
ABSTRACT

WRIGHT, JUSTIN PAUL. Periodic Dynamical Systems of Population Models. (Under the
direction of Dr. John E. Franke.)

We show that P. Cull’s concept of enveloping functions can be applied to periodic systems of

population models to ensure the existence of globally asymptotically stable attractors for such

systems without ever considering the compositions of the maps involved. We give conditions

to ensure that a period-n system of population models sharing a fixed point and enveloping

function has a globally asymptotically stable trivial geometric cycle. We also give conditions

on two-periodic systems of population models that ensure the existence of a globally attracting

geometric 2-cycle as well as providing bounds for the location of the attractor when the pop-

ulation models do not share a fixed point. Perturbation techniques are applied to show that

a periodic dynamical system that is a perturbation of an enveloped population model has a

globally attracting geometric cycle.
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CHAPTER 1

Introduction

Over the past 50 years there has been a continuing trend of using mathematics to analyze

both biological and ecological systems (see [6], [12], [24], [35], [36] ). Specifically, biologists and

ecologists often use mathematical methods to study the growth and decline of a population

or to study the interaction of several populations. Mathematical models allow biologists and

ecologists to study both how a population changes in size as well as what causes the population

to change.

Biologists and ecologists often employ difference equations to study populations. Such equa-

tions are of the form

xt+1 = f(xt), (1.1)

where f is a continuous function whose input is the state or size of a population, xt, at time t and

whose output is the state or size of the population at time t+1. Models like (1.1) are discrete in

time, unlike the natural process of population growth which is continuous. However, populations

are usually measured at discrete time intervals and some populations, such as plant populations,

are annual, so difference equations may offer a better method for studying data collected from a

given population. Furthermore, difference equations only require an understanding of functions

rather than more complicated concepts like differential equations or stochastic methods ([16]).

Difference equations are primarily used when the long-term behavior of the population is of

interest.

While biologists and ecologists are often most interested in finding a model that accurately

predicts the behavior of a population, mathematicians are often interested in determining what

behaviors a given model is capable of displaying. Despite the deterministic and relatively simple

1



nature of models based on difference equations like (1.1), their dynamics can be surprisingly

complicated. In fact, since Robert May’s seminal paper “Some simple models with complex

dynamics” ([27]), the models used to predict the behavior of populations have become their

own area of mathematical interest. Such models may predict unbounded growth, the decline

of an overcrowded population, multiple attractors, the decline of a population with too few

individuals, or even chaotic behavior.

A common model for predicting population growth is the Beverton-Holt model,

xt+1 =
rKxt

K + (r − 1)xt
,

where K gives the carrying capacity and r is a growth factor. The traditional Beverton-Holt

model is well known and predicts that small populations will grow monotonically until they

reach the carrying capacity and large populations will monotonically decrease until they reach

the carrying capacity. In an effort to develop a more accurate model for the growth of a popula-

tion, Cushing and Henson considered a Beverton-Holt model with a periodically forced carrying

capacity in [14] and [15]. That is, the carrying capacity of the model was allowed to change in

accordance with seasonal fluctuations. Many biological and ecological systems exhibit periodic

variations in intrinsic and extrinsic parameters such as fluctuations in season and climate af-

fecting growth parameters, interaction coefficients, and carrying capacities ([7], [12], [13], [23]).

In [15], Cushing and Henson gave conditions that ensured the existence of a globally attracting

2-cycle in a 2-periodic environment. The authors also established that the periodic environment

was detrimental to the population by showing that the average over the 2-cycle in the periodic

environment is smaller than the globally attracting fixed point of a non-periodic Beverton-Holt

model whose carrying capacity was the average of the carrying capacities in the periodic case.

The authors conjectured in [14] that these results continue to hold if an arbitrary period is

allowed with the 2-cycle being replaced by an arbitrary cycle.

The traditional study of difference equations does not allow the model in question to change

in time. As such, Cushing and Henson were forced to apply ad hoc methods in their approach

to the period-2 case in [15]. Multiple frameworks have recently been introduced to allow for the

study of periodic time-dependent difference equations. In [21], the concept of a cylinder map was

used by Franke and Selgrade to represent a periodic dynamical system using an autonomous

(time-independent) system. The authors also established theorems concerning the long term

behavior of such systems. In [17], Elaydi and Sacker introduced skew-product dynamical systems

and geometric cycles to study Cushing and Henson’s conjectures. The authors of [17] were in

fact able to validate the Cushing and Henson conjectures which appeared in [14].

Our primary concern in this work is Cushing and Henson’s first conjecture concerning the

existence of an attractor for the periodic Beverton-Holt model. Elaydi and Sacker were able to
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confirm the conjecture for the Beverton-Holt model and several other models, but their methods

rely heavily on the function that gives the model. Therefore, their methods do not generalize

to the general study of periodic dynamical systems. Within the study of time-independent

difference equations there are many techniques for establishing the existence of an attractor,

both locally and globally. However, little work has been done at this time to offer conditions on a

periodic dynamical system to ensure the existence of an attractor for such a system. Therefore,

a major goal of this work is to establish conditions that will ensure the existence of a globally

attracting periodic solution for a periodic dynamical system.

Inspired by the first Cushing and Henson conjecture, we focus our efforts on a general class

of functions that contains the Beverton-Holt model known as population models. Population

models represent a specific class of difference equations that exhibit properties that make them

especially useful in the prediction of the behavior of a population. Population models assume

the population has a carrying capacity in its environment and that the population will grow if

it is below that carrying capacity and will decline if it is above that carrying capacity. However,

population models do not allow for the consideration of multiple species and they do not allow

for the extinction of a population.

Population models have been studied extensively since at least the 1980’s, and have the inter-

esting property that local stability often implies global stability. This fact has been established

using Liapunov functions in [20] and [22] as well as techniques by Singer ([34]), Rosenkranz

([31]), and Cull ([8],[9],[10]). Many of these techniques suffer from being difficult to apply in

many settings. Cull provided a simple technique utilizing enveloping functions in [11] to give

conditions under which local stability implied global stability for population models. Envelop-

ing has the benefit of being simple to understand and apply even for those without a strong

mathematical background.

Within this work, we first establish that Cull’s concept of enveloping can be extended to

periodic dynamical systems of population models if the carrying capacity does not change over

time. This result allows the population models within the periodic dynamical system to take

any form and allows for any period. However, this result does not directly apply to the Cushing

and Henson conjectures where it was assumed that the carrying capacity was fluctuating.

The second major result is a series of theorems that can be applied to period-2 dynami-

cal systems of population models to establish the existence of a global attractor. While these

theorems restrict the period of the system to period-2, they allow the maps to have different

carrying capacities and algebraic expressions. Furthermore, they provide a simple set of condi-

tions that can be checked to ensure the existence of a globally attracting 2-cycle. A method is

then outlined that allows these theorems to be applied to general n-periodic dynamical systems.

We conclude with several results concerning the perturbation of periodic dynamical sys-

tems. The first result ensures that the perturbation of an enveloped population model may be
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enveloped by a translation of the original enveloping function. The second set of results gives

conditions that ensure that a geometric cycle persists under the perturbation of the periodic

dynamical system. The final result ensures that if a population model is enveloped then a peri-

odic dynamical system of population models “close” to the original function will have a globally

attracting geometric cycle.
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CHAPTER 2

Background and Motivation

In this chapter, we introduce the necessary background for the rest of this work. It is hoped

that the topics discussed in this chapter will lead the reader to understand the general context

and motivation for this work.

2.1 Preliminary Notation

Throughout this work we will have need to refer to a metric space, generally denoted as X,

with metric d. In most cases, X is the space real valued vectors of length n, denoted Rn. For

x ∈ Rn, we find it convenient to begin indexing at 0. That is,

x = (x0, x1, . . . , xn−1) ∈ Rn.

This indexing is convenient since we will often be working modulo an integer n. For x, y ∈ Rn

and i = 0, 1, . . . , n− 1 we use

d(x, y) = ||x− y||∞ = max
i
|xi − yi|.

We will denote the open ball of x ∈ X by

B(x, r) = {y ∈ X : d(x, y) < r}

and the closed ball by

B̄(x, r) = {y ∈ X : d(x, y) ≤ r}
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where r > 0.

For I ⊂ Rn we will denote the space of k continuously differentiable functions from I to

I by Ck(I). In some instances we will have need to refer to the space of continuous mappings

from a topological space Y to a topological space Z which we will denote using C(Y,Z).

On occassion we will use R+ to denote {x ∈ R : x > 0} and Z+ to denote {x ∈ Z : x > 0}.

2.2 Autonomous Difference Equations

Here we present some of the basic concepts and terminology associated with difference equations.

For f ∈ C0(I) and x ∈ I we define the first order autonomous difference equation

xt+1 = f(xt), t ∈ Z+. (2.1)

Equation (2.1) is called autonomous because the function f does not depend on time. We define

the forward orbit of an initial condition x0 ∈ I under (2.1) by the ordered set

O+(x0) =
{
x0, x1 = f(x0), x2 = f(x1) = f2(x0), . . . , xn = fn(x0), . . .

}
where

fn(x) = (f ◦ . . . ◦ f)︸ ︷︷ ︸
n times

(x).

Since the orbit is determined by iteration of f , we often think of the study of (2.1) as studying

the iteration of a map.

Our primary concern in the study of (2.1) is the asymptotic behavior of an orbit. Of par-

ticular interest are periodic points, that is x∗ ∈ I for which there exists k ∈ Z+ such that

fk(x∗) = x∗.

In this instance, we refer to x∗ as a periodic point with period k. If there is no r, where 1 ≤ r < k,

such that f r(x∗) = x∗ then we say that x∗ is a point of minimal period k. If a point is said to

have period k then it should be assumed that the point has minimal period k unless otherwise

stated. In the event that f(x∗) = x∗, we call x∗ a fixed point of (2.1) or synonymously a fixed

point of f .

A period k point, x∗, of (2.1) is said to be attracting or locally attracting if there exists

η > 0 such that for all x ∈ I, if d(x∗, x) < η then lim
n→∞

fnk(x) = x∗. If lim
n→∞

fnk(x) = x∗ for all

x ∈ I then we call x∗ globally attracting.

We refer to a period k point of (2.1) as stable if for any ε > 0 there exists δ > 0 such that for

all x ∈ I, if d(x∗, x) < δ then d(fnk(x), x∗) < ε for all n ∈ Z+. If x∗ is not stable we refer to it as
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unstable. If a periodic point is both attracting and stable then it is referred to as asymptotically

stable. It is known (see [32]) that for a continuous map on the real line, a globally attracting

fixed point must be stable.

The following lemma is a well known result that we use throughout this work without

reference.

Lemma 2.2.1. If f : R→ R is continuous and lim
n→∞

fn(x) = L then f(L) = L.

Proof. Suppose lim
n→∞

fn(x) = L. Then

L = lim
n→∞

f(fn−1(x))

= f( lim
n→∞

fn−1(x))

= f(L).

A fixed point x∗ of a map f ∈ C1(R) is said to be hyperbolic if |f ′(x∗)| 6= 1 and nonhyperbolic

if |f ′(x∗)| = 1. Hyperbolicity can be used to determine the nature of a fixed point as per the

following theorem which appears with proof in [16].

Theorem 2.2.1. Let x∗ be a hyperbolic fixed point of a map f , where f is continuously differ-

entiable at x∗. Then the following statements hold true:

1. If |f ′(x∗)| < 1, then x∗ is attracting.

2. If |f ′(x∗)| > 1, then x∗ is unstable.

While we do not give the full proof here, we mention that given the assumptions in the

theorem there exists r > 0 and B(x∗, r) such that |f ′(x)| ≤ λ < 1 for all x ∈ B(x∗, r). Then,

using induction and the Mean Value Theorem, it can be shown that for x0 ∈ B(x∗, r)

|fn(x0)− x∗| ≤ λn|x0 − x∗|. (2.2)

Then for r1 ∈ (0, r), (2.2) gives

f(B̄(x∗, r1)) ⊂ B(x∗, r1).

Furthermore, (2.2) shows that f is a contraction on B(x∗, r1).
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Trapping regions play an important role in understanding the asymptotic dynamics of a

discrete dynamical system. The following definition is adapted from [30].

Definition 2.2.1. An open set U ⊂ X is a trapping region for f if f(Ū) ⊂ U .

It should be clear that the presence of an attracting hyperbolic fixed point, x∗, for a map,

f , ensures that there is an open neighborhood of x∗ that is a trapping region for f .

2.3 Periodically Forced Difference Equations and the Cushing

and Henson Conjectures

A clear limitation of first order autonomous difference equations is that the model is not allowed

to change over time. However, biological and ecological systems often have parameters that

depend on time either intrinsically or extrinsically. In [15], Cushing and Henson considered the

well known Beverton-Holt model

yt+1 =
ryt

1 + (r − 1)(yt/K)
(2.3)

where r is an intrinsic growth rate and K is the carrying capacity of the species. It is well

established that if r ≤ 1 then the fixed point 0 is globally attracting on (0,∞) and if r > 1

then K is globally attracting.

To explore the dynamics of a population in a periodic environment, K was replaced by

the periodic sequence K = K(t). For simplicity, the sequence was restricted to period-2 and

represented as K = Kav(1 + α(−1)t) where Kav is the average of K over time and α ∈ [0, 1).

By rescaling xt = yt/K, the authors arrived at the periodically forced Beverton-Holt model

xt+1 =
rxt

1 + (r − 1)(xt/(1 + α(−1)t))
. (2.4)

Cushing and Henson went on to show that (2.4) has a globally attracting two-cycle {c0, c1}.
That is, the orbit of c0 under (2.4) is

O+(c0) = {c0, c1, c0, c1, . . .} .

Furthermore, it was shown that 0 < c0 < c1 and 1
2(c0 + c1) < Kav. In other words, the average

of the terms in the globally attracting cycle for (2.4) is less than the global attractor, Kav, for

(2.3). This lead the authors to call the globally attracting two-cycle of (2.4) attenuate. In fact,

Cushing and Henson established this result in the period-2 case for a general class of models
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that are, like the Beverton-Holt model, monotone increasing and concave down.

Results similar to those of Cushing and Henson had previously been established for logistic

differential equations in [3], [4], [26], and [29]. Later results showed the deleterious effects of a

periodic environment to be model dependent and may even be advantageous ([5]). More recent

results in [28] have shown that a given model may have resonant cycles (advantageous) or

attenuate cycles (deleterious) based on the parameters of the model.

Cushing and Henson’s work lead them to the Cushing and Henson conjectures concerning

an n-periodic Beverton-Holt model of the form

xt+1 =
rKt

Kt + (r − 1)xt
xt (2.5)

where Kt is an n-periodic sequence. The Cushing and Henson conjectures as stated in [14] are

(a) Equation (2.5) has a positive n-periodic solution yt > 0, and it is globally attracting for

x0 > 0.

(b) If n > 2, the strict inequality av(yt) < av(Kt) holds. Here av denotes the average of a

periodic cycle, i.e.

av(yt) =
1

p

p−1∑
i=1

yt.

Clearly, Cushing and Henson proved these results for n = 2 in [15]. While periodically forced

ecological models have been of interest since the 1970’s, the Cushing and Henson conjectures

seem to have launched a great deal of interest in the area of periodic dynamical systems.

However, Cushing and Henson’s work in [15] was purely based on (2.4). That is, their approach

was purely ad hoc and difficult to generalize even to a period-3 example. In the next two

sections, we present efforts made to add structure to the study of periodic dynamical systems.

The concept described in the first Cushing and Henson conjecture is the topic of primary

concern throughout this work. In short, we desire to establish conditions that ensure that a

period-n dynamical system will have a global attractor. However, whereas Cushing and Henson

only allowed the parameters of a model to change over time, we will allow the model to change

over time. It should be noted that we will not prove the Cushing and Henson conjectures in

this work as they have already been established in [18] by Elaydi and Sacker.

2.4 n-Periodic Dynamical Systems and the Cylinder Map

In [21], Franke and Selgrade introduced a time-independent, discrete dynamical system that

captures the dynamics of a time-dependent, discrete dynamical system. Furthermore, they pro-
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vide theorems that provide more structure to the understanding of periodic dynamical systems.

The definitions and theorems in this section all appear in [21].

To produce an autonomous dynamical system from a time-dependent one, the authors let

(X, d) be a metric space. They then define an n-periodic dynamical system as a finite sequence

{f0, f1, . . . , fn−1} where fi : X → X for i = 0, 1, . . . , n− 1. This allows for the construction of

an n-periodic nonautonomous difference equation given by

xt+1 = f(t mod n, xt) = ft mod n(xt) (2.6)

where t ∈ Z. Then a forward orbit for x0 ∈ X under (2.6) is given by

O+(x0) = {x0, f0(x0), f1(f0(x0)), . . . ,
fn−1 ◦ . . . ◦ f0(x0),
f0 ◦ fn−1 ◦ . . . ◦ f0(x0), . . .} .

The corresponding autonomous difference equation is in on the fibered cylinder, X , given by

X = {0, 1, . . . , n− 1} ×X.

The metric on X is d((i, x), (j, y)) = δij + d(x, y). Then for i = 0, 1, . . . , n − 1 and (i, x) ∈ X ,

the autonomous cylinder map, F : X → X , is given by

F(i, x) = (i+ 1 mod n, fi(x)).

Having established the cylinder map, the authors go on to give standard definitions in

the study of difference equations as they apply to the cylinder map. Define the projection

πX : X → X by πX(i, x) = x. Since X is a finite number of copies of X, πX is an open

mapping.

Definition 2.4.1. A set Λ ⊂ X is invariant under the time-periodic dynamical system if there

is a set Γ ⊂ X with F(Γ) ⊂ Γ and πX(Γ) = Λ.

The following lemma offers an equivalent definition for the invariance of a set that offers

insight into into the behavior of periodic dynamical systems.

Lemma 2.4.1. Λ ⊂ X is invariant if and only if for each x ∈ Λ there is an

10



X

0 1 2 . . . i i+ 1 . . . n− 1

f0 f1 fi

fn−1

Figure 2.1: The fibered cylinder X and the cylinder map F for {f0, f1, . . . , fn−1}.

i(x) ∈ {0, 1, 2, . . . , n− 1} with

(f(i(x)+k) mod n ◦ . . . ◦ f(i(x)+2) mod n ◦ f(i(x)+1) mod n ◦ fi(x) mod n)(x) ∈ Λ

for all integers k ≥ 0.

Trapping regions will be used throughout this work. Franke and Selgrade offered the follow-

ing definition for the trapping region of a periodic dynamical system.

Definition 2.4.2. A set U ⊂ X is a trapping region for the time-periodic dynamical system if

there is an open set U ⊂ X with compact closure Ū so that F(Ū) ⊂ U and πX(U) = U .

Since the cylinder map, F , is an autonomous map the set U is a trapping region for F in

the traditional sense.

Definition 2.4.3. A set Λ ⊂ X is an attractor for the time-periodic dynamical system if it has

a trapping region U , with corresponding trapping region U ⊂ X , such that πX(Γ) = Λ where

11



Γ =
⋂∞
n=0Fn(Ū).

The following theorem provides a better understanding of the structure of attractors for

periodic dynamical systems and appears in [21].

Theorem 2.4.1 (Structure Theorem). Let Λ be an attractor for the n-periodic dynamical

system {f0, f1, . . . , fn−1}. Then Λ =
⋃n−1
i=0 Λi, where Λi is an attractor for the map

(f(i+n−1) mod n ◦ . . . ◦ f(i+1) mod n ◦ fi mod n) : X → X,

for i = 0, 1, . . . , n− 1.

The Structure Theorem asserts that an attractor for an n-periodic dynamical system must

be a union of the attractors for the n-fold compositions of the maps that comprise the n-periodic

dynamical system. As such, the theorem provides a method to find attractors for n-periodic

dynamical systems. However, even if the individual maps in an n-periodic dynamical system

are relatively simple to analyze individually, it may be very difficult to analyze the n-fold

compositions. It is often the case that fixed points cannot be found algebraically for the n-

fold compositions. Throughout this work, an effort is made to put conditions on the individual

maps within a periodic dynamical system rather than on the system as a whole. This allows

the conditions to be checked more readily.

The following theorem is closely related to the Structure Theorem and also appears in [21].

Theorem 2.4.2. Let {f0, f1, . . . , fn−1} be an n-periodic dynamical system on a complete, locally

compact, metric space X. For i = 0, 1, . . . , n− 1, if each fi is a contraction then each

(f(i+n−1) mod n ◦ . . . ◦ f(i+1) mod n ◦ fi mod n)

is a contraction with a unique fixed point qi and, for each of these compositions, there is an open

set which is a trapping region. The collection of fixed points {q0, q1, . . . , qn−1} is an attractor

for the n-periodic system.

In this work, n-periodic dynamical systems based on the fibered cylinder and cylinder map

are the preferred framework for the analysis of periodic dynamical systems because it easily

allows for a new model at each time step.
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2.5 Skew-Product Dynamical Systems and Geometric Cycles

Elaydi and Sacker provided an alternate framework for the analysis of periodic dynamical

systems in [17]. Their construction is more consistent with the framework for the study of

nonautonomous differential equations and even allows for the study of a general (not periodic)

nonautonomous discrete-time dynamical system. The motivation for the work was to extend a

previous theorem of Elaydi and Yakubu, but the work also allowed them to directly consider

the Cushing and Henson conjectures.

Elaydi and Yakubu proved the following result in [19].

Theorem 2.5.1. Let f : X → X be a continuous map on a connected metric space. If a periodic

orbit ck is globally asymptotically stable, then ck must be a fixed point.

The extension of this theorem to periodic dynamical systems provides significant insight

into the possible orders of global attractors for periodic dynamical systems. Before providing

the extension of the theorem, we discuss Sacker and Elaydi’s skew-product dynamical system.

The concept of the skew-product dynamical system is originally due to Sell but was expanded

on by Sell and Sacker. The following definition and subsequent discussion appears in [17] with

slight alterations in notation.

Definition 2.5.1. Let X and Y be two topological spaces. A dynamical system

π = (φ, σ) : X × Y × Z→ X × Y

is said to be a skew-product dynamical system if there exist continuous mappings

φ : X × Y × Z→ X and σ : Y × Z→ Y such that

π(x, y, t) = (φ(x, y, t), σ(y, t)),

where σ is a time-dependent dynamical system on Y .

If Z is replaced by Z+ then π is called a skew-product semi-dynamical system.

We now construct a skew-product semi-dynamical system for the nonautonomous difference

equation

xt+1 = f(t, xt). (2.7)

Here, (2.7) is comparable to (2.6) but (2.7) may not be periodic. The authors first define σ. Let
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C = C(Z × X,X) be the space of continuous functions from Z × X to X equipped with the

topology of uniform convergence on compact subsets of Z×X. For G ∈ C, define σ(G, t) = Gt

as the shift map, Gt(k, x) = G(k + t, x) and the Hull of G, H(G)
.
= Cl {Gt : t ∈ Z} and set

Y = H(f),

where f is as in (2.7). If we are dealing with an n-periodic dynamical system determined by an

n-periodic difference equation

xt+1 = F (t mod n, xt) (2.8)

then Y = {F0, F1, . . . , Fn−1} where

Fi =
{
fi mod n, f(i+1) mod n, . . . , f(i+n−1) mod n

}
.

For G ∈ Y the map φ is defined by

φ(x0, G, t)
.
= Φ(t, G)x0. (2.9)

Hence, letting G0 = G,

π(x,Gi, t) = (Φ(t, G(i+ t, ·))x,Gi+t).

The operator Φ is then given as follows:

For G ∈ Y set G0 = G. Then

Φ(0, G0)x0 = id(x0),

Φ(t, G0)x0 = Φ(1, Gt−1)Φ(t− 1, G0)x0

= Φ(1, Gt−1)Φ(1, Gt−2) . . .Φ(1, G0)x0.

For example, if we are considering (2.8), then we may consider the n-periodic dynamical

system

F0 = {f0, f1, . . . , fn−1} .

14



Suppose that each fi is a map on R. Then

Φ(0, F )x0 = id(x0),

Φ(1, F )x0 = Φ(1, F0)x0

= f0(x0),

Φ(2, F )x0 = Φ(1, F1)Φ(1, F0)x0

= (f1 ◦ f0)(x0),
...

Φ(n, F )x0 = Φ(1, Fn−1)Φ(1, Fn−2) . . .Φ(1, F1)Φ(1, F0)x0

= (fn−1 ◦ . . . ◦ f1 ◦ f0)(x0).

While skew-product semi-dynamical systems are useful in the study of periodic dynamical

systems, we find the fibered cylinder and cylinder map to be a more intuitive setting for working

with periodic dynamical systems. However, the following definition from [17] is very useful to

avoid confusion when dealing with periodic dynamical systems.

Definition 2.5.2 (Geometric r-cycle). Let {f0, f1, . . . , fn−1} be an n-periodic dynamical sys-

tem and let r > 0 be an integer. A geometric r-cycle is an ordered set of points

C = {c0, c1, . . . , cr−1} , ci ∈ X

with the property that for i = 0, 1, . . . , r − 1

f(i+tr) mod n(ci) = ci+1 mod r ∀ t ∈ Z.

The notation in the above definition has been altered for consistency with an n-periodic

dynamical system. The authors of [17] restrict r ≤ n but we allow r to take on any value in this

work. Often, we will refer to geometric r-cycles simply as geometric cycles when the order is not

important. Examples of geometric cycles and a further discussion follow in the next section.

With the definition of a geometric r-cycle we can state Elaydi and Sacker’s extension of

Theorem 2.5.1.

Theorem 2.5.2. Let {f0, f1, . . . , fn−1} be an n-periodic dynamical system where each fi is a

continuous map on a connected metric space X. Let cr = {c0, c1, . . . , cr} be a geometric r-cycle

for the n-periodic dynamical system. If cr is globally asymptotically stable then r|n.
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Elaydi and Sacker do not offer a formal definition of global asymptotic stability for a geo-

metric cycle in [17], but the meaning can be understood by reading the examples given by the

authors. A formal definition was given later in [2]. We offer an interpretation using orbits on the

fibered cylinder in the following section. It should be mentioned that while Theorem 2.5.2 offers

restrictions on possible orders of globally attracting geometric cycles, it offers no information

concerning how to find a geometric cycle or determine if it is globally attracting.

Elaydi and Sacker explored the Cushing and Henson conjectures for (2.5) in both [17] and

[18] using the skew-product dynamical system. However, their analysis essentially relies on

considering arbitrary n-fold compositions. That is, for an n-periodic Beverton-Holt model they

define

fi(x) =
rKix

Ki + (r − 1)x
, (2.10)

for i = 0, 1, . . . , n− 1. After two iterations,

Φ(2, f)x = x2 = (f1 ◦ f0)(x0) =
r2K1K0x0

K1K0 + (r − 1)M1x0

and after n iterations

Φ(n, f)x = xn = (fn−1 ◦ fn−2 ◦ . . . ◦ f0)(x0) =
rnKn−1Kn−2 . . .K0x0

Kn−1Kn−2 . . .K0 + (r − 1)Mn−1x
,

where Mk satisfies the second order linear difference equation

Mk+1 = Kk+1Mk + rk+1KkKk−1 . . .K0, M0 = 1.

They then define

H(x) = Φ(n, f)x = (fn−1 ◦ fn−2 ◦ . . . f1 ◦ f0)(x0)

and consider the autonomous difference equation xn+1 = H(xn) to prove the Cushing and

Henson conjectures.

Notice, that this is synonymous with considering an n-periodic dynamical system

S = {f0, f1, . . . , fn−1}

where fi is given by (2.10). If F is the cylinder map for S then Fn(0, x) corresponds to H(x).

Figure 2.2 shows the fibered cylinder, a possible orbit, and autonomous map, H, for the given

construction.

This technique relies heavily on finding a closed form expression for H as well as knowing

that each fi is monotone increasing and concave down. As such, it does not generalize to an

arbitrary n-periodic dynamical system.

16



R

0 1 2 . . . i i+ 1 . . . n− 1
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H

Figure 2.2: The fibered cylinder and autonomous map, H, for Elaydi and Sacker’s work on the
Beverton-Holt model.

2.6 Attracting Geometric Cycles

Throughout this work, we are generally interested in deciding when a geometric cycle is an

attractor for an n-periodic dynamical system. In this section we give a formal definition of an

attracting geometric cycle as well as examples and properties of geometric cycles. The reader

may notice that the Structure Theorem can be directly applied to determine if a geometric

cycle is an attractor for a periodic dynamical system. We reiterate, however, that the n-fold

compositions that must be considered to apply the Structure Theorem directly may make the

necessary analysis very difficult. Since relying on numerical results is often ill-advised in the

study of difference equations, we prefer conditions that rely only on the individual maps in a

periodic dynamical system.

Throughout Chapter 3, we are largely concerned with geometric 1-cycles. That is, if a

geometric cycle of the form C = {c} for the n-periodic dynamical system {f0, f1, . . . , fn−1}.
Notice that for such a cycle,

f(i+t) mod n(c) = c

for i = 0, 1, . . . , n − 1 and all t ∈ Z+. Thus, c is fixed by each fi. We therefore refer to such a

geometric cycle as a trivial geometric cycle.

While geometric cycles play the role of equilibrium solutions for periodic nonautonomous

dynamical systems, their characteristics may be notably different from the properties of periodic

points of autonomous systems. Namely,

1. The elements of a geometric cycle may not be distinct.
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2. Different geometric cycles may not be disjoint.

These behaviors and others are noted in [1]. Such characteristics are in stark contrast with the

behavior of periodic points for autonomous difference equations.

The following example should aid in understanding geometric cycles and how they differ

from periodic points.

Example 2.6.1. Consider the 3-periodic system

S = {f0, f1, f2}

where

f0(x) = −x+ 1, f1(x) = −x+ 2, and f2(x) = −x+ 3.

Under this system, g0 = {1, 0, 2} is a geometric 3-cycle because

f0(1) = 0, f1(0) = 2, f2(2) = 1.

Note that a cyclic permutation such as {0, 2, 1}, however, is not a geometric 3-cycle. Under S,

all x0 6= 1 lie on a geometric 6-cycle because

(f2 ◦ f1 ◦ f0 ◦ f2 ◦ f1 ◦ f0)(x) = x.

An example of a geometric 6-cycle is g1 = {0, 1, 1, 2,−1, 3}. Notice that 1 is repeated within g1

and that g0
⋂
g1 = {0, 1, 2} but g0 and g1 are distinct geometric cycles. Figure 2.3 shows the

orbits of 0 and 1 under S.

−0.5 0 0.5 1 1.5 2 2.5
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2

3
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Figure 2.3: The geometric cycles of x0 = 1 (Left) and x0 = 0 (Right) under S.
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Figure 2.3 can be read much like a tradition cobweb or stair step diagram. In a traditional

cobweb diagram, a vertical line is traced from the line y = x to the graph of the functions being

studied and then a horizontal line is drawn back to the line. This process is then repeated. For

a periodic cobweb diagram, a vertical line is drawn from y = x to f0 and then a horizontal is

drawn back to the line y = x. Then this process is repeated but f0 is replaced by f1 and so on.

To discuss the stability of periodic dynamical systems we consider the cylinder map as

introduced in [21]. As it applies to this work the fibered cylinder, X , is the Cartesian product

of R with the distance metric and the discrete space {0, 1, . . . , n− 1},

X = {0, 1, . . . , n− 1} × R,

using the product topology with the metric on X defined by

d((i, x), (j, y)) = δij + |x− y|.

Define the cylinder map, F : X → X corresponding to a periodic dynamical system

{f0, f1, . . . , fn−1} as

F(i, x) = (i+ 1 mod n, fi(x)).

A geometric r-cycle, G = {x0, x1, . . . , xr−1}, for the periodic dynamical system,

{f0, f1, . . . , fn−1}, has a corresponding periodic orbit, G, for the cylinder map, F , of minimal

period l = lcm(n, r). Here, G is given by

G = {(0, x0), (1, x1), . . . (n− 1, xn−1),

(0, xn), (1, xn+1), . . . (n− 1, x2(n−1)),

...
...

...
...

(0, x(l/n−1)n), (1, x(l/n−1)n+1), . . . (n− 1, xl−1)}

where all subscripts are modulo r. In fact, the periodic orbit G is similar in structure to the

algebraic expression for a geometric cycle used in [1].

Example 2.6.2. Here we consider an arbitrary dynamical system with a geometric cycle to aid

in the understanding of an orbit under a periodic dynamical system versus the corresponding

orbit on the fibered cylinder. Let S = {f0, f1, f2} where fi : X → X and assume there exists
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c0, c1 ∈ X such that

f0(c0) = c1, f1(c1) = c0, f2(c0) = c1,

f0(c1) = c0, f1(c0) = c1, f2(c1) = c0.

Then {c0, c1} is a geometric 2-cycle for S. However, if we consider the orbit of c0 on the

fibered cylinder then c0 is a point of period lcm(2, 3) = 6. Figure 2.4 gives a graphical rep-

resentation of the cylinder map for the example. One may follow the orbit in Figure 2.4 by

alternating between red and black arrows. �

f0 f1

f2

c0 c0 c0

c1 c1 c1

Figure 2.4: The orbit of a geometric 2-cycle for a period-3 dynamical system drawn on the
fibered cylinder.

Since G is a periodic solution for the cylinder map the traditional definitions of stability

and attraction apply. With this in mind we give the following definitions. The geometric cycle

G is said to be stable if the corresponding orbit G of the cylinder map is stable under the

definition given in Section 2.2. The geometric cycle G is attracting if G is attracting and G is

asymptotically stable if it is stable and attracting.
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2.7 Population Models and Enveloping

With the inspiration of the Cushing and Henson conjectures and the application of periodic

dynamical systems to periodic systems occurring in nature, we wish to examine periodic dy-

namical systems of population models. Population models represent a specific class of continuous

functions on the real line, of which the Beverton-Holt model is an example.

The behavior of population models has been widely studied by Cull in [8],[9], [10], and

[11] and appeared in [16]. Here we use a less restrictive definition of population model than is

common.

Definition 2.7.1 (Population Model). A continuous function f : [0,∞)→ [0,∞) is a population

model if

(i) f(0) = 0 and f has a unique positive fixed point p,

(ii) f(x) > x for x ∈ (0, p) and f(x) < x for x ∈ (p,∞),

(iii) f(x) > 0 when x > 0.

The standard definition of a population model replaces condition (iii) in Definition 2.7.1

with the following condition.

(iii) If f ′(xm) = 0 and 0 < xm ≤ p then f ′(x) > 0 for 0 ≤ x < xm and f ′(x) < 0 for x > xm

and f(x) > 0 for x > 0.

However this condition is unnecessarily strict for our purposes so we revert to Definition 2.7.1.

Figure 2.5 shows several functions satisfying Definition 2.7.1.

We refer to the space of population models by P. When we refer to the fixed point for f ∈ P
we are referring to the unique positive fixed point of f , since 0 is fixed for all f ∈ P.

The following definition and theorem are due to Cull ([11]). Both are restated here for

convenience with slight alterations for our purposes.

Definition 2.7.2 (Enveloping). Let f ∈ P with fixed point p and let x− > p. A continuous

function φ : I ⊇ (0, x−)→ R envelopes f if and only if

(i) φ(x) > f(x) for x ∈ (0, p) and φ(p) = p

(ii) φ(x) < f(x) for x > p whenever φ(x) > 0 and f(x) > 0.
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Figure 2.5: The graphs of several population models.

Figure 2.6 shows two enveloped population models. In [11], Cull provides several examples of

population models and appropriate enveloping functions as well as a method to build enveloping

functions.

The following theorem by Cull offers relatively simple conditions to assure that the fixed

point of a population model is globally attracting. It will be the basis for the results in Chapter 3.

Theorem 2.7.1 (Cull’s Theorem). Let φ(x) be a monotone decreasing function which is positive

on (0, x−) and φ(φ(x)) = x. Assume that f is a population model with f(p) = p and that φ(x)

envelopes f(x). Then

lim
k→∞

fk(x) = p for all x ∈ (0,∞).

As Cull frequently mentions, a wonderful aspect of this theorem is that enveloping is easy

to understand and confirm if an appropriate enveloping function can be found. Therefore, a

biologist or ecologist can apply enveloping with only a limited knowledge of difference equations.

Other techniques like Liapunov theory are equally effective but it may be very difficult to
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Figure 2.6: Two plots of population models (blue) with enveloping functions (red).

determine an appropriate Liapunov function. Chapters 3 and 4 of this work continue this theme

of providing easily checked conditions that are sufficient to ensure the presence of a globally

attracting geometric cycle.

It may be noted that Cull’s Theorem was stated for maps with a fixed point at p = 1 but the

proof is easily adapted for an arbitrary positive fixed point p. Cull provided a method to build

enveloping functions based on linear fractional functions for several examples of population

models. However, this method required that the map be rescaled so that the fixed point was at

p = 1. For our purposes, where we may be considering several maps with different fixed points,

such a rescaling is not possible. We will therefore not use Cull’s construction for building

enveloping functions. However, we will often utilize enveloping functions provided in [11] that

have been altered to allow for a fixed point not at p = 1 without justification.
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CHAPTER 3

Enveloping and Trivial Geometric Cycles

In this chapter we give conditions on an n-periodic dynamical system, {f0, f1, . . . , fn−1}, of

population models that ensure the existence of a globally attracting trivial geometric cycle.

These results allow the fi in the periodic dynamical system to take any form but require that

they all share a common fixed point. The motivation for this result is Cushing and Henson’s

first conjecture.

3.1 Inheritance of Enveloping

A wonderful aspect of Cull’s Theorem is that enveloping is inherited under composition. That

is, if two or more maps share an enveloping function φ then their composition is enveloped by

φ as well. This result follows in Theorem 3.1.1 and can be used to understand the behavior of

periodic dynamical systems of population models.

Theorem 3.1.1. Let f0, f1 ∈ P share a common fixed point p. Suppose φ(x) is an enveloping

function of f0 and f1 that is monotone decreasing, φ(x) > 0 for x ∈ (0, x−), and φ(φ(x)) = x.

Then f0(f1(x)) and f1(f0(x)) are population models and are enveloped by φ(x).

Remark 3.1.1. Before beginning the proof we make a few comments concerning the nature

of x− in Definition 2.7.2. Note that either x− ∈ R and x− > p or x− = ∞. If x− is finite then

lim
x→0+

φ(x) = x− because φ is self-inversing. For the purpose of our proof we want to extend the
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domain of φ in the case that x− is finite using

φ̃(x) =


−x+ x− x ≤ 0

φ(x) 0 < x < x−

−x+ x− x ≥ x−
.

Notice that if φ envelopes a function f then the extension φ̃ still envelopes f and is monotone

decreasing and self-inversing.

Proof. The functions f0(x) and f1(x) are interchangeable for the sake of the proof and so

without loss of generality we will show f1(f0(x)) meets the conditions to be a population model

and enveloped by φ. If x− is finite then φ refers to the extension of φ. We explicitly state the

assumptions on f0 and f1 for convenience:

(A1) fi(0) = 0

(A2) fi(x) > 0 for x ∈ (0,∞)

(A3) fi(x) > x for x ∈ (0, p)

(A4) fi(x) < x for x ∈ (p,∞)

(A5) φ(x) > fi(x) for x ∈ (0, p)

(A6) φ(x) < fi(x) for x ∈ (p, x−)

for i = 0, 1. We must show that f1(f0(x)) meets conditions (A1)-(A6).

(a) By condition (A1) we have f1(f0(0)) = 0.

(b) Since fi(x) > 0 for x ∈ (0,∞) and for i = 0, 1 by (A2), we must have f1(f0(x)) > 0 for

x ∈ (0,∞).

(c) Let x < p so that f0(x) > x. If f0(x) < p then f1(f0(x)) > f0(x) > x by condition (A3). If

f0(x) > p we have x < f0(x) < φ(x) and by the monotone decreasing nature of φ(x),

φ(φ(x)) = x < φ(f0(x)) < φ(x).

By condition (A6) we have φ(f0(x)) < f1(f0(x)) and so

x < φ(f0(x)) < f1(f0(x)).

If f0(x) = p then f1(f0(x)) = p and so f1(f0(x)) = p > x. Therefore f1(f0(x)) > x for all

x ∈ (0, p).
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(d) Let x > p so that f0(x) < x. If f0(x) > p then f1(f0(x)) < f0(x) < x by condition (A4). If

f0(x) < p then φ(x) < f0(x) < x and so using the monotone decreasing nature of φ(x),

φ(x) < φ(f0(x)) < φ(φ(x)) = x.

Since f0(x) < p we have f1(f0(x)) < φ(f0(x)) < x by condition (A5). Finally, if f0(x) = p

then f1(f0(x)) = p and so x > f1(f0(x)).

(e) Let x < p. Then f0(x) < φ(x). If f0(x) < p then x < f0(x) < f1(f0(x)) and since φ(x) is

monotone decreasing

φ(f1(f0(x))) < φ(f0(x)) < φ(x).

Also, f1(f0(x)) < φ(f0(x)) by condition (A5) so f1(f0(x)) < φ(x).

If f0(x) > p we still have φ(x) > f0(x) by (A5) while f1(f0(x)) < f0(x) by condition (A4)

so f1(f0(x)) < φ(x). If f0(x) = p then f1(f0(x)) = p. Since φ(x) is monotone decreasing

p < φ(x) for all x ∈ (0, p) and so f1(f0(x)) < φ(x).

(f) Let x > p so that f0(x) > φ(x) and f0(x) < x. By the monotone decreasing of φ(x),

φ(x) < φ(f0(x)).

If f0(x) > p then φ(f0(x)) < f1(f0(x)) and so φ(x) < f1(f0(x)).

If f0(x) < p then f1(f0(x)) > f0(x) > φ(x). If f0(x) = p then f1(f0(x)) = p and by the

monotone decreasing of φ(x), φ(x) < p = f1(f0(x)).

Note that cases (a)-(d) ensure that f1(f0(x)) is a population model and (e)-(f) ensure enveloping

is maintained.

Figure 3.1 shows a plot of f0(x) = xe0.5(1−x), f1(x) = xe1.9(1−x), and their enveloping

function φ(x) = −x + 2. The figure represents a typical plot of functions satisfying conditions

(A1)-(A6) of Theorem 3.1.1 and many of the conditions satisfied by f1(f0(x)) can be realized

by a careful examination of Figure 3.1.

Theorem 3.1.1 can be extended to n functions inductively and the result is stated as the

following corollary.

Colrollary 3.1.1. If fi satisfies conditions (A1)-(A6) of Theorem 3.1.1 for i = 0, . . . n−1 then

Fi(x) =
(
f(i+n−1) mod n ◦ . . . ◦ fi mod n

)
(x)
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Figure 3.1: A plot of functions satisfying conditions (A1)-(A6) of Theorem 3.1.1 with their
enveloping function and composition.

satisfies conditions (A1)-(A6). That is, Fi(x) has a unique fixed point x = p, is a population

model, and is enveloped by φ.

We use Theorem 3.1.1, Cull’s Theorem, and Corollary 3.1.1 in the following section to

establish results concerning the behavior of periodic dynamical systems.

3.2 Global Attractors for Periodic Dynamical Systems of Pop-

ulation Models

Here we consider periodic dynamical systems of the form {f0, . . . fn−1} where each fi is a popu-

lation model enveloped by a monotone decreasing and self-inversing function, φ, and sharing a

fixed point, p. We will establish that such systems have {p} as a globally asymptotically stable

attractor.

Theorem 3.2.1. Suppose {f0, f1, . . . , fn−1} is a periodic dynamical system such that fi satisfies

conditions (A1)-(A6) of Theorem 3.1.1 so that fi(p) = p for i = 0, 1, . . . , n−1. Then the periodic
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dynamical system has a globally asymptotically stable trivial geometric cycle at x = p.

We give two proofs of the Theorem 3.2.1, one using Cull’s Theorem and another using a

result from [33].

Proof. By Corollary 3.1.1 the periodic dynamical system will have a unique fixed point at x = p.

That is, for i ∈ {0, 1, . . . , n− 1},

Fi =
(
f(i+n−1) mod n ◦ . . . ◦ fi mod n

)
: R+ → R+

we have Fi(p) = p and by Corollary 3.1.1, Fi(x) satisfies conditions (A1)-(A6) of Theorem 3.1.1.

We can equate Fi(x) with the cylinder map Fn(i, x) which is restricted to the ith fiber of the

cylinder space and has (i, p) as a fixed point. By Cull’s Theorem,

lim
k→∞

Fi(x) = p for all x ∈ (0,∞).

Since p is globally attracting, p is also stable for Fi(x) by the results of [32]. Then,

lim
k→∞

(Fn)k (i, x) = (i, p)

for all x ∈ (0,∞) and i ∈ {0, 1, . . . , n− 1}. Therefore (i, p) is a globally asymptotically stable

periodic point of F and so {p} is an attracting trivial geometric cycle of the periodic dynamical

system.

The next proof relies on Theorem 2.1 from [33] which requires the following result.

Lemma 3.2.1. If f is a function satisfying the properties of Theorem 3.1.1 then for x0 < p,

x0 < f2(x0) and for x0 > p, f2(x0) < x0.

Proof. Suppose f0 = f1 in Theorem 3.1.1 and denote f0 = f1 = f . Then

f0(f1(x)) = f1(f0(x)) = f2(x)

and the results of Theorem 3.1.1 guarantee that x < f2(x) for 0 < x < p and f2(x) < x for

x > p.

We now give the second proof of Theorem 3.2.1.
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Proof. For i ∈ {0, 1, . . . , n− 1} define

Fi =
(
f(i+n−1) mod n ◦ . . . ◦ fi mod n

)
: R+ → R+.

By Corollary 3.1.1, Fi(x) meets conditions (A1)-(A6) of Theorem 3.1.1. Thus, by Lemma 3.2.1,

F 2
i (x) > x for x < p and F 2

i (x) < x for x > p. Therefore, p is globally asymptotically stable for

Fi(x) by Theorem 2.1 from [33]. Then,

lim
k→∞

(Fn)k (i, x) = (i, p)

for all x ∈ (0,∞) and i ∈ {0, 1, . . . , n− 1}. Therefore (i, p) is a globally asymptotically stable

periodic point of F and so {p} is an attracting trivial geometric cycle of the periodic dynamical

system.

Example 3.2.1. Consider the 3-period dynamical system of Ricker type maps

S =
{
f0(x) = xe1−x, f1(x) = xe1.5(1−x), f2(x) = xe2(1−x)

}
.

Each map has a fixed point p = 1 and it has been established in [11] that φ(x) = −x+ 2 is an

enveloping function for each. The orbit of x0 = 0.5 can be seen in Figure 3.2. As anticipated,

the orbit rapidly approaches the fixed point p = 1. �

Example 3.2.2. Consider now the 2-periodic dynamical system of Smith-Slatkin maps, {f0, f1} ,
where

f0(x) =
10x

1 + 9x20/9
,

f1(x) =
11x

1 + 10x22/10
.

These functions have enveloping functions

φ0(x) =
11/9− (2/9)x

2/9 + (7/9)x
,

φ1(x) =
6/5− (1/5)x

1/5 + (4/5)x

respectively as prescribed in [11]. In this instance the maps share a fixed point at p = 1 and,

according to Cull’s Theorem, p = 1 is attracting for both maps. However, the periodic dynamical

system does not have {1} as a GAS trivial geometric cycle. If we consider the composition of

29



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

 

Figure 3.2: The orbit of a 3-periodic system S of Ricker maps f0 (blue), f1 (green), and f2
(purple). Each is enveloped by φ(x) = −x+ 2. S has trivial geometric cycle {1}. Here x0 = 0.5
and the first 50 iterations are shown.

the maps:

F (x) = f1(f0(x)) =
110x(

1 + 9x20/9
)(

1 + 1000
(
101/5

) (
x

1+9x20/9

)11/5) .
It can be confirmed that F (1) = 1 and using the chain rule F ′(1) = 1 so that x∗ = 1 is a

nonhyperbolic fixed point of the composition. Using a computer algebra system we can see

that F ′′(1) = 2/45 indicating that x∗ = 1 is a semistable fixed point of the composition (see

Theorem 1.5 in [16]).

If we consider orbits under the periodic dynamical system for seed values less than and

greater than the fixed point x∗ = 1, we can see the orbit moving towards or away from the fixed

point x∗ respectively:

O+(0.5) = {0.5, 1.707184, 0.561654, 1.605869, 0.601846 . . .} ,

O+(1.05) = {1.05, 0.951892, 1.050013, 0.951879, 1.050028 . . .} .
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In the orbits above, the odd entries are the orbit under F and the reader may note for a seed

of x0 = 0.5 the orbit under F increases monotonically but is bounded by the fixed point and

therefore converges. The orbit of the seed x0 = 1.05 also increases monotonically but without

bound.

The even entries in the above orbits represent the orbits under f0(f1(x)). Notice that the

even entries of the first orbit decrease monotonically and are bounded below by the fixed point.

Conversely, the even entries in the second are decreasing monotonically but are not bounded

by the fixed point.

Of particular interest in this example is that the functions f0 and f1 are so similar and the

fixed point p = 1 is attracting for each. However, while f0 and f1 have enveloping functions,

we claim they do not share an enveloping function and therefore Theorem 3.2.1 does not apply.

The following lemma aids our claim.

Lemma 3.2.2. If f ∈ C2(R+) is a population model with fixed point p, φ ∈ C2(R+) is a mono-

tone decreasing and self-inversing enveloping function for f , and f ′(p) = −1 then f ′(p) = φ′(p)

and f ′′(p) = φ′′(p).

Proof. To begin we show that if φ is a monotone decreasing and self-inversing enveloping func-

tion of f , then φ′(p) = −1. Using that φ′(x) < 0 and φ(φ(x)) = x and differentiating,

d

dx
[x] =

d

dx
[φ(φ(x))]

1 = φ′(φ(x))φ′(x)

1 = φ′(φ(p))φ′(p) = (φ′(p))2.

Thus, φ′(p) = −1 and so f ′(p) = φ′(p).

Let h(x) = φ(x) − f(x). We wish to show that h′′(p) = 0. For contradiction, suppose that

h′′(p) = ā for ā > 0. Then there exists ε > 0 and some a > 0 such that h′′(x) > a for

x ∈ (p, p+ ε). Then

h′(x) =

x∫
p

h′′(s) ds ≥
x∫
p

a ds = a(x− p).

Thus h′(x) > 0 for x ∈ (p, p+ ε). Consider now,

h(p+ ε)− h(p)

(p+ ε)− p =
h(p+ ε)

ε
< 0

by the definition of enveloping. By the Mean Value Theorem, there exists c ∈ (p, p + ε) such
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that h′(c) < 0 giving a contradiction since we know h′(x) > 0.

Now suppose for contradiction that h′′(p) = −b̄ for b̄ > 0. Then there exists η > 0 and some

b > 0 such that h′′(x) < −b for y ∈ (p− η, p). Then

−h′(y) =

p∫
y

h′′(s) ds ≤
p∫
y

−b ds = −b(p− y).

So h′(y) ≥ b(p− y) meaning h′(y) > 0 for y ∈ (p− η, p). Again consider,

h(p)− h(p− η)

p− (p− η)
=
−h(p− η)

η
< 0.

By the Mean Value Theorem, there exists c ∈ (p − η, p) such that h′(y) < 0. This is a contra-

diction. Therefore, h′′(p) = 0.

Recall, we claim that f0 and f1 do not share an enveloping function. Let φ0 and φ1 be any

monotone decreasing, self-inversing functions of f0 and f1 respectively.

Proof. (Of Claim) Note that f ′0(1) = −1 and f ′1(1) = −1. Thus f ′0(1) = φ′0(1) and f ′1(1) = φ′1(1)

meaning f ′′0 (1) = φ′′0(1) and f ′′1 (1) = φ′′1(1) by Lemma 3.2.2. However, f ′′0 (1) 6= f ′′1 (1) and so

φ′′0(1) 6= φ′′1(1). Therefore φ0 6= φ1.

�

We end this section with an example that demonstrates the power of Theorem 3.2.1 in the

application of periodic dynamical systems in which the maps have little in common.

Example 3.2.3. Consider the period-3 dynamical system of population models.

S =

{
f0(x) = xe1.5(1−x), f1(x) =

√
x, f2(x) =

4x

(1 + x)2

}
.

It can be confirmed that p = 1 is a fixed point and φ(x) = −x + 2 is an enveloping function

for each map in the periodic dynamical system. Therefore, Theorem 3.2.1 can be applied to

ensure that {1} is a globally attracting trivial geometric cycle for S. Notice, that there is no

need to consider the n-fold compositions for S to ensure that {1} is globally attracting since

the conditions for Theorem 3.2.1 apply to the maps that comprise the system.

Furthermore, the maps in S have little in common except for their fixed point and enveloping

function. The maps f0 and f2 are both bounded while f1 is monotone increasing and unbounded.

All three maps have different derivatives at the fixed point. Yet none of these properties need
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to be considered to ensure {1} is globally attracting. This is in contrast to Elaydi and Sacker’s

proof of the first Cushing and Henson conjecture. �
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CHAPTER 4

2-Periodic Systems of Population Models

In Chapter 3, we were concerned with finding conditions that assured the existence of a global

attractor for a periodic dynamical system as motivated by the first Cushing and Henson con-

jecture. However, we assumed that the maps had a common fixed point. Cushing and Henson’s

conjecture assumed that the carrying capacity of the Beverton-Holt model varied over time.

Since the Beverton-Holt model assumes the population’s carrying capacity is the fixed point

of the model, our simplifying assumption directly conflicts with Cushing and Henson’s motiva-

tions. In this chapter, we consider periodic dynamical systems in which the maps do not share

a common fixed point.

4.1 General Systems of Population Models

As the following example shows, a periodic dynamical system of maps that do not share a

common fixed point may exhibit complex dynamics.

Example 4.1.1. Here we consider a 2-periodic dynamical system {f0, f1} of Ricker type maps

where fi is given by

fi(x) = xe2−six, x ≥ 0.

Maps of this form have a fixed point pi = 2/si and f ′i(pi) = −1. We can envelope fi(x) with

φi(x) = −x+
4

si
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since φi is tangent to fi at pi, fi is concave down on (0, pi), and fi is concave up on (pi,∞).

Figure 4.1 shows the given periodic dynamical system with several values for si where the

maps fail to share an enveloping function. However, for s0 close to s1 the periodic dynamical

system still has what appears to be a globally asymptotically stable geometric 2-cycle (Fig-

ure 4.1a). However, as we increase s1 away from s0 the system appears to go through period

doubling route to chaos.

We note that in Figure 4.1b and Figure 4.1c the attracting geometric cycles cannot be

globally attracting by Theorem 2.5.2, since the order of the geometric cycles do not divide the

period of the system. In Chapter 5, it will be shown that as the value of s1 is increased, the

geometric 2-cycle in Figure 4.1a persists but becomes unstable. �
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(a) s1 = 0.6 and an attracting 2-cycle
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(c) s1 = 1.4 and an attracting 8-cycle
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(d) s1 = 1.6 and a potentially dense orbit.

Figure 4.1: A 2-periodic system of Ricker maps and their orbits. In all parts 5000 iterations
are done and the last 50 are shown. We fix s0 = 0.5 (black) and change s1 (blue).
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4.2 2-Periodic Dynamical Systems

The periodic dynamical system in Example 4.1.1 has a geometric cycle that appears to be

globally attracting for many choices of s0 and s1. In fact, we will show that enveloping can

be applied to ensure the existence of a globally asymptotically stable geometric 2-cycle for a

periodic dynamical system like that in Example 4.1.1. The following lemmas establish the exis-

tence of a unique geometric 2-cycle for a periodic dynamical system and provide conditions to

ensure that the cycle is locally attracting. Theorems 4.2.1 and 4.2.2 provide suitable conditions

to ensure that the unique geometric 2-cycle is globally attracting.

It is very important here to note the subtle difference between local attraction for the fixed

point of a map and local attraction for a geometric cycle of a periodic dynamical system. For

a periodic dynamical system the order of the composition of the maps affects the order of the

resulting cycle when such a cycle exists. As such, if {x∗1, x∗2} is an attracting geometric cycle for

{f0, f1} and x0 is near x∗2 then the resulting orbit may not approach {x∗1, x∗2}. Instead, we must

have x0 near x∗1 for the orbit to be attracted to the geometric cycle.

We will begin by providing conditions that ensure the composition of the maps from a 2-

periodic dynamical system has a fixed point within a certain interval. We will apply this result

to show that such a 2-periodic system has a geometric 2-cycle. The reader may want to refer

to Figure 4.2 which labels a plot with the appropriate variables for the following lemmas and

theorems.

Lemma 4.2.1. Suppose f0, f1 ∈ P with distinct fixed points p0 and p1 respectively and there

exists an open interval I with p0, p1 ∈ I such that f0(x) > f1(x) for x ∈ I. Suppose further

that f1 has a monotone decreasing, self-inversing enveloping function φ(x) and f1(x) < p1 for

x > p1. Then there exists q ∈ (0, p1) such that f0(q) = φ(q) and for every such q, f1(f0(x)) has

a fixed point in (q, p1).

Proof. We begin by proving the existence of q̄ such that φ(q̄) = f0(q̄). Notice that since

f0(x) > f1(x) for x ∈ I we have p0 > p1 and so f0(p1) > f1(p1) = p1. Define h(x) = f0(x)−φ(x)

which inherits continuity from f0 and φ. Then

lim
x→0+

h(x) = 0− lim
x→0+

φ(x) < 0,

and

h(p1) = f0(p1)− φ(p1) = f0(p1)− p1 > 0.

Applying the Intermediate Value Theorem to h we see there exists q̄ such that f0(q̄) = φ(q̄).
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Figure 4.2: A plot of functions f0(x) = xe2−1.8x and f1(x) = xe2−2x satisfying the conditions
of Lemmas 4.2.1 - 4.2.3 and Theorem 4.2.1. Here p1 = 1, p0 = 10/9, a ≈ 0.19, q ≈ 0.50, and
b ≈ 2.23.

The continuity of h gives the existence of a largest q̄. Let q be the largest such q̄ so that

f0(x) > φ(x) > f1(x) on (q, p1) and f0(x) > f1(x) on U = (q, p1) ∪ I.

By assumption we have f1(x) < p1 for x > p1 so f1(f0(p1)) < p1. Define g(x) = x−f1(f0(x))

and note that g inherits continuity from f0 and f1. Then g(p1) = p1 − f1(f0(p1)) > 0.

We have that q < p1 and since φ is monotone decreasing, φ(q) = f0(q) > p1. By sup-

position q = φ(φ(q)) = φ(f0(q)). Then since f0(q) > p1, φ(f0(q)) < f1(f0(q)) implying that

f1(f0(q)) > q. Then g(q) = q − f1(f0(q)) < 0.

Finally, by the Intermediate Value Theorem, there exists t ∈ (q, p1) such that g(t) = 0. That

is, f1(f0(x)) has a fixed point in (q, p1).

Having provided conditions to ensure that the composition of maps from a 2-periodic dy-

namical system will have a fixed point we move on to ensuring that the fixed point is attracting

for the composition.
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Remark 4.2.1. For the remainder of the section we use q to refer to the largest q̄ ∈ (0, p1)

such that f0(q̄) = φ(q̄) and t is the largest fixed point of f1(f0(x)) in (q, p1) as guaranteed by

Lemma 4.2.1 unless otherwise stated.

Lemma 4.2.2. Suppose f0 ∈ C0(R+)
⋂ C1(q, p1) and f1 ∈ C0(R+)

⋂ C1(f0(q, p1)) are as in

Lemma 4.2.1. Also suppose that

(i) −1 < f ′1(x) < 1 for x ∈ f0(q, p1) and

(ii) −1 < f ′0(x) < 1 for x ∈ (q, p1).

Then f0(x) > p1 for x ∈ (q, p0),∣∣∣∣ ddx [f1(f0(x))]

∣∣∣∣ < 1 for x ∈ (q, p1),

and t is the only fixed point of f1(f0(x)) in (q, p1).

Proof. To begin, we show that f0(x) > p1 for x ∈ (q, p0). Since q is the largest value in (0, p1)

such that φ(q) = f0(q) we must have f0(x) > φ(x) for x ∈ (q, p1). For x ∈ (q, p1),

φ(x) > φ(p1) = p1

because φ is monotone decreasing. Thus

p1 = φ(p1) < φ(x) < f0(x).

Then for x ∈ (p1, p0),

p1 < x < f0(x)

because f0 is a population model and p0 is its unique fixed point. Therefore f0(x) > p1 for

x ∈ (q, p0), which was the first desired result of the lemma.

The Chain Rule gives
d

dx
[f1(f0(x))] = f ′1(f0(x))f ′0(x).

Let x ∈ (q, p1) so that −1 < f ′0(x) < 1 by (i) and −1 < f ′1(f0(x)) < 1 by (ii). Thus we arrive

at the second desired result of the lemma,∣∣∣∣ ddx [f1(f0(x))]

∣∣∣∣ =
∣∣f ′1(f0(x))f ′0(x)

∣∣ < 1 for x ∈ (q, p1).

If t is not a unique fixed point in (q, p1) then there exists s ∈ (q, p1) such that f1(f0(s)) = s
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and s < t. Observe that s, t ∈ (q, p1) so f ′0(s) and f ′0(t) are defined. Also, since f0(s), f0(t) > p1,

f ′1(f0(s)) and f ′1(f0(t)) exist. Consider,

f1(f0(t))− f1(f0(s))
t− s =

t− s
t− s = 1

so by the Mean Value Theorem there exists c ∈ (s, t) such that d
dx [f1(f0(c))] = 1. Since we

know that ∣∣∣∣ ddx [f1(f0(x))]

∣∣∣∣ < 1

this is a contradiction and so t is unique.

The next example shows that the hypotheses of Lemma 4.2.2 are not necessary to obtain a

geometric 2-cycle.

Example 4.2.1. Consider the 2-periodic dynamical system {f0, f1} where

f0(x) = xe2−1.5x and f1(x) = xe2−2x.
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Figure 4.3: The 2-periodic system of Ricker maps from Example 4.2.1 defying Lemma 4.2.2
but displaying an attracting 2-cycle.
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From Example 4.1.1 we can see that

f0(4/3) = 4/3 = p0, f1(1) = 1 = p1, and φ1(x) = −x+ 2.

The unique solution to φ1(x) = f0(x) is q ≈ 0.3917. Here the fixed point of f1(f0(x)) is

t ≈ 0.4350 and notice that q < t < p1. We can also check that
∣∣ d
dx [f1(f0(t))]

∣∣ ≈ 0.8158.

However, f ′0(t) = 1.3372 which defies the conditions of Lemma 4.2.2. Figure 4.3 shows the

periodic dynamical system after 300 iterations with x0 = 0.75. The geometric 2-cycle that

appears to be globally attracting is {t = 0.4350, 1.6738}. �

Having established an attracting fixed point for f1(f0(x)) we proceed to using the result to

show that the periodic dynamical system {f0, f1} has a locally attracting geometric 2-cycle.

Lemma 4.2.3. Consider the periodic dynamical system {f0, f1} where f0 and f1 are as in

Lemma 4.2.1 and Lemma 4.2.2. Then {f0, f1} has a locally attracting geometric 2-cycle.

Proof. Let x∗1 be the fixed point guaranteed by Lemma 4.2.1 so that

f1(f0(x
∗
1)) = x∗1.

Then by Lemma 4.2.2 ∣∣∣∣ ddx [f1(f0(x
∗
1))]

∣∣∣∣ < 1.

Denote f0(x
∗
1) = f0(f1(f0(x

∗
1))) = x∗2 and note that f1(x

∗
2) = x∗1. Then

f0(f1(x
∗
2)) = f0(x

∗
1) = f0(f1(f0(x

∗
1))) = x∗2

meaning x∗2 is a fixed point of f0(f1(x)).

Using the chain rule,

d

dx
[f1(f0(x

∗
1))] = f ′1(f0(x

∗
1))f

′
0(x
∗
1) = f ′1(x

∗
2)f
′
0(x
∗
1)

and
d

dx
[f0(f1(x

∗
2))] = f ′0(f1(x

∗
2))f

′
1(x
∗
2) = f ′0(x

∗
1)f
′
1(x
∗
2).

Observe that x∗2 = f0(x
∗
1) and x∗1 ∈ (q, p1). Thus x∗2 ∈ f0(q, p1) and f ′1(x

∗
2) exists. Also,

q < f1(x
∗
2) = f1(f0(x

∗
1)) = x∗1 < p1
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and so f ′0(f1(x
∗
2)) exists. Thus

∣∣ d
dx [f0(f1(x

∗
2))]
∣∣ < 1 by assumptions (i) and (ii) of Lemma 4.2.2.

Since each 2-fold composition is locally attracted to a fixed point, the periodic dynamical system

is locally attracted to a geometric 2-cycle.

We need a final preliminary lemma to ensure a 2-periodic system of population models will

have a globally asymptotically stable geometric 2-cycle.

Lemma 4.2.4. Suppose f0 and f1 are population models satisfying the conditions of Lemma 4.2.3.

Then there exists a ∈ (0, q) such that f0(a) = p1.

Proof. The enveloping function φ is monotone decreasing and φ(p1) = p1. Since q < p1,

φ(q) > p1. Also, f0(0) = 0 since f0 is a population model. Define h(x) = f0(x) − p1 so that

h(0) < 0 and h(q) > 0. By the Intermediate Value Theorem, there exists a ∈ (0, q) such that

f0(a) = p1.

Remark 4.2.2. For Theorems 4.2.1 and 4.2.2 let a be the largest point in (0, q) such that

f0(a) = p1 which exists by continuity.

Theorem 4.2.1. Suppose f0 and f1 are population models satisfying the conditions of Lem-

mas 4.2.1-4.2.4. Suppose there is only one a ∈ (0, q) such that f0(a) = p1. Suppose there exists

b̄ ∈ (p1,∞) such that f1(b̄) = a and let b be the least such b̄. Suppose further that

(i) max
x∈R+

f0(x) ≤ b and max
x∈R+

f1(x) ≤ b,

(ii) f1(x) < p1 on (p1,∞),

(iii) f1(f0(x)) > q on [q, b],

(iv) φ(x) > f0(x) for x ∈ (0, q) and φ(x) < f0(x) for x ∈ (p0,∞).

Then the periodic dynamical system {f0, f1} has a globally asymptotically stable geometric 2-

cycle.

Assumption (ii) of Theorem 4.2.1 is actually already assumed in Lemma 4.2.1. However,

the need for the assumption arises explicitly in the proof and so it is restated here for the

reader’s convenience. Also, assumption (iii) is stated here in a manner that is convenient for

the proof. Assumption (iii) could be restated as f1(x) > q for x ∈ f0([q, b]) and checked without

considering the composition of the functions f0 and f1.
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Proof. Let F (x) = f1(f0(x)). By Lemma 4.2.3, {f0, f1} has a locally attracting geometric 2-

cycle with one point in (q, p1). To begin we will show that for x0 ∈ (0,∞) there exists i ∈ Z+

such that F i(x0) ∈ (q, p1). Note that F must have a periodic point other than t for {f0, f1} to

have a geometric cycle other than {t, f0(t)}.

(a) Suppose x0 ∈ (0, a]. Then f0(x0) > x0 because f0 is a population model and a < p0.

Because a is unique, f0(x) < p1 for x ∈ (0, a) and since f0(a) = p1 we have

x0 < f0(x0) ≤ p1.

Then

x0 < f0(x0) ≤ f1(f0(x)) = F (x0)

because f1 is a population model and f0(x0) ≤ p1. So either F i(x0) > a for some i or

lim
i→∞

F i(x0) = L and L ≤ a. If lim
i→∞

F i(x0) = L then F (L) = L because F is continuous.

But, we must have F (L) > L because L ≤ a. So the orbit of x0 gets larger than a and in fact

cannot converge to a value in the interval (0, a]. Also note that F i(x0) ≤ b by assumption

(i).

(b) Suppose x0 ∈ (a, q]. Since f0(x) < φ(x) on (0, q) we have f0(x0) < φ(x0) for x0 ∈ (a, q) and

f0(x) > p1 on (a, q] by the uniqueness of a. Then

p1 < f0(x0) ≤ φ(x0).

Since φ is monotone decreasing and self-inversing we have

x0 = φ(φ(x0)) ≤ φ(f0(x0)).

By the definition of enveloping and since f0(x0) > p1 we also have

φ(f0(x0)) < f1(f0(x0)) < p1.

Thus, x0 < F (x0) ≤ p1. So either there exists i such that F i(x0) > q or lim
i→∞

F i(x0) = L

and L ≤ q. The second case cannot happen by an argument identical to that in the previous

interval. Thus there exists i such that F i(x0) ∈ (q, p1) for x0 ∈ (a, q]. Since x0 < F (x0) we

have precluded a point of period 2 for F in (0, q].

(c) Suppose x0 ∈ [p1, p0]. By a result of Lemma 4.2.2 and since f0(x) ≤ b,

p1 < f0(x0) ≤ b
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on [p1, p0]. Thus by (ii) and (iii),

a < q < F (x0) < p1

and the orbit has either entered the desired interval, (q, p1), or the interval (a, q] which was

the second case. In the second case we knew that the orbit stayed in (a, q] until it entered

(q, p1] so it is not possible that {f0, f1} has a cycle with points in (a, q] ∪ [p1, p0].

(d) Suppose x0 ∈ (p0, b]. If f1(x) < p0 for all x ∈ (0,∞) then F (x0) = f1(f0(x0)) < p0 and

q < F (x0) by (iii). In this instance, the orbit enters case (b) or case (c) after one iteration.

If f0(x0) ≥ p1 then F (x0) ≤ p1 by (ii) and again q < F (x0) by (iii). In this instance, the

orbit enters the desired interval after one iteration.

If f0(x0) < p1 then either q < F (x0) ≤ p0 by (ii), entering the desired interval or case (c),

or F (x0) > p0. Note that in the latter case we have x0 > p0, f0(x0) < p1, and F (x0) > p0.

By (iv),

φ(x0) < f0(x0)

and so

φ(x0) < f0(x0) < p1 < x0.

Applying φ again and using that φ is monotone decreasing and self-inversing,

φ(x0) < φ(p1) = p1 < φ(f0(x0)) < x0.

Since f0(x0) < p1 and φ is an enveloping function for f1,

F (x0) = f1(f0(x0)) < φ(f0(x0)) < x0.

Then the orbit of x0 under F is decreasing and cannot have a limit in (p0, b] by an argument

similar to those in previous cases. Thus there exists i ∈ Z+ such that F i(x0) < p0. Noting

that q < F (x0) by (iii) we have that the orbit enters the desired interval or case (c).

(e) Finally, suppose x0 ∈ (b,∞). Since f1(x) ≤ b for all x ∈ (0,∞), F (x0) ≤ b forcing the orbit

into a previous case after one iteration.

Knowing now that all orbits enter (q, p1) we now show that

lim
i→∞

F i(x0) = t

for x0 ∈ (q, p1). From the results of Lemma 4.2.2 we have that f0(x0) > p1 and so F (x0) < p1.
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Also, by assumption (iii) of the theorem, F (x0) > q. Thus the forward orbit of x0 under F is

contained within (q, p1).

From Lemma 4.2.2, ∣∣F ′(x0)∣∣ < 1.

Let t be the fixed point of F in (q, p1) as in Lemma 4.2.1 and x ∈ (q, p1). We have

|F (t)− F (x)| < |t− x|

by the Mean Value Theorem. Thus any orbit in (q, p1) converges to t. Therefore t is a globally

attracting fixed point of F (x) and by the arguments of Lemma 4.2.3, {f0, f1} has a globally

attracting geometric 2-cycle.

Figure 4.2 shows the population models f0(x) = xe2−1.8x and f1(x) = xe2−2x and the

enveloping function φ(x) = −x + 2 that satisfy all the conditions of Lemma 4.2.1 - 4.2.3 as

well as the conditions of Theorem 4.2.1. The results of the theorem can be realized by a careful

analysis of the plot.

The conditions of Theorem 4.2.1 are sufficient to ensure the existence of a globally attract-

ing geometric 2-cycle for a period-2 system of population models but the conditions are not

necessary as the following example shows.

Example 4.2.2. Consider the period-2 dynamical system

S =
{
f0(x) = xe4−(2.1+2e2−2.1x)x, f1(x) = xe2−1.9x.

}
The system, S, has a globally attracting geometric 2-cycle as seen in Figure 4.4 and satisfies

the conditions of Lemmas 4.2.1 through 4.2.3 with φ(x) = −x+ 40
21 . However, there exists more

than one x ∈ (0, q) such that f0(x) = p1 defying the conditions of Theorem 4.2.1. �

The reader may note that Theorem 4.2.1 assumes f1(x) = a for some x > p1. This condition

may not hold if f1(x) > a for x > p1. As such, we develop the following result to handle this

situation.

Theorem 4.2.2. Suppose f0 and f1 are population models satisfying the conditions of Lem-

mas 4.2.1-4.2.4. Suppose there is only one a ∈ (0, q) such that f0(a) = p1. Suppose also

(i) a < f1(x) < p1 on (p1,∞),

(ii) f1(x) > q on f0([q, p1]),
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Figure 4.4: Plots of f0 (green) and f1 (blue) and the globally attracting 2-cycle for {f0, f1} is
Example 4.2.2.

(iii) φ(x) > f0(x) for x ∈ (0, q) and φ(x) < f0(x) for x ∈ (p0,∞).

Then the periodic dynamical system {f0, f1} has a globally attracting geometric 2-cycle.

Proof. The proof for Theorem 4.2.2 is identical to that for Theorem 4.2.1 when x0 ∈ (0, q]. We

therefore omit these cases from the proof. Again, we let F (x) = f1(f0(x)).

(a) Suppose x0 ∈ [p1, p0]. By the first result of Lemma 4.2.2, p1 < f0(x) for x ∈ [p1, p0). Also,

f0(p0) = p0 > p1 so f0(x) > p1 for x ∈ [p1, p0]. By assumption (i), a < f1(x) < p1 for

x > p1. Thus,

a < F (x0) < p1

and the orbit has entered the desired interval or (a, q]. From the proof of Theorem 4.2.1,

that an iteration was not greater than p1 so it is not possible that {f0, f1} has a cycle with

points in (a, q] ∪ [p1, p0].

(b) Suppose x0 ∈ (p0,∞). If f1(x) < p0 for all x ∈ (0,∞) then F (x0) < p0 for all x ∈ (0,∞).

In this instance, the orbit enters the desired interval or (0, q) ∪ [p1, p0] after one iteration.

We may have f1(x0) ≥ p0. If f0(x0) ≥ p1 then a < F (x0) ≤ p1 by (i) and the orbit has

entered the desired interval or (a, q] after one iteration.

45



If f1(x0) ≥ p0 and f0(x0) < p1 then either F (x0) ≤ p0 or F (x0) > p0. In the former case

we have a < F (x0) ≤ p0 and the orbit has entered the desired interval or (a, q] ∪ [p1, p0].

In the latter case, when f1(x0) ≥ p0, f0(x0) < p1, and F (x0) > p0 we have

φ(x0) < f0(x0) < p1 < x0

by (iii). Applying φ again and using the monotone decreasing nature of φ,

φ(x0) < φ(p1) = p1 < φ(f0(x0)) < φ(φ(x0)) = x0.

Since f0(x0) < p1 < p0 we have

φ(f0(x0) > f1(f0(x0)) = F (x0)

by the definition of enveloping. Thus,

F (x0) < φ(f0(x0)) < x0.

So either there exists i ∈ Zi such that F i(x0) < p0 or lim
i→∞

F i(x0) = L for L ∈ (p0,∞). In

the latter case, F (L) = L and L > p0 because F is continuous. However, we have shown

that F (L) < L for L ∈ (p0,∞). Also, note that a < F i(x0) for x0 ∈ (p1,∞) by (i) so there

cannot be a cycle with points in (p0,∞).

The remainder of the proof is identical to that for Theorem 4.2.1.

Since f1 is assumed to be continuous and f1(x) < p1 for x ∈ (p1,∞) in Lemma 4.2.3, either

there exists x > p1 such that f1(x) = a or f1(x) > a for all x > p1. Therefore, Theorems 4.2.1

and 4.2.2 give conditions for a globally asymptotically stable geometric 2-cycle for either case

for f1 and therefore for many periodic dynamical systems {f0, f1} meeting the conditions of

Lemma 4.2.3.

Lemma 4.2.5. Suppose f0, f1 ∈ C1(R+)∩P satisfy the conditions of Lemma 4.2.3. Suppose f0

is nondecreasing on (0, q), −1 < f ′1(x) < 0 for x ∈ f0(q, p1), and −1 < f ′0(x) < 0 for x ∈ (q, p1).

Then f1(f0(x)) > q for x ∈ [q, p1].

Proof. If −1 < f ′0(x) < 0 for x ∈ (q, p1) then f0 is decreasing on (q, p1) and so f0(p1) < f0(q).

Then since −1 < f ′1(x) < 0 for x ∈ (f0(p1), f0(q)),

f1(f0(q)) < f1(f0(x)) ∀ x ∈ (q, p1).
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Since f0(q) = φ(q) > p1 we also have

φ(f0(q)) < f1(f0(q)),

giving

q = φ(φ(q)) = φ(f0(q)) < f1(f0(q)) < f1(f0(x)) ∀ x ∈ (q, p1).

Colrollary 4.2.1. Suppose f0 and f1 are as in Lemma 4.2.3 and Lemma 4.2.5 and there exists

unique a ∈ (0, p1) such that f0(a) = p1. If

• there exists a smallest b > p1 such that f1(b) = a and max
x∈R+

f0(x) ≤ b or

• f1(x) > a for all x > p1.

Then {f0, f1} has a globally asymptotically stable geometric 2-cycle.

Proof. Lemma 4.2.5 together with the conditions given in the corollary guarantee that {f0, f1}
satisfy all the conditions of Theorem 4.2.1 or Theorem 4.2.2.

The preceding results have all assumed that f1, the “smaller” population model, has an

enveloping function while f0 may not. We change now to considering systems in which f0 is

enveloped while f1 may not be. The results are similar in general but the respective proofs are

different.

Here we redefine q ∈ (p0,∞) as the smallest value such that φ(q) = f1(q). When φ was

the enveloping function of f1 then there is always a point of intersection of φ and f0. However,

when φ is the enveloping function of f0 there may not be a point of intersection between φ and

f1. We restrict ourselves here to considering cases when such a point of intersection does exist.

Remark 4.2.3. For the remainder of the section we use q to refer to the smallest q ∈ (p0,∞)

such that f1(q) = φ(q).

Lemma 4.2.6. Suppose f0, f1 ∈ P with fixed points p0 and p1 respectively and there exists open

interval I with p0, p1 ∈ I such that f0(x) > f1(x) for x ∈ I. Suppose further that f0(x) has

a monotone decreasing, self-inversing enveloping function φ(x) and f0(f1(p0)) > p0. Suppose

there exist q ∈ (p0,∞) be such that φ(q) = f1(q). Then f0(f1(x)) has a fixed point in (p0, q).

Proof. Since p0, p1 ∈ I and f0(x) > f1(x) on I we must have p0 > p1. By supposition,

f1(p0) < f0(p0) < p0 and f0(f1(p0)) > p0. Define g(x) = x− f0(f1(x)). Then g(p0) < 0.
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Consider now that since φ(q) = f1(q) we have

φ(φ(q)) = φ(f1(q)).

Since φ is monotone decreasing we must have φ(q) < φ(p0) = p0 and so φ(q) = f1(q) < p0.

Thus, by the definition of enveloping,

f0(f1(q)) < φ(f1(q)) = φ(φ(q)) = q.

So g(q) > 0.

Finally, by the Intermediate Value Theorem, there exists t ∈ (p0, q) such that g(t) = 0 and

so f0(f1(x)) has a fixed point in (p0, q).

For the remainder of the section we use t to refer to the smallest fixed point of f0(f1(x)) in

the interval (p0, q).

Lemma 4.2.7. Suppose f1 ∈ C0(R+)
⋂ C1(p0, q) and f0 ∈ C0(R+)

⋂ C1(f1(p0, q)) are as in

Lemma 4.2.6 so that f0(f1(x)) has at least one fixed point t ∈ (p0, q). Also suppose that

(i) |f ′1(x)| < 1 for x ∈ (p0, q) and

(ii) |f ′0(x)| < 1 for x ∈ f1(p0, q).

Then ∣∣∣∣ ddx [f0(f1(x))]

∣∣∣∣ < 1 for x ∈ (p0, q)

and t is the unique fixed point of f0(f1(x)) in (p0, q).

Proof. By the chain rule,
d

dx
[f0(f1(x))] = f ′0(f1(x))f ′1(x).

For x ∈ (p0, q), |f ′0(f1(x))| < 1 and |f ′1(x)| < 1. Therefore,∣∣∣∣ ddx [f0(f1(x))]

∣∣∣∣ < 1 for x ∈ (p0, q).

Now suppose for contradiction that there exists s ∈ (p0, q) such that f0(f1(s)) = s and

s > t. Then
f1(f0(s))− f1(f0(t))

s− t =
s− t
s− t = 1.
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By the Mean Value Theorem there exists c ∈ (t, s) such that d
dx [f0(f1(c))] = 1. This contradicts

that
∣∣ d
dx [f0(f1(x))]

∣∣ < 1 and so t is a unique fixed point in (p0, q).

Lemma 4.2.8. Consider the periodic dynamical system {f0, f1} where f0 and f1 are as in

Lemmas 4.2.6 and 4.2.7. Then {f0, f1} has a locally attracting geometric 2-cycle.

Proof. The proof is identical to that of Lemma 4.2.3 with the roles of f0 and f1 reversed.

Theorem 4.2.3. Suppose f0 and f1 are as in Lemmas 4.2.6-4.2.8. Suppose further

(i) p0 < f0(f1(x)) on [p1, q],

(ii) f0(f1(x)) < q on [0, q],

(iii) φ(x) > f1(x) for x ∈ (0, q) and φ(x) < f1(x) for x ∈ (q,∞).

Then {f0, f1} has a globally asymptotically stable geometric 2-cycle.

Proof. Define F (x) = f0(f1(x)). To begin we will show that for all x ∈ R+, there exists i ∈ Z+

such that F i(x) ∈ (p0, q).

(a) Suppose x0 ∈ (0, p1). If f1(x0) < p0 then x0 < f1(x0) < F (x0) since f0 and f1 are population

models. If f1(x0) = p0 then F (x0) = p0 > x0.

Finally, if f1(x0) > p0 then F (x0) < f1(x0) because f0 is a population model. By the

definition of enveloping and (iii),

φ(f1(x0)) < f0(f1(x0)) = F (x0) < f1(x0) < φ(x0). (4.1)

Since φ is monotone decreasing and self-inversing we apply it to (4.1) to get,

x0 = φ(φ(x0)) < φ(f1(x0)) < φ(F (x0)) < f1(x0). (4.2)

So

x0 < φ(f1(x0)) < F (x0) < f1(x0)

by (4.1) and (4.2). Noting that p1 is not fixed under F , for all x0 ∈ (0, p1] there exists

i ∈ Z+ such that F i(x0) > p1 and by (ii) F i(x0) < q.

(b) Suppose x0 ∈ [p1, p0]. By assumption (i), p0 < F (x0) < q.
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(c) Suppose x0 ∈ (q,∞). Since f1 is a population model and q > p1, f1(x0) < x0. If f1(x0) > p0

then F (x0) < f1(x0) < x0 because f0 is a population model. If f1(x0) = p0 we have

F (x0) = p0 which was considered in case (b). If f1(x0) < p0 we have F (x0) > f1(x0)

because f0 is a population model and

φ(x0) < f1(x0) < F (x0) < φ(f1(x0)).

Thus we may apply φ again to see

f1(x0) < φ(F (x0)) < φ(f1(x0)) < x0.

Recall, that since f1(x0) < p0 we know f1(x0) < F (x0) giving,

f1(x0) < F (x0) < φ(f1(x0)) < x0.

Thus, either the orbit enters the desired interval after one iteration or F (x0) < x0. Since q

is not a fixed point of F , for all x0 ∈ (q,∞) there exists i ∈ Z+ such that F i(x0) < q.

Having that there exists i ∈ Z+ such that F i(x0) ∈ (p0, q) for all x0 ∈ R+ we now show that

lim
i→∞

F i(x) = t

for x ∈ (p0, q). By assumption (i) we have that p0 < F (x0) < q for x0 ∈ (p0, q) so the forward

orbit of x0 under F is contained within (p0, q).

By Lemma 4.2.7,

|F ′(x)| < 1.

Let t be the fixed point of F (x) in (p0, q) as in Lemma 4.2.6 and x ∈ (p0, q). Then by the Mean

Value Theorem,
|F (x)− F (t)|
|x− t| < 1

and so

|F (x)− F (t)| < |x− t|.

Thus any orbit with initial value in (p0, q) converges to t. Therefore, t is a globally attracting

fixed point of F (x) and arguments similar to those of Lemma 4.2.8, {f0, f1} has a globally

asymptotically stable geometric 2-cycle.

Remark 4.2.4. The reader may note that condition (iii) in Theorem 4.2.3 is very similar to

enveloping. This is actually the inspiration for “weak enveloping” that appears in Chapter 5.
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Like with Theorem 3.2.1, the main benefit of Theorems 4.2.1, 4.2.2, and 4.2.3 is that they do

not require the functions in {f0, f1} to be composed to determine the behavior of the system.

All of the conditions require checking conditions on f0 and f1 separately.

4.3 General Period-n Systems

The results of the preceding sections are restrictive in that they either put severe conditions on

the maps of a period-n dynamical system or they only apply to a period-2 system. Unfortunately,

for a period-n system of population models in which the maps do not share a fixed point, it

is unclear whether or not enveloping can be applied. Such systems often exhibit an attracting

geometric cycle with the same period as that of the system and the individual maps may have

enveloping functions but it is unclear what role the enveloping functions may play. The following

example gives such a system.

Example 4.3.1. Let S = {f0, f1, f2, f2, f4} be a 5-periodic system of maps referred to by Cull

as Hassel type maps in [11]. Let

f0(x) =
21.75x

(1 + 0.85x)1.75
, f1(x) =

2x

(1 + x)
, f2(x) =

23x

(1 + 1.1x)3
,

f3(x) =
20.9x

(1 + 0.9x)0.9
, f4(x) =

22.5x

(1 + 1.2x)2.5
.

Figure 4.5 shows an attracting geometric 5-cycle for S. In [11], an enveloping function was

established for models of this form. However, it is not clear if enveloping plays any role in this

example. �

It may be possible to establish the existence of a globally attracting geometric n-cycle for

a period-n dynamical system of population models using only theorems for period-2 systems.

The result of the next theorem is very useful in establishing the existence of such an attractor.

Theorem 4.3.1. Suppose {f0, . . . , fn−1} is a periodic dynamical system of population models

with a positive, globally asymptotically stable geometric n-cycle. Then

(f(i+n−1) mod n ◦ . . . ◦ f(i+1) mod n ◦ fi mod n)(x)

is a population model for i = 0, 1, . . . , n− 1.
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Figure 4.5: The attracting geometric 5-cycle for S in Example 4.3.1.

Proof. By the hypothesis of the theorem, fj is a population model for j = 0, 1, . . . , n − 1,

fj(0) = 0 and each fj is continuous. Define

Fi(x) = (f(i+n−1) mod n ◦ . . . ◦ f(i+1) mod n ◦ fi mod n)(x).

By continuity of each fj there exists εi > 0 such that Fi(x) > x for 0 < x < εi. Since

{f0, . . . , fn−1} has a positive, globally asymptotically stable geometric n-cycle, Fi(x) has a

globally asymptotically stable fixed point x∗i which must be unique. As such we must have

Fi(x) > x for 0 < x < x∗i . Suppose for contradiction that there exists y ∈ (x∗i ,∞) such that

Fi(y) > y. Then either there exists x̂ ∈ (x∗i ,∞) such that Fi(x̂) = x̂ which is a contradiction or

Fi(x) > x for all x ∈ (x∗i ,∞). However, if Fi(x) > x for all x ∈ (x∗i ,∞) then the orbit of such

an x cannot converge to x∗i which contradicts the global attracting of x∗i . Hence Fi(x) < x for

x > x∗i . Therefore, Fi(x) is a population model.

The benefit of Theorem 4.3.1 is that if two population models f0 and f1 meet the conditions

of Theorems 4.2.1, 4.2.2, or 4.2.3 (or any theorem that establishes the existence of a globally

attracting geometric 2-cycle for a 2-periodic system) then their compositions f0(f1(x)) and

f1(f0(x)) are population models and there are bounds on the locations of the fixed points.

We now outline a technique with a general example that uses Theorem 4.3.1 to establish the

existence of a globally attracting n-cycle for a period-n dynamical system. We restrict ourselves
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to a period-3 system but the method generalizes to any integer n.

Let S = {f0, f1, f2}. If it can be established that {f0, f1} has a globally attracting 2-cycle

using any of Theorems 4.2.1- 4.2.3 then f0(f1(x)) and f1(f0(x)) are both population models by

Theorem 4.3.1. Define F (x) = f1(f0(x)) and consider now {F, f2}. If a theorem can be applied

to ensure that {F, f2} has a globally attracting geometric 2-cycle {t0, t2} then we have

F (t0) = t2 and f2(t2) = t0.

Since F (t0) = f1(f0(t0)) we can define t1 = f0(t0). Thus,

f0(t0) = t1, f1(t1) = t2, andf2(t2) = t0

and S must have a geometric 3-cycle. Furthermore, since {t0, t2} was globally attracting for

{F, f2}, the geometric 3-cycle {t0, t1, t2} must be globally attracting for S.

The method outlined here is relatively cumbersome. The conditions necessary for the the-

orems established in this chapter are restrictive and may be difficult to check. However, if

improved theorems for determining the existence of a globally attracting 2-cycle can be found

then the outlined method can be applied to a wide range of n-periodic dynamical systems to

ensure the existence of globally attracting geometric cycle.
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CHAPTER 5

n-Periodic Dynamical Systems

It is common practice in the study of autonomous difference equations (or of dynamical systems

in general) to consider the behavior of a dynamical system that is in some way close to a

system whose behavior is well understood. With this in mind, we begin now to analyze periodic

dynamical systems that are perturbations of a system whose behavior is known. Of primary

interest are periodic dynamical systems similar to a periodic dynamical system with a geometric

cycle and periodic systems whose maps are close to an enveloped population model.

A typical definition of two maps f, g : X → X being C0 close on a set Y ⊂ X would be f

and g are C0-ε close on Y if d(f(x), g(x)) < ε for all x ∈ Y (see [21]). With this definition, f

and g are assumed to be identical on X \ Y so that the dynamics under g are identical to the

dynamics of f on X \ Y and the dynamics are similar on Y .

In this work, however, we have properties of population models and concepts like enveloping

to help describe global dynamics and therefore do not require such a restrictive definition.

Furthermore, we desire a result that has application to the first Cushing and Henson conjecture

which does not require the maps to be identical outside of some interval. Therefore, we desire a

definition that ensures a perturbation, g, of a map, f , is close to f on an interval of interest, Y ,

and allow g to differ from f outside of Y . Since our work general concerns population models,

we will restrict X = R and let f, g ∈ C0(R). Given a compact interval Y ⊂ R, define the

equivalence relation ∼ on C0(R) by

f ∼ g if and only if f(x) = g(x) for all x ∈ Y.
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Then we define a metric d on the space of equivalence classes, C0(R)/ ∼, by

d([f ], [g]) = max
Y
|f(x)− g(x)|.

We say f and g are C0-ε close on Y if d([f ], [g]) < ε where it should be understood that the

maximum is taken over Y . Furthermore, we refer to a C0-ε neighborhood of f on Y to mean

all g ∈ C0(R) such that d([f ], [g]) < ε. The benefit of this construction is that it is identical to

the definition from [21] on the interval Y allowing us to use the local results, but this definition

allows us to consider a much larger space of functions.

We will also have need to consider maps that have derivatives that are close on a compact set

Y . Let Y ⊂ Z ⊂ R where Z is open and suppose f, g ∈ C1(Z). We again define an equivalence

relation, ∼, on C1(Z) by

f ∼ g if and only if f(x) = g(x) and f ′(x) = g′(x) for all x ∈ Y.

Then define metric d1 on C1(Z)/ ∼ by

d1([f ], [g]) = max

{
d([f ], [g]),max

Y
|f ′(x)− g′(x)|

}
.

We then say f and g are C1-ε close on Y if d1([f ], [g]) < ε. Notice that if g is a C1-ε perturbation

of f on a set Y then g must also be a C0-ε perturbation of f on Y .

We move now to a preliminary construction necessary for the rest of the chapter. In the

preceding chapters, we have adhered to Definition 2.7.2 when working with enveloping. That is,

we have allowed for the possibility that an enveloping function φ is not defined on all of R as was

often the case in [11]. It is more convenient in the following sections for enveloping functions to

be continuous on all of R. As such, we give a method to extend any monotone decreasing and

self-inversing enveloping function, φ, to all of R so that we may assume enveloping functions

are continuous on R.

In accordance with Definition 2.7.2 and our needs, assume that φ is a monotone decreasing

and self-inversing enveloping function for f ∈ P with f(p) = p so that φ : I ⊇ (0, x−) → R.

Recall that if x− is finite than an appropriate monotone decreasing and self-inversing extension

φ̃ was provided in Remark 3.1.1. So suppose x− = ∞ and note that this implies there exists

a ∈ [0, p) such that lim
x→a+

φ(x) =∞. Let

M = max
[0,p]

f(x).

By the continuity of φ and the Intermediate Value Theorem, there exists γ ∈ [0, p] such that
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φ(γ) = M . Furthermore, since φ is monotone decreasing, γ is unique. Define ψ by

ψ(x) =


−1

γ
x+ φ(γ) + 1 x < γ

φ(x) γ ≤ x ≤ φ(γ)

−γ(x− φ(γ)− 1) x > φ(γ)

.

Then define the extension of φ, φ̃, by

φ̃(x) =


min {φ(x), ψ(x)} x < γ

φ(x) γ ≤ x ≤ φ(γ)

min {φ(x), ψ(x)} x > φ(γ)

.

Then φ̃ is monotone decreasing, self-inversing, and continuous on all of R. By construction,

φ̃(x) > f(x) for x ∈ (0, γ) and φ̃(x) < f(x) for x ∈ (φ(γ),∞). Hence, φ̃ is an enveloping

function for f . In most cases, ψ will serve as the desired extension of φ. However, examples can

be constructed for which there exists x ∈ (p,∞) such that ψ(x) = f(x).

Example 5.0.2. Consider the map referred to by Cull as a Hassel model in [11] given by

f(x) =
(1 + a)bx

(1 + ax)b
, a, b > 0.

For the purpose of this example we fix a = 5 and b = 2. Cull shows in [11] that φ(x) = 1/x

serves as an enveloping function for f over a wide range of values for a and b including a = 5

and b = 2. While φ(x) = 1/x is continuous on (0,∞) it is not defined on all of R so we desire to

extend its domain. A quick check shows that f has an absolute maximum M = 9/5 at x = 1/5.

Since φ(5/9) = 9/5 we have γ = 5/9. Then the definition for φ̃ is given by

φ̃(x) =



−9

5
x+

14

5
x <

5

9
1

x

5

9
≤ x ≤ 9

5

−5

9
x+

14

9

9

5
< x

.

Plots of f , φ, and φ̃ can be seen in Figures 5.1 and 5.2. �

The reader may note that the method given for extending φ to φ̃ is not unique. Furthermore,
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Figure 5.1: A plot of f and φ for Example 5.0.2.

the method is relatively conservative. That is, if

m = max
[0,φ(0)]

∣∣∣φ̃(x)− f(x)
∣∣∣

there are extensions that would keep the value of m smaller or methods that may decrease the

length of the interval [0, φ̃(0)]. However, the given method of extension serves the needs of this

work.

5.1 Perturbations and Enveloping

Cull’s Theorem for determining the global stability of the fixed point of a population model, f ,

has conditions that are relatively easy to check making it a powerful theorem for applications.

However, while it may be relatively easy to check if a given φ envelopes a given f , it is more

difficult to find enveloping functions. In [11], multiple examples are provided along with methods

for finding an appropriate enveloping function. Unfortunately, these examples are dependent on

the explicit form of the population model. The following theorem provides conditions to ensure

that a C1-ε perturbation of an enveloped population model will have an enveloping function.

The theorem also shows that a simple translation of the original enveloping function will serve
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Figure 5.2: A plot of f and φ̃ for Example 5.0.2.

as an enveloping function for the perturbed population model.

In the statement of the theorem and its proof, we may not assume that the perturbation

of the population model is a completely arbitrary C1-ε perturbation. Instead, we are forced to

perturb within the space of population models. The reason for this, as the following example

demonstrates, is that an arbitrary C1-ε perturbation is not necessarily a population model.

Example 5.1.1. Consider

f(x) =
x4 − x2 + 2x

1 + x3
= x+

x(1− x)

1 + x3
.

Notice that f(0) = 0 and f(1) = 1. If x ∈ (0, 1) then
x(1− x)

1 + x3
> 0 so f(x) > x. If x ∈ (1,∞)

then
x(1− x)

1 + x3
< 0 so f(x) < x. Therefore, f is a population model. However, given any ε > 0

there is an x̄ > 1 for which |x̄− f(x̄)| < ε. Therefore, on any compact interval I containing x̄,

a C0-ε neighborhood of f on I will contain some function that is not a population model. �

Remark 5.1.1. The reader should note that we are proposing that if f is a population model
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and we wish to consider a C0-ε perturbation, g, of f then we will require that g is also a

population model. That is, the space of allowable perturbations of f is P. This allows us to

assume nothing further about f than f is a population model. One may ask if it might be

better to place further restrictions on f so that for reasonable ε, any C0-ε perturbation of f is a

population model. For instance, we could consider f to be in the space of bounded population

models to avoid the issues of Example 5.1.1. However, this would immediately prevent our results

from being applicable to the Cushing and Henson Conjectures (see Chapter 2) which require

f to be unbounded. Furthermore, we would still need to assume that any C0-ε perturbation,

g, of f fixes zero which is a notably problematic assumption. We would also be forced to

assume that g′(0) ≥ 1 to maintain the properties of a population model. Again, this is a closed

property which is problematic for perturbation. We could instead assume that g′(0) > 1, but

this assumption eliminates some population models from the space of allowable perturbations.

In short, it appears that even if further restrictions are placed on f , assumptions must be made

about the space of allowable perturbations and these new assumptions do not offer any more

insight into the behavior of periodic systems of population models. We therefore choose to

restrict our perturbations to the space of population models.

We begin with a preliminary lemma that will aid in the statement of the theorem that

if f ∈ P has an enveloping function ψ ∈ C0(R) and g is a C1-ε perturbation of f then g

has an enveloping function that is a translation of ψ. That is, if f(p) = p and g(q) = q then

φ(x) = ψ(x−(q−p))+(q−p). Within the proof, the case that p > q and the case that q > p splits

the proof into two cases. To avoid confusion and redundancy, we state the theorem and give

the proof with the assumption that q > p. A comment concerning the necessary adjustments

follows the proof of the theorem.

Lemma 5.1.1. Let f ∈ P with fixed point p and suppose |f ′(p)| < 1 so that there exists

r ∈ (0, p) such that

|f ′(x)| ≤ λ < 1 for all x ∈ B(p, r) = (a, b).

Let 0 < ε < r(1 − λ)/4 and let g ∈ P be a C1-ε perturbation of f on B̄(p, r) with fixed point q

where q > p. Then q − p < r/4 and a+ 2(q − p) < p.

Proof. By the assumptions on f , the Mean Value Theorem gives

f(x) ≤ λx+ (1− λ)p for all x ∈ (p, b).

Then

g(x) ≤ λx+ (1− λ)p+ ε (5.1)
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because g is a C0-ε perturbation of f . Then substituting q into (5.1) and solving for q − p,

g(q) = q ≤ λq + (1− λ)p+ ε

q − λq − (1− λ)p ≤ ε

q − p ≤ ε

1− λ <
r(1− λ)

4(1− λ)
=
r

4
, (5.2)

where the last inequality is by assumption. Also,

a+ 2(q − p) < a+ 2
(r

4

)
= a+

r

2
< p.

In the following theorem, we will keep the same assumptions on f as Lemma 5.1.1 and again

take a C1-ε perturbation of f with ε < r(1 − λ)/4. In addition, f will be assumed to have an

enveloping function ψ that is monotone decreasing. Since we now know that a+ 2(q − p) < p,

we point out that

0 < min
[0,a+2(q−p)]

(ψ(x)− f(x))

for the sake of the statement of the theorem.

Theorem 5.1.1. Let f ∈ P with fixed point p and suppose |f ′(p)| < 1 so that there exists

r ∈ (0,min {p, ψ(0)− p}) such that

|f ′(x)| ≤ λ < 1 for all x ∈ B(p, r) = (a, b).

Suppose further that f is enveloped by a monotone decreasing, self-inversing ψ ∈ C0(R) such

that

ψ(x) = −x+ 2p for all x ∈ (a, b).

Let g ∈ P be a C1-ε perturbation of f on [0, ψ(0)] with fixed point q where q > p. Let

η = min

{
min

x∈[0,a+2(q−p)]
(ψ(x)− f(x)), min

x∈[b,ψ(0)]
(f(x)− ψ(x))

}
.

By uniform continuity of ψ on [−r, ψ(−r)], there exists 0 < δ < η/4 such that

|ψ(x− ξ)− ψ(x)| ≤ η/4 for all |ξ| < δ and x ∈ [−(r + η), ψ(−(r + η))].
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If

0 < ε < min

{
1− λ

2
,
η

4
, δ(1− λ),

r(1− λ)

4

}
.

then g is enveloped by

φ(x) = ψ(x− (q − p)) + (q − p).

Proof. To begin, consider that ψ on the interval (a, b) is given by −x+2p. Thus, on the interval

(a+ (q − p), b+ (q − p)),

φ(x) = −(x− (q − p)) + 2p+ (q − p)
= −x+ q − p+ 2p+ q − p
= −x+ 2q.

By Lemma 5.1.1,

a+ 2(q − p) < p < b < b+ (q − p).

Hence, φ(x) = −x+ 2q for x ∈ (a+ 2(q − p), b).
We now show that −x+2q > g(x) for x ∈ (a+2(q−p), q) and −x+2q < g(x) for x ∈ (q, b).

Recall that g is a C1-ε perturbation of f so that

|g′(x)| ≤ λ+ ε < λ+
1− λ

2
=

1 + λ

2
< 1 for x ∈ (a+ 2(q − p), b).

Noting then that g(q) = q and φ(q) = −q + 2q = q, we have that

−x+ 2q > g(x) for x ∈ (a+ 2(q − p), q) and

−x+ 2q < g(x) for x ∈ (q, b).

Let x ∈ [0, a+ 2(q − p)] ∪ [b, φ(0)]. Then by (5.2) in Lemma 5.1.1,

x− ε

1− λ < x− (q − p) < x,
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and ψ is monotone decreasing so

|φ(x)− ψ(x)| = |ψ(x− (q − p)) + (q − p)− ψ(x)|

≤
∣∣∣∣ψ(x− ε

1− λ

)
− ψ(x) +

ε

1− λ

∣∣∣∣
≤
∣∣∣∣ψ(x− ε

1− λ

)
− ψ(x)

∣∣∣∣+

∣∣∣∣ ε

1− λ

∣∣∣∣ .

Recall that by assumption ε < δ(1− λ) so that
ε

1− λ < δ. Then

∣∣∣∣ψ(x− ε

1− λ

)
− ψ(x)

∣∣∣∣+

∣∣∣∣ ε

1− λ

∣∣∣∣ < η

4
+ δ

<
η

4
+
η

4
=
η

2
. (5.3)

Notice that d(f(x), g(x)) ≤ η/4 for x ∈ [0, ψ(0)] since g is a C1-ε perturbation of f on

[0, ψ(0)]. Also,

d(f(x), ψ(x)) ≥ η for all x ∈ [0, a+ 2(q − p)] ∪ [b, ψ(0)]

by the definition of η. If we consider x ∈ [0, a+2(q−p)], we desire to show that φ(x)−g(x) > 0.

Here,

η ≤ ψ(x)− f(x),

by definition. Then rewriting, we see

η ≤ ψ(x)− φ(x) + φ(x)− g(x) + g(x)− f(x).

Then using the assumptions on f and g and (5.3) we have

η ≤ η

2
+ φ(x)− g(x) +

η

4
.

Rewriting again gives
η

4
≤ φ(x)− g(x).

Thus, φ(x)− g(x) > 0.
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Similarly, suppose x ∈ [b, φ(0)]. In this case

η ≤ f(x)− ψ(x)

η ≤ f(x)− g(x) + g(x)− φ(x) + φ(x)− ψ(x)

≤ η

4
+ g(x)− φ(x) +

η

2
η

4
≤ g(x)− φ(x).

So g(x)− φ(x) > 0.

Therefore, φ(x) is an enveloping function for g(x).

To adjust Lemma 5.1.1 and Theorem 5.1.1 to allow for p > q one must change Lemma 5.1.1

to show that b + 2(q − p) > p (when p > q) instead of a + 2(q − p) < p (when q > p). Then

throughout the proof of Theorem 5.1.1, the intervals [0, a+2(q−p)], [b, ψ(0)], and (a+2(q−p), b)
must be changed to [0, a], [b+ 2(q − p), ψ(0)], and (a, b+ 2(q − p)) respectively.

If f is a population model enveloped by monotone decreasing and self-inversing φ ∈ C0(R)

and f̃ is a C1-ε perturbation of f on [0, φ(0)] that is also a population model, then Theorem 5.1.1

can be used to show that the fixed point of f̃ is globally attracting. Furthermore, Theorem 5.1.1

can be of great use in the application of Theorem 4.2.1 and Theorem 4.2.2 simultaneously.

However, Theorem 5.1.1 is of little use in determining the behavior of an n-periodic system of

population models if n ≥ 2.

5.2 Perturbations of Periodic Dynamical Systems

We begin now to consider the asymptotic behavior of periodic dynamical systems that are

perturbations of either single maps or of periodic dynamical systems with known behavior. We

will first consider systems close to a “degenerate” periodic dynamical system, that is a periodic

system consisting of only one map f . We can then form a true periodic dynamical system by

perturbing f at certain time-steps. We begin with a preliminary lemma concerning vectors in

Rn.

Lemma 5.2.1. Let x = (x0, x1, . . . xn−1) ∈ Rn. Then there exists ε ∈ Rn such that for all

y ∈ B(0, ε) the vector

x+ y = (x0 + y0, . . . xn−1 + yn−1)

has the property that if xi 6= xj then xi + yi 6= xj + yj.

Proof. By assumption, there exists i and j such that xi 6= xj , so we let η be the smallest nonzero
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element of

{|xi − xj | : 0 ≤ i, j ≤ n− 1} .

Take ε ∈ Rn such that

‖ε‖∞ <
η

2
.

Let y ∈ B(0, ε). Then

|xi + yi − (xj + yj)| > 0.

Using Lemma 5.2.1, we can say that given x ∈ Rn with at least two distinct entries there is

an open dense set of perturbations of x that have at least two distinct entries. This will allow

us to ensure that perturbations of geometric n-cycles, which are vectors in Rn, still have period

n.

Our next result allows us to perturb a continuous map f to a periodic system with a

geometric n-cycle.

Theorem 5.2.1. Suppose f ∈ C0(R) has a unique fixed point p on B(p, r). Then given small

ε > 0 and any n ∈ Z+ there exists an n-periodic dynamical system,

S = {f0, f1, . . . , fn−1} ,

of C0-ε perturbations of f on a closed neighborhood of p that has a geometric n-cycle, C =

{c0, c1, . . . , cn−1}, such that |ci − p| ≤ ε for i = 0, 1, . . . , n− 1.

Proof. Let r′ ∈ (0, r), U = B(p, r), and U ′ = B(p, r′) ⊂ U . Let β(x) be a C∞(R) bump function

such that

β(x) =

{
0 x /∈ U
1 x ∈ U ′

.

Let ε > 0 and define,

κε(x) = x+ εβ(x).

To ensure that κε is invertible, we will ensure that κε is monotone increasing and therefore

one-to-one. Notice κ′ε(x) = 1 + εβ′(x) and since β′(x) is bounded there is sufficiently small ε so

that κ′ε(x) > 0. Hence, there exists ε so that κε is increasing and therefore invertible.

Consider now the degenerate n-periodic dynamical system given by {f, f, . . . , f}. This sys-

tem has {p, p, . . . , p} as a trivial geometric cycle. We perturb this system using an invertible κε

to get an n-periodic dynamical system

Sε =
{

(κε ◦ f), (f ◦ κ−1ε ), f, . . . , f
}
.
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This perturbed system has Cε = {p, p+ ε, p, . . . , p} as a geometric-n cycle. By Lemma 5.2.1,

there is an open dense subset of Cε in Rn of vectors that are geometric n-cycles for an appropriate

Sε.

In Theorem 5.2.1, the given function f is perturbed in a more traditional manner than the

Ck-ε perturbations described at the start of this chapter. The perturbed function g = (κε◦f)(x)

in the theorem is arbitrarily close to f on the interval U ′ but is identical to f outside of U .

However, the theorem still holds in the C0-ε sense that g only needs to be similar to f on the

interval U for the local dynamics to behave as described by the theorem. This is an important

distinction as the set of functions C0-ε close to f is much larger than the set of functions ε close

to f on U and identical to f on R \ U .

Theorem 5.2.1 provides little insight into any given periodic dynamical system. Given any

function, g, that is used in a periodic dynamical system it would be very difficult to produce an

f and κε so that g = (κε ◦ f). Furthermore, while we know restrictions can be made so that κε

is invertible, in general it would be very difficult to find an explicit expression for this inverse.

The next example demonstrates some of the issues in trying to deal with κε.

Example 5.2.1. Consider the Ricker type map f(x) = xe(2−2x) which has f(1) = 1. Cull’s

Theorem ensures that x = 1 is globally attracting. For our bump function, we let

β(x) =

{
e
− 1

1−(x−1)2 |x− 1| < 1

0 otherwise
.

Let κ(x) = x + 0.3β(x) and note that κ′(x) > 0.5 so κ is invertible. Define the 3-periodic

dynamical system
{

(κ ◦ f), (f ◦ κ−1), f
}

. This periodic dynamical system has
{

1, 1 + 0.3e−1, 1
}

as a geometric cycle. However, it is very difficult to determine if this geometric 3-cycle is stable

using either numerical or classic methods.

The following script was written in Maple 15 and run to analyze the long term behavior of

the periodic system.

beta:=piecewise(abs(x-1)<1,exp(-1/(1-(x-1)^2)),0):

kappa:= x + 0.3 * beta:

f := x*exp(2-2*x):

x0 := 1.0:

for i from 1 to 2000 do

z := eval(f, x = x0):

x1 := eval(kappa, x = z):
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z := fsolve[30](kappa = x1, x):

x2 := eval(f, x = z):

x3 := eval(f, x = x2):

x0 := x3:

if i > 1999 then

print(x1);

print(x2);

print(x3);

end if

end do:

When the numerical precision is set to the default 10 digits the script outputs the values

{1.110364832, 0.9999990000, 1.000001000}. However, if the number of significant digits is in-

creased to 16 then the script outputs {1.110363832351433, 1.000000000000000, 1.000000000000000}.
If we were forced to use the 10 digits of numerical precision we may conclude that the geometric

cycle is repelling since even starting on the cycle does not ensure the orbit stays on the cycle.

The increased numerical precision leads us to believe the geometric cycle is stable, but the

orbit of a seed other than x0 = 1.0 does not seem to be approaching
{

1, 1 + 0.3e−1, 1, 1
}

. Thus,

we cannot assume the geometric cycle is attracting. However, as is demonstrated below, it is

difficult to rigorously determine whether or not the geometric 3-cycle is stable.

In this example, there are three 3-fold compositions to consider. If we drop the subscript

“ε” for convenience then the compositions are given by:

F0(x) = (f ◦ (f ◦ κ−1) ◦ (κ ◦ f))(x) = f3(x)

F1(x) = ((κ ◦ f) ◦ f ◦ (f ◦ κ−1))(x) = (κ ◦ f3 ◦ κ−1)(x)

F2(x) = ((f ◦ κ−1) ◦ (κ ◦ f) ◦ f)(x) = f3(x).

Notice that F0(1) = 1, F1(1 + 0.3e−1) = 1 + 0.3e−1, and F2(1) = 1. By the Structure Theorem,

the geometric 3-cycle is attracting for the periodic dynamical system if the respective fixed

points are attracting for the 3-fold compositions. However, F ′0(1) = F ′2(1) = −1 meaning that

a more involved analysis is required. Using Theorem 3.1.1, we can conclude that both F0 and

F2 are enveloped population models and therefore p = 1 is globally attracting for each.

Unfortunately, F ′1(1 + 0.3e−1) = −1 as well, and F1 may not be an enveloped population

model. We cannot apply Theorem 5.1.1 to ensure that F1 has an enveloping function because

F ′0(1) = −1. Furthermore, it is not possible in this example to derive an explicit expression

for κ−1 making it very difficult to approximate the necessary higher order derivatives of F1

required to use the Schwarzian derivative (see Definition 1.3 and Theorem 1.6 in [16]). �
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Despite its limitations when working with a given periodic dynamical system, Theorem 5.2.1

does provide some insight into the nature of geometric cycles that result from the perturbation

of a given periodic dynamical system. Let {f0, f1, . . . , fn−1} be an n-periodic dynamical system

with geometric n-cycle given by {c0, c1, . . . , cn−1}. If we perturb the periodic system in a manner

similar to Theorem 5.2.1, we arrive at the perturbed system

{
f0, f1, . . . , (κε ◦ fi), (fi+1 ◦ κ−1ε ), . . . , fn−1

}
.

The perturbed system has {c0, c1, . . . , ci, κε(ci+1), ci+2, . . . , cn−1} as a geometric cycle but we

cannot assume that the new geometric cycle has minimal period n. However, if the perturbation

is small enough so that the resulting geometric cycle is within the neighborhood as specified

by Lemma 5.2.1, then the resulting geometric cycle must have minimal period n. With this

construction in mind, we know that given any n-periodic dynamical system, there is an open

dense set of perturbations of the dynamical system that also have geometric n-cycles.

Do to the limitations of Theorem 5.2.1, we move now to more general theorems. It is well

known in one-dimensional dynamics that if a one parameter family of maps has a fixed point

for a given parameter value, then the persistence of the fixed point is guaranteed given some

simple assumptions (i.e. f ′(x∗) 6= 1) based on the Implicit Function Theorem (see [25]). We

desire a version of this theorem that is applicable to periodic dynamical systems. That is, if

an n-periodic dynamical system has a geometric n-cycle then, given certain assumptions, a

perturbation of the parameters will result in a period-n dynamical system with a geometric

n-cycle.

Theorem 5.2.2. Let n ∈ Z+ and i = 0, 1, . . . , n− 1. Suppose

fi : R× R→ R

is a set of maps that is jointly Cp such that the periodic dynamical system {f0, f1, . . . , fn−1} has

a geometric n-cycle for parameter values given by y = (y0, y1, . . . , yn−1). That is,

f0(y0; c0) = c1

f1(y1; c1) = c2

...

fn−1(yn−1; cn−1) = c0.
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If
n−1∏
i=0

f ′i(yi; ci) 6= 1 (5.4)

then there exists an open neighborhood, U , of y such that {f0, f1, . . . , fn−1} has a geometric n-

cycle for all z ∈ U . Furthermore, there exists an open neighborhood, V , of c = (c0, c1, . . . , cn−1)

and unique Cp function, g : U → V , such that

f0(z0; g0(z)) = g1(z)

f1(z1; g1(z)) = g2(z)

...

fn−1(zn−1; gn−1(z)) = g0(z).

Proof. The proof is based on the Implicit Function Theorem as seen in [25]. Let x ∈ Rn where

indexing begins at zero. Define F : Rn × Rn → Rn by

Fi(y;x) = fi(yi;xi)− xi+1 mod n

for i = 0, . . . , n− 1 so that F (y, c) = 0. Define

∆ =

∣∣∣∣∣∣∣∣∣∣


∂F0

∂x0
. . .

∂F0

∂xn−1
...

. . .
...

∂Fn−1
∂x0

. . .
∂Fn−1
∂xn−1


∣∣∣∣∣∣∣∣∣∣
.
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Dropping the dependence on yi and computing the appropriate derivatives,

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣



f ′0(x0) −1 0 . . . 0

0 f ′1(x1) −1 . . . 0
...

. . .
. . .

...

0 0 . . . f ′n−2(xn−2) −1

−1 0 . . . 0 f ′n−1(xn−1)



∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n−1∏
i=0

f ′i(xi) + (−1)n(−1)n−1

=
n−1∏
i=0

f ′i(xi)− 1.

We may use the Implicit Function Theorem provided that ∆(y; c) 6= 0, and so we assume

n−1∏
i=0

f ′(ci) 6= 1.

The existence of g ∈ Cp follows directly from the Implicit Function Theorem.

By the continuity of g, V can be taken arbitrarily close to c so that V is within the neigh-

borhood as guaranteed by Lemma 5.2.1. Then all g(z) ∈ V must have the property described

in Lemma 5.2.1. That is, g(z) is an n-cycle for a perturbation of {f0, f1, . . . , fn−1}.

Remark 5.2.1. In the proof of Theorem 5.2.2, we define Fi(y;x) = fi(yi;xi)− xi+1 mod n but

changing to Fi(y;x) = xi+1 mod n − fi(yi;xi) still requires the assumption that

n−1∏
i=0

f ′(ci) 6= 1.

Theorem 5.2.2 gives us insight into the persistence of a geometric n-cycle under the per-

turbation of the parameters of a periodic dynamical system. If Condition (5.4) is met for a

given periodic dynamical system with an n-cycle and parameter values y, then parameter val-

ues within an open neighborhood of y will yield a geometric n-cycle. Furthermore, that n-cycle

will also satisfy Condition (5.4). As such, if such an n-cycle is present, then it must persist until

Condition (5.4) breaks.

Example 5.2.2. Consider the 2-periodic dynamical system{
f0(x) = x2, f1(x) = −1

2
x− 1

2

}
.

69



We can check easily enough that {−1, 1} is a geometric 2-cycle for the system. Since

f ′0(1) · f ′1(−1) = 1 this periodic dynamical system breaks Condition (5.4) of Theorem 5.2.2 and

a slight change in the parameters may result in the dynamical system not having a geometric

2-cycle. If we consider instead the slightly altered system{
g0(x) = x2, g1(x) = −1

2
x+ c

}
with c < −1

2 we can check the 2-fold compositions

g1(g0(x)) = −1

2
x2 + c < x,

g0(g1(x)) =
1

4
x2 − cx+ c2 > x,

to see that the perturbed system has no geometric 2-cycles. �

Example 5.2.3. Here we reconsider Example 4.1.1. Specifically, we consider the 2-periodic

dynamical system {
f0(x) = xe(2−0.5x), f1(x) = xe(2−(0.5+ε)x)

}
.

Previously, we saw the appearance of an attracting geometric 4-cycle as ε varied over the interval

[0.1, 0.3]. However, Theorem 5.2.2 will allow us to show that the geometric 2-cycle still persists

after the appearance of the geometric 4-cycle.

Using Theorem 5.2.1 we know for small enough ε the periodic dynamical system must have

a geometric 2-cycle because f0 has a fixed point. However, we cannot algebraically solve for

the values of the geometric cycle in this example and are forced to rely on numeric results. To

begin, notice that the geometric 2-cycle takes the form

{c0 = f1(c1), c1 = f0(c0)} .

Hence, Condition (5.4) in Theorem 5.2.2 that f ′0(c0)f
′
1(c1) 6= 1 can be rewritten as

f ′0(c0)f
′
1(f0(c0)) 6= 1 (5.5)

allowing us to ignore the value of c1. We also note that c0 is the real positive solution to

f1(f0(x)) = x (5.6)

and depends on the value of ε. Figure 5.3 shows the numeric solutions of (5.6) and Figure 5.4

shows the values f ′0(c0)f
′
1(f0(c0)) to show that (5.5) holds. Notice in Figure 5.4 that the values
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ǫ

c 0

Figure 5.3: The solutions of f1(f0(x)) = x for Example 5.2.3.

of the product are far away from the value 1. Thus, the geometric 2-cycle must persist in this

example. �

5.3 Perturbations of Population Models and Globally Attract-

ing Geometric n-Cycles

We return now to our original goal of determining when periodic systems of population models

have globally attracting geometric n-cycles. Here, we use a concept similar to Cull’s enveloping

functions called weak enveloping. Weak enveloping is applicable to a wider range of functions

than population models so we begin by defining a new function space that contains population

models as a subset.

Definition 5.3.1 (Pseudo-Population Model). A continuous function f : [0,∞) → [0,∞) is a

pseudo-population model if

(i) f(0) = 0

(ii) There exists q, s ∈ (0,∞) such that f(x) > x for x ∈ (0, q) and f(x) < x for x ∈ (s,∞)

(iii) f(x) > 0 for x > 0.
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Figure 5.4: The values of f ′0(c0)f
′
1(f0(c0)) for Example 5.2.3.

When referring to Pseudo-Population Models, we refer to the interval [q, s] in Definition 5.3.1

as the crossing interval for f . We will refer to the space of pseudo-population models as P̃ and

note that P ⊂ P̃. If f ∈ P̃, note that f must have a fixed point in [q, s] by the Intermediate

Value Theorem. However, f may potentially have multiple fixed points in its crossing interval.

An important question of Chapter 3 was when is the composition of two population models

a population model. A convenient property of pseudo-population models is that the composition

of any two pseudo-population models is always a pseudo-population model. We state this result

as the next theorem.

Theorem 5.3.1. Suppose f0 and f1 are pseudo-population models. Then f1(f0(x)) is also a

pseudo-population model.

Proof. Obviously, f1(f0(0)) = 0 and f1(f0(x)) > 0 for x > 0. Suppose f0 and f1 have crossing

intervals [q0, s0] and [q1, s1] respectively. Since both f0 and f1 are continuous, there exists ε > 0

such that f1(f0(x)) > x for all x ∈ (0, ε). We must now show that there exists xM such that

f1(f0(x)) < x for all x > xM . To begin, let x > s0 so that f0(x) < x. If f0(x) > s1 then

f1(f0(x)) < f0(x) < x. Let

M = max
[0,s1]

f1(x).
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If f0(x) ≤ s1 then f1(f0(x)) ≤M . We can choose xM > M so that if x > max {xM , s0} we have

f1(f0(x)) < x. Therefore, f1(f0(x)) is a pseudo-population model.

An obvious distinction between a population model and a pseudo-population model is that

while a population model is required to have a unique positive fixed point, a pseudo-population

model may have multiple fixed points in its crossing interval. Obviously, if a pseudo-population

has multiple fixed points then it does not have a globally attracting fixed point. Furthermore,

enveloping is not applicable to a pseudo-population model with multiple fixed points. We desire

then to create a more general concept of enveloping for pseudo-population models that will allow

the map being enveloped to have multiple fixed points. It is not possible for this new weakened

version of enveloping to imply the existence of a global attractor, but it can be used to show

that the orbit of an arbitrary initial condition must enter an interval of interest. Ultimately,

we will ensure the interval of interest is a trapping region to ensure the existence of a global

attractor.

Definition 5.3.2 (Weak Enveloping). Let f ∈ P̃ with crossing interval [q, s] and φ ∈ C0(R).

Let α, β ∈ (0,∞). Then φ weakly envelopes f on U = [0,∞) \ [α, β] if

(i) α < q < s < β,

(ii) φ(x) > f(x) for all x ∈ (0, α), and

(iii) φ(x) < f(x) for all x ∈ (β,∞).

Lemma 5.3.1. Suppose f ∈ P̃ is weakly enveloped by monotone decreasing and self-inversing

φ on U = [0,∞) \ [α, β]. Then φ has a fixed point in (α, β).

Proof. Let ψ(x) = φ(x)− x and note that ψ is continuous. Since f ∈ P̃ we have that f(α) > α

and since φ weakly envelopes f we have that φ(α) ≥ f(α) > α. Thus, ψ(α) > 0. Similarly,

f(β) < β and φ(β) ≤ f(β) < β. Hence, ψ(β) < 0. By the Intermediate Value Theorem, there

exists x∗ ∈ (α, β) such that ψ(x∗) = 0. Therefore, φ(x∗) = x∗ giving the fixed point of φ.

In the next theorem, we will refer to a nonautonomous dynamical system which is comprised

of a finite number of pseudo-population models but is not necessarily periodic. To define this

system, we begin with a set of n distinct pseudo-population models

S = {f0, f1, . . . , fn−1} .
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Let g : Z+ → {0, 1, . . . , n− 1} be a function. We denote our nonautonomous system by

{
fg(i)

}∞
i=0

. (5.7)

An orbit for x0 ∈ R+ under (5.7) is given by

O+(x0) =
{
x0, x1 = fg(0)(x0), x2 = fg(1)(x1), . . . , xi+1 = fg(i)(xi), . . . ,

}
.

Notice that if (5.7) happens to be an n-periodic dynamical system then we may define g by

g(i) = i mod n.

While the “time” variable i completely determines which of the maps from S to use at a given

“time step”, we will often only be concerned with the time step of the dynamical system and

not necessarily which map is being used. In other instances, we will need to refer to specific

maps in S but will not be concerned with the time step at which it is being used. With this in

mind, we introduce the notation fi,j to mean fg(i) where g(i) = j. Note that fi,j may not be

defined for all choices of i and j. Using this notation, we may use fi,• to emphasize that the

time step is important but not the map being used. Similarly, we may use f•,j to emphasize

that the map being used is important but not the time step, and it should be assumed that

0 ≤ j ≤ n− 1. Using this notation,

fk,l = fs,t if and only if l = t.

Furthermore, the above equation would imply that g(k) = g(s) = l = t.

Having defined a new type of nonautonomous dynamical system and associated notation,

we state the next result.

Theorem 5.3.2 (Weak Enveloping Theorem). Suppose the nonautonomous dynamical system

{
fg(i)

}∞
i=0

corresponds to a set

S = {f0, f1, . . . , fn−1}

of n distinct pseudo-population models with common crossing interval [q, s] that are weakly

enveloped on U = [0,∞) \ [α, β] by a monotone decreasing and self-inversing φ. Let V be any

open neighborhood of [α, β]. Then for all x0 ∈ R+, O+(x0) ∩ V 6= ∅, that is there exists k such
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that

(fk,• ◦ fk−1,• ◦ . . . ◦ f0,•)(x0) ∈ V.

Proof. Throughout the proof we will ignore the case that the orbit under the nonautonomous

dynamical system enters [α, β] since this case gives the desired result. We will proceed by first

showing that if x0 < α then xi > x0 for all i > 0 and if x0 > β then xi < x0 for all i. Then we

will show that the orbit enters any arbitrary open neighborhood of [α, β].

To begin, suppose if xi < α then fi,•(xi) < α for all i. Since each fi,• is a pseudo-population

model, fi,•(x) > x for x ∈ (0, α) so

xi < fi,•(xi) < (fk+i,• ◦ fk+i−1,• ◦ . . . ◦ fi,•)(xi) < α

for all i and k ≥ 1.

Similarly, suppose if xi > β then fi,•(xi) > β for all i. Since each fi,• is a pseudo-population

model, fi,•(x) < x for x ∈ (β,∞), and since xi > β we have

β < (fk+i,• ◦ fk+i−1,• ◦ . . . ◦ fi,•)(xi) < fi,•(xi) < xi

for all i and k ≥ 1.

Suppose now that xi < α, fi,•(xi) > β for some i, and there exists k ≥ 1 such that for all

0 ≤ l < k,

Fi,l(xi) = (fl+i,• ◦ fl+i−1,• ◦ . . . ◦ fi,•)(xi) > β

and

Fi,k(xi) = (fk+i,• ◦ fk−1+i,• ◦ . . . ◦ fi,•)(xi) < α.

By Lemma 5.3.1, φ has a fixed point in (α, β) and φ is monotone decreasing so φ(x) < x for

x ∈ (β,∞). Thus,

φ(fi,•(xi)) < fi,•(xi). (5.8)

Since φ is a weak enveloping function for fi,• and xi < α we have

xi < fi,•(xi) < φ(xi). (5.9)

Applying the monotone decreasing and self-inversing nature of φ to (5.9) we have,

xi < φ(fi,•(xi)) < φ(xi). (5.10)
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Combining (5.8), (5.9), and (5.10) we have,

xi < φ(fi,•(xi)) < fi,•(xi) < φ(xi). (5.11)

By assumption, fi,•(xi) > β. Hence,

φ(fi,•(xi)) < φ(β) < β < fi,•(xi). (5.12)

Hence, we combine (5.11) and (5.12) to get

xi < φ(fi,•(xi)) < β < fi,•(xi) < φ(xi). (5.13)

By assumption on Fk,i−1(xi) and the previous case we have

xi < φ(fi,•(xi)) < β < Fi,k−1(xi) < fi,•(xi) < φ(xi). (5.14)

Applying the monotone decreasing and self-inversing nature of φ to (5.14) we have

xi < φ(fi,•(xi)) < φ(Fi,k−1(xi)) < φ(β) < fi,•(xi) < φ(xi). (5.15)

Finally, note that fk+i,• is a pseudo-population model that is weakly enveloped by φ and

Fi,k−1(xi) > β. Thus,

φ(Fi,k−1(xi)) < Fi,k(xi) = (fk+i,• ◦ Fi,k−1)(xi). (5.16)

Using terms from (5.15) and combining them with (5.16) and the assumptions on Fi,k we have,

xi < φ(Fi,k−1(xi)) < Fi,k(xi) < α.

We now consider the case that xi > β, fi,•(xi) < α for some i and there exists k ≥ 1 such

that for all 0 ≤ l < k we have

Fi,l(xi) = (fi+l,• ◦ fi+l−1,• ◦ . . . ◦ fi,•)(xi) < α

and

Fi,k(xi) = (fk+i,• ◦ . . . ◦ fi,•)(xi) > β.

Again, φ has a fixed point in (α, β) and is monotone decreasing so φ(x) > α > x for x ∈ (0, α).

Since fi,•(xi) < α

fi,•(xi) < φ(fi,•(xi)). (5.17)
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Since φ is a weak enveloping function for fi,• and xi > β we have

φ(xi) < fi,•(xi) < xi. (5.18)

Applying the monotone decreasing and self-inversing nature of φ to (5.18) we have

φ(xi) < φ(fi,•(xi)) < xi. (5.19)

Thus, combining (5.17), (5.18), and (5.19), we have

φ(xi) < fi,•(xi) < φ(fi,•(xi)) < xi. (5.20)

Using the assumption that fi,•(xi) < α we have that

fi,•(xi) < α < φ(fi,•(xi)). (5.21)

Then by (5.20) and (5.21) we have

φ(xi) < fi,•(xi) < α < φ(fi,•(xi)) < xi. (5.22)

By the previous cases, the assumptions on Fi,k−1(xi), and (5.22)

φ(xi) < fi,•(xi) < Fi,k−1(xi) < α < φ(fi,•(xi)) < xi. (5.23)

Applying φ to (5.23),

φ(xi) < fi,•(xi) < φ(α) < φ(Fi,k−1(xi)) < φ(fi,•(xi)) < xi. (5.24)

Finally, note that fk+i,• is a pseudo-population model that is weakly enveloped by φ and

Fi,k−1(xi) < α. Thus,

Fi,k(xi) < φ(Fi,k−1(xi)). (5.25)

Combining terms from (5.24), (5.25), and our assumptions on Fi,k we have

β < Fi,k(xi) < φ(Fi,k−1(xi)) < xi.

Thus far, we have established that if O+(x0) ∩ [α, β] = ∅ for x0 ∈ R+ then O+(x0) ∩ (0, α)

is a monotone increasing sequence and O+(x0) ∩ (β,∞) is a monotone decreasing sequence if

we allow for empty or finite sequences. We desire to show that given x0 ∈ R+ \ [α, β], O+(x0)

enters any arbitrary open neighborhood of [α, β] and we will proceed by contradiction. Suppose
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x0 ∈ R+ \ [α, β] and the subsequence O+(x0)∩ (0, α) has a supremum a < α or the subsequence

O+(x0)∩ (β,∞) has an infimum b > β as guaranteed by monotonicity. That is, suppose for all

k ∈ Z+

(fk,• ◦ fk−1,• ◦ . . . ◦ f0,•)(x0) /∈ (a, b)

and (a, b) 6= (α, β). If
{
fg(i)

}∞
i=0

uses some maps from S only a finite number of times, then for

t∗ ≥ 0 we consider

O+
t∗(x0) = O+(x0) \ {x0, x1, . . . , xt∗−1}

which is the orbit of xt∗ under the restricted dynamical system
{
fg(i)

}∞
i=t∗

in which all maps

used appear an infinite number of times. Notice O+
t∗(x0) is a subsequence of O+(x0).

We proceed assuming that O+
t∗(x0) ∩ (0, α) is a sequence with supremum a < α. Notice

then that the monotonicity of O+
t∗(x0)∩ (0, α) assures that a is the limit of O+

t∗(x0)∩ (0, α). We

consider two cases. The first is that there exists N ∈ Z+ such that for xi ∈ O+
t∗(x0), xi < α if

i > N . The second case will be that no such N exists.

In the first case, we only consider terms in the orbit after the N -th iterate, and we assume

that any f•,k mentioned is used by the restricted system
{
fg(i)

}∞
i=M

where M = max {N, t∗}.
That is, k ∈ U ⊂ {0, 1, . . . , n− 1}. For all such f•,k and a fixed r ∈ (0, α− a) let{

xki

}
=
{
xi ∈ O+

M (x0) ∩ (0, α) : xi+1 = fi,k(xi) = f•,k(xi)
}
.

Then for each k,
{
xki
}

is a subsequence of O+
t∗(x0) ∩ (0, α) so,

lim
i→∞

xki = a.

Since each f•,k is continuous,

lim
i→∞

f•,k(x
k
i ) = f•,k

(
lim
i→∞

xki

)
= f(a).

However, f•,k
({
xki
})

is also a subsequence of O+
t∗(x0) ∩ (0, α) so

lim
i→∞

f•,k

({
xki

})
= a.

Thus, f(a) = a. Notice though that a < α < q so a is not fixed by any f•,k. This gives a

contradiction so we move to our second case.

In the second case, we may assume that O+
t∗(x0) ∩ (β,∞) is a sequence which limits on b

(in addition to the existing assumption that O+
t∗(x0)∩ (0, α) is a sequence limiting on a). Then

there are infinitely many

xi ∈ O+
t∗(x0) ∩ (0, α)
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such that xi+1 > b. Therefore, there is an f•,k used infinitely many times by
{
fg(i)

}∞
i=t∗

such

that xi < a and fi,k(xi) = b. Again, let,{
xki

}
=
{
xi ∈ O+

t∗(x0) ∩ (0, α) : b < xi+1 = fi,k(xi) = f•,k(xi)
}
.

Then xki → a as i→∞ and because f•,k is continuous

lim
i→∞

f•,k

(
xki

)
= f•,k

(
lim
i→∞

xki

)
= f•,k(a).

Since f•,k
({
xki
})

is a subsequence of O+
t∗(x0) ∩ (β,∞), we know f•,k

({
xki
})
→ b as i → ∞.

Thus, f•,k(a) = b.

Because there are only finitely many maps in
{
fg(i)

}∞
i=t∗

, there must be a pair, f•,k and

f•,l that appears consecutively infinitely many times in the iteration of the system (where

f•,k(xi) = xi+1 > b for xi ∈
{
xki
}

). That is, if fg(i) = fi,k then fg(i+1) = fi+1,l for infinitely

many i. Fix such a pair and let

Fk(x) = (f•,l ◦ f•,k)(x).

By the previous steps of the proof and our assumptions either

(I) xi < a < α < β < b < xi+2 = Fk(xi) < xi+1 = fi,k(xi) or

(II) xi < xi+2 = Fk(xi) < a < α < β < b < xi+1 = fi,k(xi).

We define {
yki

}
=
{
xi ∈

{
xki

}
: xi+2 = Fk(xi)

}
.

This gives that
{
yki
}

is a subsequence of
{
xki
}

. Since Fk is continuous, we know

lim
i→∞

Fk

(
yki

)
= Fk

(
lim
i→∞

yki

)
= Fk(a).

Case (I) and case (II) may each occur for infinitely many i. If case (I) occurs infinitely many

times, then Fk
({
yki
})

is a subsequence of O+
t∗(x0) ∩ (β,∞) and so converges to b. If case (II)

occurs infinitely many times, then Fk
({
yki
})

is a subsequence of O+
t∗(x0)∩ (0, α) and converges

to a. Thus,

(I) f•,k(a) = b = Fk(a) or

(II) a = Fk(a).

However, (I) contradicts that f•,l is a pseudo-population model that does not fix b and (II)

contradicts that we must have a < Fk(a) as was shown in the first half of the proof.
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A similar argument holds if we begin by assuming that O+(x0) ∩ (β,∞) is a sequence.

Therefore, the subsequences O+(x0) ∩ (0, α) and O+(x0) ∩ (β,∞) cannot limit on values in

R+ \ [α, β].

In autonomous examples, weak enveloping is most useful if either α or β is a point of

intersection of φ and f . However, in nonautonomous examples we simply desire that the distance

between α and β be as small as possible to give the strongest restrictions on the orbit of the

dynamical system.

Example 5.3.1. Consider the Ricker model fr(x) = xer(1−x) for r > 0. The Ricker model is

a known population model and therefore a pseudo-population model whose crossing interval

can be chosen arbitrarily. The model is known to undergo period doubling route to chaos as r

increases beyond 2. We set r = 3 and let φ(x) = −x + 2. Here, φ(x) does not envelope f3(x)

but it does weakly envelope on (0,∞) \ [0.14, 1.86]. Therefore, any orbit under f3 must either

enter the interval [0.14, 1.86] infinitely many times or come arbitrarily close to it infinitely many

times.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 5.5: Several terms of the orbit of x0 = 0.5 under f3(x) with weak enveloping function
φ(x) = −x+ 2.
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Figure 5.5 shows the 90th through 100th iterate of x0 = 0.5 under f3(x). The orbit enters

the interval [0.14, 1.86] several times. �

A desired result of Theorem 5.3.2 would be that there exists some k for which

(fk ◦ fk−1 ◦ . . . ◦ f0)(x) ∈ [α, β].

Unfortunately, the following example shows that this is not always the case.

Example 5.3.2. Let p > 0 be given and choose a so that

0 < 2p− a < p < a.

Define the population model f with fixed point p by

f(x) =



p
2 + 3a

4

p− a
2

x 0 ≤ x < p− 1/2a

(−1/2)x+ p+ (1/2)a p− (1/2)a ≤ x < 2p− a

−x+ 2p 2p− a ≤ x < a

(−1/2)x+ 2p− (1/2)a a ≤ x < p+ (1/2)a

(3/2)p− (3/4)a x ≥ p+ (1/2)a

.

Then f is weakly enveloped on U = (0,∞) \ [2p − a, a] by φ(x) = −x + 2. However, for x0 ∈
[p−1/2a, 2p−a], f(x0) > a and f2(x0) < 2p−a. Thus, there is no k such that fk(x0) ∈ [2p−a, a].

In fact, infinitely many examples of this form can be constructing by choosing the slopes of

the respective line segments on [p− (1/2)a, 2p− a) and [a, p+ (1/2)) to be between −1 and 0.

�

Another restriction of Theorem 5.3.2 is that there can only be finitely many maps in the

nonautonomous system. The next example gives a nonautonomous system of infinitely many

population models for which weak enveloping does not ensure the orbit approaches an arbitrary

open neighborhood of [α, β].
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Figure 5.6: A weakly enveloped population model from Example 5.3.2 for which the orbit does
not enter the interval [α, β].

Example 5.3.3. Consider the nonautonomous system of population models {fi}∞i=0 where

fi(x) =



2x 0 ≤ x ≤ 1

2i

x+
1

2i
1

2i
< x ≤ 5− 1

2i

5 x > 5− 1

2i

Each fi is a population model with a fixed point at x = 5. Furthermore, each fi can be properly

enveloped by φ(x) = −x+10 which is monotone decreasing and self-inversing. We can therefore

choose arbitrarily that φ weakly envelopes each fi on [0,∞) \ [4.5, 5.5]. If we consider the orbit

of x0 = 1/2 we see

O+

(
1

2

)
=

{
1

2
, 1, 1 +

1

2
, 1 +

1

2
+

1

4
, . . . ,

n∑
i=0

1

2i
, . . .

}
.

That is, the orbit of x0 = 1/2 converges monotonically to 2. However, 2 is not contained in

every open neighborhood of [4.5, 5.5] which is contrary to the results of Theorem 5.3.2 for a

nonautonomous system of a finite number of pseudo-population models. �
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Having established the Weak Enveloping Theorem, we move now to showing that a periodic

dynamical system near an enveloped population model has a globally attracting geometric cycle.

Specifically, we will start with an enveloped population model, f , with a hyperbolic fixed point

and consider a periodic dynamical system comprised of functions that are in a C1-ε neighborhood

of f . We will show that such a system has a globally attracting geometric n-cycle. We will begin

with a preliminary lemma that establishes the existence of a trapping region that will contain

the attracting geometric cycle.

Lemma 5.3.2. Suppose f ∈ P ∩ C1(R) with f(p) = p and |f ′(p)| < 1. Then there is an r > 0

for which B(p, r) is a trapping region for f . Furthermore, there is a C0-ε neighborhood of f on

B̄(p, r), U ⊂ P, for which B(p, r) is a trapping region for every fi ∈ U .

Proof. Since |f ′(p)| < 1 there exists λ > 0 so that |f ′(p)| ≤ λ < 1. Since f ∈ C1(R), there exists

δ > 0 so that for all x ∈ B(p, δ), |f ′(x)| ≤ λ < 1. Take r ∈ (0, δ) and let V = B(p, r). Because

|f ′(x)| ≤ λ for all x ∈ V , f(V̄ ) ⊂ V . Next, take

ε = 0.5 min
{
d(f(x), (0,∞) \ V |x ∈ V̄

}
and let U ⊂ P be a C0-ε perturbation of f . By the results of Franke and Selgrade ([21]), every

fi ∈ U has V as a trapping region.

Remark 5.3.1. In Lemma 5.3.2, it is important to note that r was chosen arbitrarily in (0, δ).

Therefore, it is possible to adjust the endpoints of the trapping region as needed within B(p, δ).

Remark 5.3.2. In the proof of Lemma 5.3.2 we used the results of [21]. It should be noted that

the definition of a C0-ε perturbation was different in that work. However, the local dynamics

are equivalent for both interpretations of a C0-ε perturbation.

Lemma 5.3.2 offers just one option for ensuring the existence of an appropriate trapping

region. The following lemma places further restrictions on the type of perturbation but gives a

stronger result.

Lemma 5.3.3. Suppose f ∈ P ∩ C1(R) with f(p) = p and |f ′(p)| < 1. Then there exists δ > 0

and ε > 0 such that for all r ∈ (0, δ) any n-periodic dynamical system, {f0, f1, . . . , fn−1}, of

maps such that each fi is a C1-ε perturbation of f on B̄(p, r) has an attracting geometric cycle,

{c0, c1, . . . , cn−1} where ci is the fixed point of

(f(i+n−1) mod n ◦ . . . ◦ f(i+1) mod n ◦ fi mod n)(x) = Fi(x).
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Furthermore, there is an open neighborhood of each ci that is a trapping region for Fi(x).

Proof. Since |f ′(p)| < 1 there exists λ > 0 so that |f ′(p)| ≤ λ < 1. Since f ∈ C1(R), there exists

δ > 0 so that for all x ∈ B(p, δ), |f ′(x)| ≤ λ < 1. From Chapter 2, we know for r ∈ (0, δ), f is

a contraction on B̄(p, r). Let

ε <
1− λ

2
.

Then any C1-ε perturbation of f on B̄(p, r) is also a contraction on B̄(p, r). The rest follows

from Theorem 2.4.2.

Lemma 5.3.3 guarantees the existence and local stability of a geometric cycle for a periodic

dynamical system. However, we desire to prove the existence and global stability of a geometric

cycle for a periodic dynamical system. The next lemma establishes weak enveloping for all C0-ε
perturbations of an enveloped population model. We will then combine the local stability result

with the weak enveloping result to establish the desired global result.

To avoid confusion between Definition 2.7.2 and Definition 5.3.2, we will refer to enveloping

as it appears in Definition 2.7.2 are proper enveloping for the remainder of the section.

Lemma 5.3.4. Suppose f ∈ P with f(p) = p and that f is properly enveloped by monotone

decreasing, self-inversing φ ∈ C0(R). If a, b ∈ (0,∞), a < p < b then there exists C0-ε neigh-

borhood of f on [0, φ(0)], U , for which every fi ∈ U is weakly enveloped on (0,∞) \ [a, b] by

φ.

Proof. Choose a ∈ (0, p) and b ∈ (p, φ(0)). Let

ε < min

{
min
[0,a]

(φ(x)− f(x)), min
[b,φ(0)]

(f(x)− φ(x))

}
and let g ∈ P be a C0-ε perturbation of f . If x ∈ (0, a) then

φ(x)− g(x) ≥ φ(x)− (f(x) + ε)

= φ(x)− f(x)− ε
> 0
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by the definition of ε. Similarly, if x ∈ (b, φ(0)) then

g(x)− φ(x) ≥ f(x)− ε− φ(x)

= (f(x)− φ(x))− ε
> 0

by the definition of ε. Finally, if x ∈ (φ(0),∞) then φ(x) < 0 while g(x) > 0 because g is a

population model.

Having established the necessary preliminary results, we now give a theorem guaranteeing

the existence of a globally attracting geometric cycle for a periodic system of population models.

We choose to give the proof of the theorem in terms of Lemma 5.3.2 rather than Lemma 5.3.3.

Theorem 5.3.3. Suppose f ∈ P ∩ C1(R) with f(p) = p and |f ′(p)| < 1. Suppose further that

f is properly enveloped by monotone decreasing, self-inversing φ ∈ C0(R). Then there exists

r ∈ (0, p) and a C1-ε neighborhood on [0, φ(0)], U ⊂ P, of f such that any n-periodic dynamical

system {f0, f1, . . . , fn−1} with fi ∈ U has a globally attracting geometric cycle in B(p, r) whose

period divides n.

Proof. By Lemma 5.3.2, we know that there is an r > 0 so that B(p, r) is a trapping region for

all fi in a C1-ε1 neighborhood of f . Denote this neighborhood by U1.

With the same r > 0, |f ′(x)| ≤ λ < 1 for all x ∈ B(p, r). Let

ε2 <
1− λ

2

and let U2 be a C1-ε2 neighborhood of f . Then for x ∈ B(p, r) and fi ∈ U2

|f ′i(x)| ≤ |f ′(x)|+
∣∣∣∣1− λ2

∣∣∣∣
≤ λ+

1− λ
2

=
λ+ 1

2
< 1.

Let δ ∈ (0, r). By Lemma 5.3.4, there is a C0-ε3 neighborhood of f , U3 for which each fi ∈ U3

is weakly enveloped by φ on (0,∞) \ B̄(p, δ). Let U = U1 ∩U2 ∩U3 and consider the n-periodic

dynamical system {f0, f1, . . . , fn−1} where each fi ∈ U .
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Let

Fi(x) = (fi+n−1 mod n ◦ . . . ◦ fi+1 mod n ◦ fi mod n)(x).

Then B(p, r) is a trapping region for Fi(x) and since Fi(B̄(p, r)) ⊂ B(p, r), Fi(x) must have

a fixed point pi in B(p, r). Furthermore, for x ∈ B(p, r), |F ′i (x)| < 1 by the chain rule, so

pi is a unique fixed point of Fi(x) in B(p, r) by the Mean Value Theorem. Then each Fi(x)

has an attracting fixed point in the interval B(p, r). The Structure Theorem asserts that if

{f0, . . . fn−1} has an attractor in B(p, r) then the attractor is the union of the attractors of the

Fi which are fixed points. Therefore, the attractor must be the geometric cycle {p0, p1, . . . , pn−1}
whose entries may not be distinct.

Since each fi is weakly enveloped by φ on (0,∞)\B̄(p, δ) and the periodic dynamical system

is made of a finite number of population models, the Weak Enveloping Theorem assures there

exists k ≥ 1 for each x0 ∈ (0,∞) such that

(fi+k ◦ . . . ◦ fi)(x0) ∈ B(p, r). (5.26)

That is, {p0, p1, . . . , pn−1} is a global attractor for the periodic dynamical system. Because

the periodic dynamical system has a geometric cycle as a global attractor, the period of the

geometric cycle must divide the period of the dynamical system.

5.4 Perturbations of Nonhyperbolic Population Models

Theorem 5.3.3 and its preceding lemmas all require that |f ′(p)| < 1. In this section we consider

population models with derivative 1 or -1 at their fixed points as well as periodic systems made

of perturbations of these functions. The results of the preceding section fail to hold for such

periodic dynamical systems.

We begin with a result concerning a population model with f ′(p) = 1.

Theorem 5.4.1. Suppose f ∈ P such that f ′(p) = 1. Then p is locally attracting.

Proof. Since f ′(p) = 1 and f ∈ P there exists r > 0 so that for all x ∈ B(p, r), 0 < f ′(x) < 1.

If x0 ∈ (p − r, p) then f(x0) > x0 and f(x0) < p. Thus, O+(x0) is monotone increasing and

bounded by p and therefore must converge to p. Similarly, if y0 ∈ (p, p + r) then f(y0) < y0

and f(y0) > p. Thus, O+(x0) is monotone decreasing and bounded below by p and therefore

converges to p.

Despite the fact that a population model with f ′(p) = 1 is very predictable, a periodic
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dynamical system made of perturbations of such a population model may display particularly

erratic behavior. The following example explores this phenomena.

Example 5.4.1. Consider f(x) = arctan(x). The function f is not a population model but it

does have features like a population model. Namely, f has a unique fixed point at 0, f(x) > x

for x < 0, and f(x) < x for x > 0. Hence, appropriate adaptations can be made to f to make

it a population model. Since we are interested in the dynamics near the fixed point, we will

analyze f as is. Note that f ′(0) = 1.

Let

β(x) =

{
e
− 1

1−x2 |x| < 1

0 otherwise

and

κ0(x) = x− εβ(x)

κ1(x) = x+ εβ(x).

Finally, let

f0(x) = (κ0 ◦ f)(x),

f1(x) = (κ1 ◦ f)(x),

and consider the 2-periodic dynamical system {f0, f1}. Unfortunately, the form of f0 and f1

make it difficult to prove that these functions have unique fixed points locally. Figure 5.7 shows

typical plots of f0(x) − x and f1(x) − x. The figure suggests that both f0 and f1 have unique

fixed points and satisfy the conditions like those of a population model.

If we consider the maps F0(x) = f1(f0(x)) and F1(x) = f0(f1(x)) we find numerically that

each map has three fixed points (see Figure 5.8). For ε > 0 the map F0 has two positive fixed

points we name p1 and p2 and one negative fixed point n1. The fixed point p1 is the closest

fixed point to 0. As symmetry would suggest, the fixed points of F1(x) are −p1, −p2, and −n1
for ε > 0. As the Structure Theorem suggests, the geometric cycles of {f0, f1} consist of fixed

points of F0 and F1. In this example, the typical geometric cycles are {p1,−p1}, {n1,−p2}, and

{p2,−n1}. Numerical results indicate that both, {n1,−p2} and {p2,−n1} are locally attracting

while {p1,−p1} is repelling.

As the geometric 2-cycle {p1,−p1} is the geometric cycle with terms closest to 0, this must

be the geometric cycle as guaranteed by Theorem 5.2.1. However, the presence of the multiple

attractors is not consistent with the results for hyperbolic population models. Furthermore, the

results for hyperbolic population models would suggest that {p1,−p1} would be an attractor
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Figure 5.7: Typical plots of f0(x)− x and f1(x)− x for Example 5.4.1. Here ε = 0.1.

because 0 was globally attracting for f .

Figures 5.9 through 5.11 give the bifurcation diagrams for {f0, f1} with the initial conditions

x0 = 0, x0 = 0.1, and x0 = −0.1 respectively. For ε > 0, the orbit of x0 tends to the geometric

cycle {n1,−p2}, the orbit of x0 = 0.1 tends to {p2,−n1}, and the orbit of x0 = −.01 tends to

{n1,−p2}.
Figure 5.12 shows all three bifurcation diagrams on the same plot. If we note that {p1,−p1}

does not appear on the bifurcation diagram because it is repelling, then the diagram in Fig-

ure 5.12 appears to be a bi-directional pitchfork bifurcation were the attracting branches are

geometric 2-cycles. The attractors when ε = 0 should overlap exactly which is not the case in

Figure 5.12. However, the spacing seems to decrease as the number of iterations is increased so

this discrepancy is explained by transient behavior. �

Example 5.4.1 clearly demonstrates that a version of Theorem 5.3.3 for a population model

with f ′(p) = 1 is not possible. The next example explores perturbations of a population model

with f ′(p) = −1 and demonstrates that perturbations of such models may not allow for globally

attracting geometric cycles.
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Figure 5.8: Typical plot of f1(f0(x))− x for Example 5.4.1. Here ε = 0.1.

Example 5.4.2. Consider the linear-spline population model

f(x) =


2x 0 ≤ x ≤ 2

−x+ 6 2 < x ≤ 5

1 x > 5

and for 0 < ε < 0.5 its C0-ε perturbation

g(x) =


2x 0 ≤ x ≤ 2 + ε

−x+ 6 + 3ε 2 + ε < x ≤ 5

1 + 3ε x > 5

.

Note that f(3) = 3 and g(3 + 3
2ε) = 3 + 3

2ε and that both maps have derivative −1 at

their respective fixed points. We consider the 2-periodic dynamical system S = {f, g} which

demonstrates irregular dynamics which occur when the original population model has derivative

−1 at its fixed point.

If we consider the orbit of x0 = 4 under the periodic system we see

O+(x0) = {4, f(4) = 2, g(2) = 4, 2, 4, 2, 4, 2 . . . } .
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Bifurcation Diagram for {f0, f1}with x0 = 0.

Figure 5.9: The bifurcation diagram for {f0, f1} from Example 5.4.1 with x0 = 0. ε ranges
over 300 values in [−0.1, 0.1]. The system is iterated 250,000 times and the last 10 are shown
for each ε.

Thus, S has a geometric 2-cycle. However, despite the value of ε, this 2-cycle cannot be made

arbitrarily close to the fixed point of f . The same is true for the opposite ordering. That is, if

T = {g, f} we can consider the orbit of x0 = 2 under T :

O+(2) = {2, g(2) = 4, f(4) = 2, 4, 2, 4, . . .} .

Furthermore, if we consider the orbit of x0 = 4 + 2ε under S we have

f(4 + 2ε) = 2− 2ε

g(2− 2ε) = 4− 2ε

f(4− 2ε) = 2 + 2ε

g(2 + 2ε) = 4 + ε

f(4 + ε) = 2 + ε

g(2 + ε) = 4 + 2ε.

That is, the map F (x) = (g ◦f)(x) has a point of period 3. Similarly, the map G(x) = (f ◦g)(x)
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The bifurcation diagram of {f0, f1}with x0 = 0.1

Figure 5.10: The bifurcation diagram for {f0, f1} from Example 5.4.1 with x0 = 0.1. ε ranges
over 300 values in [−0.1, 0.1]. The system is iterated 250,000 times and the last 10 are shown
for each ε.

has 2 + 4ε as a point of period 3. Therefore, the periodic dynamical system, S, has a geometric

6-cycle and therefore has a geometric cycle of every order greater than 6 in the extended

Sharkovsky ordering (see [2]). Therefore, a theorem like Theorem 5.3.3 is not possible for a

population model with f ′(p) = −1. �
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Figure 5.11: The bifurcation diagram for {f0, f1} from Example 5.4.1 with x0 = −0.1. ε ranges
over 300 values in [−0.1, 0.1]. The system is iterated 250,000 times and the last 10 are shown
for each ε.
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Figure 5.12: The bifurcation diagram for {f0, f1} with initial conditions 0.1 (green dots), 0
(red circles), and −0.1 (blue dots). ε varies over 100 values values in [−0.1, 0.1]. For each ε value
and initial condition the system is iterated 250,000 times with the last 10 iterates shown.
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