
ABSTRACT

CROOK, SUSAN BAILEY. Automated Shape Recognition and Curve Matching using Discrete
Invariants. (Under the direction of Pierre Gremaud.)

We propose a new type of algorithm for curve matching. Our approach is based on recent

theoretical advances regarding integral quantities that are invariant under certain group ac-

tions. Concentrating on rigid motions in R2, we construct discrete integral invariants. As the

direct application of numerical quadratures to integral invariants does not result in invariant

quantities, we show how to “invariantize” discrete quantities that only depend on samplings of

the curves.

The significance of these new discrete invariants is threefold. First, these invariants provide

a way to compute invariants for curves given discretely. Second, our approach is not limited to

the Special Euclidean group. Third, and most importantly, our discrete invariants are robust

with respect to curve samplings.

The performance of the proposed approach is successfully tested on two applications: char-

acter recognition and jigsaw puzzle assembly.

© Copyright 2013 by Susan Bailey Crook

All Rights Reserved

Automated Shape Recognition and Curve Matching using Discrete Invariants

by
Susan Bailey Crook

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2013

APPROVED BY:

Stephen Campbell Irina Kogan

Zhilin Li Pierre Gremaud
Chair of Advisory Committee

DEDICATION

To the hosts, guests, and panelists of NPR’s “Wait Wait...Don’t Tell Me” and the “Pop

Culture Happy Hour” gang who have been my constant companions and friends during my

hours of research and writing.

And, as with everything I do, in memory of my mom, Bettie Lee Mason Crook.

ii

BIOGRAPHY

Susan Bailey Crook was born May 21, 1985 to Jim and Bettie Lee Crook. Susan was raised,

along with her younger sister Sarah, in Oak Ridge, Tennessee where she was surrounded by a

love of education, math, science, and creativity. At home her parents encouraged her curious

nature and helped her become a life long learner. She was extraordinarily lucky to have a close

group of friends who also loved to learn and did not tease her too much for being a nerd.

After graduating from Oak Ridge High School, Susan attended the University of South

Carolina as a McNair Scholar. At the real Carolina, Susan was able to explore her various

interests and eventually settled on pursuing a BA in French and a BS in Mathematics. She

graduated Summa cum Laude with Honors from the South Carolina Honors College in May

2007 after four wonderful years of classes, friends, and several trips abroad.

Susan decided to attend North Carolina State University in pursuit of her M.S. in Applied

Mathematics. At the end of her first semester, she realized she was not going to learn all the

math she wanted to in only two years and switched to the Ph.D. track. During her time at

NCSU, she has had the opportunity to work with many skilled mathematicians and educators.

Susan is now a tenure track Assistant Professor of Mathematics at Loras College in Dubuque,

IA where she is part of an energetic, supportive, and knowledgeable faculty. She is dedicated

to teaching and is excited about her future career in academia.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Pierre Gremaud, for helping me

through this journey. It wasn’t always smooth sailing, but I always appreciated having an

experienced mentor to guide and encourage me. Second, thanks to Dr. Irina Kogan for her

additional help and expertise. Thanks to my committee members, Dr. Stephen Campbell, Dr.

Zhilin Li, and Dr. Stephen Peretti for their time. Also, thanks to Dr. Mark Hoefer for serving

as a substitute on my committee.

My family has been crucial in the Ph.D. process. My sister and father have listened to my

joys and sorrows (sometimes at the same time) and I owe them endless gratitude. My extended

family (Suzanne, Houston, and Charly), I thank you for helping take care of things so that I

could be here doing this. And, Mom, I know without a doubt that you’ve been watching and

cheering me on.

The list of friends who have been a part of my life the past 5 years is much too long to list,

but I thank you all for everything you’ve done. My officemates, for helping brighten the day after

bad meetings or telling me to stop talking and get to work. Jeb and Rachael, for commiserating

and reminding me that sometimes a grumble isn’t a bad response. Karen, Kristen, J.T., Matt,

Sarah, Adam, Kate, and Shana - thank you for being in my loving entourage. A hearty thank

you to my Oak Ridge girls - Swing, Bauman, Sam, Sariti, Alex, and Rossiepoo - for always

supporting me in everything I do!

While I owe a huge amount of thanks to every teacher I’ve ever had, a few deserve name

recognition. Mrs. Leavy, for being my school mom from first grade to senior year. Mr. Goforth,

for being the first math teacher who wouldn’t let me give up just because I was frustrated. You

were the first person to show me that math could be fun and that I could do it on my own. Mrs.

Reed was the first one to put the idea of math graduate school in my head. Mrs. Albert has

long been my math idol and if I am ever half as good a teacher as she is, I will be ecstatic. Dr.

Sumner and Dr. Roberts, thanks for helping me realize that the college level is where I belong.

iv

Lastly, I have had multiple mentors through my education. Denise, without you, nothing

would ever get done in the math department! Barbi and Melissa have been so supportive of me

as I participated in every teaching program at NCSU. I will miss discussing my teaching ideas

with you. Molly has given me invaluable teaching advice over the past years and, without her,

I would have been lost during the job search process. And, finally, many thanks and much love

to my second father, Mr. Burns, for always giving me just enough whining time before telling

me to shut up and work.

v

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1
1.1 Objective of Curve Matching . 1
1.2 Applications of Curve Matching . 1
1.3 Methods of Curve Matching . 4
1.4 Overview of Thesis . 9

Chapter 2 Continuous Invariants and Signatures for Planar Curves 10
2.1 Curve Invariants . 10
2.2 Integral Invariants and Signatures . 12

Chapter 3 Discrete Invariants and Signatures for Planar Curves 20
3.1 Invariant Approximations of Integral Invariants 20

3.1.1 Derivation of Discrete Invariants . 21
3.1.2 Discrete Invariant Signatures . 29
3.1.3 Consistency of the Discrete Invariant . 31

3.2 Using Signatures for Matching Curves with a Fixed Initial Point 35
3.3 Using Signatures for Matching Curves without a Fixed

Initial Point . 49
3.4 Sensitivity Analysis . 58

Chapter 4 Applications . 61
4.1 Character Recognition . 61

4.1.1 Algorithm . 62
4.1.2 Pseudocode . 68
4.1.3 Results and Discussion . 68

4.2 Jigsaw Puzzle Assembly . 71
4.2.1 Preprocessing . 74
4.2.2 Algorithm . 77
4.2.3 Pseudocode . 79
4.2.4 Results and Discussion . 88

Chapter 5 Final Remarks . 91

REFERENCES . 93

vi

LIST OF TABLES

Table 3.1 Nodal distances of signatures associated with different samplings of sin(x). 42
Table 3.2 Distances from nodes on signature one to linear interpolants of signature

two. 46
Table 3.3 Distances from nodes on signature two to linear interpolants of signature

one. 47

Table 4.1 Average Success Rates of Character Identification for Varying Sizes of
Training Sets . 69

Table 4.2 Success Rates of Various Character Recognition Methods 71
Table 4.3 Success Rates for a Correct Match Appearing in the Top-T Matches 89

vii

LIST OF FIGURES

Figure 1.1 Classification of curve matching and registration methods (reprinted from
[114]). 5

Figure 2.1 Plot of (x(θ), y(θ)) = (θ cos(θ), θ sin(θ)) over the interval [0, 4π]. 16
Figure 2.2 Geometric Interpretations of Integral Invariants. 17
Figure 2.3 Various signature curves for (x(θ), y(θ)) = (θ cos(θ), θ sin(θ)) over the

interval [0, π]. 18

Figure 3.1 Plot of 200 points along the curve (θ cos(θ), θ sin(θ)), θ ∈ [0, π]. 30
Figure 3.2 Discrete invariant signatures of 200 points along (x(θ), y(θ)) = (θ cos(θ), θ sin(θ))

for θ ∈ [0, π]. 31
Figure 3.3 Discretely given γ̂ = (x, 3x cos(x)), x ∈ [0, 10]. 36
Figure 3.4 Signature curves associated with differing choice of endpoint used for

initial point of the open curve, (x, 3x cos(x)), x ∈ [0, 10]. 37
Figure 3.5 Plots of Eq. 3.7 and Eq. 3.8 with initial points highlighted in green and

plots of the respective (R̃(n), Ĩ1(n)) signatures. 39
Figure 3.6 Plots of two samplings of sin(x). 40
Figure 3.7 Signature curves associated with different samplings of (x, sin(x)). 41
Figure 3.8 Illustration of node to linear interpolant measuring scheme. 44
Figure 3.9 Signatures of two curves plotted. 47
Figure 3.10 Sample signatures illustrating benefits and pitfalls of methods to choose

a best match. 48
Figure 3.11 Visual illustration of first integral invariant for a closed curve. 51
Figure 3.12 Visual depiction of determinant shift of signatures when a+ i < N 52
Figure 3.13 Visual depiction of determinant shift of signatures when a+ i ≥ N 54
Figure 3.14 Plot of φ(r) = 2r (green), φ̄(r) = 3r (red) and geometric interpretation

of implications of Eq. 3.12. The blue curve is an arc of a circle centered
at the origin. 60

Figure 4.1 Example of a Binary Decision Tree . 67
Figure 4.2 Average Success Rates of Character Identification 70
Figure 4.3 Solutions of a partial puzzle highlighting the impact of using a locking

technique. Reproduced from [54]. 74
Figure 4.4 The pieces of and completed Rain Forest Giant Floor Puzzle. The pieces

in (a) are shown in pseudo-random order and in the orientations in which
they are input to the algorithm. Reproduced from [54]. 76

viii

Chapter 1

Introduction

1.1 Objective of Curve Matching

Our goal is to construct, analyze, implement, and test efficient and reliable numerical methods

to determine whether two or more curves are equivalent under some geometrical transformation.

Central in our work is the case of the special Euclidean group (translations and rotations in

R2). Two curves will thus be equivalent if one can be mapped to the other by a composition of

rotation and translation.

In practical situations such as character recognition or medical applications, only sampled

nodes are available to describe any given curve; this is very different from having, say, a para-

metric representation at our disposal. We propose new families of discrete invariants which can

be directly applied to discretized curves. These invariants are left unchanged by the action of

the geometric transformations and can be used in a robust way to assess equivalency.

1.2 Applications of Curve Matching

In this thesis we focus on the applications of curve matching to character identification and

automated jigsaw puzzle solving. The development of automated character recognition has

been spurred by recent technological developments, such as the increasing popularity of tablet

1

computers. Curve matching is one of the methods used in character recognition as detailed in

[61], [60], [98], [37], [42], [96], and [35].

While jigsaw puzzle assembly may seem a frivolous problem, it has far reaching applications

and has been widely studied, [41], [16], [54], [110], [38], [67], [90]. Computer algorithms developed

to solve jigsaw puzzles may be used in object assembly and object recognition. This application

is commonly seen in factory work where assembly lines are automated for faster and cheaper

assembly of products. Depending on what is being assembled and how the assembly line is

arranged, the machines may have to decide how best to match two pieces (similar to fitting two

puzzle pieces together when only given the two pieces) or they may have to find a best match

for a given piece out of several options presented (similar to finding a fit for a puzzle piece

given all the other pieces). More detailed descriptions of the use of curve matching in object

recognition and identification may be found in [94], [55], [10], [105], [18], [75], [109], [68], and

[39].

Though we focus on these two applications, curve matching is also widely used in scientific

applications and research. Researchers studying brain functions may use curve matching for

brain image mapping, as in [106], [72], and [8]. Facial recognition algorithms, such as those

detailed in [101] and [92], simplify faces to planar curves and use curve matching. Curve match-

ing may be used to help doctors identify if patients are suffering from osteophytes, [70], by

comparing x-rays of spines to a database of templates.

Marine researchers are able to save themselves a significant amount of time and money by

using curve matching methods to track animal movement, [48] and [46]. Rather than tagging in-

dividual animals with electronic trackers and recording their movements via satellite, researchers

now place underwater cameras in certain areas. Each animal that swims by is recorded. A com-

puter then traces the unique fin outline of the animal and runs it through a database of fin

outlines from animals who have previously swum past the camera. If there is a significant match

to a previously known fin, then the researchers have an animal they have previously spotted.

The upkeep cost of using cameras rather than trackers is less and there are less man hours

2

needed to install them. The researchers are also able to avoid the invasive procedures of having

to capture animals to tag. Similar methods are used to identify elephants by their ear notches,

[6].

Curve matching methods may also be used to help gain knowledge of previous civilizations.

At archeological dig sites, historical ruins are often found in many pieces. It can take a human

a significant amount of time to accurately reassemble a find since they are in effect having to

solve a large scale, three dimensional jigsaw puzzle. Not only a hard task, but a delicate one

as the pieces may be extremely fragile. Rather than solve these tasks manually, we may take

a picture of each fragment and have a computer use curve matching techniques to virtually

reassemble the whole piece. Once the piece is completed, the algorithm will also specify the

transformations needed to assemble the pieces. This application of curve matching technology

is further detailed in [78] and [104].

Curve matching also has a place in national and personal security. We have all seen a

detective reassemble a shredded secret message in a crime solving television show. Computerized

curve matching algorithms are making this a quicker and less involved task despite the fact

that shredders are becoming more advanced in response to the heightened threat. In 2011,

the Department of Defense’s Defense Advanced Research Projects Agency (DARPA) held a

shredder challenge, [1]. The challenge was composed of five separate shredded puzzles. Each

puzzle had a varying number of shredded documents and the method of shredding was varied

as well. Teams had to reassemble the documents to find an embedded clue which they had

to solve in order to complete the puzzle. The winning team, “All Your Shreds Are Belong

to U.S.”, solved the five puzzles in slightly over one month to win the challenge. According

to DARPA the goals of this challenge were “to identify and assess potential capabilities that

could be used by our warfighters operating in war zones, but might also create vulnerabilities

to sensitive information that is protected through our own shredding practices throughout the

U.S. national security community.” These same threats present themselves in our daily lives as

well. As technology evolves to the point where personal computers are able to easily reconstruct

3

shredded documents, personal information becomes less secure even when precautions are taken.

1.3 Methods of Curve Matching

Many methods of curve matching and registration exist; general surveys of the field are given

in [4] and [114]. These methods may be split into two categories - contour-based and region-

based. Contour-based methods use only the outline of the curve to classify and group curves

while region-based methods take into account all the pixels within the shape region. All open

curve matching techniques will be contour-based by default. In both of these categories we

may further split into structural versus global approaches. A global approach treats the curve

as one entire piece whereas structural approaches represent the curve in segments (also called

primitives). Our method is a contour-based technique. Depending on how it is used, it may

be either a global or structural technique. In the case of character recognition it is a global

technique, but in puzzle assembly it is used as a structural technique.

Some examples of each subcategory of techniques are listed in Figure 1.1, reproduced from

[114]. We note that many curve matching algorithms use a combination of two or more of these

techniques.

4

Figure 1.1: Classification of curve matching and registration methods (reprinted from [114]).

Selected Region-based Global Techniques

Moments are a common region-based global curve matching technique. We will provide

examples of methods using geometric, Zernike, pseudo-Zernike, and Legendre moments. We

choose to focus on moment based methods because we will compare the success rate of our

character recognition method to that of several methods using moments. Moments are created

by mapping a function onto a polynomial basis of choice. Geometric moments are found by

projecting a function onto a standard power basis and are invariant to translation, scaling, and

rotation. Curve matching methods employing geometric moments are proposed in [112], [31],

[3], [97], and [80].

Legendre, Zernike, and pseudo-Zernike moments are also referred to as orthogonal moments

since the polynomial bases used are orthogonal. Zernike moments are the mappings of an image

onto a set of Zernike polynomials. These moments represent the properties of the image with

no overlap of information since the Zernike polynomials are orthogonal to one another. The

magnitudes of Zernike moments are invariant to rotation; however, they are dependent on

scaling and translation of the image. Thus if the curve which we are attempting to classify

5

may have been rotated, but not translated or scaled, these moments provide a viable method.

Pseudo-Zernike moments have been shown to be more robust and less sensitive to noise making

them good choices for use in image classification and recognition. Legendre moments are created

by mapping a function or image onto a set of Legendre polynomials. In the method to which we

will compare our character recognition method ([42]), Legendre-Sobolev polynomials are used.

Methods using orthogonal moments are given in [64], [25], [66], [86], [56], [85], [99], [100], and

[108].

Selected Region-based Structural Techniques

Methods using the medial axis begin by creating a skeleton of an image. A skeleton is defined

as a connected set of medial lines that represent the figure. This skeleton is then decomposed

into segments which may be represented as a graph. Thus, the problem has been reduced to

one of graph matching. The pitfall of methods using this technique is that the computation of

the medial line is often difficult. In [87], [11], [81], curve matching techniques using medial lines

are proposed.

The distance from a curve to a convex hull of other shapes may be used to classify and

identify curves. The distance used to measure the distance may vary based on method, e.g.

Manhattan and Euclidean distances ([42], [43], [44]), Fréchet distance ([15]), and Hausdorff

distance ([47]). This technique is often used with other techniques to be more effective, for

instance the method detailed in [42] combines Legendre-Sobolev moments, integral invariants,

and distance to convex hull.

Selected Contour-based Global Techniques

The method of using Fourier descriptors, ([5], [63], [89], [5]) begins by describing the outline

of a shape by its arc length from a declared origin. This parameter is then normalized so that

its sum along the curve is 2π. A function giving the angular variation between the tangent at

the origin and that tangent at a given position is then written in terms of a Fourier series. The

coefficients of this series are invariant to translation, rotation, change of scale, and change of

origin of the shape and, thus, are useful in classifying and identifying curves when transforma-

6

tions may have occurred. Similar techniques using wavelets to rewrite the function of angular

variation rather than Fourier series exist, ([102], [74], [58]).

Elastic matching warps specified pixels of one curve to the other and attempts to optimize

this matching to discover if two curves are the same. The pixels may be either on the edge

of a given shape or inside the shape. This method has obvious uses in the applications of

puzzle assembly and character recognition ([113], [7], [17]). A recent survey of elastic matching

techniques and its application to character recognition is given in [103].

Both of these techniques work to identify and classify a given shape without segmenting it.

Descriptors strive to do this without changing the curve or finding an exact transform while

elastic matching tries to transform one shape to the other. Our curve matching method when

used for global matching is closer to that of descriptors. We will measure certain aspects of the

figure and use these to identify or classify our curve.

Selected Contour-based Structural Techniques

For contour-based structural methods, curves are first broken into smaller segments. The

common methods for splitting a curve into primitives are based on polygonal approximation,

curvature decomposition, and curve fitting, [88].

One such method relies on representing curves with B-splines. Further information on al-

gorithms used to find B-spline representations of curves can be found in [29], [30], [79], and[9].

In [26] and [107], Cohen and Wang propose an algorithm for curve matching using a similarity

measure based on B-spline knot points. While effective, this method cannot be used in cases

where there may be an affine transformation between the curves or in cases of occlusion. A new

algorithm that can handle curves related via affine transforms and occlusion was proposed in

[57] by Huang and Cohen; this new curve matching algorithm relies on representing the curves

with weighted B-spline curve moments. The application of this matching algorithm to the pro-

cess of matching homologous histological sections of rat brains was studied in [27], [3]. A new

curve matching algorithm using “super-curves” was developed by Xia and Liu in [111]. This

approach uses a B-spline fusion technique to find a B-spline approximation of the super curve

7

created by considering both curves in one coordinate system. As a result rather than examining

two B-spline curves, only one B-spline curve will be used in this technique. This method allows

for affine transforms and occlusion when used for curve matching and registration.

The method we propose uses integral invariants for the purpose of curve matching. As

mentioned previously, depending upon the application this method may be considered either a

contour-based global type of technique or a contour-based structural technique. As with many

of the techniques described above, invariants may be more effectively used when combined with

other curve matching methods.

Invariants have long been used for curve matching, see, for instance, approaches based on

the moving frame method proposed by Elie Cartan [[22], [51],[50], [84],[34], [33]]. Many types

of invariants have been proposed and used - differential invariants ([28]), joint invariants ([45],

[83], [12], [18]), and integral invariants ([93], [73], [76], [53], [77]). The circular area and cone

area signatures in particular are examples of widely used integral invariants ([20], [36], [76]).

Each type of invariant has its own benefits and pitfalls.

If we consider the special Euclidean group on curves in R2, then the most commonly used

invariants are curvature and the derivative of curvature with respect to arc length. Assuming

we have a parametric equation of a curve, (x(t), y(t)), t ∈ [0, T], these can be written as

κ(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(ẋ2(t) + ẏ2(t))3/2

κs(t) =
d

ds
κ(t) =

(ẋ2 + ẏ2)(ẋ
...
y − ...

x ẏ)− 3(ẋẍ+ ẏÿ)(ẋÿ − ẍẏ)

(ẋ2 + ẏ2)3

where the dots denote differentiation with respect to t. In fact these are the basis for all invari-

ants based on derivatives of parametric curves in the Euclidean plane. While it is known that

two curves are equivalent under rigid motion if and only if their curvatures as a function of arc

length are the same, it is not practical to classify curves in this manner for several reasons.

First, the above invariants assume a parametrization of the curve which might not be avail-

8

able or may be costly to find. Second, parametrizing with respect to arc length may be difficult

in practice. Third, the above quantities are only defined for continuous (as opposed to discrete)

curves. Further, numerical approximations of the quantities will in general not be invariant.

Fourth, the differential nature of the above invariants assumes some degree of smoothness of

the curves which may not be present in practice.

The invariants we propose in this thesis are different from the above construction in two

fundamental ways

1. They are integral, not differential. This ensures a higher stability and lower sensitivity to

perturbation and/or noise in the data.

2. They are discrete. In other words, they can be applied directly to discrete curves, i.e.,

curves described only at a finite number of nodes.

1.4 Overview of Thesis

In Chapter 2 we review previous work and situate our approach in respect to the relevant

literature. We provide needed background material for the analysis of our method. Specifically,

we discuss the development and use of differential and integral invariants. In Chapter 3 we

detail the method that we have developed to generate curve invariants which allow for discrete

input. We also describe and outline our algorithm utilizing discrete curve invariants for curve

matching. Analysis of our method and the discrete invariants will also be included. Finally,

in Chapter 4, we present two real world applications of our algorithm. To demonstrate the

matching of open curves, we present the example of character recognition and for closed curve

matching, we show an example finding the area of best match on pairs of puzzle pieces.

9

Chapter 2

Continuous Invariants and

Signatures for Planar Curves

2.1 Curve Invariants

We review some necessary background that will be used in the development and analysis of

discrete invariants. We begin with the concept of a group action defined below.

Definition 2.1.1. Let G be a group and let Ω be a set. The action of G on Ω is a map α :

G× Ω→ Ω satisfying the following:

identity: α(e, s) = s, for all s ∈ Ω with e being the identity in G.

associativity: α(g1, α(g2, s)) = α(g1g2, s) for all g1, g2 ∈ G and s ∈ Ω.

We denote the action by α (g, s) = gs.

We focus on the special Euclidean group which acts on R2 in the following way

 x̄

ȳ

 =

 cosφ − sinφ

sinφ cosφ


 x

y

+

 v1

v2



10

where v1, v2, φ ∈ R. Thus this group action consists of translations and rotations.

We define the concept of an invariant. As might be suggested by its English definition, an

invariant is a function that is not altered when certain transformations are performed.

Definition 2.1.2. Let the group G act on a set Ω. A function f : Ω → R is invariant if it is

unaltered by the action of G, i.e. f(gω) = f(ω), for all g ∈ G and ω ∈ Ω.

A group action on R2 induces an action on curves in R2 in a natural way. Namely, to a

parametrized curve γ in R2, with γ(t) =

 x(t)

y(t)

, t ∈ (0, T), we associate the parametrized

curve γ̄ where

γ̄(t) =

 x̄(t)

ȳ(t)

 = g

 x(t)

y(t)

 , t ∈ (0, T),

with g ∈ G. Similarly, if a discrete curve γN in R2 is given by N ordered nodes


 xi

yi



N

i=1

,

then we define γ̄N as being determined by the N nodes g

 xi

yi

 =

 x̄i

ȳi

, i = 1, . . . , N .

To generate invariants, we use the “invariantization” procedure introduced in [34] which

follows from a generalization of Cartan’s moving frame method, [21], [22]. The invariantization

process is outlined below in the case of Rn.

Invariantization Process

Let G be an r-parametric group action on Rn with coordinates (x1, . . . , xn).

1. The group transformation equations are written as

xi = αi(λ1, . . . , λr, x1, . . . , xn), i = 1, . . . , n. (2.1)

2. Choose constants c1, . . . , cr and set r of the transformed variables equal to these constants.

11

Up to possible relabeling, we have

αi(λ1, . . . , λr, x1, . . . , xn) = ci, i = 1, . . . , r.

3. Solve the previous r equations for λ1, . . . , λr if possible. If it is not possible, we must try

another cross-section c1, . . . , cr. Otherwise, the corresponding solution g = ρ(x) ∈ G is a

moving frame.

4. Compute the action of the moving frame on the remaining coordinates. More precisely,

substitute the values found for λ1, . . . , λr into Eq. 2.1 to obtain n − r non-constant in-

variants

x̄i+r|g=ρ(x) = Ii(x1, . . . , xn), i = 1, . . . , n− r.

It was proved in [21] and [22] that under some generic conditions on the group action step

three of the process can be performed for some choice of a subset, (i1, . . . , ir) ∈ (i1, . . . , in), and

almost all values of c1, . . . , cr.

Definition 2.1.3. Two planar curves, γ1 and γ2, are equivalent under the actions of G if

there exists g ∈ G such that γ1 = gγ2 where gγ2 denotes the transformed curve γ2 under g.

We want to determine if two curves are equivalent without finding the explicit transform

that relates them. To do this, it is most advantageous to use a signature constructed from

invariants.

2.2 Integral Invariants and Signatures

We concentrate on integral invariants because they are better equipped to handle noisy/perturbed

data than invariants based on differentiated quantities (such as curvature). In [76] and [77],

integral invariants were proposed that are restricted to planar curves undergoing Euclidean

transformations. In light of possible applications, we will use the type of integral invariants

12

presented in [53] and [35], which may be developed for use on planar curves undergoing group

transformations other than Euclidean. We follow the general presentations given in these papers

as we define continuous integral invariants for special Euclidean group actions on planar curves.

Suppose we have a parametric curve γ in R2 given by (x(t), y(t)), t ∈ [0, T]. The explicit con-

struction of integral invariants is based on (i) prolonging the action of, say, the special Eulidean

group, from curves in R2 to new integral variables and (ii) applying the general invariantization

process outlined above.

By translating the initial point γ(0) to the origin and defining

X(t) = x(t)− x(0),

Y (t) = y(t)− y(0),

(2.2)

in the above integrals, we can reduce the problem of finding invariants for the special Euclidean

group to finding invariants for SO(2).

The integral variables are defined as follows

X(ij)(t) =

∫ t

0
Xi(τ)Y j(τ)dX(τ),

Y (ij)(t) =

∫ t

0
Xi(τ)Y j(τ)dY (τ),

(2.3)

where the integrals are taken along the curve γ and where i, j are nonnegative integers such

that i+ j 6= 0.

Using integration by parts, it is easy to find dependencies between some of the above integral

variables. For instance, we have

Y (10)(t) = X(t)Y (t)−X(01)(t)

Y (20)(t) = X2(t)Y (t)− 2X(11)(t)

X(02)(t) = X(t)Y 2(t)− 2Y (11)(t).

13

Following [53] and [35], it can be shown that the problem of finding integral invariants under

the action of the special Eucliean group on curves in R2 reduces to finding invariant functions

of the variables

{X(t), Y (t), X(01)(t), Y (11)(t), X(11)(t)}

where

X(01)(t) =

∫ t

0
Y (τ)dX(τ)

Y (11)(t) =

∫ t

0
X(τ)Y (τ)dY (τ)

X(11)(t) =

∫ t

0
X(τ)Y (τ)dX(τ).

(2.4)

In other words, we apply the invariantization process 2.1 in R5. The corresponding group action

(in our case, rotations) becomes

X = cos(φ)X − sin(φ)Y

Y = sin(φ)X + cos(φ)Y

X
(01)

= X(01) +
1

2
cos(φ) sin(φ)(X2 − Y 2)− sin2(φ)XY

Y
(11)

= cos(φ)Y (11) − sin(φ)X(11)

+
1

3
cos(φ) sin(φ)

[
sin(φ)X3 + 3 cos(φ)X2Y − 3 sin(φ)XY 2 − cos(φ)Y 3

]
X

(11)
= cos(φ)X(11) + sin(φ)Y (11)

+
1

3
cos(φ) sin(φ)

[
cos(φ)X3 − 3 sin(φ)X2Y − 3 cos(φ)XY 2 + sin(φ)Y 3

]
.

(2.5)

By considering the cross-section (normalization) Y = 0, we get

cos(φ) =
X√

X2 + Y 2

sin(φ) =
−Y√

X2 + Y 2
.

(2.6)

Substituting these values into Eq. 2.4, we find

14

X =
√
X2 + Y 2

Y = 0

X
(01)

= X(01) − 1

2
XY

Y
(11)

= Y (11)X − 1

2
Y (20)Y − 1

6
X2Y 2.

X
(11)

= XX(11) − Y Y (11) − 1

3
(X3Y −XY 3)

(2.7)

Thus, we have four non constant invariants which we will denote as

R =
√
X2 + Y 2

I1 = X(01) − 1

2
XY

I2 = Y (11)X − 1

2
Y (20)Y − 1

6
X2Y 2

I3 = XX(11) − Y Y (11) − 1

3
(X3Y −XY 3).

(2.8)

By construction, each of these is invariant under rotation and, after substitution (Eq. 2.2),

rotation and translation.

We can also consider the effects of reflection on these invariants. We consider a reflection

over the y-axis. This is equivalent to letting X̂ = −X and Ŷ = Y . Performing this reflection

will change the sign of X(01) and Y (11). If we consider the formulas of invariants in Eq. 2.8 with

these new variables, we find

R̂ =

√
X̂2 + Ŷ 2 =

√
X2 + Y 2 = R

Î1 = X̂(01) − 1

2
X̂Ŷ = −X(01) +

1

2
XY = −I1

Î2 = Ŷ (11)X̂ − 1

2
Ŷ (20)Ŷ − 1

6
X̂2Ŷ 2 = Y (11)X − 1

2
Y (20)Y − 1

6
X2Y 2 = I2

Î3 = X̂X̂(11) − Ŷ Ŷ (11) − 1

3
(X̂3Ŷ − X̂Ŷ 3) = −XX(11) + Y Y (11) − 1

3
(−X3Y +XY 3) = −I3.

(2.9)

15

We see that R and I2 are also invariant to reflection while I1 and I3 are not. We may square

I1 and I3 to render them invariant to reflection.

Definition 2.2.1. If Γ denotes a set of curves in R2 and G acts on Γ, then S : Γ → Γ is a

signature map if S(γ) = S(gγ), for all g ∈ G and for all γ ∈ Γ. The image, S(γ) is called the

signature of γ.

The main property of signatures is that the signatures of equivalent curves are equal.

Example 2.2.2. Consider the curve, given in polar coordinates, r = θ which produces a spiral.

This can be rewritten in Cartesian coordinates as (x(θ), y(θ)) = (θ cos(θ), θ sin(θ)). A plot of

this curve for θ ∈ [0, 4π] can be seen in Figure 2.1.

-3 -2 -1 0 1
0.0

0.5

1.0

1.5

2.0

Figure 2.1: Plot of (x(θ), y(θ)) = (θ cos(θ), θ sin(θ)) over the interval [0, 4π].

The invariants defined above in Eq. 2.8, take the form

Rγ(θ) = θ

Iγ1 (θ) =
−1

6
θ3

Iγ2 (θ) = 2θ +
−θ3

3
− 2 sin(θ)

Iγ3 (θ) = −4 + 4 cos(θ) + 2θ2.

(2.10)

Computing invariants on curves allows us to consider the geometric interpretation of the

invariants.

16

The invariant R, which is invariant with respect to rotation, translation, and reflection, is

the length of the secant line connecting the initial point, (X(0), Y (0)) = (0, 0), to the current

point, (X(t), Y (t)). This geometric interpretation can be seen in Figure 2.2a.

(a) Invariant R. (b) Invariant I1.

Figure 2.2: Geometric Interpretations of Integral Invariants.

The invariant I1 is invariant with respect to rotation and translation. The invariant I1(t) for

some t in our domain can be interpreted geometrically as the signed area between the secant

line connecting the initial point (X(0), Y (0)) = (0, 0) and the point (X(t), Y (t)) and the curve.

This geometric interpretation can be seen in Figure 2.2b.

The invariant I2 is invariant with respect to rotation, translation, and reflection. The in-

variant I3 is invariant with respect to rotation and translation. Unfortunately, the invariants I2

and I3 do not have such easily explained geometric interpretations. Further details and a more

involved geometric interpretation are given in [35].

While invariants themselves capture some important properties of curves, the true power of

using invariants for curve matching lies in using them to create signatures. We have from the

above considerations

Theorem 2.2.3. Let γ(t) be a planar curve. Then (Rγ(t), Iγ1 (t)), (Rγ(t), Iγ2 (t)), (Iγ1 (t), Iγ2 (t)),

17

((Rγ(t), Iγ3 (t)), (Iγ1 (t), Iγ3 (t)), and (Iγ2 (t), Iγ3 (t)) are special Euclidean signatures of γ.

Example 2.2.4. We return to the example of the parametrically given spiral shown in Fig-

ure 2.1. We plot the signatures using the invariants given by Eq. 2.10 in Example 2.2.4 . In

Figure 2.3, we illustrate the special Euclidean signatures for this spiral for θ ∈ [0, π].

(a) (R, I1) signature (b) (R, I2) signature (c) (R, I3) signature

(d) (I1, I2) signature (e) (I1, I3) signature (f) (I2, I3) signature

Figure 2.3: Various signature curves for (x(θ), y(θ)) = (θ cos(θ), θ sin(θ)) over the interval [0, π].

18

We may use these signatures for the purpose of identifying equivalent curves. It was shown

in [2] that given two continuously differentiable curves, γ and γ, that do not intersect a circle

of radius r more than once for each r > 0, the two curves are equivalent with respect to special

Euclidean actions if their (R(t), I1(t)) signatures coincide. A similar result was shown for the

affine group and (R(t), I2(t)) signature in [59].

There are many advantages to using signature curves to classify and identify curves. By using

signature curves to identify if two curves are equivalent we are able to avoid having to find an

explicit group element under which one curve may be mapped to the other. Often our end goal

is not to find the transformation, but rather just to find that such a transformation exists and

employing signatures determines this without the work of finding the transform. Additionally,

to compare two curves without using the pairing of invariants to create signatures, we would

need to ensure that a uniform parameterization is used for the two curves. Using signature

curves allows us to overcome this difficulty.

Unfortunately, signatures based on integral invariants are dependent upon our choice of

initial point. In the case of open curves, we have two natural options for initial point and may

avoid this dependence by computing two signatures, one associated with each choice of initial

point, to use for curve matching purposes. For closed curves, we have infinite choices for initial

point and this issue can greatly complicate the task of curve matching. In Chapter 3, we discuss

how we address this dependence upon initial point in our curve matching processes.

19

Chapter 3

Discrete Invariants and Signatures

for Planar Curves

3.1 Invariant Approximations of Integral Invariants

The approaches described so far rely heavily on curve parametrizations. In most practical

cases, curves are given through nodal values (pixels for instance) and parametrizations are not

available. There are essentially two ways to deal with this. First, one could construct curve

approximations based polynomial interpolation, splines or other similar methods and derive

parametrizations from these constructions. This approach is very sensitive to perturbation and

noise and would require patching up several local reconstructions in order to guarantee an

acceptable level of accuracy. Another approach is to consider numerical approximations to

internal invariants. This was adopted in [35] where local approximations to integral invariants

were implemented. Here, we take this approach further and construct global discrete integral

invariants. The main challenge we have to solve is that is the invariance property is not preserved

by numerical quadratures. We solve this problem by invariantizing discrete integral variables

directly (as opposed to discretizing invariant integral variables). We thus construct a new class

of discrete invariants. Let us also note that there exist invariant numerical approximations

20

to differential invariants ([19],[14], [12], [18])).

Our discrete invariants do not require a dense sampling of the curves to be matched. The

discrete invariants which we propose are able to match curves regardless of how they were

sampled. Provided two different samplings of the same curve our method will still identify a

match. As a result of this independence of sampling method, our matching technique more

accurately associates the underlying structure of the curve with the given set of points. The

lesser requirements of curve sampling needed for our matching technique make it useful in varied

applications.

3.1.1 Derivation of Discrete Invariants

We develop a method to derive discrete invariants. We derive discrete invariants by applying

a quadrature rule to the integral variables previously introduced in Eq. 2.4 and then following

the invariantization process described in [35] and outlined in 2.1. For our purposes, we apply

two common quadrature rules to derive discrete invariants: the trapezoidal rule and Simpson’s

rule, both part of the Newton-Cotes family of quadrature rules.

The trapezoidal rule approximates the integral of a function, f , on an interval [a, b] by

the area of a trapezoid such that

∫ b

a
f(x) dx ≈ (b− a)

f(a) + f(b)

2
.

In practice, the domain of integration itself is discretized into N subdomains (x0, x1), (x1, x2),

. . . , (xN−1, xN) where the N + 1 nodes xi, i = 0, . . . , N satisfy a = x0 < x1 < · · · < xN = b.

The corresponding quadrature formula, known as the composite trapezoidal rule, is

∫ b

a
f(x) dx ≈

N∑
i=1

f(xi) + f(xi−1)

2
(xi − xi−1).

21

For a smooth enough integrand f (C2) and uniform meshes, the error is

error = −(b− a)3

12N2
f”(ξ),

at some point ξ, ξ ∈ (a, b).

Simpson’s rule approximates the integral of a function, f , on an interval [a, b] by

∫ b

a
f(x) dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

Again, in practice, we use composite Simpson’s rule to approximate the integral of f over

an interval [a, b] that is divided into N subintervals, N even, as

∫ b

a
f(x) dx ≈

N∑
i=1

xi − xi−1

6

[
f(xi−1) + 4f

(
xi + xi−1

2

)
+ f(xi)

]
.

For f smooth enough (C4) and uniform meshes, the error is

error = −(b− a)5

180N4
f (IV)(ξ),

for some ξ ∈ (a, b).

We use the composite trapezoidal and Simpson’s rules to derive discrete invariants: IT1 (n),

IT2 (n), IS1 (n), and IS2 (n). To do so, we first apply the quadrature rule to an integral variable

and then use the invariantization process as described in 2.1. The steps of the derivation are

presented below.

22

Discrete Invariant Derivation Process

1. Apply a quadrature rule to each of the expressions in Eq. 2.4 on a discrete mesh, (Xi, Yi),

i = 0, . . . , N − 1 with (X0, Y0) = (0, 0).

2. Substitute Xi = cos(φ)Xi − sin(φ)Yi and Y i = sin(φ)Xi + sin(φ)Yi in to the expressions

obtained in step one.

3. Substitute the normalization cos(φ) =
Xn√

X2
n + Y 2

n

and sin(φ) =
−Yn√
X2
n + Y 2

n

in to the

expressions from step two.

First, we derive invariants using the trapezoidal rule.

To derive a numerical approximation to the first integral invariant, we begin with the integral

variable, X(01)(t) =
∫ t

0Y (s) dX(s). We approximate X(01) using the trapezoidal rule with n

nodes, 1 ≤ n ≤ N , to obtain

X(01)(n) =
1

2

n∑
i=1

(Yi + Yi−1)(Xi −Xi−1).

Rotation on the plane by an angle φ induces the transformation

Xi = cos(φ)Xi − sin(φ)Yi

Y i = sin(φ)Xi + cos(φ)Yi.

(3.1)

We prolong this action to X(01)(t) by

X
(01)
T (n) =

1

2

n∑
i=1

(Y i + Y i−1)(Xi −Xi−1)

=
1

2

n∑
i=1

(Yi−1Xi − YiXi−1) + cos(φ) sin(φ)(Y 2
i − Y 2

i−1 −X2
i +X2

i−1)

+ (cos2(φ)− sin2(φ))(YiXi − Yi−1Xi−1)

23

Due to cancelation and the fact that 0 = X0 = Y0, this expression simplifies to

X
(01)
T (n) =

1

2

n∑
i=1

(Yi−1Xi − YiXi−1) + cos(φ) sin(φ)(Y 2
n −X2

n)

+ (cos2(φ)− sin2(φ))(YnXn).

We now normalize by letting Yn = 0, which is equivalent to assigning

cos(φ) =
Xn√

X2
n + Y 2

n

sin(φ) =
−Yn√
X2
n + Y 2

n

.

(3.2)

Substituting these values into our expression for X01(n), we obtain

IT1 (n) =
1

2

n∑
i=1

(Yi−1Xi − YiXi−1).

Thus, we can derive an invariant, numerical approximation to I1(t) by discretizing our

integral variable X(01) with the trapezoidal rule before applying the invariantization process.

We now discretize Y (11) and follow the same process as above to construct an invariant,

numerical approximation to I2(t) using the trapezoidal rule.

We discretize Y (11)(t) =
∫ t

0X(s)Y (s)dY (s) using the trapezoidal rule to obtain Y
(11)
T (n),

1 ≤ n ≤ N ,

Y
(11)
T (n) =

1

2

n∑
i=1

(XiYi +Xi−1Yi−1)(Yi − Yi−1).

Then, prolonging the action of Eq. 3.1

Y
(11)
T (n) =

1

2

n∑
i=1

(XiY i +Xi−1Y i−1)(Y i − Y i−1)

=
1

2

n∑
i=1

((cos(φ)Xi − sin(φ)Yi)(sin(φ)Xi + cos(φ)Yi)

24

+ (cos(φ)Xi−1 − sin(φ)Yi−1)(sin(φ)Xi−1 + cos(φ)Yi−1))

(sin(φ)(Xi −Xi−1) + cos(φ)(Yi − Yi−1)).

Using Eq. 3.2 we get

I
(11)
T (n) =

1

2(X2
n + Y 2

n)3/2

n∑
i=1

[(XnXi + YnYi)(−YnXi +XnYi)

+(XnXi−1 + YnYi−1)(−YnXi−1 +XnYi−1)]

[−Yn(Xi −Xi−1) +Xn(Yi − Yi−1)]

We can simplify this formula by canceling some terms as we expand the summation. Re-

calling that (X0, Y0) = (0, 0), we find the following simplifications.

n∑
i=1

(XiY
2
i −Xi−1Y

2
i−1)X3

n = (X0Y
2

0 −XnY
2
n)X3

n = X4
nY

2
n

n∑
i=1

(Y 3
i + 2X2

i−1Yi−1 − 2X2
i Yi − Y 3

i−1)X2
nYn = (Y 3

n − 2X2
nYn)X2

nYn = X2
nY

2
n − 2X4

nY
2
n ,

n∑
i=1

(X3
i −X3

i−1 + 2Xi−1Y
2
i−1 − 2XiY

2
i)XnY

2
n = (X3

n − 2XnY
2
n)XnY

2
n = X4

nY
2
n − 2X2

nY
4
n , and

n∑
i=1

(X2
i Yi −X2

i−1Yi−1)Y 3
n = (X2

nYn)Y 3
n = X2

nY
4
n .

Making these substitutions and simplifying,

IT2 (n) =
1

2(X2
n + Y 2

n)3/2

n∑
i=1

(XnYi−1 − YnXi−1)(−XnYi + YnXi)

(XnXi + YnYi − YnYi−1 −Xi−1Xn)

25

=
1

2(X2
n + Y 2

n)3/2

n∑
i=1

∣∣∣∣∣∣∣
Xn Yn

Xi−1 Yi−1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Xn Yn

Xi Yi

∣∣∣∣∣∣∣
< Xn, Yn > · < Xi −Xi−1, Yi − Yi−1 > .

We notice that R(n) =
√
X2
n + Y 2

n is invariant under Euclidean motions and if we omit the

factor in front of the sum, we still have a Euclidean invariant.

It should be noted that this formula has a geometric interpretation which gives us some

insight into the second invariant. We see that the two determinants give the area of the par-

allelograms defined by the vectors < Xn, Yn > and < Xi−1, Yi−1 >, and < Xn, Yn > and

< Xi, Yi > respectively. Remembering that we have a factor of one half in front of our sum, we

can consider one of these determinants to be the area of the triangle defined by the respective

vectors. We can consider the scalar product of < Xn, Yn > and < Xi−Xi−1, Yi−Yi−1 > either

as a scalar projection or as a measurement of the magnitude of the two vectors multiplied by

the cosine of the angle between them. If we consider the second definition, then we may factor

the magnitude of < Xn, Yn > out of our sum. This will reduce our coefficient of our sum to

1

2
√
X2
n + Y 2

n

and leave us with a factor of | < Xi − Xi−1, Yi − Yi−1 > | cos(θ) where θ is the

angle between the < Xn, Yn > and < Xi −Xi−1, Yi − Yi−1 >.

Lastly, we apply the invariantization process to the integral variable

X(11)(t) =
∫ t

0 X(s)Y (s) dX(s). We approximate using a trapezoidal rule with n nodes, 1 ≤ n ≤

N .

X
(11)
T (n) =

1

2

n∑
i=1

(XiYi +Xi−1Yi−1)(Xi −Xi−1).

26

Prolonging the action of Eq. 3.1, we get

X
(11)
T (n) =

1

2

n∑
i=1

(XiY i +Xi−1Y i−1)(Xi −Xi−1)

=
1

2

n∑
i=1

(cos(φ) sin(φ)(X2
i +X2

i−1) + cos2(φ)(XiYi +Xi−1Yi−1)

− sin2(φ)(XiYi +Xi−1Yi−1)− cos(φ) sin(φ)(Y 2
i + Y 2

i−1))

(cos(φ)(Xi −Xi−1)− sin(φ)(Yi − Yi−1)).

Substituting Eq. 3.2 in to X
(11)
T (n), we get

IT3 (n) =
1

2(X2
n + Y 2

n)3/2

n∑
i=1

(XnYn(X2
i +X2

i−1 + Y 2
i + Y 2

i−1) + (X2
n − Y 2

n)(XiYi +Xi−1Yi−1))

(Xn(Xi −Xi−1) + Yn(Yi − Yi−1)).

We have four discrete integral invariants

R(n) =
√
X2
n + Y 2

n

IT1 (n) =
1

2

n∑
i=1

(Xi−1Yi −XiYi−1)

IT2 (n) =
1

2(X2
n + Y 2

n)3/2

n∑
i=1

(XnYi−1 − YnXi−1)(−XnYi + YnXi)

(XnXi + YnYi − YnYi−1 −Xi−1Xn)

IT3 (n) =
1

2(X2
n + Y 2

n)3/2

n∑
i=1

(XnYn(X2
i +X2

i−1 + Y 2
i + Y 2

i−1) + (X2
n − Y 2

n)(XiYi +Xi−1Yi−1))

(Xn(Xi −Xi−1) + Yn(Yi − Yi−1)).

(3.3)

When the invariantization process with respect to the special Euclidean group was applied

to the integral variables Y (t) the result was a constant invariant. Since constant invariants will

27

not be of use to us in curve matching applications, we disregard these invariants.

Now let us derive invariants using Simpson’s rule for the discretization rather than the

trapezoidal rule. We are only able to apply Simpson’s rule in situations where the number of

nodes is even, so we will assume that this is the case.

First, we consider

X(01) =

∫ t

0
Y (s) dX(s)

=

∫ t

0
Y (s)X ′(s) ds.

To discretize this expression we will require a discrete approximate to the first derivative of

X(s). We choose to approximate with Taylor’s expansions about three points. We chose this

approximation for two reasons. Our quadrature technique is second order and using Taylor’s

expansions about three points will be of the same order. The second order Taylor approximation

also has the benefit of only using the same subinterval of nodes as Simpson’s rule. This allows the

approximation of the integrand on each subinterval to be reliant only upon itself. This will help

prevent an error in one subinterval from pervading throughout the entire approximation.Using

these approximations with Simpson’s Rule allows us to write

X(01)(n) =
1

3

∑
i=1:2:n−2

Yi

(
−3

2
Xi + 2Xi+1 −

1

2
Xi+2

)
+ 4Yi+1

(
−1

2
Xi +

1

2
Xi+2

)
+ Yi+2

(
1

2
Xi − 2Xi+1 +

3

2
Xi+2

)

where 1 ≤ n ≤ N and i = 1 : 2 : n − 2 means i is increased by two at each iteration until

i = n− 2. Now we rotate, substitute in the associated transformations, and simplify.

X(01)(n) =
∑

i=1:2:n−2

(
−1

2
Y 2
i +

1

2
X2
i +

1

2
Y 2
i+2 −

1

2
X2
i+2

)
cos(φ) sin(φ)

28

+ (Yi+2Xi+2 − YiXi) cos2(φ)

+
2

3
(YiXi+1 − Yi+2Xi+1 − Yi+1Xi + Yi+1Xi+2)

+
1

2
(YiXi − Yi+2Xi+2) +

1

6
(Yi+2Xi − YiXi+2) .

By invariantizing, we obtain

IS1 (n) =
∑

i=1:2:n−2

(
−1

2
Y 2
i +

1

2
X2
i +

1

2
Y 2
i+2 −

1

2
X2
i+2

)(
−YnXn

Y 2
n +X2

n

)
+ (Yi+2Xi+2 − YiXi)

(
Y 2
n

Y 2
n +X2

n

)
+

2

3
(YiXi+1 − Yi+2Xi+1 − Yi+1Xi + Yi+1Xi+2)

+
1

2
(YiXi − Yi+2Xi+2) +

1

6
(Yi+2Xi − YiXi+2) .

Similarly, we may derive invariant, numerical approximations to I2(t) and I3(t) using Simp-

son’s rule.

We have derived discrete integral invariants, using the trapezoidal rule and Simpson’s rule,

by applying to our integral variables before we begin the invariantization process as detailed in

3.1.1.

3.1.2 Discrete Invariant Signatures

In Chapter 2, we discussed the benefits of using invariants to construct signatures to be used

for curve recognition and matching. Discrete invariant signatures are obtained in a similar way

be simply plotting one discrete invariant against another.

We first demonstrate how discrete signatures appear graphically.

Example 3.1.1. Let us return to the spiral given in 2.2.4, (x(θ), y(θ)) = (θ cos(θ), θ sin(θ)), θ ∈

29

[0, 4π]. We will now consider this spiral given discretely by 200 points along the curve. This

discrete representation is shown in Figure 3.1.

3.5 3 2.5 2 1.5 1 0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.1: Plot of 200 points along the curve (θ cos(θ), θ sin(θ)), θ ∈ [0, π].

Shown in Figure 3.2 are the discrete invariant signatures of this curve.

We note that our discrete invariants do not require any specific assumption on the step

sizes, neither regarding uniformity or density of nodes which is an significant asset in practice.

For a given smooth curve, the discrete invariants will converge to the associated continuous

invariants as the number of sampled values N goes to infinity. We make this statement more

precise in the next section. It should be noted that the usefulness of our new discrete invariants

is not linked to their approximating properties. These latter properties are, however, useful

when analyzing the dependence of sampling on the discrete invariants, see 3.1.3.

We have derived discrete invariants approximating R(t), I1(t), I2(t), and I3(t) using both

the trapezoidal rule and Simpson’s rule. It is possible to derive discrete invariants with more

additional quadrature rules. Hereafter, we choose to work with the simplest versions of dis-

30

0 0.5 1 1.5 2 2.5 3 3.5
6

5

4

3

2

1

0

RT(n)

I 1T (
n)

(a) (RT (n), IT1 (n)) signature

0 0.5 1 1.5 2 2.5 3 3.5
4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

RT(n)

I 2T (
n)

(b) (RT (n), IT2 (n)) signature

6 5 4 3 2 1 0
4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

I1
T(n)

I 2T (
n)

(c) (IT1 (n), IT2 (n)) signature

0 0.5 1 1.5 2 2.5 3 3.5
6

5

4

3

2

1

0

RS(n)

I 1S (
n)

(d) (RS(n), IS1 (n)) signature

0 0.5 1 1.5 2 2.5 3 3.5
4

3.5

3

2.5

2

1.5

1

0.5

0

RS(n)

I 2S (
n)

(e) (RS(n), IS2 (n)) signature

6 5 4 3 2 1 0
4

3.5

3

2.5

2

1.5

1

0.5

0

I1
S(n)

I 2S (
n)

(f) (IS1 (n), IS2 (n)) signature

Figure 3.2: Discrete invariant signatures of 200 points along (x(θ), y(θ)) = (θ cos(θ), θ sin(θ))
for θ ∈ [0, π].

crete invariants, i.e., those derived from the trapezoidal rule: IT1 (n), IT2 (n), and IT3 (n). We will

henceforth denote the invariants simply as R̃(n), Ĩ1(n), Ĩ2(n), and Ĩ3(n). They are algebraically

simpler than invariants derived from other quadratures and work equally well when used for

curve analysis. The theoretical results derived below apply with only obvious changes to the

analysis of discrete integral invariants based on other quadratures.

3.1.3 Consistency of the Discrete Invariant

We want to consider how choosing different samplings of the same curve may effect the (R̃(n), Ĩ1(n))

signature. To analyze this difference, we first examine the error incurred when we choose to use

a sampling of points along a curve to approximate R(t) and I1(t) rather than use its parametric

formula.

Consider a curve ΓE = {f(t) = (x(t), y(t)) : t ∈ [0, T]} and a sampling of this curve,

31

ΓD = {(xi, yi) : xi = x(ti), yi = y(ti), ti ∈ [0, T], i = 0, . . . , N}, so the points in ΓD are on ΓE .

We consider the curve signatures created by pairing R and I1 and define the distance between

the associated curve signatures, SE and SD, to be

‖SE − SD‖ = max
i
‖SE(ti)− SD(i)‖

= max
i

√
(R(ti)− R̃(i))2 + (I1(ti)− Ĩ1(i))2.

(3.4)

However, since (xi, yi) = (x(ti), y(ti)), the nodes on the sampling of the curve are also on the

parametric curve. Thus, R(ti) = R̃(i), so this expression simplifies to

‖SE − SD‖ = max
i

√
(I1(ti)− Ĩ1(i))2

= max
i
|I1(ti)− Ĩ1(i)|

= max
i

∣∣∣∣∣∣
∫ ti

0
x(s) dy(s)− 1

2
x(ti)y(ti)−

1

2

i∑
j=1

(xj−1yj − xjyj−1)

∣∣∣∣∣∣ .
But now since xi = x(ti), yi = y(ti) and (x0, y0) = (0, 0), we have

1

2

i∑
j=1

(xj−1yj − xjyj−1) +
1

2
xi yi =

1

2
(x0y1 − x0y0 + x1y1 − x1y0)

+
1

2
(x1y2 − x1y1 + x2y2 − x2y1)

+ . . .

+
1

2
(xi−1yi − xi−1yi−1 + xiyi − xiyi−1)

=
1

2

i∑
j=1

(xj + xj−1)(yj − yj−1),

and thus

‖SE − SD‖ = max
i

∣∣∣∣∣∣
∫ ti

0
x(s) dy(s)− 1

2

i∑
j=1

(xj + xj−1)(yj − yj−1)

∣∣∣∣∣∣ . (3.5)

32

In other words, the discrepancy between SE and SD corresponds exactly to the error of inte-

gration for the composite trapezoidal rule. The general result recalled at the beginning of this

chapter assumes uniform meshes. If the mesh is not uniform, we observe

∫ yj

yj−1

x dy =
xj + xj−1

2
(yj − yj−1)− 1

2

∫ yj

yj−1

x′′(y)(yj − y)(y − yj−1) dy.

Therefore, we have for x of class C2

∫ ti

0
x(s) dy(s)− 1

2

i∑
j=1

(xj + xj−1)(yj − yj−1) =
i∑

j=1

{∫ tj

tj−1

x(s) dy(s)− 1

2
(xj + xj−1)(yj − yj−1)

}

= −1

2

i∑
j=1

∫ yj

yj−1

x′′(y)(yj − y)(y − yj−1) dy

≤ 1

12
|x′′|∞

i∑
j=1

|yj − yj−1|3,

with |x′′|∞ = supt∈(0,T) |
ẍẏ−ẋÿ
ẏ | and where the dots denote derivatives with respect to the

parameter t. The above representation is invalid if ẏ vanishes. However, a similar formula can

be derived by expressing I1 as an integral with respect to x, instead of y, through integration by

parts. For a regular smooth curve, the corresponding estimate will be locally valid since ẋ and

ẏ can’t simultaneously vanish. Therefore, working with both x and y based representations, we

have

‖SE − SD‖ ≤
1

12
min

|x′′|∞
N∑
j=1

|yj − yj−1|3, |y′′|∞
N∑
j=1

|xj − xj−1|3
 . (3.6)

The influence of two different samplings can be estimated in a similar way. To simplify the

analysis, we assume that both samplings have the same number of nodes, namely N . If SD

is the signature obtained with the above sampling nodes t1, . . . , tN and S̄D is the signature

33

obtained from evaluations at t̄1, . . . , t̄N , we want to estimate

‖SD − SD̄‖2 ≤ max
i
A2 + max

i
B2

where

A = R̃(ti)− R̃(t̄i)

=
√

(xi − x̄i)2 + (yi − ȳi)2

B =
1

2

i∑
j=1

(xj−1yj − xjyj−1)− 1

2

i∑
j=1

(x̄j−1ȳj − x̄j ȳj−1)

=
1

2

i∑
j=1

(xj + xj−1)(yj − yj−1)− xiyi −
i∑

j=1

(x̄j + x̄j−1)(ȳj − ȳj−1) + x̄iȳi.

It is easily shown that the bound on A is dependent on the difference in the samples, so we

focus on the B term. Proceeding as above, we get

B =
1

2
max
i

∣∣∣∣∫ yi

ȳi

xdy − xiyi + x̄iȳi

+
i∑

j=1

x′′(ξj)

∫ yj

yj−1

(yj − y)(y − yj−1)dy −
i∑

j=1

x′′(ζj)

∫ ȳj

ȳj−1

(ȳj − y)(y − ȳj−1)dy

∣∣∣∣∣∣ ,
where ξj is between yj−1 and yj and ζj is between ȳj−1 and ȳj . This yields

B ≤ |x|∞max
i
|yi − ȳi|+

1

2
|y|∞max

i
|xi − x̄i|

+
1

12

N∑
j=1

∣∣x′′(ξj)(yj − yj−1)3 − x′′(ζj)(ȳj − ȳj−1)3
∣∣ ,

and where |x|∞ and |y|∞ are the largest values of |x(t)| and |y(t)| for t ∈ [0, T]. This leads to

‖SD − SD̄‖ = O(max
i
|xi − x̄i|+ max

i
|yi − ȳi|),

34

which indicates that the discrepancy of the signatures due to sampling is simply proportional

to the discrepancy in the sampling nodes.

3.2 Using Signatures for Matching Curves with a Fixed Initial

Point

Assume we are given two sets of points each representing a curve. The connectivity of the curve

is implied by the order in which the coordinates are given. We will denote the first discrete

curve as γ = (xi, yi), i = 1, . . . N and the second discrete curve as γ = (xj , yj), j = 1, . . . ,M .

Compute Discrete Signatures

The first step of our curve matching algorithm is to compute invariants for each discrete curve.

The choice of invariants is determined by which group action we consider. Here we focus on the

special euclidean group and consider the signatures based on R, I1 and I2. As previously men-

tioned, invariants are dependent upon choice of initial point and thus, to compute signatures,

an initial point on the discrete curve must be identified. For open curves, there are two obvious

choices for initial point. We will first choose (x1, y1) on γ as our initial point. The resulting

invariants we will denote as [R̃(i), Ĩ1(i), Ĩ2(i)], i = 1, . . . , N . Letting (x1, y1) serve as our initial

point on γ, we will compute the invariants [R̃(j), Ĩ1(j), Ĩ2(j)], j = 1, . . . ,M .

We cannot assume that the two discrete curves listed with the same orientation. Failing

to account for this will prevent the algorithm from identifying matching curves. The following

example illustrates the dependence of discrete signatures of curves upon initial point.

Example 3.2.1. Consider the curve, γ̂ = (x, 3x cos(x)), x ∈ [0, 10], given discretely by 200

points along the curve as pictured in Figure 3.3.

We compute the (R, I1), (R, I2) and (I1, I2) signatures first with the initial point (0, 0) then

again with (10, 30 cos(10)) as initial point. These signatures are shown in Figure 3.4. Despite

being signatures of the same discrete curve, we see that the signatures do not correspond when

35

0 1 2 3 4 5 6 7 8 9 10
30

25

20

15

10

5

0

5

10

15

20

Figure 3.3: Discretely given γ̂ = (x, 3x cos(x)), x ∈ [0, 10].

we do not use the same initial point for the computation of invariants.

We need to compute the invariants associated with both orientations for one of the open dis-

crete curves involved in our matching problem. We arbitrarily choose the first curve, but we note

that choosing the second curve would not change the matching algorithm or the results. Thus,

we reverse the direction of the first curve and compute the invariants [R̃R(n), ĨR1 (n), ĨR2 (n)].

The applications we consider below (character recognition and automated puzzle solving)

only call for considering the special Euclidean group. As a result, for this description, we choose

to use the (R̃(n), Ĩ1(n)) signature and remark that the comparison algorithm does not change

when a different choice of discrete invariants is used.

We now have to compare curve signatures. After we adopt an appropriate notion of distance,

the idea is, for open curves, to start at one of the ends of the curves, and then simultaneously

follow each signature curve as long as the distance remains below a certain threshold. The

“length” of the match is then recorded. Closed curves have no natural starting points; this

presents additional challenges that we address below.

36

0 5 10 15 20 25 30
60

40

20

0

20

40

60

80

100

120

140

R(n)

I 1(n
)

Initial Point (0,0)

0 5 10 15 20 25 30
600

500

400

300

200

100

0

R(n)

I 2(n
)

Initial Point (0,0)

100 50 0 50 100 150
600

500

400

300

200

100

0

I1(n)

I 2(n
)

Initial Point (0,0)

(a) Initial point (0, 0).

0 5 10 15 20 25 30 35 40 45
120

100

80

60

40

20

0

20

40

R(n)

I 1(n
)

Initial Point (10, 30cos(10))

0 5 10 15 20 25 30 35 40 45
600

500

400

300

200

100

0

R(n)

I 2(n
)

Initial Point (10, 30cos(10))

120 100 80 60 40 20 0 20 40
600

500

400

300

200

100

0

I1(n)

I 2(n
)

Initial Point (10, 30cos(10))

(b) Initial point (10, 30 cos(10)) .

Figure 3.4: Signature curves associated with differing choice of endpoint used for initial point
of the open curve, (x, 3x cos(x)), x ∈ [0, 10].

We start by reviewing classical notions of distance for sets and curves.

Distance

We now have to decide what distance measure we would like to use. Two classical distances

between curves are the Hausdorff distance and the Fréchet distance.

Definition 3.2.2. Let P and Q be two sets of points in R2. The directed Hausdorff distance

from P to Q is

h(P,Q) = max
p∈P

min q ∈ Q‖p− q‖,

where ‖ · ‖ is the usual Euclidean norm.

The Hausdorff distance between P and Q is

H(P,Q) = max{h(P,Q), h(Q,P)}.

37

Definition 3.2.3. The Fréchet distance between two curves is defined as

F (P,Q) = inf
α,β

max
t∈[0,1]

‖A(α(t))−B(β(t))‖,

where P,Q : [0, 1] → R2 are parametrizations of the two curves and α, β : [0, 1] → [0, 1] range

over all continuous and monotone increasing functions.

The discrete Fréchet distance, developed by Eiter and Mannila [32], uses the vertices of

polygonal curve approximations to estimate the Fréchet distance.

We are concerned with how the distance between two directed curves changes as we proceed

along them; our measure must thus take the direction of the curves into account. Neither the

Hausdorff nor the Fréchet distance satisfies this requirement. The Hausdorff distance allows for

backwards travel along a curve. The Fréchet distance does not allow backwards travel, but it

does allow for varying speeds of travel along the curves. It is also possible to remain stationary

on one curve while progressing along the other.

The following example illustrates why both the Hausdorff and Fréchet distances fail to

satisfy our requirements and may lead to false positives when identifying members of curve

classes.

Example 3.2.4. We take 32 points generated by a uniform t along a three leafed rose over two

different domains.

(t, cos(3t)),t ∈ [0, π] (3.7)

(t, cos(3t)),t ∈
[
π

2
,
3π

2

]
(3.8)

One set of points, Eq. 3.7, has initial point (0, 1). We refer to this as curve one. The second

set, Eq. 3.8, has initial point
(π

2
, 0
)

. We refer to this as curve two. These sets, with initial

points highlighted in green, and their (R(n), I1(n)) signatures are shown in Figure 3.5.

From their initial points at (0, 0), the signature curves quickly move away from each other.

38

0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

(a) Discrete curve given in Eq. 3.7.

0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

(b) Discrete curve given in Eq. 3.8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

R(n)

I 1(n
)

Curve 1 Signature
Curve 2 Signature

(c) Plots of (R̃(n), Ĩ1(n)) signatures of curve one
and curve two.

Figure 3.5: Plots of Eq. 3.7 and Eq. 3.8 with initial points highlighted in green and plots of
the respective (R̃(n), Ĩ1(n)) signatures.

While the signatures move apart if we consider progressing along them node by node at the

same rate, the signature of curve one remains close to some nodes of the signature of curve two.

The Hausdorff and Fréchet distances consider the shortest distance to any node on the other

signature and would lead here to a “false positive”. For our purposes, we consider these two

signatures to be quite different and would like for the distance between the two to reflect this,

thus neither the Hausdorff nor the Fréchet distance will be a good distance measure for our

applications.

39

Secondly, we would like to be able to consider how the distance between the curves changes

as we progress along them. For this reason, we prefer a measure that results in a vector of

distances at various nodes along the curves rather than one result for the entire length. The

easiest way to generate this vector is to measure the Euclidean distance between the nodes on

each curve. Taking the distance between nodes would ensure that our distances were directed.

This criterion, however, may be misleading and lead to false negatives, as illustrated in the next

example.

0 1 2 3 4 5 6 7
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1

2

Figure 3.6: Plots of two samplings of sin(x).

Example 3.2.5. Let us consider two different samplings of f(x) = sin(x). Our first curve is γ1 =

(xi, sin(xi)), xi = (i − 1)
π

17
where i = 1, . . . , 35. Our second curve is γ2 = (x̄j , sin(x̄j)), x̄j =

(j − 1)
π

18
where j = 1, . . . , 35. The plots of γ1 and γ2 are pictured in Figure 3.6.

Since γ1 and γ2 are two samplings of the same curve, we would like for our algorithm to

detect this. The signatures of the two samplings are plotted in Figure 3.7. Both samplings of

the curve have 35 nodes, so we may measure the distance between the signatures by taking

the distance between like numbered nodes. If we measure the node-to-node distance between

40

each pairing of the signatures, we obtain the results shown in Table 3.1. Therefore, a notion of

distance based purely on nodal values misses the fact that there is a common underlying curve.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

R̃(n)

Ĩ
1
(n

)

1

2

0 1 2 3 4 5 6 7
1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

R̃(n)

Ĩ
2
(n

)

1

2

0 0.5 1 1.5 2 2.5 3 3.5
1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Ĩ1(n)

Ĩ
2
(n

)

1

2

Figure 3.7: Signature curves associated with different samplings of (x, sin(x)).

41

Table 3.1: Nodal distances of signatures associated with different samplings of sin(x).

Signature (R̃(n), Ĩ1(n)) (R̃(n), Ĩ2(n)) (Ĩ1(n), Ĩ2(n))
Nodal Distances 0 0 0

0.0144 0.0144 0
0.02812 0.02812 0.0001177
0.04054 0.04053 0.0006951
0.05121 0.05116 0.002265
0.05996 0.05971 0.005497
0.06707 0.06614 0.01113
0.07342 0.07068 0.01991
0.08062 0.07389 0.03251
0.09078 0.07666 0.04947
0.1058 0.08032 0.07119
0.1267 0.0867 0.09788
0.1534 0.09788 0.1295
0.1848 0.1156 0.1655
0.2194 0.1402 0.2049
0.2552 0.1704 0.2455
0.2898 0.2038 0.2846
0.3206 0.2367 0.3184
0.345 0.2657 0.3428
0.3603 0.2874 0.3536
0.3645 0.2995 0.3471
0.3564 0.3011 0.3205
0.3361 0.2933 0.272
0.3069 0.28 0.2013
0.277 0.2673 0.1097
0.2627 0.2627 0.001021
0.2846 0.2701 0.1233
0.3501 0.2866 0.2553
0.4492 0.3037 0.3904
0.5682 0.313 0.5241
0.696 0.3105 0.6532
0.8236 0.3014 0.7763
0.9428 0.3027 0.8929
1.046 0.3367 1.002
1.127 0.4092 1.099

42

Though all three pairings of signatures result from samplings of the same curve and the

signatures have the same shape, we see that this likeness is not reflected in the nodal distance

measures. This occurs as a result of the fact that we are only measuring distance between nodes

and not taking into account the fact that two signatures may be exactly the same when we use

linear interpolants to connect the nodes regardless of the nodal distances. This node-to-node

measurement method will prefer two signatures with nodes that are close over two signatures

where one interpolated signature lays directly on top of the other but the nodes are not the

same.

We would like for our measure to result in small values when two interpolated signatures

remain close as we progress along them. For this reason, we base our distance measure on the

distance from the nodes of one signature to the piecewise linear interpolants of the

other signature and vice versa, see Figure 3.8.

Any notion of closeness for discrete curves implicitly relies on the properties of the underlying

meshes. For a discrete curve represented by N nodes, we define the average size of the mesh as

h =
1

N

N∑
i=1

hi, where hi =
√

(xi − xi−1)2 + (yi − yi−1)2, i = 1, . . . , N.

When comparing curves, we assume that

1. the average mesh sizes are “similar”,

2. the standard deviation of the mesh sizes (i.e.,
√

1
N−1

∑N
i=1(hi− h)2) are “small”.

We do not make these requirements more precise as (i) their fulfillment on the original curves

does not imply they are valid on the signatures and (ii) in practice, we use linear interpolation

of the signatures and (nearly) uniform redistribution of the nodes 1. We have found that the

algorithmic simplifications gained by working with nearly uniform meshes far outweigh the price

of re-interpolation of the signatures.

1The notion of quasi-uniformity of meshes in numerical analysis is an asymptotic property. Here, the (original)
mesh size is fixed.

43

(a) Situation where minimum distance is to second
interpolant.

(b) Situation where minimum distance is to a node.

(c) Situation where minimum distance is to the first
interpolant.

Figure 3.8: Illustration of node to linear interpolant measuring scheme.

We now define our measure. Consider two signatures given by nodes, (R̃γ1(i), Ĩγ11 (i)), i =

1, . . . , N1 and (R̃γ2(j), Ĩγ21 (j)), j = 1, . . . , N2. Suppose we measure from nodes on γ1 to piecewise

linear interpolants of γ2. The result is a vector of length N1 such that the ith entry is the

minimum distance from the ith node of S1 to a linear interpolant of S2. As previously stated,

we do not expect the nodes on the two signatures to perfectly “line up” in spite of the above

mentioned redistribution process. Similarly, we do not expect the ith node of one signature to

perfectly align with the ith piecewise linear interpolant on the other signature. We do, however,

want to find the minimum distance to interpolants in the same region. As a result, we will take

the minimum distance to two consecutive linear interpolants.

44

We also note that the two signatures may not have the same number of nodes. If signature

one has N1 nodes and signature two N2 nodes, then we will let N = min{N1, N2}. We will

then find the distance associated with each node from the first node to the N th node on one

signature to the interpolants on the other signature. These distances will be stored for each

computation and computed for the nodes on each signature, so our results when comparing two

discrete curves with fixed intitial points will be two distance vectors of length N .

The process of determining the distance from nodes on γ to γ is outlined.

procedure CurveDist

Input:

node(i,γ), node(i,γ̄), i = 1, . . . , N

Output:

d(i), i = 1, ..., N , distance vector

k = k̄ = 0

for i = 1 : N do

construct int1 = interp(i+ k̄, γ̄) and int2= interp(i+ k̄ + 1, γ̄)

compute d1 = dist(node(i, γ), int1) and d2 = dist(node(i, γ), int2)

set D(i) = min(d1, d2)

if d2 = D(i) then

k̄ = k̄ + 1

end if

construct int1 = interp(i+ k, γ) and int2 = interp(i+ k + 1, γ)

compute d1 = dist(node(i, γ̄), int1) and d2 = dist(node(i, γ̄), int2)

set D̄(i) = min(d1, d2)

if d2 = D̄(i) then

k = k + 1

end if

set d(i) = min{D(i), D̄(i)}

45

end for

end procedure

In the above procedure, interp(i, γ) refers to the linear segment between nodes i− 1 and i

of γ, i.e.,

interp(i, γ) =

(1− λ)

 xi−1

yi−1

+ λ

 xi

yi

 , λ ∈ [0, 1]

 .

Further, dist refers to the Euclidean distance. We have for instance

dist(node(i, γ̄), interp(i, γ)) = min
P∈ interp(i,γ)

‖node(i, γ̄)− P‖.

In the special case where the minimum distance between node and linear interpolant is that

of the distance between node and the left node of the interpolant, we do not advance forward

in the interpolants for the next match, i.e. do not advance k (or k̄). Note that it is necessary

to compute the symmetric distance, i.e., to consider both nodes on γ and an interpolated γ̄ as

well as nodes on γ̄ and an interpolated γ. The next example illustrates this.

.

Example 3.2.6. Consider the coarse signatures in Figure 3.9. For the purposes of this example,

the original curves are not important, nor is it important which invariants are used in the

signature.

The resulting distances are listed in Table 3.2 in one case and in Table 3.3 in the other.

Table 3.2: Distances from nodes on signature one to linear interpolants of signature two.

Associated Node 1 2 3 4 5

Distance 0 0.3215 0.4849 1.0750 1.9904

The need to symmetrize is obvious.

46

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Signature One
Signature Two

(a) Nodes of signature one plotted with linear inter-
polants of signature two.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Signature One
Signature Two

(b) Nodes of signature two plotted with linear in-
terpolants of signature one.

Figure 3.9: Signatures of two curves plotted.

Table 3.3: Distances from nodes on signature two to linear interpolants of signature one.

Associated Node 1 2 3 4 5

Distance 0 0 0.3215 1.2005 1.5273

Choosing the Best Match for a Given Situation

The vector d constructed in the procedure CurveDist has as entries consecutive discrete dis-

tances between given curves. Assessments about the closeness of two corresponding curves are

based on the analysis of this vector. Our choice of norm to quantify that vector is closely related

to the notion of closeness one would use for specific applications. To illustrate this graphically,

which of the blue or red curve is closer to the black one in Figure 3.10?

Once more we must decide what is most important in our matching. In the case of character

recognition, we would like to consider the distances between the two signatures overall rather

than the length of a match before a certain distance tolerance is reached. We may want to

consider the overall maximum distance or perhaps the average distance between the two curves.

If we choose to consider the overall maximum distance, then we may reject a match such as

signature 3 when compared to signature 1 in Figure 3.10 where one signature exactly follows

47

0 0.5 1 1.5 2 2.5
0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

R̃(n)

Ĩ
1(

n
)

Signature 1
Signature 2
Signature 3

Figure 3.10: Sample signatures illustrating benefits and pitfalls of methods to choose a best
match.

the signature to be matched except for one large spike. To avoid this pitfall, we might consider

the average distance over the whole length of the signatures. However, using this measure,

a signature that maintained a constant distance from the signature to be matched would be

considered as good a match as a signature that matched exactly except for one node such as

the signatures in Figure 3.10. We must know what is of highest importance to us in our match.

For instance, if we value most that the signature is approximated well for the entire length we

would have different requirements for choosing a match than in a case where a close match the

whole time excepting one node is acceptable. This matter must be decided on a case by case

basis depending on the situation.

For character recognition, we define the best match as being the signature that most closely

approximates the given signature for its entire length. To decide upon a best match out of

several possible curves, we first decide for each signature which orientation is the best match

48

to a given curve. Once we have decided the best orientation for each possible match, we then

use a binary decision tree to determine the optimal match. Decision trees will be discussed in

detail later.

After a best match is decided upon, the final transformation (if desired) for the curve is

found by minimizing the node-to-node distance function over the region of the match. To create

the tightest match possible, we use nodes resulting from a fine mesh sampling, if possible, for

our matching algorithm rather than nodes from a coarse sampling that we may use to generate

the list of possible matches. A detailed matching algorithm and example of character matching

are provided in Chapter 4.

3.3 Using Signatures for Matching Curves without a Fixed

Initial Point

It is important to note here that we will, without loss of generality, begin with all of our closed

curves labeled in a clockwise orientation from the chosen starting point. While the goal of some

matching algorithms is to match two identical closed curves, our chosen application, puzzle

assembly, aims to find interlocking curves. In order to be able to match two closed curves in

this application, we will have to reverse the direction of one of the curves. Without this reversal,

the collection of area to compute the Ĩ1 invariant would not occur in the same order.

Compute Discrete Signatures with Each Node on Piece as a Starting Point

Due to the dependence of the signature on its starting point as illustrated in 3.2.1, the problem

of matching two closed curves is more difficult than that of two open curves. We can no longer

avoid the issue of initial point by simply reorienting one curve and using the invariants associated

with both orientations. For a closed curve with N nodes, we need to compute the invariants,

(R̃, Ĩ1), associated with each of the N nodes as the initial point. We introduce the notation

Ĩ1(a, b) to denote the first invariant computed with (xa, ya) as the initial point to the point

49

(xb, yb). We will discuss how this need affects the complexity of our algorithm later.

To begin the process of finding the best match on two closed curves, we input two matrices

listing the edge coordinates of two closed curves. We assume data is given in a meaningful

order which represents the clockwise directed curve. The nodes are ordered in such a fashion,

i.e. (xi, yi), i = 1, . . . , N . We should note that (x1, y1) = (xN , yN). Once we have computed

the invariants associated with this choice of initial points, we must calculate the invariants

associated with every other node as the initial point. There are two methods to find these new

invariants.

Option One: Rotation of the Data

We can generate the invariants associated using each node as a starting point by iteratively

rotating through the matrix of nodes. We compute the discrete invariants associated with each

ordering. Once we have computed the invariants for a given initial point, we reorder the nodes

with the new starting point being the second point from our previous ordering. We then progress

clockwise from the new initial point around the piece and arrange the points in this fashion.

Thus, we have removed the original starting point and amended it to the end of the previous

vector. To keep creating new closed curves, we append the new initial point to the end of the

new vector. This new vector becomes our new closed curve data and we compute the discrete

invariants of this newly ordered curve.

We repeat this method until we have rotated through all possible starting points on the

closed curve. The invariants are stored in matrices such that the row signifies where that

starting point was located in our original arrangement of the data and the column identifies

how many nodes we have advanced from the starting node for that row. For instance, the entry

Ĩ1(i, j) is the first discrete invariant computed from starting point (xi, yi) to node numbered

(xi+j , yi+j) if i + j < N or node (xi+j−N+1, yi+j−N+1) if i + j ≥ N in our original labeling of

the data. See Figure 3.11 for a visual representation of this measure.

50

(xi,yi)

(xi+j, yi+j)

Figure 3.11: Visual illustration of first integral invariant for a closed curve.

Option Two: Determinant Shift

We can also generate the curve invariants associated with using each node as a starting point

by using the fomula described below. We call the original starting point on the curve (x1, y1).

Our new initial point will be (xa, ya) where 1 < a < N and N is the length of our matrix.

We let R̃(a, a+i) denote the R̃ invariant with initial point (xa, ya) and end point (xa+i, ya+i).

51

(x1,y1)

(xa+i,ya+i)

(xa, ya)

Figure 3.12: Visual depiction of determinant shift of signatures when a+ i < N .

52

To find the R̃ invariant with our new initial point, we recall that this invariant is defined as the

distance of the current point from the initial point. Thus we can compute the new invariant,

R̃(a, a+ i) for any 1 < i < N using the formula

R̃(a, a+ i) =
√

(xa+i − xa)2 + (ya+i − ya)2. (3.9)

As a result of using closed curves, we should note that (xa+i, ya+i) = (xa+i−N+1, ya+i−N+1)

when a+ i ≥ N .

The formula for computing Ĩ1(N) with changing initial points is easily derived visually by

remembering the geometric definition of the first discrete invariant, Ĩ1(i), as the signed area

between the curve and the secant line between the initial point and the point (xi, yi). There are

two cases which we must consider as we derive this formula.

In the first case, we have traveled i nodes forward from our new initial point and a+ i < N .

Therefore, in this case our new end point to which we are computing is between our initial point

and the original initial point in our ordering. This case is visually represented in Figure 3.12.

We would like to find a formula using what we have previously found to compute Ĩ1(a, a+i). We

have already computed the values for Ĩ1(1, a), the area between the curve and the secant line

connecting (x1, y1) and (xa, ya), which is represented by the red shaded area in the figure, and

Ĩ1(1, a+ i), the area between the curve and the secant line connecting (x1, y1) and (xa+i, ya+i),

which is represented by the entire shaded area in the figure. From Figure 3.12, we can see

that Ĩ1(a, a+ i) is equivalent to Ĩ1(1, a+ i) less Ĩ1(1, a) and the area of the triangle formed by

(x1, y1), (xa, ya), and (xa+i, ya+i). Thus, we arrive at the following formula,

Ĩ1(a, a+ i) = Ĩ1(1, a+ i)− Ĩ1(1, a)− 1

2

∣∣∣∣∣∣∣∣∣∣
x1 xa xa+i

y1 ya ya+i

1 1 1

∣∣∣∣∣∣∣∣∣∣
for the case when a+ i < N .

53

(xa+i,ya+i)

(x1,y1)

(xa, ya)

Figure 3.13: Visual depiction of determinant shift of signatures when a+ i ≥ N .

54

When a+ i ≥ N this formula will no longer find the correct value for Ĩ1(a, a+ i). Figure 3.13

provides a better geometric understanding of what occurs in this case. First, we note that for a

sufficiently small sampling size, Ĩ1(1, N−1) will approximate the area trapped within the closed

curve. We use this approximation in place of the area of the closed curve in our formula. From

Figure 3.13 we see that the area between the curve and the secant line connecting (xa+i, ya+i)

to (xa, ya), represented by the yellow shaded area, can be found by taking the area enclosed by

the curve and subtracting the area between the curve and the secant line connecting (x1, y1)

and (xa, ya), represented by the green shaded area, and then adding back in the area of the

triangle formed by (x1, y1), (xa+i, ya+i), and (xa, ya), represented by the black shaded area, and

the area between the curve and the secant line from (x1, y1) to (xa+i, ya+i), represented by the

red shaded area. Recall that (xa+i, ya+i) = (xa+i−N+1, ya+i−N+1) when a+ i ≥ N . In this case,

we have

Ĩ1(a, a+ i) = Ĩ1(1, N − 1)− Ĩ1(1, a) + Ĩ1(1, a+ i−N + 1) +
1

2

∣∣∣∣∣∣∣∣∣∣
x1 xa+i xa

y1 ya+i ya

1 1 1

∣∣∣∣∣∣∣∣∣∣
when a+ i ≥ N .

Thus, if we choose to use this method to compute all of the invariants for every possible

initial node on a closed curve, we use the formula,

55

Ĩ1(a, a+ i) =



Ĩ1(1, a+ i)− Ĩ1(1, a)− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣

x1 xa xa+i

y1 ya ya+i

1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
, a+ i < N

Ĩ1(1, N − 1)− Ĩ1(1, a) + Ĩ1(1, a+ i−N + 1) +
1

2

∣∣∣∣∣∣∣∣∣∣∣∣

x1 xa+i xa

y1 ya+i ya

1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
, a+ i ≥ N

(3.10)

Both of our options of iteratively computing the invariants associated with each initial point

are of order N . Our choice of which method to employ depends upon any storage restrictions

we may have. If storage is at a minimum, we prefer to use the determinant shift method of

computing the invariants. In our algorithm used for puzzle assembly in Chapter 4, we are not

concerned with the amount of storage we may use, so we will rotate the data.

We will compute the signatures of both curves using each node on the curve as the initial

point. Suppose we have two closed curves of lengths N and M respectively. In this case our

results would be three matrices, one for each discrete invariant, for each piece of sizes N ×N

and M×M respectively. For any of the six matrices, the ith row will be the associated invariant

of the piece with (xi, yi) as the starting point.

Choosing the Best Match for a Given Situation

For the comparison of two closed curves, we use the same metric as in the description of

the matching algorithm for two open curves with one difference. The method that we use to

determine the best match of two curves without fixed initial points is different from that used

to match two curves with fixed initial points as a result of what results we desire. In the case

56

of comparison between two curves without fixed initial points, we are generally interested in

finding the parts of the curves which match most closely.

For two closed curves for which we do not expect an exact match for the entire length of

the curve, e.g. puzzle pieces, we would like to locate the parts of each curve where the best

match can be made. In this situation we must balance our want for the closest possible match

(distance wise) and our desire for the longest match (node wise). We want to find the parts of

the original curves associated with the smallest distance between the signatures for the longest

length of nodes. We choose our best match based on how many nodes we may progress on

the signatures before the distance between the two exceeds some given maximum tolerance.

In this case, we may determine an appropriate maximum tolerance in the context of a given

application. We also declare a significant length of nodes and discard all match candidates that

do not extend at least this many nodes.

As before, we will choose a curve that we would like to match. We will then find the segment

of best match for each pairing of curves and then decide which of these segments of matches

is best overall. For each pairing of closed curves, we must compare signatures associated with

each possible initial node on each piece. We choose an initial node on the first curve and

then compute distances from this signature to the signature of the second curve. We iterate

through the signature associated with each initial point on the second curve. In order to save

computing time, when the distance between the signatures exceeds the maximum tolerance, we

stop computing and move to the next initial node. Once we have computed these distances, we

begin the algorithm again with the next initial point on the first curve.

For each pair of signatures of the two curves, we record how many nodes we can advance

forward before the distance exceeds the maximum tolerance. We then find the longest match,

node wise, from among every initial point pairing and record this match and any other match

within a certain amount (generally a percentage of the significant number of nodes) of matching

node length. For each match, we record the starting point on curve one, the starting point on

curve two, and the length of nodes for which it traveled before exceeding the maximum tolerance.

57

If the shortest length of match within these candidate matches is shorter than the significant

number of nodes, we reset the new tolerance to be eight percent of the current tolerance and

repeat our process.

If the shortest length of match within all possible best matches is longer than the significant

number of nodes, we set the new tolerance to be eighty percent of the current tolerance and

repeat the process of gathering a list of best possible matches until we meet the following

requirements.

To declare an overall best match, we require first that the match be nested, meaning that

not only must the initial nodes appear as a match for the longest nodal length, but the same

part of the curves must also appear for a slightly shorter match length. Secondly, we require

that the best match be a persistent match. It must have appeared in at least three consecutive

candidate lists as we continue to decrease our distance tolerance. As with the open curves, after

a best match is decided upon, the final transformation for the curve is found by minimizing a

node-to-node distance function over the part of the curves associated with the match.

A pseudocode of this algorithm will be provided, along with complexity costs and an example

application, in Chapter 4.

3.4 Sensitivity Analysis

In this section, we study the following question. Assume that the (R, I1) signatures of curves γ

and γ are close (as made precise by Eq. 3.11 below). How close are γ and γ modulo translations

and rotations?

To simplify the calculations, we compare the curves as written in polar coordinates (r and

θ). To do so, we consider an additional assumption: γ and γ̄ are continuously differentiable

curves such that for any r > 0, γ and γ̄ intersect the circle of radius r centered at the origin at

most once. In that context, it is known that if two curves have the same (R, I1) signature, they

are equivalent up to rotation and translation [59].

We describe γ by θ = φ(r) and γ̄ by θ = φ̄(r). Through translation, we take the initial point

58

of each curve to be the origin. In polar coordinates, the I1 invariant takes the form

Iγ1 (R) =
1

2

∫ R

0
s2dφ

ds
ds.

We assume that two signatures are close in the following sense

|Iγ1 − I
γ
1 | =

∣∣∣∣12
∫ r

0
s2

(
dφ

ds
− dφ̄

ds

)
ds

∣∣∣∣ ≤ ε, ∀ r, 0 ≤ r ≤ R, (3.11)

for some ε > 0. Using integration by parts we may write

∣∣∣∣12
∫ r

0
s2(φ′(s)− φ′(s)) ds

∣∣∣∣ =

∣∣∣∣12r2(φ(r)− φ(r))−
∫ r

0
s(φ(s)− φ(s)) ds

∣∣∣∣ ≤ ε. (3.12)

To better understand the geometric meaning of (3.12), we consider an example.

Example 3.4.1. Let α and β be positive numbers. We consider the two spirals

φ(r) = αr,

φ̄(r) = βr.

These spirals are plotted in Figure 3.14 for α = 2, β = 3, r ∈ [0, 3π
8] . We define four areas

according to Figure 3.14. Elementary considerations lead to the following relations

I1(r) = Area 1 + Area 2, I1(r) = Area 2 + Area 3

1

2
r2(φ(r)− φ̄(r)) = Area 1 + Area 4,

∫ r

0
s(φ(s)− φ̄(s)) ds = Area 3 + Area 4.

Thus, if we consider our definition of closeness of signatures, |I1(r)− Ī1(r)| ≤ ε, then we have

that |Area 1 + Area 2 − (Area 2 + Area 3)| = | Area 1 − Area 3| ≤ ε. Hence, our definition

of closeness implies that Area 1 and Area 3 must be of similar size. The question at hand is

then whether the green and red curves approximately differ by a rotation.

59

1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4

0.5

0

0.5

1

2r
3r

3

2
4

1

Figure 3.14: Plot of φ(r) = 2r (green), φ̄(r) = 3r (red) and geometric interpretation of impli-
cations of Eq. 3.12. The blue curve is an arc of a circle centered at the origin.

We have, unfortunately, not been able to establish the desired local stability estimate of the

mapping corresponding to the “inverse” of the signature. This type of results are not available

even for simpler integral signatures such as the circular area signature (see however a recent

partial result in that direction [20]).

60

Chapter 4

Applications

4.1 Character Recognition

There are two main types of character recognition - offline and online. Online recognition

methods perform recognition as the character is being written. Offline recognition focuses on

identifying characters after they have been completely drawn. We focus on offline recognition.

A main difficulty with which we have to contend is small variations between digit classes while

there are also large variations within a digit class. These variations within a class are referred

to as allographs. Creating an automated method to determine allographs for a given character

class is a challenging task.

We consider character recognition for single characters. This avoids the difficulty of segmen-

tation, because we do not have to separate a word into characters. In the segmentation process

with cursive words, it is difficult to identify characters and often new figures are created. In

these cases, more classes of characters would be needed than those we define.

We test the recognition ability of our discrete invariant signature code by identifying the

digits zero to nine as entered by various users. This problem involves matching both closed

and open curves with fixed starting points, so it is a good examination of the ability of our

proposed method. To accurately test the method, we have collected 240 samples of characters

61

from 13 different users on which to test our method for character recognition. Below we detail

the algorithm used to identify each entry and also analyze its accuracy.

4.1.1 Algorithm

We face two main difficulties when identifying characters: multi-stroke characters and allo-

graphs. We first tackle the issue of multi-stroke characters. A multi-stroke character is defined

as any character which cannot be drawn without lifting the pen from the paper. If we allow

characters with a pen lift (or multiple lifts), the task of character recognition becomes much

more complicated. Others have dealt with multi-stroke characters by simply connecting the

strokes in the order in which they were drawn and considering this new character ([42]). This

method, however, may cause confusion between characters that previously were not similar.

For instance, a seven drawn with a crossbar may appear similar to a rotated nine once the

strokes are connected. In an effort to simplify our process, we will only consider single stroke

characters.

We accommodate for different handwriting and allographs by entering multiple styles of

characters when there are several commonly used variants. For instance, rather than assume

a user will draw a stick one, we have included both a stick one and a one with a flag in

our database. To address the problem of allographs, we have prescribed a starting point and

direction for each figure. Users were instructed in the standardized ways to enter each digit.

We only consider figures drawn starting from the top of the figure, except in the cases detailed

below. We use these standardized digits to create classes of digits.

To be able to identify characters, we divide the digits into classes. There are ten obvious

classes of digits. We further subdivide two of these classes (4 and 9) for a total of 12 distinct digit

classes: ones, twos, threes, open fours, closed fours, fives, sixes, sevens, eights, top to bottom

nines, bottom to top nines. For four, we have considered the drawings of the character with

both an open and closed upper part. When a four is drawn with an open top, we consider only

the case in which it is drawn from the top. Though this is generally drawn as a multi-stroke

62

digit, we have instructed users to draw this character with a single stroke. Users start at the

upper left part of the four, trace down and across, then back across and create the up and down

stick. This is all done in one stroke with no pen lift. When a four is drawn with a closed top,

we consider it being drawn starting from the right side in one fluid stroke. The figure nine is

considered as drawn from the top, loop first and then the stick, or from the bottom of the loop,

up and around.

We have chosen twelve classes of digits with associated starting points and orientations

that we consider to be the most common. To have a more comprehensive character recognition

method, we would need to consider more ways of drawing each digit and, thus, have more

classes. Also, we have declared that each figure may belong to only one class. Some identification

procedures have allowed for multiple classes to apply to a single figure (e.g. [44], [42], [49]) and

study the success rates of their procedure in finding the correct match within the top however

many matches. For instance, a character may be classified as belonging to either the class of 4’s

or the class of y’s. This more complicated approach is detailed in the discussion of our results.

For our procedure, characters were created using a MATLAB program that takes input

points and equally distributes nodes along the splines connecting the input points. All characters

were scaled to have a height of one with the original height to width ratio retained. Characters

were defined with varying amounts of nodes.

When a user inputs a character, we equally distribute points along the connecting splines

at a pre-defined distance. This data is used to compute the R̃, Ĩ1, and Ĩ2 discrete invariants for

the character. We then connect the nodes along the chosen discrete signature, (R̃, Ĩ1), (R̃, Ĩ2),

or (Ĩ1, Ĩ2), with linear interpolants and collect a declared number, say N , of equally distributed

nodes along the signature. For each character, say the i-th one in our set, we create a vector

Ii ∈ R2N which corresponds to either of the following discrete signatures

Ii = [R̃ Ĩ1], [R̃ Ĩ2], or [Ĩ1 Ĩ2].

63

For each character, we also have a response or class Ci that corresponds to one of the 12 classes

described above.

Our classification approach uses the concept of classification tree from the fields of statistics

and data mining, see for instance [62] and [95]. To build a tree, we first select a training set

which is a subset of our set of characters. To do so, we choose at random an identical number

of characters in each class (see below for examples).

Because our classes are categorical rather than quantitative, we introduce the concept of

Gini impurity. Gini impurity measures how often a randomly chosen element from a given set

would be mislabeled based on the distribution of labels in the set. For a set (leaf) containing

m classes, Ci, i = 1, . . . ,m, the Gini impurity is

IG(f) =

m∑
i=1

fi (1− fi) = 1−
m∑
i=1

f2
i

where fi is the fraction of items (digits) of class Ci in the given set. If the set contains only

items belonging to one class, then IG(f) = 0. If the set contains an equal amount of items

belonging to each class, then IG(f) =
m− 1

m
. We will use the Gini impurity to evaluate the

heterogeneity of each possible leaf in our tree.

Working with the training set exclusively, a tree T is then recursively constructed as follows.

1. Start with one node (`) containing all characters

• compute the Gini impurity for leaf `

I`G(f) = 1−
m∑
i=1

f2
i .

• compute the sum of the Gini impurities for T

S =
∑

`∈leaves(T)

I`G(f).

64

2. If all points in node ` are in the same class STOP; otherwise

• search over all binary splits of all the components of the training set for one that

minimizes S.

• If the largest decrease in S is less than a threshold or if the resulting nodes contain

less than a certain number of points STOP; otherwise

– take the split and create two new nodes.

3. In each new node, go back to 1.

We have implemented the above algorithm using the MATLAB classregtree protocol from

the Statistics Toolbox. A decision tree is created based on the training set. For the remaining

characters, we use the tree to predict the response, i.e., the class to which each character belongs.

Each step in a classification tree checks the value of one predictor. If the predictor value is above

a given value, we proceed down one branch; if it is below the value, we proceed down the other

branch. This process is repeated iteratively down each branch until the branch ends in only leaf

nodes. These leaf nodes identify which digit class the input figure belongs to according to the

values of its predictor values. There are several digits that are clearly differentiated from the

others based on their signature generated vectors. The difference between other digits is more

nuanced and may require several branch splits to reach a decision. Digits in the test set will be

classified using the resulting tree. Decision trees for our digit classes are complicated and often

there are several possible paths to being identified as the same digit.

For our experiment, we will create signatures containing 150 nodes. We combine the two

chosen invariants to generate an initial vector of length 300. In an effort to make our algorithm

faster and less computationally difficult, we will create a new signature generated vector that

uses every tenth node from our original vector. The resulting vector of length 31 is the vector

that we use to create our decision tree. The classification success rates with this shortened

vector suggest that we have not lost significant accuracy with this choice.

An example of a decision tree is given in Figure 4.1. This tree was created using the (R̃, Ĩ2)

65

signature with the training set comprised of 15 digits in each of the 12 digit classes. To identify

a character using this tree, we begin at the top of the tree. This split specifies that if the ninth

entry in our signature generated vector is less than 0.311941 then we proceed down the branch

to the left. If the ninth entry is greater than or equal to 0.311941 then we use the branch to

the right to continue our decision making process.

66

Figure 4.1: Example of a Binary Decision Tree

67

4.1.2 Pseudocode

This pseudocode is given for the (Ĩ1, Ĩ2) signature, but the same process is followed for the

(R̃, Ĩ1) and (R̃, Ĩ2) signatures.

Input:

• A two row matrix of ordered points representing a digit zero to nine

• A M1 ×M2 matrix of predictor values

Output:

• The top match for the input digit from 12 digit classes

Steps:

1. Using classregtree, create a classification tree, t, given a training set of M1 digit signa-

tures of length M2 in the form [Ĩ1 Ĩ2].

2. For the user input order points, compute the associated Ĩ1 and Ĩ2 invariants using the

formulas given in Eq. 3.3.

3. Linearly interpolate the (Ĩ1, Ĩ2) signature and create a new 2× M2

2
matrix, A, of equally

spaced ordered points along the signature.

4. Concatenate the rows of A to create a vector, a, of length M2.

5. Use t to identify which of the 12 digit classes a best matches.

4.1.3 Results and Discussion

In order to evaluate the accuracy of this method, we partition our database of digits into

training sets and test sets of varying sizes. We want to ensure that as the size of our training set

increases our rate of correct matches increases. We have a database of 20 characters in each of

the 12 digit classes. Five characters in each class are randomly chosen to create a 60 character

68

Table 4.1: Average Success Rates of Character Identification for Varying Sizes of Training Sets

(a) (R̃, Ĩ1)

Size of Training Set Success Rate
96 76.7
108 77.9
120 79.0
132 79.4
144 80.9
156 81.3
168 81.8
180 85.1

(b) (R̃, Ĩ2)

Size of Training Set Success Rate
96 76.7
108 77.9
120 79.0
132 79.4
144 80.9
156 81.3
168 81.8
180 85.1

(c) (Ĩ1, Ĩ2)

Size of Training Set Success Rate
96 70.0
108 71.0
120 72.5
132 73.6
144 74.3
156 74.7
168 75.3
180 79.0

test set. Of the remaining 15 characters in each class, we first choose a given number to create a

training set. This training set is used as predictor values to create a classification tree. Each of

the 60 test characters is classified using this tree. For each iteration, we calculate the percentage

of the test digits that were correctly identified. This entire process, including choosing the test

set, is repeated 1,000 times with 96, 108, 120, 132, 144, 156, 168, and 180 characters in the

training set. For each size of training set and each signature pairing, we find the average success

rate over the 1,000 trials. These percentages are given in Table 4.1 and shown graphically in

Figure 4.2.

As we increase the size of our training set, our rate of correctly identified digits increases.

With a ratio of three training characters to each test character, we achieve a success rate of

roughly 85% when using the (R̃, Ĩ1) or (R̃, Ĩ2) signatures. The higher success rate of these

signatures is beneficial. We prefer to use the (R̃, Ĩ1) signature when possible due to its lesser

69

90 100 110 120 130 140 150 160 170 180
70

72

74

76

78

80

82

84

86

Size of Training Set

Su
cc

es
s

R
at

e

(R̃, Ĩ1)

(R̃, Ĩ2)

(Ĩ1, Ĩ2)

Figure 4.2: Average Success Rates of Character Identification

compuational cost. For our single step identification algorithm, this identification rate is in line

with the rates we would expect from the literature.

Various methods for character recognition have been proposed: Hidden Markov Models ([13],

[91], [82]), neural networks ([49], [52], [71]), genetic algorithms ([61],[40], [71]), and geometric

moments ([37], [42]), among others. We focus on comparing the success rate of our method to

that of other methods using similar approaches.

In [42], the R(t) and I1(t) invariants are computed using Legendre-Sobolev polynomial

approximations to the input curve, C. Classification is then performed by evaluating the distance

from the sample to the convex hulls of the nearest neighbors. The class closest to the sample

in the space of the coefficients of the truncated Legendre-Sobolev polynomial is selected as the

best match. Because only one class is chosen, the success rate of this algorithm does not depend

on the number of classes. It should be noted, however, that a sample may be labeled with more

than one class. If the classification of the match overlaps the class of the sample in at least one

symbol, the match is considered a success. For instance, if our sample is classified as a four and

it is matched to a class of “4 or y” it would be considered a successful match.

70

Table 4.2: Success Rates of Various Character Recognition Methods

Method Success Rate
Convex Hull of Nearest Neighbor [43] 78.25

Multilayer Cluster Neural Network (MCNN) with Backpropagation [71] 97.1
MCNN with Backpropagation and Genetic Algorithm [71] 97.8

Hidden Markov Models, Context-Independent and Character Tied Mixture [82] 59.9
Integral Invariants and Legendre-Sobolev Polynomials [42] 88

Coordinate Functions and Integral Invariants [42] 87.9
Coordinate Functions and Moment Invariants [42] 93.5

Golubitsky et al used 50,703 mathematical characters (not limited to digits) with 242 classes

and considered multi-stroke characters. These characters were partitioned into 10 equally sized

sets. Nine of these sets were used for training sets with the remaining set being the test set.

Using this method, the success rate is found to be 88%. While this success rate is slightly higher

than that of the method we propose, we believe the difference may be accounted for in the more

sophisticated algorithm and the multiple label classes.

We evaluate how our method compares with other commonly used offline character recog-

nition procedures. The success rates of these methods are shown in Table 4.2. When rates were

given based upon the correct match being in the list of the top T classes, for a number T, we

show the Top-1 rate. The success rates given are not limited to digit identification unless noted.

We see that our average success rate is comparable to the success rates of these more

sophisticated classification methods.

Future experiments to improve upon the proposed method may allow for multi-stroke char-

acters, multi label classes, and a two step classification process in an effort to improve our

success rate.

4.2 Jigsaw Puzzle Assembly

The extensions of jigsaw puzzle assembly to real life problems are various. The same method

used for puzzle assembly may be used for object assembly, object recognition, and scene recog-

71

nition, among others. As a result of its various applications and uses, the automatic solving of

jigsaw puzzles has been widely studied.

We focus on apictorial jigsaw puzzle assembly with no restrictions on the shape of the puzzle

or on the shape of the individual pieces. Due to the use of discrete invariants, we also need not

worry about the orientation of the puzzle pieces as they are input. Many previous works (for

example, [41], [110]) focused on automatic puzzle assembly have imposed certain restrictions

upon the puzzle and its individual pieces. The most common restrictions are:

1. Each individual piece must have four sides and each side must contain either an “outdent”

or an “indent.”

2. Each piece has at most four direct neighbors, one on each side, with whom it connects

via the “outdents” and “indents.”

3. Once solved, the puzzle has pieces that are positioned on a grid.

4. The solved puzzle has a boundary that is a common, smooth shape, e.g. a circle or a

rectangle.

We do not require any of these stipulations of our puzzle, however, we may exploit them if we

have knowledge of the puzzle and its pieces before we solve it.

As noted in our descriptions of various curve matching techniques, methods are most efficient

when several techniques are combined. We show that discrete invariants are a viable technique

that may be effectively combined with existing techniques to accurately solve apictorial puzzles.

The problem of automatically assembling apictorial puzzles has been discussed since Free-

man and Garder proposed the first computer solution of the problem in 1964, [38]. While many

proposed methods exist, researchers still pursue faster, more efficient methods that are capable

of solving more difficult (e.g. more pieces, irregular shaped pieces, irregular boundary) puzzles.

Some puzzle solvers begin by assembling the border ([41]) if it is a known and standard shape.

Others begin with one piece and use a spiral type method to add pieces to this cluster ([38]).

72

While other methods begin with assembling clusters of pieces and then combining these clusters

to solve the entire puzzle ([16]). Regardless of how the algorithm is begun, most algorithms

eventually rank possible matches by some criteria to reduce the amount of work that must

be done in finding the ideal mate. Once an ranked list of matches is found, some technique is

used to find which of these matches provides the tightest and best fit. Often this technique is

expensive and we want to avoid performing it more times than needed. Various methods to

check the fit have been proposed.

In [54], Hoff and Olver proposed a method that uses a physics based approach. Each piece is

considered to have an electrostatic/gravitational attractive force and the strength of attraction

between two pieces is measured to quantify fit. Freeman and Garner, [38], proposed a “junction

figure of merit” that measured the length of unmatched edge remaining at the junction of two

pieces after a new piece had been placed. In [41], Goldberg, Malon, and Bern use a simple

greedy algorithm to check and place the interior puzzle pieces. All of these techniques seek to

create a digital analogue to the snap that humans feel when assembling a puzzle. This snap

communicates to the assembler that a mate has been chosen successfully. It was even shown

in [16], that robots are capable of feeling and registering this snap as they assemble pieces.

Regardless of what it is called, this step is an integral one in any automated puzzle solver.

The difference in a puzzle assembled by using a fit finding technique only versus a fit finding

technique paired with a locking tactic can quickly be seen. The resulting gaps in matches can

pervade through the rest of the matches and cause problems throughout the assembly algorithm.

Two solutions to a nine pieces of a puzzle are shown in Figure 4.3. Even in this puzzle with a

small number of pieces the lack of a locking mechanism has a great effect.

We propose that discrete invariants can be used to rank possible matches as a first step

in an automatic puzzle solver. The situation we study is that of finding the top matches for

a given piece. We assume we have been given a specific piece to match. We examine the best

match that would occur with each of the other pieces of the puzzle to organize the matches in

order of best to worst. In our discussion, we more explicitly define the concept of best match

73

(a) Fit only solution (b) Fit finding and locking technique solution

Figure 4.3: Solutions of a partial puzzle highlighting the impact of using a locking technique.
Reproduced from [54].

and detail how this ordering is attained.

4.2.1 Preprocessing

Before we may begin our puzzle assembly, we must first obtain accurate computerized represen-

tations of each piece. Our pieces were found using a segmentation process based on the method

of active contours. This process is also referred to as the method of snakes. The general idea of

this method is to tighten a curve around an image until the curve meets a boundary. Some of

the benefits of this method are that it allows for the segmentation of a part of the curve without

regards for the content of other parts and it returns a connected boundary curve. Further details

of this edge detection method are given in ([23], [24],[65]). Our digital representations of puzzle

pieces were kindly shared with us by Dr. Peter Olver and Daniel Hoff. Their implementation

of the active contours method was based upon code written by S. Lankton, [69].

As a result of using high definition photographs of the puzzle pieces, the resolution of the

74

pictures must be reduced before the segmentation process may be performed. The resulting

resolution meant that the segmented boundary curves found were not sufficiently smooth for

the algorithms that Hoff and Olver use. Thus, they applied a preliminary smoothing operation

to the piece boundaries. This process is detailed in [54].

The pieces we use are the smoothed boundary curves that resulted from these processes.

We will study our algorithms as applied to the pieces of the 48 piece Rain Forest Giant Floor

Puzzle, Figure 4.4. The solved puzzle is a 16 piece by 3 piece rectangle. Images of the pieces

and the completed puzzle below are reproduced from [54].

75

(a) Pieces of the Rain Forest Giant Floor Puzzle

(b) The Solved Rain Forest Giant Floor Puzzle

Figure 4.4: The pieces of and completed Rain Forest Giant Floor Puzzle. The pieces in (a) are
shown in pseudo-random order and in the orientations in which they are input to the algorithm.
Reproduced from [54].

76

4.2.2 Algorithm

For the application in which we are interested, we are searching for the best match. Assume we

have two puzzle pieces with N nodes on each. We define what exactly best match means for

us. We prioritize four items:

tolerance The maximum distance allowed between the two curves. Initial tolerance is ten

percent of the maximum Ĩ1 value of both curves.

length The number of nodes from the initial node where the tolerance is exceeded. To be

considered a match, the length must be longer than .1N .

persistence When the match remains a possible match as we decrease the tolerance. The

tolerance will be decreased by twenty percent at each iteration. A match is persistent if

it remains through 3 iterations.

nesting When there is another match of similar length in the same region of the piece edge.

We require the second match to be within .4N nodes of the original match.

We search for the best match by successively refining the tolerance. We evaluate each possible

match for the four qualities listed above. The algorithm is involved and has many parameters

which are defined below. The values used for this case are given.

significant number of nodes Only matches longer than this value are considered. Value is

set to .1N .

maximum list length Lists of possible matches must be shorter than this value. Value is set

to 30.

expected match length If we know the shape of the pieces, this value is the approximate

expected length of a match. It is .25N since we have roughly square pieces.

tolerance reduction factor The multiplier we use to reduce the tolerance. New tolerance is

set to .8 of previous tolerance.

77

match list interval To be a match, its length must be within .15N nodes of the maximum

match length for the given tolerance.

persistence interval For persistence, two matches within this interval are considered equiv-

alent. We require matches to be within two nodes.

nesting interval For nesting, two matches within this interval are considered equivalent. We

require matches to be within .4N .

Given two puzzle pieces, the algorithm to find the best match between the two begins by

computing distances. Recall that the signatures of closed curves are dependent upon the choice

of initial point. Thus, we find the distance associated with each pairing of initial point on the

two pieces using the method described in Chapter 3.

Next we find the length of each pairing using the initial tolerance. From the list of all lengths

for this tolerance, we save the match with maximum length and all matches within its match list

interval. If the list is longer than the maximum list length, we reduce the tolerance according

to the reduction factor and repeat the process. If either the match list is empty or there do not

exist any matches of length greater than the significant number of nodes, then we proceed to

the last step of the algorithm. This match collection and tolerance reduction may be repeated

at most ten times per iteration. If the match list avoids these pitfalls, we record this list, reduce

the tolerance according to the reduction factor, and begin a new iteration.

Starting with the second iteration, we check for persistent matches by comparing two con-

secutive match lists. If a match in one list is within the match list interval of a match in the

second list, it is persistent. We save all persistent matches along with how many iterations it

has persisted.

Beginning with the fourth iteration, we check for nesting. We only check matches that have

persisted through at least three iterations. We compare entries in the persistence list to those

in the match list. If a match in the list is within the nesting interval of a persistent match, the

match is nested.

78

These iterations end after either we have performed 30 iterations or we have found at least

one match that is nested and persistent. In the case that we have performed 30 iterations, we

use the last list of persistent matches (regardless of nesting or persistence) as possible matches.

If there is more than one entry in our final list of possible matches, we choose the match with

the smallest average node-to-node distance over the region of match.

To rank pieces as possible mates for a given piece, we perform the above procedure on the

given piece paired with every other piece. After we have a best match for each piece pairing,

we rank them based on average nodal distance. So that this distance is an accurate reflection

of the match, we use the finest sampling of nodes available to find the distance. If a match

is not of expected match length, we will add nodes symmetrically to both sides of the match

region until it is the expected length. We order these distances from smallest to largest and this

determines the ranking of the possible mates.

4.2.3 Pseudocode

We use the (R̃, Ĩ1) signature due to its lesser computation cost. We are able to use this signature

because we are not concerned with possible reflection of puzzle pieces. To simplify notation, we

will let A = Ĩ1 and denote the first invariant associated with puzzle piece i as Ai.

The code below provides the best match region, nodal distances, transform used, and the

new coordinates of the transformed piece for a pair of two puzzle pieces.

Input:

• P1O, a 2×m1 matrix representing an ordered walk around one puzzle piece

• P2O, a 2×m2 matrix representing an ordered walk around second puzzle piece

• SigPercent, scalar defining the percentage of total nodes needed to be a significant match

• TolPercent, scalar defining the percentage of A for the initial tolerance

• n1, n2, number of nodes to be distributed along the edge of P1O and P2O

79

Output:

• P2T , a 2×n2 matrix representing an ordered walk around the transformed second puzzle

piece

• Trans, a vector of length 3 containing the values of φ, a, and b used in the final transfor-

mation of P2

• NodalDist, a vector of length k containing the node-to-node distances over the region of

match

• BestMatchRegion, a vector of form [i, j, k] where the match region starts at P1(:, 1) and

P2(:, j) and continues for k nodes

Steps:

1. Create P1 and P2 by distributing n1 and n2 equidistant points respectively on the linear

interpolants of P1O and P2O.

2. N := min{n1, n2}.

3. Define the significant number of nodes to be S := SigPercent×N .

4. Reverse the order of the walk around P2:

P2(i, j) = P2(i, n2− j + 1), where i = 1, 2 and j = 1, . . . , n2.

5. Create a n1× 2× n1 matrix S1,

S1 = [R1, A1] := Subalgorithm for Finding Discrete Signatures Using Determinant Shift(P1),

where S1(i, 1, k) is the R̃ curve invariant for P1 starting with P1(:, i) at the kth node and

S1(i, 2, k) is the similar value of A1 for i = 1, . . . , n1.

6. Create a n2× 2× n2 matrix S2,

S2j = [R2j , A2j] := Subalgorithm for Finding Discrete Signatures Using Determinant Shift(P2),

where S2(j, 1, k) is the R̃ curve invariant for P2 starting with P2(:, j) at the kth node

and S2(j, 2, k) is the similar value of A2 for j = 1, . . . , n2.

80

7. T := TolPercent×max{A1, A2}.

8. Create a n1× n2×N matrix, Dist,

Dist= Subalgorithm for Finding Distances between Two Curves(S1, S2, T,N)

such that D(i, j, k) is the distance between S1(i, 1 : 2, k) and S2(j, 1 : 2, k).

9. Generate a list of possible matches, PossibleMatchList ,

PossibleMatchList =

Subalgorithm for Choosing Possible Matches for Two Puzzle Pieces(Dist, T, S).

in the format of [i, j, k] where the match region starts at P1(i, :) and P2(j, :) and continues

for k nodes.

10. Find the best transformation of P2, the region of best match, and the nodal distances

over the matching region.

[P2T , T rans,BestMatchRegion,NodalDist] =

Subalgorithm for Transforming the Original Curves(PossibleMatchList, P1, P2, P1O,P2O)

Subalgorithms for Puzzle Piece Algorithm

Subalgorithm for Finding Discrete Signatures Using Determinant Shift

Input:

• A 2×m matrix, P , of m points representing an ordered walk around a puzzle piece

Output:

• A m × 2 ×m matrix S, such that S(i, 1, k) is the R curve invariant for P starting with

P (:, i) at the kth node and S(i, 2, k) is the similar value of A for i = 1, . . . ,m.

Steps:

81

1. InitP t := P (:, 1)

2. for i=1:m

Use formulas in 3.1.1 to compute discrete (Rtemp, Atemp) signature using this initial

point.

S(1, 1, i) = Rtemp and S(1, 2, i) = Atemp.

3. for i=2:m

InitP t := P (:, i)

for k=1:m-1

Use the formulas in Eq. 3.9 and Eq. 3.10 to compute Rtemp and Atemp.

S(i, 1, k) = Rtemp and S(i, 2, k) = Atemp

Subalgorithm for Finding Distances between Two Curves

Input:

• X1, the first curve of size 2×N1

• X2, the second curve of size 2×N2

• T , a tolerance

• N := min{N1, N2}

Output:

• A vector of length N , Dist, where Dist(k) is the distance between X1 and X2 at the kth

node

Steps:

Note: Let X(s), X(s+ 1) denote the linear interpolant between the nodes X(s) and X(s+ 1).

1. Compute the distances from the nodes of X1 to the linear interpolants of X2.

82

s=1

k = 1 : N

i. until dist1(k) > T :

d1 = dist(X1(:, k), X2(:, s), X2(:, s+ 1))

d2 = dist(X1(:, k), X2(:, s+ 1), X2(:, s+ 2))

dist1(k) = min{d1, d2}

if dist1(k) = d1, s = s+ 1

if dist1(k) = d2, s = s+ 2

ii. once dist1(k) > T :

dist1(k) =∞

2. Compute the distances from the nodes of X2 to the linear interpolants of X1.

s=1

k = 1 : N

i. until dist2(k) > T :

d1 = dist(X2(:, k), X1(:, s), X1(:, s+ 1))

d2 = dist(X2(:, k), X1(:, s+ 1), X1(:, s+ 2))

dist2(k) = min{d1, d2}

if dist2(k) = d1, s = s+ 1

if dist2(k) = d2, s = s+ 2

ii. once dist2(k) > T :

dist2(k) =∞

3. Combine the distances to find the final distance between the two curves.

k = 1 : N

Dist(k) = min{dist1(k), dist2(k)}

83

Note: If dist1(k) = dist2(k) =∞, then Dist(k) =∞.

Subalgorithm for Finding Discrete Signatures Using Rotation of Data

Input:

• A 2×m matrix of m points representing an ordered walk around a puzzle piece

Output:

• Three m×m matrices, one representing each of R(n) and I1(n) signatures with different

starting points. Each row corresponds to the node in the original ordering that was used

for the initial point.

Steps:

1. Call the input matrix, Pcurrent.

2. Let the first node be the initial point.

3. Using the formulas given in 3.1.1, find the signatures for this curve with this starting

node.

4. Rotate the curve Pcurrent to get Pnew so that Pnew(:, i) = Pcurrent(:, i+1) for i = 1, . . . ,m−

1 and Pnew(:,m) = Pcurrent(:, 1).

5. Repeat steps b-d with each Pnew until signatures have been computed for all possible

starting points, i.e. m times.

Subalgorithm for Choosing Possible Matches for Two Puzzle Pieces

Input:

• A n1× n2×N matrix Dist

• Initial tolerance, T

84

• Number of nodes considered to be significant, S

Output:

• A list of possible matches, PossibleMatchList in the format of [i, j, k] where the match

region starts at P1(:, i) and P2(:, j) and continues for k nodes

Steps:

1. Tcurrent = T, Told = 0

2. While persistence = 0 and nested = 0

(a) i = 1 : n1

D = Dist(i, :, :)

j = 1 : n2

d = D(j, :)

k = 1 : N

while d(k) ≤ T , counter = k

List(i, j) = counter

Reset k = 1, counter = 1

(b) Find K = max{List}

(c) For any List(i, j) ∈ [K−.01S,K], record the associated [i, j, List(i, j)] in MatchList.

(d) If K − .01S ≤ S, Tnew = 1.1 (Tcurrent) .

If K − .01S > S, Tnew = .8 (Tcurrent) .

(e) For each match in MatchList check if the match has appeared in the previous two

match lists. Each match that persists, store in MatchList2.

(f) If MatchList2 is empty, persistence = 0 and return to step a. Otherwise,

persistence = 1 and proceed to the next step.

85

(g) For each match in MatchList2 check for matches in MatchList where i, j and k are

within .04 ∗N of the match in MatchList2. Store matches that meet this criteria in

PossibleMatchList.

(h) If PossibleMatchList is empty, return to step a with Tnew. Otherwise, end code and

return PossibleMatchList.

Subalgorithm for Transforming the Original Curves

Input:

• A list of possible matches, PossibleMatchList in the format of [i, j, k] where the match

region starts at P1(i, :) and P2(j, :) and continues for k nodes

• P1, a 2× n1 matrix representing the ordered walk around the first puzzle piece

• P2, a 2 × n2 matrix representing the reversed ordered walk around the second puzzle

piece

• P1O, a 2×m1 matrix representing the original walk around the first puzzle piece

• P2O, a 2×m2 matrix representing the original walk around the second puzzle piece

Output:

• P2T , a 2× n2 matrix representing the transformed second puzzle piece

• Trans, the values of φ, a, and b used in the final transformation of P2

• NodalDist, a length k vector containing the node-to-node distances between the nodes

of P1 and P2T over the matched region

• BestMatchRegion, a vector of form [i, j, k] where the match region starts at P1(i, :) and

P2(j, :) and continues for k nodes

Steps:

86

1. i = 1 : length(PossibleMatchList)

(a) [s1, s2, k] = PossibleMatchList(i, :)

(b) Find the nodes on P1O and P2O that correspond to [s1, s2, k] on P1 and P2. Denote

these as [s11, s22, k1]

(c) Minimize

val(i) =

1

k1

k1∑
j=1

∥∥∥∥∥∥
P1O(1, s11 + j − 1)

P1O(2, s11 + j − 1)

−
 cos(φ) sin(φ)

− sin(φ) cos(φ)

P2O(1, s22 + j − 1)

P2O(2, s22 + j − 1)

−
a
b

∥∥∥∥∥∥
2

2. The match with the smallest minimal average nodal distance, val, is the best match,

BestMatchRegion.

3. Minimize

winner =

1

k1

k1∑
j=1

∥∥∥∥∥∥∥
P1O(1, s11 + j − 1)

P1O(2, s11 + j − 1)

−
 cos(φ) sin(φ)

− sin(φ) cos(φ)


P2O(1, s22 + j − 1)

P2O(2, s22 + j − 1)

−
a
b


∥∥∥∥∥∥∥

2

to find the best values of φ, a, and b.

4. P2T =

 cos(φ) sin(φ)

− sin(φ) cos(φ)


P2

P2

+

a
b

 .

5. i = 1 : k

NodalDist(i) = ‖P1(s1 + i− 1, :)− P2T (s2 + i− 1, :)‖

To determine which piece is the best mate for a given puzzle piece, we collectBestMatchRegion

and NodalDist for each piece pairing and store them in Matches and NodalDisances. Assum-

87

ing we have M puzzle pieces total, we use these arrays and the following pseudo-code to find

the ranking of mates.

Input:

• Matches, a 3×M − 1 matrix containing the best matches and length for each pairing

• NodalDistances, a cell with M − 1 entries containing the node-to-node distances of each

pairing

Output:

• RankedMatches, a M−1 vector listing the ranking of pieces for mates for the given piece

Steps:

1. Compute the average nodal distance associated with each piece and store in AvgNodal.

2. Sort the vector AvgNodal distance in ascending order and store the order of the indices

of entries.

3. Using the indices of the reordered AvgNodal vector, determine the ranking of pieces and

store in RankedMatches.

The computational cost of ranking the possible matches for a puzzle piece is O(N3). We

may reduce the cost by altering our code to only search for the top-T matches and the cost

will naturally reduce as the number of possible mates lessens in the process of assembling the

puzzle.

4.2.4 Results and Discussion

To analyze the ability of the discrete invariants to rank all pieces in order of best match for a

chosen puzzle piece, we will use the pieces from the Rain Forest Giant Floor Puzzle. For any

given piece, there are 47 other pieces with which we examine its match. Since the assembled

puzzle is three pieces high and 16 pieces across, any piece excepting the corner pieces will have

88

three or four possible pieces that are correct matches for it. We will not discriminate between

these pieces as to which is the best match, but rather will consider the listing of any of them

to be a correct match listing.

We will exploit the knowledge that the pieces are approximately square in our ranking

algorithm. As a result of this knowledge, we expect the best match to span approximately a

quarter of the total number of nodes on the piece. Whenever a region of best match is identified

along the edge of a piece, we will standardize the length of the match so that the region of best

match is centered in a span of nodes that is a quarter of the length of the piece. If we had no

knowledge beforehand of the shape of the pieces or if they were not a uniform shape, the only

change it would make to the algorithm is that we would standardize the lengths to be the same

length as the longest match rather than to a quarter of the size of the piece. This step helps

us ensure that an exact match over very few nodes will not be rated higher than a very close

match over a longer number of nodes.

Table 4.3: Success Rates for a Correct Match Appearing in the Top-T Matches

Top-1 Top-2 Top-3 Top-5 Top-10 Top-15

Success Rates 50% 58.33% 77.08% 83.33% 93.75 % 95.83 %

The success rates for a correct match being listed in the top-T matches with our method

are displayed in Table 4.3. These results were found using 150 equally distributed nodes on

each puzzle piece. In preliminary experiments, 150 nodes was the size for which we had the best

pairwise matching success rate. We used the (R̃, Ĩ1) signature for all comparisons and match

ranking. We see from the results that if we use the Top-10 matches out of a possible 47 matches

for each piece we have a 93.75% chance of a correct match being in the list. This corresponds

with only 45 pieces out of the 48 pieces having a correct match listed. This reduction is worth

the risk that we may have a piece where a correct match does not appear in the list. By only

checking ten possible matches with a locking algorithm rather than 48, we have greatly reduced

89

our computational load.

90

Chapter 5

Final Remarks

We have found a method to generate a new family of integral invariants. That these invariants

allow for the input to be discrete is their main benefit. It is no longer necessary to either fit

a continuous curve to a discrete set of points or to use a (possibly) non-invariant numerical

approximation to continuous invariants. As we have shown, our family of invariants are inde-

pendent of sampling and provide an efficient method of calculating invariants of curves that are

given discretely.

These invariants are a viable curve matching technique. Our results in using discrete invari-

ants for character recognition and classification and puzzle assembly shows that this method

is useful in solving curve matching problems. These invariants would be especially useful when

used in conjunction with one or more of the other curve matching techniques we have mentioned.

If these discrete invariants are to be seriously used in curve matching algorithms, however,

there are further improvements that can be made. We have mentioned these possible improve-

ments throughout, but will revisit the most important of them. While we were developing and

coding this method, our end goal was not to write the most efficient code, but to develop

a working method. The code could be optimized to shorten the run time needed for curve

matching.

In the application of character recognition and classification, several improvements would

91

need to be made before this method could be competitive with other currently used procedures.

We focused solely on the classification of digits and, even in this case, used a rather simple class

breakdown of the digits. To be more efficient and accurate, new character classes need to be

introduced. We would also need to consider the option of multiple classifications being assigned

to characters as discussed. This system allows for a multiple layered code to narrow down the

possible matches in several steps. In addition to expanding our number of classes, we would

need to consider the possibility of multi-stroke characters. For simplicity, we have ruled them

out in the algorithm as it stands now, but it is an unavoidable fact that many people draw

digits using more than one stroke. Also, the technique would need to be expanded to consider

characters other than digits, e.g. mathematical symbols, Roman letters, Greek letters.

While our invariants are useful to identify a list of top possible matches for puzzle pieces, they

are not an efficient puzzle assembly tool alone. As has been shown in other puzzle assembly

algorithms, [54] and [38] for instance, truly effective methods require some sort of a locking

mechanism. Piece locking serves to ensure the tightest match possible between two pieces. It is

the code equivalent of the click we feel when we snap two pieces together correctly. If the pieces

are not tightly transformed together then we will incur increasingly large gaps between pieces

as we continue assembling the puzzle. This will result in the correct location and orientation of

each piece, but the puzzle will not be assembled as if we had assembled it by hand. In the case

of object assembly, it is necessary to have a tight fit so that objects may be reliably assembled

by machines.

Discrete integral invariants we introduce have been shown to be a useful and effective curve

matching tool, especially if the improvements described above are made.

92

REFERENCES

[1] The darpa shredder challenge, 2011.

[2] A. Abatzoglou, A. Smith, J. WebsterLove, K. Iwancio, and I. Kogan. Invariants in com-
puter vision. Technical report, North Carolina State University, 2007.

[3] W.S.I. Ali and F.S. Cohen. Registering coronal histological 2-d sections of a rat brain
with coronal sections of a 3-d brain atlas using geometric curve invariants and b-spline
representation. IEEE Trans. Med. Imag., 17:957–966, 1998.

[4] H. Alt and L. J. Guibas. Discrete geometric shapes: Matching, interpolation, and approx-
imation: A survey. Technical report, Handbook of Computational Geometry, 1996.

[5] K. Arbter, W.E. Snyder, H. Burkhardt, and G. Hirzinger. Application of affine-invariant
fourier descriptors to recognition of 3-d objects. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:640–647, 1990.

[6] A. Ardovini, L. Cinque, and E. Sangineto. Identifying elephant photos by multi-curve
matching. Pattern Recognition, 41:1867–1877, 2008.

[7] E. Attalla and P. Siy. Robust shape similarity retrieval based on contour segmentation,
polygonal multiresolution, and elastic matching. Pattern Recognition, 38:2229–2241, 2005.

[8] M. Bakircioglu, U. Grenander, N. Khaneja, and M.I. Miller. Curve matching on brain
surfaces using frenet distances. Human Brain Mapping, 6:329–333, 1998.

[9] B.A. Barsky, A.D. DeRose, and M.D. Dippe. An adaptive subdivision method with
crack prevention for rendering beta-spline objects. Technical report, EECS Department,
University of California, Berkeley, 1987.

[10] C. M. Bastuscheck, E. Schonberg, J. Schwartz, and M. Sharir. Object recognition by
three-dimensional curve matching. International Journal of Intelligent Systems, 1:105–
132, 1986.

[11] H. Blum. Models for the Perception of Speech and Visual Forms, chapter A transformation
for extracting new descriptors of shape, pages 362–380. MIT Press, 1967.

[12] M. Boutin. Numerically invariant signature curves. Int. J. Computer Vision, 40:235–248,
2000.

[13] A. Brakensiek, J. Rottland, A. Kosmala, and G. Rigoll. Off-line handwriting recognition
using various hybrid modeling techniques and character n-grams. In IN 7TH INTERNA-
TIONAL WORKSHOP ON FRONTIERS IN HANDWRITTEN RECOGNITION, pages
343–352, 2000.

[14] D. Brinkman and P.J. Olver. Invariant histograms. Amer. Math. Monthly, 119:4–24,
2012.

93

[15] K. Buchin, M. Buchin, and Y. Wang. Exact algorithm for partial curve matching via the
frchet distance. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms, 2009.

[16] B.G. Burdea and H.J. Wolfson. Solving jigsaw puzzles by a robot. IEEE Transactions on
Robotics and Automation, 5:752–764, 1989.

[17] D.J. Burr. Elastic matching of line drawings. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6:708–713, 1981.

[18] E. Calabi, P.J. Olver, C. Shakiban, A. Tannenbaum, and S. Haker. Differential and
numerically invariant signatures curves applied to object recognition. Int. J. Computer
Vision, 26:107–135, 1998.

[19] E. Calabi, P.J. Olver, and A. Tannenbaum. Affine geometry, curve flows, and invariant
numerical approximations. Advances in Mathematics, 124:154–196, 1996.

[20] J. Calder and S. Esedoglu. On the circular area signature for graphs. SIAM Journal on
Imaging Sciences, 5:1355–1379, 2012.

[21] E. Cartan. La methode du repere mobile, la theorie des groupes continus, et les espaces
generalises. Exposes de Geometrie, 5, 1935.

[22] E. Cartan. Groupes finis et continus et la geometrie differentielle traitees par la methode
du repere mobile. 1937.

[23] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours, 1997.

[24] T. Chan and L. Vese. Active contours without edges. IEEE Transactions on Image
Processing, 10:266–277, 2001.

[25] Z. Chen and S.K. Sun. A zernike moment phase-based descriptor for local image repre-
sentation and matching. IEEE Transactions on Image Processing, 19:205–219, 2010.

[26] F.S. Cohen and J. Wang. Part i: Modeling image curves using invariant 3-d object curve
models - a path to 3-d recognition and shape estimation from image contours. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 16:1–12, 1994.

[27] F.S. Cohen, Z. Yang, Z. Huang, and J. Nissanov. Automatic matching of homologous
histological sections. IEEE Trans. Biomedical Engineering, 45:642–649, 1998.

[28] M. Cui, J. Femiani, J. Hu, P. Wonka, and A. Razdan. Curve matching for open 2d curves.
Pattern Recognition Letters, 30:1–10, 2009.

[29] C. de Boor. On calculation with b-splines. J. Approx. Theory, 6:50–62, 1972.

[30] C. de Boor. A Practical Guide to Splines. Springer-Verlag, 1978.

[31] D.S. Doermann, E. Rivlin, and I. Weiss. Logo recognition using geometric invariants. In
Proceedings of the Second International Conference on Document Analysis and Recogni-
tion, 1993.

94

[32] T. Eiter and H. Mannila. Computing discrete frechet distance. Technical report, Christian
Doppler Laboratory for Expert Systems, TU Vienna, 1994.

[33] O. Faugeras. Application of Invariance in Computer Vision, chapter Cartan’s moving
frame method and its application to the geometry and evolution of curves in the Euclidean,
affine, and projective planes, pages 11–46. Springer-Verlag Lecture Notes in Computer
Science, 1994.

[34] M. Fels and P.J. Olver. Moving coframes. ii. regularization and theoretical foundations.
Acta Appl. Math, 55:127–208 127–208, 1999.

[35] S. Feng, I. Kogan, and H. Krim. Classification of curves in 2d and 3d via affine integral
signatures. Acta Appl. Math., 109:903–937, 2010.

[36] T. Fidler, M. Grasmair, and O. Scherzer. Identifiability and reconstruction of shapes from
integral invariants. Inverse Problem Imaging, 2:341–354, 2008.

[37] J. Flusser and T. Suk. Character recognition by affine moment invariants. In Proc. 5th
International Conference on Computer Analysis of Images and Patterns, 2007.

[38] H. Freeman and L. Garder. Apictorial jigsaw puzzles: The computer solution of a problem
in pattern recognition. IEEE Transactions on Electronic Computers, 13:118–127, 1964.

[39] Y. Gdalyahu and D. Weinshall. Flexible syntactic matching of curves and its application
to automatic hierarchical classification of silhouettes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21:1312–1328, 1999.

[40] R. Ghosh and M. Ghosh. An intelligent offline handwriting recognition system using
evolutionary neural learning algorithm and rule based over segmented data points, 2005.

[41] D. Goldberg, C. Malon, and M. Bern. A global approach to automatic solution of jigsaw
puzzles. In Proc. Conf. Computational Geometry, 2002.

[42] O. Golubitsky, V. Mazalov, and S.M. Watt. Orientation-independent recognition of hand-
written characters with integral invariants. In Proc. Joint Conference of ASCM 2009 and
MACIS 2009, 2009.

[43] O. Golubitsky and S. M. Watt. Distance-based classification of handwritten symbols.
Technical report.

[44] O. Golubitsky and S. M. Watt. Tie-breaking for curve multiclassifiers. Technical report.

[45] L. Van Gool, T. Moons, E. Pauwels, and A. Oosterlinck. Geometric Invariance in Com-
puter Vision, chapter Semi-differential invariants for non-planar curves, pages 157–192.
MIT Press, 1992.

[46] C. Gope. View-Invariant Curve and Point-Pattern Matching with Application to Photo-
Identification of Marine Mammals. PhD thesis, University of Texas at Dallas, 2006.

95

[47] C. Gope and N. Kehtarnavaz. Affine invariant comparison of point-sets using convex hulls
and hausdorff distances. Pattern Recognition, 40:309–320, 2007.

[48] C. Gope, N. Kehtarnavaz, G. Hillman, and B. Wursig. An affine invariant curve matching
method for photo-identification of marine mammals. Pattern Recognition, 38:125–132,
2005.

[49] A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional
recurrent neural networks.

[50] M. L. Green. The moving frame, differential invariants, and rigidity theorems for curves
in homogeneous spaces. Duke Math. J., 45(4):735–779, 1978.

[51] P. Griffiths. On cartan’s method of lie groups and moving frames as applied to uniqueness
and existence questions in differential geometry. Duke Math. J., 41:775–814, 1974.

[52] I. Guyon, P. Albrecht, Y. Le Cun, J.S. Denker, and W. Hubbard. Design of a neural
network character recognizer for a touch terminal. Pattern Recognition, 24:105–119, 1991.

[53] C. E. Hann and M. S. Hickman. Projective curvature and integral invariants. Acta
Applicandae Mathematicae, 74:177–193, 2002.

[54] D. Hoff and P.J. Olver. Automatic solution of jigsaw puzzles. Preprint, 2011.

[55] D. Hoff and P.J. Olver. Extensions of invariant signatures for object recognition. Preprint,
2011.

[56] H. Hse and A.R. Newton. Sketched symbol recognition using zernike moments. In Pro-
ceedings of the 17th International Conference on Pattern Recognition, 2004.

[57] Z. Huang and F.S. Cohen. Affine-invariant b-spline moments for curve matching. IEEE
Transactions on Image Processing, 5:1473–1480, 1996.

[58] K.C. Hung. The generalized uniqueness wavelet descriptor for planar closed curves. IEEE
Transactions on Image Processing, 9:834–845, 200.

[59] K. Iwancio. Use of Integral Signatures and Hausdorff Distance in Planar Curve Matching.
PhD thesis, North Carolina State University, 2009.

[60] C.V. Jawahar, A. Balasubramanian, M. Meshesha, and A. Namboodiri. Retrieval of online
handwriting by synthesis and matchign. Pattern Recognition, 42:1445–1457, 2009.

[61] R. Kala, H. Vazirani, A. Shukla, and R. Tiwari. Offline handwriting recognition using
genetic algorithm. International Journal of Computer Science Issues, 7:16–25, 2010.

[62] C. Kamath. Scientific data mining: a practical perspective. SIAM, 2009.

[63] H. Kauppinen, T. Seppanen, and M. Pietikainen. An experimental comparison of autore-
gressive and fourier-based descriptors in 2d shape classification. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17:201–207, 1995.

96

[64] A. Khotanzad and Y.H. Hong. Invariant image recognition by zernike moments. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12:489–497, 1990.

[65] S. Kichenassamy, A. Kumar, and P.J. Olver. Conformal curvature flows: From phase
transitions to active vision, 1995.

[66] Y.S. Kim and W.Y. Kim. Content-based trademark retrieval system using a visually
salient feature. Image and Vision Computing, 16:931–939, 1998.

[67] W. Kong and B. Kimia. On solving 2d and 3d puzzles under curve matching. pages
583–590, 2001.

[68] Y. Lamdan, J.T. Schwartz, and H.J. Wolfson. Object recognition by affine invariant
matching. In Computer Society Conference on Computer Vision and Pattern Recognition,
1988.

[69] S. Lankton. Active contours, 2007.

[70] D.J. Lee, S. Antani, X. Xu, and L. R. Long. Desing and evaluation of a curve matching-
based spine x-ray image retrieval system. In Proceedings of SPIE, 2005.

[71] S.W. Lee and Y. J. Kim. Off-line recognition of totally unconstrained handwritten numer-
als using multilayer cluster neural network. IEEE Transactions on Patter, 18:648–652,
1996.

[72] H. Li, B.S. Manjunath, and S.K. Mitra. Registration of 3-d multimodality brain images by
curve matching. In Nuclear Science Symposium and Medical Imaging Conference, 1993.

[73] W.Y. Lin, N. Boston, and Y.H. Hu. Summation invariant and its application to shape
recognition. In Proc. of ICASSP, 2005.

[74] C. Liu, W. Pei, S. Niyokindi, J. Song, and L. Wang. Micro stereo matching based on
wavelet transform and projective invariance. Measurement Science and Technology, 3:565–
571, 2006.

[75] L. Lucchese, S. Leorin, and G. Cortelazzo. Estimation of two-dimensional affine trans-
formations through polar curve matching and its application to image mosaicking and
remote-sensing data registration. IEEE Transactions on Image Processing, 15:3008–3019,
2006.

[76] S. Manay, D. Cremers, B. Hong, A. Yezzi, and S. Soatto. Shape matching via integral
invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 2006.

[77] S. Manay, A. Yezzi, B. Hong, and S. Soatto. Integral invariant signatures. In Proc. of the
ECCV, 2004.

[78] J. McBride and B. Kimia. Archaeological fragment reconstruction using curve-matching.
In Conference on Computer Vision and Pattern Recognition Workshop, 2003.

97

[79] G. Medioni and Y. Yasumoto. Corner detection and curve representation using cubic
b-splines. Computer Vision, Graphics, and Image Processing, 39:267–278, 1987.

[80] B. Mehtre, M. Kankanhalli, and W. Lee. Shape measures for content based image retrieval:
a comparison. Inf. Process. Manage., 33:319–337, 1997.

[81] B.S. Morse. Computation of object cores from grey-level images. PhD thesis, University
of North Carolina, Chapel Hill, 1994.

[82] P. Natarajan, S. Saleem, R. Prasad, E. MacRostie, and K. Subramanian. Arabic and
Chinese Handwriting Recognition, chapter Multi-lingual Offline Handwriting Recognition
Using Hidden Markov Models: A Script-Independent Approach, pages 231–250. Springer
Berlin Heidelberg, 2008.

[83] P.J. Olver. Joint invariant signatures. Found. Comp. Math, 1:3–67, 2001.

[84] P.J. Olver and Mark Fels. Moving coframes i. a practical algorithm. Acta Appl. Math,
51:161–213, 1998.

[85] Y.H. Pang, A. Jin, and D. Ling. Palmprint authentication system using wavelet based
pseudo-zernike moments features. International Journal of the Computer, the Internet,
and Management, 13:13–26, 2005.

[86] G.A. Papakostas, Y.S. Boutalis, D.A. Karras, and B.G. Mertzios. Pattern classification
by using improved wavelet compressed zernike moments. Applied Mathematics and Com-
putation, 212:162–176, 2009.

[87] T. Pavlidis. Algorithms for shape analysis of contours and waveforms. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2:301–312, 1980.

[88] T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press,
1982.

[89] E. Persoon and K.S. Fu. Shape discrimination using fourier descriptors. IEEE Transac-
tions on Systems, Man and Cybernetics, 7:170–179, 1977.

[90] G. Radack and N. Badler. Jigsaw puzzle matching using a boundary-centered polar
encoding. Computer Graphics and Image Processing, 19:1–17, 1981.

[91] G. Rigoll, A. Kosmala, and D. Willett. A new hybrid approach to large vocabulary cur-
sive handwriting recognition. In Proceedings of 14th International Conference on Patter
Recognition, 1998.

[92] C. Samir, A. Srivastava, and M. Daoudi. Three-dimensional face recognition using shapes
of facial curves. In IEEE Transactions on Pattern Analysis and Machine Intelligence,
2006.

[93] J. Sato and R. Cipolla. Affine integral invariants for extracting symmetry axes. Image
and Vision Computing, 15:627–635, 1997.

98

[94] T. Sebastian and B. Kimia. Curves vs. skeletons in object recognition. Signal Processing,
85:247–263, 2005.

[95] C. Shalizi. Classification and regression trees, 2009.

[96] E. Smirnova and S. M. Watt. Communicating mathematics via pen-based interfaces.
In Tenth International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, 2008.

[97] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision,
pages 193–242. Chapman and Hall, 1993.

[98] J. Sternby, J. Morwing, J. Andersson, and C. Friberg. On-line arabic handwriting recog-
nition with templates. Pattern Recognition, 42:3278–3286, 2009.

[99] M.R. Teague. Image analysis via the general theory of moments. J. Opt. Soc. Am.,
70:920–930, 1980.

[100] C. Teh and R. Chin. On image analysis by the methods of moments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 10:496–513, 1988.

[101] F.B. ter Haar and R.C. Veltkamp. A 3d face matching framework for facial curves. In
IEEE International Conference on Shape Modeling and Applications, 2008.

[102] Q.M. Tieng and W.W. Boles. Wavelet-based affine invariant representation: a tool for
recognizing planar objects in 3d space. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19:846–857, 1997.

[103] S. Uchida and H. Sakoe. A survey of elastic matching techniques for handwritten character
recognition. IEICE - Transactions on Information and Systems, E88-D:1781–1790, 2005.

[104] G. Ucoluk and H. Toroslu. Automatic reconstruction of broken 3-d surface objects. Com-
puters and Graphics, 23:573–582, 1999.

[105] M. Unel, O. Soldea, E. Ozgur, and A. Bassa. 3d object recognition using invariants of 2d
projection curves. Pattern Analysis and Applications, 13:451–468, 2010.

[106] A. Y. Wang, A. D. Leow, H. D. Protas, A. W. Toga, and P. M. Thompson. Brain warping
via landmark points and curves with a level set representation.

[107] J. Wang and F.S. Cohen. Part ii: 3-d object recognition and shape estimation from image
contours using b-splines, shape invariant matching, and neural network. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 1:13–23, 1994.

[108] X.Y. Wang, Y.J. Yu, and H.Y. Yang. An effective image retrieval scheme using color,
texture, and shape features. Computer Standards and Interfaces, 33:59–68, 2011.

[109] I. Weiss. Geometric invariants and object recognition. International Journal of Computer
Vision, 10:207–231, 1993.

99

[110] H. Wolfson, E. Schonberg, A. Kalvin, and Y. Lamdan. Solving jigsaw puzzles by computer.
Annals of Operations Research, 12:51–64, 1988.

[111] M. Xia and L. Bede. Image registration by ”super-curves”. IEEE Transactions on Image
Processing, 13:720–732, 2004.

[112] D. Xu and H. Li. Geometric moment invariants. Pattern Recognition, 41:240–249, 2008.

[113] L. Younes. Optimal matching between shapes via elastic deformations. Image and Vision
Computing, 17:381–389, 1999.

[114] D. Zhang and G. Lu. Review of shape representation and description techniques. Pattern
Recognition, 37:1–19, 2004.

100

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Objective of Curve Matching
	Applications of Curve Matching
	Methods of Curve Matching
	Overview of Thesis

	Continuous Invariants and Signatures for Planar Curves
	 Curve Invariants
	Integral Invariants and Signatures

	Discrete Invariants and Signatures for Planar Curves
	Invariant Approximations of Integral Invariants
	Derivation of Discrete Invariants
	Discrete Invariant Signatures
	Consistency of the Discrete Invariant

	Using Signatures for Matching Curves with a Fixed Initial Point
	Using Signatures for Matching Curves without a Fixed Initial Point
	Sensitivity Analysis

	Applications
	Character Recognition
	Algorithm
	Pseudocode
	Results and Discussion

	Jigsaw Puzzle Assembly
	Preprocessing
	Algorithm
	Pseudocode
	Results and Discussion

	Final Remarks
	REFERENCES

