
ABSTRACT

KENZ, ZACKARY ROMAN. Stenosis-Driven Acoustic Wave Propagation in Biotissue: Modeling
and the Inverse Problem. (Under the direction of H.T. Banks.)

A current goal in medical research is the development of a non-invasive method for detection,

localization, and characterization of an arterial stenosis (a blockage or partial blockage in an

artery). Partial blockage stenoses are known to cause disturbances in blood flow which generate

pressure shear waves in the chest cavity. A method has been proposed to detect shear waves in

the chest cavity.

In order to provide theoretical guidance and an understanding of the wave propagation

process, we develop and validate a physics-based model for wave propagation. To this end, we

first conduct proof-of-concept investigations using a preliminary one-dimensional viscoelastic

model of pressure waves that incorporates Kelvin-Voigt damping and internal variables. We

develop an estimation procedure for the material parameters and demonstrate its ability to

recover the parameters which were used to create the simulated data. We then determine

confidence intervals (using both bootstrapping and asymptotic error theory) for the estimated

parameters, which indicates the efficacy of finding parameter estimates in practice. We then

develop a model comparison test to be used in determining if a particular data set came from a

low input amplitude or a high input amplitude; this we anticipate will aid in determining when

stenosis is present.

To apply this methodology, we use one-dimensional pressure and shear wave experimental

data from novel acoustic phantoms to validate an updated viscoelastic mathematical model.

We estimate model parameters which give a good fit (in a sense to be precisely defined) to the

experimental data, and at first use asymptotic error theory to provide confidence intervals for

parameter estimates. Since a robust error model is necessary for accurate parameter estimates

and confidence analysis, we include a comparison of absolute and relative models for measurement

error.

We then move to comparing the performance of three methods for quantifying uncertainty

in model parameters: asymptotic theory, bootstrapping, and Bayesian estimation. The first

two methods are frequentist, meaning they assume a true value exists and provide uncertainty

information about the parameter estimator; Bayesian estimation assumes the parameter is a

density to be estimated, and the estimated density then provides uncertainty information. We

study these methods on the pressure model, due to faster model computation times and the

fact that the absolute error model (which possibly works with pressure data) makes comparison

across the methods easier. In addition to parameter estimation, we use the results from the

three algorithms to quantify complex correlations between our model parameters, which are



best seen using the more computationally expensive bootstrapping or Bayesian methods. We

also hold constant the parameter causing the most complex correlation, obtaining results from

all three methods which are more consistent than when estimating all parameters. Concerns

regarding computational time and algorithm complexity are incorporated into discussion on

differences between the frequentist and Bayesian perspectives.
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CHAPTER 1

Introduction

Coronary artery disease (CAD) is an increasingly prevalent medical condition, often a precursor

to and cause of a patient experiencing cardiac arrest. Current methods for detection of arterial

stenoses (blocked arteries) include angiograms and CT scans. Angiograms are viable but quite

invasive, while CT scans are expensive, introduce radiation into the patient, and can only detect

hard plaques (blockages). A desirable new detection method would be noninvasive and less

expensive but still effective. To this end, using acoustic waves generated by stenoses has been

proposed. This would place sensors on the surface of the chest to listen for sounds from coronary

arteries, with the hope of detecting and then localizing any blockages. A conceptual schematic

is shown in Figure 1.1.

The current understanding (see, e.g., [9, 32, 73]) of the process is that turbulent flow produces

normal forces on the vessel walls at and downstream of a stenosis, which then exert pressure

on the vessels wall causing a small displacement in the surrounding soft tissue. Previous work

(e.g. [2, 40, 74, 70, 71, 82, 92]) has demonstrated the existence of such sounds, and that they

are possible to detect on the surface of the chest. The system couples two processes:

(1) the generation of pressure and shear waves transmitted into the body by the arterial wall

as a result of the turbulent blood flow generated by a stenosis, and

(2) the propagation of pressure and shear waves through the chest to sensors attached to the

chest wall.

The first process is not completely understood, though some ideas are present in the literature.

Various researchers [30, 31, 32, 55, 64, 68, 73, 76, 77, 89, 98] have directly examined modeling
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Figure 1.1: Conceptual schematic for an in vivo coronary artery stenosis detection device based
on wave propagation through the chest cavity. The vessel on the left is a magnified coronary
artery, showing turbulent flow resulting from a stenosis. Graphic courtesy of Dr. S. Greenwald.

blood flow through arteries. All have attempted to characterize the turbulence in the flow, which

some then used to examine the sound field propagated into the chest. In this dissertation, we

will not focus on aspects of turbulent flow, leaving that instead as an input to be later properly

characterized when the properties of the stenosed artery itself are modeled. We will focus on the

second process, understanding the propagation of sounds through the chest cavity which result

from stenosed coronary arteries.

The modeling and detection of waves transmitted through the body has been approached in

different ways. One approach has focused on characterizing properties of the sounds detected on

the surface of the chest, characterizing aspects such as primary frequencies that these sounds

exhibit. This line of work has been studied by Semmlow, et al., [2, 3, 4, 5, 6, 75, 84, 85, 100],

as well as by other groups [30, 31, 32, 47, 74, 92, 93, 95]. Their methods are based on general

sound features and detection through statistical methods, rather than modeling the underlying

physics of sound transmission through the body. These methods have the benefit of being fast

and fairly simple to implement, but do not provide a characterization for the mechanisms of

wave transmission.

In another direction, more relevant to the situation this dissertation will study, researchers

have worked to model the physics of sound wave transmission through the body. As is common

in many physical wave phenomena, pressure and shear waves both propagate into the body

as a result of stenosed coronary arteries. Since shear waves in general have a lower amplitude

than pressure waves, intuition might suggest detecting pressure waves should be our focus;

past research indicates the opposite is true when seeking to detect stenoses. Various groups
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[36, 38, 65, 73] have demonstrated that shear waves should be the focus of detection efforts.

The frequency range for shear waves resulting from coronary stenoses are below 2000 Hz

[31, 36, 37, 44, 81, 84]. In the range of these frequencies, the pressure waves propagate very

quickly while shear waves propagate much more slowly, which in practice means that pressure

waves are difficult to measure. Also, in the context of waves propagating in tissue or tissue-

mimicking materials, shear waves are measurable at greater distances from the source of the

disturbance (see, e.g., Figures 9b and 10 of [36]). Though we will examine both models in this

dissertation, the shear results in Chapter 5 are of greatest practical interest.

The benefits of using a viscoelastic wave propagation model in various contexts have been

studied by [36, 38, 39, 44, 59, 65, 81]. Therein, the authors focused on determining the elastic

modulus and viscoelastic parameter based on the shear wave speed and attenuation in either a

gel mold or physical tissue, in both a stenosis context and general tissue shear wave propagation.

The models were developed using plane waves in such a way that algebraic expressions were

derived for shear wave speed as a function of frequency, elastic modulus, and the viscoelastic

parameter. These demonstrate that modeling the underlying physics is not only possible, but

quite beneficial in understanding shear wave propagation. These investigators also showed that

a Kelvin-Voigt damping model is most appropriate for the situation, which we will incorporate

into our model (and will discuss more later).

In this dissertation, we will take the physical models further, developing a dynamic model

of the shear waves propagating through a tissue-mimicking material. Our goal will be to use

this viscoelastic model with data from a tissue-mimicking homogeneous gel mold to validate the

model and understand the uncertainty in the model parameters. The model here will incorporate

the standard elastic/shear modulus and bulk viscoelastic parameter, as well as internal variables

governed by relaxation times which can be used to model how different portions of the medium

relax in different ways from being stressed. We will develop the model in such a way as to allow

for multiple internal variables. In future studies these can be used to model the bulk effects

of different types of tissue, which would be closer to the in vivo detection problem. This is

also key to moving beyond just the detection of a stenosis to actually localizing the blockage.

Our efforts hope to provide theoretical guidance for localization, something that models which

only characterize received frequencies or even just basic properties based on attenuation do not

promise to provide.

After some proof-of-concept investigation on a related model, the main model developed in

this dissertation will pick up from a previous line of work by Banks, et al., [9, 20, 21, 22, 23, 67, 80].

These models allow for a characterization of shear waves resulting from coronary stenoses, which

will assist in uncovering the coronary artery sounds from the noisy background in the body.

Initial experiments were conducted where a gel mold was built with a tube running through the

middle; cases where the tube was unblocked were compared to those with partial blockages, and
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the results suggested that there were significant differences in sound generation between the

blocked and unblocked cases. Unfortunately, this line of study ended before experimental data

could be incorporated and fitted to models. This dissertation returns to a one-dimensional model

and experimental setup, developing a model closely related to that in [9] which we validate with

lab data from a homogeneous gel phantom and use to examine uncertainty in our parameter

estimates. This dissertation will examine confidence in the relaxation times, demonstrating that

the addition of internal variables into the model is viable.

In Chapter 2, we discuss the development of the one-dimensional lab experiments. Novel

acoustic agar gel phantoms and holding rigs were developed at Queen Mary, University of

London (QMUL) and Barts Health Trust (BHT) in England in order to experimentally generate

one-dimensional pressure and shear waves. The experiments are a drop test, whereby a weight is

attached to an apparatus that stresses the phantom. This is allowed to settle for a period of time,

and then the weight is released nearly instantaneously. The material undergoes oscillation, which

then damps out and the material settles toward some equilibrium. From a model validation

standpoint this data is quite useful since it provides frequency and damping information, both

of which are crucial when attempting to estimate model parameters. This experiment also

demonstrates the response of the tissue-mimicking get to an impact which is similar to the blood

impacting the vessel wall downstream of a blockage.

In Chapter 3, we will use a preliminary viscoelastic model in order to build an inverse

problem methodology using simulated data. The inverse problem is tested under different levels

of noise, and we compare and contrast the performance of using two frequentist methods for

quantifying the uncertainty in the sampling distribution for the parameters. We also develop a

model comparison test that could serve as a basis for deciding if a stenosis is present or not.

After that, in Chapter 4 we derive the one-dimensional equations of motion for pressure and

shear wave propagation from the general three-dimensional equations of motion and specify a

slightly more general constitutive relationship than was used in the preliminary model. These

models are then used in Chapter 5 with experimental data from QMUL in order to estimate the

model parameters which best describe the data. Different models for the measurement error are

studied, and uncertainty information on the sampling distribution for the parameters is provided.

This uncertainty analysis is expanded in Chapter 6, where we compare the performance of the

two frequentist methods used in previous chapters with a Bayesian approach to understanding

uncertainty in the parameter values. We summarize all the results in Chapter 7, and discuss

ideas for future work on the coronary artery stenosis problem.
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CHAPTER 2

Lab Experiment

In order to develop an experiment and corresponding methodology, work was completed in

collaboration with the teams at the Center for Research in Scientific Computation at North

Carolina State University (H.T. Banks, Shuhua Hu, and the author); the Brunel Institute of

Computational Mathematics (BICOM) at Brunel University in England (Carola Kruse, Simon

Shaw, and John Whiteman); and Queen Mary, University of London (QMUL) and Barts &

London NHS Trust (BLT) in England (Malcolm Birch, Mark Brewin, and Steve Greenwald)

to devise and build a novel acoustic phantom and testing rig. These were designed to be drop

tests which would excite many modes of vibration in the phantom, ensuring that the damping

envelope was clear as well as the oscillation frequency (which encodes the elastic modulus or

shear modulus). Describing the damping properties of the material is an important aspect of

the viscoelastic wave propagation model we will build.

Two separate experiments were devised in consultation with QMUL to gather pressure and

shear data; though we will tend to discuss them together, the experiments are run at completely

different times and with slightly different phantoms. Devices have been designed (see left panes

of Figures 2.1-2.2), in which an agar gel mold phantom (homogeneous, 97% water, density

ρ = 1010 kg/m3) is loaded into the rig, a weight is attached applying stress to the phantom,

and then the weight is released, causing the material to oscillate. The displacement motion of

the material throughout the experiment is measured with a laser device. The choice of loading

and a quick release produces dynamic data; the idea was inspired in part by the impacts the

stenosed vessel wall experiences with each heartbeat and also by past success in gathering shear

data for filled rubber elastomers using an initially loaded rubber sample which then underwent
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Figure 2.1: Pressure configuration, where TMM denotes the tissue mimicking material and
LDT denotes the laser displacement transducer measurement device. (a) Experimental setup of
agar phantom. (b) Schematic with one-dimensional domain denoted.
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Figure 2.2: Shear configuration, where again TMM denotes the tissue mimicking material and
LDT denotes the laser displacement transducer measurement device. (a) Experimental setup of
agar phantom. (b) Schematic with one-dimensional domain denoted.

an impulsive hammer hit (see e.g. [20, 21]). This yields one-dimensional pressure data along the

vertical axis in the pressure case (right pane of Figure 2.1) and, in the second experiment, shear

data in the radial direction perpendicular to the vertical axis (right pane of Figure 2.2).

In order to test the phantom response to different stress levels, weights of 66 g, 132 g, 198 g,

and 264 g were used in the experiment. The gel phantoms were stored in water when not in use,

which keeps the gel at the desired 97% water composition. We will only use data from the 264 g
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tests later when demonstrating results. These data provide the strongest oscillatory signal and

thus are the best option for model validation. The data sets were generally similar otherwise,

with the amplitude and number of oscillations decreasing as the weight level decreases.

When the experiment is conducted, data like those depicted in Figure 2.3 are produced. The

material is at rest, a weight is added and allowed to settle, then the string holding the weight is

rapidly cut with a flame to allow the material to freely oscillate. Once oscillations have died

out the material relaxes back toward a stable state. The key pieces that will be modeled are

the loading profile (loading begins at t = Γ1 and lasts until the weight begins to be released at

t = Γ3), which we will model as instantaneous loading to position A, and the oscillations after

weight release (free oscillations begin at t = Γ4 = 0) which are the main object of investigations

here.

With the setup of the experiment in mind, we next turn to an examination of the inverse

problem (parameter estimation) procedure on a preliminary viscoelastic wave propagation model.

This proof of concept discussion will use simulated data, while later discussion on the inverse

problem with a revised viscoelastic model will use data from the lab experiments. For more

information on the experimental setup, interested readers may refer to the forthcoming report

from QMUL [34].
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Figure 2.3: Sample one-dimensional data. Loading of the material (initially at rest) begins at
t = Γ1, and the material is loaded and continuing to relax for t ∈ (Γ2,Γ3). At time Γ3 the load is
cut which takes roughly 10 ms–15 ms. The gel is then freely oscillating at Γ4 = 0, and oscillations
continue for a period of time dependent on the loading weight and wave type (pressure/shear).
The value A is the displacement of the material at the beginning of free oscillations. The overall
displacement scale of the data is on the order of 10−4 m, while the oscillations immediately after
the weight release are on the order of 10−5 m.
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CHAPTER 3

Proof of Concept and Methodology

Our goals for this proof of concept chapter are twofold. We first focus on developing methodologies

for determining material parameters and analyzing data using a viscoelastic model, as well as

also quantifying the uncertainty in the estimation procedure through both bootstrapping and

asymptotic error theories. As part of this latter goal, we also conduct model comparison testing

to examine the viability of determining if data originated from a low-amplitude traction (e.g.,

resulting from normal blood flow) or high-amplitude traction (e.g., resulting from abnormal

blood flow caused by a stenosis). This notion uses and enhances previous work (see, e.g.,

[9, 70, 71, 73, 74, 85, 91, 92]) which discussed the compression and shear waves which result

from a stenosed vessel and some methods for measuring these waves, in particular the shear

waves. An ultimate goal of our wider research project will be a methodology to decide if a

vessel is stenosed or not, and if so, possibly the extent and location of the stenosis. However, at

this point we are still in the process of carrying out experiments to determine these differences

in either test devices or live subjects. Thus, in these preliminary efforts we make the (very)

tentative assumption of representing the difference between normal vessels and stenosed vessels

as a comparison between low and high shear input amplitudes, leaving the specifics of the actual

system inputs to future work. Overall, then, these two thrusts of material parameter estimation

and model comparison tests represent a proof-of-concept for our future data-driven inverse

problem efforts. Note that much of this chapter has been published as [14].
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3.1 Viscoelastic Model

We will examine a one-dimensional viscoelastic model for an agar phantom in the pressure case,

as described in Chapter 2 and pictured in Figure 2.1. If we assume a uniform force applied

along the top of the phantom and radial symmetry within the phantom (in part to closely

match the symmetrically constructed phantoms used at QMUL), then we can simplify the

cylindrical physical domain to a one-dimensional domain and to finding the function u(x, t)

which represents the material response to, in this case, an applied stenosis-generated like force.

In Chapter 4, we will go into more detail on how the one-dimensional equation is derived from

the three-dimensional equations of motion. For this chapter, we use a general acoustic pressure

viscoelastic wave equation on a one-dimensional domain Ω = [0, L] (c.f. Figure 2.1). For the

purposes of our initial investigation here, all parameters will be considered constant (i.e., a

homogeneous medium). This is not necessary but significantly simplifies our initial computations

in the methodology development. Choosing a material initially at rest with a reflecting boundary

at x = 0, an applied force g(t) at the x = L boundary, and no additional forcing terms we obtain

the system for the displacement u given by

ρutt − σx = 0

u(0, t) = 0, σ(L, t) = −g(t),

u(x, 0) = 0, ut(x, 0) = 0.

(3.1.1)

Here the stress σ(x, t) is assumed to be described by

σ(x, t) = E1uxt(x, t) + E0

∫ t

0
P (t− s) d

ds
ux(x, s)ds, (3.1.2)

where the E1uxt term is the so-called Kelvin-Voigt damping, and P is some stress relaxation

function. Normally the integral in (3.1.2) must be considered for all previous time for a viscoelastic

material, since the material responds differently based on its history. Our assumption that the

material is at rest, coupled with assuming none of its history before the experiment begins

affects the state at t = 0, allows us to consider the history integral from t = 0 forward.

Development of this model is described in [13], as well as in standard viscoelastic theory

[41, 48, 49, 50, 54, 63]. It is worth noting that the linear system (3.1.1) with (3.1.2) was found

to give a reasonable preliminary approximation to the experimental data provided by QMUL.

Thus, this linear model is deemed adequate for our investigation for the current experimental

setting.
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3.1.1 Existence and Uniqueness of a Weak Solution

Let H = L2(0, L), V = {φ | φ ∈ H1(0, L), φ(0) = 0}, and V∗ denote the topological dual space

of V. If we identify H with its topological dual H∗, then V ↪→ H = H∗ ↪→ V∗ is a Gelfand

triple [8, 99]. Throughout this presentation 〈·, ·〉 denotes the inner product in H, and 〈·, ·〉V∗,V

represents the duality paring between V∗ and V (again see [8, 99] for details).

Let Cw(0, T ;V) denote the set of weakly continuous functions in V on [0, T ], and LT = {v :

[0, T ]→ H | v ∈ Cw(0, T ;V)∩L2(0, T ;V) and vt ∈ Cw(0, T ;H)∩L2(0, T ;V)}. The weak solution

for system (3.1.1) with (3.1.2) is defined in the following way.

Definition 3.1.1. We say that u ∈ LT is a weak solution of the system (3.1.1) and (3.1.2) if it

satisfies

ρ〈ut(t), ηt(t)〉 − ρ
∫ t

0 〈us(s), ηs(s)〉ds+
∫ t

0 g(s)η(L, s)ds+ E1

∫ t
0 〈usx(s), ηx(s)〉ds

+E0

∫ t
0

〈∫ s
0 P (s− ξ) ddξux(ξ)dξ, ηx(s)

〉
ds = 0

(3.1.3)

for any t ∈ [0, T ] and η ∈ LT . Here and elsewhere in this section u(t) and η(t) denote the

functions u(·, t) and η(·, t), respectively.

As in [8, 22, 25, 99] we remark that this notation of the weak solution for system (3.1.1)-(3.1.2)

agrees with the usual one in that it yields utt ∈ L2(0, T ;V∗) with equation (3.1.1) holding in the

sense of L2(0, T ;V∗). To ensure the existence and uniqueness of a weak solution to system (3.1.1)

with (3.1.2), we make the following assumptions on the force function g and stress relaxation

function P :

(A1) g ∈ L2(0, T ).

(A2) The function P is differentiable with respect to t ∈ R+, and there exist constants c1 and

c2 such that |P (t)| ≤ c1 and |Ṗ (t)| ≤ c2 for all t ∈ R+, where Ṗ denotes the differentiation

of P with respect to t.

Theorem 3.1.2. Under assumptions (A1) and (A2), the system (3.1.1) with (3.1.2) has a

unique weak solution on any finite interval [0, T ].

We remark that system (3.1.1) with (3.1.2) is a special case of the viscoelastic model presented

in [22] if we change the left boundary condition u(0, t) = 0 in (3.1.1) to σ(0, t) = gl(t) with gl(t)

being some force function and change the right boundary condition to be stress free (i.e., g ≡ 0).

Specifically, the stress-strain relationship in [22] is described by the nonlinear form

σ(x, t) = E1uxt(x, t) +

∫ t

0
Γ(t− s;F)

d

ds
σe(ux(x, s))ds. (3.1.4)
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Here σe is the elastic response function, and Γ is defined by

Γ(t;F) =

∫
T
γ(t, τ)dF(τ),

where T ⊂ (0,∞), γ is a function of t and relaxation time τ , and F is a probability distribution

function of relaxation time τ . The existence and uniqueness of weak solution for this general

viscoelastic model was given in [22], and the continuous dependence of the weak solution on the

probability distribution function F was also given in [22] under a Prohorov metric framework

[8, 10, 17, 22, 78] on the space of probability distributions. These results on continuous dependence

can be readily extended to the other parameters (e.g., E1) of interest here.

Note that assumptions (A1) and (A2) conform with the ones made in [22]. Hence, the

arguments for Theorem 3.1.2 are similar to those given in [22, 25]. Here we only sketch the ideas,

referring readers to [8, 22, 25, 99] for further details. Let {ψj}∞j=1 be any linearly independent

total subset of V. We define the Galerkin approximation um(t) =
∑m

j=1 β
m
j (t)ψj as the unique

solution of

ρ〈umtt , ψj〉V∗,V+E1〈umtx, ψ′j〉+E0

〈∫ t

0
P (t− s) d

ds
umx (s)ds, ψ′j

〉
+g(t)ψj(L) = 0, j = 1, 2, . . . ,m,

on the interval [0, T ], where ψ′j denotes the derivative of ψj with respect to x, j = 1, 2, . . . ,m.

We can argue that {um} and {umt } are bounded uniformly in L2(0, T ;V). Then by the Banach-

Alaoglu theorem we know that there exists a function u ∈ L2(0, T ;V) such that

um → u weakly in L2(0, T ;V),

umt → ut weakly in L2(0, T ;V).

In addition, the following convergence results can be proven by using the Ascoli-Arzela theorem

(e.g., see [51, Theorem 3.6.4]) and Aubin’s lemma (e.g., see [42, Lemma 8.4])

um → u weakly in V uniformly in t ∈ [0, T ], i.e., um → u in Cw(0, T ;V),

umt → ut weakly in H uniformly in t ∈ [0, T ], i.e., umt → ut in Cw(0, T ;H),

umt → ut in L2(0, T ;H).

We can then show that umx (t)→ ux(t) in H. Based on these convergence results, u can be easily

shown to be a weak solution of system (3.1.1)-(3.1.2). The uniqueness of the weak solution can

be established by using a standard technique which demonstrates that the difference between

any two possible solutions must be zero [99].
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3.1.2 Internal Variable Form of the Stress Relaxation Function

Note that the origin for time is assumed at the beginning of motion and loading. Hence, we can

rewrite (3.1.2) into the following form using integration by parts

σ(x, t) = E1uxt(x, t) + E0

(
P (0)ux(x, t)−

∫ t

0

(
d

ds
P (t− s)

)
ux(x, s)ds

)
. (3.1.5)

For the remainder of this chapter, the form of the stress relaxation function P (t) is assumed to

be a Prony series

P (t) = p0 +

Np∑
j=1

pje
−t/τj , (3.1.6)

where all the pj are nonnegative numbers and the τj values are positive, and with Np being a

positive integer. This series is based on the assumption that relaxation in a viscoelastic material

can be well represented by a discrete number of relaxation times τj . Without loss of generality,

we will also enforce P (0) = 1. A result of this constraint is that
∑Np

j=0 pj = 1. It is worth noting

here that this special form of P satisfies assumption (A2). Hence, system (3.1.1) and (3.1.5)

with P given by (3.1.6) also has a unique weak solution on any finite time interval [0, T ].

If we replace d
dsP (t− s) in (3.1.5) with the s-derivative of the Prony series at t− s, we obtain

σ(x, t) = E1uxt(x, t) + E0

ux(x, t)−
Np∑
j=1

∫ t

0

pj
τj
e−(t−s)/τjux(x, s)ds

 .

We can reformulate the integrals related to each internal variable as differential equations which

we can solve simultaneously with the main system (3.1.1). To this end, we define the “internal

variables”

εj =

∫ t

0

pj
τj
e−(t−s)/τjux(s)ds.

Then the time derivative of εj is given by

εjt =
pj
τj
ux(t)− 1

τj

∫ t

0

pj
τj
e−(t−s)/τjux(s)ds.

Relating εj and εjt allows us to model the internal variables dynamically as

τjε
j
t + εj = pjux,

εj(0) = 0.
(3.1.7)
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for j = 1, 2, . . . , Np. We can then write the overall stress-strain relationship (3.1.5) as

σ = E1uxt + E0

(
ux −

∑Np
j=1 ε

j
)
. (3.1.8)

Note that even though p0 is an element in the Prony series for P (t), once the series is substituted

in the model the constant p0 no longer appears. However, p0 is still present in the sum-to-one

constraint on all pi values, but we can easily work with the alternate constraint that the

remaining pj terms must satisfy
∑Np

j=1 pj ≤ 1.

The damping and internal variables provide us the future flexibility to match the model to

data from the experimental devices, and also present an interesting question of identifiability of

the damping and internal variable parameters which we will discuss in depth. Note also that the

authors in [9, 67, 80] give computational results (using essentially an equivalent model from a

slightly different conceptual formulation involving a distribution of relaxation mechanisms-see

(3.1.4)) showing that discrete relaxation times can model well the viscoelastic material responses

of the type we consider in this work (namely, attempting to approximate the response of

biological soft tissue as characterized in [9, 52]). In fact, in previous work no more than two

discrete relaxation times were used, which has informed our decision to allow a maximum of

two relaxation times.

Since the ultimate goal of the wider research project will be examining the traction into the

chest cavity that results from a healthy artery experiencing a heartbeat as compared with an

artery containing a stenosis experiencing a heartbeat, our nonzero boundary input g(t) will here

be represented by an approximation to a pulse traction. In order to ensure a smooth, compactly

supported input, we implement the input function as a Van Bladel function which is a good

approximation to expected perturbation inputs to our system [9, 91]. This smoothness is useful

in order to get the maximum benefit from using high order numerics. The function used is

g(t) =

{
A · exp

(
|ab|

t(t+a−b)

)
if t ∈ (0, b− a),

0 otherwise,
(3.1.9)

where A is some positive constant, a and b are some constants with b > a.

3.1.3 Parameter Values Used in Simulations

Motivated by the experimental data to which we intend to apply this methodology, we choose

values for the system parameters which simulate low-amplitude (on the order of 0.1mm)

oscillatory motions. For data generation, we will use two internal variables (Np = 2). The

weights pi for our two relaxation time model will be fixed as given below. The baseline material
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parameter values chosen for this chapter are as follows:

E0 = 2.2× 105 Pa, E1 = 40 Pa · s, ρ = 1010 kg/m3, L = 0.053 m

τ1 = 0.05 s, τ2 = 10 s, p1 = 0.3, p2 = 0.55.
(3.1.10)

Note that the density ρ = 1010 kg/m3 is the true density of the agar gel that is used in the

medium for our experiments at QMUL, and L = 0.053 m is the true height of the phantom.

These are parameter values which are directly taken to approximate the experimental device.

The values for E0 and E1 and for the relaxation times are physically reasonable parameters

based on a perusal of the viscoelastic materials research literature and are also informed by our

early experiments with the agar gels. In the Van Bladel function, the values of a and b have an

effect on pulse width as well as the amplitude, while the value of A only has an effect on the

amplitude. Their baseline values are chosen as follows:

a = 6× 10−3, b = 20× 10−3, A = 6× 103, (3.1.11)

where the values a and b allow for an effective pulse application time of 14 ms. We show the

resulting function in Figure 3.1.
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Figure 3.1: Van Bladel function (c.f. (3.1.9)) with A = 6×103, a = 6×10−3, and b = 20×10−3.

3.1.4 Direct (Forward) Problem

Altogether, this description (3.1.1) along with (3.1.7)-(3.1.9) encompasses the one-dimensional

model for the displacement u(x, t) that will be studied in both major sections of this chapter. In
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other words, system (3.1.1) along with (3.1.7)-(3.1.9) with given parameter values is the direct or

forward problem. Throughout this chapter, we solve (3.1.1), (3.1.7)-(3.1.9) for u(x, t) with given

parameter values using a spectral continuous finite element method in space (Gauss-Lobatto

nodes) and a discontinuous Galerkin method in time. The numerical scheme is specially tailored

to allow for high order space-time discretization in order to control dispersion errors and will be

documented fully in [61] along with its convergence properties.

3.2 Estimation of Material Parameters: Preliminaries

In this section, we examine an inverse problem methodology for estimating material parameters

(and thus gain a sense for our ability to characterize an individual’s material properties) with

given simulated observations of displacement at the x = L position (where the simulated data

is generated under various measurement noise conditions, see details blow). In addition to

determining an estimate for material parameters, we also need to determine our confidence in

the estimation procedure. To this end, we will compare two techniques for determining confidence

intervals, specifically the asymptotic theory discussed in [12, 24] versus using bootstrapping as

discussed in [12, 45].

In practice, one will obtain a set of experimental data and then one needs to determine how

many (if any) relaxation times are required to represent well the data. Thus, we will want to

compare the performance of our estimation procedures on three competing models. In each

model, we will always estimate E0 and E1 (assuming given values for ρ and L in (3.1.10) along

with given values of a, b and A in (3.1.11)), but we will vary the number of relaxation times

incorporated into the model. The three models to be used in inverse problems are as follows:

1. For a model with no relaxation times, we do not include any τi or corresponding pi in the

model. Thus, we estimate only q̄ = (E0, E1)T .

2. In the case with one relaxation time, we incorporate a single internal variable (i.e., Np = 1).

For this case, q̄ = (E0, E1, τ1)T will be estimated, but the corresponding material weight

p1 is fixed to be p1 = 0.3.

3. For the case of two relaxation times (i.e., Np = 2), we will estimate q̄ = (E0, E1, τ1, τ2)T

with the corresponding material weights fixed to be the values in (3.1.10), that is, p1 = 0.3

and p2 = 0.55.

Note that for the models with one and two relaxation times the corresponding weights pi are

fixed. Though in reality one would certainly need to estimate the weights pi, we take the liberty

here of assuming them to be known so we can focus on the general methodology and in particular

the reliability in identifying the relaxation times.
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Considering this set of models will allow us to follow what one would consider in practice,

examining the results of adding or subtracting model features. It is worth noting here that for

this particular set of models, the one-relaxation-time model (the second case) is not a special

case of the two-relaxation-time model (the third case) as the material weight p2 in the two-

relaxation-time model is fixed, and that the zero-relaxation-time model (the first case) is not a

special case of the one-time-relaxation model as the material weight p1 in the one-relaxation-time

model is fixed. However, if we allow the corresponding material weights to be free (i.e., to be

estimated along with relaxation times), then the zero-relaxation-time model is indeed a special

case of the one-relaxation-time model, and the one-relaxation-time model is a special case of

the two-relaxation-time model. We will therefore use the sensitivity equations and parameter

estimation results as well as model selection criterion to suggest the number of relaxation times

needed in practice.

3.2.1 Study of Effects of Changing Material Parameters

Before discussing simulated data and actually solving the inverse problem, we wish to complete

some analysis on the model around the true material parameter values (3.1.10). It is clear that

changing the amplitude factor A for the Van Bladel input will change the resulting amplitude of

the system. Hence, we consider here changes in the material parameters E0, E1, and τj values.

We first consider changes in the stiffness E0 and damping factor E1. As an example of typical

effects of changing parameters, we show the effects of reducing stiffness to E0 = 200, 000 in the

left pane of Figure 3.2 and in the right pane the effects of increasing the damping to E1 = 60.

Changes in E0 are shown to have a significant effect on the oscillation frequency, as well as a
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Figure 3.2: Solution of (3.1.1) with (3.1.7)-(3.1.8) using the “true” parameters (3.1.10) and
forcing function with parameters a = 6× 10−3, b = 20× 10−3, and A = 6× 103 (depicted by the
solid line), alongside solutions using E0 = 2× 105 (a) and E1 = 60 (b) which are represented
with dashed lines in their respective graphs.
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minor effect on peak heights. This makes sense – a more stiff material will propagate waves

more quickly and will dissipate energy less slowly. Changes in damping, E1, lead to the very

expected effects that the energy dissipates faster in the material, so the oscillation peak heights

become smaller and the material experiences fewer small oscillations in later simulation times.

So, these two parameters seem to govern the major properties of how the material responds to

an impulse response traction. Also, changes to the model solution induced by changes in E0

and E1 are generally on the same scale as the model solution itself (i.e., the changes are on the

order of 10−4).

Relaxation times can allow the model flexibility in matching the periodic local “peaks” and

“troughs” in the oscillating solution. For example, if we change from the baseline τ1 = 0.05 to

τ1 = 0.5, the system experiences the changes shown in Figure 3.3. This response to changing
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Figure 3.3: Solution of (3.1.1) with (3.1.7)-(3.1.8) using the “true” parameters (3.1.10) and
forcing function with parameters a = 6× 10−3, b = 20× 10−3, and A = 6× 103 (depicted by the
solid line), alongside the dashed line using τ1 = 0.5 with the remaining parameters the same in
(a). In (b), the solution is zoomed in for t ∈ [0.02, 0.04].

relaxation times represents a typical example of changing either τ1 or τ2. However, note the

scale of the changes: the maximum difference between the solutions shown in Figure 3.3 is

1.0996× 10−5. As we will see later when adding noise, the noise itself is on the scale of 10−5.

This foreshadows the difficulties in properly estimating relaxation times that we will see going

forward. This will be evident also both in a discussion on using different optimization routines

and in a discussion of model sensitivity with respect to parameters.
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3.2.2 Sensitivity of Model Output with Respect to Material Parameters

In order to further quantify the model response to changes in parameters around the baseline

values of (3.1.10), we will examine the sensitivity of the model output u(L, t) with respect to

material parameters. Note that since the values of parameters are on such a varying scale, we

will actually work with the log-scaled versions of the material parameters we are attempting to

estimate. In other words, if q̄ = (E0, E1, τ1, τ2)T is the vector of parameters to be estimated, we

define q = log10(q̄).

Sensitivity analysis has been widely used in inverse problem investigations (e.g., see [24] and

the references therein for details) to identify the model parameters and/or initial conditions to

which the model outputs are most sensitive and for which one can readily construct confidence

intervals when they are estimated (i.e., which are the most reliably estimated values). To compute

the sensitivity of the model output to each parameter, one needs to find sensitivity equations

which describe the time evolution of the partial derivatives of the model state with respect to

each parameter. Sensitivity equations in terms of the non-log-scaled parameters q̄ are derived in

Appendix A.

We can use the sensitivity of model output to the non-log-scaled parameters to find the

sensitivity of model output with respect to the log-scaled parameters, which will be of interest

here. Using the chain rule, we find that

∂u(L, t; 10q)

∂qi
= q̄i ln(10)

∂u(L, t; q̄)

∂q̄i
,

where qi and q̄i are the ith elements of q and q̄, respectively.

The sensitivities of model output with respect to parameters (log10(E0), log10(E1), log10(τ1),

log10(τ2)) are depicted in Figure 3.4. From this figure we see that model output is most sensitive

to log10(E0), sensitive to log10(E1), less sensitive to log10(τ1), and only minimally sensitive to

log10(τ2). The most interesting feature related to our study is the fact that the scale of sensitivity

of model output to the first relaxation time is on the order of 10−5 whereas the sensitivity

of model output to the second relaxation time is roughly two orders of magnitude smaller on

the order of 10−7. We will later see that, while we have difficulty estimating both relaxation

times due to the small changes they induce in the model solution (as previously discussed), we

especially have difficulty obtaining a reasonable estimate for τ2 because the model is so much

less sensitive to the second relaxation time than to the first.

Figure 3.5 demonstrates the sensitivities of model output with respect to material proportions

log10(p1) and log10(p2). From this figure we see that the model is less sensitive to the second

proportion than to the first one. Though these will be fixed and not estimated in this chapter,

when we update the model in Chapter 4 we will estimate the parameters analogous to the
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Figure 3.4: (a) Sensitivity of model output with respect to log10(E0); (b) Sensitivity of model
output with respect to log10(E1); (c) Sensitivity of model output with respect to log10(τ1); and
(d) Sensitivity of model output with respect to log10(τ2). All sensitivities are around the baseline
parameters (3.1.10) and (3.1.11).

proportions in Chapter 5. The results here indicate we can predict that accurately estimating a

second material proportion will be much more difficult than estimating the first one.

Armed with our knowledge of sensitivities of model output with respect to the material

parameters around the true parameter values (3.1.10), and our knowledge of effects on the model

solution of changing the parameters, we next describe the generation of our simulated data and

discuss solving the inverse problem.

3.3 Statistical Model and Inverse Problem

We will work with simulated data for various noise levels generated at position x = L, namely data

uj corresponding to the model solution u(L, tj) at measurement time points tj , j = 0, 1, . . . , n−1.

Then the statistical model (a model used to describe the observation process) is assumed to take

the following form

Uj = u (L, tj ; 10q0) + Ej , j = 0, 1, . . . , n− 1, (3.3.1)
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Figure 3.5: (a) Sensitivity of model output with respect to log10(p1). (b) Sensitivity of model
output with respect to log10(p2). Both sensitivities around the baseline parameters (3.1.10) and
(3.1.11).

where u(L, tj ; 10q0) is the solution to (3.1.1) along with (3.1.7)-(3.1.9) at x = L with a given set

of “true” material parameter values q0 and the values of the rest of parameters given in (3.1.10)

and (3.1.11). Here Ej denotes the measurement error (a random variable) at measurement

time point tj , j = 0, 1, . . . , n − 1. It is worth noting that Uj , j = 0, 1, 2, . . . , n − 1, are also

random variables due to the randomness of measurement errors. For the current proof of concept

discussion, we will assume the measurement errors Ej , j = 0, 1, . . . , n− 1, are independent and

identically distributed with mean zero (E(Ej) = 0) and constant variance var(Ej) = σ2
0. We thus

are assuming absolute additive error; this is reasonable as an initial error model for our proof of

concept investigations. We do not make further assumptions about the distributions of the Ej in

order to carry out the inverse problem methodology or the asymptotic analysis below. When we

later apply the AIC comparison methodology there is the tacit assumption of normality on the

Ej .
Under these assumptions for the measurement errors in the statistical model (3.3.1), the

estimator Q of q can be obtained by using the ordinary least squares method

Q = arg min
q∈Q

n−1∑
j=0

[Uj − u(L, tj ; 10q)]2 , (3.3.2)

where Q ⊂ Rκ is some viable admissible parameter set, assumed compact in Rκ with κ being

the number of parameters requiring estimation. Thus, Q can be viewed as a minimizer that

minimizes the distance between the data and the model where all observations are treated

with equal importance. Note that under different error assumptions, one would need to modify

the cost function in (3.3.2) (a topic discussed in, e.g., [17, 24, 43] as well as Chapter 5) for an

appropriate asymptotic parameter distribution theory to be valid.
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Since Q is a random variable (inherited from the fact that Uj are random variables), we can

define its corresponding realizations q̂ by minimizing the cost function

J (q) =
n−1∑
j=0

[uj − u(L, tj ; 10q)]2

over the set Q. That is, q̂ is obtained by solving the following inverse problem

q̂ = arg min
q∈Q
J (q) = arg min

q∈Q

n−1∑
j=0

[uj − u(L, tj ; 10q)]2 , (3.3.3)

Here uj is a corresponding realization of Uj , and it is given by

uj = u(L, tj ; 10q0) + εj , j = 0, 1, . . . , n− 1. (3.3.4)

with εj being realizations of Ej , j = 0, 1, . . . , n − 1. Note that the model solution u(x, t) is

continuously dependent on the model parameter q (recall the remarks in Section 3.1.1). Hence,

J is a continuous function of q. Since Q is assumed to be compact, the inverse problem (3.3.3)

has a solution. Since for our studies we will be interested in perturbations around nominal values

10q0 of parameters and the corresponding solutions, our test problems will not in general suffer

from serious ill-posedness and some type of stability or regularization techniques (Tikhonov

regularization, regularization by discretization, etc., [18]) are not required for our studies. This

will not necessarily be the case when using the inverse problem methods studied here with

experimental data.

Estimating material parameters q̂ from given sets of data with different noise levels, as well

as quantifying uncertainty in our estimates, will be the key focus of our work in this section. We

use the values for E0, E1, τ1, and τ2 in (3.1.10) in their log scaled form as the true values q0

used to simulate data. That is,

q0 = (5.3424, 1.6021,−1.3010, 1)T = (log10(2.2× 105), log10(40), log10(.05), log10(10))T .

As previously discussed, we will find parameter estimates for models with zero, one, and two

relaxation times in the model itself (and thus the number of parameters estimated changes).

In all cases, the parameters belong to a viable compact set Q with the upper and lower

bounds on parameters being taken (in educated guesses) as qlb = (−15,−15,−15,−15)T ,

qub = (7.3010, 2.3010, 2, 2)T for two relaxation times estimation, qlb = (−15,−15,−15)T , qub =

(7.3010, 2.3010, 2)T for the one relaxation time estimation, and qlb = (−15,−15)T , qub =

(7.3010, 2.3010)T for the no relaxation time estimation.

21



3.3.1 Simulated Data Generation

We will simulate data using two relaxation times (and a question of interest later will be how

many of those relaxation times we can recover) with the values of parameters given in (3.1.10)

and (3.1.11). The measurement time points are taken at tj = 0.001j, j = 0, 1, . . . , 250. Thus,

there are a total of n = 251 data points. We note that noiseless data has maximum amplitude

on the order of 10−4 (depicted by the solid line in Figure 3.6), which was again motivated by the

anticipated scale of results from the experimental device. This level informs the magnitude we

choose for the additive noise. We represent a “low” noise level with σ2
0 = 5× 10−6, a “medium”

noise level by σ2
0 = 10×10−6, and a “high” noise level by taking σ2

0 = 20×10−6. In Figure 3.6, we

show plots corresponding to the three levels of noisy simulated data against the system dynamics
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Figure 3.6: Simulated noisy data around the true parameter values. (a) Low noise level. (b)
Medium noise level. (c) High noise level.

corresponding to the true parameters q0. Noise is assumed absolute for our initial investigations

(in Chapter 5 we will later also explore a relative noise error model for our experimental data),

and is added according to the error model (3.3.1). Low noise results in data mostly along the

trajectory of the true model. Medium noise begins to obfuscate the later-time oscillations which

have lost much of their earlier energy. High noise significantly affects the level of peaks and

troughs from t = 0.05 forward. We thus obtain a series of increasingly difficult problems in

obtaining material parameter estimates, though entirely expected since higher noise tends to

significantly affect data features and presents a more difficult parameter estimation problem.

3.3.2 Parameter Estimates Obtained Using Different Routines

In this section, we discuss different options for the optimization routine used to solve the inverse

problem (3.3.3), and begin to gain a sense of the robustness of parameter estimation with respect

to the optimization routine. Note that we expect to have some difficulty in relaxation time

estimation, based on our earlier discussion on the model response to changes in relaxation times
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as well as model sensitivities. We do expect to obtain more accurate estimates for E1, and very

good estimates for E0. To begin this discussion, we will examine parameter estimates for a

model which incorporates two relaxation times.

The optimization routines we compare are all built-in Matlab Optimization Toolbox routines.

We use fmincon with active-set optimization, which treats the optimization as constrained

nonlinear programming with our cost function J (q). We also examine the use of lsqnonlin,

which is designed for nonlinear least squares data-fitting problems; our cost function is exactly the

form of a nonlinear least squares function. We test both the Levenburg-Marquardt (LM) option

and the trust-region-reflective (TRR) option. Note that the Levenburg-Marquardt algorithm

does not allow bound constraints; we tried the routine out of curiosity, to see if it would produce

unrealistic estimates of any parameters (it does at high noise levels).

Results from optimizing for q by using different optimization routines are shown in Table

3.1. All optimization runs used the initial guess

qinit = (log10(1.8× 105), log10(60), log10(0.5), log10(20))T = (5.2553, 1.7782,−0.3010, 1.3010)T .

This table includes the parameter estimates q̂, computation time (CPU) in seconds for that

Table 3.1: Estimation of material parameters at low, medium and high noise levels: Comparison
between optimization routines (lsq-TRR=lsqnonlin with the trust-region-reflective option,
lsq-LM=lsqnonlin with the Levenburg-Marquardt option).

Noise level Routines Estimated parameter values q̂ CPU (s) RSS

Low
fmincon: (5.3422, 1.6581,−0.3000, 1.3012)T 194.16 6.7618× 10−9

lsq-TRR: (5.3425, 1.6046,−1.2297, 1.0046)T 347.09 6.2458× 10−9

lsq-LM: (5.3425, 1.6044,−1.2309, 1.0316)T 613.47 6.2458× 10−9

Medium
fmincon: (5.3430, 1.6583,−0.2998, 1.3012)T 203.75 2.4435× 10−8

lsq-TRR: (5.3433, 1.5889,−1.3269, 2.0000)T 241.51 2.3647× 10−8

lsq-LM: (5.3433, 1.5893,−1.3252, 5.9303)T 608.27 2.3646× 10−8

High
fmincon: (5.3433, 1.6380,−0.2995, 1.3012)T 238.58 1.03291× 10−7

lsq-TRR: (5.3433, 1.6361,−1.990, 0.2496)T 606.36 1.03257× 10−7

lsq-LM: (5.3433, 1.6351,−0.02324, 0.0003611)T 1110.83 1.03248× 10−7

true values q0: (5.3424, 1.6021,−1.3010, 1.0000)T

particular optimization run, and the residual sum of squares (RSS) defined as

RSS =
n−1∑
j=0

[
uj − u(L, tj ; 10q̂)

]2
.
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Overall, we observe from Table 3.1 that the routines do a good job of estimating E0 (as we

expected). The lsqnonlin routines tend to better estimate E1. As for relaxation times, we

begin to see a major flaw in use of the fmincon routine. It does not seem particularly sensitive

to the relaxation times, and the resulting estimates of the relaxation times stay near the initial

guess. The fmincon routine produced similar non-responsive results for different initial guesses.

The lsqnonlin routines estimate both the relaxation times well in the presence of low noise. At

medium noise, the routines estimate τ1 well but not τ2. At high noise, relaxation time estimation

is poor. This will be quantified further in the following sections on error analysis.

Even though there might be some spurious computation times on desktop machines (due

to other background programs), we still include them here in Table 3.1 to demonstrate typical

optimization routine performance. Consistently, fmincon was the fastest routine. This is in

part due to the fact that this routine alone of the three supports parallel computation, so on

our multi-core desktop machines we were able to see a speed-up. However, the computation

times for the trust-region-reflective lsqnonlin algorithms are reasonable. Using Levenburg-

Marquardt consistently is the slowest method, and the results are not better than those using

trust-region-reflective lsqnonlin algorithm.
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Figure 3.7: Data and two-relaxation-time model solutions at parameter estimates obtained
using the lsqnonlin routine, trust-region-reflective method, at different noise levels (see Table
3.1). (a) Low noise. (b) Medium noise. (c) High noise.

As a result, we recommend using the trust-region-reflective lsqnonlin algorithm when

trying to estimate relaxation times (this is also the routine that we use in the remainder of

this dissertation). If the model does not contain relaxation times (i.e., only estimating E0 and

E1), the speedup afforded by using fmincon may make that algorithm the one of choice. For

reference, Figure 3.7 illustrates model fits to the data at different noise levels, where the model

solution is calculated with the values of model parameters obtained through lsqnonlin TRR

routine. We see in all cases that the model solution provides reasonable fits to the data.
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3.4 Asymptotic Error Analysis

Most asymptotic error theory [12, 24, 83] is described in the context of an ODE model example

ż(t) = f(z(t; q); q). However, we can use the PDE sensitivities of the model output with respect

to each parameter in q, namely ∂u(L,t;10q)
∂qi

, in a similar manner to the ODE sensitivities in the

asymptotic theory. The steps of the asymptotic theory error analysis are as follows (the theory

for the following steps is described in [12, 24, 83]).

1. Determine q̂ by solving the inverse problem (3.3.3).

2. Compute the sensitivity equations to obtain ∂u(L,t;10q̂)
∂qi

(as discussed in Section 3.2.2) for

i = 1, . . . , κ where κ is the number of parameters being estimated. The sensitivity matrix

χ(q̂) can then be calculated with its entries

χj,i(q̂) =
∂u(L, tj ; 10q̂)

∂qi
, j = 0, 1, . . . , n− 1, and i = 1, . . . , κ.

Note that χ(q̂) is then an n× κ matrix. We can also obtain an estimate for the constant

variance σ2
0 as

σ̂2 =
1

n− κ

n−1∑
j=0

(
uj − u(L, tj ; 10q̂)

)2
.

3. Asymptotic theory yields that the estimator Q is asymptotically (as sample size n→∞)

normal with mean approximated by q̂ and the covariance matrix approximated by

Cov(Q) ≈ Σ̂ = σ̂2[χT (q̂)χ(q̂)]−1.

4. The standard errors for each element in the parameter estimator Q can be approximated

by

SE(Qi) =

√
Σ̂ii, i = 1, 2, . . . , κ,

where Qi is the ith element of Q, and Σ̂ii is the (i, i)th entry of the matrix Σ̂. Hence, the

endpoints of the confidence intervals for Qi are given by

q̂i ± tn−κ1−α/2SE(Qi)

for i = 1, 2, . . . , κ. Here tn−κ1−α/2 is a distribution value that is determined from a statistical

table for Student’s t-distribution based on the level of significance α (i.e., α = .05 for a

95% confidence interval) as well as the number of degrees of freedom (the number of data

points n less parameters κ).
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We will present results below in Tables 3.2-3.4 and 3.5-3.7 on the low, medium, and high

noise data sets using zero, one, and two relaxation times, and using the routines fmincon

and lsqnonlin (trust-region-reflective only, as we cannot enforce the bound constraints with

Levenburg-Marquardt algorithm).

Table 3.2: fmincon: Parameter estimates, asymptotic standard errors (SE) and confidence
intervals for the zero-relaxation-time model (model 0), the one-relaxation-time model (model 1)
and the two-times-relaxation model (model 2) obtained at low noise level.

Model Params True Value Estimate SE 95% Confidence Interval

0
log10(E0) 5.3424 5.3422 0.01373 (5.3223, 5.3622)
log10(E1) 1.6021 1.6651 0.1052 (1.4579, 1.8723)

1
log10(E0) 5.3424 5.3422 0.01012 (5.3223, 5.3622)
log10(E1) 1.6021 1.584 0.1436 (1.3757, 1.9412)
log10(τ1) -1.3010 -0.3002 6.9746 (-1.4037, 1.3437)

2

log10(E0) 5.3424 5.3422 0.1014 (5.3223, 5.3622)
log10(E1) 1.6021 1.6581 0.1463 (1.3700, 1.9463)
log10(τ1) -1.3010 -0.3000 8.2619 (-16.5727, 15.9828)
log10(τ2) 1 1.3012 51.0143 (-99.1775, 101.7798)

Table 3.3: fmincon: Parameter estimates, asymptotic standard errors (SE) and confidence
intervals for the zero-relaxation-time model (model 0), the one-relaxation-time model (model 1)
and the two-times-relaxation model (model 2) obtained at medium noise level.

Model Params True Value Estimate SE 95% Confidence Interval

0
log10(E0) 5.3424 5.3264 0.01409 (5.3087, 5.3542)
log10(E1) 1.6021 1.7641 0.01165 (1.5346, 1.9936)

1
log10(E0) 5.3424 5.3430 0.01032 (5.3226, 5.3633)
log10(E1) 1.6021 1.6586 0.1462 (1.3706, 1.9467)
log10(τ1) -1.3010 -0.3001 7.1076 (-1.4299, 1.3699)

2

log10(E0) 5.3424 5.3430 0.01034 (5.3226, 5.3633)
log10(E1) 1.6021 1.6583 0.1490 (1.3648, 1.9519)
log10(τ1) -1.3010 -0.2998 8.4206 (-16.8851, 16.2855)
log10(τ2) 1 1.3012 51.9907 (-101.1004, 103.7028)

We see throughout the tables that the problem of estimating the second relaxation time is

fraught with difficulty (the standard error is significantly higher than its estimated value), even
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Table 3.4: fmincon: Parameter estimates, asymptotic standard errors (SE) and confidence
intervals for the zero-relaxation-time model (model 0), the one-relaxation-time model (model 1)
and the two-times-relaxation model (model 2) obtained at high noise level.

Model Params True Value Estimate SE 95% Confidence Interval

0
log10(E0) 5.3424 5.3433 0.01046 (5.3227, 5.3639)
log10(E1) 1.6021 1.6452 0.1136 (1.4214, 1.8691)

1
log10(E0) 5.3424 5.3433 0.01045 (5.3227, 5.3639)
log10(E1) 1.6021 1.6382 0.1600 (1.3232, 1.9534)
log10(τ1) -1.3010 -0.2995 7.7134 (-15.4916, 14.8927)

2

log10(E0) 5.3424 5.3433 0.01047 (5.3227, 5.3639)
log10(E1) 1.6021 1.6380 0.1633 (1.3164, 1.9596)
log10(τ1) -1.3010 -0.2995 9.1380 (-18.2979, 17.6989)
log10(τ2) 1 1.3012 56.4222 (-109.8289, 112.4314)

Table 3.5: TRR lsqnonlin: Parameter estimates, asymptotic standard errors (SE) and con-
fidence intervals for the zero-relaxation-time model (model 0), the one-relaxation-time model
(model 1) and the two-times-relaxation model (model 2) obtained at low noise level.

Model Params True Value Estimate SE 95% Confidence Interval

0
log10(E0) 5.3424 5.3422 4.9498× 10−4 (5.3413, 5.3432)
log10(E1) 1.6021 1.6651 0.005434 (1.6544, 1.6758)

1
log10(E0) 5.3424 5.3425 0.01011 (5.3226, 5.3624)
log10(E1) 1.6021 1.6050 0.3167 (0.9811, 2.2288)
log10(τ1) -1.3010 -1.2317 2.2200 (-5.6041, 3.1407)

2

log10(E0) 5.3424 5.3425 0.0101 (5.3225, 5.3624)
log10(E1) 1.6021 1.6046 0.3202 (0.9738, 2.2353)
log10(τ1) -1.3010 -1.2297 2.2369 (-5.635, 3.1761)
log10(τ2) 1 1.0046 16.0237 (-30.5560, 32.5651)

though we know the simulated data came from a model incorporating two relaxation times. This

could be predicted from our earlier examination of the sensitivities with respect to the second

relaxation time, as well as the results for relaxation times seen when using different optimization

routines. In addition, when estimating two relaxation times on high noise data (shown in Table

3.7) we see that the estimates for τ1 and τ2 are not close to the true parameter values; also,

the standard error for τ1 is much larger than in any other case. Thus, instead of merely having

difficulty estimating a second relaxation time, in this estimation we now additionally have less

confidence in the estimate of τ1.

From Tables 3.2-3.4 we see that standard errors of E0 and E1 for model with no relaxation

time is comparable with those for model with one relaxation time when using fmincon, but the

standard error for τ1 is fairly large (around 7, as compared with the estimated parameter value
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Table 3.6: TRR lsqnonlin: Parameter estimates, asymptotic standard errors (SE) and con-
fidence intervals for the zero-relaxation-time model (model 0), the one-relaxation-time model
(model 1) and the two-times-relaxation model (model 2) obtained at medium noise level.

Model Params True Value Estimate SE 95% Confidence Interval

0
log10(E0) 5.3424 5.3429 9.2836× 10−4 (5.3411, 5.3448)
log10(E1) 1.6021 1.6653 0.0102 (1.6452, 1.6854)

1
log10(E0) 5.3424 5.3433 0.01042 (5.3228, 5.3638)
log10(E1) 1.6021 1.6050 0.3167 (0.9811, 2.2288)
log10(τ1) -1.3010 -1.2317 2.2200 (-5.6041, 3.1407)

2

log10(E0) 5.3424 5.3433 0.01045 (5.3227, 5.3639)
log10(E1) 1.6021 1.5889 0.3717 (0.8567, 2.3211)
log10(τ1) -1.3010 -1.3269 2.0383 (-5.3415, 2.6878)
log10(τ2) 1 2.0000 156.5630 (-306.369, 310.369)

Table 3.7: TRR lsqnonlin: Parameter estimates, asymptotic standard errors (SE) and con-
fidence intervals for the zero-relaxation-time model (model 0), the one-relaxation-time model
(model 1) and the two-times-relaxation model (model 2) obtained at high noise level.

Model Params True Value Estimate SE 95% Confidence Interval

0
log10(E0) 5.3424 5.3433 1.7767× 10−3 (5.3398, 5.3468)
log10(E1) 1.6021 1.6452 0.0204 (1.6050, 1.6855)

1
log10(E0) 5.3424 5.3433 0.01046 (5.3227, 5.3639)
log10(E1) 1.6021 1.6397 0.1526 (1.3391, 1.9403)
log10(τ1) -1.3010 -1.3253 2.0328 (-5.3291, 2.6785)

2

log10(E0) 5.3424 5.3433 0.01046 (5.3227, 5.3639)
log10(E1) 1.6021 1.6361 0.1591 (1.3227, 1.9496)
log10(τ1) -1.3010 -0.1990 15.8821 (-31.4806, 31.0827)
log10(τ2) 1 0.2496 12.0051 (-23.3958, 23.8951)

log10(τ̂1) ≈ −0.3). When using lsqnonlin (see Tables 3.5-3.7), the standard errors for E0 and

E1 increase significantly at all noise levels when moving from the no relaxation time model to

the one relaxation time model, but the standard error for τ1 is closer to 2 rather than the 7 for

fmincon. This may not seem significant, but if we recall that these are log-scaled parameter

values, then the difference between standard errors of 2 and 7 is fairly large.

We also found that at all noise levels the difference for the residual sum of squares is small

among the zero-relaxation-time, one-relaxation-time, and two-relaxation-time models (see the

third columns of Table 3.9). In addition, for each level noise data set, when we plot the model

solutions corresponding to the zero, one, and two relaxation time models, we found that they

approximately lie on top of each other, and give good fits to the data. To gain further insight

into which model should be chosen, we turned to some model selection criterion analysis.
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3.4.1 Model Selection Criteria

There are numerous model selection criteria in the literature that can be used to select a best

approximating model from a prior set of candidate models. These criteria are based on hypothesis

testing, mean squared error, Bayes factors, or information theory, and they all are based to some

extent on the principle of parsimony (see [35]). It should be noted that some of these criteria can

only be used for nested models (e.g., two models are said to be nested if one model is a special

case of the other), but others can be used for both nested models and non-nested models.

Here we employ one of the most widely used model selection criteria – the Akaike Information

Criterion (AIC). The AIC was developed by Akaike (in 1973) who formulated a relationship

between the Kullback-Leibler information (used to measure the information lost when a model

is used to approximate the true model) and the maximum value of the log likelihood function of

the approximating model. As might be expected we find that the AIC value depends on the

data set used. Thus, when we try to select a best model from a set of candidate models, we must

use the same data set to calculate AIC values for each of the models. One of the advantages of

the AIC is that it can be used to compare non-nested models (which is our case here). For the

least squares case, it can be found (e.g., see [35, Section 2.2]) that if the observation errors are

i.i.d normally distributed, then the AIC is given by

AIC = n log

(
RSS

n

)
+ 2(κ+ 1). (3.4.1)

Here κ+ 1 is the total number of estimated parameters including q and the observation error

variance. Given a prior set of candidate models, we can calculate the AIC value for each model,

and the best approximating model is the one with minimum AIC value. It should be noted

that the AIC may perform poorly if the sample size n is small relative to the total number of

estimated parameters (it is suggested in [35] that the sample size n should be at least 40 times

the total number of estimated parameters (κ+ 1); this is true for our investigations here).

In practice, the absolute size of the AIC value may have limited use in supporting the chosen

best approximating model, and one may often employ other related values such as Akaike

differences and Akaike weights to further compare models. The Akaike difference is defined by

∆i = AICi −AICmin, i = 1, 2, . . . R, (3.4.2)

where AICi is the AIC value of the ith model in the set, AICmin denotes the AIC value for the

best fit model in the set, and R is the total number of models in the set. The larger ∆i, the less

plausible it is that the ith model is a good approximating model for given the data set. The
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Akaike weights are defined by

wi =
exp(−1

2∆i)∑R
r=1 exp(−1

2∆r)
, i = 1, 2, . . . R. (3.4.3)

These Akaike weights wi can then be interpreted heuristically as the probability that ith model

is the best approximating model (see [35]).

Tables 3.8 and 3.9 demonstrate residual sum squares (RSS), AIC values, AIC difference,

and AIC weights obtained for the two-relaxation-time model, one-relaxation-time model and

no-relaxation-time model at low, medium and high noise levels using fmincon and lsqnonlin,

respectively.

Table 3.8: fmincon: Residual sum of squares (RSS), AIC values, AIC difference (∆) and AIC
weights for zero-relaxation-time model (model 0), one-relaxation-time model (model 1) and
two-times-relaxation model (model 2) obtained at low, medium and high noise levels.

noise level model RSS AIC ∆ AIC weights

low noise
0 7.0368×10−9 -6.0927×103 7.5867 1.5257×10−2

1 6.7731×10−9 -6.1003×103 0 6.7748×10−1

2 6.7618×10−9 -6.0987×103 1.5814 3.0726×10−1

medium noise
0 3.6421×10−8 -5.6800×103 98.1093 3.5908×10−22

1 2.4442×10−8 -5.7782×103 0 7.2334×10−1

2 2.4435×10−8 -5.7762×103 1.9222 2.7666×10−1

high noise
0 1.0337×10−7 -5.4182×103 0 6.4532×10−1

1 1.0330×10−7 -5.4164×103 1.8267 2.5889×10−1

2 1.0329×10−7 -5.4144×103 3.8151 9.5794×10−2

From these two tables, we see that on low and medium level noise data sets the one-relaxation-

time model is the best model with the probability to be chosen as the best model being more

than 0.7 (see Akaike weights in the last column of these two tables), and the no-relaxation time

model has almost no chance to be selected as the best model. On the high noise data set the

no-relaxation-time model is the best one with the probability chosen as the best model being

more than 0.6, and two-relaxation-time model has almost no chance to be selected as the best

model.

Asymptotic Analysis Summary Remark

Based on our analysis to this point, we can conclude that estimating two relaxation times is

likely to be difficult. Adopting a model with zero or one relaxation times may be the most
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Table 3.9: lsqnonlin: Residual sum of squares (RSS), AIC values, AIC differences (∆) and
AIC weights for the zero-relaxation-time model (model 0), the one-relaxation-time model (model
1) and the two-relaxation-times model (model 2) obtained at low, medium and high noise levels.

Noise level Model RSS AIC ∆ AIC weights

low noise
0 7.0368×10−9 -6.0927×103 27.8791 6.4125×10−7

1 6.2470×10−9 -6.1206×103 0 7.2595×10−1

2 6.2458×10−9 -6.1186×103 1.9483 2.7405×10−1

medium noise
0 2.4674×10−8 -5.7778×103 8.6863 9.4255×10−3

1 2.3646×10−8 -5.7865×103 0 7.2527×10−1

2 2.3647×10−8 -5.7845×103 2.0113 2.6531×10−1

high noise
0 1.0337×10−7 -5.4182×103 0 6.4303×10−1

1 1.0330×10−7 -5.4164×103 1.8299 2.5756×10−1

2 1.0326×10−7 -5.4145×103 3.7340 9.9406×10−2

feasible approach. However, until we confirm this approach by examining these methods on

experimental data we believe that attempting all three options for including relaxation times in

the viscoelastic model (zero, one, or two times) may be advisable.

3.5 Bootstrapping Error Analysis

For ease of presentation, we reiterate here the algorithm described in [12], in the context of the

current viscoelastic model under study (additional theory is available in, e.g., [45]).

1. Determine q̂0 by solving the inverse problem (3.3.3).

2. Define the standardized residuals (recall n is the number of data points, and κ is the

number of parameters under consideration) to be

r̄j =

√
n

n− κ

(
uj − u(L, tj ; 10q̂

0
)
)

for j = 0, 1, . . . , n− 1. Set m = 0.

3. Create a sample of size n by randomly sampling, with replacement, from the standardized

residuals r̄j to form a bootstrap sample {rm0 , . . . rmn−1}.

4. Create bootstrap sample points

umj = u(L, tj ; 10q̂
0
) + rmj , j = 0, 1, . . . , n− 1.
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5. Solve the OLS minimization problem (3.3.3) with the bootstrap-generated data {umj } to

obtain a new estimate q̂m+1 which we store.

6. Increase the index m by 1 and repeat steps 3-5. This iterative process should be carried

out for M times where M is large (we used M = 1000, as suggested in [12, 46]). This will

give M estimates {q̂m}Mm=1.

Upon completing all M simulation runs, the following will give the mean and covariance matrix

for the bootstrap estimator Qboot of q0:

q̂boot =
1

M

M∑
m=1

q̂m,

Σ̂boot =
1

M − 1

M∑
m=1

(q̂m − q̂boot)(q̂m − q̂boot)T .
(3.5.1)

Then the standard errors for the bootstrap estimator Qboot are given by

(SEboot)i =

√(
Σ̂boot

)
ii
, i = 1, 2, . . . , κ,

where
(

Σ̂boot

)
ii

is the (i, i)th entry of covariance matrix Σ̂boot. Hence, the endpoints of the

confidence intervals for (Qboot)i (the ith element of Qboot) are given by

(q̂boot)i ± tn−κ1−α/2(SEboot)i (3.5.2)

for i = 1, 2, . . . , κ.

Note that bootstrapping requires solving the inverse problem 1000 times. Even for a model

that is solved in a short time (e.g., less than one minute), bootstrapping takes a significant

time to compute (as we must solve the inverse problem many times and each inverse problem

involves solving the model multiple times). Due to long computational times (e.g., one week for

bootstrapping versus minutes for the asymptotic theory), we report here results for a case using

fmincon to estimate E0 and E1 in a zero-relaxation-time model and a case using lsqnonlin,

the trust-region-reflective option, to estimate E0, E1, and τ1 in a one-relaxation-time model. It

is worth noting that even though the bootstrapping algorithm can be implemented in parallel,

this requires a considerable amount of computing resources (unavailable to most investigators)

to achieve computational times comparable to that attained in using the asymptotic theory. For

our purposes, the bootstrap results we provide are sufficient to indicate that the less conservative

asymptotic error analysis yields a reasonable uncertainty measure in the inverse problem we

investigate.
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For the model with no relaxation times, we see from Table 3.10 that the confidence intervals

for E0 and E1 at all noise levels are more conservative than those obtained using the asymptotic

theory (shown in Tables 3.2, 3.3 and 3.4), especially for the cases of medium and high noise

level. However, this table still indicates that reasonable parameter estimates are obtained.

Table 3.10: fmincon: Parameter estimates, bootstrap standard errors (SE) and confidence
intervals obtained at low, medium and high noise levels for zero-relaxation-time model.

Noise Level Params True Value q̂boot SE 95% Confidence Interval

Low noise
log10(E0) 5.3424 5.3422 0.01557 (5.3115, 5.3729)
log10(E1) 1.6021 1.6649 0.1716 (1.3270, 2.0029)

Medium noise
log10(E0) 5.3424 5.3429 0.03038 (5.2831, 5.4028)
log10(E1) 1.6021 1.6653 0.3155 (1.0438, 2.2867)

High noise
log10(E0) 5.3424 5.3432 0.05714 (5.2306, 5.4557)
log10(E1) 1.6021 1.6451 0.6603 (0.3446, 2.9456)

In Figure 3.8, we show the bootstrap estimates obtained for E0 and E1 for this no relaxation

time model. Note that each estimator tends to have the shape of a normal distribution, which

we would expect if our formulation of bootstrapping is to work properly.

The bootstrapping results for a one-relaxation-time model obtained by using lsqnonlin

trust-region-reflective routine are summarized in Table 3.11. We see that confidence intervals

Table 3.11: TRR lsqnonlin: Parameter estimates, bootstrap standard errors (SE) and confi-
dence intervals obtained at low, medium and high noise levels for one-relaxation-time model.

Noise level Params True Value q̂boot SE 95% Confidence Interval

Low noise
log10(E0) 5.3424 5.3425 0.01547 (5.3120, 5.3730)
log10(E1) 1.6021 1.6025 0.5937 (0.4332, 2.7719)
log10(τ1) -1.3010 -1.2294 3.8697 (-8.8510, 6.3923)

Medium noise
log10(E0) 5.3424 5.3434 0.03136 (5.2816, 5.4052)
log10(E1) 1.6021 1.5852 1.4590 (-1.2884, 4.4589)
log10(τ1) -1.3010 -1.2079 16.9971 (-34.6849, 32.2692)

High noise
log10(E0) 5.3424 5.3434 0.061762 (5.2218, 5.4651)
log10(E1) 1.6021 1.6029 2.4545 (-3.2314, 6.4372)
log10(τ1) -1.3010 -0.1592 40.8381 (-80.5930, 80.2746)

for all parameters are wider than those obtained using the asymptotic error theory, especially

for the cases of medium and high noise level. However, this is expected. At the low noise level,
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Figure 3.8: Histograms of bootstrap estimates qm for a model with no relaxation times in the
case of low noise data set (upper row), medium noise data set (middle row) and high noise data
set (bottom row). (left column) Estimates for log10(E0). (right column) Estimates for log10(E1).

we obtained fairly good results for E0 and E1 but the standard error for the relaxation time

is larger in magnitude than the relaxation time value itself. This is even more prominent at

higher noise levels – the results in the table indicate that on medium and high noise data sets,

the estimation of τ1 is not very robust. Note also that the estimation of E1 begins to suffer as

well, resulting in a higher standard error than its own value on the high noise data set. This is a

further indication that we may have problems in the future estimating even the single relaxation

time.

We depict histograms of the estimates in Figure 3.9. We see on a low noise data set that each

parameter estimator appears to be mostly normally distributed. This begins to break down for

the case of middle noise level data set (shown in the middle row of Figure 3.9), where we begin

to see some outliers at the log10(τ̂1) = 2 level (which means the estimates were converging to our

upper bound on that parameter) and also some more pronounced skewness in the count levels.

Finally, on the high noise level (shown in bottom row of Figure 3.9) we have the distribution

for the E1 estimates skewed, and we also observe a clear proliferation of estimates of the first

relaxation time approaching the bounding value 2. This further supports the expectation of

difficulty in estimating relaxation times, particularly when the noise level is high.
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Figure 3.9: Histograms of bootstrap estimates q̂m for a one-relaxation-time model obtained
at low noise (upper row), medium noise (middle row) and high noise (bottom row) levels.
(left column) Estimates for log10(E0). (middle column) Estimates for log10(E1). (right column)
Estimates for log10(τ1).

3.6 Model Comparison and Hypothesis Testing on Amplitude

In this section, we develop a methodology for determining whether or not data came from a

low-amplitude input traction. This simulates the problem of determining if the data came from

a vessel experiencing a normal heartbeat or not. We will ultimately run the inverse problem

without amplitude restrictions and use a scoring function to compare results with the score of the

model solved at a low amplitude. A model comparison test will be implemented to determine if

there is statistical significance in the differences between the model solved with the unrestricted

estimate and the model solved using the restricted amplitude value.

3.6.1 Setup

We first examine the sensitivity of the model with respect to the Van Bladel input amplitude

parameter A, to insure that an estimation procedure is reasonable (if the model were insensitive

to A then the results from the optimization routine would be suspect). The form of the sensitivity

equation is nearly identical to that of the actual model, just with a lower amplitude (see Appendix

A). This is seen in Figure 3.10, which has a form similar to that of the model solution (depicted
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by the solid line in Figure 3.6).

In both the low and high amplitude cases, the sensitivity with respect to amplitude is most

marked during early times and less so at later times; this makes perfect sense, as the amplitude

is greater early on before being damped out. In the problem below, we will take data throughout

the full time frame t ∈ [0, 0.25] so with our sensitivity results we can be assured that the early

data will drive estimation of the amplitude parameter.
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Figure 3.10: Sensitivity of model with respect to Van Bladel input parameter A around the
baseline parameters (3.1.10). (a) High forcing function amplitude A = 6× 103. (b) Low forcing
function amplitude A = 6× 102. Note the order of magnitude difference between (a) and (b).

Low Amplitude Simulated Data Generation

For the high amplitude data, we use the same low, medium, and high noise data sets as described

in Section 3.3.1 and shown above in Figure 3.6. We form the low amplitude data by taking

Alow = A/10 as our Van Bladel input amplitude parameter. Thus, the dynamics are roughly

10% the magnitude of the high amplitude data. This means the corresponding noise for the low

noise, low amplitude data set will be generated with variance σ2 = 5× 10−7, medium noise with

σ2 = 10× 10−7, and high noise with σ2 = 20× 10−7. The low amplitude input data set then is

supposed to represent a normal heartbeat and the high amplitude data set then is meant to

represent the input shear for a heartbeat in the presence of a stenosis in the vessel. Note that

we are not yet exactly certain regarding the difference between these effects in an actual patient,

so the data sets here are truly for a proof-of-concept investigation. The low amplitude data sets

are depicted in Figure 3.11.
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Figure 3.11: Simulated low amplitude noisy data around the true parameter values. (a) Low
noise level, σ2

0 = 5×10−7. (b) Medium noise, σ2
0 = 10×10−7. (c) High noise level, σ2

0 = 20×10−7.

3.6.2 Hypothesis Testing Methodology

We can now begin to discuss the approach to model comparison and hypothesis testing that we

will use by defining a model comparison test statistic. The work here follows the development in

[11, 24]. The framework as developed in [11] and used here requires an absolute error model;

though we will not use it here, this framework was expanded in [16] to allow for relative error

models. The performance criterion for hypothesis testing will be

J(~U, q) =
n−1∑
j=0

[Uj − u(L, tj ; q)]
2.

For the purposes of this paper, we postulate that a normal (non-stenosed) vessel corresponds

with a low amplitude input parameter A ≤ 6 × 102. Then, a stenosed vessel would have a

high input amplitude parameter with A > 6× 102. The hypothesis test we use requires a set

benchmark value for A, so we choose that benchmark to be A0 = 6× 102. Then, we define the

restricted parameter set

AH = {A ∈ A|A = A0 = 6× 102},

where A = [A0,∞) is the larger set of unrestricted admissible amplitudes.

Our null hypothesis H0 is that the amplitude is a low amplitude, represented by A ∈ AH =

{A0}. The unrestricted amplitude model would then represent the amplitude parameter as

A = A0 + Ã where Ã ∈ [0,∞). This framework will allow us to develop a test statistic to

determine the confidence level of accepting or rejecting H0 for a given data set. In other words,

we will develop a test to determine if the data is statistically better represented by the benchmark

A0 than the unrestricted amplitude.

The first step is to determine the performance criterion at the benchmark amplitude

q̂H = 6 × 102, which we will denote J(~u, q̂H) (Since the value q̂H is fixed in our case, no

optimization problem is needed to compute these values). We then run an optimization routine
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to determine an unrestricted input amplitude parameter estimate q̂, which we then use to

compute J(~u, q̂). The value for q̂ comes from solving the unrestricted optimization problem

(3.3.3). As discussed in [11, 16, 24], the model comparison statistic is defined as

V̂ = n
J(~U,QH)− J(~U,Q)

J(~U,Q)

with realization

v̂ = n
J(~u, q̂H)− J(~u, q̂)

J(~u, q̂)
. (3.6.1)

If our null hypothesis H0 were true, the model comparison statistic V̂ converges in distribution

to V as n→∞ where V ∼ χ2(r) is a chi-square distribution with r degrees of freedom (r is the

number of constraints in AH). For our problem, r = 1. Given the significance level α, we can

obtain a threshold value ν such that the probability that V will take on a value greater than

ν is α. In other words, Prob(V > ν) = α. In our context, if the test statistic v̂ > ν we reject

H0 as false with confidence level (1− α)100%. Otherwise we do not reject H0 as false, at the

specified confidence level. In Table 3.12 we include sample values from the χ2(1) distribution for

reference (table repeated from [24]).

Table 3.12: Sample χ2(1) values.

α ν confidence

0.25 1.32 75%
0.1 2.71 90%
0.05 3.84 95%
0.01 6.63 99%
0.001 10.83 99.9%

We summarize in Table 3.13 the results of computing the OLS performance criterion for

the low amplitude and high amplitude data each with the restricted/unrestricted parameters.

Based on this table and Table 3.12, we see for both the low and medium noise cases with data

generated with a low A value that we do not reject H0 with high degrees of confidence. However,

the case with high noise is somewhat less certain, though we would still likely not reject H0

with a fairly high degree of confidence. The results are more stark in the cases where the data

was generated from a high amplitude. Given that the magnitude of v̂ is greater than 900 at

all noise levels, we would reject H0 as false on these data sets with confidence level more than

99.9%. Altogether, these results suggest robustness in our methodology for determining whether

the data came from a normal vessel experiencing a heartbeat (low input amplitude) or from a
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Table 3.13: Model comparison test results using (3.6.1) on low, medium, and high noise data
sets generated with both high and low input amplitude parameter A values.

J(~u, q̂) J(~u, q̂H) v̂

Low A, low noise 6.3846e-11 6.3887e-11 0.1609
Low A, medium noise 2.6872e-10 2.6896e-10 0.2258

Low A, high noise 9.8836e-10 9.9658e-10 2.0878

High A, low noise 6.6812×10−9 3.5229×10−7 1.2984e+04
High A, medium noise 3.1016×10−8 3.4730×10−7 2.5596e+03

High A, high noise 9.9737×10−8 4.6015×10−7 907.0283

abnormal (stenosed) response. Though this is a first pass investigation, tests like we examined

here should be useful in practice, particularly once models of sounds generated from a stenosis

have been incorporated as inputs into the viscoelastic wave propagation model.

3.7 Proof of Concept Summary

In this chapter we have carried out proof-of-concept investigations for estimating material

parameters and created a model comparison test as a basis for distinguishing between data that

comes from a normal or from a stenosed blood vessel. We found that the model was less sensitive

to a second viscoelastic relaxation time than to the other parameters, and this was manifested

as a difficulty in recovering two relaxation times. On the other hand, models with zero or one

relaxation time allowed for more confidence in the estimation procedure (i.e., smaller standard

errors). We compared asymptotic error analysis with bootstrapping, and found (as expected)

that bootstrapping gives more conservative confidence intervals but not so much so that the

asymptotic theory cannot be profitably used for uncertainty quantification in models with large

computational costs rendering bootstrapping less desirable. In terms of the model comparison

on the input amplitude parameter A, we were able to develop a successful methodology for

statistically determining whether or not data came from a low amplitude input force. This will

form the basis of a model comparison test that can later be used with experimental data sets.

In the upcoming chapters, we will examine the possibility of relative error instead of absolute

error, which will necessitate a generalized least squares (GLS) cost function in our inverse

problems due to changes in the error process. This will be coupled with a study of a statistical

model for the measurement processes being used in the experiments at QMUL. It is to this

end that we return to the general equations of motion in the next chapter, carefully deriving

pressure and shear wave models and a constitutive relationship similar to (3.1.2) that we will

call the primary model for this wave propagation problem.
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CHAPTER 4

Primary Model Derivation and Constitutive Relationship

In this chapter, we return to the basics of solid mechanics. We state the equations of motion,

and also postulate a general form for the constitutive relationship so that we might later be able

to properly make simplifying assumptions to obtain one-dimensional pressure and shear models.

The general constitutive relationship will be based on a strain-energy formulation [13, 29, 52]

which is fairly general and also provides a framework for future development of two-dimensional

or even three-dimensional wave propagation models. This framework was used in the previous

incarnation of this project by [67, 80]. The latter parts of this chapter follow the development of

the model as discussed in [15] (which has been accepted for publication).

4.1 Basic Introduction to Viscoelasticity

We first introduce some basics regarding how one models displacements in material. First,

we use three directions of motion (r, θ, z) in cylindrical coordinates. There are corresponding

displacements, denoted with subscripts (e.g., uz is the displacement in the z-direction). In order

to denote changes in quantities, derivatives will be indicated in this section with appropriate

partial derivative notation (e.g., ∂uz
∂r is the change in the displacement in the z-direction with

respect to r). In later sections, once we have the one-dimensional models in hand, we will no

longer require subscripts to denote directions (since each one-dimensional model will describe a

single directional displacement component) and will thus use the partial derivative and subscript

notation interchangeably (i.e., later we will allow notation like ux = ∂u
∂x to both represent

the change in displacement with respect to the spatial variable). Also, an equivalent form for

40



subscripts often used in the literature is to denote the (in our model, cylindrical) components

by 1 = r, 2 = θ, and 3 = z. For example, the three displacement components can be written

u1 = ur, u2 = uθ, and u3 = uz. From this point onward, we will use subscripts interchangeably

as just defined.

In addition to displacements, we incorporate the concepts of stresses (directional forces

acting on and within the material) and strains (descriptions of relative displacements). In the

finite strain theory case, we will denote the tensor of strains by Ē = {Eij} and the tensor of

stresses by S̄ = {Sij}, for i, j = 1, 2, 3. The strain tensor Ē is called Green’s strain tensor, and

the stress tensor S̄ is the Second Piola-Kirchhoff stress tensor [13, 52, 53]. In the infinitesimal

strain case, the tensor of strains ε̄ = {εij} is called the Cauchy strain tensor and the Cauchy

stress tensor is denoted σ̄ = {σij}, again for i, j = 1, 2, 3. In the infinitesimal case, we have ε̄ = Ē

and σ̄ = S̄. In our case, we have only small displacements, so we will use the infinitesimal strain

theory. We also note that modeling nonlinear behavior between stress and the finite strains Ē

can be equivalently formulated as nonlinear relationships between the stress and infinitesimal

strains ε̄, as discussed in [20]. Thus even though we consider the small-strain framework here,

this applies equally well to finite strains.

Figure 4.1: Stress components in Cartesian coordinates.

We briefly describe the meaning of the notation used when discussing stresses and strains.

Though our later discussion will use a cylindrical geometry, intuition for the notation is easiest

in Cartesian (x, y, z) coordinates. Figure 4.1 shows a sample (infinitesimal) cube with the stress
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components indicated. The first subscript denotes the face of the cube, which is perpendicular

to the direction indicated. The second subscript denotes the direction of the stress. The normal

stresses are σxx, σyy, and σzz; the remaining components are all shear stresses. Components are

positive if they act in the positive direction of the coordinate axis (i.e., if σxx > 0 that normal

stress is acting in the direction of the x-axis). Further discussion is available in most texts on

elasticity and viscoelasticity [29, 41, 48, 49, 50, 52, 53, 63, 66, 69, 72] as well as an elasticity

survey paper [13].

4.2 Equations of Motion and General Constitutive Relationship

We now turn to the problem at hand. Based on the experimental setup, we have a cylindrical

geometry. This means there are three coordinate directions, r, θ, and z. Displacements in each

direction are denoted ur, uθ, and uz, respectively. In the full three-dimensional case, for an

isotropic solid we have six strains εij for i, j = r, θ, z, where εij = εji for j 6= i. We also have six

stresses, σij for i, j = r, θ, z, with symmetry when i 6= j. The equations of motion in cylindrical

coordinates are

ρür =
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ), (4.2.1)

ρüθ =
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2

r
σrθ, (4.2.2)

ρüz =
∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
1

r
σrz. (4.2.3)

These equations are commonly known; one may see [29, 66, 80] for the derivation of the equations

of motion in cylindrical coordinates. In the infinitesimal strain theory case (which describes our

situation), we have the following forms for the strains in terms of displacements [29, p. 64]:

εrr = ∂ur
∂r , εθθ = 1

r

(
ur + ∂uθ

∂θ

)
, εzz = ∂uz

∂z ,

εrθ = 1
2

(
1
r
∂ur
∂θ + ∂uθ

∂r −
uθ
r

)
, εrz = 1

2

(
∂ur
∂z + ∂uz

∂r

)
, εθz = 1

2

(
∂uθ
∂z + ∂uz

∂θ

)
.

(4.2.4)

We now need some general description of the constitutive relationship describing the components

of stress σ̄ in terms of strain ε̄, so that we might be able to properly reduce (4.2.1) in the pressure

and shear cases.

The constitutive relationship discussion must begin with some general notions used to

describe the relationships between each stress component σij with the strains εij . We begin by

noting, as discussed in [13, 52], that one may define the stress components as derivatives of a

strain energy function W (ε̄). The strain energy function is a measure of the internal energy

stored in a strained or stressed material, and its existence can be justified in some cases by the
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laws of thermodynamics (see, e.g., [29, Sec. 3.1]). The following relationship between σ̄, W , and

ε̄ then holds:

σij =
∂W (ε̄)

∂εij
.

This relationship was given in [13, 52], and an explicit justification is described in [29, Sec.

3.1]. Fung in [52] (which [67, 80] follow) expands this idea to the viscoelastic case. Defining a

pseudo-strain energy function, denoted ρ0W
(2)(ε̄) where ρ0 is the density of the material in its

initial configuration, and defining the stress reached instantaneously when strains are suddenly

increased as σeij , the following relationship holds:

σeij =
∂ρ0W

(2)(ε̄)

∂εij
. (4.2.5)

These components are then incorporated into a viscoelastic relationship for σij , defined to be

σij =

∫ t

−∞
Gijkl(t− s)

∂σekl(ε̄(s))

∂s
ds. (4.2.6)

This form was generalized from a one-dimensional quasi-linear viscoelastic relationship for soft

tissues developed by Fung [52, Sec. 7.6]. Also, this form was originally developed by Fung in the

finite strain case, so it can apply equally well for general stress-strain laws even though our case is

small-strain (as previously mentioned, finite strains can be incorporated as nonlinear infinitesimal

stress-strain relationships). The infinite lower bound of the integral in (4.2.6) signifies the fact

that in a general viscoelastic material the entire material history effects the present material

responses and as such must be considered. Usually, if the material is initially at rest (as in

our case) we can assume some beginning time for the history without loss of generality. The

development in this section will be kept general, but the assumption of finite history will be

used later in this chapter.

We see from (4.2.6) that complex relationships exist between the stress and strain components

which would make further reduction impossible, in general. However, our material is isotropic

(invariant under rotation and reflection), which means (see, e.g., [13, Rem. 3.2]) we can write

the form for G as

Gijkl = λδijδkl + µ(δikδjl + δilδjk)

where δij is the Dirac delta (δij = 1 if i = j, δij = 0 otherwise). If we use this form for G in

(4.2.6), we obtain

σij =

∫ t

−∞

[
λ(t− s)

∂σekk
∂s

δij + 2µ(t− s)
∂σeij
∂s

]
ds. (4.2.7)

Note that repeated subscripts are Einstein notation, which is a compact way to represent
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summation. This means that in (4.2.7) we read the double subscript as
∂σekk
∂s =

∂σe11
∂s +

∂σe22
∂s +

∂σe33
∂s .

The assumption of isotropy means that we will only need to characterize two functions λ(t)

and µ(t) (or a combination of the two functions) later in order to complete the constitutive

relationship description.

We now define a general form for ρ0W
(2)(ε̄) as that will ultimately dictate how the form of

the σij components simplify as we reduce to the one-dimensional pressure and physical models.

Following [67, 80] which used the Fung pseudo-energy relationship [52, Sec. 7.12], we define

ρ0W
(2)(ε̄) =

1

2
f(~α, ε̄) +

c

2
exp(F (~a, ε̄)) (4.2.8)

where

f(~α, ε̄) = α1ε
2
11 + α2ε

2
22 + α3ε

2
33 + α4ε

2
12 + α4ε

2
21 + α5ε

2
13 + α5ε

2
31

+α6ε
2
23 + α6ε

2
32 + 2α7ε11ε22 + 2α8ε11ε33 + 2α9ε22ε33,

and

F (~a, ε̄) = a1ε
2
11 + a2ε

2
22 + a3ε

2
33 + a4ε

2
12 + a4ε

2
21 + a5ε

2
13 + a5ε

2
31

+a6ε
2
23 + a6ε

2
32 + 2a7ε11ε22 + 2a8ε11ε33 + 2a9ε22ε33.

Note that we have ~α = (α1, . . . , α9) and ~a = (a1, . . . , a9) where αj ≥ 0 and a ≥ 0 for j = 1, . . . , 9.

As noted in [52, 67, 80], the first term in (4.2.8) is more sensitive to small strains while

the second term is more sensitive to large strains, based on the fact that the second term

involves an exponential function whereas the first term does not. In this case, “small” and

“large” are relative terms, as for the situation here we are still in an overall small-scale case

(though we note that this form for ρ0W
(2) could also be used in a finite-strain case). This form

for ρ0W
(2) was originally chosen in [52] to model skin tissue, was adopted in a two-dimensional

form by [67] when creating that particular body tissue propagation model for a related stenosis

problem, and then was used in the three-dimensional formulation used by [80] when extending

the two-dimensional model of [67].
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Using (4.2.8) in (4.2.5), we find the elastic response forms:

σe11 = 1
2(2α1ε11 + 2α7ε22 + 2α8ε33) + c

2(2a1ε11 + 2a7ε22 + 2a8ε33) exp(F (~a, ε̄))

σe22 = 1
2(2α2ε22 + 2α7ε11 + 2α9ε33) + c

2(2a2ε22 + 2a7ε11 + 2a9ε33) exp(F (~a, ε̄))

σe33 = 1
2(2α3ε33 + 2α8ε11 + 2α9ε22) + c

2(2a3ε33 + 2a8ε11 + 2a9ε22) exp(F (~a, ε̄))

σe12 = 1
2(2α4ε12) + c

2(2a4ε12) exp(F (~a, ε̄))

σe13 = 1
2(2α5ε13) + c

2(2a5ε13) exp(F (~a, ε̄))

σe23 = 1
2(2α6ε23) + c

2(2a6ε23) exp(F (~a, ε̄))

(4.2.9)

We thus see two general cases. For σeii where i = 1, 2, 3, the elastic response components depend

on ε11, ε22, and ε33. Each of the remaining components σeij where i 6= j depends on a single

corresponding component εij . Thus, for example, if we find that ε12 = 0, we would necessarily

have that σe12 = 0. Based on the earlier assumptions on the form for G, we would then also have

σ12 = 0. We will refer back to (4.2.9) as we reduce the three-dimensional equations of motion

(4.2.1) in the pressure and shear wave cases.

4.2.1 One-dimensional Pressure Equation

Recall the setup of the pressure configuration in Figure 2.1. The experimental setup is such

that the stress is imparted to the gel uniformly along the top x = L edge. This results in

displacements only in the z-direction. Thus, we use the fact that the gel is uniform in the r and

θ directions as well as the fact that there are no displacements in the r and θ directions to set

ur = uθ = 0 and ∂(·)
∂r = ∂(·)

∂θ = 0. Thus, from the equations in (4.2.1) we retain only the PDE for

uz, which is then simplified to

ρüz =
∂σzz
∂z

(4.2.10)

since εrz = ∂ur
∂z + ∂uz

∂r = 0 and because σerz being dependent solely on εrz by (4.2.9) results in

εrz = 0, which implies σerz = 0, which then implies σrz = 0. This also means that we have only

the strain variable εzz and the stress variable σezz, and thus the single quasi-linear stress-strain

component σzz =
∫ t
−∞

[
λ(t− s) ∂∂sσ

e
kk(s) + 2µ(t− s) ∂∂sσ

e
zz(s)

]
ds. Without further simplification

to the forms for σerr, σ
e
θθ, and σezz, one must implement the constitutive relation as currently

stated. This was done in [67, 80].

However, for our purposes, we assume that in our small-strain case we can treat the

exponential terms in σerr, σ
e
θθ, and σezz as negligible (i.e., we set a8 = a9 = 0). As a result, we
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can simplify the form of the constitutive relationship for σzz as

σzz =

∫ t

−∞

[
λ(t− s) ∂

∂s
(σerr(s) + σeθθ(s) + σezz(s)) + 2µ(t− s) ∂

∂s
σezz(s)

]
ds

=

∫ t

−∞

[
λ(t− s) ∂

∂s
(α8εzz(s) + α9εzz(s) + α3εzz(s) + 2µ(t− s) ∂

∂s
(α3εzz(s))

]
ds

=

∫ t

−∞
[λ(t− s)(α8 + α9 + α3) + 2µ(t− s)α3]

∂

∂s
εzz(s)ds

= γ

∫ t

−∞
G(t− s) ∂

∂s
εzz(s)ds, (4.2.11)

where γ is a constant and we will later define the form for G(t) (which represents the combined

effects of λ(t) and µ(t) in this case) to complete the description of the constitutive equation

(which we will later take on as a topic of consideration). We justify the factor γ by noting that

in the development of (4.2.11) both λ(t) and µ(t) are being multiplied by combinations of the

constants α3, α8, and α9, so it is reasonable to incorporate the overall effect by a single constant

γ. We will later see that this formulation is adequate to describe experimental one-dimensional

pressure data.

Later on in this work, we will use the independent variable x in the pressure case, a notation

choice due in part to how the pressure independent variable was denoted in some of the preceding

work completed by the author on this topic [14, 15], as well as being reflected in the variable

used in Figure 2.1. Using this variable, the pressure PDE is

ρü =
∂σ

∂x
(4.2.12)

where ε = ∂u
∂x and σ = γ

∫ t
−∞G(t − s) ∂∂sε(s)ds. The change of independent variable to x will

ensure we are consistent with the rest of this dissertation.

4.2.2 One-dimensional Shear Equation

Recall the setup of the shear configuration in Figure 2.2. We induce shear into the experimental

phantom from a central rod moving in the z-direction, which produces shear waves that have

displacement in the z-direction but move along the r axis. The shear input is then represented by

the σrz stress on the boundary. We also then expect that we are interested in the uz component,

but solved along a radial axis. For the shear case, the experiment was designed such that

the phantom was symmetric in θ and uniform in z. We will work through these simplifying

assumptions one at a time.

First, we will incorporate uniformity in θ so that uθ = 0 and ∂(·)
∂θ = 0. This means that

∂uθ
∂r = ∂uθ

∂z = ∂uθ
∂θ = ∂ur

∂θ = ∂uz
∂θ = 0. As a result, εrθ = εθz = 0. Given the relationships described
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in (4.2.9), we then have that σrθ = σθz = 0. This leaves us with the two simplified PDEs

ρür = ∂σrr
∂r + ∂σrz

∂z + 1
r (σrr − σθθ),

ρüz = ∂σrz
∂r + ∂σzz

∂z + 1
rσrz.

(4.2.13)

Then, from simplifying and reducing (4.2.4) we have the following forms for the strains in terms

of displacements:

εrr = ∂ur
∂r , εθθ = 1

rur, εzz = ∂uz
∂z , εrz = 1

2

(
∂ur
∂z + ∂uz

∂r

)
. (4.2.14)

The typical assumption used to further reduce the model dimension is that we have an “infinite”

cylinder in the z-direction; this corresponds with assuming there are no changes in the z-

direction so that ∂(·)
∂z = 0. This means that ∂ur

∂z = ∂uz
∂z = 0, and thus that εzz = 0. We apply

these simplifications to (4.2.13) in order to obtain

ρür =
∂σrr
∂r

+
1

r
(σrr − σθθ),

ρüz =
∂σrz
∂r

+
1

r
σrz. (4.2.15)

We also update the relations in (4.2.14):

εrr = ∂ur
∂r , εθθ = 1

rur, εrz = 1
2
∂uz
∂r . (4.2.16)

From (4.2.16) we see that σrr and σθθ depend on both εrr and εθθ, while σrz depends only on

εrz. Note that a shear input implies that only (4.2.15) has a nonzero boundary condition. As we

assume the phantom is at rest initially, this means that ur = 0 since there is no displacement or

stress input in the r-direction and thus no dynamics. Accordingly, the single shear governing

equation of interest is

ρüz =
∂σrz
∂r

+
1

r
σrz,

with the single quasi-linear stress-strain component σrz =
∫ t
−∞ µ(t− s) ∂∂sσ

e
rz(s)ds.

As in the pressure case we assume the exponential term in σerz is negligible (i.e., a5 = 0).
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Thus, we simplify

σrz =

∫ t

−∞
µ(t− s) ∂

∂s
σerz(s)ds

=

∫ t

−∞
µ(t− s) ∂

∂s
(α5εrz(s))ds

= γ

∫ t

−∞
G(t− s) ∂

∂s
εrz(s)ds, (4.2.17)

where γ = α5 in this case. Again, γ and G(t) will be later be defined to provide an appropriate

constitutive relationship. The reuse of G(t) for the shear case is intentional; the form for G(t)

for shear will be the same as that for the pressure case (4.2.12) though the parameter values

will differ.

As with the pressure case, later on in this dissertation we will use a simplified form for the

shear equation. We retain the independent variable r, and write the shear PDE as

ρü =
∂σ

∂r
+

1

r
σ (4.2.18)

where ε = ∂u
∂r and σ = γ

∫ t
−∞G(t− s) ∂∂sε(s)ds.

4.3 Initial and Boundary Conditions

Using the simplified pressure and shear equations, (4.2.12) and (4.2.18), we now specify initial

conditions. In both the pressure and shear cases, the phantom will be initially at rest. In the

pressure case, a uniform force is applied to the top of the device (c.f. Figure 2.1). The bottom

of the phantom is set on the rig, so that no movement occurs along the x = 0 edge. Thus, the

governing partial differential equation becomes

ρ ∂
2

∂t2
u(x, t)− ∂

∂xσ(x, t) = 0

u(0, t) = 0, σ(L, t) = −g(t)

u(x,Γ1) = 0, ut(x,Γ1) = 0

(4.3.1)

where ρ is the density of the material, the stress tensor σ is given by the constitutive relationship

for the material (the form of which will be discussed later), g(t) is a function that describes the

loading process (again, to be discussed later), and the material is initially at rest. The value

u(x, t) represents the displacement of the material at position x and time t, with x ∈ (0, L) and

t > Γ1. The time Γ1 is chosen as the beginning of any stress-strain history in the material; we

are assuming the material has been at rest long enough that it is only affected by displacements
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for t > Γ1, where Γ1 is the time when we start modeling the material history. For our device,

L = 0.0518 m is the height of the phantom.

In the shear displacement case, the phantom is again at rest. The force is applied along the

inner radius rmin (c.f. Figure 2.2), and the outer surface at rmax is fixed. Thus, the governing

equation becomes

ρ ∂
2

∂t2
u(r, t)− ∂

∂rσ(r, t)− σ(r,t)
r = 0

σ(rmin, t) = g(t), u(rmax, t) = 0

u(r,Γ1) = 0, ut(r,Γ1) = 0

(4.3.2)

where ρ, σ, and g(t) are analogous to the pressure case and where r ∈ (rmin, rmax) for t > Γ1. For

our device, rmin = 0.0105 m and rmax = 0.054 m. Throughout the remainder of this dissertation,

we will use r as the spatial variable when the model is for shear displacement and x as the

spatial variable for pressure displacement unless otherwise stated

In order to complete these models, we must provide a form for σ. This is the constitutive

relationship, also called the stress-strain law since it relates strain (∂u∂x or ∂u
∂r ) and/or the strain

rate to stress σ. The next sections discuss this aspect of the model.

4.4 Constitutive Equation

We incorporate the previous modeling ideas together into a new constitutive equation for the

pressure (4.3.1) and shear (4.3.2) wave PDEs. The constitutive relationship form is the same

for the pressure and shear cases, so x and r are interchangeable unless otherwise noted; for

notational convenience, we use x as the spatial variable in the discussion which follows. The

variable ε then will denote ε = ux for the pressure case or ε = ur for the shear case. We also

assume the material is initially at rest and has no relevant history, so that the integrals can be

taken from the initial loading time denoted Γ1.

4.4.1 Fung Quasi-Linear Model

Some of the initial investigation into the viscoelastic nature of tissue was completed by Fung

(see [13] and the references therein). His work is of particular interest because it was validated

in actual tissue. Fung developed a “quasi-linear” model

σ(t) =

∫ t

Γ1

G(t− s)dσ
e(λ(s))

ds
ds (4.4.1)

with a kernel of the form

G(t) =
1 + c

∫ τ2
τ1

1
τ exp(−t/τ)dτ

1 + c ln(τ2/τ1)
. (4.4.2)
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Within (4.4.1), λ represents the stretch of a material (λ = 1 + ε) and σe describes the elastic

response to the elongation λ, given by (see [9])

σe(λ) = −β + β exp(αε)

where α and β are constants to be estimated (and where the derivation of σe will be discussed

in the next section). The parameters τi are lower and upper bounds on relaxation times, which

describe the ways in which the material responds to imposed stresses and strains. This model

incorporates a continuum τ ∈ [τ1, τ2] of relaxation times, which Fung found to be necessary in

order for his model to match the response of tissue, as well as a constant term in the kernel.

This Fung kernel will serve as a baseline which we will refer back to when developing the model

for this paper.

4.4.2 Relating the Quasi-Linear and Strain Energy Function Formulations

We have already seen that the assumptions of isotropy, the form (4.2.8) for the pseudo-strain

energy function ρ0W
(2), and the assumption that the exponential terms in ρ0W

(2) are negligible

led to the one-dimensional stress-strain relationship

σ = γ

∫ t

−γ1

G(t− s) ∂
∂s
ε(s)ds

for both the pressure and shear cases. We will now relate this to another development of the one-

dimensional constitutive relationship discussed by Fung and described above as (4.4.1)-(4.4.2).

In a separate one-dimensional development of his quasi-linear constitutive relationship in [52,

Sec. 7.6], Fung related the instantaneous stress σe and the stretch ratio λ by the relationship

dσe

dλ
= α(σe + β)

where α and β are constants used to fit the experimental results. This was based on a linear

approximation of an experimental curve of σe against dσe/dλ (i.e., the instantaneous load versus

how that load changes with respect to the strain ratio λ). Solving that relationship yields

σe = −β+ (σe0 +β) exp(α(λ−λ0)). Assuming we have no stress initially (σe0 = 0) and that there

is no initial strain (λ0 = 1), and noting that the relationship between the one-dimensional strain

ratio and infinitesimal strain is λ = 1 + ε, we find that

σe = −β + β exp(αε).

We again assume we are in the small-strain case, which we incorporate by linearizing the
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exponential term exp(αε) ≈ 1 + αε+ . . ., a linearization done in this case since the exponential

term contains the strain variable. This leads to the simplified form

σe ≈ γε

where γ = αβ and again ε = ux in the pressure case or ε = ur in the shear case. This was used

directly in the one-dimensional quasi-linear formulation

σ =

∫ t

−Γ1

G(t− s) ∂
∂s
σe(s)ds ≈ γ

∫ t

−Γ1

G(t− s) ∂
∂s
ε(s)ds.

This is now the exact same form as we obtained using the pseudo-strain energy approach.

We have now shown that in the case of one-dimensional small strains, the pseudo-strain

energy approach to determining σ and Fung’s one-dimensional approach to forming σ are

equivalent. If one were to expand to multiple dimensions, the pseudo-strain energy function

approach should be considered as in [67, 80].

4.4.3 Macroscopic Damping

Though the form γ
∫ t

Γ1
G(t−s)dε(s)ds ds naturally allows us to describe some types of damping (see

the later discussion on internal variables), we will also incorporate macroscopic damping into the

model. This will be done in a phenomenological way, by adding a Kelvin-Voigt term to describe

the overall nature of the damping present in the material (thus making the constitutive equation

strain-rate dependent). This is a common damping model which has been used in previous work

[20, 21, 22], and was preferred over the Maxwell model in the work by [36, 38, 39, 44, 59, 65, 81].

After incorporating Kelvin-Voigt damping, we obtain the constitutive relationship

σ(t) = E1uxt + γ

∫ t

Γ1

G(t− s)dε(s)
ds

ds (4.4.3)

where G(t) is still a kernel to be specified.

4.4.4 Existence and Uniqueness for Pressure and Shear Models

Before moving on to the specific form of the constitutive equation kernel, we first establish

existence and uniqueness for the pressure (4.3.1) and shear (4.3.2) equations with the constitutive

equation (4.4.3). To that end, we set up a similar framework as in Chapter 3 and connect those

results to the current model. We will require that the following assumptions hold:

(A1) The boundary condition function satisfies g ∈ L2(Γ1, T );
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(A2) The kernel G is differentiable with respect to t ∈ R+ and with constants c1 and c2 such

that |G(t)| ≤ c1 and |Ġ(t)| ≤ c2 for all t ∈ R+.

Pressure case

The pressure PDE (4.3.1) with constitutive equation (4.4.3) are of the same form as those in

Section 3.1.1, except that here we have the initial time denoted as t = Γ1 instead of t = 0 and

slightly different variable names (inconsequential changes).

Let H = L2(0, L), V = {φ|φ ∈ H1(0, L), φ(0) = 0}, and V∗ denote the topological dual space

of V. We identify H with its topological dual H∗ and thus obtain V ↪→ H = H∗ ↪→ V∗ as a

Gelfand triple [8, 99]. The notation 〈·, ·〉 denotes the inner product in H, and 〈·, ·〉V∗,V represents

the duality pairing between V∗ and V. Let Cw(Γ1, T ;V) denote the set of weakly continuous

functions in V on [Γ1, T ], and LT = {v : [Γ1, T ] → H | v ∈ Cw(Γ1, T ;V) ∩ L2(Γ1, T ;V) and

vt ∈ Cw(Γ1, T ;H)∩L2(Γ1, T ;V)}. The notion of weakly continuous (i.e., um → u in Cw(Γ1, T ;V))

means that um → u weakly in V and uniformly in t ∈ [Γ1, T ]. Then a weak solution u ∈ LT for

the pressure equation must satisfy

0 = ρ〈ut(t), ηt(t)〉 − ρ
∫ t

Γ1
〈us(s), ηs(s)〉ds+

∫ t
Γ1
g(s)η(L, s)ds+ E1

∫ t
Γ1
〈usx(s), ηx(s)〉ds

+γ
∫ t

Γ1

〈∫ s
Γ1
G(s− ξ) ddξux(ξ)dξ, ηx(s)

〉
ds

(4.4.4)

for any t ∈ [Γ1, T ] and η ∈ LT . Here and elsewhere u(t) and η(t) denote the functions u(·, t)
and η(·, t), respectively. With these definitions, we still have that the following theorem (a

restatement of Theorem 3.1.2) holds:

Theorem 4.4.1. Assuming (A1) and (A2), the pressure equation (4.3.1) with the constitutive

relation (4.4.3) has a unique weak solution on any finite interval [Γ1, T ].

Shear case

This requires a bit more consideration. The shear domain is Ω = [rmin, rmax], and is solved on

the time frame t ∈ [Γ1, T ]. We must slightly redefine the spaces from above to fit the shear

model. Let H = L2(rmin, rmax), V = {φ|φ ∈ H1(rmin, rmax), φ(rmax) = 0}, and V∗ denote the

topological dual space of V. We identify H with its topological dual H∗ and thus again obtain

V ↪→ H = H∗ ↪→ V∗ as a Gelfand triple. Let Cw(Γ1, T ;V) denote the set of weakly continuous

functions in V on [Γ1, T ], and LT = {v : [Γ1, T ] → H | v ∈ Cw(Γ1, T ;V) ∩ L2(Γ1, T ;V) and

vt ∈ Cw(Γ1, T ;H) ∩ L2(Γ1, T ;V)}. Then a weak solution u ∈ LT for the shear equation must
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satisfy

0 = ρ〈ut(t), ηt(t)〉 − ρ
∫ t

Γ1
〈us(s), ηs(s)〉ds+

∫ t
Γ1
g(s)η(rmin, s)ds+ E1

∫ t
Γ1
〈usr(s), ηr(s)〉ds

+γ
∫ t

Γ1

〈∫ s
Γ1
G(s− ξ) ddξur(ξ)dξ, ηr(s)

〉
ds− E1

∫ t
Γ1

∫ rmax
rmin

urt(r,s)
r η(r, s)drds

−γ
∫ t

Γ1

∫ rmax
rmin

(∫ s
Γ1

1
rG(s− ξ)dur(r,s)dξ dξ

)
η(r, s)drds

(4.4.5)

for any t ∈ [Γ1, T ] and η ∈ LT and where 〈·, ·〉 is the usual inner product. Since rmin > 0, there

are no singularities in the final term in (4.4.5), and the kernel integral in the numerator of that

term will converge in the same manner as the preceding kernel integral. Thus, the arguments

from the pressure case apply in the shear case, and we have the following theorem:

Theorem 4.4.2. Assuming (A1) and (A2), the shear equation (4.3.2) with constitutive rela-

tionship (4.4.3) has a unique weak solution on any finite interval [Γ1, T ].

4.4.5 Form for Constitutive Equation Kernel G(t)

We will now state the particular kernel used in the rest of this dissertation, and then manipulate

it into a form that gives more physical insight and which will later allow for a conceptual

framework using internal variables. We develop this kernel from a different perspective than

that given in Chapter 3, but the resulting form will be quite similar. Using the notation and

parameter conventions of [13], we define the kernel in this work to be

G(t;P ) = κr +K(t;P ) (4.4.6)

where κr is a constant representing an instantaneous relaxation modulus (justified by the fact

that our gel phantom acts partly as a solid) and K(t;P ) =
∫
T exp(−t/τ)dP (τ) represents

a continuum of distributed relaxation times with T = [τ1, τ2] ⊂ (0,∞) and where P (τ) is

a probability measure on T . Note that this form for G satisfies |G(t)| ≤ c1 with G clearly

differentiable and |Ġ(t)| ≤ c2 for some constants c1, c2 so that assumption (A2) is satisfied. It

is also worth noting here that our proposed kernel form (4.4.6) is similar to that in Fung’s

model (4.4.2), as we see that κr serves as an analog to the constant portion of Fung’s kernel

(i.e., 1
1+c ln(τ1/τ1)) and the K(t;P ) portion is similar to the the continuous relaxation spectrum

in Fung’s model (i.e.,
c
∫ τ2
τ1

1
τ

exp(−t/τ)dτ

1+c ln(τ2/τ1) ). It is also similar to the Prony series (3.1.6) used in the

preliminary model of Chapter 3.

We substitute (4.4.6) into (4.4.3) and manipulate the form of the stress, noting that ux(Γ1) =
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0 since the material is initially at rest and using the fact that that K(0;P ) = 1:

σ(t;P ) = E1uxt + γ

∫ t

Γ1

G(t− s)dux(s)

ds

= E1uxt + γ

∫ t

Γ1

(κr +K(t− s;P ))
dux(s)

ds

= E1uxt + κrγ

∫ t

Γ1

d

ds
ux(s)ds+ γ

∫ t

Γ1

K(t− s;P )
d

ds
ux(s)ds

= E1uxt + κrγ

ux(t)− ux(Γ1)︸ ︷︷ ︸
0

+ γ

∫ t

Γ1

K(t− s;P )
d

ds
ux(s)ds

= E1uxt + κrγux(t) + γ

∫ t

Γ1

K(t− s;P )
d

ds
ux(s)ds

= E1uxt + Eux(t) + γ

K(0;P )ux(t)−K(t;P )ux(Γ1)︸ ︷︷ ︸
0

−
∫ t

Γ1

∂K(t− s;P )

∂s
ux(s)ds


= (E + γ)ux(t) + E1uxt(t)− γ

∫ t

Γ1

∂K(t− s;P )

∂s
ux(s)ds, (4.4.7)

where E = κrγ. This equation (4.4.7) is the general form of the constitutive equation used here.

The value E0 = E + γ can be considered to be a dynamic analog to the static Young’s modulus

in the pressure case or the static shear modulus in the shear case; this also makes clear the fact

that Hooke’s Law is incorporated into our model. We have already discussed that E1 is the bulk

damping parameter for the Kelvin-Voigt damping term. The final integral represents a history

term which describes the relaxation of the material in response to an applied stress/strain.

We will ultimately turn to a discretized distribution model (using a discrete measure P (τ)),

and connect it to the continuum model through a probability measure approximation as in [10].

This will allow us to develop a computationally feasible inverse problem, and also give insight

into the underlying material mechanics. But first we briefly discuss a method for approximating

the loading process.

4.4.6 Approximating the Loading Process

Recalling Figure 2.3, the loading profile is relatively long compared with the oscillatory period;

since our concern is with modeling the oscillations, solving the model from Γ1 is much longer

than necessary. Also, early experimentation with the model indicated that the parameters

governing the loading and resting process may differ from those governing the very dynamic

post-release oscillatory process.

We address these concerns by modeling the loading as instantaneous from at rest to a
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displacement of A at position x = L or r = rmin. Since the material is linear, this would then

mean the phantom has the profile u(x, t) = A
Lx in the pressure case and u(r, t) = A(rmax−r)

rmax−rmin in

the shear case, up until the time of the weight release. Since this is an approximation, we will

neglect the times t ∈ (Γ3,Γ4), the weight release time period, since that time frame is small

relative to the loading and settling time from Γ1 to Γ3. We also incorporate a time parameter Υ

which will represent our approximation of the time when loading begins. In the formulation here

we will use the same relaxation times during the loading process as during the oscillation period,

which means that Υ has no meaning other than as a tuning parameter that we must estimate.

Thus, we assume the given loading profiles for t ∈ (Υ, 0) since Γ4 = 0 in our convention. This

also means that Υ < 0.

We incorporate this loading approximation into our model by manually integrating the

constitutive relationship (4.4.7). For the purposes here, we will call σ̂ the full constitutive

relationship for t > Υ that is described by (4.4.7) (where we now use Υ in the place of Γ1), and

σ the constitutive relationship for t > 0. We do this for notational simplicity in the final model,

at the expense of some minor notational confusion at the current stage.

For the pressure case, we compute (noting that u(x, t) = A
Lx implies ux(x, t) = A/L, for

Υ < t < 0)

σ̂(t;P ) = (E + γ)ux(t) + E1uxt(t)− γ
∫ t

Υ

∂K(t− s;P )

∂s
ux(s)ds

= (E + γ)ux(t) + E1uxt(t)− γ
∫ 0

Υ

∂K(t− s;P )

∂s
ux(s)ds− γ

∫ t

0

∂K(t− s;P )

∂s
ux(s)ds

= (E + γ)ux(t) + E1uxt(t)− γ
∫ 0

Υ

∂K(t− s;P )

∂s

A

L
ds− γ

∫ t

0

∂K(t− s;P )

∂s
ux(s)ds

= (E + γ)ux(t) + E1uxt(t)− γ
A

L
(K(t;P )−K(t−Υ;P ))− γ

∫ t

0

∂K(t− s;P )

∂s
ux(s)ds

= σ(t;P )−F(t; Υ, A, P )

where F(t; Υ, A, P ) = γAL (K(t;P )−K(t−Υ;P )) and

σ = (E + γ)ux(t) + E1uxt(t)− γ
∫ t

0

∂K(t− s;P )

∂s
ux(s)ds (4.4.8)

incorporates the remaining terms and represents the constitutive relationship for t > 0. For the

pressure setup, we then have the following:

� σ̂x = σx

� The original stress boundary condition is σ̂(L, t;P ) = 0. Using the preceding development,
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this corresponds with

0 = σ(L, t;P )−F(t; Υ, A, P )

which allows us to write the boundary condition for a model solved for t > 0 as

σ(L, t;P ) = F(t; Υ, A, P ).

Since A,Υ < 0 and γ > 0, we know that K(t;P )−K(t−Υ;P ) > 0. Hence, since L > 0,

we have a compressive boundary stress, which is what we would expect in the pressure

case.

The shear case is similar. For the loading profile u(r, t) = A(rmax−r)
rmax−rmin for t ∈ (Υ, 0), we

have ur(r, t) = − A
rmax−rmin which is incorporated when integrating the history in the same

way as the pressure case. We then find the corresponding loading stress to be F(t; Υ, A, P ) =

−ζ A
rmax−rmin (K(t;P )−K(t−Υ;P ), where ζ is the shear analog to γ. Also, we have σ̂r = σr

as in the pressure case. However, we have the term σ̂
r = σ

r −
F(t;Υ,A,P )

r , which will result in a

time-dependent forcing term in the shear PDE.

We make two comments before discussing the internal variable forms. First, if we assume, for

example, a single relaxation time and that its value is small, say on the order of 10−1, then the

term K(t−Υ;P ) = exp(−(t−Υ)/τ1) ≈ exp(−10(t−Υ)) attains its maximum value exp(10Υ)

when t = 0. Note that for, say, Υ < −1, this term is negligible. Relaxation times on this order

are what we can later obtain in the inverse problem, which would imply that in our case the

material is at rest after being loaded sufficiently long that it “forgets” its loading history by the

time the weight is released. This is good from an experimental standpoint, since the loading

process will never be quite uniform. It is also good to know from a computational perspective;

we can limit Υ to being greater than some value, such as −20 < Υ < 0, which will keep the

optimization algorithm from marching off unnecessarily (which occurred in some of our early

inverse problem tests). Second, since we have integrated out the loading history, we now start

the model at the time of weight release, t = 0. This means that the material is considered at

rest just prior to the release; thus, in the history integrals we will discuss in the next section, all

the history now starts at t = 0 since the history before that point will be incorporated into the

initial loading profile and an initial stress condition.

4.4.7 Internal Variable Formulation

In the previously noted work on this stenosis problem, the double integrals that resulted from

using the continuum of relaxation times in the stress equation were computationally intractable

so another approach was required. The idea was to use a discrete number of internal variables. As

will be noted, these gave rise to a differential form which was an improvement computationally
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since it led to purely differential equations in the model rather than inclusion of an integro-

differential equation. With the advances in desktop computation abilities since that time, the

integral form is now reasonable to use in a dynamic model. However, internal variables are

still attractive in that they provide a formulation that indicates some of the internal material

dynamics. Physically, if we assume that the molecules within the biological tissue are on a

microscopic scale then the portion of the material which is represented by each internal variable

or internal strain εj is being driven by the overall strain and has a response that varies depending

on the value of the corresponding relaxation time τj .

One of the earlier constitutive relationship formulations, in [9, 67, 80], approximates the

Fung kernel as a finite sum of exponential functions

G(t) =
N∑
j=1

Cj exp (−t/τj)

where Cj are weights and τj are relaxation times that describe how the material relaxes after

undergoing deformation. If one uses this form for G(t) in the constitutive relationship (4.4.1),

one still must compute the integral in

σ(t) =

∫ t

0

N∑
j=1

Cj exp(−(t− s)/τj)
d

ds
σe(λ(s))ds =

N∑
j=1

Cjεj(t)

where εj(t) =
∫ t

0 exp(−(t− s)/τj) ddsσ
e(λ(s))ds. We can instead compute each εj(t) as a dynamic

internal variable following the differential equation (for j = 1, 2, . . . , N)

dεj(t)

dt
+

1

τj
εj(t) =

dσe(λ(t))

dt
, εj(0) = 0.

Note that these are then linear differential equations for εj . One could introduce nonlinearities,

which is discussed in [9, 67] and was found to be equivalent to assuming multiple relaxation times

(an example of where nonlinearities were necessary is the work on modeling wave propagation

in filled rubber in [20, 21]). We do not consider nonlinear internal dynamics since we shall see

later that the linear constitutive relationship (4.4.7) with a discrete measure gives a reasonable

approximation to the data provided by QMUL and BHT.

Note, however, that the kernel here is composed of a discrete sum of exponentials. At first

glance, this appears to run counter to the Fung results which point toward a continuum of times

being important. The results in [9, 67, 80] demonstrate that the internal variable approach is

valid and does appear to work as well as the continuum of times in the Fung kernel, but we

would like to put this on firmer ground. A connection between the Fung continuum model and
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the discrete kernel is provided by the work in [22]. The authors there form the kernel

G(t) =

∫
T
R(t; τ)dP (τ)

where T = [τ1, τ2] ⊂ (0,∞) is the set of admissible relaxation times, P (τ) is a probability measure

on T , and R(t; τ) is a continuous function of relaxation times. If we take R(t; τ) = exp(−t/τ), this

corresponds with the kernels previously discussed. The authors showed existence and uniqueness

results for this kernel in the nonlinear constitutive equation (4.4.1). Though this framework is

back to the continuous relaxation time case, a result from [10] allows one to approximate any

measure P (τ) with a discrete measure. This discrete measure leads us back to the previous case

with a sum of exponentials, but from the probabilistic framework we know conclusively that we

are approximating the continuous spectrum of Fung and from the results of [9, 67, 80] we know

that this approximation has been viable when implemented.

With this understanding of previous work using internal variables, we move forward by

modifying our current model. We manipulate the form of Equation (4.4.8) as follows:

σ(t;P ) = (E + γ)ux(t) + E1uxt(t)− γ
∫ t

0

∂K(t− s;P )

∂s
ux(s)ds

= (E + γ)ux(t) + E1uxt(t)− γ
∫ t

0

∂

∂s

(∫
T

exp(−(t− s)/τ)dP (τ)

)
ux(s)ds

= (E + γ)ux(t) + E1uxt(t)− γ
∫
T

∫ t

0

∂

∂s
(exp(−(t− s)/τ))ux(s)ds dP (τ)

= (E + γ)ux(t) + E1uxt(t)− γ
∫
T
ε1(t; τ)dP (τ), (4.4.9)

where in the final step ε1(t; τ) =
∫ t

0
∂
∂s (exp (−(t− s)/τ))ux(s)ds. Rather than the integral form

for ε1, we can use the differential form

τ
d

dt
ε1(t; τ) + ε1(t; τ) = ux(t), ε1(0; τ) = 0 (4.4.10)

which is then solved simultaneously with the rest of the model dynamics. This is then an internal

variable or internal strain, driven by the overall strain ux(t), which is the continuous form of

the internal variable formulation.

We now may finally make the discrete assumption

P (τ) =

Np∑
j=1

pj∆τj

where ∆τj is the Heaviside function with step at τj and pj are the proportions of the material
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subject to relaxation time τj . By substituting this discrete P into the form for σ as developed

in (4.4.9), we obtain the discrete, internal variable form of the constitutive relationship

σ(t) =

E +

Np∑
j=1

γj

ux(t) + E1uxt(t)−
Np∑
j=1

γjε
j(t), (4.4.11)

with internal variables obeying (for j = 1, 2, . . . , Np)

τj
d

dt
εj(t) + εj(t) = ux(t), εj(0) = 0, (4.4.12)

and where we have defined γj = γpj so that γ =
∑Np

j=1 γj . Note that we assume E > 0, since

the agar gel acts at least partly as a solid, and that εj = ε1(·; tj).

4.4.8 Final Pressure and Shear PDE Models

We now put together the pressure (4.3.1) and shear (4.3.2) wave equations, using the constitutive

equation (4.4.11)-(4.4.12) but with the loading history approximation integrated out as discussed

in Section 4.4.6. Recall also that the discrete assumption for P and the form of K gives us

γK(t;P ) = γ
∑Np

j=1 pj exp(−t/τj) =
∑Np

j=1 γj exp(−t/τj) where γj = γpj . These equations are

just manipulated versions of the general equations of Theorems 4.4.1-4.4.2, so we still know a

unique weak solution exists on any finite time interval.

Pressure Model

We first define

Fp(t;A,Υ, γ1, . . . , γNp , τ1, . . . , τNp) =

Np∑
j=1

γj exp(−t/τj)−
Np∑
j=1

γj exp(−(t−Υ)/τj).

Then the pressure equations, solved for t > 0 which is the release time, are

ρ ∂
2

∂t2
u(x, t)− ∂

∂xσ(x, t) = 0

u(0, t) = 0, σ(L, t) = A
LFp(t)

u(x, 0) = A
Lx, ut(x, 0) = 0,

(4.4.13a)

where

σ(t) =

E +

Np∑
j=1

γj

ux(t) + E1uxt(t)−
Np∑
j=1

γjε
j(t) (4.4.13b)
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with the internal variables subject to (for j = 1, 2, . . . , Np)

τj
d

dt
εj(t) + εj(t) = ux, εj(0) = 0. (4.4.13c)

The parameter ρ still represents the material density and E1 the damping parameter. E represents

an instantaneous relaxation modulus. The γj values are weightings on relaxation times τj ; also,

we can write E0 = E +
∑Np

j=1 γj as the viscoelastic analog to Young’s modulus.

Shear Model

We next present the shear equations. In order to more easily distinguish between pressure and

shear model parameters, we will use G and G1 in place of E and E1 and ζj instead of γj . We

define

Fs(t;A,Υ, ζ1, . . . , ζNp , τ1, . . . , τNp) =

Np∑
j=1

ζj exp(−t/τj)−
Np∑
j=1

ζj exp(−(t−Υ)/τj).

Then we have
ρ ∂

2

∂t2
u(r, t)− ∂

∂rσ(r, t)− σ(r,t)
r = 1

r
A

rmax−rminFs(t)

σ(rmin, t) = −A
rmax−rminFs(t), u(rmax, t) = 0

u(r, 0) = A(rmax−r)
rmax−rmin , ut(r, 0) = 0,

(4.4.14a)

where

σ(t) =

G+

Np∑
j=1

ζj

ur(t) +G1urt(t)−
Np∑
j=1

ζjε
j(t) (4.4.14b)

with the internal variables subject to (for j = 1, 2, . . . , Np)

τj
d

dt
εj(t) + εj(t) = ur, εj(0) = 0. (4.4.14c)

We note that G0 = G+
∑Np

j=1 ζj is the dynamic analog of the shear modulus.

4.5 Numerical Method

We use the same numerical implementation for both the pressure (4.4.13) and shear (4.4.14)

models, which is also the same as in Chapter 3. In time, we use a discontinuous Galerkin method

composed of normalized Legendre polynomials (of order 4). In space, we use a continuous spectral

finite element method composed of Lagrange basis functions on Gauss-Lobatto nodes (also of

order 4). This allows the higher order (4-5th order) elements in space while controlling dispersion
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error. Under this scheme, the system matrices are diagonalizable and hence the time-coupled

computations within a time step can be decoupled. This makes the reasonably high order finite

element time discretizations feasible. The reason for adopting this higher order scheme instead of

the lower order ones is that higher order spatial discretizations have been found highly desirable

for wave equations in terms of the control of dispersion errors (e.g., see [1, 26]). In addition,

higher order schemes are capable of providing higher fidelity solutions than lower order schemes

for the same amount of computational work. This is especially important to make the inverse

problem practical (as each inverse problem may require solving the forward problem hundreds

of times). Further details on this numerical method are in a forthcoming BICOM report [61],

wherein an extensive set of numerical results are given to demonstrate the favorable effect on

the numerical error and computational work of the higher order temporal and spatio-temporal

approximations.
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CHAPTER 5

Parameter Estimation and Results

With models in hand, we now turn to matching the model output to data. We will use two

common methods in order to estimate model parameters. One is ordinary least squares (OLS)

and the other is generalized least squares (GLS). These will be defined later in Section 5.2. Also,

note that the majority of this chapter has been submitted for publication ([15]).

5.1 Inverse Problem Preliminaries and Definitions

As discussed in Chapter 2, separate novel acoustic phantom experiments have been designed to

gather one-dimensional pressure and shear data. Measurements in our experiment are taken at

x = L for the pressure case and r = rmin for the shear case, and will be denoted uj . Corresponding

pressure or shear model solutions at the same spatial location will be denoted u(tj ; 10q), where

the measurement location has been suppressed so we can retain a general pressure/shear model

solution notation and where q represents a vector of the base-10 logarithm of each parameter

(the same idea used in Chapter 3 to reduce parameter scaling issues). Each data set has been

trimmed to the dynamic oscillations after the release, and thus the time frame for pressure data

is roughly 150ms while that for shear is 200ms, with a data sampling rate of 2.048kHz. Using

the full set of data points proved to make the inverse problem difficult and computationally

intractable, as that many data points made the inverse problem too overdetermined. Thus, we

use the data with a sampling rate of 1.024kHz instead as the full data set. We take n to be the

total number of data points for a particular data set, and thus can describe the measurement

time points for the full “every data point” set as tj = j/1024 where j = 0, 1, . . . , n− 1. There
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will also be a reduced data set where we take every other data point starting with t0 = 0.

Since some of the data points were near zero in absolute value, we found that those points

resulted in scaling problems when using the GLS model to estimate model parameters (since

the corresponding cost functional divides by the model value as we will see later when this

method is defined). To account for this, we removed from consideration any data points uj (and

their corresponding model solutions at that time point) where |uj | < 5× 10−6. This value was

chosen by examining the data, noting that the data is on the order of 10−5 and that the “jitter”

one can see in Figure 2.3 has a magnitude of roughly 5× 10−6 during the times before loading

up to Γ1, then during the settling period from Γ2 to Γ3, and again in the settling period after

the oscillations have died out. Thus, our threshold level is below the level of noise in the data.

This level also eliminated only a few data points, while providing significantly improved GLS

robustness. The number of data points n is then reduced according to how many thresholded

data points were removed.

Before going into the setup and results for the inverse problem, we note that the forward

(i.e., direct) problems where we solve for displacement (using the method discussed in Section

4.5) are as follows:

� Pressure forward problem: Given E, E1, τj and γj for j = 1, 2, . . . , Np, Υ, A, L, and

ρ, solve model (4.4.13) for displacement u(x, t) at each position x ∈ [0, L] for t ∈ [0, T ].

� Shear forward problem: Given G, G1, τj and ζj for j = 1, 2, . . . , Np, Υ, A, rmin, rmax,

and ρ, solve model (4.4.14) for displacement u(r, t) at each position x ∈ [rmax, rmin] for

t ∈ [0, T ].

The inverse problems we will develop here are as follows:

� Pressure inverse problem: Given pressure displacement data at x = L and a corre-

sponding forward problem solver for displacement, along with specified values for ρ and

L, find values for the constants E, E1, τj and γj (for j = 1, 2, . . . , Np), A, and Υ which

provide the best fit to the data (in a manner which will be defined shortly).

� Shear inverse problem: Given shear displacement data at r = rmin and a corresponding

forward problem solver for displacement, along with specified values for ρ, rmin, and rmax,

find values for the constants G, G1, τj and ζj (for j = 1, 2, . . . , Np), A, and Υ which

provide the best fit to the data (again, in a manner which will be defined shortly).

We assume for both the pressure and shear cases that the parameters lie in some admissible

set Q ⊂ Rκ, where Q is assumed to be compact and κ is the number of parameters requiring

estimation. We will the log-scaled parameter vector for pressure (for Np = 1) as

q = (log10(E), log10(E1), log10(γ1), log10(τ1), log10(−A), log10(−Υ)) (5.1.1)
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with a similar vector for shear where we use the shear parameters parameters G, G1, and ζ1

in place of E, E1, and γ1, respectively. Thus, as long as we define our cost function to be a

continuous function of the parameters, we know the inverse problem has a solution (minimizing

a continuous function on a compact parameter space). One could broaden this parameter

estimation framework to the distributional case if desired, taking an admissible parameter space

as a compact subset of Euclidean space (including all parameters excuding relaxation times)

along with with the space of probability measures, and use the Prohorov metric framework

(see, e.g., [17, Sec. 4]) and the approximation results of [10]. This again leads to minimizing a

continuous function of the parameters over a compact space. Either way, the inverse problems

we will shortly define will have solutions.

5.1.1 Sensitivity of Model Output to Parameters

We consider the sensitivity of the model output to the parameters (equations are derived in

Appendix B). For our examinations here, we will look at both the pressure and shear parameter

sensitivities. The weight level is 264g, and we will show results for one relaxation time (Np = 1).

Since we estimate the log-scaled parameter values (due to the varying scales of the parameters),

we depict here the sensitivities with respect to those log-scaled parameters in Figures 5.1-5.2.

The particular parameter values at which we solved the sensitivities are located in the figure

captions, and are parameters which produce a model solution with roughly the same features

(e.g., overall amplitude, wave frequency, damping envelope) as the experimental data.

In the pressure case, the model is most sensitive to E, γ1, A, and Υ and less sensitive to E1

and τ1 (as can be seen in Figure 5.1). In the shear case, the model is most sensitive to G, ζ1 and

A, and less sensitive to G1, Υ and τ1 (as can be seen in Figure 5.2). This lower sensitivity to τ1

in both cases is fully consistent with the results in Chapter 3.

64



0 0.05 0.1 0.15 0.2

−15

−10

−5

0

x 10
−5

Sample model solution, N
p
=1 (264g)

Time (units: s)

D
is

pl
ac

em
en

t (
un

its
: m

)

0 0.05 0.1 0.15 0.2
−1

−0.5

0

0.5

1

1.5

x 10
−4

Pressure sensitivity for log
10

(E), N
p
=1 (264g)

Time (units: s)

S
en

si
tiv

ity
 w

.r
.t.

 lo
g 10

(E
)

0 0.05 0.1 0.15 0.2

−3

−2

−1

0

1

2

3

x 10
−5

Pressure sensitivity for log
10

(E
1
), N

p
=1 (264g)

Time (units: s)

S
en

si
tiv

ity
 w

.r
.t.

 lo
g 10

(E
1)

0 0.05 0.1 0.15 0.2
−5

0

5

10

x 10
−5

Pressure sensitivity for log
10

(τ
1
), N

p
=1 (264g)

Time (units: s)

S
en

si
tiv

ity
 w

.r
.t 

lo
g 10

(τ
1)

0 0.05 0.1 0.15 0.2

−3

−2

−1

0

1

2

3
x 10

−4
Pressure sensitivity for log

10
(γ

1
), N

p
=1 (264g)

Time (units: s)

S
en

si
tiv

ity
 w

.r
.t 

lo
g 10

(γ
1)

0 0.05 0.1 0.15 0.2

0

1

2

3

x 10
−4

Pressure sensitivity for log
10

(−A), N
p
=1 (264g)

Time (units: s)

S
en

si
tiv

ity
 w

.r
.t 

lo
g 10

(−
A

)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4
Pressure sensitivity for log

10
(−ϒ), N

p
=1 (264g)

Time (units: s)

S
en

si
tiv

ity
 w

.r
.t 

lo
g 10

(−
ϒ)

Figure 5.1: Pressure sensitivity equation solutions in the Np = 1 case. Solved using the following
parameter values: E = 5×104 Pa, E1 = 30 Pa·s, γ1 = 1.2×105 Pa, τ = 0.02 s, A = −1.65×10−4

m, and Υ = −0.01 s. (top) Resulting pressure model solution. (bottom six) Sensitivity equation
solutions for each parameter.
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Figure 5.2: Shear sensitivity equation solutions in the Np = 1 case. Solved using the following
parameter values: G = 6.5×103 Pa, G1 = 5.6 Pa·s, ζ1 = 8×103 Pa, τ = 0.07 s, A = −1.5×10−4

m, and Υ = −0.01 s. (top) Resulting shear model solution. (bottom six) Sensitivity equation
solutions for each parameter.
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5.2 Statistical Models and Parameter Estimators

In order to carefully define the way in which we will measure the closeness of the data to model

values, we must first discuss underlying statistical models for the error present in the data. A

proper error model is also key to correctly determining parameter confidence intervals. Much of

the discussion here is similar to that in Chapter 3, with background on ordinary least squares

(OLS) and generalized/weighted least squares (GLS or WLS) given in [16, 24], for example.

We will assume the errors Ej are independent, identically distributed with mean zero

(E[Ej ] = 0) and constant variance var(Ej) = σ2
0; this process has realizations εj . Note that we do

not assume we know the underlying distributions from which the errors come; we only know the

first two central moments as specified. We use this error process in proposing two error models

and corresponding parameter estimators.

� Absolute error: Here we have the error process Uj = u(tj ; 10q0) + Ej , with realizations

uj = u(tj ; 10q0) + εj , (5.2.1)

where q0 is some hypothesized “true” parameter value (see [24]). We use the ordinary least

squares cost function

Jols(q) =
n−1∑
j=0

[uj − u(tj ; 10q)]2.

The corresponding inverse problem for the logged parameters is then

q̂ols = arg min
q∈Q
Jols(q) = arg min

q∈Q

n−1∑
j=0

[uj − u(tj ; 10q)]2. (5.2.2)

This function minimizes the distance between the data and model where all observations

are considered to have equal importance (weight). Since u(tj ; 10q) is a continuous function

of q, Jols is also a continuous function of q, which means we are minimizing a continuous

function of q over a compact set Q, and thus this inverse problem has a solution.

� Relative error: Here we have the error process Uj = u(tj ; 10q0) + u(tj ; 10q0)Ej with

realizations

uj = u(tj ; 10q0) + u(tj ; 10q0)εj . (5.2.3)

For this case, we construct the generalized (weighted) least squares cost function (as per,

e.g., [24])

Jgls(q) =
n−1∑
j=0

w2
j [uj − u(tj ; 10q)]2
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where we define the weights wj = u(tj ; 10q)−1. In this case, since we are examining a relative

error model (5.2.3), these weights take into account the unequal quality of observations;

dividing by the function value has a “normalizing” effect on the errors, accounting for the

scale differences which may be present in the errors at larger versus smaller model values.

We now wish to find q such that Jgls(q) is minimized. We can either solve this directly, or

by using an iterative procedure in order to estimate q̂gls (since the weights must also be

estimated). We will use an iterative method, described as follows (see [24] and references

therein for convergence details):

1. Define q̂0 = q̂ols, and set k = 0.

2. Form the weights ŵj = u(tj ; 10q̂
k
)−1, using weight thresholding (described below).

3. Re-estimate q̂gls by solving

q̂k+1 = arg min
q∈Q

n−1∑
j=0

ŵj
2[uj − u(tj ; 10q)]2

to obtain the (k + 1)th estimate q̂k+1 for q̂gls.

4. Set k = k + 1 and return to Step 2. Terminate when successive estimates for q̂gls are

sufficiently close, or when one has iterated 20 times. For this problem, the “sufficiently

close” criterion was determining if ||q̂k+1− q̂k||∞ ≤ 10−3, where ||q||∞ is the maximum

component of the given vector q. The parameter values being estimated are all log-

scaled, and are thus on the order of [10−1, 101]. This puts the stopping criterion at

two orders of magnitude less than the smallest log-scaled parameter value, which is

sufficient in our problem.

Even though we have removed all data points with absolute value under 5× 10−6, we still

account for the (now unlikely) possibility that some model values may still end up small

in absolute value. Thus, we incorporate thresholding on the weights to keep from dividing

by zero. We take a weight threshold value of 1× 10−10, as this is almost certainly below

the threshold of significance in terms of the model displacements. Then, for all indices

j̄ ∈ {k | |u(tk; 10q̂)| < 1×10−10}, we set ŵj̄ = 1×1010. This is done each time the weights

are re-estimated in Step 2 of the iterative process.

With weight thresholding, we are assured that the iterative process is possible numerically.

Thus, similar to the ordinary least squares case, at each step k in the iterative GLS

estimation process we are minimizing a continuous function of q over a compact parameter

space Q, and thus the inverse problem in each iteration will have a solution. Also, as long
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as the iterative process is carried out sufficiently many times, under certain conditions the

weights will converge ŵj → u(tj ; 10q̂gls)−1 (see, e.g., [24]).

Residual Definitions

We will also include residual plots to assist in analysis of the model fit to data, and to indicate

which error model best describes the error in the data. Residuals give a sense for the model fit to

data, but more importantly the residuals can give an indication [24] regarding the appropriateness

of our error model. If the absolute residuals seem to be randomly dispersed around the horizontal

axis and form a horizontal band around that axis, then the absolute error model may be correct.

On the other hand, if the (modified) relative residuals seem to be randomly dispersed, then the

relative error model may be correct. We define the following:

� Absolute residuals are computed as rj = uj − u(tj ; 10q̂), where q̂ is the particular

parameter estimate being considered.

� Relative residuals are computed as rj = ŵj(uj − u(tj ; 10q̂)) where ŵj = u(tj ; 10q̂)−1

and the ŵj are thresholded in the same manner as discussed earlier.

Asymptotic Error Analysis

In addition to determining the parameter estimates q̂ols and q̂gls for pressure and shear data, we

will provide confidence interval information for each entry in the parameter vectors. For the

absolute error model, the process is the same as that which we used in Chapter 3, and is also

described in [24]; for the relative error model, the corresponding asymptotic error methodology

is discussed in [24, Ch. 3]. Since the theory is common enough, we do not reiterate it here and

refer interested readers to the aforementioned references.

5.2.1 Optimization Considerations

We use the built-in Matlab Optimization Toolbox routine lsqnonlin for our optimization

routine to solve for q̂ols and q̂gls. We used the trust-region-reflective (TRR) algorithm that is

built in; as our previous efforts in Chapter 3 demonstrated, the Levenburg-Marquardt option was

slower than TRR and did not give us better results. Since we are using at least one relaxation

time, we do not consider fmincon which we have shown to be ineffective in estimating relaxation

times.

In order to start the optimization routines for computing q̂ols, we must provide initial

parameter values (for q̂gls we use the estimated value for q̂ols as our initial guess). From a perusal

of the viscoelastic materials literature, our experience from the previous conceptual work, and
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from some manual examination on the current data sets, we developed pressure and shear initial

values.

Pressure initial guess: For Np = 1, the initial values we use are E = 4.5 × 104 Pa,

E1 = 55 Pa·s, γ1 = 1.9 × 105 Pa, τ1 = 0.05 s, A = −1.75 × 10−4 m, and Υ = −0.01 s. As

log-scaled values (c.f. (5.1.1)), this gives us

q0
ols = (4.6532, 1.7404, 5.2788,−1.3010,−3.7570,−2)T .

Shear initial guess: For Np = 1, the values we use are E = 4.5 × 103 Pa, E1 = 5 Pa· s,

γ1 = 2.8× 104 Pa, τ1 = 0.06 s, A = −1.7× 10−4 m, and Υ = −0.01 s. As log-scaled values (c.f.

(5.1.1)), this gives us

q0
gls = (3.6532, 0.6990, 4.4472,−1.2218,−3.7696,−2)T .

5.3 Results Using a Single Relaxation Time (Np = 1)

We now demonstrate the ability of our model to match data. For this purpose, we will take

a single relaxation time (Np = 1). We run both the absolute (OLS) and relative (GLS) error

models on a sample data set using a 264 g loading weight, separately for both pressure and

shear data. We will report parameter estimates, standard errors, plots of model fits to data,

plots of residuals versus time, and plots of residuals versus model values. We use these elements

in order to recommend error models for the pressure and shear cases.

We will also examine parameter estimation using data sampled at different rates. This will

allow for a study of whether the parameter estimates stay consistent as the number of data points

is reduced, and will also allow us to examine issues of independence between measurements (data

points). It is expected that if the data points are sampled too frequently, nearby measurements

are more likely to be dependent. This is due to the inherent limitations in hardware; too

frequent sampling may not allow the measurement device to return to its resting state between

measurements. Using fewer data points is a way of increasing the likelihood that neighboring

measurements are independent. We run the inverse problem on each data set and using each

error model with the following two options:

1. Using all the data points (1.024 kHz), and

2. Using every other data point (512 kHz).

Before discussing results, we recall the earlier discussion in Section 5.1.1 on the sensitivity of

model output to the parameters. The pressure model output was most sensitive to E, γ1, A,

and Υ and less sensitive to E1 and τ1. The shear model output was most sensitive to G, ζ1,
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and A and less sensitive to G1, τ1, and Υ. Thus, throughout the results, we are likely to see

larger standard errors relative to the parameter magnitude for E1 (G1) and τ1. Intuitively, this

is due in part to the fact that in the mathematical model the relaxation times influence how the

damping properties of a material are described, and thus there is likely some interplay between

the bulk damping parameter E1 (G1) and the relaxation time τ1 in the pressure and shear cases.

The parameter Υ is a special case. As discussed in Section 4.4.6, if the relaxation times are small

(which they will be in our results) then Υ will not have much of an effect on the model output

once it becomes sufficiently negative. Thus, even though the model output is at least somewhat

sensitive to Υ, particularly for the pressure model, we may still obtain large confidence intervals

for this parameter once sufficiently negative. We will see these larger confidence intervals for Υ

in the results, and it should be noted that this is not a major concern since it is an artificial

parameter designed to approximate the loading process.

5.3.1 Pressure Data Results

The results of the pressure parameter estimates and confidence intervals (see Chapter 3 or

[11, 12, 17, 24] for information on computing confidence intervals) are shown in Tables 5.1-5.4,

and the model fits as well as residuals are shown in Figures 5.3-5.6. In all cases, model fits to

data are good. Comparing the OLS results in Tables 5.1 and 5.3 with their GLS counterparts in

Tables 5.2 and 5.4, we see that the parameter estimates for OLS are generally more consistent

between the full and reduced data sets than those for GLS. We also see that the standard

errors for OLS are generally smaller than those for GLS for the results using all the data. Even

though the OLS standard errors increase slightly when we cut the number of data points used

in half, these comparisons give an initial indication that OLS is better than GLS. However,

these results are only valid if the error model is correct. To that end, the residuals versus time

plots in Figures 5.3-5.6 all have some patterns in the residuals but those do not substantially

change when going between OLS and GLS. Additionally, these plots show less of a pattern in

the residuals (i.e., more random) as the data sampling frequency is reduced. In the same figures,

the residuals versus model plots are also not much different when comparing the OLS cases

to the GLS cases. From a residual analysis standpoint, then, either model appears reasonable.

Thus, since OLS is a simpler error model and since we have a higher degree of confidence in

the parameter estimates due to their consistency for different data sampling rates and smaller

standard errors, we recommend the OLS model when using pressure data. We do note that

the standard error for log10(τ1) and log10(E1) for both OLS and GLS cases is in general larger

relative to the parameter estimate itself than for the other parameters; this is expected since the

pressure model output is less sensitive to τ1 and E1. Thus, we do not have as much confidence

in the estimate for τ1 and E1 as in the other parameter estimates.
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Since there was not a significant difference between OLS and GLS in terms of residual

analysis, we examined another error model,

Uj = u(tj ; 10q0) + sign(u(tj ; 10q0))|u(tj ; 10q0)|1/2Ej ,

which we call the “half error” model (for lack of a better phrase) due to the 1/2 exponent in the

final term. This is solved in a manner similar to the “full” GLS, the difference being that here

we use the weights wj = |u(tj ; 10q)|−1/2. Results of the corresponding inverse problem are shown

in in Tables 5.5-5.6 and Figures 5.7-5.8. There does not appear to be any improvement over the

previous OLS and GLS results in terms of residual randomness, and the parameter values are

more consistent than those from GLS but less consistent than those from OLS. Additionally, the

standard errors when using the half error model are generally larger than those when using OLS.

Thus, we continue to conclude that the OLS model is most appropriate for the pressure data.

Table 5.1: Pressure optimization results and confidence analysis for OLS on a 264 g data set
using every data point.

Param. Estimate SE CI95

log10(E) 4.6164 0.5071 (3.6140, 5.6188)
log10(E1) 1.7385 0.2180 (1.3076, 2.1694)
log10(τ1) -1.3365 0.5089 (-2.3425, -0.3306)
log10(γ1) 5.2748 0.1096 (5.0581, 5.4914)
log10(−A) -3.7520 0.0061 (-3.7641, -3.7399)
log10(−Υ) -1.8549 0.6463 (-3.1326, -0.5773)

Young’s modulus dynamic analog E0 = 229.604 kPa

Table 5.2: Pressure optimization results and confidence analysis for GLS on a 264 g data set
using every data point.

Param. Estimate SE CI95

log10(E) 5.0523 2.1445 (0.8131, 9.2915)
log10(E1) 1.8025 0.2192 (1.3692, 2.2358)
log10(τ1) -0.7878 2.1350 (-5.0082, 3.4326)
log10(γ1) 5.0664 2.0697 (0.9750, 9.1578)
log10(−A) -3.8031 0.0124 (-3.8276, -3.7786)
log10(−Υ) -1.0152 4.9889 (-10.8772, 8.8468)

Young’s modulus dynamic analog E0 = 229.323 kPa
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Table 5.3: Pressure optimization results and confidence analysis for OLS on a 264 g data set
using every other data point.

Param. Estimate SE CI95

log10(E) 4.6051 0.8396 (2.9302, 6.2800)
log10(E1) 1.7426 0.3850 (0.9745, 2.5107)
log10(τ1) -1.3661 0.8407 (-3.0433, 0.3111)
log10(γ1) 5.2775 0.1755 (4.9274, 5.6277)
log10(−A) -3.7442 0.0080 (-3.7601, -3.7284)
log10(−Υ) -1.8921 1.0604 (-4.0075, 0.2233)

Young’s modulus dynamic analog E0 = 229.749 kPa

Table 5.4: Pressure optimization results and confidence analysis for GLS on a 264 g data set
using every other data point.

Param. Estimate SE CI95

log10(E) 4.1586 0.1827 (3.7942, 4.5231)
log10(E1) 1.2236 0.4868 (0.2525, 2.1948)
log10(τ1) -1.6888 0.1550 (-1.9981, -1.3794)
log10(γ1) 5.3313 0.0134 (5.3045, 5.3580)
log10(−A) -3.8057 0.0169 (-3.8393, -3.7721)
log10(−Υ) -2.2436 0.1726 (-2.5879, -1.8992)

Young’s modulus dynamic analog E0 = 228.827 kPa
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Figure 5.3: Pressure data fit using every data point with absolute error model, Np = 1, weight
264 g. (a) Model fit to data. (b) Absolute residuals vs time. (c) Absolute residuals vs model.

Table 5.5: Pressure optimization results and confidence analysis for GLS (half error) on a 264 g
data set, using every data point.

Param. Estimate SE CI95

log10(E) 4.7747 0.9355 (2.9254, 6.6240)
log10(E1) 1.7594 0.2289 (1.3069, 2.2120)
log10(τ1) -1.1169 0.9304 (-2.9562, 0.7223)
log10(γ1) 5.2302 0.3247 (4.5883, 5.8721)
log10(−A) -3.7831 0.0091 (-3.8011, -3.7651)
log10(−Υ) -1.5638 1.3384 (-4.2095, 1.0818)

Young’s modulus dynamic analog E0 = 229.421 kPa
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Figure 5.4: Pressure data fit using every data point with relative error model, Np = 1, weight
264 g. (a) Model fit to data. (b) Relative residuals vs time. (c) Relative residuals vs model.

Table 5.6: Pressure optimization results and confidence analysis for GLS (half error) on a 264 g
data set, using every other data point.

Param. Estimate SE CI95

log10(E) 4.5630 0.9095 (2.7486, 6.3774)
log10(E1) 1.6866 0.4513 (0.7863, 2.5869)
log10(τ1) -1.3489 0.9004 (-3.1452, 0.4473)
log10(γ1) 5.2848 0.1699 (4.9458, 5.6238)
log10(−A) -3.7797 0.0128 (-3.8052, -3.7542)
log10(−Υ) -1.8602 1.1158 (-4.0862, 0.3657)

Young’s modulus dynamic analog E0 = 229.224 kPa
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Figure 5.5: Pressure data fit using every other data point with absolute error model, Np = 1,
weight 264 g. (a) Model fit to data. (b) Absolute residuals vs time. (c) Absolute residuals vs
model.
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Figure 5.6: Pressure data fit using every other data point with relative error model, Np = 1,
weight 264 g. (top) Model fit to data. (bottom left) Relative residuals vs time. (bottom right)
Relative residuals vs model.
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Figure 5.7: Pressure data fit using every data point with relative half error model, Np = 1,
weight 264 g. (top) Model fit to data. (bottom left) Relative residuals vs time. (bottom right)
Relative residuals vs model.
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Figure 5.8: Pressure data fit using every other data point with relative half error model, Np = 1,
weight 264 g. (top) Model fit to data. (bottom left) Relative residuals vs time. (bottom right)
Relative residuals vs model.
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5.3.2 Shear Data Results

Shear results are shown in Tables 5.7-5.10 and Figures 5.9-5.12. In all cases, the model fits to

data are good. Comparing the OLS results in Tables 5.7 and 5.9 with their GLS counterparts in

Tables 5.8 and 5.10 we see that the parameter estimates for OLS demonstrate similar consistency

when using the full and reduced data sets as the GLS estimates. The standard errors for the

GLS cases are larger than the OLS cases. In Figures 5.9-5.12, the residuals versus model plots

are again not noticeably different for the OLS and GLS cases. The initial indication is that we

have more confidence in the OLS results. However, the time versus residual plots raise cause

for concern. In the OLS residual versus time plots, there is a noticeable “fan” structure for

early times. However, for the GLS error model, the residual versus time plots do not show a fan

structure and are fairly randomly distributed. Since this indicates that the OLS error model

may not be correct, we are inclined to recommend the GLS error model in the shear case so

that we do not mistakenly overstate our confidence in the parameter estimates, which we could

do if we used the parameter estimates from the possibly-wrong OLS case. For the shear case we

see that the standard error for G1 is on the same order of magnitude as the parameter estimate

itself for both the OLS and GLS results, and the standard error for τ1 in the GLS case is also

on the same order of magnitude as the estimate for τ1. This is consistent with the sensitivity

results, where in the shear case the model is less sensitive to G1 and τ1 than to G, ζ1, and A.

Table 5.7: Shear optimization results and confidence analysis for OLS on a 264 g data set using
every data point.

Param. Estimate SE CI95

log10(G) 3.6362 0.2465 (3.1499, 4.1225)
log10(G1) 0.4725 0.2025 (0.0730, 0.8719)
log10(τ1) -1.3433 0.2455 (-1.8276, -0.8589)
log10(ζ1) 4.4637 0.0366 (4.3915, 4.5358)
log10(−A) -3.7543 0.0054 (-3.7649, -3.7436)
log10(−Υ) -2.0632 0.2862 (-2.6278, -1.4985)

Shear modulus dynamic analog G0 = 33.411 kPa
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Table 5.8: Shear optimization results and confidence analysis for GLS on a 264 g data set using
every data point.

Param. Estimate SE CI95

log10(G) 4.1059 1.0993 (1.9371, 6.2747)
log10(G1) 0.5925 0.2149 (0.1686, 1.0165)
log10(τ1) -0.8318 1.1018 (-3.0054, 1.3418)
log10(ζ1) 4.3150 0.6781 (2.9774, 5.6527)
log10(−A) -3.7990 0.0093 (-3.8173, -3.7807)
log10(−Υ) -1.3449 1.8982 (-5.0898, 2.4000)

Shear modulus dynamic analog G0 = 33.416 kPa

Table 5.9: Shear optimization results and confidence analysis for OLS on a 264 g data set using
every other data point.

Param. Estimate SE CI95

log10(G) 3.5431 0.2498 (3.0469, 4.0393)
log10(G1) 0.3753 0.3227 (-0.2657, 1.0164)
log10(τ1) -1.4450 0.2474 (-1.9364, -0.9535)
log10(ζ1) 4.4761 0.0294 (4.4178, 4.5345)
log10(−A) -3.7501 0.0071 (-3.7643, -3.7360)
log10(−Υ) -2.1813 0.2779 (-2.7334, -1.6293)

Shear modulus dynamic analog G0 = 33.423 kPa

Table 5.10: Shear optimization results and confidence analysis for GLS on a 264 g data set
using every other data point.

Param. Estimate SE CI95

log10(G) 3.8649 1.0435 (1.7922, 5.9377)
log10(G1) 0.5449 0.3561 (-0.1625, 1.2523)
log10(τ1) -1.0217 1.0543 (-3.1161, 1.0726)
log10(ζ1) 4.4171 0.2918 (3.8375, 4.9967)
log10(−A) -3.8026 0.0119 (-3.8263, -3.7789)
log10(−Υ) -1.6729 1.3806 (-4.4153, 1.0695)

Shear modulus dynamic analog G0 = 33.454 kPa
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Figure 5.9: Shear data fit using every data point with absolute error model, Np = 1, weight
264 g. (a) Model fit to data. (b) Absolute residuals vs time. (c) Absolute residuals vs model.
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Figure 5.10: Shear data fit using every data point with relative error model, Np = 1, weight
264 g. (top) Model fit to data. (bottom left) Relative residuals vs time. (bottom right) Relative
residuals vs model.
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Figure 5.11: Shear data fit using every other data point with absolute error model, Np = 1,
weight 264 g. (top) Model fit to data. (bottom left) Absolute residuals vs time. (bottom right)
Absolute residuals vs model.
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Figure 5.12: Shear data fit using every other data point with relative error model, Np = 1,
weight 264 g. (top) Model fit to data. (bottom left) Relative residuals vs time. (bottom right)
Relative residuals vs model.
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5.4 Model Development Summary

We have developed an updated one-dimensional viscoelastic model for tissue and have used

experimental data from a simple homogeneous gel phantom to test the ability of our model to

describe wave propagation in the medium. The data were generated from a drop experiment

designed to mimic the disturbance into the chest cavity produced by blood flow in a stenosed

coronary artery impacting the vessel wall, a disturbance which results in pressure and shear

waves propagating away from the vessel walls downstream of the blockage. In our inverse problem

results as discussed in Section 5.3, we have shown an ability to consistently model the wave

propagation using different error models and at different data frequencies, obtaining good fits

to data in all of our inverse problems. In addition to a good fit, though, we also examined

statistical properties of the parameter estimators as well as residual plots to gain more insight

into the proper error model for the pressure and shear data sets. This is necessary, since a correct

error model is essential in order to apply the asymptotic error theory properly and thus obtain

correct confidence intervals. For the pressure case, we prefer the absolute error model (OLS)

over the relative error model (GLS) since the residual plots indicated no noticeable difference

between the two models while the OLS parameter estimates were more consistent and had

generally smaller corresponding standard errors. For the shear case, we recommend taking the

more conservative route and using the GLS parameter estimates; even though the GLS estimates

had larger standard errors, there were indications from the residual versus time plots for OLS

that the OLS model is not correct. Overall, we have successfully demonstrated the ability of

the pressure and shear mathematical models to accurately describe the data from laboratory

experiments.
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CHAPTER 6

Further Uncertainty Quantification Investigation

The need to quantify the accuracy of model parameter values determined during model calibration

has become increasingly important. In practice, this is done in the frequentist approach by

quantifying the sampling distribution (which is an uncertainty statement about the estimator for

an assumed “true” parameter vector) or in the Bayesian approach by estimating the parameter

posterior density which provides uncertainty information (which is a statement about the

estimation of an assumed underlying parameter density). The methods used to understand

parameter uncertainty make fundamentally different assumptions, which we will later examine

in more detail. Differences between model prediction and measurements result from the fact that

not only are models not perfectly descriptive of underlying phenomena (due to modeling error),

but data (e.g., from lab experiments) inherently has measurement error. Thus, when working

with mathematical models and the model parameters used in attempting to describe real-life

phenomenon, we need to consider the methods by which we describe the uncertainty in the

parameter estimates which “best” match the data. To this end, we will examine different inverse

uncertainty quantification methods in the context of the viscoelastic wave propagation model

developed in Chapter 5. This provides us with a nonlinear, partial differential equation model of

a complex phenomenon whereby we can examine the performance of the different methods on

an active research problem.

In this chapter, we take the uncertainty analysis another step beyond the asymptotic analysis

of Chapter 4, comparing three different methods. The previously used asymptotic error theory is

a frequentist method, meaning we have assumed that a single true parameter value exists and are

trying to estimate that value and then study uncertainty in the estimator. Another frequentist
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method (used on the proof-of-concept model in Chapter 3) is bootstrapping, which tests the

robustness of the parameter values by taking the residuals between the model predictions and

data points, randomly mixing the residuals across the time points to create new “simulated”

data sets, then solving the inverse problem on the simulated data sets in order to obtain new

parameter estimates. These are compiled, and statistics such as mean and variance are computed

which then describe the uncertainty in the parameter estimates. In both frequentist cases, the

uncertainty is related to the so-called “sampling distribution,” which is a measure of how well

the estimation method performs in quantifying the parameter values for which the corresponding

model solution fits the data under consideration.

In a fundamentally different approach, Bayesian methods regard the underlying parameters

as random variables with associated densities and attempt to construct these parameter densities

directly. A random, Markovian walk is built which steps through the parameter space (often

initialized with a least squares or maximum likelihood estimate) which accepts parameter values

based on their closeness to the data. This approach will be discussed in this chapter; recall the

frequentist methods were described in Chapter 3.

Though one may be concerned with issues like propagation of parameter uncertainty though

the model solution and subsequent model output predictive intervals, we are concerned primarily

here with the uncertainty in the parameter values themselves. Thus, when comparing algorithms

we will focus on the following considerations:

1. Complexity of the algorithm;

2. Computational time considerations (including parallelization);

3. Insight into correlation between parameters; and

4. Ability to provide a density that can be subsequently propagated through models.

The asymptotic, bootstrapping, and Bayesian methods will be compared and contrasted in

this chapter. The viscoelastic model and data provide an example of where these methods can

be successful and also reveal some of the various drawbacks to the each of the methods. Since

these statistical methods are developed from very different theory and under different basic

assumptions about the parameter being estimated, they are hard to compare in the abstract;

hence, results from the wave propagation modeling problem will be used to provide an example

problem in active research for which we demonstrate the performance of the methods. Note that

a version of this chapter with slightly different but corresponding results is being prepared for

publication [60].
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6.1 Mathematical and Statistical Models

The example problem we examine in this chapter is the inverse problem of estimating q̄ =

(E,E1, τ1, γ1, A,Υ) in the pressure wave propagation model (4.4.13). This is due to the fact

that the pressure model forward solve is many times faster than the shear model solver. Since

bootstrapping and Bayesian estimation are quite computationally intensive, the faster pressure

model was the more reasonable choice. These results may hold similarly for shear, though that

would need to be studied in the future. In all the discussion which follows, we will still be

estimating the log-scaled versions of the parameters, since the parameter values are on quite

varying scales. This means that we will use as our sought-after parameters

q = (log10(E), log10(E1), log10(τ1), log10(γ1), log10(−A), log10(−Υ)).

The notation q̄ = 10q signifies the fact that the parameter values enter the model in their

original scale and with proper sign so that A,Υ < 0. We assume q ∈ Q, where Q is some

compact set of admissible parameters. We enforce the bounds −15 ≤ qi ≤ 15 for i = 1, . . . , 5

and −15 ≤ q6 ≤ log10(20). As discussed earlier, the upper bound on q6 = log10(−Υ) is due to

modeling considerations.

The specific inverse problem method we again use is ordinary least squares (OLS). Based on

an analysis of residual plots, the lab measurements are considered the most significant source

of error. We assume these are additive, independent, and identically distributed errors, which

leads to realizations

uj = u(L, tj ; 10q0) + εj .

With this error model, we use the ordinary least squares cost function

Jols(q) =
n−1∑
j=0

[uj − u(L, tj ; 10q)]2,

and the usual inverse problem

q̂ols = arg min
q∈Q
Jols(q) = arg min

q∈Q

n−1∑
j=0

[uj − u(L, tj ; 10q)]2.

In the frequentist case, we assume that the errors are iid, have mean zero (i.e., E[Ej ] = 0), and

constant variance var(Ej) = σ2
0, but do not need to assume a particular distributional form. In

the Bayesian case, we will make the stronger assumption of normally distributed errors, each

with the same mean and variance so that they are also identically distributed.

Here we use additive error because it has been shown to be a reasonable assumption for the
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problem (as shown in Chapter 5) and also because it simplifies the resulting algorithms so we

can focus more on comparisons across methods rather than being concerned with notation and

more complex estimation algorithms. We will use a data measurement frequency of 1024 Hz in

the present chapter, which should be sufficiently frequent to provide useful information for the

inverse problem but sufficiently infrequent that the data points can be assumed independent.

6.2 Methods for Studying Confidence in Parameters

In Chapter 3 we studied and compared the results of the frequentist methods. We found that

the asymptotic theory was comparable to the bootstrap method, and thus the asymptotic

theory was preferable since it requires significantly less computational time. In addition to

using the updated model (4.4.13), we now consider Bayesian methods, since this approach

directly provides densities for the parameters rather than for the sampling distribution. This

distinction is particularly important if one is concerned with propagating parameter uncertainty

through the model in order to provide solution confidence and/or predictive intervals; in that

case, the parameter densities obtained from Bayesian methods must be used since propagating

uncertainty requires direct knowledge of the parameters rather than just knowledge of the

sampling distribution. We will give descriptions of the algorithms for each method below (with

some additional theoretical background for the Bayesian methods), referring to specific references

which provide more detailed information on the development of each method.

Note that in all cases, we assume that we have already computed the OLS estimate q̂0 = q̂ols

by solving (5.2.2). We have computed the estimate using the Matlab Optimization Toolbox

routine lsqnonlin. This initial OLS estimate is common to all three methods, and as such

this initial step will not be considered in later reporting on computational times. We comment

that a common, pre-computed initial OLS estimate is not necessary for all Bayesian methods

one might consider. In particular, parallel methods such as DREAM [90, 96, 97] are designed

to be global optimizers as well as quantify the parameter densities. A different comparison of

computational times would be needed when using these methods.

6.2.1 Frequentist Methods

We will again compare asymptotic analysis and bootstrapping, two frequentist methods. For the

asymptotic algorithm, refer to Section 3.4; for the bootstrapping algorithm, refer to Section 3.5.

As the name implies, the theory is asymptotic meaning it is only guaranteed to hold for large

values of n. This may be quite suspect in many real-life applications since n can be somewhat

small depending on data availability. Also, in the development of the theory, linearizations

are made which then makes asymptotic theory invalid in regions of high nonlinearity. Finally,
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asymptotic theory constructs confidence intervals as combinations of Gaussians, which is a

possible limitation.

Bootstrapping requires solving the inverse problem M times. This is significantly more

computationally expensive than solving the asymptotic sensitivity equations. Depending on

how easily the inverse problem is solved, we will not know a priori whether bootstrapping or

the to-be-discussed Bayesian methods will end up computing more forward solves. Regardless,

asymptotic theory will be significantly faster to implement. Methods also exist [45, 46] whereby

one can obtain confidence intervals directly from the bootstrap distribution without needing to

assume that the form of the sampling distribution is normal; however, here we use the form in

(3.5.2) since it is simple and effective for our case.

6.2.2 Bayesian Parameter Estimation and Confidence Analysis

In a Bayesian framework, one assumes that the parameters are random variables with associated

densities. Initially, the parameters are described by a prior density π0(q); we will use a “noninfor-

mative” prior (of course, we still implement bounds on parameter values). We then use the data

realizations ~u to compute a posterior density π(q|~u). The data values are incorporated through

a likelihood function π(~u|q). We will assume the measurement errors are normally distributed,

so that the likelihood function becomes the multivariate normal density. Note that this assumes

a specific form for the measurement error process density; the frequentist methods only required

we specify the first two moments, instead of the entire error distribution. To solve the inverse

problem in this framework, we use “Bayes’ theorem for inverse problems” which is given by the

following statement:

Definition 6.2.1 (Bayes’ theorem for inverse problems, referred to as such by [58]). We assume

that the parameter vector q is a random variable which has a known prior density π0(q) (possibly

noninformative), and corresponding realizations ~u of the random variable ~U associated with the

measurement process. The posterior density of q, given measurements ~u, is then

π(q|~u) =
π(~u|q)π0(q)

π(~u)
=

π(~u|q)π0(q)∫
Rp π(~u|q)π0(q)dq

(6.2.1)

where we have assumed that the marginal density π(~u) =
∫
Rp π(q, ~u)dq =

∫
Rp π(~u|q)π0(q)dq 6= 0

(a normalizing factor) is the integral over all possible joint densities π(q, ~u). Note here that

π(~u|q) is a likelihood function which describes how likely a data set ~u is when given a model

solution at the parameter value q.

We could solve the inverse problem directly, using cubature or Monte Carlo techniques to

compute the integral in the definition. This is computationally viable only for a small number of

parameters – as the number of parameters becomes larger, the space over which the integral
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must be evaluated becomes so large as to be computationally prohibitive. The alternate method,

which we discuss here, is to build a Markov chain whose stationary distribution is the posterior

density π(q|~u) of (6.2.1). This is a method in which we sample the parameter space, accepting

the parameters based on closeness of the model solution at the parameters to the data. It is

known (see, e.g., [87]) that a Markov chain defined by the random walk Metropolis algorithm

will converge if the chain is run sufficiently long (i.e., if we allow the algorithm to sample the

parameter space a large number of times). A chain is a set of parameter values, begun with an

initial guess q0, that results from the random walk. There are no analytic results to confirm

one has run the chain sufficiently long for convergence, so one must run chains long enough to

ensure that they are sampling the posterior density (this is called mixing). Early chain values

are considered a burn-in phase, which are not included in the parameter density results. The

burn-in and total chain values are highly problem-dependent; we will run M = 50, 000 chain

values with varying lengths of burn-in depending on how quickly the chain seems to visually

settle into a random walk. For each individual problem, one must balance between long enough

chains to hopefully ensure that the posterior density is adequately sampled while also keeping

the runtime reasonable. More discussion on this issue can be found throughout the literature,

for example in [7, 86, 87].

We briefly discuss the meaning of the prior term, π0(q). If any information is known about

the parameters beforehand, perhaps if they are is known to follow a particular distribution, this

information can be incorporated via the prior and result in faster convergence. However, it is

known (and demonstrated in, for example, the forthcoming manuscript [86]) that a poor choice

for the prior can result in much slower convergence of the posterior. Besides placing bounds

on the parameter values, we know nothing else about the parameter densities, so we take a

noninformative prior π0(q) = H(0) where H(0) is the Heaviside step function with step at 0.

For discussion purposes, though, we will leave π0 in the formulations below.

We now turn to a discussion of the Metropolis algorithm which is used to create the Markov

chain of parameters sampled from the posterior distribution. We will describe and implement

here a delayed rejection adaptive Metropolis (DRAM) algorithm; for more general details on the

background and algorithm see [7, 57, 56, 87]. We must begin the chain at some initial parameter

value with positive likelihood; this will be q0 = qOLS , the solution to the ordinary least squares

pressure inverse problem (5.2.2). To step through the parameter space, we require a proposal

distribution J(q∗|qk−1) which provides a new sample parameter q∗ that depends only on the

previously sampled parameter qk. We also must form a probability α(q∗|qk−1), dependent on

the prior density π0(q) and likelihood function π(~u|q), with which we accept or reject the new

parameter value.

We will use a normally distributed proposal function J(q∗|qk−1) = N (qk−1, V0), where V0

is an estimate for the covariance matrix at q0. In this case we use the standard asymptotic
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theory estimate for the covariance matrix, namely V0 = σ2
ols[χ

T (qols)χ(qols)]
−1, with σ2

ols =
1

n−κ
∑n−1

j=0 [uj − u(L, t; 10qols)]2 and χjk(q) =
∂u(L,tj ;10q)

∂qk
where n is the number of data points

and κ = 6 is the number of parameters being estimated. This choice for V0 hopefully ensures

that the shape of the proposal function distribution matches, to some extent, the shape of the

posterior distribution. Adaptive methods change the proposal covariance Vk (where V0 is the

initial covariance and later matrices are denoted Vk) in a prescribed manner depending on the

previous states. Since a general adaptation breaks the Markov property of the chain (the adaptive

Vk will depend on more than just the preceding state), it must be carefully constructed and

abide by a condition that requires the adaptation to decrease as the chain progresses in order to

retain convergence of the chain to the posterior density. Particular definitions of adaptation are

beyond the scope of this dissertation and more information can be found in [7, 57, 56, 79, 87, 94].

As for the acceptance of a candidate q∗, we focus first on defining the acceptance probability

α. We form the ratio of the likelihoods of the new parameter q∗ with that of the preceding

parameter qk−1 as

r(q∗|qk−1) =
π(~u|q∗)π0(q∗)

π(~u|qk−1)π0(qk−1)
.

We then define α = min(1, r) and set qk = q∗ with probability α; otherwise we reject q∗ and set

qk = qk−1. Rejections occur when the parameter is less likely (quantified through r). This form

for α is known to provide the properties necessary for the chain to properly converge. However,

we know that the proposed q∗ is dependent on the choice of V . Even when adaptive methods are

considered, it may sometimes be better to delay rejection and construct an alternative candidate.

In algorithms using delayed rejection, if q∗ is rejected a second stage candidate q∗2 is found

using the proposal function J(q∗2|qk−1, q∗) = N (qk−1, γ2
2Vk). Here, Vk is the current adaptive

covariance matrix and γ2 < 1 ensures that the second stage proposal function is narrower than

the original. This can be carried on for as many stages as desired, though we worked with just

two stages based on the default in the software we use. Thus, delayed rejection is an open loop

mechanism that alters the proposal function in a predetermined manner to improve mixing in

the parameter space. Recall that mixing is the ability of the algorithm to properly, randomly

sample the parameter space. The results in the next sections will demonstrate that adaptation

was necessary, as the posterior results do not resemble the prior V0 that we specify. Delayed

rejection was also key in producing well-mixed chains, so both these fixes were necessary.

At this point, we have described the way in which we construct a (local) random walk using

a proposal function J and acceptance probability α to sample the posterior density and thus

solve (6.2.1). We introduced adaptation, which provides feedback to the proposal function based

on the chain to that point, and delayed rejection. We now assume that the measurement errors
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are iid, additive, and normally distributed. This means that the likelihood function is defined as

π(~u|q, σ2) =
1

(2πσ2)n/2
e−

∑n−1
j=0

[uj−u(L,tj ;10q)]2

2σ2 .

Note that this likelihood is dependent on σ2, for which we have an estimate σ2
ols. However, this

parameter can also be treated in a Bayesian framework, namely by assuming it has a density

which we sample through realizations of another Markov chain. The particular likelihood we

have defined means σ2 is in the inverse-gamma family (the reason is discussed in, e.g., [86, 87]),

so that we have

σ2|(~u, q) ∼ Inv-gamma

(
ns + n

2
,
nsσ

2
s +

∑n−1
j=0 [uj − u(L, tj ; 10q)]2

2

)

where ns represents the number of observations encoded in the prior (which for us means

ns = 1 since we have the single estimate for σ2
ols) and σ2

s is the mean squared error of the data

observations (for which a reasonable choice [86] is just σ2
s = σ2

ols). In the version under review

for publication [60], we present results for ns = 0 (where the prior for σ2 does not depend on

the data). The results are similar to those presented here.

The combined algorithm we use is delayed rejection adaptive Metropolis, or DRAM, with

the assumption of iid, additive, normally distributed measurement errors. We now summarize

the DRAM algorithm (with SSq = Jols(q) throughout):

Algorithm 6.2.2 (Delayed Rejection Adaptive Metropolis).

1. Set design parameters (e.g., the adaptation interval).

2. Determine q0 = qols = arg minq SSq, (i.e., using (5.2.2)).

3. Set the initial sum of squares SSq0 .

4. Compute the initial variance estimate σ2
0 = 1

n−pSSq0 .

5. Construct the covariance estimate V0 = σ2
0[χT (q0)χ(q0)]−1 and the corresponding Cholesky

decomposition R0 = chol(V0).

6. For k = 1, . . . ,M

(a) Sample zk ∼ N (0, 1).

(b) Construct candidate q∗ = qk−1 +Rkzk.

(c) Sample uα ∼ U(0, 1), where U(0, 1) is the uniform distribution on (0,1).

(d) Compute SSq∗ .
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(e) Compute α(q∗|qk−1) = min
(

1, e
−[SSq∗−SSqk−1 ]/2σ2

k−1

)
.

(f) If uα < α, set qk = q∗, SSqk = SSq∗ . Otherwise, enter the delayed rejection procedure

([86, Algorithm 5.10]):

i. Set the design parameter γ2.

ii. Sample zk ∼ N (0, 1).

iii. Construct second-stage candidate q∗2 = qk−1 + γ2Rkzk.

iv. Sample uα ∼ U(0, 1).

v. Compute SSq∗2 .

vi. Compute α2(q∗2|qk−1, q∗), where α2 is a modified acceptance criterion described

in Sec. 5.6.2 of [86].

vii. If uα < α2, set qk = q∗2, SSqk = SSq∗2 . Otherwise, set qk = qk−1, SSqk = SSqk−1 .

(g) Update σ2
k ∼ Inv-gamma

(
(ns + n)/2, (nsσ

2
k−1 + SSqk)/2

)
.

(h) If at an adaptation interval (for us, every 10 chain values), compute adaptive update

for proposal covariance Vk, then set Rk = chol(Vk); the adaptive update is computed

recursively and using the preceding chain values.

We will later depict the MCMC chains (the sequence of parameter values accepted by the

algorithm) which result from Algorithm 6.2.2, along with plots of the (posterior) parameter

density. We used the DRAM options of the MCMC toolbox for Matlab, available from Marko

Laine at [62]. The density plots are created using kernel density estimation (KDE), which

constructs a density without a specified structure by weighted sums of a particular defined

density. This is not unlike a finite element or polynomial approximation to a function. KDE

software for Matlab is available from the Mathworks File Exchange at [33].

6.2.3 General Comparison Between Methods

We first discuss the complexity of the algorithms. The asymptotic algorithm is by far the least

complex. At its core, the asymptotic theory linearizes about the true parameter value q0 to

obtain an estimate for the covariance matrix. The estimate q̂ for q0 obtained by (5.2.2) and a

corresponding approximation σ̂2 for σ2
0 are then used, along with the sensitivity equations, to

provide an estimate for the covariance matrix for q̂. One important point of consideration is

that the asymptotic theory is only able to construct confidence intervals that are combinations

of Gaussian densities. Thus, if the density is multimodal or non-Gaussian, asymptotic theory

will not be successful; there is no indication from asymptotic results that the form is anything

other than Gaussian. The simplicity and speed of the asymptotic theory comes with the price of

possibly reduced accuracy.
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Bootstrapping does not make the linearization assumption. There, we resample from the error

distribution (as approximated by the standardized residuals), generate simulated data, and obtain

the M boostrap estimates for q̂. Nowhere in this process do we linearize; hence, compared with

asymptotic theory, bootstrapping generally is better able to accurately incorporate correlation

between parameters, particularly nonlinear correlation.

The MCMC DRAM algorithm also does not make linearization assumptions, using the

likelihood function in order to accept or reject parameter candidates and construct the posterior

parameter density. With DRAM, we can create pairwise plots of the components of the accepted

parameter estimates to directly examine parameter correlations. Thus, we obtain the most

information about the parameter estimate when using the Bayesian method since it constructs a

density of the parameter itself rather than a sampling distribution. If one wishes to remain in a

frequentist context, bootstrapping gives more accurate information about the confidence intervals

than asymptotic theory. However, as one can see from the preceding algorithm descriptions,

asymptotic theory is less complex than the other two methods. Thus, if one needs a quick

estimate for the confidence in the parameter identification procedure, asymptotic theory may be

the best choice. If one needs more or better information about the confidence in parameters,

bootstrapping or Bayesian methods may be superior.

In terms of global optimization (finding the smallest possible cost function value), the

Bayesian algorithm is naturally a (crude) global optimizer. The OLS estimation procedure we

described earlier can possibly (and in practice is likely to) pick out a local minimum in the

cost function which may not be the global minimum. Methods exist to make this process more

global, including the obvious notion of starting the OLS procedure from different parameter

values and selecting the result which has the lowest cost value. Though this is not necessarily of

concern here, we mention this global property of the Bayesian algorithm as a reminder that the

more complex algorithm may be able to reduce some of the work one may have otherwise done

manually in order to find a good initial parameter guess to compute the OLS estimate.

In terms of computational time, asymptotic theory is significantly faster than the other

two methods. One must be sure to have an accurate and reasonably fast way of solving for

the sensitivity equations when using asymptotic theory, but that is the case in most problems

of interest. Though we will later report that bootstrapping is faster than the Bayesian results

for our model, this is not necessarily the case in general. First, bootstrapping can easily be

parallelized by creating the M bootstrap samples and then splitting up the M inverse problems

across multiple processor cores. Thus, if given enough processors, bootstrapping could be as fast

as the asymptotic theory (of course, with significantly higher hardware requirements than the

asymptotic theory). As for the Bayesian method, DRAM (Algorithm 6.2.2) is inherently serial

since Markov chains in general are a serial process. However, successful methods for parallel

Bayesian estimation have been developed and implemented including parallel DRAM [88] and
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Differential Evolution Adaptive Metropolis (DREAM) [90, 96, 97]. The DREAM algorithm

employs multiple MCMC chains and combines them using differential evolution to improve the

overall estimation procedure. Thus, though we will later report times for the serial bootstrapping

and Bayesian estimation procedures, these times will be different when using more sophisticated

(and complex) implementations.

Finally, regarding correlation between parameters, asymptotic theory performs acceptably

well as long as there is minimal or linear correlation between parameters which can be represented

by a multivariate normal. Due to the linearizations made when developing the theory, any

more complicated correlation may result in spurious conclusions. We will see this effect later;

E and γ1 in our model are known to be correlated and together influence the frequency of the

oscillations in the wave. These parameters turn out to be correlated in a nonlinear way, which

the asymptotic theory is unable to handle. Boostrapping and Bayesian methods, on the other

hand, are able to properly estimate the confidence in parameters even with some nonlinear

correlations. Also, the Bayesian method allows us examine the correlations directly through

pairwise plots of parameter components. As we will later see, the DRAM results clearly show

nonlinear correlation between E and γ1.

Overall, the asymptotic analysis, though simple to implement, has its drawbacks in terms

of being less able to properly describe complex and/or non-Gaussian relationships between

model parameters. Boostrapping and Bayesian methods, though more intensive to implement,

are able to better describe more complex behavior. If one wishes to know the most about the

model parameters, the Bayesian approach may be the most successful as it directly estimates

the posterior parameter density (and is in fact the only method to do so, as frequentist methods

only estimate the sampling distribution). The parameter density can then be used to make

the most accurate predictions of model solution behavior. The sampling distribution can only

be used to predict the behavior of the model solution if one is convinced that the sampling

distribution and the parameter distribution are the same for a particular problem. In general,

there is no one superior method for all problems; rather, one must choose the method which

best fits the situation at hand and the goals of a particular problem.

6.3 Results Based on Parameter Values From Chapter 5

We begin our discussion using the parameter values obtained in the previous chapter. These were

obtained through the OLS estimation procedure, and so may be located in a local minimum. In

Chapter 5, we only examined the asymptotic standard errors; here we expand that analysis to

include bootstrapping and Bayesian methods, which provide some novel insight into the problem

and spur on the later sections in the current chapter. Recall the results of OLS estimation from

Chapter 5 as shown in Figure 5.3. Recall also the confidence analysis for the OLS estimate
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in Table 5.1. This is the baseline with which we next compare the bootstrapping and MCMC

DRAM results.

Bootstrapping confidence intervals

Table 6.1: Pressure bootstrap results.

Param. Estimate SE CI95

log10(E) 4.5792 0.1613 (4.2604, 4.8979)
log10(E1) 1.6897 0.1325 (1.4277, 1.9517)
log10(τ1) -1.3719 0.1638 (-1.6957, -1.0480)
log10(γ1) 5.2757 0.0330 (5.2105, 5.3409)
log10(−A) -3.7516 0.0060 (-3.7635, -3.7396)
log10(−Υ) -1.8911 0.2011 (-2.2886, -1.4935)
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Figure 6.1: Pressure bootstrap histograms, with data sampled at 1024 Hz, Np = 1. The
corresponding OLS estimate from Table 5.1 is shown as the dashed line. All have a mostly
normal shape, with some small peaks but mainly one large peak for each parameter.

We have also computed bootstrap results around the parameter values in Table 5.1. One way

of confirming that the bootstrapping procedure is working properly (particularly that the normal

assumption (3.5.2) holds) is to examine the histogram of all M = 1000 bootstrap parameter

estimates. We show these histograms in Figure 6.1. Some of the histograms for parameters show
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some small peaks away from the larger peak, though the counts are largely centered in a large

peak around the respective OLS parameter values (shown as the dashed line). This is the first

indication that there may be more underlying complex relationships between the parameters

than the asymptotic results showed. In Table 6.1 we show the results from computing the

bootstrap mean and confidence intervals. In the table, we see the standard errors are generally

smaller than those from the asymptotic results. However, based on experience with the methods

this is not an expected result, as bootstrapping makes fewer restrictive assumptions in the

development of the theory and is thus more likely to provide wider (generally more conservative)

confidence intervals. This is another indication that complex behavior is being exhibited in this

problem, which asymptotic theory is unable to handle with the problem as stated of finding all

six parameter values. We will defer further discussion until after examining the Bayesian results.

Bayesian estimation results

Using the DRAM method previously described, we computed parameter densities. We found

M = 50, 000 parameter values in the chain. The MCMC chains are shown in Figure 6.2, and

densities in Figure 6.3. We also include a pairwise plot of the parameters in Figure 6.4, which

allows us to examine correlation between parameters.

There are two main results we see from Figure 6.2. First, the chains are mixing reasonably

well; they are fairly randomly walking through the parameter space and do not get stuck on

particular values for long. Second, the DRAM procedure seems to have found another local

minimum, as evidenced by the jumps (between the 15,000 and 25,000 iteration marks) in the

apparent chain mean for nearly all parameters except log10(−A). The jump is most clear in

the plot for log10(γ1). This shows up in the density plots in Figure 6.3 as the peaks of the

densities for all parameters except log10(−A) being away from the OLS estimate (denoted with

the dashed line). We examine this further in Section 6.4, where we run the OLS estimation

procedure but use the mean of the MCMC parameter results as the initial guess for OLS; in

this way, we hope to provide evidence that a new local cost minimum was found (along with a

corresponding new parameter estimate), and then recompute the uncertainty analysis for each

method.

Before proceeding, though, we discuss the relationships between parameters in the pairwise

plots of Figure 6.4. We see strong correlations between all parameters except A. The strong

correlation between E and γ1 is not surprising. These parameters together describe the overall

frequency of the resulting wave propagation through the viscoelastic medium, so if one decreases

the other must increase to compensate. The parameter E is describes the exclusively solid

response to stresses while γ1 represents the remaining response factors. It is also not surprising

that τ1 and E1 are correlated; E1 determines the overall damping envelope for the wave while τ1
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(in part) describes smaller damping effects, effects which we might expect to be related. Given

these correlations between (E, γ1) and (τ1, E1), it then makes sense that these four parameters

are correlated with each other. Since Υ is a nonphysical parameter which is heavily dependent

on the values of γ1 and τ1, it is expected that it is correlated highly with those two parameters

and as a result also with E and E1. Finally, since A represents the initial load position, it

is the parameter best known directly from the data and thus does not change much even as

the other parameters change. In order to ensure that we make proper conclusions about the

relationships between parameters, we will recompute the DRAM results from a new starting

point and reexamine these correlations again.
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Figure 6.2: Pressure parameter chain results using DRAM, with data sampled at 1024 Hz,
Np = 1. The corresponding OLS estimate from Table 5.1 is shown as the horizontal dashed line.
The vertical dashed line represents the iteration after which we consider the chains to be burned
in.

6.3.1 Comparison of Preliminary Results Between Methods

In order to best compare the methods, for each parameter we plot in Figure 6.5 the asymptotic

and bootstrap normal densities (which visually show the mean and variance estimates obtained

previously) on top of the Bayesian posterior density. Though the asymptotic and bootstrapping

densities have peaks near the same value (which is expected, as both are used to construct

confidence bands around the OLS result, in this case), the Bayesian densities are quite different.

Most are skewed to the left (which was nearer the location of the original OLS parameter

estimate), and are not centered around the same parameter value as the frequentist confidence

analysis methods. This is due to the fact that the Bayesian process also searches the parameter
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Figure 6.3: Pressure parameter density results using DRAM, with data sampled at 1024 Hz,
Np = 1. The corresponding OLS estimate from Table 5.1 is shown as the dashed line.

space for a smaller cost value, which it found (as evidenced earlier in the parameter chains

of Figure 6.2). The resulting difference between the frequentist and Bayesian results will be

remedied in the next section by using the MCMC results to restart the OLS procedure, finding

the OLS frequentist estimate for the new parameter values which lies in this new cost function

local minimum and then re-computing the asymptotic, bootstrapping, and Bayesian confidence

analysis from that new estimate. We turn to these computations next.
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Figure 6.4: Pressure parameter pairwise parameter comparisons using DRAM, with data
sampled at 1024 Hz, Np = 1, using every 50th chain value. Noticeable patterns in each sub-graph
indicate correlation between parameters (e.g., the upper left corner between E and E1) whereas
roughly random relationships indicate less correlations (e.g., the parameter A with any other
parameter).
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Figure 6.5: Comparison of density results between the three methods, for each parameter. The
MCMC density is computed from the chain values using KDE; for bootstrapping and asymptotic
analysis, the mean and variance for each parameter are used to create a normal probability
density function which is plotted.
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6.4 Updating Parameter Estimates

We now turn to re-estimating the parameter values in order to find an OLS estimate in the

new local minimum found by the DRAM algorithm. At this new value, we will re-compute the

asymptotic, bootstrapping, and Bayesian algorithms to update the results. This will allow a

better comparison between methods.

6.4.1 OLS Inverse Problem Results

We begin by solving the inverse problem (5.2.2) using the means of the MCMC results obtained

in the previous section. The results are shown in the left column of Table 6.2. Note that we have

refined the OLS results from what was presented in the previous chapter, though the values

here differ from the previously reported results only slightly. We show the model solution, as

well as residual plots, in Figure 6.6. The residuals appear random, which indicates the validity

of our original assumption of iid errors due primarily to measurements. Our next step will be

to run an MCMC chain using the OLS results as a starting place. We will also compute the

asymptotic and bootstrap confidence analysis around this new OLS parameter value.
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Figure 6.6: Pressure data fit using OLS, with initial guess set to be the mean of the MCMC
parameter chains, with data sampled at 1024 Hz, Np = 1. (a) OLS model fit to data. (b) Model
vs absolute residuals. (c) Time versus absolute residuals.

6.4.2 Initial Comparison Between Methods

The results of computing the asymptotic analysis using the OLS parameter values are reported

in Table 6.2. We also compute the bootstrap confidence intervals around that OLS parameter

estimate (using M = 1000 bootstrap samples). The bootstrapping results are shown in Table 6.3.

Finally, we run the Bayesian DRAM algorithm (with M = 50, 000), reporting the chains in

Figure 6.8. A comparison of the resulting densities is shown in Figure 6.7, and a comparison of

the parameter estimate (OLS) and parameter means (bootstrapping and Bayesian) is shown in
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Table 6.4 along with computational times. Finally, note that we have run chains for longer which

produced similar results, indicating that we have converged to the posterior at M = 50, 000;

thus we are confident that the results presented here are from the posterior.

We see that the densities for all three methods are largely centered at the same location.

The asymptotic theory gives the widest confidence band, which is actually quite unexpected.

Since the asymptotic theory holds only for large numbers of data points (we only use n = 251

data points here) and incorporates a linearization, the use of asymptotic theory can result in

too-small confidence intervals. The wider confidence intervals we found may be due to complex

nonlinearities between parameters, which we will soon examine further. For the damping

parameter E1, bootstrapping and Bayesian methods give largely comparable results, with the

asymptotic theory being wider. For the parameter A, the results are roughly the same between

methods – this is expected, again since that is the parameter most readily verified by directly

from the data. This parameter is also largely uncorrelated with the remaining parameters,

providing an indication that correlations may be causing problems with the asymptotic theory.

For the remaining four parameters, the bootstrapping confidence bands were the narrowest,

though more comparable to the Bayesian results than the asymptotic analysis. We also point

out the ability of the DRAM algorithm to clearly show the nonlinear correlations, particularly

between E and γ1, is a significant achievement. It indicates that the DRAM algorithm is effective

on this problem. Also, the chains in Figure 6.8 are mixing reasonably well after the burn-in

phase, an indication that we are likely sampling adequately from the posterior density.

In this case of estimating all six parameters, in order to gain a sense of the uncertainty we

would need to use either bootstrapping or Bayesian methods due to the parameter correlation

which asymptotic theory is unable to accommodate. Even though the asymptotic results are

much faster to compute, this situation necessitates the use of the more complex algorithms to

obtain correct results. Whether one should use bootstrapping or Bayesian methods in practice

on this problem depends on situational considerations (e.g., if the parameter uncertainty needs

to be propagated through the model or whether we are just concerned with uncertainty in the

estimation procedure). It is also of interest to see how these results change when the nonlinear

correlation is no longer present. Without the nonlinear correlation, asymptotic theory may

give improved performance; bootstrapping and asymptotic theory are then likely to appear

comparable to the Bayesian densities if the parameter densities are normal. We examine this in

the next section.
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Table 6.2: Pressure asymptotic results (using MCMC parameter means from the chains in
Figure 6.2 as the initial guess).

Param. Estimate SE CI95

log10(E) 5.0708 1.8364 (1.4404, 8.7011)
log10(E1) 1.8412 0.2179 (1.4104, 2.2719)
log10(τ1) -0.8804 1.8394 (-4.5166, 2.7558)
log10(γ1) 5.0510 1.9143 (1.2669, 8.8352)
log10(−A) -3.7539 0.0062 (-3.7662, -3.7416)
log10(−Υ) -1.1109 4.4702 (-9.9477, 7.7259)

Table 6.3: Pressure bootstrap results (using MCMC parameter means from the chains in Figure
6.2 as the initial guess).

Param. Estimate SE CI95

log10(E) 5.0672 0.0432 (4.9817, 5.1526)
log10(E1) 1.8399 0.0250 (1.7904, 1.8893)
log10(τ1) -0.8829 0.0484 (-0.9786, -0.7873)
log10(γ1) 5.0518 0.0346 (4.9834, 5.1201)
log10(−A) -3.7538 0.0057 (-3.7651, -3.7425)
log10(−Υ) -1.1123 0.0889 (-1.2882, -0.9365)

Table 6.4: Pressure optimization results for the following cases: OLS, bootstrapping mean using
OLS value to initiate, and DRAM parameter means; data frequency 1024 Hz. RSS=Jols(q)

Method
OLS Bootstrap mean MCMC mean

log10(E) 5.0708 5.0672 5.0164
log10(E1) 1.8412 1.8399 1.8327
log10(τ1) -0.8804 -0.8829 -0.9300
log10(γ1) 5.0510 5.0518 5.0696
log10(−A) -3.7539 -3.7538 -3.7539
log10(−Υ) -1.1109 -1.1123 -1.1765

RSS 2.538e-009 2.569e-009 6.136e-009
Comp. Time 0.1662 mins 25.99 hrs* 52.82 hrs*

*Note: Computations here are serial. Bootstrapping may be easily parallelized, and parallelized
versions of MCMC exist; see the discussion in Section 6.2.3.
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Figure 6.7: Comparison of density results between the three methods, for each parameter. The
MCMC density is computed from the chain values using KDE; for bootstrapping and asymptotic
analysis, the mean and variance for each parameter are used to create a normal probability
density function which is plotted.
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Figure 6.8: Pressure parameter chain results using DRAM, with data sampled at 1024 Hz,
Np = 1. The corresponding OLS estimate from Table 6.4 is shown as the dashed line.
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Figure 6.9: Pressure parameter pairwise comparisons using DRAM, with data sampled at
1024 Hz, Np = 1, using every 50th chain value. Noticeable patterns in a sub-graph indicate
correlation between parameters (e.g., the middle left comparison between γ1 and E) whereas
roughly random relationships indicate less correlations (e.g., the parameter A with any other
parameter).
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6.5 Method Comparison When Holding E Constant

Given the strong correlation between E and the other parameters, particularly γ1, we next

examine what happens when we hold E constant and estimate the remaining parameters. This is

interesting from the pedagogical stanpoint, but also from a modeling standpoint. We know from

the development of the model that E and γ1 are highly correlated (both contribute to modeling

the oscillation frequency). For this problem, it might be possible to design an experiment

to separately estimate the value of E which could then be held fixed when estimating the

remaining parameters which are difficult to physically measure. In terms of how this affects

computations here, now E will not be an element in the covariance matrix, and the strong

correlation between it and other parameters will not affect the asymptotic computation (which

we suspect does not handle the nonlinear correlations well). Estimated parameter values are

shown in Table 6.5. Asymptotic results are in Table 6.6, boostrap results in Table 6.7, the MCMC

chains in Figure 6.11 (which are mixing even better than before), and densities (sampling for

asymptotic and bootstrapping, posterior for Bayesian) in Figure 6.10.

We now see much more consistent relationships between the different methods. Asymptotic

standard errors, though not smaller than bootstrap standard errors, are nearly identical; this is

fine, and serves to indicate that the linearizations made when deriving the asymptotic theory are

applicable for the restricted inverse problem. Without the highly nonlinear correlation between

E and γ1, the sampling distribution of the OLS estimate in the asymptotic and bootstrapping

results lies very near the posterior parameter density found by the Bayesian method. There are

slight differences in the apparent mean of the distribution for each parameter (see Table 6.5),

but the differences are fairly insignificant. The variances of the sampling distributions and of

the posterior density are nearly identical across the methods. Thus, now that the parameters

are either uncorrelated or only linearly correlated (see plots of Figure 6.12), the asymptotic

theory provides results that are comparable to the other two methods and which are obtained

with significantly less computational effort. However, the need to fix either E or γ1 would not

have been apparent had we not appealed directly to the physical meanings of these parameters

or had we not computed the bootstrap confidence intervals and, particularly, the Bayesian

posterior densities which demonstrate the strong nonlinear correlation in these parameters. We

will comment further on this point in the conclusion.
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Table 6.5: Pressure optimization results for the following cases (with E fixed): OLS, bootstrap-
ping mean using OLS value to initiate, and DRAM parameter means; data frequency 1024 Hz.
RSS=Jols(q).

Method
OLS Bootstrap mean MCMC mean

log10(E1) 1.8406 1.8403 1.8408
log10(τ1) -0.8818 -0.8809 -0.8776
log10(γ1) 5.0510 5.0511 5.0511
log10(−A) -3.7540 -3.7540 -3.7543
log10(−Υ) -1.1117 -1.1097 -1.1081

RSS 2.538e-009 2.539e-009 2.538e-009
Comp. Time 0.1691 mins 11.33 hrs* 46.70 hrs*

*Note: Here again the computations are serial.

Table 6.6: Pressure OLS asymptotic results, with E fixed.

Param. Estimate SE CI95

log10(E1) 1.8406 0.0122 (1.8164, 1.8648)
log10(τ1) -0.8818 0.0311 (-0.9433, -0.8203)
log10(γ1) 5.0510 0.0026 (5.0459, 5.0562)
log10(−A) -3.7540 0.0057 (-3.7654, -3.7427)
log10(−Υ) -1.1117 0.0248 (-1.1606, -1.0627)

Table 6.7: Pressure bootstrap results, with E fixed.

Param. Estimate SE CI95

log10(E1) 1.8403 0.0127 (1.8153, 1.8654)
log10(τ1) -0.8809 0.0310 (-0.9423, -0.8196)
log10(γ1) 5.0511 0.0026 (5.0459, 5.0562)
log10(−A) -3.7540 0.0057 (-3.7652, -3.7427)
log10(−Υ) -1.1097 0.0247 (-1.1586, -1.0608)
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Figure 6.10: Comparison of density results between the three methods, for each parameter (with
E fixed). The MCMC density is computed from the chain values using KDE; for bootstrapping
and asymptotic analysis, the mean and variance for each parameter are used to create a normal
probability density function which is plotted.
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Figure 6.11: Pressure parameter (with E fixed) chain results using DRAM, with data sampled
at 1024 Hz, Np = 1. The vertical dashed line indicates the point at which we consider the run
to be burned in.
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Figure 6.12: Pressure parameter (with E fixed) pairwise comparisons using DRAM, with data
sampled at 1024 Hz, Np = 1, using every 50th chain value. Note that most relationships are
significantly more random than in the previous pairwise plot results, indicating that these
parameters are roughly uncorrelated, although some linear correlation may still exist (e.g., τ1

and Υ)
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6.6 Uncertainty Quantification Analysis Summary

We have seen that each of the three inverse uncertainty quantification methods can be effective

on a problem. If parameters are highly correlated in a nonlinear way, asymptotic analysis alone

may provide at best unclear or at worst wrong results. However, one may not suspect the

nonlinear correlations without additional computations like the bootstrap or Bayesian methods.

The Bayesian approach naturally searches not only for a global cost minimizer, but more

importantly, it provides a joint density for the parameters. We found that leaving E in the

model resulted in strong correlation between parameters, which asymptotic theory was unable

to discern, bootstrapping suggested, and Bayesian methods clearly described.

If we assumed E was a fixed value and estimated the remaining five parameters, the nonlinear

relationships between parameters were reduced or eliminated. At that point, all three methods

gave results that were similar. The amount of data n required to accurately appeal to the

limit statements in the asymptotic theory is problem-dependent and difficult to quantify in

a rigorous manner. For this problem, the consistency of the asymptotic and Bayesian results

when E is fixed indicates that n is sufficiently large to permit asymptotic analysis. Recalling

that the two frequentist methods describe the sampling distribution while the Bayesian method

describes the parameter densities directly, this is a fairly convincing indication that the sampling

distribution is an acceptable approximation to the parameter distribution if we fix E, reducing

complex correlation between parameters. Thus, if our goal had been to propagate parameter

uncertainty through the model, in this case we could use the asymptotic results (which, as has

been discussed, is not true unless we show the sampling and posterior parameter densities are

approximately the same). Note that in order to propagate uncertainty using the asymptotic

results, one would need to require that the joint asymptotic distribution is similar enough to

the Bayesian posterior; in this case, the marginal distributions (Figure 6.10) are very similar

so one would need to examine the correlations in each method in order to determine if the

joint distributions are also similar between methods. However, without resorting to the physical

meaning of these parameters, this may not have been found (and was not found in our initial

calculations) until we used the more computationally expensive bootstrapping and Bayesian

techniques. If one wishes to propagate uncertainty through the model, either the parameter

densities from the Bayesian method must be used or one must be convinced that the frequentist

sampling distribution is an adequate approximation of the parameter density (which requires

the Bayesian results for comparison). If one is just concerned with uncertainty in the parameter

estimation procedure, then the frequentist methods may be adequate.

While no formal definitive conclusions can be made, the results from this chapter suggest

that some serious consideration should be given before choosing any single one of these three

methods. Each method has strengths and weaknesses, which must be considered and balanced for
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a problem at hand. Since the ultimate goal of this project is a diagnostic device, the particular

method of choice will be subject to time restrictions (i.e., asymptotic may be the only feasible

choice due to a need for quickly obtained uncertainty results) and accuracy requirements.

One possible compromise would be fixing E, as we have studied; this allows for a parameter

identification problem that is still broad enough to incorporate the remaining model parameters

(broad in the sense of our ability to match the model to different patients) while indicating that

asymptotic results are likely equivalent to the more computationally intensive methods in this

case. These considerations may be carried over to a two- or three-dimensional model that is

closer to modeling the in vivo stenosis problem; the results discussed here will be beneficial in

directing the uncertainty studies needed when using a higher-dimensional model.
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CHAPTER 7

Conclusion and Future Work

In this dissertation we first introduced a novel acoustic phantom experimental rig. One-

dimensional pressure data is available from one setup, while one-dimensional shear is available

from another. Both setups provide displacement data from a weight-drop experiment designed

to produce oscillations in the gel of a magnitude comparable to that produced by blood flow in

a stenosed coronary artery impacting the vessel wall, a disturbance which results in shear wave

propagating away from the vessel walls downstream of the blockage. As our model validation has

shown, this data encodes information about the elastic or shear modulus as well as information

about bulk damping and the relaxation times.

In terms of modeling, we first carried out proof-of-concept investigations for estimating

material parameters and created a model comparison test as a basis for distinguishing between

data that comes from a normal or from a stenosed blood vessel. We found that the model was

less sensitive to a second viscoelastic relaxation time than to the other parameters, and this was

manifested as a difficulty in recovering two relaxation times. On the other hand, models with

zero or one relaxation time allowed for more confidence in the estimation procedure (i.e., smaller

standard errors). We compared asymptotic error theory with bootstrapping error theory, and

found (as expected) that bootstrapping gives more conservative (larger) confidence intervals

but not so much so that the asymptotic theory cannot be profitably used for uncertainty

quantification in models with large computational costs rendering bootstrapping less desirable.

However, we later saw in Chapter 6 that similar confidence analysis results did not initially hold

for experimental data (we needed to fix E in order for asymptotic and bootstrapping results to

be comparable). In terms of the model comparison on the input amplitude parameter A, we
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were able to develop a successful methodology for statistically determining whether or not data

came from a low amplitude input force. This will form the basis of a model comparison test we

can use on experimental data sets.

We then developed an updated one-dimensional viscoelastic model for tissue and have used

the experimental data to test the ability of our model to describe wave propagation in the

medium. In the inverse problem results as discussed in Section 5.3, we have shown an ability

to consistently model the wave propagation using different error models and at different data

sampling frequencies, obtaining good fits to data in all of our inverse problems. In addition

to a good fit, we also examined statistical properties of the parameter estimators as well as

residual plots to gain more insight into the proper error model for the shear data set. This is

necessary, since a correct error model is essential in order to apply the asymptotic error theory

properly and thus obtain correct confidence intervals. For the pressure case, the results were

inconclusive. For the shear case, we recommend taking the more conservative route and using

the GLS parameter estimates; even though the GLS estimates had larger asymptotic theory

standard errors, there were indications from the residual versus time plots for OLS that the

OLS model is not correct. In these modeling efforts with data we have successfully demonstrated

the ability of mathematical model to accurately describe the data from laboratory experiments

using a homogenous tissue-mimicking material gel phantom. A linear viscoelastic constitutive

relationship, i.e., (4.4.14b), was adequate. This is a significant achievement, as all the work

previously discussed was limited to inverse problems on simulated data or data that was not

from the impulse-type experiments. For the shear model, which is the focus of detection efforts

in practice, we have indicated that a relative error model is likely the best option, which is what

one would intuitively believe when measuring an oscillating phenomenon.

We then used the pressure wave propagation model (5.2.2) and corresponding inverse problem

for the model parameters to illustrate how to provide more complete information about parameter

uncertainty in our model as well as demonstrate the pitfalls and/or advantages of each of the

three uncertainty methods (asymptotic theory, bootstrapping, and Bayesian methods). For the

stenosis problem (particularly when moving to a two-dimensional setup), the results point to

the need for an initial bootstrap or Bayesian estimation in order to ascertain the extent to

which nonlinear correlation or non-Gaussian uncertainty is present. However, computational

considerations may make this impossible. Our investigation here suggests that if asymptotic

theory is the only reasonable computational option, one must fix the corresponding E and G

parameters and only estimate the γi and ζi values. Of course, these results are restricted to the

pressure model, so the corresponding shear results are still a topic for further consideration.
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7.1 Future Investigation

The avenues for future investigation are quite extensive. After defending this dissertation, the

author will be traveling to BICOM to work on the two-dimensional inverse problem for one month.

Though this short duration will only allow for some basic consideration, we hope to carefully

define that inverse problem and begin a proof-of-concept process similar to the one-dimensional

case discussed in Chapter 3. Besides the two-dimensional model, there are extensions of the

model and experimental setup that should still be investigated in the one-dimensional case which

we will detail shortly. Though we will not discuss it further here, signal processing methods also

need to be developed to pick out from the body background noise the appropriate shear waves

that correspond with an arterial stenosis.

7.1.1 Relative versus Absolute Error for Restricted Parameter Set

The results of Chapter 6 indicated that removing the nonlinearly correlated parameter E from

the estimation process significantly improved the asymptotic results. A logical step would be to

return to the comparison of absolute and relative error models when not estimating E. This

would likely provide better information on the standard errors obtained by each theory (though

this will not change the residual analysis already conducted).

7.1.2 Parameter Correlation

We saw in Chapter 6 that the full set of six parameters in the pressure model exhibited nonlinear

correlations which the asymptotic theory was unable to describe. However, it is still an open

question as to whether the off-diagonal elements of the covariance matrix Σ̂ = σ̂2[χT (q̂)χ(q̂)]−1

may indicate the extent to which these nonlinear correlations are present. Also, instead of using

the linearized theory, one might be able to use the “exact” confidence intervals described in

[28, 83] might be able to describe complex parameter relationships in a way similar to the

bootstrapping or Bayesian methods. This might allow one to retain the speed and relative

simplicity of asymptotic computations while still indicating any complex correlations between

parameters. Also, examining ways of re-parameterizing in more complex ways than fixing a

parameter is a possibility, as discussed in [27]. As we saw in Chapter 6, reducing nonlinear

correlations has a direct effect on the confidence interval computations.

7.1.3 Piecewise Model Parameters

One obvious model extension would be using piecewise model parameters. This could be done

in a proof-of-concept case, by creating simulated data using piecewise parameters (representing

different materials in the domain) and trying to estimate the known parameters. Using data, a
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phantom could be created using gel of different properties either vertically (pressure case) or

radially (shear case); piecewise parameters could be then estimated. However, this approach

requires not only estimating multiple sets of material parameters but also determining where in

the spatial domain those variables apply. Since the internal variable framework was designed to

incorporate this sort of situation in terms of the bulk effect of the different materials on the

overall response (not requiring information about where the material properties change, just

that they change), the author’s instinct is that examining multiple internal variables is likely to

be more productive.

7.1.4 Models with Np > 1; Medium Inhomogeneities

Though we examined this situation on the proof-of-concept model in Chapter 3, when we applied

the main model to data in Chapter 5 only one relaxation time was used. This was partly due

to the fact that the results in Chapter 3 indicated that a second relaxation time made the

estimation problem more difficult due to decreased model solution sensitivity to the parameters,

and also to the fact that the gel phantom was linear and homogeneous. Since internal variables

describe the way different portions of the material respond to stress, and the material was the

same throughout, it is not surprising that one relaxation time was adequate.

There are a few ways one could attempt to validate the main model with Np > 1. A proof

of concept investigation could entail creating simulated data using multiple relaxation times

and attempting to estimate those times, as we did for the preliminary model in Chapter 3.

However, we saw there that estimating a second relaxation time was difficult. Another option

would entail generating simulated data using piecewise model parameters. Then an inverse

problem using internal variables could be studied to determine if estimating a second relaxation

time (or more) is feasible. This is closer to the problem in reality, where we try to estimate the

overall response while taking different materials making up the chest (muscle, lung, bone, etc.)

into account without necessarily knowing their exact location. This idea could be easily applied

to lab data, where “ribs” or other inhomogeneities could be added to the gel phantom, which

would then provide displacement data from that experimental setup for the inverse problem

with multiple relaxation times. In all of these cases, one would likely use some version of the

Akaike Information Criterion to compare between models, as was done in Section 3.4.1.

7.1.5 Modeling Input into the Body from the Arterial Wall

In Chapter 1 we discussed past research on modeling turbulent blood flow and the resulting

impacts on the vessel wall (e.g., [30, 31, 32, 55, 64, 68, 73, 76, 77, 89, 98]) that would be

propagated into the body as the pressure and shear waves this dissertation has sought to model.

In addition to those works, Chapter 8 of [52] studied the properties of arterial walls. All of these
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could be used to provide the basis of a model for the process generating the pressure and shear

waves that we have modeled. It is not yet certain exactly what properties of turbulent blood flow

and arterial walls are needed to characterize appropriate inputs that generate detectable shear

waves. Perhaps our work could proceed with a description of the range of possible inputs, which

we could then use Monte-Carlo sampling to propagate through the viscoelastic models in order

to obtain the characteristics of displacements one could find on the surface of the chest. The

work of [30, 31, 32] provides one guide for how we can use our viscoelastic model to examine the

“noise field” in the chest cavity and on the chest surface that results form a stenosed coronary

artery.

Our collaborators at QMUL have been examining a rectangular phantom with a plastic pipe

incorporated through the center which includes a constriction. This could be used to examine the

noises introduced into the phantom from a viscous fluid being pushed past the constriction. The

researchers as QMUL have produced some data varying the flow rate and size of the constriction,

which changes the level of sounds produced from the constricted flow. This will likely be a

subject of discussion when the author visits BICOM.

7.1.6 Larger Phantom and Tissue Experiments

Future efforts will also involve scaling up all these experiments to larger phantoms and then

to some sort of actual tissue sample experiments. A key point of investigation with a larger

phantom is the attenuation of the shear signals from the point of generation to the surface of

the material. Our current one-dimensional model should provide some guidance on the level of

signal attenuation, which we can then test on the actual phantom or tissue. Some of the work

discussed in Chapter 1 did examine properties of tissue, so their work would provide a starting

point when designing an experiment for examining the response of actual tissue. The work of

[67, 80] was intended to be applied to pigs since their chest cavity is similar to humans. After

larger gel phantoms, and possibly some experiments with muscle tissue, pigs may be the next

logical focus for studying wave propagation.

7.1.7 Two-dimensional Model

As mentioned, the author will be traveling to BICOM to examining the inverse problem with a

two-dimensional model and (ideally) corresponding experimental configurations. Experiments are

currently being designed to produce a two-dimensional wave from different points in the medium

and with different detection points along the outer wall of the phantom. It is conceivable that

the one-dimensional parameters could be used as a rough first approximation in a corresponding

two-dimensional code, which would allow us to focus on trying to determine the location of

the wave generation in the medium. Also, these parameter values could be used in a model of
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wave propagation in another conceptual device designed to mimic a constricted artery and the

waves that result from passing fluid through a constricted pipe in the center of the medium.

Therefore in the slightly longer term, we will also likely need to conduct an inverse problem using

a two-dimensional model and corresponding data. These one-dimensional results will provide a

starting point for parameters in that inverse problem, hopefully decreasing runtime and the time

it takes to find viable parameters. The same issues discussed here (sensitivity to parameters,

data frequency, number of relaxation times) will again be of concern for the two-dimensional

problem.

Mathematically, an existence, uniqueness, and continuous dependence framework needs to

be developed for any two-dimensional model. The derivation in Chapter 4 in a strain-energy

function framework should be amenable to the work on mathematical questions. The work in

[22] may provide a starting point.
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APPENDIX A

Sensitivity Equations for Proof of Concept Model

In this appendix, we derive the sensitivity equations used in Chapter 3. Let

q̄ = (ρ,E0, E1, τ1, . . . , τNp , p1, . . . , pNp , A)T

be the vector of length κ for the parameters needed to be estimated, and sq̄i(t, x; q̄) = ∂u(t,x;q̄)
∂q̄i

,

i = 1, 2, . . . , κ with q̄i being the ith component of q̄. We first find the equation for sρ(t, x; q̄). To

do that, we take the partial derivatives of all parts of (3.1.1) with respect to ρ and obtain

ρuρtt + utt − σρx = 0

uρ(t, 0) = 0, σρ(t, L) = 0,

uρ(0, x) = 0, uρt(0, x) = 0.

(A.0.1)

(Note that the chain rule on the first term resulted in ∂
∂ρ (ρutt) = ρuρtt + utt, which means the

sensitivity partial differential equation (PDE) will be driven by the original system values.) By

changing the order of differentiation and then substituting sρ for ∂u
∂ρ , equation (A.0.1) can be

rewritten as
ρ(sρ)tt − ∂

∂xσρ = −utt

sρ(t, 0) = 0, σρ(t, L) = 0,

sρ(0, x) = 0, (sρ)t(0, x) = 0,

(A.0.2)
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In the above equation, the sensitivity of stress with respect to ρ (i.e., σρ) can be obtained by

differentiating both sides of (3.1.8) with respect to ρ

σρ = E1(sρ)xt + E0

(
(sρ)x −

∑Np
j=1 ε

j
ρ

)
. (A.0.3)

Here the sensitivity of internal variable εj with respect to ρ (i.e., εjρ) satisfies the following

equation

τj(ε
j
ρ)t + εjρ = pj(s

ρ)x,

εjρ(0) = 0,
(A.0.4)

where j = 1, . . . , Np. The above equation is obtained by differenting both sides of (3.1.7) with

respect to ρ. Thus, we see the sensitivity PDE (A.0.2)-(A.0.4) for ρ has the same form as the

original system PDE (3.1.1)-(3.1.7), except with zero initial/boundary conditions and now being

driven by the solution to the original system PDE. Thus, the sensitivity PDE is coupled to the

original system PDE.

We now state the remaining sensitivity PDEs. We highlighted terms in red that correspond

with values from the solution to the original system PDE.

1. Sensitivity PDE for E0:

Note that solving this sensitivity PDE requires knowledge of the internal variables, in

particular the first derivative with respect to x (i.e, we need to know εjx since we have the

(σE0)x term in (A.0.5), and σE0 incorporates εj).

ρ(sE0)tt − (σE0)x = 0

sE0(t, 0) = 0, σE0(t, L) = 0,

sE0(0, x) = 0, (sE0)t(0, x) = 0.

(A.0.5)

In the above equation, the sensitivity of stress with respect to E0 (i.e., σE0) is given by

σE0 = E1(sE0)xt + E0

(
(sE0)x −

∑Np
j=1 ε

j
E0

)
+
(
ux −

∑Np
j=1 ε

j
)
. (A.0.6)

Here the sensitivity of internal variables εj with respect to E0 (i.e., εjE0
) satisfies the

following equation

τn(εjE0
)t + εjE0

= pj(s
E0)x,

εjE0
(0) = 0,

(A.0.7)

where j = 1, . . . , Np.

2. Sensitivity PDE for E1:
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ρ(sE1)tt − (σE1)x = 0

sE1(t, 0) = 0, σE1(t, L) = 0,

sE1(0, x) = 0, (sE1)t(0, x) = 0.

(A.0.8)

In the above equation, the sensitivity of stress with respect to E1 (i.e., σE1) is given by

σE1 = E1(sE1)xt + E0

(
(sE1)x −

∑Np
j=1 ε

j
E1

)
+ uxt. (A.0.9)

Here the sensitivity of internal variables εj with respect to E1 (i.e., εjE1
) satisfies the

following equation

τj(ε
j
E1

)t + εjE1
= pj(s

E1)x,

εjE1
(0) = 0,

(A.0.10)

where j = 1, . . . , Np.

3. Sensitivity PDE for τk, k = 1, . . . , Np:

ρ(sτk)tt − (στk)x = 0

sτk(t, 0) = 0, στk(t, L) = 0,

sτk(0, x) = 0, (sτk)t(0, x) = 0.

(A.0.11)

In the above equation, the sensitivity of stress with respect to τk (i.e., στk) is given by

στk = E1(sτk)xt + E0

(
(sτk)x −

∑Np
j=1 ε

j
τk

)
. (A.0.12)

Here the sensitivity of internal variables εj with respect to τk (i.e., εjτk) is given as follows:

� if j = k, then we have

τk(ε
k
τk

)t + εkt + εkτk = pk(s
τk)x,

εkτk(0) = 0.
(A.0.13)

� if j 6= k, then we have

τj(ε
j
τk)t + εjτk = pj(s

τk)x,

εjτk(0) = 0.
(A.0.14)

4. Sensitivity PDE for pk, k = 1, . . . , Np:
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ρ(spk)tt − (σpk)x = 0

spk(t, 0) = 0, σpk(t, L) = 0,

spk(0, x) = 0, (spk)t(0, x) = 0.

(A.0.15)

In the above equation, the sensitivity of stress with respect to pk (i.e., σpk) is given by

σpk = E1(spk)xt + E0

(
(spk)x −

∑Np
j=1 ε

j
pk

)
. (A.0.16)

Here the sensitivity of internal variables εj with respect to pk (i.e., εjpk) is given as follows:

� if j = k, then we have

τk(ε
k
pk

)t + εkpk = pk(s
pk)x + ux,

εkpk(0) = 0.
(A.0.17)

� if j 6= k, then we have

τj(ε
j
pk)t + εjpk = pj(s

pk)x,

εjpk(0) = 0.
(A.0.18)

5. Sensitivity PDE for A:

To some extent, this is an “outlier” as compared with the preceding sensitivity PDEs. The

coefficient A only appears in the (right) boundary condition and not explicitly in the PDE

itself; thus, the sensitivity PDE for A will be nearly the same as the original system PDE

except with a different (right) boundary condition. The sensitivity equation is given as

follows.
ρ(sA)tt − (σA)x = 0,

sA(t, 0) = 0, σA(t, L) = gA(t),

sA(0, x) = 0, (sA)t(0, x) = 0.

(A.0.19)

In the above equation, gA is given by

gA(t) =

{
exp

(
|ab|

t(t+a−b)

)
if t ∈ (0, b− a)

0 otherwise
.

The sensitivity of stress with respect to A (i.e., σA) is given by

σA = E1(sA)xt + E0

(
(sA)x −

∑Np
j=1 ε

j
A

)
. (A.0.20)
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Here the sensitivity of internal variables εj with respect to A (i.e., εjA) is given by

τj(ε
j
A)t + εjA = pj(s

A)x,

εjA(0) = 0,
(A.0.21)

where j = 1, . . . , Np.

Based on the above discussion, we see that all the sensitivity equations are coupled to the

original system except the one for A. However, it is important to note that the sensitivity PDEs

are not coupled to each other.
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APPENDIX B

Sensitivity Equations for Main Stenosis Wave Propagation Model

B.1 Pressure Model

We derive the sensitivity equations for the pressure model 4.4.13.

1. Sensitivity PDE for ρ (where sρ = ∂u
∂ρ ):

ρ(sρ)tt − (σρ)x = −utt

sρ(0, t) = 0, σρ(L, t) = 0,

sρ(x, 0) = 0, (sρ)t(x, 0) = 0,

(B.1.1a)

In the above equation, the sensitivity of stress with respect to ρ (i.e., σρ) is given by

σρ = E1(sρ)xt +
(
E +

∑Np
j=1 γj

)
(sρ)x −

∑Np
j=1 γjε

j
ρ. (B.1.1b)

The sensitivity of the internal variable εj with respect to ρ (i.e., εjρ = ∂εj

∂ρ ) satisfies (for

j = 1, . . . , Np).

τj(ε
j
ρ)t + εjρ = (sρ)x, εjρ(0) = 0. (B.1.1c)
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2. Sensitivity PDE for E (where sE = ∂u
∂E ):

ρ(sE)tt − (σE)x = 0

sE(0, t) = 0, σE(L, t) = 0,

sE(x, 0) = 0, (sE)t(x, 0) = 0,

(B.1.2a)

In the above equation, the sensitivity of stress with respect to E (i.e., σE) is given by

σE = E1(sE)xt +
(
E +

∑Np
j=1 γj

)
(sE)x −

∑Np
j=1 γjε

j
E + ux. (B.1.2b)

The sensitivity of the internal variable εj with respect to E (i.e., εjE = ∂εj

∂E ) satisfies, for

j = 1, . . . , Np,

τj(ε
j
E)t + εjE = (sE)x, εjE(0) = 0. (B.1.2c)

3. Sensitivity PDE for E1 (where sE1 = ∂u
∂E1

):

ρ(sE1)tt − (σE1)x = 0

sE1(0, t) = 0, σE1(L, t) = 0,

sE1(x, 0) = 0, (sE1)t(x, 0) = 0,

(B.1.3a)

In the above equation, the sensitivity of stress with respect to E1 (i.e., σE1) is given by

σE1 = E1(sE1)xt +
(
E +

∑Np
j=1 γj

)
(sE1)x −

∑Np
j=1 γjε

j
E1

+ uxt. (B.1.3b)

The sensitivity of the internal variable εj with respect to E1 (i.e., εjE1
= ∂εj

∂E1
) satisfies, for

j = 1, . . . , Np,

τj(ε
j
E1

)t + εjE1
= (sE1)x, εjE1

(0) = 0. (B.1.3c)

4. Sensitivity PDE for τk (where sτk = ∂u
∂τk

):

ρ(sτk)tt − (στk)x = 0

sτk(0, t) = 0, στk(L, t) = A
Lγk

(
t
τ2
k
e−t/τk − t−Υ

τ2
k
e−(t−Υ)/τk

)
,

sτk(x, 0) = 0, (sτk)t(x, 0) = 0,

(B.1.4a)
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In the above equation, the sensitivity of stress with respect to τk (i.e., στk) is given by

στk = E1(sτk)xt +
(
E +

∑Np
j=1 γj

)
(sτk)x −

∑Np
j=1 γjε

j
τk . (B.1.4b)

The sensitivity of the internal variable εj with respect to τk (i.e., εjτk = ∂εj

∂τk
) satisfies, for

j = 1, . . . , Np,

� if j = k then

τk(ε
k
τk

)t + εkτk = (sτk)x − εkt , εkτk(0) = 0, (B.1.4c)

� if j 6= k then

τj(ε
j
τk)t + εjτk = (sτk)x, εjτk(0) = 0. (B.1.4d)

5. Sensitivity PDE for γk (where sγk = ∂u
∂γk

):

ρ(sγk)tt − (σγk)x = 0

sγk(0, t) = 0, σγk(L, t) = A
L

(
e−t/τk − e−(t−Υ)/τk

)
,

sγk(x, 0) = 0, (sγk)t(x, 0) = 0,

(B.1.5a)

In the above equation, the sensitivity of stress with respect to γk (i.e., σγk) is given by

σγk = E1(sγk)xt +
(
E +

∑Np
j=1 γj

)
(sγk)x −

∑Np
j=1 γjε

j
γk + ux − εk. (B.1.5b)

The sensitivity of the internal variable εj with respect to γk (i.e., εjγk = ∂εj

∂γk
) satisfies, for

j = 1, . . . , Np,

τj(ε
j
γk)t + εjγk = (sγk)x, εjγk(0) = 0. (B.1.5c)

6. Sensitivity PDE for A (where sA = ∂u
∂A):

ρ(sA)tt − (σA)x = 0

sA(0, t) = 0, σA(L, t) = 1
L

(∑Np
j=1 γje

−t/τj −
∑Np

j=1 γje
−(t−Υ)/τj

)
,

sA(x, 0) = x/L, (sA)t(x, 0) = 0,

(B.1.6a)

In the above equation, the sensitivity of stress with respect to A (i.e., σA) is given by

σA = E1(sA)xt +
(
E +

∑Np
j=1 γj

)
(sA)x −

∑Np
j=1 γjε

j
A. (B.1.6b)

The sensitivity of the internal variable εj with respect to A (i.e., εjA = ∂εj

∂A ) satisfies, for
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j = 1, . . . , Np,

τj(ε
j
A)t + εjA = (sA)x, εjA(0) = 0. (B.1.6c)

7. Sensitivity PDE for Υ (where sΥ = ∂u
∂Υ):

ρ(sΥ)tt − (σΥ)x = 0

sΥ(0, t) = 0, σΥ(L, t) = A
L

(
−
∑Np

j=1
γj
τj
e−(t−Υ)/τj

)
,

sΥ(x, 0) = 0, (sΥ)t(x, 0) = 0,

(B.1.7a)

In the above equation, the sensitivity of stress with respect to Υ (i.e., σΥ) is given by

σΥ = E1(sΥ)xt +
(
E +

∑Np
j=1 γj

)
(sΥ)x −

∑Np
j=1 γjε

j
Υ. (B.1.7b)

The sensitivity of the internal variable εj with respect to Υ (i.e., εjΥ = ∂εj

∂Υ ) satisfies, for

j = 1, . . . , Np,

τj(ε
j
Υ)t + εjΥ = (sΥ)x, εjΥ(0) = 0. (B.1.7c)

B.2 Shear Model

We derive the sensitivity equations for the shear model 4.4.14.

1. Sensitivity PDE for ρ (where sρ = ∂u
∂ρ ):

ρ(sρ)tt − (σρ)r − σρ
r = −utt

σρ(rmin, t) = 0, sρ(rmax, t) = 0,

sρ(r, 0) = 0, (sρ)t(r, 0) = 0,

(B.2.1a)

In the above equation, the sensitivity of stress with respect to ρ (i.e., σρ) is given by

σρ = G1(sρ)rt +
(
G+

∑Np
j=1 ζj

)
(sρ)r −

∑Np
j=1 ζjε

j
ρ. (B.2.1b)

The sensitivity of the internal variable εj with respect to ρ (i.e., εjρ = ∂εj

∂ρ ) satisfies (for

j = 1, . . . , Np).

τj(ε
j
ρ)t + εjρ = (sρ)r, εjρ(0) = 0. (B.2.1c)
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2. Sensitivity PDE for G (where sG = ∂u
∂G):

ρ(sG)tt − (σG)r − σG
r = 0

σG(rmin, t) = 0, sG(rmax, t) = 0,

sG(r, 0) = 0, (sG)t(r, 0) = 0,

(B.2.2a)

In the above equation, the sensitivity of stress with respect to G (i.e., σG) is given by

σG = G1(sG)rt +
(
G+

∑Np
j=1 ζj

)
(sG)r −

∑Np
j=1 ζjε

j
G + ur. (B.2.2b)

The sensitivity of the internal variable εj with respect to G (i.e., εjG = ∂εj

∂G ) satisfies, for

j = 1, . . . , Np,

τj(ε
j
G)t + εjG = (sG)r, εjG(0) = 0. (B.2.2c)

3. Sensitivity PDE for G1 (where sG1 = ∂u
∂G1

):

ρ(sG1)tt − (σG1)r −
σG1
r = 0

σG1(rmin, t) = 0, sG1(rmax, t) = 0,

sG1(r, 0) = 0, (sG1)t(r, 0) = 0,

(B.2.3a)

In the above equation, the sensitivity of stress with respect to G1 (i.e., σG1) is given by

σG1 = G1(sG1)rt +
(
G+

∑Np
j=1 ζj

)
(sG1)r −

∑Np
j=1 ζjε

j
G1

+ urt. (B.2.3b)

The sensitivity of the internal variable εj with respect to G1 (i.e., εjG1
= ∂εj

∂G1
) satisfies, for

j = 1, . . . , Np,

τj(ε
j
G1

)t + εjG1
= (sG1)r, εjG1

(0) = 0. (B.2.3c)

4. Sensitivity PDE for τk (where sτk = ∂u
∂τk

):

ρ(sτk)tt − (στk)r −
στk
r = 1

r
A

rmax−rmin

(
t ζk
τ2
k
e−t/τk − (t−Υ) ζk

τ2
k
e−(t−Υ)/τk

)
στk(rmin, t) = − A

rmax−rmin

(
t ζk
τ2
k
e−t/τk − (t−Υ) ζk

τ2
k
e−(t−Υ)/τk

)
, sτk(rmax, t) = 0,

sτk(r, 0) = 0, (sτk)t(r, 0) = 0,

(B.2.4a)
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In the above equation, the sensitivity of stress with respect to τk (i.e., στk) is given by

στk = G1(sτk)rt +
(
G+

∑Np
j=1 ζj

)
(sτk)r −

∑Np
j=1 ζjε

j
τk . (B.2.4b)

The sensitivity of the internal variable εj with respect to τk (i.e., εjτk = ∂εj

∂τk
) satisfies, for

j = 1, . . . , Np,

� if j = k then

τk(ε
k
τk

)t + εkτk = (sτk)r − εkt , εkτk(0) = 0, (B.2.4c)

� if j 6= k then

τj(ε
j
τk)t + εjτk = (sτk)r, εjτk(0) = 0. (B.2.4d)

5. Sensitivity PDE for ζk (where sζk = ∂u
∂ζk

):

ρ(sζk)tt − (σζk)r −
σζk
r = 1

r
A

rmax−rmin

(
e−t/τk − e−(t−Υ)/τk

)
σζk(rmin, t) = − A

rmax−rmin

(
e−t/τk − e−(t−Υ)/τk

)
, sζk(rmax, t) = 0

sζk(r, 0) = 0, (sζk)t(r, 0) = 0,

(B.2.5a)

In the above equation, the sensitivity of stress with respect to ζk (i.e., σζk) is given by

σζk = G1(sζk)rt +
(
G+

∑Np
j=1 ζj

)
(sζk)r −

∑Np
j=1 ζjε

j
ζk

+ ur − εk. (B.2.5b)

The sensitivity of the internal variable εj with respect to ζk (i.e., εjζk = ∂εj

∂ζk
) satisfies, for

j = 1, . . . , Np,

τj(ε
j
ζk

)t + εjζk = (sζk)r, εjζk(0) = 0. (B.2.5c)

6. Sensitivity PDE for A (where sA = ∂u
∂A):

ρ(sA)tt − (σA)r − σA
r = 1

r
1

rmax−rmin

(∑Np
j=1 ζje

−t/τj −
∑Np

j=1 ζje
−(t−Υ)/τj

)
σA(rmin, t) = − 1

rmax−rmin

(∑Np
j=1 ζje

−t/τj −
∑Np

j=1 ζje
−(t−Υ)/τj

)
, sA(rmax, t) = 0

sA(r, 0) = rmax−r
rmax−rmin , (sA)t(r, 0) = 0,

(B.2.6a)

In the above equation, the sensitivity of stress with respect to A (i.e., σA) is given by

σA = G1(sA)rt +
(
G+

∑Np
j=1 ζj

)
(sA)r −

∑Np
j=1 ζjε

j
A. (B.2.6b)
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The sensitivity of the internal variables εj with respect to A (i.e., εjA = ∂εj

∂A ) satisfies, for

j = 1, . . . , Np,

τj(ε
j
A)t + εjA = (sA)r, εjA(0) = 0. (B.2.6c)

7. Sensitivity PDE for Υ (where sΥ = ∂u
∂Υ):

ρ(sΥ)tt − (σΥ)r − σΥ
r = 1

r
A

rmax−rmin

(
−
∑Np

j=1
ζj
τj
e−(t−Υ)/τj

)
σΥ(rmin, t) = − A

rmax−rmin

(
−
∑Np

j=1
ζj
τj
e−(t−Υ)/τj

)
, sΥ(rmax, t) = 0

sΥ(r, 0) = 0, (sΥ)t(r, 0) = 0,

(B.2.7a)

In the above equation, the sensitivity of stress with respect to Υ (i.e., σΥ) is given by

σΥ = G1(sΥ)rt +
(
G+

∑Np
j=1 ζj

)
(sΥ)r −

∑Np
j=1 ζjε

j
Υ. (B.2.7b)

The sensitivity of the internal variables εj with respect to Υ (i.e., εjΥ = ∂εj

∂Υ ) satisfies, for

j = 1, . . . , Np,

τj(ε
j
Υ)t + εjΥ = (sΥ)r, εjΥ(0) = 0. (B.2.7c)
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