quantity which is a function of the material

cross-sections, boundary conditions and fixed source. In both Chapters 2 and 3, we found that

NDA-based methods performed very well for a wide range of problems and was able to speed

up the convergence by several orders of magnitude over source iteration.

In this chapter, we will consider methods for solving the k-eigenvalue problem, which consists

of computing the dominant eigenvalue for

(I − K) Φ =
1

k
FΦ. (4.1)

In Equation 4.1, FΦ represents the fission source term, which is scaled by 1
keff

to enforce

that the number of fission neutrons in each generation remains constant. For the k-eigenvalue

problem, the analog of source iteration is called power iteration. Just like source iteration for
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the fixed-source problem, power iteration is the most basic method for computing the dominant

eigenvalue. We’ll discuss power iteration in the following section, however before we move on, it

is important to note that power iteration suffers from the same deficiencies that source iteration

does for the fixed source problem, along with additional difficulties that arise in the eigenvalue

problem.

In Chapter 2, we showed that for highly scattering problem (Σs/Σt ≈ 1) source iteration

may take thousands or tens of thousands of iterations to converge. This is due to source

iteration’s inability to quickly damp long-wave length (diffusion) error modes. Essentially, for

highly scattering problems, source iteration cannot quickly compute the scattering source.

In this chapter, we find that power iteration struggles in the same regime. For high scattering

ratios, power iteration is slow to converge the scattering source. In addition to the scattering

source, power iteration must converge the fission production source. For problems in which the

dominance ratio, ρ, is nearly 1, power iteration will be slow to converge the eigenvalue.

For this reason, it is important that we develop methods that allow us to accelerate the

convergence of the dominant eigenvalue and its associated eigenvector. Keeping in mind the

noted deficiencies of power iteration, these methods must accelerate the computations of both

the scattering and fission source terms. We’ve shown how NDA-based methods can accelerate

the scattering source term and in this chapter, we will demonstrate how we can use similar

methods to accelerate the eigenvalue computation. We’ll derive a sequence of consistent low-

order eigenvalue problems which, upon convergence, will yield the dominant eigenvalue and can

be iterated upon at a fraction of the cost of a transport sweep.

Recent works have investigated using Newton’s method for solving the eigenvalue problem

for both neutron transport and diffusion theory [11, 12, 17, 23, 33, 31]. In [12] Newton’s method

is applied directly transport equation, whereas in [23, 33, 31] Newton’s method is applied to

an angular moment-based system. In [4], the authors use Nonlinear Krylov Acceleration in an

attempt to accelerate the basic power iteration algorithm.

4.1 Power Iteration

In the well-known and understood power method from mathematics, one considers successive

applications of a matrix, A, to an approximation to the eigenvector associated with the dominant

eigenvalue,

~yn+1 = A~xn

~xn+1 =
~yn+1

‖~yn+1‖
.
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Under the appropriate conditions (see Appendix B), ‖~yn+1‖ converges to the dominant eigen-

value and ~xn+1 converges to its associated eigenvector. The power iteration algorithm is very

similar in the way in which we compute keff .

As a reminder, we’re trying to compute the maximum value of k for which

(I − K) Φ =
1

k
FΦ (4.2)

is satisfied for some nonzero scalar flux Φ. We can rewrite this as

(I − K)−1FΦ = kΦ,

which suggests an iterative procedure similar to the one defined above

Ξn+1 = (I − K)−1FΦn (4.3)

Φn+1 =
Ξn+1

‖Ξn‖
.

However, upon further investigation, we realize that this iterative process would involve the

inversion of (I − K) at each step (Equation 4.3). The inversion of this operator is the same as

solving a fixed source problem in which the right hand side is given by the fission source. In

general, this is an inefficient process and more expensive than necessary.

Instead, we avoid completely inverting (I − K). Instead, we execute some fixed number of

transport sweeps for a fixed right-hand side, approximating (to some degree) the inversion of

(I − K). This is described mathematically in Algorithm 4.1, referred to as Power Iteration.

The condition for exiting the inner while loop in Algorithm 4.1 can be replaced by some

condition which measures the relative difference between successive iterates. In practice, either

method will yield the appropriate eigenvalue, though depending on the choice of N or the

relative tolerance, one instance may outperform the other. However, this fact is somewhat

uninteresting as we have already noted that the convergence of power iteration is unacceptably

slow and demands acceleration.

In Section 4.3, we will demonstrate that power iteration may take thousands of transport

sweeps to compute the eigenvalue correct to six decimal places for a realistic reactor-like con-

figuration. We’ll also demonstrate that the same accuracy solution can be obtained using an

NDA-based method using on order 10 transport sweeps and a series of less expensive diffusion

solves.
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Algorithm 4.1: Power Iteration

Choose initial iterate φ0, approximate eigenvalue k0, outer iteration counter m = 0
while eigenvalue not converged do
m = m+ 1
Set Φ0 = φm−1, inner iteration counter n = 0
while n < N do
n = n+ 1
Execute transport sweep:

Ψ(n) = L−1

[
(SU + SD)Φ(n−1) + SLΦ(n) +

1

km−1
Fφ(m−1)

]
Φ(n) =

∫
Ψ(n)dΩ̂

end while
Update approximate eigenvalue

km = km−1

∫
νΣfΦ(n)dV∫
νΣfφ(m−1)dV

and the flux for the fission term

φ(m) = Φ(n)

end while

4.2 NDA-Based Eigenvalue Acceleration

Consider the multi-group k-eigenvalue problem

Ω̂ · ∇ψg + Σt,gψg =
1

4π

 G∑
g′=1

Σg′→g
s φg′ +

χg
keff

G∑
g′=1

νΣf,g′φg′

 (4.4)

where g = 1, 2, . . . , G. Just as we did in Chapters 2 and 3 when deriving the NDA low-order

equation, let us compute the 0th angular moment of Equation 4.4,

∇ · ~Jg + (Σt,g − Σg→g
s )φg =

∑
g′ 6=g

Σg′→g
s φg′ +

χg
keff

G∑
g′=1

νΣf,g′φg′ . (4.5)

Again, we must close this equation by relating the current to the scalar flux, and we do so

using the same Fick’s law plus correction term description we’ve used throughout this thesis
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[23, 18, 32],

~Jg = − 1

3Σt,g
∇φg + D̂gφg. (4.6)

Combining Equations 4.5 and 4.6 yields the NDA low-order eigenvalue problem,

∇ ·
[
− 1

3Σt,g
∇φg + D̂gφg

]
+ (Σt,g − Σg→g

s )φg =
∑
g′ 6=g

Σg′→g
s φg′ +

χg
keff

G∑
g′=1

νΣf,g′φg′ . (4.7)

Upon convergence, the high-order eigenvalue problem (Equation 4.4) and the low-order eigen-

value problem (Equation 4.7) have the same dominant eigenvalue. That is, if D̂ is evaluated

using the dominant eigenvector and the associated high-order current, then Equation 4.7 has

the same dominant eigenvalue/eigenvector pair as Equation 4.4.

In the two following subsections, we’ll discuss two NDA-based eigenvalue methods, NDA-

PI and NDA-NCA [23]. Both of these methods make use of the same low-order eigenvalue

equation, however they differ in the way this equation in solved. The general idea is similar to

that for fixed-source problems. We use the high-order equation to update the correction term,

D̂. Given this updated D̂, we use can use the low-order equation to update the approximate

eigenvector and eigenvalue.

4.2.1 NDA-PI

The first high-order/low-order eigenvalue method is referred to as NDA accelerated Power

Iteration, or NDA-PI [23]. This aptly named method uses the transport eigenvalue equation

(Equation 4.4) to build compute a correction term, D̂, for each group. Using this D̂, we build

a system of low-order equations (Equation 4.7) and solve this system using the power iteration

technique described before. We present this method formally in Algorithm 4.2.1.

NDA-PI improves upon power iteration in two distinct ways. First, we have accelerated

the convergence of the scattering source by using NDA. Much like NDA for the fixed-source

problem, NDA-PI allows us to converge the scattering source in significantly fewer iterations.

Secondly, now the power iterations take place in the low-order problem instead of in high-order

space. Not only have we cut down on the total number of iterations, but much of the work

has been moved to the low-order eigenvalue problem. This is much less expensive to solve and

saves us a considerable amount of high-order work.

In Section 4.3 we demonstrate the convergence results for NDA-PI for a set of 1-D and 2-D

test problems. We’ll notice that NDA-PI can be extremely effective compared to standard PI,

however there is still room for improvement by cutting down the number of low-order diffusion

solves. We’ll do this in two ways; In Section 4.2.2 we’ll consider NDA-NCA in which the low-
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Algorithm 4.2.1: NDA-PI

Choose initial iterate Φ0, approximate eigenvalue k0, outer iteration counter m = 0
while transport eigenvalue not converged do
m = m+ 1
Execute a single transport sweep and compute angular moments

ΨHO = L−1

[
SΦ(m−1) +

1

km−1
FΦ(m−1)

]
ΦHO =

∫
ΨHOdΩ̂

ΦHO =

∫
Ω̂ΨHOdΩ̂

Compute D̂ for each group

D̂g =
~JHOg + 1

3Σt,g
∇ΦHO

g

ΦHO
g

Set inner iteration counter n = 0 and φ(0) = ΦHO, K0 = km−1.
while diffusion eigenvalue not converged do
n = n+ 1
Update diffusion eigenvalue and eigenvector

φ(n) = [D − (SL + SU )]−1 1

Kn−1
Fφ(n−1)

Kn = Kn−1

∫
νΣfφ

(n)dV∫
νΣfφ(n−1)dV

end while
Update transport eigenvalue

Φ(m) = φ(n)

km = Kn

end while

order problem is solved with Newton’s method. However, first we will consider a numerical

technique for accelerating the convergence of the eigenvalue.

Wielandt Shift

For any of these algorithms, when the dominance ratio, ρ, is nearly 1 we will suffer from slower

convergence. As mentioned earlier, the power method converges with O
((
|λ2|
|λ1|

)m)
. For reactor
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criticality problems, ρ can be very close to 1 and convergence can be unacceptably slow. We

can use known acceleration techniques to lower the dominance ratio and speed up convergence.

We’ll consider one of these methods, the Wielandt shift [17, 23, 22, 26], in detail in this section.

In Algorithms 4.2.1 we move most of the computational effort to solving the low-order

problem

LΦ = λFΦ. (4.8)

for a new approximation to the eigenvalue and eigenvector. Note that L is not the same operator

as was defined in the previous chapter. For now, we will assume that Σf (x) > 0 for all x so

that F is nonsingular.

We may re-write Equation 4.8 as

Φ = λRΦ (4.9)

where

Φ = Fφ (4.10)

R = FL−1. (4.11)

Since both F and L are nonsingular, we know that R is nonsingular and has no zero

eigenvalues. We can list the eigenvalues

λ1 < |λ2| < · · · < |λN |. (4.12)

Now, suppose we have some approximation λ̃ to λ1 such that

|λ1 − λ̃| < |λ2 − λ̃| < · · · < |λN − λ̃|. (4.13)

We can modify the original eigenvalue problem and solve

(L − λ̃F)φ = µFφ (4.14)

for the eigenvalue µ. Again, we re-write Equation 4.14 as

Φ = µR̃Φ (4.15)
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where

Φ = Fφ (4.16)

R̃ = F(L − λ̃F)−1. (4.17)

Since λ̃ is not in the spectrum of R, R̃ is still nonsingular.

The power method now converges to µ = λ1 − λ̃ at a rate of

σ̃ =
λ1 − λ̃
λ2 − λ̃

. (4.18)

Clearly, this method can converge at a much faster rate than the standard power method. This

method for “shifting” eigenvalues is known as the Wielandt shift [17, 23].

In practice, we want to choose λ̃ close to λ1, but not so close that R nears singularity. In

[22], the value of λ̃ is chosen so that

λ̃ = λ
(k)
1 − (small positive constant)

where λ
(k)
1 is the current best approximation to the dominant eigenvalue. In [22], the small

positive constant is chosen to be .01, and, in practice, we find this value to be quite effective.

For 1-D problems, the Wielandt shift can be highly effective in reducing the number of

low-order diffusion solves as we will see in the 1-D numerical results. However, by shifting

the spectrum, the Wielandt shift makes the problem less diagonally dominant and more ill-

conditioned [17]. This can easily be seen by considering the above analysis and Equation 4.17

and Inequality 4.13. This ill-conditioning is not a major concern in a 1-D, 1-group problem,

as the inversion of R̄ is done with direct methods. However, when the problem grows larger

and we are forced to move from direct methods to iterative methods, this ill-conditioning can

prove to increase the amount of iterative work for each matrix inversion. For this reason, we’ll

present results in 1-D, however we will not consider the Wielandt shift in higher dimensions.

4.2.2 NDA-NCA

The second eigenvalue acceleration technique we’ll discuss is NDA accelerated Nonlinear Criti-

cality Acceleration [23], or NDA-NCA. We begin by considering the same low-order eigenvalue

equation that was derived for NDA-PI,

∇ ·
[
− 1

3Σt,g
∇φg + D̂gφg

]
+ (Σt,g − Σg→g

s )φg =
∑
g′ 6=g

Σg′→g
s φg′ +

χg
keff

G∑
g′=1

νΣf,g′φg′ . (4.19)

80



Now, for each group, we can write a nonlinear system of equations which is identically zero

when Equation 4.19 has been solved. This nonlinear equation is given by

Fg(Φ, k) = ∇ ·
[
− 1

3Σt,g
∇φg + D̂gφg

]
+ (Σt,g − Σg→g

s )φg −
∑
g′ 6=g

Σg′→g
s φg′ −

χg
k

G∑
g′=1

νΣf,g′φg′ .

= Dgφg − (SU + SL) Φ− 1

k
χgFΦ (4.20)

Combining these G nonlinear systems and a constraint equation for k, we build a square system

of nonlinear equations, F (Φ, k), given by

F (Φ, k) = [F1(Φ, k) F2(Φ, k) . . . FG(Φ, k) Fk(Φ, k)]T

where

Fk(Φ, k) = k −
∫
FΦdV (4.21)

as done in [23, 17].

However, instead of solving F (Φ, k) = 0, we can use nonlinear elimination to remove the

dependence of F on k. We notice Equation 4.21 is satisfied only when

k =

∫
FΦdV. (4.22)

Therefore, we write a new system of equations F (Φ) = 0, given by

F (Φ) = [F1(Φ) F2(Φ) . . . FG(Φ)]T

where the eigenvalue, k, in each Fg is a function of Φ as described in Equation 4.22 [17, 23].

We present this method as Algorithm 4.2.2.

The goal with NDA-NCA is that by wrapping the low-order eigenvalue calculation in New-

ton’s method we can reduce the amount of low-order work required in NDA-PI. In Section 4.3

we will see that the savings can be vast.

Using Newton’s Method to Solve the Low-Order Eigenvalue Problem

In [17, 23], the authors elect to use a Jacobian-Free Newton-Krylov method to solve F (Φ) = 0.

With this method, the Newton step, w, is computed by approximately solving

F ′(Φ)w = −F (Φ)
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Algorithm 4.2.2: NDA-NCA

Choose initial iterate Φ(0), approximate eigenvalue k0, outer iteration counter m = 0
while eigenvalue not converged do

Update counter, m = m+ 1.
Execute transport sweep and compute consistency term:

Ψ(m) = L−1

[
SΦ(m−1) +

1

km−1
χFΦ(m−1)

]
ΦHO =

∫
Ψ(m)dΩ̂, ~JHO =

∫
Ω̂Ψ(m)dΩ̂

D̂(m) =
~JHO + 1

3Σt
∇ΦHO

ΦHO

Solve F (φ) = 0 using a Jacobian-Free Newton-Krylov method, where

F (φ) = Dφ− (SU + SL)φ− 1

keff
χFφ in which (4.23)

keff =

∫
Fφ dV

Update flux and eigenvalue: Φ(m) = φ, k(m) =
∫
νΣfφ dV .

end while

using GMRES. Here, the Jacobian F ′(Φ) is not formed explicitly. Instead, we write a Jacobian-

vector product routine which approximately computes the action of the Jacobian on a vector,

given by

F ′(Φ)w ≈ F (Φ + εw)− F (Φ)

ε

for some small ε. This finite-difference Jacobian-vector is very commonly used in Jacobian-Free

Newton-Krylov implementations, however may be suboptimal.

In addition, since GMRES is being used to solve for the Newton step, preconditioning

becomes very important. The authors of [17, 23] use a single diffusion power iteration as a

preconditioner and find that this is highly effective. We will demonstrate this for a variety of

test problems in Section 4.3.

However, instead of using this finite difference Jacobian-vector product, we can demonstrate

that the Jacobian is a rank-one update to a sparse, banded matrix. This allows us to employ the

Sherman-Morrison formula [15] for a less expensive, direct inverse. This fact is demonstrated

in the following theorem [31].

Theorem 3. The Jacobian, F ′(φ), for the function, F , described by Equation 4.23, can be
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decomposed into the sum of a sparse matrix and a rank-one update.

Proof. We can compute the action of the Jacobian on a vector using the formula

F ′(φ)w = lim
ε→0

F (φ+ εw)− F (φ)

ε
. (4.24)

Before applying this formula, we should note that we can break down the function, F , into its

linear and nonlinear components

F (φ) = Aφ−N (φ) where (4.25)

Aφ = Dφ− (SU + SL)φ (4.26)

N (φ) =
1

keff (φ)
χFφ (4.27)

In Equation 4.27 we write keff (φ) to note the explicit dependence of keff on φ. It is important

to note that keff is a linear function of φ.

Now, we begin by noticing that we can write

F ′(φ)w = Aw +N ′(φ)w. (4.28)

At this point, the only thing left to do is compute N ′(φ)w. For this, we turn back to Equation

4.24 and write

N ′(φ)w = lim
ε→0

N (φ+ εw)−N (φ)

ε

= lim
ε→0

1
keff (φ+εw)χF(φ+ εw)− 1

keff (φ)χFφ
ε

= lim
ε→0

χFφ+εχFw
keff (φ)+εkeff (w) −

χFφ
keff (φ)

ε

= lim
ε→0

εχFw
keff (φ)+εkeff (w)

ε
+ lim
ε→0

χFφ
keff (φ)+εkeff (w) −

χFφ
keff (φ)

ε

=
1

keff (φ)
χFw + lim

ε→0

χFφ·keff (φ)−χFφ·[keff (φ)+εkeff (w)]
[keff (φ)+εkeff (w)]·keff (φ)

ε

=
1

keff (φ)
χFw + lim

ε→0

−χFφ · keff (w)

[keff (φ) + εkeff (w)] · keff (φ)

=
1

keff (φ)
χFw −

keff (w)

keff (φ)2
χFφ (4.29)

Lastly, let’s show that we can write the discrete form of the final term of Equation 4.29 as a
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rank-one matrix times the vector w. In order to see this, we should first note that we can write

keff (~φ) = ~W TF ~φ (4.30)

in which ~W is a vector of weights used to compute the numerical integral over the spatial

domain.

Now, we have

−
keff (~w)

keff (~φ)2
χF ~φ = −

~W TF ~w

( ~W TF ~φ)2
χF ~φ

= −χF
~φ( ~W TF ~w)

c2

= −(χF ~φ ~W TF )~w

c2

= (~y~zT )~w

where

~y = −χF
~φ

c

~z =
~W TF

c

c = ~W TF ~φ.

Combining these results, we have

J ~w = L~w +
1

c
F ~w + ~y~zT ~w

= M ~w + ~y~zT ~w

= (M + ~y~zT )~w (4.31)

That is, the Jacobian, J , can be decomposed into a sparse, banded matrix, M , and a rank-one

update.

This matrix, M , is the same matrix that that we use as the preconditioning operator when

solving for the Newton step using GMRES. Clearly, using the Sherman-Morrison formula to

invert the Jacobian costs the same as two preconditioner applications and thus must be less

expensive that two GMRES iterations. This implies a nearly guaranteed savings over Newton-

GMRES for solving the low-order eigenvalue problem.
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Furthermore, when using GMRES to solve

F ′(Φ)w = −F (Φ),

we do not solve this equation exactly. Instead, we find a w such that

‖F ′(Φ)w + F (Φ)‖ < η‖F (Φ)‖,

in which η is some small positive constant. In contrast, using the Sherman-Morrison formula

with direct inversion of the matrix, M , computes the Newton step to machine tolerance.

To summarize, by exploiting the structure of the Jacobian of F , we can compute a higher

accuracy Newton step at a lower cost than solving this linear system using GMRES. In addition,

it is important to note that, in practice, we find that it is most efficient to take a single Newton

step instead of solving F (Φ) = 0 to a tight tolerance. The low-order problem is used to update

the eigenvalue/eigenvector pair, but at early stages in the iteration, the low-order problem is

only a weak approximation to the high-order problem. It is counter productive to put too much

effort into solving what is essentially the wrong problem. Instead, at each iteration, we take a

single Newton step and use the high-order equation to build a more accurate low-order problem.

Applying a Line Search

Most implementations of Newton’s method include a line-search (see Appendix A) to ensure that

the new Newton iterate yields a smaller residual. With NDA-NCA, we forgo the traditional

line-search which evaluates F at the new iterate. Instead, we use our knowledge that the

fundamental mode is strictly positive [21, 23, 2, 7] to demand that the new scalar flux is

positive everywhere. If the new flux is negative at any point in the domain, we cut back on

the length of the step until the new flux is everywhere positive. In practice, we see that this

“physics-based line-search” is only activated when the mesh is too coarse.

4.3 Results

In this section we will present convergence results for each of these methods in both 1 and 2

spatial dimensions. These results demonstrate that NDA-based eigenvalue methods are capable

of providing a 2-3 order of magnitude speedup over power iteration. We’ll first present results

for three 1-D, 1 group, multimaterial eigenvalue problems as simple proof of concept. After this,

we’ll look at three 2-D, 2 group, multi-material test problems that demonstrate the effectiveness

of these algorithms on more realistic reactor problems.
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4.3.1 1D Test Problems and Results

In order to draw a comparison between the effectiveness of these algorithms, we will consider

three test problems, as described in Table 4.1. Each of the problem domains will consist of a

single fissile region padded on each side with a 5 mean-free-path reflector as shown in Figure

4.1. These tests have been modified from the sample problems described in [20, 17].

Figure 4.1: Fissile region surrounded by two 5 m.f.p. reflectors.

Table 4.1: One-Dimensional, One-Group, Slab Geometry k-Eigenvalue Test Problems

Test 1 2 3

Σs .856 .856 .856

Σt 1 1 1

νΣf .144 .144 .144

τ 110 60 35

Nx 5500 3000 1750

We will consider a total of 5 methods for solving these problems: power iteration for a

baseline comparison, NDA-PI with and without the Wielandt Shift, NDA-NCA in which a

Krylov method is used to compute the Newton step (NDA-NCA(K-PI)) and NDA-NCA in

which a direct method is used to compute the Newton step (NDA-NCA(D)). For each test,

we will use 40 angles in the angular quadrature. Both the inner and outer iteration will be

converged to a tolerance of 10−12. The convergence results for these test problems are displayed

in Table 4.2. For NDA-PI and NDA-NCA, the first number refers to the number of transport

sweeps required and the second number refers to the number of diffusion solves that take place.

It is clear from Table 4.2 that both NDA-PI and NDA-NCA provide major improvements

over Power Iteration. It should be clear from these simple tests that standard power iteration is

not a feasible method for solving the k-eigenvalue problem. Even for Test 3, which is relatively
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Table 4.2: One-Dimensional, One-Group, Slab Geometry k-Eigenvalue Test Problems Conver-
gence Results

Method Test 1 Test 2 Test 3

Power Iteration 52700 0 16780 0 5571 0

NDA-PI 10 3594 11 1547 12 517

NDA-PI(WS) 10 89 11 22 12 34

NDA-NCA(K-PI) 14 144 12 95 12 85

NDA-NCA(D) 10 20 11 22 12 24

simple, it takes on the order of 5000 transport sweeps to compute the eigenvalue. Compare

this to the 10-12 transport sweeps required for to compute the eigenvalue using NDA-PI or

NDA-NCA.

At this point it is reminding the reader that the number of diffusion solves does begin to

effect the computational time required to compute the eigenvalue. While transport sweeps are

significantly more expensive than diffusion solves, Table 4.2 demonstrates that thousands of

diffusion solves may be required to compute the eigenvalue if the low-order eigenvalue problem

is not accelerated. For each of these test problems, the table shows how effective the Wielandt

shift can be when applied to the Low-Order eigenvalue problem.

Furthermore, we can see that NDA-NCA(D) outperforms each of the other methods consid-

erably. The direct matrix inversion improves the algorithm in two distinct ways. First of all, it

is far cheaper in terms of diffusion solves per outer iteration. The direct matrix inversion costs

roughly the same as two preconditioner applications within the Krylov iteration. Secondly, the

Krylov method only attempts to find a step w such that

‖F ′(φ)w + F (φ)‖ ≤ η‖F (φ)‖, (4.32)

where η is generally chosen equal to .01. The direct matrix inversion, however, solves the

linear system to machine tolerance. In essence, the direct matrix inversion computes a more

accurate Newton step at a lower cost. This more accurate Newton step may lead to fewer outer

iterations, as is demonstrated for Tests 1 and 2 in Table 4.2.

4.3.2 2D Test Problems and Results

In this section we’ll consider three 2-D, 2 group multi-material eigenvalue problems. We’ll

display results for each of these problems individually in order to give a full breakdown of

domain and material properties.

For each test we’ll terminate on eigenvalue residuals less than 10−7. As an initial iterate for
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each method we’ll use power iteration to solve the diffusion eigenvalue problem to a tolerance

of 10−3. This provides a good approximation to the eigenvalue and eigenvector and helps

ensure that we converge to the dominant eigenvalue. It is important to realize that computing

this diffusion eigenvalue is done only to proved a strong initial iterate. Solving the diffusion

eigenvalue problem (Equation 4.23) to tighter tolerance makes no significant difference in the

amount of iterations to convergence. For each of the following tests we will utilize an S10

angular quadrature.
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Test 1

The first test is a 2-group, three material problem (TMR) as described in [13]. We display the

material configuration in Figure 4.2 and list the material and domain properties in Tables 4.3

and 4.4.
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Figure 4.2: Three material reactor layout with regions labeled 1 - 3.
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Table 4.3: 2-D Eigenvalue Test 1 Material Parameters

Material Σt,1 Σt,2 Σ1→1
s Σ1→2

s Σ2→2
s νΣf,1 Σf,2

1 0.2950 2.0080 0.2453 0.0493 1.9880 0 0

2 0.2631 0.9416 0.2269 0.0241 0.8206 0.0085 0.1851

3 0.2604 0.8333 0.2344 0.0160 0.7333 0.0060 0.1500

Table 4.4: 2-D Eigenvalue Test 1 Domain Parameters

τx τy Nx Ny χ1 χ2 Boundaries

125 130 125 130 1 0 All Vacuum

Test 1: Results

Table 4.5 demonstrates the convergence results for power iteration and the three NDA based

acceleration algorithms. As we can see, for this problem power iteration converges quite slowly.

Each of the NDA based algorithms converges in 10 outer iterations (10 transport sweeps). NDA-

PI requires a significant number of low-order diffusion solves. Though each of these solves is

less expensive than a transport sweep, the nearly 300 low-order solves do take a considerable

amount of time. NDA-NCA(K) cuts the number of diffusion solves by a factor of roughly 4.

NDA-NCA(D) improves on this number considerably. In Figure 4.3, we plot the eigenvector

corresponding to the dominant eigenvalue.

Table 4.5: 2-D Eigenvalue Test 1 Results

Method Transport Sweeps LO Function Evaluations Diffusion Solves

Power Iteration 5600 0 0

NDA-PI 10 0 299

NDA-NCA(K) 10 59 69

NDA-NCA(D) 10 10 20
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Figure 4.3: Plot of eigenvector corresponding to dominant eigenvalue for TMR problem.
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Test 2: Zion Reactor

The second test is a 2-group, five material problem as described in [28, 1]. We display the

material configuration in Figure 4.4 and list the material and domain properties in Tables 4.6

and 4.7.
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Figure 4.4: Zion reactor material layout with regions labeled 1 - 5.

Test 2: Results

The convergence results for Test 2 are given in Table 4.8. Much like Test 1, the convergence rate

of power iteration very slow. Each of the NDA based methods converge in exactly 6 transport

sweeps. This is represents over a 1400 times reduction in the number of transport sweeps
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Table 4.6: 2-D Eigenvalue Test 2 Material Parameters

Material Σt,1 Σt,2 Σ1→1
s Σ1→2

s Σ2→2
s νΣf,1 Σf,2

1 0.3564 0.9936 0.3232 0.0000 0.8476 0 0

2 0.2351 0.8928 0.2093 0.0174 0.8261 0.0054 0.1043

3 0.2349 0.8920 0.2091 0.0169 0.8159 0.0060 0.1247

4 0.2337 0.8907 0.2083 0.0166 0.8071 0.0065 0.1412

5 0.2290 1.1497 0.1995 0.0290 1.1402 0.0005 0.0095

Table 4.7: 2-D Eigenvalue Test 2 Domain Parameters

τx τy Nx Ny χ1 χ2 Boundaries

183.67 183.67 136 136 1 0 Reflective Corner

required to compute the eigenvalue to the same accuracy. NDA-NCA provides a reduction in

the number of low-order diffusion solves. Again, we see the dramatic increase in efficiency by

using a direct inverse of the Jacobian when computing the Newton step. A plot of the dominant

eigenvector can be found in Figure 4.5.

Table 4.8: 2-D Eigenvalue Test 2 Results

Method Transport Sweeps LO Function Evaluations Diffusion Solves

Power Iteration 8750 0 0

NDA-PI 6 0 247

NDA-NCA(K) 6 50 44

NDA-NCA(D) 6 6 12

93



x position

y
 p

o
si

ti
o
n

Group 1 Scalar Flux

 

 

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

x position

y
 p

o
si

ti
o
n

Group 2 Scalar Flux

 

 

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

2

4

6

8

10

12

x 10
−4

Figure 4.5: Plot of eigenvector corresponding to dominant eigenvalue for Zion reactor problem.
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Test 3: LRA-BWR Reactor

The final 2-D test is a 2-group, five material problem as described in [28, 23, 1]. We display

the material configuration in Figure 4.6 and list the material and domain properties in Tables

4.9 and 4.10.
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Figure 4.6: LRA-BWR material layout with regions labeled 1 - 5.
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Table 4.9: 2-D Eigenvalue Test 3 Material Parameters

Material Σt,1 Σt,2 Σ1→1
s Σ1→2

s Σ2→2
s Σf,1 Σf,2

1 0.2656 1.5798 0.2321 0.0253 1.4795 0.0019 0.0449

2 0.2623 1.7525 0.2280 0.0277 1.6821 0.0019 0.0357

3 0.2648 1.5941 0.2306 0.0262 1.5107 0.0019 0.0420

4 0.2648 1.5941 0.2306 0.0262 1.5208 0.0019 0.0420

5 0.2652 2.0938 0.2170 0.0475 2.0747 0.0000 0.0000

Table 4.10: 2-D Eigenvalue Test 3 Domain Parameters

τx τy Nx Ny χ1 χ2 ν Boundaries

165 165 165 165 1 0 2.43 Reflective Corner

Test 3: Results

The convergence results for the final test can be found in Table 4.11. For the LRA-BWR test

problem, we find that power iteration requires over 15000 iterations. Both NDA-PI and NDA-

NCA(D) require only 13 transport sweeps to converge to the same tolerance. NDA-NCA(K)

requires an extra transport sweep, however this still represents over a 1000 times decrease in

transport sweeps. Much like the first two tests, NDA-PI requires a significant number of low-

order diffusion solves. While NDA-NCA(K) requires an extra transport sweep, the decrease in

the amount of low-order work makes it more efficient than NDA-PI. Again, NDA-NCA(D) is

the most efficient of the NDA-based algorithms. Figure 4.7 displays the dominant eigenvector

for the LRA-BWR test problem.

Table 4.11: 2-D Eigenvalue Test 3 Results

Method Transport Sweeps LO Function Evaluations Diffusion Solves

Power Iteration >15000 0 0

NDA-PI 13 0 443

NDA-NCA(K) 14 98 84

NDA-NCA(D) 13 13 26
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Figure 4.7: Plot of eigenvector corresponding to dominant eigenvalue for LRA-BWR problem.

97



4.4 Conclusions

In the preceding section we were able to demonstrate for a series of 1 and 2-D test problems

that in every case examined, power iteration converges very slowly. For the easiest 1-D problem,

power iteration still required over 5000 transport sweeps to converge to a relative tolerance of

10−12. For the most difficult 2-D problem we examined, power iteration needed over 15000

transport sweeps to converge to 10−7. It should be clear from this spectrum of test problems

that unaccelerated power iteration converges unacceptably slow.

For each of these test problems, the three NDA-based methods we considered provide a

remarkable speed-up over power iteration. These methods move much of the iterative work

from the high-order transport equation to the low-order diffusion equation. Recall that these

low-order iterations occur for a small phase space, one in which we’ve removed the angular

dependence we see in the high-order angular flux.

For all six tests, at the very worst the NDA accelerated eigenvalue methods converge in

under 15 iterations. This represents a 400-1200 times reduction in transport sweeps. We’ve

demonstrated that these NDA-based methods now require low-order function evaluations and

sparse, banded matrix solves at each iteration. In every case, NDA-PI requires the most low-

order matrix solves. This number is reduced significantly by NDA-NCA(K) and reduced even

further by NDA-NCA(D). NDA-NCA(D) is the most efficient algorithm for each of the 1-D and

2-D test problems examined.

98



Chapter 5

Stochastic Methods for Neutron

Transport

In the previous chapters, we’ve focused primarily on determining the neutron scalar and angular

flux by solving partial differential equations, namely the neutron transport equation and its

angular moments. As we’ve mentioned, the neutron transport equation can be quite expensive

to solve, especially when the material configurations are complex and we’d like to determine

the flux over several energy groups or when using a large angular quadrature set. Furthermore,

in many cases it may be cost prohibitive (in terms of memory or computational time) to use a

dense enough angular quadrature set or spatial grid to capture all the physics required to get

a valid picture of the physical state of a nuclear reactor [21].

In order to deal with these issues, many nuclear engineers choose to solve the neutron

transport equation using stochastic methods. These methods allow for a continuous (or nearly

continuous) treatment of space, angle and energy. This frees us of discretization errors and

may allow us to capture the physics more exactly than we could while employing Sn methods.

For example, suppose we discretize in space using rectangular grid cells. In this case, we are

required to treat some regions of a reactor, such as cylindrical fuel pins, inexactly. Monte Carlo

methods allow us to treat these spatial features more precisely.

5.1 Introduction to Monte Carlo

This chapter will act as an introduction to Monte Carlo methods for solving the neutron trans-

port equation. Monte Carlo methods attempt to realize probablistic events using the sampling

of random numbers [21]. For example, suppose we’d like to simulate the flipping of a fair coin

and we wish to determine the result of a flip - either heads or tails. We can simulate the

outcome of the event by selecting a uniformly distributed random number ξ ∈ [0, 1). We will
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assign the outcome “heads” whenever ξ ∈ [0, .5) and “tails” otherwise.

Monte Carlo methods also give us the ability to simulate more complicated events. Suppose

we have a probability distribution function, f(x), which describes the probabilty of a random

variable taking certain values. The probability that x falls between two values, a and b, can be

determined by

Pr[a ≤ x ≤ b] =

∫ b

a
f(x)dx.

Furthermore, we can describe the probability that x is less than some value a by

F (a) = Pr[x ≤ a] =

∫ a

−∞
f(x) dx,

where F (x) is called the cumulative distribution function or CDF.

Now, suppose we wish to use random number generation to pick x’s according to the prob-

ability distribution function, f(x), with associated cumulative distribution function, F (x). We

begin by taking a uniformly distributed random number ξ ∈ [0, 1). Then, we compute the value

of the random variable x∗ by finding x such that

F (x) =

∫ x

−∞
f(x)dx = ξ

or simply define x∗ as

x∗ = F−1(ξ).

Using these simple ideas, we can simulate the entire life of a neutron using a sequence of a

random numbers.

In practice, during numerical simulations we store the probability density function as a

vector, ~f , where each component of the vector corresponds to a measure of the scalar flux (or

current, etc) in a given spatial cell. In this case, we compute the CDF using a summation

~Fi =

∑i
j=1 fj∑N
j=1 fj

.

Now, when we pick a random number ξ, we must interpolate the vector ~F to find a value of x

corresponding to ξ. When we choose to use a large number of particles, it may be more efficient

to build a look-up table to aid in the computation of x.
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5.2 Monte Carlo for Neutron Transport

If we were to track the entire life of a neutron we’d need to know the following information:

1. Where was the particle born?

2. What direction did the particle travel?

3. How far did the particle travel in that direction before either leaving the system or un-

dergoing a collision?

4. If the particle collides, does the collision interaction result in scattering, absorption, fis-

sion?

5. If the particle scatters, which direction does the particle travel after scattering, what is

its energy after the collision, and how far does it travel?

6. If the collision results in a fission event, how many fission neutrons are created, which

direction do these neutrons travel, with what energies are the fission neutrons born, etc.?

If we can determine probabilities for these events, either experimentally or by deriving

these probabilities based upon the underlying physics, we can use the Monte Carlo method

to simulate the lives of thousands, millions, or billions of particles. As we increase the total

number of particles in our simulation, we can get closer and closer to determining the true

values of the neutron flux and current. As the number of particles, N , increases, the variance

in the simulation decreases like O( 1√
N

) [21].

5.2.1 Determining the Mono-energetic Neutron Flux in 1-D Homogeneous

Slab Geometry with a Fixed Source

Suppose we wish to determine the neutron scalar flux in a homogeneous slab where all neutrons

live within a single energy group and are produced by a constant fixed source. Furthermore,

let us assume that scattering is isotropic. We’ll define the following cross-sections:

Σt(x) = Σt

Σa(x) = Σa

Σs(x) = Σs

Σf (x) = 0

Furthermore, define the total system length, τ , and some fixed source distribution S(x). We

wish to determine the scalar flux, φ(x), and the neutron current, J(x).
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We’ll begin by defining a probability distribution function that describes the distribution of

particles generated by the right-hand side source term (scattering plus fixed sources). S(x) is

not necessarily a probability distribution function because there is no guarantee that∫ τ

0
S(x) dx = 1

and, in fact, this equality will not hold in most cases. To deal with this, we define the probability

distribution function, Q(x), by

Q(x) =
S(x)∫ τ

0 S(x) dx
.

Now, the integral of Q(x) over the entire domain must be one. We will sample from this source

distribution instead of S(x) and then weight particles according to the total number of particles

in the simulation and the source strength.

Let us consider the life of the ith particle in the simulation. The first thing we need is an

initial location. To do so, we pick a uniformly distributed random number ξ1 and we choose

our initial location x0 defined by

ξ1 =

∫ x0

0
Q(x)dx.

In this section, we will assume all random numbers are uniformly distributed over the interval

[0, 1). Once we have our initial location, x0, we need an initial direction. Instead of sampling the

initial direction explicitly we will sample the direction cosine, µ = cos(θ). Since µ is uniformly

distributed over the interval [−1, 1], we pick a second random number ξ2 and define our initial

direction cosine by µ = 2ξ2 − 1.

Now that we have an initial location and direction for the particle, we need to determine

how far the particle travels before undergoing its first collision. The probability of traveling a

distance of z mean-free-paths in a material without colliding is given by

f(z) = e−z.

Therefore, the cumulative distribution function is given by

F (z) =

∫ z

0
e−z

′
dz′.

We can determine the distance the particle travels by generating a third random number ξ3
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and solving for z

ξ3 =

∫ z

0
e−z

′
dz′.

A bit of calculus reveals

z = − ln (1− ξ3). (5.1)

However, since ξ3 is uniformly distributed in [0, 1], 1− ξ3 is also uniformly distributed in [0, 1].

Therefore, Formula 5.1 is equivalent to

z = − ln (ξ3).

This simplification may seem trivial, but can result in a significant time reduction when we

consider that this computation may take place billions of times. In terms of distance, the

particle will travel

xstream =
z

Σt

centimeters.

At this point, we have the particle’s initial location, x0, initial direction, µ, and the distance

traveled before the first collision, xstream. The location of the first collision is given by xcollision =

x0 + µ · xstream. Before the simulation can continue, we must determine if xcollision is located

within the slab. If xcollision lies within the slab, we set x1 = xcollision. If xcollision lies outside

the domain, we need to check to determine whether it crossed a reflective or vacuum boundary.

If the boundary was reflective, the particle collision location is reflected back into the domain,

otherwise the life of the particle is over.

If the particle remains within the slab at the point of the first collision, we must determine

whether the particle undergoes a scattering or an absorption reaction. We generate a new

random number ξ4 and say that the particle scatters if ξ4 ≤ Σs
Σt

and the particle is absorbed if

ξ4 >
Σs
Σt

If the particle is absorbed, the particle history is terminated. If the particle lives on,

this process is repeated where a new direction is computed, we determine a distance for the

particle to travel and then test again for streaming out of the slab, scattering, or absorption

until the particle history terminates. Once all of the particle histories have been terminated

and recorded, we tally the results and report the scalar flux and current. In practice, we tally

these quantities on the fly to avoid storing all of the particle histories.
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5.2.2 Tallying Quantities of Interest

When tallying quantities like the scalar flux and current, our choice as to how to tally is

influenced by one basic consideration - where do we need our data? In some applications, we

may need values of the scalar flux at cell edges, while in other applications it may be most

helpful to have cell-averaged quantities. Furthermore, it may be necessary to compute the cell-

averaged scalar flux, but cell edge values of the current. For this reason, we develop methods

for tallying each of the moments at cell edges and as cell-averaged quantities.

Before continuing, let us introduce some notation and definitions that will allow us to

tally these quantities. Let nj denote the jth particle in the simulation. Each neutron in the

simulation takes a series of flights k = 1, 2, ..., Nj , defined as the flights between collisions.

That is, a neutron which undergoes three collisions before either leaving the medium or being

absorbed takes four particle flights: one flight from birth to the first collision, a flight between

the first and second collisions, a flight between the second and third collisions, and a flight after

the third collision before leaving the medium or being absorbed.

Define the set Xi+ 1
2

as the set of all particle flight indices (j, k) such that the kth flight of

the jth particle in the simulation crossed the cell face between cells i and i+1. Furthermore, let

wj,k denote the weight of the jth particle during the kth flight. In this case, the term “weight”

does not refer to a measure of the mass of the particle, but instead a factor attached to the

particle that measures its contribution to certain tallies. In classic Monte Carlo simulations,

wj,k = wj,0 for all k, where wj,0 is the weight of a particle at birth and is generally constant

for all particles or is proportional to the source strength at the birth location. When variance

reduction techniques are in place, particle weights may vary based upon how many collisions a

given particle has undergone or the initial particle flight direction [21, 5].

Furthermore, let WTotal =
∑
wj,0, that is, the sum of all initial particle weights. Since

neutrons change direction after each interaction, we’ll let µj,k denote the direction of travel of

the jth particle during its kth flight.

Cell Edge (Face) Tallies

We begin by tallying the scalar flux at a cell face, that is some location xi+ 1
2
. The scalar flux can

be interpreted as the total path-length traced by all particles per unit volume [21]. Therefore,

we can realize the scalar flux φ at the location xi+ 1
2

by

φi+ 1
2

=
1

WTotal

 ∑
(j,k)∈X

i+ 1
2

wj,k
|µj,k|

 (5.2)
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Recall that the current, J , is given by

J(x) =

∫ 1

−1
µψ(x, µ)dµ.

Therefore, the current can be interpreted as the total path-length traced by all neutrons at the

location xi+ 1
2

scaled by the direction of travel µ:

Ji+ 1
2

=
1

WTotal

 ∑
(j,k)∈X

i+ 1
2

wj,k
µj,k
|µj,k|

 (5.3)

Cell-Averaged Tallies

We can compute cell-averaged tallies is a similar way. This time, define the set Yi as the set of

all particle flight indices (j, k) such that the kth flight of the jth particle takes place (at least

partially) within the ith cell. Furthermore, define ∆xi,j,k as the x−distance traveled within the

ith cell during the kth flight of the jth particle.

Now, we tally the three quantities of interest in a manner similar to that of the cell-edge

tallies. The scalar flux and current are given by

φi =
1

∆ViWTotal

 ∑
(j,k)∈Yi

wj,k∆xi,j,k
|µj,k|

 (5.4)

Ji =
1

∆ViWTotal

 ∑
(j,k)∈Yi

wj,k∆xi,j,kµj,k
|µj,k|

 (5.5)

where ∆Vi refers to the volume, or width, of the ith cell.

Comparing the Cell-Edge and Cell-Averaged Tallies

As we’ve noted earlier, there are times in which we may need the scalar flux and current tallied

at cell interfaces and other times where we may need these quantities tallied as cell averages.

The question arrises, however, if neither tally method is preferred by the algorithm which we

are currently employing, is one of the tally methods preferable to the other?

The answer to this question is complicated and may not have a definitive answer, but there

are a couple of important notes which we should make. First of all, as the spatial mesh width, h,

goes to zero and the number of particle histories, N , approaches infinity, the two tally methods

will limit to the same solution. Unfortunately for us, we are never able to tally infinitely many

particles, and for a finite number of particle histories, the two tally methods may yield slightly
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different results. So, is one of these tally methods “better” than the other?

One can argue that the cell-average tally method provides better results because it offers

a more “continuous” treatment of the tallies. For example, with the cell-edge tallies, we can

only count the particles which actually cross a cell interface. If a particle is born in cell i and

its history is terminated before leaving cell i, it will make no contribution whatsoever in the

cell-edge tally system. However, in the cell-averaged tally method, every particle has at least

some contribution. Whether a particle travels across several cells or some short distance within

a single cell, every particle will influence the cell-average tally.

On the other hand, these tallies may consume the majority of the computational time in

a Monte Carlo simulation. Therefore, whenever possible we should seek to only return either

a cell-edge or cell-averaged tally, but not both. If there is need for cell-edge and cell-averaged

quantities of either the flux or current , we may be able to get away with computing only a cell-

edge tally and then taking an arithmetic average of two cell-edge values to find an approximate

cell-averaged value. This averaging is far less computationally intensive than executing both

tally methods.

In summary, most times the choice of whether to use the cell-average or cell-edge tally will

be determined by the specific problem being solved and the algorithm used to solve the given

problem. If the algorithm has no preference as to where these quantities are tallied, it may be

preferable to exploit the more “continuous” method of tallying found in the cell-average tally.

5.3 Comparing Source Iteration and Monte Carlo

Recall from Chapter 2 the Source Iteration method for solving the steady-state 1-D monoener-

getic transport equation in slab geometry. We must choose some initial iterate φ(0)(x) and in

this case, let us choose φ(0)(x) ≡ 0. Then we iterate as follows:

µ
∂ψ(i)

∂x
+ Σtψ

(i) =
1

2

(
Σsφ

(i) + q
)

(5.6)

φ(i+1) =

∫ 1

−1
ψ(i+1)dµ (5.7)

In this case, ψ(i) represents the angular flux due to particles that have scattered at most i times

[2].

It was our intention in Chapter 2 to demonstrate exactly how Source Iteration is employed

using deterministic methods. In this section, we’ll describe a way in which Source Iteration can

be utilized in conjunction with Monte Carlo. With deterministic methods, all we needed was a
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function evaluation that took as input φ(i) and returned φ(i+1):

φ(i+1) = GDET (φ(i))

where the action of G is often referred to as a “transport sweep”. The subscript “DET” refers

to the deterministic nature of the function. It turns out, however, that we can easily define a

function GMC which performs the same action as GDET using the Monte Carlo method.

Essentially, this function must take in the flux due to particles which have scattered at most

i times and return the flux due to particles which have scattered at most i + 1 times. We

accomplish this by allowing Monte Carlo to solve a new problem,

µ
∂ψ(i)

∂x
+ Σtψ

(i) = S(i)(x) (5.8)

where

S(i)(x) =
1

2

(
Σs

∫ 1

−1
ψ(i−1)(x, µ)dµ+ q(x)

)
.

In this new problem, S(i) is treated as a constant, fixed source, so the Monte Carlo method is

asked to solve a scattering-free problem. In essence, every particle dies at the location of its first

collision. This action allows us to compute the new flux due to all particles that have scattered

at most i + 1 times. Therefore, we can define a new function GMC which takes a flux as its

input and allows each of these particles to scatter one more time before ending the particle

history.

We will put this idea to use in Chapter 6, Hybrid Methods for Neutron Transport. In theory,

we can compute a transport sweep by using Monte Carlo for any of the algorithms previously

mentioned. As the number of particle histories approaches infinity and the number of spatial

cells and angles go to infinity, both the deterministic and Monte Carlo transport sweeps should

yield the same results. However, for finitely many particle histories, these results will differ and

the stochastic nature of the Monte Carlo evaluation of the transport sweep may cause drastic

issues.

5.3.1 Monte Carlo Simulation Notation

Throughout the remainder of this thesis there will be times where it will be important to note

how the scattering source is being treated within the Monte Carlo simulation. In general, when

we ask Monte Carlo to simulate scattering, we’ll move the scattering source to the left-hand
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side of the transport equation,

µ
∂ψ

∂x
+ Σtψ −

1

2

∫ 1

−1
Σsψ dµ =

1

2
q (5.9)

With this notation it should be clear that Monte Carlo seeks to simulate all of the terms on

the left-hand side of the equation.

In contrast, when we use Monte Carlo simulations to execute a transport sweep, we’ll utilize

the standard formulation of the transport equation,

µ
∂ψ

∂x
+ Σtψ =

1

2
(Σsφ+ q) , (5.10)

which we are used to from the first few chapters. In this case, since the scattering source is

considered an input to the simulation it has been moved to the right-hand side of the equation.

Now, the Monte Carlo algorithm will simulate only leakage and absorption.

We can also combine the previous two ideas and allow the Monte Carlo algorithm to simulate

some fraction of the scattering source. In this case we write

µ
∂ψ

∂x
+ Σtψ −

α

2

∫ 1

−1
Σsψ dµ =

1− α
2

Σsφ+
1

2
q, (5.11)

where α ∈ [0, 1]. In the case of α = 0, Equation 5.11 reduces to Equation 5.10. In the case

of α = 1, Equation 5.11 reduces to Equation 5.9. In general, Monte Carlo transport sweeps

may be noisier than a full Monte Carlo simulation as there are generally fewer particle flights

contributing to the physical quantities which we tally. If this noise becomes a problem, we may

be able to partially remedy this issue by simulating a fraction of the scattering source without

accruing the cost of a full Monte Carlo simulation.

5.4 Continuous Energy Deposition Tallies

In Section 5.2.2, we discussed two methods of tallying, face, or cell-crossing, tallies and cell, or

track-length, tallies. We will refer to these as standard tallies for the remainder of this thesis.

It turns out that there is a very fundamental reason which these tallies are sub-optimal [10, 32].

Let us begin by taking the zeroth angular moment of Eq. 5.8. This yields the neutron

balance equation,
dJ

dx
+ Σtφ = S(x). (5.12)

When we tally the scalar flux and current, φ and J , respectively, with conventional track-length

and cell-crossing estimators, we find that Eq. 5.12 is not satisfied. In fact, if we define a residual
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based on this balance equation,

R(x;φ, J) =
dJ

dx
+ Σtφ− S(x) (5.13)

we find that ||R|| � 0 when standard tallies are used to compute φ and J [32]. As the number

of particles per simulation increase, ‖R‖ decreases, but for a reasonable number of particles,

R can be substantial. Along with the noise we find in the Monte Carlo transport sweeps, this

lack of balance can produce inaccurate results when trying to compute the consistency term,

D̂, which measures the discrepancy in the Fick’s law approximation.

Now, we present a second tally which we will refer to as the Continuous Energy Deposition

tally or CED tally [10]. This tally is especially suitable for NDA-based methods since the Monte

Carlo simulation solves a problem with purely absorbing media. The purpose of the CED tally

is to conserve the balance of neutrons which is required by the 0th moment equation.

The CED tally takes place in two distinct phases:

1. A non-analog tally in which each particle is forced to travel a fixed mean-free-path distance

in which we tally using exponentially decreasing weights.

2. A standard tally from the end-point of the non-analog tally using the remaining particle

weight.

Our new Monte Carlo simulation takes place as follows:

1. A priori determine a number of mean-free-paths, λ, which each particle will travel in the

non-analog phase of tallying. We choose λ directly, but one could also choose λ so that the

non-analog phase terminates when a certain minimum weight has been reached. These

are equivalent.

2. Randomly sample the direction cosine, µ, and determine an initial location for a particle

as described in Section 5.2.1 .

3. March across the medium until the particle has traveled the a priori determined number

of mean-free-paths, λ.

• Compute the distance in terms of mean-free-paths traveled within cell i:

∆λi =
∆xiΣt

|µ|

• Compute the weight for the track-length tally of the scalar flux:

∆wi

(
1− e−∆λi

)
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• Tally the scalar flux using the weight ∆wi using the track-length tally described in

Section 5.2.2

• Compute the weight at the cell interface:

wi±1 = wie
−∆λj .

• Tally the current using the weight wi±1 using the face-tally described in Section

5.2.2.

• Repeat for the next cell.

4. Begin an analog tally from the new particle location using w = w0e
−λ. We use the same

direction cosine, µ, as was used in the non-analog phase of the tally.

The CED tally satisfies the balance equation to the point of machine roundoff. We can see this

in Figure 5.1. Notice the difference in scales on the y-axis.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

Balance Equation Residual
for Standard Tallies

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−13

Balance Equation Residual 
for CED Tallies           

Figure 5.1: On the left we see the standard tally does not preserve balance, whereas on the
right, the CED tally does an excellent job preserving balance using the same number of particles
per simulation.
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In Chapter 6, we’ll compare results using standard tallying methods and CED tallies. We’ll

see that for low particle counts, the CED tally provides significantly smoother results, however

as the particle count increases, the differences become smaller.

5.5 2-D Monte Carlo

In multiple dimensions, not much changes when executing a Monte Carlo simulation to de-

termine the scalar flux and currents. The overall structure of the Monte Carlo code does not

change at all. In general, we still must sample for a particle’s starting location and weight, wi,

its initial direction and energy, and the number of mean-free-paths it travels before undergoing

its first interaction [21].

In two spatial dimensions, the particle location now has an x and y-position as well as an

x and y component to the direction. In order to sample the direction of travel, we require two

random numbers, ξ1 and ξ2. Now, the x and y components of the direction of travel, x̂ and ŷ,

respectively, are given by

x̂ = sin(θ) cos(φ)

ŷ = sin(θ) sin(φ)

where

µ = cos(θ) = 2ξ1 − 1

φ = 2πξ2

sin(θ) =
√

1− µ2.

We compute the distance a particle travels in the same way as we did in 1-D. We compute

a single random number, ξ3, and the number of mean-free-paths to be traveled is given by

mfp = − ln(ξ3).

As in 1-D, we can compute fluxes and currents at cell-centers or cell-faces. For our purposes,

we’ll compute cell-averaged values of the scalar flux and cell-face values of the x− and y-currents.

For either formulation, we need to compute the distance a particle will travel in the current cell

before either undergoing a collision or leaving the cell. If the particle leaves the cell, we must

determine which face the particle exited.

To do so, we first compute the x and y distances to the nearest cell interfaces in the direction
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of travel,

xdist = |xposition − xinterface|

ydist = |yposition − yinterface|.

We determine that we’ll cross the cell boundary in the x direction first if we have

xdist
x̂

<
ydist
ŷ

and we’ll cross the cell boundary in the y direction first otherwise. At this point, we’ll allow

the particle to travel t mean-free paths, where t is given by

t = min

(
xdist
x̂

,
ydist
ŷ

)
· Σt

Now, we can tally the quantities of interest. We accumulate the cell-averaged scalar flux

via

φ(xcell, ycell) = φ(xcell, ycell) +
wi · t · Σt

hx · hy
,

where hx and hy are the x− and y−dimensions of the current cell. If the particle crosses the x

cell boundary, we’ll accumulate the current in the x−direction,

Jx(xbound, ycell) = Jx(xbound, ycell) +
wi · x̂
|x̂| · hy

,

and if the particle crosses the y cell boundary, we’ll accumulate the current in the y−direction,

Jy(xcell, ybound) = Jy(xcell, ybound) +
wi · ŷ
|ŷ| · hx

.

At this point, we’ve finished tallying for the flight through (xcell, ycell) and we continue to

travel and tally cell by cell until the particle leaves the medium or encounters the location of

its first collision.

5.6 Standard vs. CED Tallies in 2D

In this section we’ll briefly look at the difference between standard and CED tallies. To do

so, we’ll generate particles that are uniformly distributed across a single cell in 2-D. We’ll

isotropically generate directions for each particles to travel and count the number of cells each

particle crosses before it undergoes a collision. Each cell is 1 cm by 1 cm.
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We’ll compare the mean number of cells that each particle contributes to using both standard

and CED tallies. In practice, if each particle does not cross at least a couple of cells, the Monte

Carlo transport sweep is exceptionally noisy. The results from this study are portrayed in Table

5.1.

Table 5.1: Mean Number of Cells Crossed by Each Particle

Method Σt = 2 Σt = .3

Standard 1.4976 4.3590

CED (λ = 2) 2.4897 11.0371

CED (λ = 4) 3.4821 17.7343

Clearly, the CED tallies allow each particle to stream across more cells than when standard

tallies are employed. This is important because the current is only tallied when a particle cross

a cell face. So, while a particle always contributes to the scalar flux, when the cross section

is large, many particles may not contribute at all to the current. For example, in the above

configuration with Σt = 2, 62% of the particle trajectories produced using standard tallies

never left the originating cell. When CED tallies with λ = 2, only 10% of particles remain in

the originating cell and this decreases to 3% when λ = 4. Therefore, on average, each particle

contributes to more tallies for the scalar flux and current and produces less noisy results when

the CED tallies are used. Even when Σt = .3, 18% of standard tally particles never leave the

originating cell. Only .2% of CED tallies with λ = 2 remain in the originating cell.

This directly leads to more accurate Monte Carlo transport sweeps. We demonstrate this

with the following experiment. Consider computing a transport sweep for the first group of

the LRA-BWR problem in which the right hand side is a constant unit source. In all of the

algorithms we consider, the transport sweep is required in order to compute the D̂ term in

order to build a consistent low-order problem. For this reason, we will compare the errors in D̂

term for standard and CED tallies for two different particle counts. The results are displayed

in Table 5.2.

This table clearly demonstrates the effectiveness of the CED tallies. The D̂ terms and

boundary conditions are the only quantities that are supplied by Monte Carlo transport sweep

to the low-order problem. For this reason, measuring the error in D̂ is the appropriate metric

for choosing a tallying method.
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Table 5.2: Error in D̂ Computed Using MC Sweeps

D̂x Error D̂y Error

Particles CED Standard CED Standard

1010 .005009 .184261 .004974 .166200

1011 .001598 .063798 .001461 .057308
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Chapter 6

Hybrid Methods for Neutron

Transport

In the beginning of Chapter 5 we discussed several reasons why Monte Carlo simulations may

be preferable to deterministic solutions of the neutron transport equation. These stochastic

methods can produce more accurate solutions, but potentially at a much higher cost. For

this reason, we seek methods that will allow us to accelerate the convergence of Monte Carlo

simulations. In Appendix C, we numerically investigate the truncation error in the low-order

equation and the Monte Carlo error in the high-order transport sweep.

In the neutronics community, variance reduction techniques for Monte Carlo simulations

have been studied thoroughly for as long as Monte Carlo algorithms have been used to simulate

reactor physics [21]. Variance reduction refers to methods used to decrease the variance in a

simulation without increasing the number of particles in the simulation. For example, in a

transmission problem in which we wish to see what percentage of particle penetrate a very

large, highly-absorbing medium, we may force particles to scatter and adjust particle weights

accordingly. This allows a higher percentage of the particles in the simulation to contribute to

the tally.

In this chapter, we’ll attempt to build algorithms that allow us to compute solutions to

the transport equation with the accuracy of Monte Carlo simulations, while reducing the total

number of particles in the simulation and employing variance reduction techniques to lower the

noise in the solution. However, we will not build these algorithms from scratch. Instead, we

will utilize the algorithms developed in Chapter 2, Chapter 3 and Chapter 4 along with known

variance reduction techniques to build hybrid algorithms for solving the neutron transport

equation.

In the following sections we’ll repeat the work done in Chapters 2, 3 and 4 using Monte

Carlo transport sweeps. As we did earlier, we’ll start with the 1-D fixed-source problem, as the
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implementation is the most simple. We’ll take what we learned from solving the fixed-source

problem and accelerate the 1-D k-Eigenvalue problem. After this, we’ll repeat this work in 2-D.

6.1 Accelerating a 1-D Fixed Source Monte Carlo Computation

In this section we’ll consider hybrid methods for solving the 1-D fixed-source problem. The

methods we’ll consider are Picard-NDA(MC), AA-NDA(MC), and JFNK-NDA(MC)1. In gen-

eral, we find that the noise in Monte Carlo transport sweeps can make using these acceleration

methods difficult than when they were used with deterministic transport sweeps.

6.1.1 Noisy Function Evaluations

As we have previously discussed, Monte Carlo transport sweeps return noisy scalar fluxes and

currents. In general, we measure the amount of noise in a Monte Carlo transport sweep by

allowing the MC sweep to act on a deterministic solution to the transport equation, φ∗, and

compute some measure of the difference φ∗ − GMC(φ∗). In Figure 6.1, we see the results of a

Monte Carlo transport sweep using a standard track-length tally and using the CED tally.
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Figure 6.1: Comparing the scalar flux computed by a Monte Carlo transport sweep.

1The (MC) denotes that all transport sweeps involved in the algorithm are performed using a Monte Carlo
simulation
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As we can see in Figure 6.1, the CED tally performs slightly better than the standard track-

length tally, however there is still a considerable amount of error, especially for .25 ≤ x ≤ .75.

These oscillations in the flux may make it very difficult to compute an accurate consistency

term, D̂, for NDA. The noise in the Monte Carlo transport sweep is not limited to the scalar

flux, however. In Figure 6.2, we see that the current suffers from a similar difficulty.
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Figure 6.2: Comparing the current computed by a Monte Carlo transport sweep.

In Figure 6.2, we can see a much more drastic difference between standard tallies and the

CED tally. In this case the CED tally accumulates much less error than standard cell-crossing

tallies. It turns out that in some instances neither of these tallies are sufficiently accurate for

computing D̂. In Figure 6.3, we compare consistency terms computed using both the standard

and CED tally.

It is apparent how destructive these noisy D̂ functions can be when we consider the trying

to compute the nonlinear residual defined by the JFNK-NDA problem. In Figure 6.4 we see

the result of trying to compute F (φ∗), which should be nearly zero at the solution. Instead, it

appears that we are nowhere close to finding a solution.

Unfortunately, increasing the number of particles per function evaluation does not necessar-

ily solve this problem completely, as we can see in Table 6.1. Due to time constraints, increasing
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Figure 6.3: Comparing the consistency term computed by a Monte Carlo transport sweep.

the number of particles enough to resolve the flux and current to the desired level of accuracy

is generally not feasible. In the next section, we’ll consider two methods for filtering the noisy

scalar flux and current.

Filtering

When using hybrid methods, we will make an attempt to remove some of the error from the

results of a stochastic transport sweep before performing further computations and we’ll refer

to these error-removal processes as filtering. In general, the idea is to remove the low-amplitude,

Table 6.1: Comparing the Norm of the NDA Nonlinear Residual for Different Particle Counts
and Tally Methods

Histories Standard Tally CED Tally

105 7.9358 7.2072

106 2.1414 1.8945

107 .8708 .8408

108 .4598 .4613
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Figure 6.4: Comparing the JFNK-NDA nonlinear residual in which a Monte Carlo transport
sweep is used.

high-frequency noise from the quantity of interest without changing any of the spatial structure

that truly exists. This can be a difficult task in general, but in neutronics we often can determine

where our solution may have special spatial structure based upon the material properties. We’ll

consider two similar filtering techniques in the remainder of this section.

For our first filtering method, which we will refer to as the least squares spline filter or LSS

filter, let us divide our domain into a total of R+ 1 regions:

{[0, x1], [x1, x2], ..., [xR−1, xR], [xR, X]}

Within each of these regions, let us construct a polynomial of low degree that interpolates

the function as closely as possible. We’ll denote these degrees d1, d2, ... , dR, dR+1 and

we’ll also demand that at each of the region boundaries xi that the spline is continuous and

has ki continuous derivatives. By construction, we must choose 0 ≤ ki ≤ min(di, di+1). We

can perform a least squares fit of this low-degree polynomial spline to create a continuous,

differentiable approximation to either the flux or current.

In Figure 6.5, we see a sample flux returned from a Monte Carlo function evaluation. We can

smooth this function by using a least squares interpolation with regions separated by locations

x1 = .1, x2 = .3, x3 = .7 and x4 = .9. Over each of the regions we use degree 3 polynomials and
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demand that the function and its first derivative are continuous. We can see what a remarkable

improvement this is over the noisy flux.
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Figure 6.5: Noisy scalar flux before interpolation and after a least squares spline fit.

It is important to note that we must use low-degree polynomials for this interpolation.

In fact, we would much prefer to use more regions each with equipped with a low-degree

polynomial than a few regions with higher degree polynomials. When we begin to use high-

degree polynomials, the polynomials tend to adapt to the shape of the noise and this is precisely

what we are trying to avoid. By using all low-degree polynomials, our spline is forced to capture

the overall shape of the curve and ignore the high-frequency noise.

In Figure 6.6, we consider the derivative of the two functions in Figure 6.5. We can see

here how important this interpolation truly is. In some regions (for example x ∈ [.4, .6]), the

true derivative is approximately 0, however the derivative of the noisy flux from Monte Carlo

is nearly equal to 2. Errors this large would make it nearly impossible to solve F (φ) = 0 using

Newton’s method (or any other nonlinear solution algorithm).

The second filtering method, which we will refer to as the multiple-splining filter or MS
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Figure 6.6: Comparing the finite difference derivative of the scalar flux before and after LSS
filtering.

filter. For this filter, let us isolate a single point, (xk, φk), from our unfiltered scalar flux. Now,

we take some set of points around this point, ~x = [xk−m xk−m+1 . . . xk . . . xk+m−1 xk+m]T

and ~φ = [φk−m φk−m+1 . . . φk . . . φk+m−1 φk+m]T . Through this set of 2m + 1 points we’ll

compute a least squares fit of a polynomial pk(x). Finally, we update φNEWk = pk(xk). We

repeat this for each of the points in our domain.

This has an advantage over the LSS filter; if we know a location for which there exist some

rapid change is spatial structure, we can turn off the filter at that point or use points on only

one side of the point for the filter. In Figure 6.7 we can see the effects of the MS filter. In

Figure 6.8 we find the MS filter allows us to compute a more accurate derivative. The MS filter

also has the advantage that it can be executed in parallel for each point in the domain.

Thinking forward to 2-D problems, it should be clear that the LSS filter would be very

expensive and difficult to implement. With the LSS filter, we need to build a least squares

problem which is the same size as the number of spatial cells. Furthermore, the constraints on

region boundaries will be tricky to implement. On the other hand, the MS filter has no difficult

constraints to include in the least squares problem. Furthermore, the size of the least squares

optimization is far smaller. We have to solve one of these smaller least squares problems at each

spatial point, but these can be trivially evaluated in parallel. All things considered, whenever

a filter is called for in 2-D, we’ll utilize only the MS filter.
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Figure 6.7: Noisy scalar flux before interpolation and after a multi-spline filter application.

6.1.2 Picard-NDA(MC)

In this section we explore Picard-NDA using Monte Carlo high-order function evaluations. We

will see that convergence of this method is highly dependent on the number of particles per

function evaluations. In Figure 6.9 we see the results of Picard-NDA(MC).

We see that without filtering and 106 particle per function evaluation, the residual stagnates

around 2× 10−2 or 3× 10−2, where the residual is computed by

R =
∥∥φ(n+1) − φ(n)

∥∥
∞.

When using 109 particles per function evaluation we find that the nonlinear residual drops

another order of magnitude before stagnation. At this point, the amount of error in the Monte

Carlo transport sweep is on the same order of magnitude as the nonlinear residual. It is hopeless

to try to converge the solution to a level below that of the error found in the transport sweep.

We can also compute the error for the scalar flux found using NDA(MC). We plot this error

in Figures 6.10. This also shows that there is a strong connection between the error and the

residual computed.

At this point, we can attempt to increase the number of particles per function evaluation,

but this becomes impractical. On a compute cluster at Los Alamos National Laboratory we can
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Figure 6.8: Comparing the finite difference derivative of the scalar flux before and after MS
filtering.

simulate roughly 6.2 × 106 particles per second per core in MATLAB in serial. Using 8 cores,

this amounts to 4.96 × 107 particles per second in parallel. Therefore, in order to execute a

transport sweep using 109 particles it requires 20 seconds. Increasing the number of particles per

transport sweep by a factor of 10 requires a factor of 10 increase in time. While 1010 particles

per function evaluations (roughly 3 minutes) or 1011 particles per function evaluation (roughly

33 minutes) may be practical, using many more particles than this becomes a burden. Instead

of increasing particle counts further, we turn to other methods in an attempt to decrease the

noise in the stochastic transport sweep.

6.1.3 AA-NDA(MC)

In this section we’ll explore the idea of applying Anderson Acceleration to NDA in which the

transport sweeps are computed using Monte Carlo simulation. The basic idea here is that

applying Anderson Acceleration will act as a sort of variance reduction in the sense that we

take a linear combination of previous iterates in forming the new iterate. This has the potential

to damp the noise found in function evaluations. Furthermore, we showed in Chapter 2 that

Anderson Accelerated NDA performs much better than Picard NDA in some situations (see

Table 2.2).

123



0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Function Evaluations

N
o
n
li

n
e
a
r 

R
e
si

d
u
a
l

NDA(MC)

Different Particle Counts

 

 

10
6
 Particles

10
6
 Particles

10
7
 Particles

10
6
 Particles

10
7
 Particles

10
8
 Particles

10
9
 Particles

Figure 6.9: Comparing the convergence of NDA(MC) using varying numbers of particle per
function evaluation.

As we can see in Figure 6.11, adding Anderson Acceleration does not allow us to lower the

residual much below those computed for NDA(MC). In these figures, AA(1)-NDA corresponds

to Picard-NDA, which is equivalent to Anderson-Acceleration when only the previous iterate is

stored.

In Figure 6.11, we consider simulations in which we begin with relatively few particles and

increase the number of particles by a factor of 10 every time the iteration stagnates. This

allows us to use fewer particles at early stages in the iteration when less accuracy is needed.

Unfortunately, including more vectors in the Anderson Acceleration history does not have a

significant impact on the convergence rate. In the rest of this thesis, we abandon Anderson

Acceleration for Newton-based methods.

6.1.4 JFNK-NDA(MC)

In this section we discuss an implementation of JFNK-NDA using Monte Carlo transport

sweeps. With the previous algorithms, it was possible to see some convergence without fil-

tering of any sort. However, with JFNK-NDA(MC), we are not so lucky. There are a couple of

fundamental reasons why Monte Carlo transport sweeps pose a large problem for JFNK-NDA:

1. Differentiating Noisy Functions: In several places throughout the evaluation of F we
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Figure 6.10: Comparing the error in scalar fluxes computed using differing particle counts in
NDA(MC)

are required to differentiate a noisy function. The first instance where this comes into play

is in the computation of D̂. Within D̂, we compute dφ
dx using a finite difference derivative.

Later, when it comes time to actually evaluate F , we must compute the derivative of

D̂. This essentially means that we need to compute a second derivative of φ and a first

derivative of J . Using finite differences to evaluate the derivative of a noisy function can

extremely dangerous.

2. Evaluating the Jacobian-Vector Product: Within Newton’s method, we must solve

the linear equation F ′(φ)v = −F (φ) to compute the update v where F ′(φ) is our Jacobian.

In many applications, including this one, direct computation of the Jacobian is far too

expensive to be a reasonable option. Instead, we can compute the action of the Jacobian

matrix on a vector. That is, instead of determining the matrix F ′(φ), we define a function

that returns F ′(φ)v. This is often done using a forward difference derivative [15]:

F ′(φ)v ≈ F (φ+ εv)− F (φ)

ε
(6.1)

For the reason mentioned above, using a finite difference derivative to approximate the

Jacobian-vector product will not be a practical choice. Not only will we suffer the errors
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Figure 6.11: Comparing the residuals computed using AA-NDA(MC)

in the Jacobian-vector product evaluation, but we may have deeper issues when trying to

use Krylov methods to solve the linear system.

Handling the noisy function evaluations is not necessarily easy, but it is straightforward. We

have one of two options. First, we can increase the number of particles per function evaluation

until the flux and current returned by the MC transport sweep have a level of error that allow

us to compute D̂ to our desired level of accuracy. As we’ve mentioned previously, this may be

far too expensive. The second option is filtering, as was discussed in Section 6.1.1.

The second issue, noisy Jacobian-Vector products, has a very elegant solution. Instead of

using the finite difference formula defined by Equation 6.1, we develop an analytic formula for

the Jacobian-vector product or “jacvec” as we displayed in [32].

Analytic Jacobian-Vector Product

Within the Newton-Krylov iteration, we must solve Eq. 6.2 for the Newton step, v,

F ′(φ)v = −F (φ) (6.2)

where F ′(φ) is the Jacobian.
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Since F is Fréchet differentiable, we can utilize the following formula to compute the analytic

Jacobian-vector product:

F ′(φ)v =
d

dh
F (φ+ hv)

∣∣∣∣∣
h=0

. (6.3)

In order to facilitate this calculation, we rewrite F (φ) using operator notation,

F (φ) = Lφ+Nφ,

where L is the linear map,

Lφ =
d

dx

[
−1

3Σt

dφ

dx

]
+ (Σt − ΣS)φ,

and N is the nonlinear map,

Nφ =
d

dx

[
D̂(φHO, JHO)φ

]
− q.

Now, we can write the Jacobian-vector product in terms of its linear and nonlinear compo-

nents

F ′(φ)v = L′(φ)v +N ′(φ)v. (6.4)

It is clear that L′(φ)v is given by the simple expression

L′(φ)v = Lv. (6.5)

The expression for N ′(φ)v is somewhat more complicated. Using the Formula 6.3 and properties

of differentiation (product rule), it is easy to show that

N ′(φ)v =
d

dx

[
D̂′(φ)vφ+ D̂(φ)v

]
(6.6)

where we have expressed D̂(φHO, JHO) as D̂(φ) to make the dependence of D̂ on φ explicit.

Now, we can complete the formula by finding an expression for D̂′(φ)v. We accomplish this

using the same technique we used to derive the expression for the nonlinear term. We find that

D̂′(φ)v =
φHO

[
J ′HO(φ)v + 1

3Σt

dφ′HO(φ)v
dx

]
−
[
JHO(φ) + 1

3Σt

dφHO(φ)
dx

]
φ′HO(φ)v

(φHO(φ))2
(6.7)
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where

φ′HO(φ)v =

∫ 1

−1
ξ(x, µ)dµ (6.8)

J ′HO(φ)v =

∫ 1

−1
µξ(x, µ)dµ. (6.9)

Here, ξ(x, µ) is the solution to the external-source-free transport equation where the scalar flux

is taken to be v(x),

µ
∂ξ(x, µ)

∂x
+ Σtξ(x, µ) =

1

2
Σsv(x).

By combining Equations 6.4-6.9 we have an analytic formula for the Jacobian-vector product.

It should be clear that much like the finite-difference approximation to the Jacobian-vector

product, we can compute the analytic Jacobian-vector product with only a single additional

transport sweep. This means that, at no added cost to us, we have a formula for a more accurate

representation of the Jacobian-vector product.

In practice, we find that when the transport sweep is computed deterministically and the

mesh is relatively fine, the analytic and finite-difference Jacobian-vector product agree to several

decimal places. However, when the Monte Carlo transport sweep is used, these two quantities

can differ by orders of magnitude when the number of particles per function evaluation is small.

Algorithmic Adjustments

In general, we’d like to solve the transport equation using as few particles as possible. For this

reason, we start using a minimal number of particles per function evaluation. At some point,

the the error in the function evaluations becomes large enough that convergence stalls and we

encounter an Armijo line-search failure. We consider two options for managing the increase of

particles as the iteration progresses.

Option 1

Our original method of increasing the number of particles per function evaluation demanded

that we start with some relatively small number of particles per transport sweep, NMC . Then,

each time we encounter an Armijo failure, we

• increase NMC by a factor of 100 and

• restart the Newton-GMRES iteration from the previous iterate.

We must establish some notation before we formally describe the algorithm. We approxi-

mate F (u) with a Monte Carlo simulation to obtain F (u,NMC) and the Jacobian-vector product
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F ′(u)w with a Monte Carlo simulation with output J(u,w,NMC) where NMC denotes the num-

ber of particles per MC transport sweep. The evaluations of F we need for the Newton step

and testing termination tolerances for the nonlinear iteration, or within the line search in the

Newton-GMRES code must be replaced with calls to the Monte Carlo simulation.

Newton-GMRES-MC1

Evaluate RMC = F (u,NMC); τ ← τr‖RMC‖+ τa.
while ‖RMC‖ > τ do

Use GMRES with a limit of Imax iterations to find d such that ‖J(u, d,NMC) + RMC‖ ≤
η‖RMC‖
if the GMRES iteration fails then
NMC ← 100 ∗NMC

Evaluate RMC = F (u,NMC)
else
λ = 1
Evaluate RTrial = F (u+ λd,NMC)
while ‖RTrial‖ > (1− αλ)‖RMC‖ and λ ≥ λmin do
λ← λ/2
Evaluate RTrial = F (u+ λd,NMC)

end while
if λ ≥ λmin then
u← u+ λd
RMC = RTrial

else
NMC ← 100 ∗NMC

Evaluate RMC = F (u,NMC)
end if

end if
end while

This is a simple modification of the Newton-GMRES algorithm and seems to work well [32].

However, when employing this method, we often waste a lot of particle histories evaluating

the function in the line search or when the Newton iteration begins to stall. Furthermore, it

is difficult to prove any convergence rate results when using this strategy for increasing the

number of particles. For these reasons, we consider a second, more efficient option.

Option 2
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In [30], we demonstrate that we can obtain r-linear convergence by increasing the number of

particles per transport sweep at each iteration. It is important to note, that as long as we choose

a suitable initial number of particles per Jacobian evaluation, this value never needs to increase

throughout the iteration. Only the number of particles per function evaluation increases from

iteration to iteration. This particle management scheme is described in Algorithm 6.1.4.

Newton-GMRES-MC2(u,NMC , N
J
MC , η, τr, τa)

Evaluate RMC = F (u,NMC); τ ← τr‖RMC‖+ τa.
while ‖RMC‖ > τ do

Compute J(u,NJ
MC)

Find s which satisfies ‖J(u,NJ
MC)s+ F̃ (u,NMC)‖ ≤ η‖F̃ (u,NMC)‖.

u← u+ s
Evaluate RMC = F (u,NMC);
NMC ← NincNMC

end while

This algorithm allows us to “track” r-linear convergence in which r =
√
Ninc [30]. Compared

to Option 1, this is a much more efficient use of particle histories. In Section 6.1.4, we’ll see

the outcome of using each of these particle increase methods.

Results

We present results here for JFNK-NDA(MC). We’ll consider two test problems that demonstrate

the convergence properties. In both test problems, both the flux and current are filtered using

a least squares interpolant filter in both the function and Jacobian evaluation. Furthermore,

during the function evaluation, D̂ is filtered using the same least squares interpolant filter.

In each of the following simulations, we precondition the linear solver using the same pre-

conditioner as described in [18]. We choose to use the inverse of the operator, M , defined

by

M =
∂

∂x

[
− 1

3Σt

∂

∂x
+ D̂k

]
+ (Σt − Σs) ,

where D̂k was computed during the most recent evaluation of F .

In order to test this algorithm and compare the two particle management strategies, we’ll

use the following parameters:
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Parameter Value

Σt 10

Σs 9.9

τ 1

q .5

Spatial Cells 50

Option 1

In Figure 6.12, we see that using 106 particles per function evaluations (using the standard

tally) does not provide enough accuracy to converge to the desired tolerance. However, using

106 particles per function evaluation does allow us to get a rough shape for the scalar flux. We

use this estimate of the flux as the starting point for a new run of JFNK-NDA(MC) using 108

particles per function evaluation. This provides yet a better estimate for a third pass of the

algorithm.
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Figure 6.12: Fluxes after 1, 2 and 3 runs of JFNK-NDA(MC) with increasing particle counts
using standard tallies.
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In Figure 6.13, we see that using 106 particles per function evaluations provides an order

of magnitude decrease in the nonlinear residual from the initial iterate for both standard and

CED tallies. Increasing the number of particles by a factor of 100 allows for another order of

magnitude decrease. The final run, using 1010 particles per function evaluation drops the norm

of the nonlinear residual below 5× 10−3.

Comparing the standard and CED tallies, we see that the CED tallies are more effective

at lower particle counts. By the end of Run 2, the CED tallies had decreased the nonlinear

residual by an extra factor of two over the standard tallies and had done so using few function

evaluations. At the level of 1010 particles per function evaluation, the two tallying methods

become indistinguishable.
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Figure 6.13: Nonlinear residuals after 1, 2 and 3 runs of JFNK-NDA(MC) with increasing
particle counts using both Standard and CED Tallies.

Option 2

With Option 2, there are several parameters which we can change. We fix NJ
MC = 106 for

the entire simulation. We vary the quantities KL (max number of Krylovs per Newton step), η

(inexact Newton forcing term), and KR (number of times that GMRES is initiated per Newton
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step). When KR = 1, GMRES with at most KL iterations is used to compute the Newton step.

When KR = 2, GMRES computes an approximation to the Newton step, and then GMRES is

called a second time using the approximation to the Newton step as the initial iterate. This

is similar to GMRES with restarts, however GMRES is called a second time regardless of the

linear residual at the end of the first call to GMRES. This helps to alleviate issues caused

by noisy Jacobian evaluations in the early stages of the GMRES iteration [30]. We allow the

forcing term to take on values η = .1, .01, and .001. KL can take on values 5 and 10.

We display the numerical results when using the second method of managing particles and

vary the quantities KL, KR and η in Figures 6.14 through Figures 6.25. In each of the following

figures we employ the same structure. On the y-axis we plot the nonlinear residual, on the

x-axis we plot the total number of accumulated particle histories (realizations), and we plot the

results of ten simulations along with a dashed line demonstrating a rate of residual decrease

that tracks 1√
NMC

.

In Figures 6.14 and 6.15 we see the effect that a second pass of GMRES can have on

the overall iteration. In Figure 6.14 the nonlinear residual history is a considerably smoother

function of the number of total realizations. We see a similar trend in Figures 6.16 and 6.17.

In each of these figures we hold η constant at .001.
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Figure 6.14: KL = 5, η = .001, KR = 2
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Figure 6.15: KL = 5, η = .001, KR = 1

A similar trend persists for η = .01. By the end of the iteration, we see that the nonlinear

residual is generally slightly lower when GMRES is restarted (KR = 2). We can see this by

comparing Figures 6.18 and 6.19 and Figures 6.20 and 6.21.

Finally, let us consider η = .1. When KL = 10, we see very little difference between

restarting or not. However, when KL = 5, the difference is noticeable. In this case restarting

is better in the sense that the simulations are both more consistent over the ten trials and
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Figure 6.16: KL = 10, η = .001, KR = 2
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Figure 6.17: KL = 10, η = .001, KR = 1
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Figure 6.18: KL = 5, η = .01, KR = 2
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Figure 6.19: KL = 5, η = .01, KR = 1

the residuals decrease more rapidly. This should be no surprise from the previous test results.

These results are demonstrated in Figures 6.22 – 6.25.

In Figures 6.14 - 6.25 we see that, in general, restarting GMRES leads to more predictable

residual histories. When GMRES is restarted to compute the Newton step, the residual histories

for all the simulations are very similar. When GMRES is not restarted, this is not always the

case. For example, the residual histories in Figure 6.23 have a large variance.

All of the figures in this section demonstrate that we can track r-linear convergence by

properly increasing the number of particles per function evaluation. In order to reach a nonlinear

residual of 2 × 10−2, this particle management strategy with an appropriate choice of the

parameters KL, KR, and η requires roughly 2 × 1010 histories. Compare this to the first

strategy for increasing the number of particles. With CED tallies, it still requires at least
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Figure 6.20: KL = 10, η = .01, KR = 2
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Figure 6.21: KL = 10, η = .01, KR = 1

10
6

10
7

10
8

10
9

10
10

10
11

10
−2

10
−1

10
0

10
1

Residual Histories for eta = 0.100, Max Krylovs = 5, GMRES x 2

Total Accumulated Histories

N
o
n
li

n
ea

r 
R

es
id

u
al

Figure 6.22: KL = 5, η = .1, KR = 2
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Figure 6.23: KL = 5, η = .1, KR = 1

three times as many particles to decrease the residual to this point. Using standard tallies, it

required roughly 15 times as many particles to low the residual to 2× 10−2. Clearly, increasing

the number of particles per function evaluation is a far superior strategy than waiting for the

iteration to stall. For this reason, we will adopt Option 2 for the remainder of this thesis for

both fixed-source problems and k-eigenvalue problems.

6.2 Accelerating a 1-D k-Eigenvalue Monte Carlo Computation

In Chapter 4 we explored methods for solving the neutron transport k-eigenvalue problem. We

found that we could accelerate standard power iterations using NDA-NCA, in which much of

the computational work was moved to the low-order diffusion problem. Much like we did in
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Figure 6.24: KL = 10, η = .1, KR = 2
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Figure 6.25: KL = 10, η = .1, KR = 1

Section 6.1, we’d now like to consider hybrid methods for solving the k-eigenvalue problem

using Monte Carlo transport sweeps [33].

It should be clear from the computational results in Chapter 4 and Section 6.1 that stan-

dard power iteration using Monte Carlo transport sweeps would be infeasible. The increased

computational effort of using Monte Carlo transport sweeps demands that we reduce the total

number of transport sweeps which we need to compute. NDA-NCA provides an excellent way

to do this. Not only does it reduce the number of transport sweeps considerably, it moves much

of the work to low-order diffusion solves which are both inexpensive and deterministic. This

means that the only source of stochastic error comes from the transport sweep calculated in

the outer iteration. Contrast this to JFNK-NDA(MC) in which both the residual evaluations

and the Krylov solve contributed to the noise when trying to solve the fixed-source problem.

Furthermore, it should be clear at this point that NDA-NCA should be used in place of

NDA-PI. While NDA-PI is a drastic improvement over unaccelerated power iteration, it cannot

compete with NDA-NCA in terms of computational effort required to update the eigenvalue

and eigenvector within each outer iteration. When the Newton step in NDA-NCA is computed

using the Sherman-Morrison formula to invert the Jacobian [31], the cost of updating the

eigenvalue/eigenvector pair is only two sparse matrix inversions (low-order diffusion solves).

We ask the reader to recall the results from Table 4.2 at the end of Chapter 4.

In Section 6.1.4 we demonstrated that using a Newton-Krylov method to solve F (φ) = 0

when F is evaluated stochastically can be quite difficult. We should be careful to note that this

is not the case with NDA-NCA. While there is an element of stochasticity in the computation

of D̂, this value is not computed within the evaluation of F . Within JFNK-NDA(MC) each

evaluation of F at a vector φ yielded a slightly different result based around the expected
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value of F (φ). In NDA-NCA, F (φ) is computed exactly (in the absence of discretization error,

machine roundoff, etc.) each time. Therefore, we need not take quite as much care when solving

the F (φ) = 0. The only source of noise in this algorithm is introduced in the transport sweep

at the beginning of each outer iteration.

6.2.1 Results

We will consider two 1-D, 1-Group test problems to demonstrate the effectiveness of this al-

gorithm. Both Test 1 and Test 2 below consist of a single fissile region surrounded by two 5

mean-free-path reflectors [20]. The length of the medium is given by τ , and the length of the

fissile region is given by τ − 10.

Test 1

Consider the parameters for the first test:

Σt = 1 Σs = .856 νΣf = .144 τ = 35 (fissile region)

Σt = 1 Σs = .856 νΣf = 0 τ = 35 (reflector region)

For this problem, we found the true eigenvalue to be keff = .9720469427, computed using a high

accuracy Sn computation. We’ll run the simulation 10 times in order to gauge performance.

For each simulation we’ll discretize using 7000 spatial cells. We begin using 106 particles per

function evaluation and increase the number of particles per function evaluation by a factor of

2 each iteration. After 15 outer iterations, we have used a total of roughly 3.28× 1010 particle

flights. After 10 independent simulations we collect the following results for keff :

• Mean = .9720469297

• Standard deviation = .0000028874

• Max eigenvalue = .9720577602 (.001866% error)

• Min eigenvalue = .9720420155 (.001850% error)

Test 2

Consider the parameters for the second test:

Σt = 1 Σs = .856 νΣf = .144 τ = 60 (fissile region)

Σt = 1 Σs = .856 νΣf = 0 τ = 60 (reflector region)
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For this problem, the true eigenvalue is keff = .9919893631. We’ll run the simulation 10 times

in order to gauge performance. For each simulation we’ll discretize using 12000 spatial cells.

We begin using 106 particles per function evaluation and increase the number of particles per

function evaluation by a factor of 2 each iteration. After 15 outer iterations, we have used a

total of roughly 3.28 × 1010 particle flights. After 10 independent simulations we collect the

following results for keff :

• Mean = .9919892935

• Standard deviation = .0000011455

• Max eigenvalue = .9919907012 (.000142% error)

• Min eigenvalue = .9919875238 (.000178% error)

A comparison against an analog Monte Carlo computation is given in Appendix D.

6.2.2 Conclusions

We have demonstrated that using Monte Carlo transport sweeps within the NDA-NCA algo-

rithm is feasible. All of these results have been obtained without filtering of any sort. We

believe that filtering will not be necessary for the k-eigenvalue problem. The computation of

k involves an integral over the domain which acts as a filter by using errors in one part of the

domain to cancel out errors in other parts of the domain.

This gives us confidence that the NDA-NCA(MC) algorithm works and can be tested in

2-D. It is expected that more particles per transport sweep will be required in 2-D, so we will

briefly discuss our parallel implementation of the MC transport sweep in C++ in Section 6.3.

6.3 2-D Monte Carlo Transport Sweep

Up until this point, all of the Monte Carlo computations have taken place in MATLAB. While

MATLAB has been sufficient for 1-D, we understand that moving up in dimension will require

significantly more particles per transport sweep. For this reason, we have written a 2-D Monte

Carlo transport sweep in C++ which has been parallelized using both MPI and OpenMP. The

low-order solver still takes place in MATLAB. The communication between MATLAB and C++

takes place via file input/output. This allows us to continue to use the code base that has been

developed for the deterministic 2-D computations, without significant headache.

At each call to the C++ transport sweep, the work is spread out between the total number of

nodes available, NT , using MPI. This means that if the sweep calls for NMC particle histories,

each node will be responsible for computing NMC/NT particle histories. Each node reads in
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Table 6.2: Weak Scaling Efficiency for Standard and CED Tallies 109 Particles Histories Per
Node

Standard Tally CED Tally

Nodes Time Efficiency Time Efficiency

1 19.34 —— 85.17 ——

2 19.42 99.7% 85.22 99.9%

4 19.63 98.6% 85.50 99.6%

8 20.05 96.50% 85.67 99.4%

12 20.18 95.9% 85.72 99.4%

20 20.53 94.25% 86.08 98.9%

the source term, the total cross-sections for the entire domain, and a few domain parameters.

Right now, the domain is replicated on each node. If the domain were to become so large that

storing the entire domain on a single node became troublesome, domain decomposition could

be used without much trouble. In this case, each node would be responsible for simulating

histories in a small fraction of the domain.

Once the work has been spread out to each node via MPI, we use OpenMP on each node

to spread out the work over each core. Again, each core receives the total cross-sections for the

entire domain. If NC cores are available per node, then the amount of work per core amounts to

NMC/(NT ×NC) particle histories. After each core has finished executing its batch of particles,

we average the scalar flux and current in parallel using OpenMP within each node. The final

scalar flux and current are computed via an MPI Reduce on the master node. At this point,

the scalar flux and current are written to a text file to be interpreted by MATLAB.

We have performed a scaling study on the Monte Carlo transport sweep on a computing

cluster at Los Alamos National Laboratory. This compute cluster is comprised of nodes which

each contain four AMD Opteron 6168 processors running 12 CPU cores at 1.90 GHz. We use

20 nodes (NT = 20) and each node has 48 cores (NC = 48). We measure the time it takes to

compute a single group 1 transport sweep for this study. The results of this study can be seen

in Figure 6.26 and Table 6.2.

As expected, we have very efficient both strong and weak scaling. As the amount of work

per node increases, these scaling numbers become even more impressive. This highly parallel

Monte Carlo Transport Sweep will allow us to solve the fixed-source and k-eigenvalue problems

in 2-D in a reasonable amount of time.
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Figure 6.26: Both Standard and CED tallies achieve very efficient strong scaling across 40
nodes. 1011 particles per transport sweep were used.

6.4 Accelerating a 2-D Fixed Source Monte Carlo Computation

In 2-D, we will only consider using JFNK-NDA(MC) to solve the fixed-source problem. We’ll

use what we learned in Section 6.1 to guide our development of the 2-D code. We know that the

first key to effectively solving the transport equation with JFNK-NDA(MC) is the use of the

analytic Jacobian-vector product. We will derive this formula in detail in the following section.

The second key to effectively solving the transport equation with JFNK-NDA(MC) is the proper

management of particles. We will use only Option 2 from Section 6.1 in which the number

of particles per transport sweep are held constant for Jacobian-vector product evaluations and

increased each iteration for the residual function evaluation. The combination of these ideas

should lead to a smooth transition from deterministic 2-D JFNK-NDA to a functioning hybrid

implementation.
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6.4.1 2-D Analytic Jacobian-Vector Product

Just as in 1-D, we’ll derive the analytic Jacobian-vector product for the NDA equations. In

this case, we’ll derive the equations in full generality, ignoring dimension, and allowing for a

multi-group formulation.

We’ll remind the reader of the multi-group formulation of the fixed-source neutron transport

problem

Ω̂ · ∇ψg + Σt,gψg =
1

4π

 G∑
g′=1

Σg′→g
s φg′ +Qg

 ,
in which g ranges from 1 to G. It will be important to recall the definition of the scalar flux

and current, as well,

φg =

∫
4π
ψgdΩ̂

~Jg =

∫
4π

Ω̂ψgdΩ̂.

We use Newton’s method to solve the following nonlinear system of equations,

Fg(Φ) = ∇ ·
[
− 1

3Σt
∇φg + D̂gφg

]
+ (Σt,g − Σg→g

s )φg −
∑
g′ 6=g

Σg′→g
s φg′ −Qg

in which D̂g is a function of Φ and Φ = [φ1 φ2 . . . φG]T .

Within Newton’s method, we must solve the following linear system of equations for the

Newton step, s,

F ′(Φ)s = −F (Φ),

in which F ′ denotes the Jacobian of the function F . Traditionally, F ′(Φ)v is computed using a

finite-difference derivative,

F ′(Φ)v ≈ F (Φ + εv)− F (Φ)

ε
,

for some small choice of ε. For settings in which the function evaluation F (Φ) may be low

accuracy (e.g. evaluated using Monte Carlo transport sweeps), the finite-difference derivative

is generally very inaccurate. We seek to derive an analytic formula for the Jacobian-vector

product.
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To do so, let us first re-write the function, F , in terms of its linear and nonlinear components

Fg(Φ) = LgΦ +Ng(Φ)−Qg,

in which

LgΦ = ∇ ·
[
− 1

3Σt
∇φg

]
+ (Σt,g − Σg→g

s )φg −
∑
g′ 6=g

Σg′→g
s φg′ ,

Ng(Φ) = ∇ · D̂g(Φ)φg.

Now, we can write the Jacobian of F in terms of its linear and nonlinear components,

F ′(Φ)v = Lv +N ′(Φ)v.

The only remaining task is to compute the action of N ′(Φ) on a vector, v.

We’ll use the following formula for the Jacobian vector product,

N ′(Φ)v =
d

dε
N (Φ + εv)

∣∣∣
ε=0

.

This yields

N ′(Φ)v =
d

dε

[
∇ · D̂(Φ + εv)(Φ + εv)

] ∣∣∣
ε=0

= ∇ · d
dε

[
D̂(Φ + εv)(Φ + εv)

] ∣∣∣
ε=0

= ∇ ·
[(
D̂′(Φ)v

)
Φ + D̂(Φ)v

]
.

We can evaluate D̂′(Φ)v in a similar manner. It is important to note that D̂ is a function

of Φ through the high order flux and current. ~JHO and ΦHO are functions of Φ through the

transport sweep. Now, we have,

D̂′(Φ)v =
d

dε

[
~JHO(Φ + εv) + 1

3Σt
∇ΦHO(Φ + εv)

ΦHO(Φ + εv)

] ∣∣∣
ε=0

=

d
dε

[
JHO(Φ + εv) + 1

3Σt
ΦHO(Φ + εv)

] ∣∣∣
ε=0

ΦHO(Φ)

ΦHO(Φ)2

−
d
dεΦ

HO(Φ + εv)
∣∣∣
ε=0

[
JHO(Φ) + 1

3Σt
∇ΦHO(Φ)

]
ΦHO(Φ)2

=

[
JHO(Φ)′v + 1

3Σt
∇ΦHO(Φ)′v

]
ΦHO

(ΦHO)2
− ΦHO(Φ)′vD̂(Φ)

ΦHO
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We will represent the ith angular moment of ΨHO as M i,HO. This way, we can deal with

~JHO(Φ)′v and ΦHO(Φ)′v simultaneously. Now, we can write

M i,HO(Φ)′v =
d

dε

[
M i,HO(Φ + εv)

] ∣∣∣
ε=0

=
d

dε

∫
4π

Ω̂iΨHO(Φ + εv)dΩ̂
∣∣∣
ε=0

=

∫
4π

Ω̂iΨHO(Φ)′vdΩ̂.

Lastly, we know that ΨHO is related to Φ via the transport equation, which we will write

as

AΨHO = SΦ +Q,

so

ΨHO = A−1SΦ +A−1Q.

Now, we have

ΨHO(Φ)′v =
d

dε

[
A−1S(Φ + εv) +A−1Q

] ∣∣∣
ε=0

= A−1Sv.

That is, ΨHO(Φ)′v can be computed by executing a single transport sweep in which v is used

for the scattering source and the fixed source is taken to be zero.

We evaluate F ′(Φ)v using the following steps:

1. Input ΦHO, JHO, and D̂, which have already been computed.

2. Input Krylov vector, v.

3. Execute a single transport sweep to recover Ψ̄ ≡ ΨHO(Φ)′v = A−1Sv.

4. Compute Φ̄ ≡ ΦHO(Φ)′v, J̄ ≡ ~JHO(Φ)′v using

Φ̄ =

∫
4π

Ψ̄dΩ̂

J̄ =

∫
4π

Ω̂Ψ̄dΩ̂
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5. Evaluate D̄ ≡ D̂′(Φ)v

D̄ =

[
J̄ + 1

3Σt
∇Φ̄
]

ΦHO

(ΦHO)2
− Φ̄D̂

ΦHO

6. Evaluate N ′(Φ)v

N ′(Φ)v = ∇ ·
[
D̄Φ + D̂v

]
7. Evaluate F ′(Φ)v

F ′(Φ)v = Lv +N ′(Φ)v.

With this analytic Jacobian-vector product in hand, we are ready to implement JFNK-

NDA(MC) in 2-D. The next section describes results for a simple 2-D multi-material test prob-

lem.

6.4.2 2-D JFNK-NDA(MC) Results

We’ll test JFNK-NDA(MC) on a 3 material 2-D, 2-group test problem. The material layout is

portrayed in Figure 6.27. The corresponding cross-section data is displayed in Table 6.3. The

properties of the domain are described in Table 6.4.

Table 6.3: Fixed-Source Problem Material Properties

Material Σt,1 Σt,2 Σ1→1
s Σ1→2

s Σ2→2
s

1 0.2656 1.5798 0.2021 0.0253 1.4795

2 0.2623 1.7525 0.2280 0.0277 1.6821

3 0.2652 2.0938 0.2170 0.0475 2.0747

Table 6.4: Domain Properties for Fixed-Source Problem

τx τy Nx Ny χ1 Boundaries

50 50 50 50 1 Reflective Corner
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Figure 6.27: Material layout for 2-D Fixed-Source Problem.

In Figure 6.28 we plot the scalar flux for groups 1 and 2. In Figure 6.29 we plot the nonlinear

residual as a function of iteration, which corresponds directly to the number of particles per

function evaluation. As we can see, we are able to track r-linear convergence. For these

simulations we use GMRES twice per iteration to compute the Newton step. We use η = .01

and KL = 10 (number of Krylovs per GMRES solve). We see that our observations from 1-D

hold again in 2-D and have allowed for a straightforward implementation.

6.5 Accelerating a 2-D k-Eigenvalue Computation

In 2-D, we’ll utilize NDA-NCA(D) to compute the k-eigenvalue, just as in Section 6.2. However,

before moving on, let us address the issue of convergence in hybrid k-eigenvalue computations.

With deterministic methods, we can define convergence in several obvious ways. For ex-

ample, we can terminate when the relative difference between two successive values of the

eigenvalue is less than some tolerance. We could also check the normed relative difference of

the eigenvector. Furthermore, we could place convergence criteria on the norm of the low-order

residual, F , in the NDA-NCA algorithm. Any of these checks can be justified as convergence
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Figure 6.28: Hybrid solution to the 2-D Fixed-Source Problem.
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Figure 6.29: JFNK-NDA(MC) Convergence History for 2-D Fixed-Source Problem

criteria.

With purely stochastic methods, one can test the variance in the eigenvalue computation.

Once the variance is below some specified value, we can consider the eigenvalue converged.

With stochastic methods, due to the random nature of the computation, it can be dangerous

to consider the iteration converged when two successive values of the eigenvalue are very close.

Furthermore, due to the stochastic noise, it may be very expensive to iterate until the scalar

flux is no longer changing.

With hybrid methods, the question as to what to use as a convergence criterion becomes

somewhat clouded. The variance is a more difficult quantity to compute as we are no longer

averaging “active cycles.” Furthermore, there is a randomness associated with the eigenvalue

and even the low-order residual, so placing a test on these quantities alone may be ill-advised.

We will turn to a test of convergence that is becoming increasingly popular in the neutronics
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community, a check of the Shannon Entropy [35, 25, 3].

6.5.1 Shannon Entropy

The Shannon Entropy is, in essence, a measure of the randomness in the fission source and is

given by

H(Sf ) = −
Ns∑
s=1

ps log2(ps), (6.10)

in which H is the Shannon Entropy, Sf is the fission source, Ns is the number of fission sites

which are labeled from 1 to Ns, and ps is the percentage of the total fission reaction that occurs

at fission site s [35, 3]. In order to compute these values, we look at the number of spatial cells

(independent of group) in which the fission source exists. In each spatial cell we compute the

fission source and compute the total global fission source. With these quantities in hand, we

can compute the Shannon Entropy.

It is expected that this value converges and is a good measure of the convergence of the

eigenvalue and eigenvector, as these values are intimately tied to the fission source. In Figures

6.30 and 6.31, we can see that for a deterministic calculation, the Shannon Entropy converges

for both the TMR and the LRA-BWR problems, respectively.

It is also interesting to plot the change in the Shannon Entropy from one iteration to the

next on the same axes as the error in the k-eigenvalue. Again, using the results of a deterministic

calculation, these quantities can be seen for the two problems in Figures 6.32 and 6.33.

The fact that the change in Shannon Entropy for these problems is a good representation

for the error in the eigenvalue is a convincing argument that it should be used as a convergence

metric. In these 2-D computations k-eigenvalue computations, we will keep a history of the

Shannon Entropy, the eigenvalue, the normed difference of successive iterates of the eigenvector

and the norm of the low-order residual, F . In this way, we hope to show that the convergence

of each of these values can be captured by considering the Shannon Entropy.

6.5.2 Numerical Results

In this section we will consider the TMR problem, the LRA-BWR problem and Zion reactor

problem. For each of the problems, we will start with 109 particles per group transport sweep.

At each iteration we will increase the number of particles by a factor of 2 until the eigenvalue

has converged or we reach a total of 1013 particles. Starting at the fifth iteration, we will

begin to average the scalar flux and current with previous iterates which will be used in the
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Figure 6.30: The Shannon Entropy converges for the TMR problem.

computation of D̂. We will use the weighted average

Φ(i+1) =
1

3
Φ(i) +

2

3
Φ̃(i+1) (6.11)

~J (i+1) =
1

3
~J (i) +

2

3
J̃ (i+1) (6.12)

in which Φ̃ and J̃ are the high-order quantities computed directly from the transport sweep

at the most current iteration. We argue that this weighting scheme is justified because twice

as many particles were used in the most recent transport sweep than the previous sweep. The

correction term is not averaged directly, however it is computed using the averaged scalar fluxes

and currents. By weighted averaging we utilize the history of the iteration instead of throwing

it out completely, while putting the most emphasis on the most current, accurate simulations.

For each of these simulations, we will monitor four convergence metrics. These convergence

metrics include:

• Change in Shannon Entropy: This quantity measures how much the Shannon entropy

changes from one iteration to the next.

• Change in k-eigenvalue: This quantity measure how much the eigenvalue is changing
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Figure 6.31: The Shannon Entropy converges for the LRA-BWR problem.

from iteration.

• Change in eigenvector: This quantity measures the relative normed difference of the

eigenvalue between successive iterates.

• Norm of nonlinear residual: This quantity measure the nonlinear residual of the

low-order problem at each iteration.

LRA-BWR

We have run two independent NDA-NCA(MC) simulations and compiled results. After 14 outer

iterations and maximum of 8.192 ×1012 particles per function evaluation and using a 165 ×
165 mesh, we have locked onto the first five digits of the eigenvalue

keff,1 = 1.000219056020964

keff,2 = 1.000218814100412

keff,3 = 1.000218975804200
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Figure 6.32: The change in Shannon Entropy from iteration to iteration goes to zero at the
same rate as the error in the eigenvalue for the TMR problem.

in all three simulations. In Figure 6.34, we plot the eigenvector computed using the hybrid

method alongside the difference between the eigenvector computed using hybrid methods and

deterministic methods. By any of the four convergence metrics, we can see that the eigenvalue

and eigenvector are converging.

In Figures 6.35 and 6.36, we look at a combination of the four convergence metrics for each

simulation.

Three-Material Reactor

We have run three independent NDA-NCA(MC) simulations and compiled results. After 14

outer iterations and maximum of 8.192 ×1012 particles per function evaluation and using a 125

× 130 mesh, we have locked onto the first seven digits of the eigenvalue

keff,1 = 1.143718236029695

keff,2 = 1.143718227718820
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Figure 6.33: The change in Shannon Entropy from iteration to iteration goes to zero at the
same rate as the error in the eigenvalue for the LRA-BWR problem.

in both simulations. In Figure 6.37, we plot the eigenvector computed using the hybrid method

alongside the difference between the eigenvector computed using hybrid methods and determin-

istic methods.

In Figures 6.44 and 6.39, we look at a combination of the four convergence metrics for

each simulation. It appears that the nonlinear residual is stalling, however the eigenvector still

appears to be converging and both the eigenvalue and the Shannon entropy are converging.

Furthermore, both the eigenvalue and eigenvector compare well with deterministic solutions.

We can gain some insight into the situation by considering the spatial dependence of the

nonlinear residual. In Figures 6.40 and 6.41, we plot the nonlinear residual for group one and

group two. This figure demonstrates that the nonlinear residual is strongest near material

interfaces and where the steepest gradients occur. By considering Figures 6.37, 6.40 and 6.41

simultaneously, we can see the interaction between material interfaces, the scalar flux, and the

nonlinear residual.

We theorize that the stall in the nonlinear residual is due to the truncation error of the

low-order problem. To test this, we’ll solve the problem on a series of meshes and consider the

nonlinear residual on each of these meshes. Instead of plotting the ∞−norm of the nonlinear

residual, we’ll compare the scaled 1−norm, h2‖ · ‖1. These results are displayed in Figure 6.42.

This figure demonstrates that with these meshes, by the end of the iteration the Monte Carlo
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Figure 6.34: On the left, we plot the group one and group two eigenvector, respectively. On
the right, we see the difference between the eigenvector computed using hybrid methods and
deterministic methods.

error is lower than the truncation error of the low-order problem and the nonlinear residual

stalls at the level of the truncation error.
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Figure 6.35: We plot the four convergence metrics for the first simulation for the LRA-BWR
problem.

0 2 4 6 8 10 12 14
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Iteration Count

Hybrid Method Convergence Metrics

 

 

Change in Entropy
|SE

i+1
−SE

i
|

Change in Eigenvalue
|k

i+1
 − k

i
|

Relative Change in Eigenvector
||φ

i+1
−φi||/||φ

i+1
||

Nonlinear Residual
||F

i
||

Figure 6.36: We plot the four convergence metrics for the second simulation for the LRA-BWR
problem.
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Figure 6.37: On the left, we plot the group one and group two eigenvector, respectively. On
the right, we see the difference between the eigenvector computed using hybrid methods and
deterministic methods.

Zion Reactor

We have run two independent NDA-NCA(MC) simulations and compiled results. After 12 outer

iterations and maximum of 2.048 ×1012 particles per function evaluation and using a 136 ×
136, we have locked onto the first six digits of the eigenvalue

keff,1 = 1.274762569404242

keff,2 = 1.274762670387974
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Figure 6.38: We plot the four convergence metrics for the first simulation for the TMR problem.
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in both simulations. In Figure 6.43, we plot the eigenvector computed using the hybrid method

alongside the difference between the eigenvector computed using hybrid methods and determin-

istic methods.

In Figure 6.44, we look at a combination of the four convergence metrics for each simulation.

Just like the TMR problem, it appears that the nonlinear residual is stalling, however the

eigenvector still appears to be converging and both the eigenvalue and the Shannon entropy are

converging. Furthermore, both the eigenvalue and eigenvector compare well with deterministic

solutions.

Like we did for the TMR reactor problem, we’ll consider the spatial dependence of the

nonlinear residual. In Figure 6.45, we plot the nonlinear residual for group one and group two.

This figure demonstrates that the nonlinear residual is strongest near material interfaces and

where the steepest gradients occur. By considering Figures 6.43, 6.45 and 6.46 we can see that

the behavior is similar to the behavior for the TMR problem.

6.6 Conclusions

Throughout this chapter, we have demonstrated that it is possible to build hybrid methods by

introducing a Monte Carlo transport sweep in place of a deterministic transport sweep in any

of the moment-based algorithms which we have considered throughout this thesis. By astutely

managing the increase of particles, we can “track” r-linear convergence with JFNK-NDA(MC).

In many ways, computing the eigenvalue is easier than the fixed-source problem. This is

because in our computations, the error (or relative residual) in the eigenvector is usually 2 - 3

orders of magnitude larger than the error (or relative residual) in the eigenvalue. Therefore, in

order to get 5 digits correct in the eigenvalue, we may only need to compute the eigenvector

accurately to 2 or 3 digits.

Of course, the true goal with these algorithms is to be able to accurately compute the

dominant eigenvalue for realistic reactor problems. We have demonstrated that these algorithms

work on two large, 2-D, 2-group eigenvalue problems. NDA-NCA is an ideal algorithm for hybrid

computations of the k-eigenvalue as much of the work is moved away from high-order transport

sweeps to low-order eigenvalue solves. These low-order solves take place in the absence of Monte

Carlo noise and therefore can achieve results without the headaches we encounter when trying

to implement JFNK-NDA(MC).

Furthermore, by using an efficient parallel implementation of the Monte Carlo transport

sweep, these algorithms become very practical and can yield more accurate solutions than de-

terministic methods. By ridding the high-order solution of the angular and spatial discretiza-

tions, we can compute more physically accurate neutron fluxes which lead to more accurate

eigenvalues. Figures 6.34 and 6.37 demonstrate that the hybrid methods can achieve higher
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accuracy in regions where the scalar flux is rapidly changing, such as near material interfaces,

or areas where the scalar flux (and fission source) is strongest.
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Figure 6.40: We plot the nonlinear residual as a function of space for a 75 × 78 mesh.
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Figure 6.41: We plot the nonlinear residual as a function of space for a 175 × 182 mesh.
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Figure 6.42: We plot the scaled one-norm of the nonlinear residual by iteration for a series of
three meshes.
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Figure 6.43: On the left, we plot the group one and group two eigenvector, respectively. On
the right, we see the difference between the eigenvector computed using hybrid methods and
deterministic methods.
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Figure 6.44: We plot the four convergence metrics for the Zion reactor problem.
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Figure 6.45: We plot the nonlinear residual as a function of space for a 136 × 136 mesh.
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Figure 6.46: We plot the nonlinear residual as a function of space for a 204 × 204 mesh.
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Chapter 7

Conclusion

Throughout this thesis we have considered numerical methods for solving the neutron trans-

port fixed-source problem, as well as the neutron transport k-eigenvalue problem. We built

these algorithms by first considering the most simple case - one-dimensional, one energy group,

homogenous medium problems using deterministic methods. In this setting we considered the

fixed-source problem first and looked at the most straightforward method, source iteration.

From source iteration we showed how we could use angular moments of the transport equation

to increase the convergence rate [18]. At this point we took our findings in one space dimension

and applied these methods to the two-dimensional fixed-source problem. It was straightforward

to demonstrate the effectiveness of these algorithms in higher dimension.

After concluding our work on deterministic methods for the fixed-source problem, we turned

our attention to solving the k-eigenvalue problem. Again we began by implementing a sim-

ple power iteration and showing how ineffective this algorithm can be, even for simple one-

dimensional problems. We then accelerated the convergence of the eigenvalue problem by

turning to moment-based acceleration. This allowed us to move the majority of the compu-

tational work to a low-order problem that exists only in a reduced phase-space. As in [23],

we used Newton’s method to solve the low-order problem, however we showed that we could

significantly decrease the cost of the low-order eigenvalue solving by exploiting the nature of

the Jacobian matrix. We demonstrated that these algorithms work very well on both a series

of simple one-dimensional, one group test problems, as well as some much more sophisticated

two-dimensional test problems.

After completing a study of deterministic methods for solving the fixed-source and k-

eigenvalue problem, we segued into the heart of the thesis by considering stochastic methods

for neutron transport. These methods utilize Monte Carlo algorithms to simulate each physical

process which takes place between the neutrons and underlying medium. This chapter allowed

us to develop terminology and machinery to be used in our discussion of hybrid methods. At
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the end of our discussion of stochastic methods we demonstrated the increased effectiveness of

the continuous energy deposition [10] tallies which were critical for the effective implementation

of hybrid methods.

In the following chapter, we discussed hybrid methods for neutron transport. These methods

combine the accelerators we developed for deterministic methods and Monte Carlo simulation.

We used Monte Carlo to approximate the transport sweep process and used the outcome of

these stochastic transport sweeps to compute closure relationships for low-order problems which

allowed us to accelerate convergence.

We began our discussion of hybrid methods with a long, in-depth study which demonstrated

the care which must be taken when implementing a hybrid method, even for a simple one-

dimensional, one group, homogeneous medium test problem [32]. In this section, we learned

about the importance of analytic Jacobian-vector products which allow us to bypass noise-

ridden finite-difference computations. We also completed a detailed study which analyzed

the behavior of Newton’s method when the function and Jacobian-vector product evaluations

contained stochastic noise. By managing the number of particle histories per function evaluation

astutely, we demonstrated that we could achieve r-linear convergence [30].

These one-dimensional fixed-source findings led to a straight-forward implementation of the

NDA-NCA(MC) hybrid algorithm for computing the k-eigenvalue. Using similar particle man-

agement techniques, we found that we were able to efficiently compute the dominant eigenvalue

using these hybrid methods.

At this point, we moved on to two-dimensional hybrid test problems. Before directly jump-

ing into implementing these algorithms in two-dimensions, we spent some time developing a

highly-parallel Monte Carlo transport sweep implemented in C++ using OpenMP and MPI. We

demonstrated the strong scaling efficiency of this algorithm for realistic domain and material

properties [34].

Lastly, we implemented JFNK-NDA(MC) and NDA-NCA(MC) for two-dimensional, two

group, multi-material test problems. Using our one-dimensional findings, these implementations

were straight-forward, as well. For JFNK-NDA(MC), we found that we could track r-linear

convergence using the ideas we outlined in [30]. NDA-NCA(MC) proved to be a success, as well.

Using the same spatial mesh, the deterministic method provided a results demonstrating that

the LRA-BWR reactor [1, 28] was subcritical, however the hybrid method correctly showed that

the reactor was, in fact, supercritical. Thus, on a given mesh, the hybrid method provides more

physically accurate approximations to the eigenvalue. For the two other two-dimensional k-

eigenvalue test problems, we were able to see the interaction between the low-order truncation

error and the Monte Carlo error. This interaction manifested itself in the stagnation of the

nonlinear residual for the low-order problem. We showed that by refining the spatial mesh

we could reduce the low-order truncation error and drive the nonlinear residual to a tighter
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tolerance.

By starting with simple deterministic problems and gaining a very detailed understanding of

the algorithms, we were able to successfully build hybrid methods for solving very challenging

two-dimensional eigenvalue problems. Furthermore, we were able to demonstrate that these

hybrid methods could produce more physically accurate solutions which was the ultimate goal

of this research.

7.1 Future Work

Throughout the development of this thesis we have come across a few research directions that,

while outside the scope of this dissertation, would be very interesting to spend time rigorously

investigating. These research directions include

1. Implementing these algorithms in three-spatial dimensions.

2. Implementing these ideas for a time-dependent fixed-source problem.

3. Coupling these hybrid methods with other physics models through the low-order problem.

4. Considering algorithm adjustments which would allow for the continuous treatment of

energy in the high-order problem.

We’ll briefly comment on each directions.

7.1.1 Implementation in Three-Spatial Dimensions

The idea here is very straight-forward. Using the knowledge gained through the development

of these hybrid algorithms in one and two-space dimensions, implement JFNK-NDA(MC) and

NDA-NCA(MC) in three-spatial dimensions. These algorithms will needed to be coded entirely

in an environment outside of MATLAB as the two-dimensional implementations in which the

low-order problem is solved in MATLAB has pushed this environment to its limits. Following

a similar programming model, an efficient, scalable parallel three-dimensional transport sweep

could be developed. The solution to the low-order problem (fixed-source or eigenvalue) requires

Newton’s method. Implementations of Newton’s method in C++ already exist and could be

leveraged for an efficient three-dimensional implementation.

7.1.2 Implementation of NDA(MC) for a Time-Dependent Fixed-Source

Problem and Multi-Physics Coupling

We’ll discuss these two ideas together as they are intimately related. In reality, material

cross-sections can be temperature dependent and therefore dependent on the scalar flux as
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it changes throughout time [21, 8]. An investigation into how these hybrid methods work for

time-dependent problems could produce interesting results. Furthermore, an implementation

in which the neutronics are coupled to other physics models would likely take place through

the low-order system. This offers further incentive to use a moment-based acceleration scheme.

These other physics models could likely interact only in the reduced phase space, without

interacting with the seven-dimensional angular flux.

7.1.3 Continuous Energy in the High-Order Problem

One of the most significant challenges in using the multi-group formulation of the neutron trans-

port equation is the development of multi-group cross-sections that preserve total, scattering,

and fission reaction rates. By treating energy continuously in the high-order problem, there

is the potential to develop more accurate material cross-sections during the iterative solution

process. This would require saving energy distribution functions for the high-order problem in

order to accurately model the neutron scattering process (this does not come into play with

the fission process since the fission spectrum is known). This may lead to memory concerns if

we are required to store these energy distribution functions everywhere in space, however the

potential advantages of using a continuous treatment of energy in the high-order problem make

this a worthwhile research direction.
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Appendix A

Linear and Nonlinear Iterative

Solvers

This appendix is devoted to describing the various linear and nonlinear solvers that were used

in this thesis. The goal here is to provide both a description of how these methods work and are

implemented and to provide some theory describing convergence. We assume that the reader

is familiar with basic linear algebra, calculus and matrix theory.

A.1 Linear Iterative Methods

The goal of linear iterative methods are to solve problems of the form

Ax = b,

where A is an n× n matrix and x and b are n× 1 vectors. For the purposes of this thesis, it is

only necessary to consider A ∈ Rn×n, x ∈ Rn and b ∈ Rn.

In the remainder of this appendix, uppercase letters will denote matrices and lower case

letters will denote vectors. If we need to refer to a specific element of a vector, we will subscript

using the row number. For example, xj refers to the jth component of the vector x. When

referring to elements of a matrix, we will subscript using the row number followed by the column

number, as is standard. That is, ai,j (or aij) refers to the element in the ith row and jth column

of the matrix A.

For many of the applications in this thesis we will find that we never build actual represen-

tations of the matrix A. Instead, we will write functions that take in a vector, x, and return

a matrix-vector product, Ax. For this reason (among others), we avoid using direct methods

and concentrate our focus on linear iterative methods. When executing a transport sweep, as
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in Chapter 2, computing the entries in A is not feasible. Instead, we can easily compute Ax.

In general, we assume that A is not symmetric and that we do not have an easy method for

computing the transpose of A, AT .

A.1.1 Matrix Preliminaries

For many of our algorithms, we must be able to compute a residual, r, and error, e. We compute

these using the following formulas,

r = b−Ax and (A.1)

e = x− x∗, (A.2)

where x∗ = A−1b, the exact solution. It is easy to see that

r = b−Ax = A(A−1b− x) = A(x∗ − x) = −Ae. (A.3)

In the following analyses we’ll often take advantage of matrix norms [15]:

Definition 5 (Matrix Norm). Let ‖ · ‖ denote a vector norm on Rn.We define the induced

matrix norm of a square n× n matrix A defined by

‖A‖ = max
x∈Rn

‖Ax‖
‖x‖

(A.4)

or, equivalently

‖A‖ = max
‖x‖=1

‖Ax‖. (A.5)

Furthermore, we’ll need to discuss condition numbers when analyzing convergence properties

of Krylov methods.

Definition 6 (Condtion Number). The condition number of a matrix A, κ(A), with the norm

‖ · ‖ is given by

κ(A) = ‖A‖‖A−1‖. (A.6)

Finally, we must utilize the notion of eigenvalues in the analysis of iterative methods in the

following sections.

Definition 7 (Eigenvalue, Eigenvector, Spectrum, Spectral Radius). We say that λ is an
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eigenvalue of the matrix A if there exists a nonzero vector x such that

Ax = λx. (A.7)

We say that x is the eigenvector corresponding to the eigenvalue λ. Together, we’ll refer to the

pair (λ, x) as an eigenpair.

The set of eigenvalues of matrix A, denoted σ(A), is known as the spectrum of the matrix

A. Furthermore, the spectral radius of the matrix A, ρ(A) is given by

ρ(A) = max
λ∈σ(A)

|λ|. (A.8)

Our understanding of induced matrix norms and the previous definition lead to the following

lemma [15].

Lemma 1. For any choice of induced matrix norm, we have

ρ(A) ≤ ‖A‖ (A.9)

Proof. Consider an eigenpair (λ, x). Then,

Ax = λx

‖Ax‖ = |λ|‖x‖

Rearranging terms and utilizing the definition of matrix norms yields

|λ|‖x‖ ≤ ‖A‖‖x‖

|λ| ≤ ‖A‖

for all λ.

A.1.2 Stationary Iterative Methods

The most simple type of linear iterative methods is called a stationary iterative method, where

we define an iteration matrix that takes us from one iterate to the next. If we decompose A as
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A = B − C where B is nonsingular, this can be realized as:

(B − C)x = b (A.10)

Bx = Cx+ b (A.11)

x = B−1Cx+B−1b (A.12)

x = Mx+ d (A.13)

where M = B−1C.

Now, we can iterate as follows

xn+1 = Mxn + d (A.14)

where (we hope) xn → x∗ as n → ∞ where Ax∗ = b. For this iterative scheme, we have the

following theorem describing convergence [15].

Theorem 4. If ‖M‖ < 1, then (I −M) is nonsingular and the iteration A.14 converges to

(I −M)−1d.

Proof. Suppose ‖M‖ < 1. We will show that

∞∑
i=0

M i = (I −M)−1.

To do so, let us consider the following partial sum

Sk =

k∑
i=0

M i.

It is easy to see that these partial sums {Sk}∞k=1 form a Cauchy sequence in Rn×n. For all

j > k, consider

‖Sk − Sj‖ =
∥∥∥ j∑
i=k+1

M i
∥∥∥

≤
j∑

i=k+1

‖M i‖

≤
j∑

i=k+1

‖M‖i

= ‖M‖k+1

(
1− ‖M‖m−k

1− ‖M‖

)
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where the last equality is a consequence of the sum of a finite geometric series. Since ‖M‖ < 1,

‖Sk − Sj‖ → 0 as k →∞.

Therefore, Sk → S for some S ∈ Rn×n. Furthermore, we have

S = MS + I

by definition of S. Thus,

S −MS = I (A.15)

S(I −M) = I (A.16)

S = (I −M)−1 (A.17)

as desired.

Now, for any x0, we can compute xn using simple substitution,

xn+1 = Mn+1x0 +

n∑
i=0

M id.

Therefore, xn → Sd as n→∞. Since S = (I −M)−1, we have xn → (I −M)−1d.

We’d like to terminate these methods when the error, e = x − x∗, is small, but we cannot

compute the error without knowing the true solution. Instead, we must terminate when the

residual, r = b−Ax is small. For this reason, it is important to be able to relate the error and

the linear residual. To do so, we employ the following theorem [15].

Theorem 5. Let x0 ∈ Rn be the initial iterate. Assume A is nonsingular and let x∗ = A−1b.

Then for all x ∈ Rn, we have

‖e‖
‖e0‖

≤ κ(A)
‖r‖
‖r0‖

Theorem 5 ensures that if the condition number of A is not too large, small residuals indicate

small errors.

While there are several more intricate stationary iterative methods, we can improve conver-

gence by considering a class of linear iterative methods called Krylov methods.

A.1.3 Krylov Methods

Krylov methods are a class of non-stationary iterative methods. Krylov methods minimize

some measure of the error (norm of the error, norm of the residual, etc.) over the shifted kth
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Krylov subspace,

x0 +Kk,

in which x0 is the initial iterate and Kk is the kth Krylov subspace,

Kk = span(r0, Ar0, . . . , A
k−1r0)

for k ≥ 1, where r0 = b−Ax0 [15, 27].

We’ll assume for the remainder of this section that A is a nonsingular n× n matrix and let

x∗ denote the solution to the linear system Ax = b. Furthermore, we’ll let {rk}k≥0 denote the

sequence of residuals built from the sequence of iterates {xk}k≥0, where rk = b−Axk.
While there are several Krylov methods suitable for solving linear problems (see [15]),

our focus will remain primarily on GMRES, or the Generalized Minimal RESidual algorithm.

GMRES allows us to solve non-symmetric problems, unlike Conjugate Gradient iteration, and

has a very strong, well-understood theory. Furthermore, GMRES does not require us to build

and store a representation of the matrix, nor does it require the computation of AT [15, 27].

For these reasons, GMRES is well suited for our current application.

At the kth iteration of GMRES, we solve the least squares problem

min
x∈x0+Kk

‖b−Ax‖2. (A.18)

That is, at the kth iteration, we minimize the 2-norm of the residual over the shifted kth Krylov

subspace.

The following analysis of GMRES will follow the method put forth in [15]. For each x ∈
x0 +Kk we can represent x as x0 plus a linear combination of basis elements of the kth Krylov

subspace,

x = x0 +

k−1∑
i=0

αiA
ir0.
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Therefore, the residual can be represented in the following manner,

r = b−Ax

= b−Ax0 −A
k−1∑
i=0

αiA
ir0

= r0 −
k−1∑
i=0

αiA
i+1r0

= r0 −
k∑
i=1

αi−1A
ir0

= p(A)r0

where p(z) = 1−
∑k

i=1 αi−1z
i. We’ll define P as the set of kth degree residual polynomials, that

is, the set of polynomials p(z) such that the degree of p is k and p(0) = 1. Since xk satisfies

Eq. A.18, we have the following theorem.

Theorem 6. Suppose A is a nonsingular matrix and let xk be the kth GMRES iterate, satisfying

Eq. A.18. Then, for all pk ∈ Pk, we have,

‖rk‖2 = min
p∈Pk

‖p(A)r0‖2 ≤ ‖pk(A)r0‖2.

Theorem 6 leads directly to the following corollary.

Corollary 1. Let A be a nonsingular matrix and let xk be the kth GMRES iterate, satisfying

Eq. A.18. Then for all pk ∈ Pk, we have

‖rk‖2 ≤ ‖pk(A)‖2‖r0‖2,

or

‖rk‖2
‖r0‖2

≤ ‖pk(A)‖2. (A.19)

Equation A.19 grants us a method for analyzing the convergence of GMRES based upon

the spectrum of the matrix A. Furthermore, it allows us to prove that GMRES must converge

in at most n iterations when A is an n× n matrix.

Theorem 7. Let A be an n× n nonsingular matrix. Then GMRES will converge to the exact

solution in at most n iterations.

Proof. Let p(z) = det(A−zI). By definition, p has degree n and p(0) 6= 0, since A is nonsingular.
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Then

p̂(z) =
p(z)

p(0)

is a residual polynomial. Furthermore, since every matrix A satisfies its characteristic equation,

p̂(A) = 0. Therefore, by Equation A.19,

‖rn‖2 ≤ 0,

which implies rn must, in fact, be zero and thus xn = x∗.

In the case in which A is diagonalizable, Equation A.19 can be simplified [15, 27].

Theorem 8. Suppose A is diagonalizable with nonsingular diagonalizing transform V (i.e.

A = V −1ΛV ). Then for all p ∈ Pk,

‖rk‖2
‖r0‖2

≤ κ(V ) max
λ∈σ(A)

|p(λ)|. (A.20)

A.1.4 Other Krylov Methods

While GMRES is an excellent method for solving non-symmetric linear systems, it may not

always be a viable option. Within the GMRES algorithm, after k iterations, the k vectors that

span Kk are built and stored. If n is large and k becomes large, storage may become an issue.

Often times we may only be able to store a small number of vectors in our computer’s memory.

In this case, we must seek alternative methods.

These methods include GMRES(m) (or GMRES with restarts), TFQMR or BiCGStab. We

only mention these methods here and refer the reader to [15] or another suitable resource.

A.2 Nonlinear Iterative Methods

In this section, we’ll focus on solution methods for two types of nonlinear problems, fixed-point

problems and root-finding problems. The fixed-point problem will be considered first and takes

the form

x = K(x) (A.21)

where K is some nonlinear function. The root-finding problem will be expressed as

F (x) = 0. (A.22)
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It should be apparent that some nonlinear problems may lend themselves to one form or the

other. At times, it may be convenient to switch forms of a problem in order to gain some

algorithmic advantage.

A.2.1 Nonlinear Equation Basics

Before discussing specific methods for solving Equations A.21 and A.22, we must present a few

definitions and theorems that will aid in our analysis of these algorithms. To begin, it will

be important to catalogue these methods based upon their convergence rates. The following

definition allows us to classify these convergence rates [15].

Definition 8. Let {xn} be a sequence in Rn and take x∗ ∈ Rn. Then

• xn → x∗ q-quadratically if xn → x∗ and there is a constant C > 0 such that

‖xn+1 − x∗‖ ≤ C‖xn − x∗‖2. (A.23)

• xn → x∗ q-superlinearly with q-order α > 1 if xn → x∗ and there is a constant C > 0

such that

‖xn+1 − x∗‖ ≤ C‖xn − x∗‖α. (A.24)

• xn → x∗ q-superlinearly if

lim
n→∞

‖xn+1 − x∗‖
‖xn − x∗‖

= 0. (A.25)

• xn → x∗ q-linearly with q-order β ∈ (0, 1) if

‖xn+1 − x∗‖ ≤ β‖xn − x∗‖. (A.26)

for n sufficiently large.

When considering Newton’s method we must be familiar with the Jacobian matrix and the

Fundamental Theorem of Calculus.

Definition 9. Let F (x) be a function from Rn to Rn. If each component of F is differentiable

at x ∈ Rn, then we define the Jacobian matrix J(x) = F ′(x) by

F ′(x)ij =
∂fi
∂xj

(x). (A.27)
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Theorem 9. Let f be a real-valued function on the closed-interval [a, b] and suppose F is an

antiderivative of f in [a, b]. Then,

F (b)− F (a) =

∫ b

a
f(x) dx. (A.28)

However, this formulation (Theorem 9) of the Fundamental Theorem of Calculus does not

suit our needs. Instead, we’ll express it as follows [15]:

Theorem 10. Let F : Rn → Rn be differentiable in an open set Ω ⊂ Rn and suppose x∗ ∈ Ω.

Then, for all x ∈ Ω sufficiently close to x∗, we have

F (x)− F (x∗) =

∫ 1

0
F ′(x∗ + t(x− x∗))(x− x∗) dt. (A.29)

Before continuing, we must introduce the concept of Lipschitz continuity and the related

concept of contraction mappings [15].

Definition 10. Let Ω ⊂ Rn and let G : Ω → Rm. G is said to be Lipschitz continuous on Ω

with Lipschitz constant γ if

‖G(x)−G(y)‖ ≤ γ‖x− y‖ (A.30)

for all x, y ∈ Ω.

Definition 11. Let Ω ⊂ Rn. K : Ω → Rn is a contraction mapping on Ω if K is Lipschitz

continuous on Ω with Lipschitz constant γ < 1.

A.2.2 Nonlinear Fixed-Point Problems

In this section we’ll discuss two methods for solving non-linear problems described by Equation

A.21. The first method is aptly named fixed-point iteration, but has also been called Picard

iteration throughout this thesis. We’ll let x∗ denote a solution to the fixed-point problem

x = K(x) and refer to x∗ as a fixed-point.

Picard iteration, or fixed-point iteration, begins with some initial iterate x0 and simply

computes the successive iterates by evaluating the fixed-point map at the previous iterate,

xn+1 = K(xn). (A.31)

This method for solving Equation A.21 is very simple to implement, but may suffer from slow

convergence. The following theorem [15] characterizes the convergence of fixed-point iteration.
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Theorem 11. Let Ω be a closed subset of Rn and let K be a contraction mapping on Ω with

Lipschitz constant γ < 1 such that K(x) ∈ Ω for all x ∈ Ω. Then there is a unique fixed-point

of K, x∗ ∈ Ω, and the iteration defined by A.31 converges q-linearly to x∗ with q-factor γ for

all initial iterates x0 ∈ Ω.

Often times, this q-linear convergence may be too slow for our given application. In this

case, it would be ideal to accelerate the solution to Problem A.21. We may employ Anderson

Acceleration [29] to accelerate the fixed-point iteration. Anderson Acceleration was described

in Section 2.4.

Unfortunately, for general nonlinear problems, the theory for Anderson Acceleration is weak.

It has been noted [24, 9] that there is a relationship between Anderson acceleration and quasi-

Newton updating, however that is beyond the scope of this thesis. For linear problems it has

been shown that Anderson acceleration is related to GMRES [29].

A.2.3 Root Finding

In this section we wish to solve the problem described by Equation A.22. We will use Newton’s

method to solve these problems. Newton’s method is given by the formula

xn+1 = xn − F ′(xn)−1F (xn) = xn + s. (A.32)

where s is the Newton step, given by s = −F ′(xn)−1F (xn).

The main convergence results for Newton’s method follows [15]:

Theorem 12. Suppose there exists an x∗ ∈ Rn such that F (x∗) = 0, F ′ : Ω → Rn×n is

Lipschitz continuous with Lipschitz constant γ, and F ′(x∗) is nonsingular. Then, there exists

K > 0 and δ > 0 such that if ‖xn − x∗‖ < δ the Newton iterate from Formula A.32 satisfies

‖en+1‖ ≤ K‖en‖2.

While Theorem 12 does not guarantee convergence, the following theorem demonstrates

local convergence.

Theorem 13. Suppose there exists an x∗ ∈ Rn such that F (x∗) = 0, F ′ : Ω→ Rn×n is Lipschitz

continuous with Lipschitz constant γ, and F ′(x∗) is nonsingular. Then there is a δ > 0 such

that if ‖x0 − x∗‖ < δ, the Newton iteration

xn+1 = xn − F ′(xn)−1F (xn)

converges q-quadratically to x∗.
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Generally, we terminate Newton’s method when the norm of the residual is below some

tolerance. However, in many instances we set a relative tolerance as well, and terminate when

‖F (x)‖ ≤ τr‖F (x0)‖+ τa. (A.33)

Often times, including the entirety of this thesis, forming and storing the Jacobian matrix

would require too much computation to be feasible. When computing the Newton step, s, we

never actually invert F ′(xn)−1. Instead, we solve the following linear system for s,

F ′(xn)s = −F (xn). (A.34)

Fortunately, with this formulation of the problem, we never need to compute F ′(xn). In-

stead, we compute the Jacobian-vector product, F ′(xn)s. This product can be approximated

by

F ′(xn)s =
F (xn + hs)− F (xn)

h
. (A.35)

When the only error in the computation of F is machine roundoff, εmach, we generally choose

h =
√
εmach or h = 10−7 [15].

Now, Equation A.34 can be solved using our choice of Krylov methods. Recall from our

discussion on Krylov methods that they do not require a representation of the matrix, only a

matrix-vector product routine. Since our solution to Equation A.34 is no longer “exact,” we

expect that we may take a small performance hit in the convergence of Newton’s method. This

is, in fact, the case [15] and is characterized by Theorem 14.

Theorem 14. Suppose there exists an x∗ ∈ Rn such that F (x∗) = 0, F ′ : Ω→ Rn×n is Lipschitz

continuous with Lipschitz constant γ, and F ′(x∗) is nonsingular. Then there is a δ > 0 such

that if ‖x0 − x∗‖ < δ, {ηn} ⊂ [0, η] with η < η̄ < 1, then the inexact Newton iteration

xn+1 = xn + s

where

‖F ′(xn)sn + F (xn)‖ ≤ ηn‖F (xn)‖

converges q-linearly with respect to ‖ · ‖ to x∗. Furthermore,

• if ηn → 0, then the convergence is q-superlinear, and

• if ηn ≤ Kη‖F (xn)‖p for some Kη > 0, then the convergence is q-superlinear with q-order

1 + p.
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In some cases, it may be difficult to compute or find an x0 such that ‖x0 − x∗‖ < δ so

that the iteration converges as the theorems predict. In this case, we add a line-search to the

algorithm. In general, the Newton step may point in the correct general direction of the root,

however the magnitude of the Newton step may be far too large. The line-search allows us to

take a smaller step in the same direction. The algorithm for the line search is given in Algorithm

A.2.3.

Algorithm A.2.3

Find s such that ‖F ′(xn)s+ F (xn)‖ ≤ η‖F (x)‖
Set λ = 1
while ‖F (xn + s)‖ > (1− αλ)‖F (x)‖ AND λ ≥ λmin do
λ = λ/2

end while
if λ < λmin then

Terminate with Line Search Failure
else

Set xn+1 = xn + λs.
end if

This is a very simple version of the line search. In [15], the α parameter is chosen to be

10−4. One could choose to cut down the step length by any fraction σ. In this case, we’ll

replace the λ = λ/2 step length reduction by λ = σλ for σ ∈ (0, 1).

The line search should only activate during the initial phase of the iteration. Once our

iterates have entered the region of local convergence, the line search should never reduce step

lengths and we should see quadratic convergence for the remainder of the iteration.
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Appendix B

Numerical Eigenvalue Computations

Suppose we wish to solve the eigenvalue problem,

Ax = λx, (B.1)

in which A has spectrum σ = {λi}ni=1 and |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. Throughout this

section we will assume that A is a nonsingular matrix so that |λn| > 0. Furthermore, suppose

that the dimension of the eigenspace associated with λ1 is 1. In this case, we can use the Power

Method [26] to approximate λ1, and its associated eigenvector v1.

Algorithm B: Power Method

Choose approximate eigenvector ~x0.
n = 0
while eigenvalue not converged do

Set yn+1 = Axn.
Set µn+1 = α, where α is the element of yn+1 with maximum magnitude.
Set xn+1 = 1

αyn+1.
Increment n = n+ 1

end while

Theorem 15. Let {vm, λm}nm=1 be the set of eigenpairs of A and suppose λ1 is the eigenvalue

of A with maximum magnitude and that nullity(A− λ1I) = 1. Furthermore, suppose

x0 =

n∑
i=1

βivi (B.2)

in which β1 6= 0. Then Algorithm B builds a sequence of vectors xn and scalars µn such that
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xn → v1 and µn → λ1 as n→∞.

Proof. Let us begin by considering repeated applications of the matrix A to the vector x0,

Akx0 = Ak
n∑
i=1

βivi

=
n∑
i=1

βiA
kvi

=
n∑
i=1

βiλ
k
i vi

= λk1

n∑
i=1

βi

(
λi
λ1

)k
vi (B.3)

As k tends to infinity, we have (
λi
λ1

)k
→ 0

for all i 6= 1. Therefore, we have

lim
k→∞

Akx0 = lim
k→∞

β1λ
k
1v1. (B.4)

Clearly, this sequence diverges if λ1 ≥ 1.

However, in Algorithm B, the normalization constant µk ensures that we have

‖xk‖∞ = 1

for all k. Thus, the sequence of iterates

x1 =
Ax0

‖Ax0‖
, x2 =

Ax1

‖Ax1‖
, . . . , xn =

Axn−1

‖Axn−1‖
, . . . (B.5)

converges to v1 in which ‖v1‖ = 1. We can see that µn → λ1 by noticing

λ1v1 = Av1

λ1‖v1‖ = ‖Av1‖

λ1 = ‖Av1‖.

Equation B.3 allows us to determine the rate of convergence for the power method quite
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easily by recalling that
(
λi
λ1

)k
tends to zero for all i 6= 1. Therefore, we can conclude that this

method converges at a rate of O(|r|k), in which

r =
λ2

λ1
(B.6)

where we have ordered the eigenvalues in order of decreasing magnitude.

We could also apply the power method to A−1. The eigenpairs of A−1 are {vi, 1
λi
}ni=1. Here,

the vi’s and λi’s are the same eigenvectors and eigenvalues as described for the matrix A. In

this case, the power method applied to A−1, known as the Inverse Power Method, will converge

to the eigenvalue with the smallest magnitude, λn, and its associated eigenvector vn at a rate

O

∣∣∣∣∣
1

λn−1

1
λn

∣∣∣∣∣
k
 = O

(∣∣∣∣ λnλn−1

∣∣∣∣k
)
. (B.7)

Furthermore, suppose we wish to compute an arbitrary eigenvalue, λj , and we have some

approximation to this eigenvalue, σ, which satisfies

|λj | = min |λi|. (B.8)

It is easy to see that the set of eigenpairs for A− σI is {vi, λi − σ}ni=1. In this case, the inverse

power method applied to A − σI will converge to ηj = λj − σ. We can see that this method

will converge at a rate

O

(∣∣∣∣λj − σλc − σ

∣∣∣∣k
)
, (B.9)

where

|λc − σ| = min
i 6=j
|λi − σ|. (B.10)

If σ is chosen very close to λj we can expect especially fast convergence. This method is known

as the Shifted Inverse Power Method.

This allows us to accelerate convergence to the dominant eigenvalue, λ1, if we can come up

with a reasonably accurate approximation. For example, consider applying the power method

to a matrix A in which λ1 = .995 and λ2 = .990. The dominance ratio for this matrix is
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ρ ≈ .99497. Suppose we wish to decrease the error by a factor of 10−5. Then, we have

‖ek‖ ≤
(
λ2

λ1

)k
‖e0‖

‖ek‖
‖e0‖

≤
(
λ2

λ1

)k
log

(
‖ek‖
‖e0‖

)
≤ k log

(
λ2

λ1

)
log
(
‖ek‖
‖e0‖

)
log
(
λ2
λ1

) ≤ k.

Substituting λ1, λ2, and our desired relative reduction in error suggests we will need 2286

iterations to converge.

Let us consider the same example, but apply the shifted inverse power method using σ = 1.

Then, we have λ1−σ = −.005 and λ2−σ = −.010. This effectively has changed the dominance

ratio to ρ = .5. Now, we can achieve the desired error reduction in only 17 iterations. While

this example was built specifically to display the potential advantages of the shifted inverse

power method, we often see a drastic reduction in the number of iterations in practice as well.
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Appendix C

Monte Carlo Error vs. Truncation

Error

When developing hybrid methods, we noted that the motivating reason for turning to stochastic

methods is the lack of discretization error. Monte Carlo methods can be free of spatial, angular

and energy group discretization error. By attempting to accelerate these Monte Carlo solutions

using deterministic acceleration techniques, an interesting question arises. Has the low-order

system introduced a spatial discretization error that pollutes the pure Monte Carlo calculation?

We’ll attempt to quantify both the discretization error which arises from the solution to the

low-order equation and the Monte Carlo error. If the discretization error from the low-order

problem is considerably less than the Monte Carlo error, we believe that this discretization

error will be lost in the noise of a Monte Carlo simulation.

C.1 Error Quantification Methods

In this section, we will discuss the numerical methods which we use in an attempt to compute

the constants in the error terms for both the low-order discretization error and the Monte

Carlo noise. It is important to note that we are not trying to derive exact error estimates. For

this analysis, it is more important to gain approximate error bounds or obtain the order of

magnitude of the error.

C.1.1 Low-Order Truncation Error

We know that the discretization used for the low-order problem is second-order accurate. There-

fore, for a given problem, the error behaves like

E(h) = C · h2.
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We’d like to be able to approximate the value of C.

In order to do this, we will work under the assumption that the value of D̂ is known every-

where throughout the domain. We can realize this assumption to high-accuracy by computing

a very high-accuracy solution to the transport equation using an extremely fine mesh, with

mesh width h. On this fine mesh, we will also compute the value of D̂. We will use the solution

φ∗ on this mesh as a “true solution” for subsequent calculations.

Now, we will choose a series of mesh widths, · · · > 16H > 8H > 4H > 2H > H � h. On

each of these meshes, we will solve the low-order problem and compare their solutions to the

benchmark solution, φ∗. To solve each of these low-order problems, we will evaluate D̂ from

the fine-mesh solution at the appropriate grid points. We’ll use the true solution and current

to provide boundary conditions as well.

C.1.2 Monte Carlo Error

In 1-D, the Monte Carlo error is determined mostly by the length of each cell in terms of mean

free paths and the number of particles used. Furthermore, the Monte Carlo error is directly

proportional to the strength of the source term.

In order to quantify the Monte Carlo error, we will compute the error which results from

solving

µ
∂ψ

∂x
+ Σtψ = Q(x)

Q(x) = 1

for various values of the spatial mesh width (h), length of the medium (τ), number of particles

(NMC) and total cross-sections (Σt). We expect the error to decay like the variance,

E(NMC , h, τ,Σt) = C(h, τ,Σt) ·
1√
NMC

.

For each combination of h, τ and Σt that we investigate, we will run simulations using 105,

106, 107, 108, 109 and 1010 particles per transport sweep. We will run 20 simulations with each

particle count and use a weighted average of all of the simulations to compute a true solution,

φ∗. Then, for each of the simulations, we will use this true solution to compute an error,

‖φ∗ − φ‖∞. We will then compute an average error associated with each particle count. Using

these average errors, we will attempt to approximately back-out the constant in the Monte

Carlo error term.
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C.2 Numerical Results

First, we will display the computational results for the low-order truncation error. The problems

which we tested are given by

µ
∂ψ

∂x
+ ψ =

1

2
[cφ+Q(x)]

where Q ≡ 1. We let the scattering ratio, c, and the length of the domain vary. The error term

constants for various problems have been computed and are displayed in Table C.1.

Table C.1: The LO truncation error constant is determined by the scattering ratio and the
length of the domain in terms of mean free paths.

Scattering Ratio Length of Domain (MFPs) ‖φ∗‖∞ Error Term Constant

.7 .001 .0035 .0324

.7 .01 .029 .12

.7 .1 .19 .145

.7 1 1.21 .14

.7 10 3.29 .09

.9 .001 .0035 .108

.9 .01 .030 1.4

.9 .1 .20 .04

.9 1 1.55 .075

.9 10 9.04 .072

.99 .001 .0035 .00109

.99 .01 .030 .004

.99 .1 .21 .0053

.99 1 1.78 .0095

.99 10 34.5 .0044

We plot this data and data for additional scattering ratios in Figure C.1. We can see that

the constant is very tightly correlated to both the scattering ratio and the length of the domain.

We notice that for domain lengths less than a mean free path, if the absorption ratio (1 − c)
increases by a factor of 10, the error term constant increases by roughly a factor of 10. Beyond

one mean free path, the error constants all appear to trend towards a value between .001 and

.01. With a constant source term, as the domain gets larger the solution approaches a constant

value in the interior of the domain, sloping off sharply near the boundaries. For these problems,

the largest error occurs in these regions where the scalar flux changes rapidly.
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Figure C.1: Low-Order Solution Error Term Constants as a function of the scattering ratio and
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Now, we turn our attention to the computation of the constant in the Monte Carlo error

term. In the computation of these error constants we have held Σt = 1. Changing Σt only

changes the length of the domain in terms of mean free paths, which is already being controlled

by τ . In the case of a heterogenous domain, both Σt and τ should be varied since cells in

different areas of the domain will have different lengths in terms of mean free paths. In Table

C.2, we display the computed constant in the error term:

Table C.2: Monte Carlo error term constants are determined by the length of the medium and
the number of cells used.

Nx\τ 1 10 100 1000 10000

10 2.1 4.2 5.2 4.8 4.7

100 4.5 11 20 22 23

1000 7.2 19 46 79 90

10000 11.1 28 80 170 298

This data in this table behaves like expected. By increasing τ each cell gets wider and each

particle can contribute less information to the tally in that cell. Furthermore, as Nx increases,

the cell average flux has less particles contributing to the tallies. Thus, as Nx and τ increase,

so does the constant in the error term. These error term constants have been plotted on a

log-log-log scale in Figure C.2.

Tables C.1 and C.2 allow us to get a rough estimate of the number of particles per Monte

Carlo transport sweep we need to use in order to match the Monte Carlo error and the LO

truncation error for a given configuration (scattering ratio, length of domain, and number of

cells).

For example, suppose we wish to solve the transport equation for c = .9 and τ = 10 using

100 cells. In this case, the LO truncation error term constant is .072. So, using 100 cells we

have h = .1, and the LO truncation error is

ELO ≈ .072× h2 = .00072.

Now, the Monte Carlo error term for τ = 10 and Nx = 100 is roughly 11 for a unit source.

Since we know that near the solution, the scalar flux grows as large as 9.04, our source term

can be bounded by

S =
1

2
[cφ+Q] <

1

2
[.9 · .904 + 1] < 4.57.
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Now, we seek a number of particles N such that

.0072 ≈ 11× 4.57√
N

.

Solving for N tells us we’d need roughly 4.87× 109 particles to achieve a similar level of error

in both the LO solve and the Monte Carlo transport sweep. It is important to note that the

bound on the scalar flux need only be approximate, so using a diffusion solution in order to

evaluate this value would be practical, since the true solution is unknown.

If we decide that the error in this simulation would be too large, we increase the number

of spatial cells and re-compute the number of particles required to achieve a Monte Carlo

error at the same level of the truncation error. Suppose we do this for the same problem with

Nx = 1000. In this case, it would require 1.45×1014 particles to match the errors. This number

of particles is probably impractical, so for this configuration, we would be guaranteed that the

LO truncation error is far smaller than the Monte Carlo error near the solution.
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Appendix D

Pure Monte Carlo Computations

In this Appendix, we’ll consider the computation of the k-eigenvalue for one of the 1-D Test

problems consider in Chapters 4 and 6. The cross-sections and domain parameters are given

by:

Σt = 1 Σs = .856 νΣf = .144 (fissile region)

Σt = 1 Σs = .856 νΣf = 0 (reflector region)

τf = 50 (length of fissionable region)

τr = 5 (length of reflector region)

We estimate the dominance ratio for this problem to be roughly ρ = .94. As far as eigenvalue

problems go, this dominance ratio is on the low side, as many times we see dominance ratios

that exceed .99.

Even at this low dominance ratio, analog Monte Carlo requires an abundance of particle

histories to compute the eigenvalue. This is demonstrated in Figures D.1 - D.8. In Figures

D.1, D.4 and D.7, we plot the history of the eigenvalue, the computed eigenvalue and two lines

representing a relative error of 10−5 above and below the computed eigenvalue. In Figures D.2,

D.5 and D.8, we plot the history of the Shannon Entropy over the active cycles.

For these tests, we used 105, 106 and 107 particles per active cycle, respectively. At the end

of each of these three simulations, a total of 4 × 109, 1010 and 1010 particles per simulation,

respectively. On average, each particle undergoes 6.9 flights before leaving the medium or being

absorbed. As we can see, for each of these tests, the Shannon entropy is still slowly changing, as

is the eigenvalue. In Figures D.3, D.6, and D.9 we see that the change in the Shannon Entropy

from cycle to cycle is decreasing as the iteration progresses. Using 107 particles per active cycle,

the eigenvalue appears to be nearly converged.

Given these results, we can make a few comments regarding pure Monte Carlo eigenvalue
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Figure D.1: Convergence history of the eigenvalue using 40000 active cycles with 105 particles
per cycle.

computations. First of all, it can be difficult to determine when an analog Monte Carlo com-

putation has converged. Here we have no nonlinear residual which measures how close the

computed eigenpair is to the true solution. Furthermore, often times at early stages of the iter-

ation, two consecutive computations of the eigenvalue may fall extremely close to one another,

however the eigenvalue is far from converged.

Secondly, the Shannon entropy is a good metric for convergence. As the Shannon entropy

stops changing from cycle to cycle, so does the eigenvalue. Lastly, it is hard to draw head to

head comparisons between hybrid methods and pure Monte Carlo computations. At the end of

these three simulations, a total of roughly 2.8× 1010, 6.9× 1010, and 6.9× 1010 particle flights

have been simulated. When solving the problem using hybrid methods, a total of 3.2 × 1010,

flights had been simulated. However, using the hybrid method, we have more confidence that

the eigenvalue has converged to the desired tolerance. These eigenvalues agree to four digits

which gives us confidence that the low-order mesh has not injected significant discretization

error.
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Figure D.2: Shannon Entropy history using 40000 active cycles with 105 particles per cycle.
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Figure D.3: Change in Shannon Entropy from cycle to cycle using 40000 active cycles with 105

particles per cycle.
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Figure D.4: Convergence history of the eigenvalue using 10000 active cycles with 106 particles
per cycle.
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Figure D.5: Shannon Entropy history using 10000 active cycles with 106 particles per cycle.
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Figure D.6: Change in Shannon Entropy from cycle to cycle using 5000 active cycles with 106

particles per cycle.
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Figure D.7: Convergence history of the eigenvalue using 1000 active cycles with 107 particles
per cycle.
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Figure D.8: Shannon Entropy history using 1000 active cycles with 107 particles per cycle.
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Figure D.9: Change in Shannon Entropy from cycle to cycle using 1000 active cycles with 107

particles per cycle.
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