
ABSTRACT

JIANG, MING. Travelling Wave Solutions, Periodic and Chaotic Solutions of a PDE Approximation
of Coupled Chua’s Circuits. (Under the direction of Xiao-Biao Lin.)

We study a singularly perturbed system of partial differential equations that models a one-

dimensional array of coupled Chua’s circuits. The PDE system is a natural generalization of

the FitzHugh-Nagumo’s equation. In part I of the paper, we show that similar to the FitzHugh-

Nagumo’s equation, the system can have periodic solutions formed alternatively by fast and

slow flows. First, asymptotic method is used on the singular limit of the fast/slow systems to

construct a formal periodic solution. Then, dynamical systems method is used to obtain an

exact solution near the formal periodic soluion. Also, we show that the system can have a pair

of heteroclinic orbits that form a closed loop connecting two equilibrium points. The dominant

eigenvalues of the equilibrium points are complex numbers. Using the idea of Silnikov, we show

that in a neighborhood of the heteroclinic loop, all the solutions are one-to-one correspond to

to two sequence of symbols. Thus there are infinitely many homoclinic, heteroclinic, periodic

and chaotic orbits nearby.
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Chapter 1

Introduction

1.1 Introduction of the background and problem set-up

Complex dynamical networks are everywhere, such as the Internet, power networks, neural

networks, literature search networks, etc. The research on all the above complex networks

has a lot to do with our daily life, and would possibly result in the development of other

science direction. It becomes more and more important with the development of the information

technology and biological science.

Chua’s circuit is a simple electronic circuit that can have sophisticated behaviors like traveling

wave solutions, periodic and chaotic solutions. This circuit consists of a nonlinear resistor NR,

linear inductor L, resistor R, and capacitors C1, C2. See Figure 1.1. The system of equations

can be written as:

C1
dVC1

dt
= (VC2 − VC1)/R−G(VC1)

C2
dVC2

dt
= (VC1 − VC2)/R+ iL

L
diL
dt

= −VC2

where G is usually, but not limited to, a piecewise-linear function. Sometimes G is even a

nonlinear cubic function that shows the nonlinearity of the diode.

Systems of coupled cells with reactions and mass, energy or electric charge transfer often serve as

standard models for investigating the phenomena occurring in the transformation and transport

processes in living cells, tissues, neuron networks, and ecosystems, as well as in all forms of

1



Figure 1.1: Chua’s circuit

chemical, biochemical and biological reactors. In the continuous limit, it is possible to get

a reaction-diffusion type model which exhibits all of the classical properties of an autowave

process.

Also it is recognized that brains are nonlinear networks composed of chaotic systems, such as

the Cellular Neural Networks (CNNs), which are time-continuous nonlinear dynamical systems.

Therefore, it’s important to investigate the dynamical behaviors of the simplest class of neural

networks which exhibit chaos.

The coupled system is an example of CNNs, as described by Chua in his book [7]. According

to Chua, all the CNNs have much in common as each cell can be a model from a biological,

neurological, chemical or electronic system. Compared to other systems, electrical circuit net-

works are simpler to build, therefore, provide a practical, low cost method to simulate the other

networks. We study traveling wave solutions to this CNN system since the existence of such

solutions is one of the most prominent features of the network. We notice that our system is one

of the simplest generalizations of FitzHugh-Nagumo equation, which is a second order bistable

PDE coupled with linear first order ODE. The slow system we consider has two complex eigen-

values while in FitzHugh-Nagumos system the one-dimensional slow system has only one real

eigenvalue.

In this paper, we consider an array of Chua’s circuits connected by resistors R1. We use k as

2



the index for the kth circuit so that we have a system of equations as:

C1

dV k
C1

dt
= (V k

C2
− V k

C1
)/R−G(V k

C1
)− (V k−1

C1
− 2V k

C1
+ V k+1

C1
)/R1

C2

dV k
C2

dt
= (V k

C1
− V k

C2
)/R+ ikL

L
dikL
dt

= −V k
C2

where G is the conductance of Chua’s diode. By change of variables: α = 1/(C1R), combine

u+g(u)/α as h(u), the above system can be transformed into the following dimensionless form,

which we rewrite for each circuit cell k (k = 1, 2 · · · l) as:

u̇k = α(yk − h(uk)) + D̄(uk−1 − 2uk + uk+1)

ẏk = uk − yk + zk

żk = −βyk (1.1)

where u0(t) = u1(t), ul(t) = ul+1(t). h is defined as follows in some of the previous work:

h(u) =


m1(u− u−) u ≤ u1

−m0u u1 ≤ u ≤ u2

m2(u− u+) u ≥ u2

and our cubic function in this paper:

h(u) = mu(u− c)(u+ c),m > 0, c > 0

See [31] and figure 1.2 when m = 1/30, c = 3 for a later numerical example. I use this symmetric

Figure 1.2: Graph of y = h(u)
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cubic function as a special case, because I can use the Tschirnhaus transformation so that a

generic cubic function h(u) = au3 + bu2 + cu + d with three real roots can be rewritten as

h(t) = a(t3 +pt+q) in order to get rid of the second order term. Here I substitute u by t−b/3a,

and:

p =
3ac− b2

3a2

q =
2b3 − 9abc+ 27a2d

27a3
.

For the limiting systems, we can shift the y variable so that we can get rid of the constant term

and obtain a symmetric nonlinear function.

In this paper, we mainly consider the original system with the same scaling as P.P.C. See [31]

Let ε = 1/α, δx =
√
ε, uk(t̄) = u(t̄, k∆x). We approximate (1.1) by the following PDE:

εut̄ = (y − h(u)) + ε2Duxx

yt̄ = u− y + z

zt̄ = −βy (1.2)

(1.2) can be rewritten as a four dimensional system of ODEs as follows. Let the traveling wave

solution be w = w(x− st̄) = w(t), where w = (u, v, y, z) and ẇ = dw/dt, we have the so-called

slow system, in which t is the slow time scale:

εu̇ = v/D (1.3)

εv̇ = h(u)− sv/D − y

−sẏ = u− y + z

−sż = −βy

Let τ = t/ε and w′ = dw/dτ , then we have the so-called fast system, in which τ is the fast

variable:

u′ = v/D (1.4)

v′ = h(u)− sv/D − y

sy′ = ε(−u+ y − z)

sz′ = εβy

with equilibria P± = (u, v, y, z) = (u±, 0, 0,−u±), P0 = (0, 0, 0, 0).

4



In order to analyze different types of formal solutions, we obtain the reduced limiting problem

of the dynamics of (1.3), (1.4) when ε = 0 on the slow and fast time scales, respectively:

0 = v (1.5)

0 = h(u)− y

−sẏ = u− y + z

−sż = −βy

u′ = v/D (1.6)

v′ = h(u)− sv/D − y

y′ = 0

z′ = 0

Acosta considered the case when β < 0 in which saddle points on the slow manifolds are studied,

cf [1], while in reality, β should be positive as we study here. We can show that for a suitable

wave speed s and β value, there exists a unique traveling wave solution connecting the equilibria

P±. The idea of such internal layer solution is not new in singular perturbation methods [25],

[22], [21], [18], [9]. They are based on singular perturbation and heteroclinic bifurcations. There

are also geometric singular perturbation methods, such as: [10], [11], [17]. The geometric method

involves the construction of some invariant manifolds and their foliations.

There are works about the periodic orbits and aperiodic orbits for a single uncoupled circuit.

For example, in [14] the Brouwer’s fixed-point theorem is applied to prove the existence of

periodic solution for a Chua’s circuit with smooth nonlinearity.

1.2 Outline of the thesis

In this paper, we use analytical method in singular perturbation and obtain different types of

solutions for the systems (1.3), (1.4).

In Chapter Two, we introduce exponential dichotomies on singular perturbation problems, see

[4], [30].

In Chapter Three, we construct different possible formal solutions when ε = 0. One of the

situations is the generalization of the solution of FitzHugh-Nagumo’s system in [25].

5



In Chapter Four, we construct the approximated solution by the asymptotic matched expansion

of the system, since it is known that formal series expansions in singular perturbation problems

often provide accurate approximations of exact solutions. We can actually obtain expansion

up to any order by solving the recursive differential/algebraic equations, but the 0th order is

enough for the proof of the existence of the periodic solution.

In Chapter Five, we first prove there exists a periodic solution to the linear variational system

of the correction function. We find a generalized solution that allows a gap at τ = 0 in singular

layers along a fixed direction. The size of the gaps are expressed by the Melnikov functions.

We use the Melnikov integral to eliminate the gap by shifting the y values in the gap function

gi. The shifting of the y values results in the updated domains for the solutions on the outer

layers. Then we obtain solutions (Ûi, Ŷi) on the updated domain that satisfy the jump conditions

exactly with no gap at τ = 0. Now that we prove the existence of correction solution to the linear

variational system, the exact solution of the original nonlinear system follows by contraction

mapping.

In Chapter Six, we obtain a chaotic(nonperiodic) solution for the original system based on a

pair of heteroclinic solutions. We find a generalized solution that allows a gap at τ = 0 along

a fixed direction. We use the Melnikov integral to eliminate the gap by shifting the y values in

the gap function gk. Then we obtain solutions Ûk on the updated domain that satisfy the jump

conditions JUk with no gap at τ = 0. However, the JY k on the updated domain is not satisfied

exactly. After we define the Y i+1
k , the difference of jump errors E(JY i+1

k ) is reduced by a multiple

of a small number in the i-th iteration, due to the contraction caused by the stable spiral near the

equilibrium points. Therefore, the exact solution can be obtained after iterations. We show that

there are infinitely many chaotic solutions, each solution uniquely corresponds to a sequence of

symbols corresponding to the rotation numbers around the equilibrium points.

6



Chapter 2

Preliminary Results

We introduce some properties for linear systems of differential equations.

2.1 Exponential dichotomies

Consider the linear homogeneous differential equation:

ẋ = A(t)x (2.1)

Here A : I → Rn×n is continuous, where I ∈ R is a finite or infinite interval. Let Φ(t, s) be the

principal matrix solution of (2.1).

Definition 2.1.1. We say that (2.1) has an exponential dichotomy on I if there exist positive

constants K,α and projections Ps(t) + Pu(t) = In such that for t, s ∈ I we have:

(i)Φ(t, s)Ps(s) = Ps(t)Φ(t, s)

(ii)|Φ(t, s)Ps(s)| ≤ Ke−α(t− s), s ≤ t
(iii)|Φ(t, s)Pu(s)| ≤ Ke−α(s− t), t ≤ s

Next we consider the adjoint system:

ẋ+A?(t)x = 0 (2.2)

which has an exponential dichotomy on J if (2.1) has exponential dichotomy on J with the

same constants K and α. Let Φ∗(s, t) := (Φ(t, s)−1)∗ be the principal matrix solution of the

adjoint equation. Also the projections are P ?s (t) and P ?u (t) to the stable and unstable subspaces.

7



The projections Ps(t) and Pu(t) are unique only if J = R. Solutions on the unstable (stable)

subspaces of Φ∗(s, t) decay exponentially if solved forward (backward) in time. We are interested

in the exponential dichotomy where K is not too large and α(b − a) is not too small so that

Ke−α(b−a) << 1. See [8, 29] for details.

Lemma 2.1.1. If A(t) → A± as t → ±∞ and Reσ(A±) 6= 0, then (2.1) has an exponential

dichotomy on R± with projection matrix P±s (t) satisfying P±s (t)→ P± as t→ ±∞, where P±

are projection matrices relative to the exponential dichotomies of ẋ = A±x.

Proof. See [29]

Lemma 2.1.2. Assume that |A(t)| ≤ M for all t ∈ J and A(t) has d eigenvalues with real

part Reλ ≤ −α ≤ 0, and (n − d) eigenvalues with real part Reλ ≥ α ≥ 0. Then the system

x′ = A(ετ)x has an exponential dichotomy for t = ετ ∈ J with constant K(ε) and exponent

α− δ(ε), if ε is sufficiently small. Moreover, as ε→ 0, K(ε) remain bounded and α− δ(ε)→ 0;

the projections Ps(τ), Pu(τ) approach the spectral projections to the stable, unstable eigenspace

of A(ετ).

Proof. See [8]

Let Ckb (R,Rn) denotes the Banach space of bounded, continuous, vector-valued functions with

derivatives up to k-th order exist, bounded and continuous on R. For x ∈ C(R,Rn), γ ≤ 0, j ∈
Z+, we define:

||x||(γ,j) = {sup
t∈R
|x(t)|eγ|t|(1 + |t|−j)}

B(γ, j) = {x : ||x||(γ,j) ≤ ∞}

B1(γ, j) = {x ∈ C1(R,Rn), x ∈ B(γ, j) : ||ẋ||(γ,j) ≤ ∞}

Then we have B(γ, j), B1(γ, j) as Banach spaces with norms ||x||(γ,j), ||ẋ||(γ,j) + ||x||(γ,j). Note

that when γ = j = 0, then B(γ, j) = C0
b (R,Rn), B1(γ, j) = C1

b (R,Rn).

Recall that a linear map L: E → F is Fredholm if and only if: (a) dim N(L)<∞, (b) R(L) is

closed and codim R(L)< ∞, where N(L) and R(L) denote the nullspace and range of L. The

index of L is defined to be index L:= dim N(L)-codim R(L).

Lemma 2.1.3. If (2.1) has exponential dichotomy on both half lines, with α > 0 as the exponent.

0 < γ < α. Consider the linear operator L: B1(γ, j) → B(γ, j) defined by: (Lx)(t) = ẋ(t) −
A(t)x(t), then L is Fredholm with

indexL = dimRP−u (0)− dimRP+
u (0)

8



Moreover, g ∈ N(L) if and only if g(0) ∈ RP+
s (0) ∩ RP−u (0). And f ∈ R(L) if and only if∫∞

−∞ φ
?(t)f(t)dt = 0 for all bounded solutions φ(t) of the adjoint system (2.2).

Proof. For a special case where B(γ, j) = C0
b (R,Rn), B1(γ, j) = C1

b (R,Rn), the proof can be

found in [29] Lemma 4.2. A general case has the similar proof.

Lemma 2.1.4. Consider

ẋ−AL(t)x = fL(t)t ≤ 0 (2.3)

ẋ−AR(t)x = fR(t)t ≥ 0 (2.4)

Assume that (2.3) has exponential dichotomy on R−, R+ respectively with the same constants

α,K. Let PL,Rs (t), PL,Ru (t) be the projections that define the dichotomies. rankPLu (0) = rankPRu (0)

and RPLu (0) ⊕ RPRs (0) = Rn. Then for any η ∈ Rn and fL,R ∈ B(γ, j), there exists a unique

solution x ∈ B(γ, j) to (2.3) such that

xR(0)− xL(0) = η

|x|γ,j ≤ C(|η|+ |fL|γ,j + |fR|γ,j)

Proof. See [29].

2.2 Fredholm Property for linearized system

Assume that T (t, s) has exponential dichotomies on (−∞, 0] and [0,∞) and

dimRPu(0−) = dimRPu(0+) = k+.

RPu(0−) ∩RPs(0+) = span{φ(0)}⊥

where q̇(t) is the only bounded solution (up to constant multiple) to ẋ = A(t)x. Then the

adjoint equation also has a unique bounded solution ψ(t) where

ψ(0) ∈ RP ∗u (0+) ∩RP ∗s (0−) = (RPu(0−) +RPs(0+))⊥.

Lemma 2.2.1. For a given f ∈ C[a, b] and (φs, φu) ∈ (RPs(a),RPu(b)) consider the nonho-

mogeneous boundary value problem:

ẋ−A(t)x = f(t), a ≤ t ≤ b, a < 0 < b (2.5)

Ps(a)x(a) = φs, Pu(b)x(b) = φu
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The system has a unique C1 solution x(t) with x(0) ⊥ φ(0) if and only if∫ b

a
〈ψ(t), f(t)〉dt+ 〈ψ(a), φs〉 − 〈ψ(b), φu〉 = 0. (2.6)

If (2.6) does not hold, then let the left hand side be G. There exists a unique piecewise C1

solution x ∈ C1[a, 0] ∩ C1[0, b] for (2.1.3) with x(0±) ⊥ φ(0) such that

x(0−)− x(0+) = G ψ(0).

|G| ≤ C(‖f‖+ e−α|a||φs|+ e−α|b||φu|).

Proof. See [24].

2.3 Liapunov-Schmidt Reduction

Liapunov-Schmidt Reduction can be applied to study solutions to nonlinear equations when

the implicit function theorem does not work. It allows to reduce infinite-dimensional equations

in Banach spaces to finite-dimensional equations.

Let f(x, λ) = 0 be the given nonlinear equation, X,Λ and Y are Banach space. Λ is the

parameter space. f(x, λ) is the Cp-map from a neighborhood of some point (x0, λ0) ∈ X × Λ

to Y and the equation is satisfied at this point f(x0, λ0) = 0.

For the case when the linear operator fx(x, λ) is invertible, the implicit function theorem assures

that there exists a solution x(λ) satisfying the equation f(x(λ), λ) = 0 at least locally close to

λ0.

On the other hand, when the linear operatorfx(x, λ) is non-invertible, the Lyapunov-Schmidt

reduction can be applied in the following way.

One assumes that the operator fx(x, λ) is a Fredholm operator. ker fx(x0, λ0) = X1 and X1 has

finite dimension. The range of this operator Rangefx(x0, λ0) = Y1 has finite co-dimension and

is a closed subspace in Y.

Let us split Y into the direct sum Y = Y1 ⊕ Y2, where dimY2 < ∞. Let Q be the Projection

onto Y1. Let us consider also the direct sum X = X1 ⊕X2.

Applying the operators Q and I − Q to the original equation, one obtains the equivalent sys-
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tem:

Qf(x, λ) = 0

(I −Q)f(x, λ) = 0

Let x1 ∈ X1 and x2 ∈ X2, then the first equation: Qf(x1 +x2, λ) = 0 can be solved with respect

to x2 by applying the implicit function theorem to the operator Qf(x1+x2, λ) : X2×(X1×Λ)→
Y1 (now the conditions of the implicit function theorem are fulfilled).

Thus, there exists a unique solution x2(x1, λ) satisfying Qf(x1 + x2(x1, λ), λ) = 0. Now sub-

stituting x2(x1, λ) into the second equation, one obtains the final finite-dimensional equation

(I − Q)f(x1 + x2(x1, λ), λ) = 0. Indeed, the last equation is now finite-dimensional, since the

range of (I − Q) is finite-dimensional. This equation is now to be solved with respect to x1,

which is finite-dimensional, and parameters λ.
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Chapter 3

Formal traveling wave solutions

In this section, we study the limiting systems (1.5), (1.6) to obtain formal solutions when

ε = 0.

3.1 Regular slow-fast-slow type of solution

(A): First, we consider the slow flows on the y-z plane by analyzing (1.5). We only consider

formal solutions in between S± because of the symmetry of h(u). We can see that the first two

equations of (1.5) v = 0, u = h−1(y) give us the three slow manifolds:

S− = {w : v = 0, y < ym, u = h−1
− (y)}

S0 = {w : v = 0,−ym < y < ym, u = h−1
0 (y)}

S+ = {w : v = 0, y > −ym, u = h−1
+ (y)}

See Figure 1.2, which consists of the equilibrium points of the fast system (1.4). On these

manifolds, we have the equations for the y-z variables:

−sẏ = h−1(y)− y + z

−sż = −βy
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Let h−1(y)− y = ky + c, k(y) = 1/h′(u)− 1 = 1/h′(h−1(y))− 1, where c is a constant, so that

we have:

ẏ = −(ky + c+ z)/s

ż = βy/s

with equilibria PY± = (0,∓c). The characteristic polynomial for y is:

s2r2 + ksr + β = 0.

Notice that the product of two roots of the characteristic polynomial is β/s2 > 0, h′(u) > 0 on

S±. Therefore, k > 0 if 0 < h′(u) < 1 and −1 < k < 0 if h′(u) > 1. Thus we have:

Case 1: P± are stable spirals if 4β > k2, sk > 0.

Case 2: P± are unstable spirals if 4β > k2, sk < 0.

Case 3: P± are stable nodes if 4β < k2, sk > 0.

Case 4: P± are unstable nodes if 4β < k2, sk < 0.

(B). We construct a fast heteroclinic solution in between PU± = (±c, 0) when ε = 0.

Consider the fast flow on the u-v plane in (1.6), where we have constants y, z and a second

order differential equation of u:

Du′′ + su′ − h(u) + y = 0

with the characteristic equation Dr2 + sr− h′(u) = 0, whose determinant ∆ = s2 + 4Dh′(u) is

positive on S±. So we have two eigenvalues with opposite signs, i.e. we have fast heteroclinic

solution from saddle to saddle.

Note that h′(u) only has influence on the behaviors of equilibria on slow flows(spirals/nodes)

because the coefficient k depends on y. But h′(u) has no influence on the behaviors of equilibria

for the fast heteroclinic solution since we always have ∆ > 0 on S±.

According to what we have above, we obtain the Table (3.1) that describes the behavior of the

flows when β is large enough.

Based on the analysis of the limiting slow and fast system, we look for a formal solution when

ε = 0 in the form of ”Slow
Fast−→ Slow” type. Here −→ means the heteroclinic solution on fast

flow. Considering there are cases where a slow flow can’t go from a stable spiral to an unstable

spiral, we have the following possibilities:
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Table 3.1: Summary of behavior of equilibria in β large case

S− S0 S+

Fast Flow
s > 0 saddle stable spiral saddle
s < 0 saddle unstable spiral saddle

Slow Flow
s > 0 stable spiral unstable spiral stable spiral
s < 0 unstable spiral stable spiral unstable spiral

β large case(4β > k2)

1) s > 0

case A: P−(stable spiral)
saddle to saddle−→ P+ (stable spiral).

There exists a unique traveling wave solution if 4β > k2, k > 0. See Figure 3.1.

S−

+
PP_

S+S0

Figure 3.1: Traveling wave solution with positive wave speed and stable spirals on S±

case B: P+ (stable spiral)
saddle to saddle−→ P− (stable spiral)

There exists a unique traveling wave solution if 4β > k2, k > 0. See Figure 3.2.

2) s < 0
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S+

P+

P−

S− S0

Figure 3.2: Traveling wave solution that starts from and hits stable spirals on S± with positive
wave speed

Table 3.2: Summary of behavior of equilibria in β small case

S− S0 S+

Fast Flow
s > 0 saddle stable spiral saddle
s < 0 saddle unstable spiral saddle

Slow Flow
s > 0 stable node unstable node stable node
s < 0 unstable node stable node unstable node

case A: P− (unstable spiral)
saddle to saddle−→ P+ (unstable spiral)

There exists a unique traveling wave solution if 4β > k2, k > 0. See Figure 3.3.

case B: P+ (unstable spiral)
saddle to saddle−→ P− (unstable spiral)

There exists a unique traveling wave solution if 4β > k2, k > 0. See Figure 3.4.

β small case(4β > k2)

Based on the above Table (3.2), we have the following posiibilities:

1) s > 0

case A: P−(stable node)
saddle to saddle−→ P+ (stable node).
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S+

P+

Pm

P−

S− S0

Figure 3.3: Traveling wave solution that starts from and hits unstable spirals on S± with
negative wave speed

There exists a unique traveling wave solution if 4β < k2, k > 0. See Figure 3.5.

case B: P+ (stable node)
saddle to saddle−→ P− (stable node)

There exists a unique traveling wave solution if 4β < k2, k > 0. See Figure 3.6.

2) s < 0

case A: P− (unstable node)
saddle to saddle−→ P+ (unstable node)

There exists a unique traveling wave solution if 4β < k2, k > 0. See Figure 3.7.

case B: P+ (unstable node)
saddle to saddle−→ P− (unstable node)

There exists a unique traveling wave solution if 4β < k2, k > 0. See Figure 3.8.
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P+

P_

S+S0S−

Pm

Figure 3.4: Traveling wave solution with negative wave speed and unstable spirals on S±

3.2 Periodic solution in a degenerated PPC model as the gen-

eralization of the FitzHugh-Nagumo equation

Consider the slow flow (1.3) with the change of variable z = β = 0, U = −Du, V = −v, Y = y,

so that we have

U ′ = V

V ′ = −sV/D − h(−U
D

) + Y

Y ′ = −ε(U − Y )/s

Let θ = −s/D, then we have

U ′ = V

V ′ = θV −H(U) + Y

θY ′ = ε1(U − Y )

which is in the form of the FitzHugh-Nagumo equation with wave speed θ, γ = 1, ε1 = ε/D.

Now we can treat the FitzHugh-Nagumo equation as the degenerated case of the PPC model,
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P−

S+S0S−

P+

Figure 3.5: Traveling wave solution with positive wave speed and stable nodes on S±

so that we have a periodic solution when z = β = 0. See [25].

Notice that if y decreases/increases on both manifolds S± in between the two foldlines y =

ym, y = yM , there will be no solution since we need opposite orientation in order to form a loop.

Consider the case when s > 0, β = 0, z = z0 is a constant(not necessarily zero).

(A): On S−, we need ẏ < 0, that is u − h−(u) + z0 > 0, while on S+, we need ẏ > 0, that

is z0 < h+(u) − u = g+(u). On S+, we only consider c/
√

3 < u < 2c/
√

3 in between the two

foldlines, also g′+(u) < 0 when c/
√

3 < u <
√
c2 + 1/m/

√
3. Therefore, we have:

z0 < h+(u)− u = g+(u) < g(2c/
√

3) = 2
√

3c3m/9− 2c/
√

3

Similarly, we have z0 > −g(2c/
√

3) on S−. There is no intersection for z0 because g(2c/
√

3) <

0.

(B): On S−, we need ẏ > 0, that is u − h−(u) + z0 < 0, while on S+ we need ẏ < 0, that is

z0 > h+(u) − u = g+(u). On S+, we only consider c/
√

3 < u < 2c/
√

3 in between the two

foldlines, also g′+(u) < 0 when c/
√

3 < u <
√
c2 + 1/m/

√
3. Therefore, we have:

z0 > h+(u)− u = g+(u) > g(c/
√

3) = −2
√

3c3m/9− c/
√

3

Similarly, we have z0 < −g(c/
√

3) on S−, the intersection gives us the region for z0 in which
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S+

P−

P+

S− S0

Figure 3.6: Traveling wave solution with positive wave speed and stable nodes on S±

there are periodic solutions:

g(c/
√

3) < z0 < −g(c/
√

3)

See Figure 3.9.

3.3 A pair of formal heteroclinic solutions

According to the regular cases in section 3.1, we have by symmetry that if s < 0 there is a pair of

formal heteroclinic solutions, which go back and forth from S− to S+ with both equilibria, those

equilibria are unstable spirals on slow manifolds. See Figure 3.10. For s > 0, both equilibria are

stable spirals. We have a pair of formal heteroclinic solutions, we omit the graph here.

3.4 Formal Periodic Solution

β large case

The two equilibria on the slow manifolds are stable/unstable spirals. The slow flows take only

part of the spiral on S± and are connected by the fast heteroclinic flows in between. So we have

a periodic solution that consists of two pieces of fast flows and two pieces of slow flows. See

Figure 3.11.
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P−

P+

S− S0 S+

Figure 3.7: Traveling wave solution with negative wave speed and unstable nodes on S±

β small case

We consider the case where two equilibria are stable nodes on S± for sk > 0. From Figure 3.12,

we can see that it is possible that two solutions from different stable nodes intersect and form

a closed loop (not unique) in their overlapped region within the largest loop R, as shown in

Figure 3.13. If sk < 0, we have a similar case when we have unstable nodes on S±. The largest

loop is the one that contains both equilibria points, we can figure out the detailed solution

curves with P± as initial points.
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Figure 3.8: Traveling wave solution with negative wave speed and unstable nodes on S±

Figure 3.9: Region bounded by y = ym and y = yM in which there exists periodic solution for
β = 0
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P_

S+S0S−

P+

Figure 3.10: A formal pair of heteroclinic solutions

P+

S+S0S−

P−

Figure 3.11: Formal periodic solution when ε = 0
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S+

B

A

y

z

P−

P+

S−

Figure 3.12: Periodic solution projected on y-z plane as two pieces of part of the stable nodes

S+

R

y

z

P−

P+

S−

Figure 3.13: Largest region for periodic solution projected on y-z plane as part of the stable
nodes
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Chapter 4

Construction of the approximated

solution for periodic solution

In this chapter we construct the approximated solution based on the solution to the 0th order

asymptotic expansions when ε = 0.

4.1 Formal systems of the asymptotic expansions in the outer

and inner layers

Consider the asymptotic expansions of w = (u, v, y, z) in the inner and outer layers with different

time scales:

win(τ, ε) =
∞∑
j=0

εjwinj (τ)

wout(t, ε) =
∞∑
j=0

εjwoutj (t)

Let Ii = {t|t ∈ [αi, βi]}, I2l+1 are singular layers, I2l are regular layers, l ∈ Z. Plug the above

expansion into the fast and slow systems and compare the coefficient of powers of ε, we can

have a system of algebraic or differential equations as follows:

In the outer layers where w(t) = (u, v, y, z), we have the εj , j ≥ 0 the order expansions as:
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ε0


0 = vout0

0 = svout0 /D − yout0 + h(uout0 )

−sẏout0 = uout0 − yout0 + zout0

−sżout0 = −βyout0

(4.1)

ε1


u̇out0 = vout1 /D

v̇out0 = svout1 /D + h′(uout0 )uout1 − yout1

−sẏout1 = uout1 − yout1 + zout1

−sżout1 = −βyout1

(4.2)

εj


u̇outj−1 = voutj /D

v̇outj−1 = −svoutj /D + h′(uout0 )uoutj − youtj + hj

−sẏoutj = uoutj − youtj + zoutj

−sżoutj = −βyoutj

(4.3)

In the inner layer where w(τ) = (u, v, y, z), we have the εj , j ≥ 0 the order expansions as:

ε0


u′0 = v0/D

v′0 = −sv0/D − y0 + h(u0)

y′0 = 0

z′0 = 0

(4.4)

ε1



(
u′1
v′1

)
=

(
0 1/D

h(u0) −s/D

)(
u1

v1

)
+

(
0

−y1

)
−sy′1 = u0 − y0 + z0

−sz′1 = −βy0

(4.5)
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εj



(
u′j
v′j

)
=

(
0 1/D

h′(u0) hj

)(
uj

vj

)
+

(
0

hj − yj

)
−sy′j = uj−1 − yj−1 + zj−1

−sz′j = −βyj−1

(4.6)

where hj , j > 1 is a polynomial of lower order terms.

4.2 Asymptotic matching conditions

The asymptotic expansion needs a condition to make sure that the inner expansion and outer

expansion are conformable with each other, which reduces to the matching condition as fol-

lows:

For smooth outer expansion, wout(t, ε) =
∑∞

j=0 ε
jwoutj (t), we have the inner expansion of the

outer solution after substituting t = ετ :

w̃out(t, ε) = wout(ετ, ε) =
∞∑
j=0

εjw̃outj (τ)

where the w̃outj (τ) is computable from the Taylor expansion of wout(t).

Similarly, we do the expansion in ε for smooth function win(τ, ε) in the inner layer:

win(τ, ε) =
∞∑
j=0

εjwinj (τ).

Next, we have our matching conditions:

lim
τ→±∞

winj (τ)− w̃outj (τ) = 0. (4.7)

Here ’out’ stands for ’R’ if τ → ∞, if the outer solution is to the right of the inner solution,

i.e. R = in + 1; ’out’ stands for ’L’ if τ → −∞, if the outer solution is to the left of the inner

solution, i.e. L = in− 1.
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4.2.1 Formal expansion of ε0th order

When ε = 0, we solve for the periodic solution w = (U, Y ) = ((u, v), (y, z)) for (1.5), (1.6).

In singular/inner layer, w0(τ) = (U0(τ), Y 0(ετ)), where τ ∈ [−∞,∞], i = 2l + 1

In regular/outer layer, w0(t) = (U0(t/ε), Y 0(t)), where t ∈ [αi, βi] = [al, bl], i = 2l.

(1) Below we provide a Lemma that guarantees the existence of fast heteroclinic solutions

U i, i = 1, 3. Plug the constant y,z values into the first two equations of (1.6), we have a system

for the fast heteroclinic flow:

u′0 = v0/D

v′0 = −sv0/D − ȳ0 + h(u0) (4.8)

which can be rewritten as the second order ODE:

Du′′0 = v′0 = −su′0 − ȳ0 + h(u0) (4.9)

with characteristic equation:

Dr2 + sr − h′(u) = 0

Multiply the above equation by u′0 and integrate from −∞ to ∞, we have:

ȳ0(u0(∞)− u0(−∞)) = −[

∫ ∞
−∞

(u′0)2dτ ]s+

∫ u0(∞)

u0(−∞)
h(u0)du0 (4.10)

For the heteroclinic solution A connecting (−c, 0) to (c, 0), (4.10) gives us:

2cȳA0 = −[

∫ ∞
−∞

(u′0)2dτ ]s+

∫ c

−c
h(u0)du0

Similarly, for the heteroclinic solution B connecting (c, 0) to (−c, 0), we have:

−2cȳB0 = −[

∫ ∞
−∞

(u′0)2dτ ]s+

∫ −c
c

h(u0)du0

In order to maintain the same s for the two heteroclinic solutions A and B, we need:

ȳA0 + ȳB0 = [

∫ c

−c
h(u0)du0]/c (4.11)

In particular, when h(u) has symmetry in the form of
∫ c
−c h(u0)du0 = 0. Then we need ȳA0 +ȳB0 =

0 in order to maintain the same s for the two heteroclinic solutions.
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On the other hand, we recall that we only consider the region in between the two foldlines, i.e.

−ym ≤ ȳ0 ≤ ym. When h(u) has symmetry, then we have

Lemma 4.2.1. As y0 → ym or y0 → −ym, the wave speed s∗(y0) monotonically approaches

−sm or sm. Moreover, sm is the minimum wave speed for the existence of a connection from

the turning point of S to the saddle point on S+, with the same parameter y0 = −ym.

Proof. The result was proved in [3].

Lemma 4.2.2. For each y0 ∈ (−ym, ym), there is a s0 = s∗(y0) such that system (4.8) has

a unique heteroclinic solution A (û, v̂) connecting (u−0 (y), 0) to (u+
0 (y), 0) for y = y−0 (s), and∫ u+0 (y−0 (0))

u−0 (y−0 (0))
[h(u)−y−0 (0)] = 0. See figure 4.1. Also system (4.8) has a unique heteroclinic solution

B connecting (u+
0 (y), 0) to (u−0 (y), 0) for y = y+

0 (s).

Figure 4.1: Heteroclinic solution A connecting P− to P+

Proof. When s = 0, integrate the Hamiltonian system (4.9) so that
∫ u0(∞)
u0(−∞)[h(u0)− ȳ0] = 0 and

we can solve for a unique heteroclinic solution (û, v̂) connecting (u0(−∞), 0) and (u0(∞), 0).

Similarly, there is a unique heteroclinic solution B connecting (u0(∞), 0) and (u0(−∞), 0). We

can verify that (û′, v̂′) is a solution of the linear variational system of the u-v equation of (1.6):

Φ′1 = Φ2/D (4.12)

Φ′2 = h′(û)Φ1 − sΦ2/D
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We can show that (s, y) has to satisfy a bifurcation function g(s, y) = 0, whose solution near

(ŝ, ŷ) corresponds to a unique heteroclinic solution near (û, v̂). Moreover, we can compute that:

∂g(s, y)

∂s
=

∫ ∞
−∞

[v̂(τ)]Ψ2(τ)dτ (4.13)

where (Ψ1,Ψ2) is the unique bounded solution to the adjoint system of (4.12). Also we can find

out:
∂g(s, y)

∂s
=

∫ ∞
−∞

[v̂(τ)]2e−sτdτ > 0 (4.14)

Therefore, g(s, y) = 0 has a solution y = y0(s) locally, with ∂y0
∂s < 0 on heteroclinic solution A,

and ∂y0
∂s < 0 on heteroclinic solution B when s > 0, we can complete the proof of the Lemma by

the continuous dependence of homotopy continuation, starting from the case when s = 0.

Remark: we can manipulate the generic nonlinear cubic function y = h(u) with three distinct

real roots so that it is in the form of y = au3 + bu by shifting u to left/right. Also we can

shift the constant y0 so that the cubic function becomes symmetric(odd). For simplicity, we set

h(u) = mu(u+ c)(u− c) which is symmetric with respect to the origin.

Remark: the symmetry of h(u) in (4.10) gives us the fact that in order for the wave speed s for

the two heteroclinic solutions A and B to be the same, we need yA0 = −yB0 .

(2) We solve for the two slow flows on S±, which become a closed loop if projected on the

y-z plane. In the outer layers, the first two equations of (1.5) give us two algebraic equations

v = 0, y = h(u). We solve for them and plug into the other two equations and obtain:

−sẏi0 = h−1(yi0)− yi0 + zi0

−sżi0 = −βyi0

which can be rewritten as:

Ẏ i
0 = A0Y

i
0 + f i0 (4.15)

where i = 2, 4.

For local solution in a small region near the z axis where |y| < δ, y = h(u) is approximately

linear as y = h′(u±)(u − u±). Then we can solve for u in terms of y linearly, so that (4.15)

becomes:

ẏ = −(ky + u± + z)/s

ż = βy/s

29



where k = 1/h′(u±)− 1 is a constant. Therefore, according to the eigenvalue analysis as well as

the symmetry, we have a closed loop formed by two pieces of the stable(unstable) spirals near

z-axis. For the global solution in a larger region, in order to obtain a closed loop of an increasing

and a decreasing curve on S± respectively, we want to consider only the region in between the

two foldlines y = ym and y = yM in the y-z plane, so that there exist fast heteroclinic solutions

to connect the slow flows in between S±.

We plot the vector field of (4.15) in Figure 4.2 to analyze the slow flow on S±. In this figure,

Figure 4.2: Vector field of the slow system on S±

ẏ = 0 on the pink cubic null curve z = y − u = h(u)− u, which contains all the turning points

of each spiraling orbit on S±. Also notice that ż = 0 on the blue z-axis. The two null curves

divide the entire plane into several regions in which the vector field is displayed by the green

arrows.

Next we want to locate the one piece of slow flows on the z-y plane given the other piece. See

Figure 4.3. We define the ascending curves Ya(t) = (za(t), ya(t)),−T a1 < t < T a2 , T a1 , T
a
2 > 0

Recall the condition ȳA0 + ȳB0 = 0 in order to maintain the same s for the two heteroclinic

solutions. We define the descending curves Yd(t) that are symmetric to Ya(t) with respect to

the origin.
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Figure 4.3: For the nonlinearity h(u) and β = 100, several closed loops that consist of Ya
(red) on S+ and Yd(blue) on S− are depicted. The largest loop touches the line y = ±ym. The
smallest loop has junction points on y = 0.

Theorem 4.2.3. For different y0 values, we define the descending curve Yd(t) that is symmetric

to Ya(t) with respect to the origin, they give us a closed loop on the z-y plane, where the largest

loop touches the line y = ±ym. The smallest loop has junction points on y = 0.

Now that we have described how to obtain the existence of periodic solution when ε = 0, we

want to obtain the equations the periodic solution has to satisfy when ε = 0. Assume that (1.5)

has exponential dichotomy on I2, I4. Define the operator Pi that maps the starting point to the

ending point in each interval according to the Y solution of (1.5), i.e.

Y i
0 (βi) = Pi(Y

i
0 (αi)), i = 1, 2, 3, 4

The last two equations of (1.6) implies that Y i
0 (τ), i = 1, 3 must be constants:

Y i
0 (τ) = Y i

0 (ai+1) = Y i
0 (ai), i = 1, 3 (4.16)

Y0(ai+1) = Pi(Y0(ai)) = Φi
0(ai+1, ai)Y0(ai) +

∫ ai+1

ai

Φi
0(ai+1, s)f

i(s)ds, i = 2, 4

Also define the Poincare mapping P = P4P3P2P1, so that

P (Y0(a1)) = Φ4
0(a1, a4)Φ2

0(a3, a2)Y0(a1) + Φ4
0(a1, a4)

∫ a3

a2

Φ2
0(a3, s)f

2(s)ds

+

∫ a1

a4

Φ4
0(a1, s)f

4(s)ds
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According to the assumption (H1): 1 is not an eigenvalue of the map Φ4(a1, a4)Φ2(a3, a2), so

we can solve for the initial value Y0(a1) uniquely as a fixed point for P, i.e. P (Y0(a1)) = Y0(a1).

Now we have the Y i solution, we plug them back into the two algebraic equations to solve for

U i, i = 2, 4 solutions. Now we have the solution for (4.1), (4.4) as the 0th order expansion. See

Figure 3.11.

Remark: when h(u) is not symmetric, we need (4.11) for the restriction for the closed periodic

loop on the z-y plane, which will be investigated in the future.

Remark: the 0th order expansion is actually enough for the existence of an exact solution, but

we can go further to higher order expansions for a more accurate approximation solution, which

is not discussed here.

4.3 Approximations, jump and residual errors

We truncate the formal series:

wout(t, ε) =
∞∑
0

εjwoutj (t, ε), win(τ, ε) =
∞∑
0

εjwinj (τ)

to form an approximation solution when ε > 0.

We divide the entire domain as the following to investigate the periodic solution wj when ε gets

sufficiently small. Let Ii = {t|t ∈ [αi, βi]}, I2l+1 are singular layers, I2l are regular layers. For

any m ≥ 0, 0 < λ < 1(in this paper, we have m = 0). We define the approximation when ε > 0

of order εm to be:

wap =

{ ∑m
j=0 ε

jwoutj (t) t ∈ [αi, βi] = [al + ελ, bl − ελ], i = 2l∑m
j=0 ε

jwinj (τ) τ ∈ [αi, βi] = [−ελ−1, ελ−1], i = 2l + 1

4.3.1 Jump errors

Estimates for the jump error Jwi = wap(αi+1, ε) − wap(βi, ε) = O(ελ) can be obtained by

comparing outer and inner approximations with the inner expansion of outer layers.
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4.3.2 Residual errors

In the outer layers, the residual errors REi(t), i = 2, 4 are defined by:

REi(t) =


εu̇ap(t)− vap(t)/D

εv̇ap(t)− svap(t)/D + yap(t)− h(uap(t))

−sẏap(t)− uap(t) + yap(t)− zap(t)
−sż(t) + βyap(t)



In the inner layers, the residual errors REi(t), i = 1, 3 are defined by:

REi(τ) =


u′ap(τ)− vap(τ)/D

v′ap(τ)− svap(t)/D + yap(t)− h(uap(t))

sy′ap(τ)− ε[−uap(τ) + yap(τ)− zap(τ)]

sz′ap(τ) + εβyap(τ)


Lemma 4.3.1. The residual errors, uniformly with respect to t or τ , satisfy the following

RE2,4(t) =


O(ε)

O(ε)

0

0

 , RE1,3(τ) =


O(ελ)

O(ελ)

O(ε)

O(ε)


Details of the calculation is omitted here.
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Chapter 5

Existence of Periodic Solution

In this chapter we prove the existence of periodic solution near the approximated solution

that consists of two pieces of slow flows as part of the spirals connected by two pieces of fast

flows.

5.1 Periodic solution for linearized variational system

Now we construct the linear variational system for the correction function w = (U, Y ), where

we take different time scales in different layers, as defined in the previous chapter.

1. When ε = 0, we have the pair of formal heteroclinic solutions. See Figure 3.11

In singular layer, w0(τ) = (U0(τ), Y 0(ετ)), where τ ∈ [−∞,∞], i = 2l + 1

In regular layer, w0(t) = (U0(t/ε), Y 0(t)), where t ∈ [αi, βi] = [al, bl], i = 2l.

2. When ε > 0

(i) For wap, N = ελ−1.

In singular layer, wap(τ) = (Uap(τ), Y ap(ετ)), where τ ∈ [αi, βi] = [−ελ−1, ελ−1],

i = 2l + 1, 0 < λ < 1

In regular layer, wap(t) = (Uap(t/ε), Y ap(t)), where t ∈ [αi, βi] = [al + ελ, bl − ελ],

i = 2l, 0 < λ < 1

(ii) For w = wex − wap:
w(τ) = (U(τ), Y (ετ)), τ ∈ [ᾱi, β̄i] = [αi, βi] = [−ελ−1, ελ−1], i = 2l + 1,

w(t) = (U(t/ε), Y (t)), t ∈ [ᾱi, β̄i] = [al + ελ + δal, bl − ελ + δbl], i = 2l, where δal, δbl are real

polynomials in ε.

34



5.1.1 Jump conditions for the linearized variational system

Define jump conditions at the junction of two adjacent intervals for the approximation solution

to be:

JU1 = Uap2 (α2/ε)− Uap1 (β1), JU4 = Uap1 (α1)− Uap4 (β4/ε)

JU3 = Uap4 (α4/ε)− Uap3 (β3), JU2 = Uap3 (α3)− Uap2 (β2/ε) (5.1)

JY 1 = Y ap
2 (α2)− Y ap

1 (εβ1), JY 4 = Y ap
1 (εα1)− Y ap

4 (β4)

JY 3 = Y ap
4 (α4)− Y ap

3 (εβ3), JY 2 = Y ap
3 (εα3)− Y ap

2 (β2) (5.2)

See Figure 5.1.

Figure 5.1: Jump error for approximation solutions

Also define the jump conditions for the approximation solution in between two slow flows

as:

JY1 = Y ap
2 (α2)− Y ap

4 (β4), JY2 = Y ap
4 (α4)− Y ap

2 (β2) (5.3)
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where

JY1 = JY 1 + JY 4 + Y ap
1 (εα1)− Y ap

1 (εβ1)

JY2 = JY 2 + JY 3 + Y ap
3 (εβ3)− Y ap

3 (εα3)

(5.4)

Now we look for the jump conditions at the junction of two adjacent intervals for the correction

solution U, Y respectively:

On Ī3, we look for the exact solution U ex3 = Uap3 + U3(τ) such that:

U ex3 (β̄3) = U ex4 (ᾱ4/ε), U
ex
3 (ᾱ3) = U ex2 (β̄2/ε)

Define:

∆U4(α4/ε) = U ex4 (ᾱ4/ε)− Uap4 (α4/ε),∆U2(β2/ε) = U ex2 (β̄4/ε)− Uap2 (β2/ε)

∆U3(β3) = U ex3 (β̄3)− Uap3 (β3),∆U3(α3) = U ex3 (ᾱ3)− Uap3 (α3)

Thus we have the jump conditions for correction function U as:

∆U4(α4/ε)−∆U3(β3) = −JU3,∆U3(α3)−∆U2(β2/ε) = −JU2

where we have:

∆U4(α4/ε) = [U ex4 (ᾱ4/ε)− Uap4 (ᾱ4/ε)] + [Uap4 (ᾱ4/ε)− Uap4 (α4/ε)]

= U4(ᾱ4/ε) + δU4(α4/ε)

Similarly,

∆U2(β2/ε) = [U ex2 (β̄2/ε)− Uap2 (β̄2/ε)] + [Uap2 (β̄2/ε)− Uap2 (β2/ε)]

= U2(β̄2/ε) + δU2(β2/ε)

∆U3(β3) = U ex3 (β3)− Uap3 (β3) = U3(β3)
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∆U3(α3) = U ex3 (α3)− Uap3 (α3) = U3(α3)

Therefore we have the jump conditions:

U4(ᾱ4/ε)− U3(β3) = −JU3 − δU4(α4/ε) = −J̄U3

U3(α3)− U2(β̄2/ε) = −JU2 + δU2(β2/ε) = −J̄U2 (5.5)

Also on Ī1, we look for the exact solution U ex1 = Uap1 + U1(τ) such that:

U ex1 (β̄1) = U ex2 (ᾱ2/ε), U
ex
1 (ᾱ1) = U ex4 (β̄4/ε)

Define

∆U2(α2/ε) = U ex2 (ᾱ2/ε)− Uap2 (α2/ε),∆U4(β4/ε) = U ex4 (β̄4/ε)− Uap4 (β4/ε)

∆U1(β1) = U ex1 (β̄1)− Uap1 (β1),∆U1(α1) = U ex1 (ᾱ1)− Uap1 (α1)

Thus we have the jump conditions for correction function U as:

∆U2(α2/ε)−∆U1(β1) = −JU1,∆U1(α1)−∆U4(β4/ε) = −JU4

where we have:

∆U2(α2/ε) = [U ex2 (ᾱ2/ε)− Uap2 (ᾱ2/ε)] + [Uap2 (ᾱ2/ε)− Uap2 (α2/ε)]

= U2(ᾱ2/ε) + δU2(α2/ε)

Similarly,

∆U4(β4/ε) = [U ex4 (β̄4/ε)− Uap4 (β̄4/ε)] + [Uap4 (β̄4/ε)− Uap4 (β4/ε)]

= U4(β̄4/ε) + δU4(β4/ε)

∆U1(β1) = U ex1 (β1)− Uap1 (β1) = U1(β1)
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∆U1(α1) = U ex1 (α1)− Uap1 (α1) = U1(α1)

Therefore we have the jump conditions:

U2(ᾱ2/ε)− U1(β1) = −JU1 − δU2(α2/ε) = −J̄U1

U1(α1)− U4(β̄4/ε) = −JU4 + δU4(β4/ε) = −J̄U4 (5.6)

On Ī3, we look for the exact solution Y ex
3 = Y ap

3 + Y3(t) such that:

Y ex
3 (εβ̄3) = Y ex

4 (ᾱ4), Y ex
3 (εᾱ3) = Y ex

2 (β̄2)

Define:

)

ap
3Y

3

ex
Y

ap

2)(β
2

2Y
)( 2β

ex
2Y

Y4(α4)
ex

Y4

ap
α( 4

Figure 5.2: Jump condition for Y

∆Y4(α4) = Y ex
4 (ᾱ4)− Y ap

4 (α4),∆Y2(β2) = Y ex
2 (β̄4)− Uap2 (β2)

∆Y3(εβ3) = Y ex
3 (εβ̄3)− Y ap

3 (εβ3),∆Y3(εα3) = Y ex
3 (εᾱ3)− Y ap

3 (εα3)

Thus we have the jump conditions for correction function Y as:

∆Y4(α4)−∆Y3(εβ3) = −JY 3,∆Y3(εα3)−∆Y2(β2) = −JY 2 (5.7)

38



where we have:

∆Y4(α4) = [Y ex
4 (ᾱ4)− Y ap

4 (ᾱ4)] + [Y ap
4 (ᾱ4)− Y ap

4 (α4)]

= Y4(ᾱ4) + δY4(α4)

Similarly,

∆Y2(β2) = [Y ex
2 (β̄2)− Y ap

2 (β̄2)] + [Y ap
2 (β̄2)− Y ap

2 (β2)]

= Y2(β̄2) + δY2(β2)

∆Y3(εβ3) = Y ex
3 (εβ3)− Y ap

3 (εβ3) = Y3(εβ3)

∆Y3(εα3) = Y ex
3 (εα3)− Y ap

3 (εα3) = Y3(εα3)

Therefore we have:

Y4(ᾱ4)− Y3(εβ3) = −JY 3 − δY4(α4) = −J̄Y 3

Y3(εα3)− Y2(β̄2) = −JY 2 + δY2(β2) = −J̄Y 2 (5.8)

Also on Ī1, we look for the exact solution Y ex
1 = Y ap

1 + Y1(t), such that:

Y ex
1 (εβ̄1) = Y ex

2 (ᾱ2), Y ex
1 (εᾱ1) = Y ex

4 (β̄4)

Define

∆Y2(α2) = Y ex
2 (ᾱ2)− Y ap

2 (α2),∆Y4(β4) = Y ex
4 (β̄4)− Y ap

4 (β4)

∆Y1(εβ1) = Y ex
1 (εβ̄1)− Y ap

1 (εβ1),∆Y1(εα1) = Y ex
1 (εᾱ1)− Y ap

1 (εα1)

Thus we have the jump condition for correction function Y as:

∆Y2(α2)−∆Y1(εβ1) = −JY 1,∆Y1(εα1)−∆Y4(β4) = −JY 4 (5.9)
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where we have:

∆Y2(α2) = [Y ex
2 (ᾱ2)− Y ap

2 (ᾱ2)] + [Y ap
2 (ᾱ2)− Y ap

2 (α2)]

= Y2(ᾱ2) + δY2(α2)

(5.10)

Similarly,

∆Y4(β4) = [Y ex
4 (β̄4)− Y ap

4 (β̄4)] + [Y ap
4 (β̄4)− Y ap

4 (β4)]

= Y4(β̄4) + δY4(β4)

∆Y1(εβ1) = Y ex
1 (εβ1)− Y ap

1 (εβ1) = Y1(εβ1)

∆Y1(εα1) = Y ex
1 (εα1)− Y ap

1 (εα1) = Y1(εα1)

Therefore we have:

Y2(ᾱ2)− Y1(εβ1) = −JY 1 − δY2(α2) = −J̄Y 1

Y1(εα1)− Y4(β̄4) = −JY 4 + δY4(β4) = −J̄Y 4 (5.11)

δ(Y2(β2/ε)) = Y ap
2 (β̄2/ε)− Y ap

2 (β2/ε) = Y ap′

2 (β2/ε)δβ2/ε+O(|δβ2/ε|2)

δ(Y4(β4/ε)) = Y ap
4 (β̄4/ε)− Y ap

4 (β4/ε) = Y ap′

4 (β4/ε)δβ4/ε+O(|δβ4/ε|2)

δ(Y2(α2/ε)) = Y ap
2 (ᾱ2/ε)− Y ap

2 (α2/ε) = Y ap′

2 (α2/ε)δα2/ε+O(|δα2/ε|2)

δ(Y4(α4/ε)) = Y ap
4 (ᾱ4/ε)− Y ap

4 (α4/ε) = Y ap′

4 (α4/ε)δα4/ε+O(|δα4/ε|2) (5.12)

5.1.2 Linear variational system for the correction function

We want to construct the linear variational system for the correction function w = (U, Y ) such

that wex = wap + w, according to the definition of residual error:

p(τ) = Uap
′ − F (Uap, Y ap, s)

q(t) = Ẏ ap −G(Uap, Y ap, s)
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In order to best describe the behavior of the fast/slow orbits, we use different time scales for U

and Y. We obtain the system of equations that the correction functions satisfy:

U ′(τ) = F (U ex, Y ex, s)− [F (Uap, Y ap, s) + p(τ)]

Ẏ (t) = G(U ex, Y ex, s)− [G(Uap, Y ap, s) + q(t)] (5.13)

which can be rewritten as:

(i) For i = 2l,

U ′i(τ) = FUUi + FY Yi − pi(τ) + (F ex − F ap − FUUi − FY Yi)

= FUUi + FY Yi + P̄i = FUVi + P̄i

Ẏi(t) = GUUi +GY Yi − qi(t) + (Gex −Gap −GUUi −GY Yi)

= GUUi +GY Yi + Q̄i (5.14)

After a change of variables, Vi(τ) = Ui(τ) +F−1
U (ετ)FY (ετ)Yi(ετ), i = 1, 2, 3, 4, where FU (ετ) =

FU (Uap(ετ), Yap(ετ)), we further reduce the (5.14) to be in terms of (Vi, Yi):

V ′i (τ) = FU (ετ)Vi(τ) + ε
d

dt
[F−1
U FY Y ] + P̄i = FU (ετ)Vi(τ) + ¯̄Pi

Ẏi(t) = (GY −GUF−1
U FY )Yi +GUVi + Q̄i (5.15)

where

Q̄i = −qi(t) + (Gex −Gap −GUU −GY Y )

= G(U ex, Y ex, s)−G(Uap, Y ap, s)−DwG(Uap, Y ap, s)w(t)

+ [DwG(Uap, Y ap, s, ε)−DwG(Uap, Y ap, s, ε = 0)]w(t)− qi(t)

= O(|wi|2 + ε|wi|+ |qi(t)|)
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P̄i = −pi(τ) + (F ex − F ap − FUU − FY Y )

= [U ′ + (F−1
U (ετ)FY (ετ)Y (τ))′]− FU (U(τ) + F−1

U (ετ)FY (ετ)Y (τ))

= U ′ + ˙(F−1
U (ετ)FY (ετ))Y + (F−1

U (ετ)FY (ετ))Ẏ − (FUU + FY Y )

= [F (U ex, Y ex, s)− F (Uap, Y ap, s)− p(τ)] + (F−1
U (ετ)FY (ετ))′Y

+ (F−1
U (ετ)FY (ετ))ε[G(U ex, Y ex, s)−G(Uap, Y ap, s)− q(τ)]

−DwF (Uap, Y ap, s) + [DwF (U ex, Y ex, s, ε)−DwF (Uap, Y ap, s, ε = 0)]w

= O(|wi|2 + ε|wi|+ |εqi(t)|+ |pi|)

(5.16)

¯̄Pi = P̄i + ε
d

dt
[F−1
U FY Y ]

= P̄i + ε ˙(F−1
U (ετ)FY (ετ))Y + ε(F−1

U (ετ)FY (ετ))Ẏ

= P̄i + ε|w|+ εO(GUU +GY Y + Q̄i)

= P̄i + ε|w|+ εO(Q̄i)

= P̄i + εQ̄i = CP̄i

(ii) For i = 2l + 1

U ′i(τ) = FUUi + FY Yi + P̄ i

Ẏi(t) = Q̄i (5.17)

where

Q̄i = G(U ex, Y ex, s)−G(Uap, Y ap, s)− q(t) = O(|w|+ |q|) (5.18)

P̄ i = F (U ex, Y ex, s)− F (Uap, Y ap, s)− p(τ)−DwF (Uap, Y ap, s)w

+ [DwF (U ex, Y ex, s, ε)−DwF (Uap, Y ap, s, ε = 0)]w

= O(|w|2 + |p|+ ελ|w|) (5.19)

With the above construction, we introduce the Melnikov integral to solve for a generalized

solution.
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5.1.3 Introduction of the Melnikov integral for the generalized solution

Based on the approximated solution wiap when s = s0, we want to find a correction solution

to the linearized variational system. Notice the homogeneous part of (5.20) has exponential

dichotomy on [−N, 0], [0, N ] respectively, but not on [−N,N ] due to the non-transversal inter-

section on RP iu(0−) and RP is(0+) at τ = 0 for i = 1, 3. In fact, RP iu(0−) + RP is(0+) = R1.

We need to take care of the non-transversal intersection issue for the U = (u, v) equation by

introducing the Melnikov integral.

Define operator F : U → H(τ) with τ ∈ I1,3 = [−N,N ], N = ελ−1 and boundary value U(±N)

given.

H(τ) = F(U) = U ′(τ)−A(τ)U(τ), A(τ) = DUF (U iap, Y
i
ap) (5.20)

We have the following lemma for the existence of a generalized solution that allows a gap at

τ = 0:

Lemma 5.1.1. Assume that F is of codimension one, U̇ iap(τ), i = 1, 3 is the unique nonzero

bounded solution to the equation U i
′
(τ)−DUF

i(U iap, Y
i
ap, s = s0)U i(τ) = 0, and ψi is the unique

nonzero bounded solution to the adjoint equation of the previous homogeneous equation, then

F is Fredholm with index being 0. The range of F is of codimension one and the kernel of F
is one dimensional for each H i(τ). There exists a unique generalized solution U i for system

(5.20) such that U i(0) ⊥ KerF , i.e. U i(0) ⊥ U̇ iap(0) and U i has a gap at τ = 0 along the given

direction di:

U i(0+)− U i(0−) = gidi

Also we have estimate for gi, U i as:

|gi| ≤ C(|P is(−N)U i(−N)|e−αN + |P iu(N)U i(N)|e−αN + |H i|) (5.21)

|U i| ≤ C(|φi1|+ |φi2|+ |H i|) (5.22)

Proof. Here we introduce the Melnikov function.

Let Si(t, s) be the principal matrix solution of the homogeneous part of equation U i
′

= AU i+H i,

which has exponential dichotomies on (−N, 0], and [0, N), but no exponential dichotomy on

(−N,N) because:

RP iu(0−) +RP is(0+) = Rn−1

Let ψi(0) ⊥ RP iu(0−) +RP is(0+),M i = {x| < ψi(0), x >= 0}, dimM i = n− 1.
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We define di = ψi(0)/(||ψi(0)||2) ∈ X,φi1 = P is(−N)U i(−N), φi2 = P iu(N)U i(N) such that

< di, ψi(0) >= 1, span{di}
⊕
M i = Rn and we define the following solution:

U i(τ) = Si(τ,−N)P is(−N)U i(−N) +

∫ τ

−N
Si(τ, s)P is(s)H

i(s)ds

+ Si(τ, 0−)P iu(0−)U i(0−) +

∫ τ

0
Si(τ, s)P iu(s)H i(s)ds, τ < 0 (5.23)

U i(τ) = Si(τ,N)P iu(N)U i(N) +

∫ τ

N
Si(τ, s)P iu(s)H i(s)ds

+ Si(τ, 0+)P is(0+)U i(0+) +

∫ τ

0
Si(τ, s)P is(s)H

i(s)ds, τ > 0 (5.24)

We project them onto the stable and unstable spaces, and there are exponential dichotomies

on [−N, 0], [0, N ] respectively:

P is(0−)U i(0−) =

∫ 0−

−N
Si(0−, s)P is(s)H i(s)ds+ Si(0−,−N)P is(−N)U i(−N)

P iu(0+)U i(0+) =

∫ 0+

N
Si(0+, s)P iu(s)H i(s)ds+ Si(0+, N)P iu(N)U i(N)

define φi3 = P iu(0−)U i(0−), φi4 = P is(0+)U i(0+), ψi(s) = T ?(s, 0)ψi(0), where T ?(s, t) is the

adjoint of T (t, s). After subtracting φi3 and φi4 we have:

φi4 − φi3 = [I − P iu(0+)]U i(0+)− [I − P is(0−)]U i(0−)

= gi(Y,N)di + P is(0−)U i(0−)− P iu(0+)U i(0+)

= gi(y1(0), y3(0), N)di + [

∫ 0−

−N
Si(0−, s)P is(s)hi(s)ds+ Si(0−,−N)P is(−N)U i(−N)]

− [

∫ 0+

N
Si(0+, s)P iu(s)hi(s)ds+ Si(0+, N)P iu(N)U i(N)]

which leads to the estimate:

|gi|+ |φi3|+ |φi4| ≤ C(e−αN |φi1|+ e−αN |φi2|+ |H i|e−ηN ) (5.25)

Based on (5.23), (5.24), (5.25), we obtain the estimate (5.22) for U i. Since φi4−φi3 ∈ RP iu(0−)+
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RP is(0+), thus < ψi(0), φi4 − φi3 >= 0. As a result,

gi =< ψi,

∫ 0−

−N
Si(0−, s)P is(s)H i(s)ds > − < ψi,

∫ 0+

N
Si(0+, s)P iu(s)H i(s)ds >

+ < ψi, Si(0−,−N)P is(−N)U i(−N) > − < ψi, Si(0+, N)P iu(N)U i(N) >

=

∫ N

−N
< ψi(s), H i(s) > ds+ < ψi(−N), P is(−N)U i(−N) > − < ψi(N), P iu(N)U i(N) >

(5.26)

Estimate (5.21) follows from (5.26) and ψi(τ) ≤ e−α|τ |.

In order to analyze the dependence of the gap gi with respect to the y values, we consider the

derivative of (5.20): U i
′
yj = (DF )U iyj + H i

yj for i, j = 1, 3, with the principal matrix solution

T i(t, s) to its homogeneous part, given the prescribed boundary conditions at τ = ±N :

U iyj (0−) =

∫ 0

−N
T i(0, s)P is(s)H

i
yj (s)ds+ P iu(0−)U iyj (0−) + T i(0,−N)P is(0−)U iyj (−N)

U iyj (0+) =

∫ 0

N
T i(0, s)P iu(s)H i

yj (s)ds+ P is(0+)U iyj (0+) + T i(0, N)P iu(0+)U iyj (N)

U iyj (0−)− U iyj (0+) =

∫ 0

−N
T (0, s)P is(s)H

i
yj (s)ds+ P iu(0−)U iyj (0−) + T i(0,−N)P is(0−)U iyj (−N)

− [

∫ 0

N
T (0, s)P iu(s)H i

yj (s)ds+ P is(0+)U iyj (0+) + T i(0, N)P iu(0+)U iyj (N)]

where

P iu(0−)U iyj (0−) ∈ RPu(0−),

P is(0+)U iyj (0+) ∈ RPs(0+),

RPu(0−) +RPs(0+) = Rn−1

Let ψ(0) ⊥ RPu(0−) + RPs(0+), we have < ψ(0), P iu(0−)U iyj (0−) − P is(0+)U iyj (0+) >= 0.
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Moreover,

< ψ(0),

∫ 0

N
T (0, s)P iu(s)H i

yj (s)ds >

=

∫ 0

N
< ψ(0), T (0, s)P iu(s)H i

yj (s) > ds

=

∫ 0

N
< T ∗(s, 0)ψ(0), P iu(s)H i

yj (s) > ds

=

∫ 0

N
< ψ(s), P iu(s)H i

yj (s) > ds

Similarly < ψ(0),
∫ 0
−N T (0, s)P is(s)H

i
yj (s)ds >=

∫ 0
−N < ψ(s), P is(s)H

i
yj (s) > ds

Now define ψ(s) = T ?(s, 0)ψ(0) such that ψ′ = −(DF )Tψ, according to Lemma 5.1.1 we

have:

∂gi
∂yj

= < ψ(0), U iyj (0−)− U iyj (0+) >

=

∫ N

−N
< ψ(s), H i

yj (s) > ds+ < ψ(N), P iu(0+)U iyj (N) > + < ψ(−N), P is(0−)U iyj (−N) >

(5.27)

In our case,

A = FU (U, Y ) =

(
0 1/D

h′(U) −s/D

)
, Hi =

(
0

h(U)− h′(U)U i − yi

)

∂Hi

∂yj
= δij(0,−1)T , where δij is the Kronecker delta.

Let X(τ) be the fundamental matrix solution to U ′ = AU . If (ui, vi) is the heteroclinic fast

solution of (5.20), then the first column of X is (ui
′
, vi
′
)T . Let the other linear independent

column be (p, q)T . We claim that (X−1)T is the fundamental matrix solution to the adjoint

equation: Y ′ +ATY = 0.

In fact, XX−1 = I implies (X−1)TXT = I. Differentiate both sides with respect to τ , and we

have:

(X−1)T
′
XT + (X−1)TXT ′ = 0

i.e.

(X−1)T
′
XT + (X−1)TXTAT = 0

(X−1)T
′
XT +AT = 0
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(X−1)T
′
+AT (XT )−1 = 0

Since (XT )−1 = (X−1)T , we have (X−1)T is the fundamental matrix solution to the adjoint

equation. Simple computation shows that:

(XT )−1(τ) =
1

∆

(
q −vi

−p ui

)
(τ)

where ∆ = det(X)(τ) = ce−sτ/D. Without loss of generality, by normalizing (p, q)T , we can

have det(X(0)) = c = 1. Thus by taking the second column of (XT )−1(τ) so that we have ψ =

esτ/D(−vi′ , ui′)T , which is the solution to the adjoint equation: ψ′+ATψ = 0. Therefore,

∫ N

−N
< ψ,H i

yj > dτ = δij

∫ N

−N
−ψ2(τ)dτ = −δij

∫ ui(N)

ui(−N)
esτ/Ddui (5.28)

Notice that the integral is non-zero for i 6= j, and limN→∞ ψ(±N) → 0, according to (5.27),

(5.28), we have an almost diagonal matrix:

Gy = {∂g
i

∂yj
}i,j=1,3 ≈

(
G11 0

0 G33

)
(5.29)

∂gi
∂yj
≈

Gii 6= 0 if i = j

0 if i 6= j

Gy is almost a diagonal matrix. Therefore gi mainly depends on yi and does depend on yj(0)

weakly for i 6= j.

5.1.4 Eliminate the gaps of the generalized solution by manipulating the

Melnikov function

When ε = 0, we have a closed periodic solution. When ε > 0, we have a generalized solution

U i with gaps at τ = 0 according to Lemma 5.1.1. Notice that in the original u, v equations

in (1.3), U̇ depends on the y value on the right hand side. Only by changing the y value,

can we affect the gap g. Moreover, according to (1.4), Y ′ = εG(U, Y ), therefore we obtain

Y i(t) = Y i(0) +
∫ t

0 εG(U i, Y i)dt = Y i(0) + O(ε)|G|L1 , t ∈ Ii, i = 1, 3. We use (y1(0), y3(0)) as

the parameter y for gi. We define the equal gap surfaces Σi ∈ R2 as in the following Figure

5.3:

Σi(ki, ε = ε0) = {(yi, zi)|gi(y1(0), y3(0), ε0) = ki}
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On which the y value is fixed, and the gap is the constant ki given ε.

Figure 5.3: Equal gap surfaces Σi and the shifted equal gap surfaces Σ̄i

Recall (5.29), we know that gi mainly depends on yi(0), but does depend on yj(0) weakly for

j 6= i. We shift Σi along the direction ~n = (1, 0) by amount δyi (can be negative) in order to

make the fast solution U i transversal at τ = 0 and eliminate the gaps. Thus the new shifted

equal gap surfaces are defined as:

Σ̄i(ε = ε0) = {(yi, zi)|gi(ȳ1(0), ȳ3(0), ε0) = ki + ∆ki = 0}

We prove the following lemma 5.1.3 by using the main theorem in [20]:

Theorem 5.1.2. Suppose that F: D̄ → D̄ is a compact continuous map which is continuously

Frechet differentiable on D. Suppose that (a) for each x ∈ D, 1 is not an eigenvalue of F’(x),

and (b) for each x ∈ ∂D, x 6= F (x). Then F has a unique fixed point.

Definition 5.1.1. The winding number of a contour Γ about a point z0, denoted as IΓ(z0)

gives the number of times the Γ curve passes (counterclockwise) around a point z0. Counter-

clockwise winding is assigned a positive winding number, while clockwise winding is assigned

a negative winding number. The winding number is also called the index or degree, which can

be used in the following lemma.

Lemma 5.1.3. Let Ω1(δyi) = {(y1, y3) : |yi − yi(0)| ≤ δyi, i = 1, 3} be a rectangle in R2.

H : Ω1 → R2

H(y1, y3) = (g1(y1, y3), g3(y1, y3))

is continuous with gi > 0(< 0) if yi = yi(0) + δyi(yi = yi(0)− δyi). Then there exists a unique

ŷ ∈ Ω1 with H(ŷ) = 0.
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Proof. Let H1(y1, y3) = (y1 − δy1g
1/|g1|, y3 − δy3g

3/|g3|) be the compact continuous map on

Ω1. The existence of a fixed point for H1 has been obtained by Brouwer fixed-point theorem,

winding numbers or index theory, see [24]. For the additional uniqueness, we try to verify for

theorem 5.1.2: (a) 1 is not an eigenvalue of H ′1 = ∂H1
∂y =

(
1− δy1∂g1

|g1|∂y1 − δy1∂g1
|g1|∂y3

− δy3∂g3
|g3|∂y1 1− δy3∂g3

|g3|∂y3

)
because

det(Gy) 6= 0 according to (5.29). (b) for each x ∈ ∂D, x 6= H1(x) because gi > 0(< 0) if

yi = yi(0) + δyi(yi = yi(0)− δyi). i.e. gi 6= 0 on ∂D, therefore there exists a unique fixed point

H1(y1, y3) = (y1, y3), which indicates that there is (y1, y3) such that H(y1, y3) = (0, 0).

In order to estimate |y1 − ŷ1|, according to the Mean-Value Theorem of several variables:

g1(y1, y3) = g1(y1, y3)− g1(ŷ1, ŷ3)

=<
∂g1

∂y1
,
∂g1

∂y3
>< y1 − ŷ1, y3 − ŷ3 >

≈< G11, 0 >< y1 − ŷ1, y3 − ŷ3 >

= G11(y1 − ŷ1)

Therefore, |y1 − ŷ1| = O(|g1|). Similarly, |y3 − ŷ3| = O(|g3|).

Another proof of the existence is to use the winding numbers. We define the function H:

Ω1 ∈ R2 → Ω2 = Oδ(0) ∈ R2 as:

H(y1, y3) = (g1(y1, y3), g3(y1, y3)),

where

Ω1(δyi) = {(y1, y3) : |yi − yi(0)| ≤ δyi, i = 1, 3}
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Ω2 is the image of H, which maps the rectangle area Ω1 to a neighborhood of the origin Ω2.

Notice that the winding number of the boundary ∂Ω1 around (y1(0), y3(0)), the center of Ω1 is

1. Now assume for contradiction that 0 6∈ Ω2, then the winding number of H(∂Ω1) around the

origin is zero. Because homotopy does not change the winding number, we have the contradiction

1 6= 0. Therefore the origin O ∈ Ω2.

Next, we decrease δyi, the size of Ω1. By homotopy, the boundary of Ω2 shrinks correspondingly

to a point. During the shrinking process there must exist a size ˆδyi, when ∂Ω2 contains the origin,

because O ∈ Ω2. Therefore, there exists a ŷ ∈ ∂Ω1( ˆδyi) ⊂ Ω1(δyi) such that H(ŷ) = (0, 0).

5.1.5 Periodic correction solution for the linearized variational system

We try to find the correction solutions by the following Lemmas:

Lemma 5.1.4. Let L be the linear operation from Banach space E1 to E2, and T from E2 to

E1 is an approximate right inverse operation of L if |I − LT | < 1. Then the equation Lx = y

has a solution x = T
∑∞

j=0(I − LT )jy.

Lemma 5.1.5. In regular layers [αi, βi], i = 2, 4, there exists a unique solution to the following

system of equations:

V̇i − FUVi = hi(τ) (5.30)

with Si(t, s) to be the principal matrix of the system above and the jump conditions:

JV 1 = V2(α2/ε)− V1(β1), JV 4 = V1(α1)− V4(β4/ε)

JV 3 = V4(α4/ε)− V3(β3), JV 2 = V3(α3)− V2(β2/ε) (5.31)
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and estimate:

|V2|+ |V4| ≤ C1(|h2|+ |h4|+ Σ4
i=1|JV i|) (5.32)

Proof. Because of the hyperbolicity of the coefficient matrix FU , we know that the slow varying

system has exponential dichotomy on Ii, i = 2, 4 with corresponding projections Qis, Q
i
u. Also,

we have the following decomposition:

RP 1
u (β1)⊕RP 2

s (α2/ε) = R2, RP 2
u (β2/ε)⊕RP 3

s (α3) = R2

RP 3
u (β3)⊕RP 4

s (α4/ε) = R2, RP 4
u (β4/ε)⊕RP 1

s (α1) = R2

Based on the decomposition above, we can split the jump conditions as following:

JV 1 = Q2
sJV 1 − (−Q1

uJV 1), JV 4 = Q1
sJV 4 − (−Q4

uJV 4)

JV 3 = Q4
sJV 3 − (−Q3

uJV 3), JV 2 = Q3
sJV 2 − (−Q2

uJV 2)

We give the stable component of each jump as the initial value for the solution after the jump,

and the negated unstable component of the jump as the backward initial value for the solution

before the jump, as in figure 5.4. That is to say, the solution between two jumps takes the

negated unstable component of the latter jump as the backward initial value, and the stable

component of the previous jump as the forward initial value. Therefore we define:

J

u

s

s

W

W

W

Figure 5.4: Decomposition of the jump errors for defining the solutions Vi
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V 1
2 (τ) = S2(τ, α2/ε)Q

2
sJV 1 +

∫ τ

α2/ε
S2(τ, s)Q2

s(s)h
2(s)ds

−S2(τ, β2/ε)Q
2
uJV 2 +

∫ τ

β2/ε
S2(τ, s)Q2

u(s)h2(s)ds

τ ∈ [α2/ε, β2/ε]

V 1
4 (τ) = S4(τ, α4/ε)Q

4
sJV 3 +

∫ τ

α4/ε
S4(τ, s)Q4

s(s)h
4(s)ds

−S4(τ, β4/ε)Q
4
uJV 4 +

∫ τ

β4/ε
S4(τ, s)Q4

u(s)h4(s)ds

τ ∈ [α4/ε, β4/ε]

V 1
1 (τ) = S1(τ, α1)Q1

sJV 4 +

∫ τ

α1

S1(τ, s)Q1
s(s)h

1(s)ds

−S1(τ, β1)Q1
uJV 1 +

∫ τ

β1

S1(τ, s)Q1
u(s)h1(s)ds

τ ∈ [α1, β1]

V 1
3 (τ) = S3(τ, α3)Q3

sJV 2 +

∫ τ

α3

S3(τ, s)Q3
s(s)h

3(s)ds

−S3(τ, β3)Q3
uJV 3 +

∫ τ

β3

S3(τ, s)Q3
u(s)h3(s)ds

τ ∈ [α3, β3]

The above solutions satisfy (5.30), but satisfy the jump conditions almost accurately, for ex-
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ample:

J1
V 1 = V 1

2 (α2/ε)− V 1
1 (β1)

= [Q2
sJV 1 − S2(α2/ε, β2/ε)Q

2
uJV 2 +

∫ α2/ε

β2/ε
S2(τ, s)Q2

u(s)h2(s)ds]

− [S1(β1, α1)Q1
sJV 4 +

∫ β1

α1

S1(τ, s)Q1
s(s)h

1(s)ds−Q1
uJV (Σ1+)]

= JV 1 + E1(JV 1)

E1(JV 1) = −S2(α2/ε, β2/ε)Q
2
uJV 2 +

∫ α2/ε

β2/ε
S2(α2/ε, s)Q

2
u(s)h2(s)ds

− S1(β1, α1)Q1
sJV 4 +

∫ β1

α1

S1(β1, s)Q
1
s(s)h

1(s)ds

with estimate:

|E1(JV 1)| ≤ C2(eα(α2−β2)/εJV 2 +

∫ α2/ε

β2/ε
eα(α2/ε−s)|h2|ds)

+ C1(e−α(β1−α1)JV 4 +

∫ β1

α1

e−α(β1−s)|h1|ds)

Notice that e−α(β2−α2)/ε, e−α(β1−α1) as well as the two integral terms added together are all

of O(ε). Thus |E1(JV1)| = O(ε
∑4

1 |JVi|) is small compared to the given jump conditions by

multiplying ε in each iteration process. Therefore, we can define the solution V k
i (τ), τ ∈ [αi, βi]

recursively, with −Ek(JVi) as the jump condition in the next iteration. According to Lemma

5.1.4, the jump condition will be satisfied by Vi(τ) = Σ∞k=1V
k
i (τ) after the iteration process.

Next we give an estimate of the solution, for example:

|V2(τ)| ≤ e−α(τ−α2/ε)JV 1 + |h2|
∫ α2/ε

τ
e−α(τ−s)ds+ eα(τ−β2/ε)JV 2 + |h2|

∫ τ

β2/ε
eα(τ−s)ds (5.33)

≤ C1(|h2|+ |JV 1|+ |JV 2|)

|V 1
1 (τ)| ≤ e−α(τ−α1)JV 4 + |h1|

∫ α1

τ
e−α(τ−s)ds

+ eα(τ−β1)JV 1 + |h1|
∫ τ

β1

eα(τ−s)ds

≤ e−α(τ−α1)JV 4 + eα(τ−β1)JV 1 + (eα(τ−β1) − e−α(τ−α1))|h1|/α

≤ C2(|h1|+ |JV 4|+ |JV 1|)
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These above estimates result in the estimates for the solution V i.

Lemma 5.1.6. In regular layers [αi, βi], i = 2, 4, assume (H1): the linear composite map

Φ4(β4, α4)Φ2(β2, α2) is non-degenerate, that is to say: 1 is not an eigenvalue of the map

Φ4(β4, α4)Φ2(β2, α2), then there exists a unique solution to the following system of equations

with jump conditions:

Ẏi = (GY −GUF−1
U FY )Yi + hi(t) (5.34)

Y2(α2)− Y4(β4) = JY1

Y4(α4)− Y2(β2) = JY2

with estimate:

|Y2|+ |Y4| ≤ C(|JY1|+ |JY2|+ |h2|+ |h4|) (5.35)

Proof. The solution to (5.34) is:

Yi(t) = Φi(t, αi)Yi(αi) +

∫ t

αi

Φi(t, s)hi(s)ds

Thus,

Yi(βi) = Φi(βi, αi)Yi(αi) +

∫ βi

αi

Φi(βi, s)hi(s)ds

Plug this into the above jump conditions, we have:

Y2(α2)− Φ4(β4, α4)Y4(α4) = JY1 +

∫ β4

α4

Φ4(β4, s)h4(s)ds

Y4(α4)− Φ2(β2, α2)Y2(α2) = JY2 +

∫ β2

α2

Φ2(β2, s)h2(s)ds (5.36)

which can be rewritten as:

AX = B

where

A =

(
I2 −Φ4

−Φ2 I2

)
, X =

(
Y2(α2)

Y4(α4)

)
,

B =

(
JY1 +

∫ β4
α4

Φ4(β4, s)h4(s)ds

JY2 +
∫ β2
α2

Φ2(β2, s)h2(s)ds

)
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According to assumption (H1), we have det(A) = det(I2) det(I2 − (−Φ2)(−Φ4)) = det(I2 −
Φ2Φ4) 6= 0, therefore we can solve for a unique X as the initial value for the solution Yi(t), i =

2, 4. Next we give an estimate of the solution by X = A−1B:

|Yi(αi)| ≤ C1(|JY1|+ |JY2|+ |h2|+ |h4|), i = 2, 4

Then by substituting the initial value into the solution by method of variation of parameter,

we obtain:

|Y2|+ |Y4| ≤ C(|JY1|+ |JY2|+ |h2|+ |h4|)

We want to verify by the following Lemma the assumption (H1), which is true in general, espe-

cially when the solutions on the slow manifolds are close to the equilibria P± in our case.

Lemma 5.1.7. Suppose A ∈ Rn×n is an invertible real matrix. If |B − A| < 1/|A−1|, then B

is invertible.

Proof. Observe that B = A+ (B −A) = A[I +A−1(B −A)]. If x 6= 0, we have

|A−1(B −A)x| ≤ |A−1||B −A||x| < |x|

this indicates that [I + A−1(B − A)]x 6= 0, therefore Bx 6= 0 since A is invertible. For square

matrices, invertibility is equivalent to the condition that {x : Bx = 0} = {0}, so B is invertible.

Notice that if we have two pieces of stable spirals close to the equilibrium points on S±, then

|Φ4(β4, α4)Φ2(β2, α2)| = |(Φ4(β4, α4)Φ2(β2, α2)− I)− (−I)| << 1 = 1/|I−1|, which means that

1 is not an eigenvalue of Φ4(β4, α4)Φ2(β2, α2) according to Lemma 5.1.7. If the two pieces of

stable spirals are not close to the equilibrium points on S±, we can show that in most cases

that 1 is not an eigenvalue.

Before proving the following theorem, I give a general outline of the proof: (1) I first construct a

generalized solution (Ui, Yi) that allows a gap at τ = 0 but satisfies the jump conditions exactly

by Lemma 5.1.5, 5.1.6, and 5.1.1. During this step, we eliminate the residual error caused by

dropping the ε ddt [F
−1
U FY Ȳ ] term with iteration method. (2) We use the Melnikov integral to

eliminate the gap by shifting the y values in the gap function gi, i = 1, 3 by Lemma 5.1.3. The

change of y value results in the updated domains for the solutions on the outer layers. Then I

obtain a solution (Ûi, Ŷi) on the updated domain as the exact solutions that satisfy the jump

conditions exactly with no gap at τ = 0. (3) I give estimates for the exact solutions.
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Theorem 5.1.8. Assume (H1) hold, then there exists unique periodic solutions (Ui, Yi) in

[ᾱi, β̄i], i = 1, 2, 3, 4, to the linear variational system (5.14), (5.17) with jump conditions J̄wi =

(J̄Ui, J̄Y i), i = 1, 2, 3, 4 according to (5.5), (5.6), (5.8), (5.11):

Y4(ᾱ4)− Y3(εβ3) = −J̄Y 3

Y3(εα3)− Y2(β̄2) = −J̄Y 2 (5.37)

Y2(ᾱ2)− Y1(εβ1) = −J̄Y 1

Y1(εα1)− Y4(β̄4) = −J̄Y 4 (5.38)

U4(ᾱ4/ε)− U3(β3) = −J̄U3

U3(α3)− U2(β̄2/ε) = −J̄U2 (5.39)

U2(ᾱ2/ε)− U1(β1) = −J̄U1

U1(α1)− U4(β̄4/ε) = −J̄U4 (5.40)

and phase condition ẇapi (0) ⊥ wi(0), with estimate:

Σ4
i=1|Ui|+ Σ4

i=1|Yi| (5.41)

≤ C(|P̄2|+ |P̄4|+ |Q̄2|+ |Q̄4|+ |P̄1|+ |P̄3|+ |Q̄1|L1 + |Q̄3|L1 + Σ4
i=1|J̄wi|))

Proof. The linear variational system of equations is autonomous. So if w(t) is a solution then

w(t+k) is also a solution, where k is a constant. Without loss of generality, after a proper time

shift we assume that at time t=0 the solution is in a cross section Ti that is transverse to the

flow as in the phase condition wi(0) ∈ Ti, where Ti := {x|〈ẇapi (0), x〉 = 0}.

(1) We solve for the generalized solutions Ui(τ), Yi(t), i = 1, 2, 3, 4 that allow gaps for Ui(0), i =

1, 3 and satisfy the phase condition.

First the system (5.14) is coupled on Ii, i = 2, 4, we need to use the change of variables to have

it decoupled as in (5.15).

Notice that the homogeneous part of the equation V ′ = Ai(τ)V + P̄ i, i = 2, 4, which is the

V equation in (5.15), has an exponential dichotomy on Ii, i = 2, 4. Thus according to Lemma
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5.1.5, there exist solutions V̄i that satisfy |V̄i| ≤ C(JVi + |P̄i|). Here

V̄4(α4/ε)− V̄3(β3) = −JV 3

V̄3(α3)− V̄2(β2/ε) = −JV 2

V̄2(α2/ε)− V̄1(β1) = −JV 1

V̄1(α1)− V̄4(β4/ε) = −JV 4 (5.42)

The homogeneous part of the Y equation in (5.15): Ẏi = MYi, i = 2, 4 has an exponential

dichotomy on Ii, where

M(t) = GY −GUF−1
U FY = −1

s

(
−1 + 1/h′(u0

i (t)) 1

−β 0

)

Thus, if σ(M±) 6= 0, where M+ = M(β2/ε),M− = M(α2/ε), then according to Lemma 2.1.1,

Lemma 5.1.6, the Y equation in (5.15) has an exponential dichotomy on Ii. Therefore the

solution to the Y equation in (5.15) after plug in V̄i satisfies the jump conditions:

JY1 = Ȳ2(α2)− Ȳ4(β4)

= JY 1 + JY 4 + Ȳ1(εβ1)− Ȳ1(εα1)

= JY 1 + JY 4 +

∫ εβ1

εα1

Q̄1(t)dt

= JY 1 + JY 4 + |Q̄1|L1

JY2 = Ȳ4(α4)− Ȳ2(β2)

= JY 2 + JY 3 + |Q̄3|L1 (5.43)

with estimate:

|Ȳi| ≤ C(|V̄i(τ)|+ JYi + |Q̄i|), i = 2, 4

Now we define Ūi(τ) = V̄i(τ)− F−1
U (ετ)FY (ετ)Ȳi(ετ), which satisfies

Ū ′i = FU Ūi + FY Ȳi + P̄i −
d

dτ
[F−1
U FY Y ]

Notice that the first equation of (5.14) is not satisfied by Ū i because of the error term d
dτ [F−1

U FY Y ],

we have the estimate of the d
dτ [F−1

U FY Y ] as:

| d
dτ

[F−1
U FY Ȳ ]| = ε| d

dt
[F−1
U FY Ȳ ]| = Kε(|V̄i|+ |Q̄i|+ |JYi|) ≤ Kε(|P̄ i|+ |Q̄i|+ |JYi|+ |JVi|)
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Now we have (Ūi, Ȳi), i = 2, 4 is a good approximation with residual errors O(ε(|P̄ i|+|Q̄i|+|Ji|))
in the U equation, therefore we can obtain the generalized solution Ui(τ), Yi(t), i = 2, 4 to (5.14),

(5.17) by iteration process.

On the other hand, according to (5.17), we have:

Yi(t) = Si(t, αi)Yi(αi) +

∫ t

αi

Si(t, s)Q̄i(s)ds

+ Si(t, βi)Yi(βi) +

∫ t

βi

Si(t, s)Q̄i(s)ds, i = 1, 3

where Yi(αi), Yi(βi), i = 1, 3 are given by passing the boundary values of Y 2,4 through the jump

conditions:

Y4(α4)− Y3(εβ3) = −JY 3

Y3(εα3)− Y2(β2) = −JY 2

Y2(α2)− Y1(εβ1) = −JY 1

Y1(εα1)− Y4(β4) = −JY 4 (5.44)

We have the estimate:

|Yi(t)| ≤ C|Q̄i|L1

Next we plug in the Yi, i = 1, 3 into the Ui equations to solve:

U ′i(τ) = FUUi + hi(τ) (5.45)

with boundary conditions Ui(αi), Ui(βi), i = 1, 3 given by:

U4(α4/ε)− U3(β3) = −JU3

U3(α3)− U2(β2/ε) = −JU2

U2(α2/ε)− U1(β1) = −JU1

U1(α1)− U4(β4/ε) = −JU4 (5.46)

and the bounded forcing term hi(τ) = FY (Yi(0) +
∫ ετ

0 Q̄i(s)ds) + P̄ i. Next we give estimates for

Ui based on (5.22):

|Ui(τ)| ≤ C(|Ui(αi)|+ |Ui(βi)|+ |hi(τ)|) ≤ C(|Jw|+ |P̄i|+ |Q̄i|L1[−ελ,ελ])

Now we have the generalized solutions Ui, Yi, i = 1, 2, 3, 4 that allow a gap at τ = 0 for Ui, i =
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1, 3.

(2) Here we want to obtain the exact solutions Ŷi, Ûi, i = 1, 2, 3, 4. In order to solve for the

exact Ŷi, Ûi, i = 2, 4, we apply Lemma 5.1.3 by modifying the yi(0), i = 1, 3 in the gi function.

After this shift of the equal gap surface, we obtain a ŷi such that g(ŷi(0)) = 0. We replace the

y value in Yi(0) by ŷi(0) such that Ŷi(0) = (ŷi(0), zi(0)), i = 1, 3. Now Ŷi(t), i = 2, 4 need extra

time ∆ti to get to the shifted equal gap surface, ∆ti can be used to update the domain of the

solutions for ŵi(t), t ∈ [ᾱi, β̄i] = [αi+∆αi, βi+∆βi], i = 2, 4, on which we repeat the procedure

in step (1) to obtain V̂i(τ) on the updated domain with the following jump conditions according

to (5.5), (5.6), (5.8), (5.11):

V̂4(ᾱ4/ε)− V3(β3) = −J̄V 3

V3(α3)− V̂2(β̄2/ε) = −J̄V 2

V̂2(ᾱ2/ε)− V1(β1) = −J̄V 1

V1(α1)− V̂4(β̄4/ε) = −J̄V 4

By the change of variable, we have Ûi(τ) which eliminates the gap and is transversal at τ = 0.

Now we have the updated jump conditions satisfied:

Û4(ᾱ4/ε)− U3(β3) = −J̄U3

U3(α3)− Û2(β̄2/ε) = −J̄U2

Û2(ᾱ2/ε)− U1(β1) = −J̄U1

U1(α1)− Û4(β̄4/ε) = −J̄U4

After plugging in the V̂i(τ), i = 2, 4 into the Y equation of (5.15), based on (H1) 1 is not an

eigenvalue of Φ2(β̄2, ᾱ2)Φ4(β̄4, ᾱ4), which is true according to the continuous dependence of

semigroup to t. We obtain Ŷi(t), i = 2, 4 by Lemma 5.1.6 with the following jump conditions of

Y(similar to (5.43)) satisfied:

Ŷ2(ᾱ2)− Ŷ4(β̄4) = ĴY1

Ŷ4(ᾱ4)− Ŷ2(β̄2) = ĴY2 (5.47)

Next we obtain Ŷi, Ûi, i = 1, 3 as in step (1). Now we have the exact solution Ŷi(t), Ûi(τ), i =

1, 2, 3, 4.
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(3) Now we give an estimate of Ŷi(t), Ûi(τ), i = 1, 2, 3, 4. According to (5.33), we consider (5.15)

and have:

|V̂2| ≤ C(| ¯̄P2|+ |JV 1|+ |JV 2|) ≤ C(P̄2 + |JV 1|+ |JV 2|)

|V̂4| ≤ C(| ¯̄P4|+ |JV 3|+ |JV 4|) ≤ C(P̄4 + |JV 3|+ |JV 4|)

According to the change of variables Ûi(τ) = V̂i(τ)−F−1
U (ετ)FY (ετ)Ŷi(ετ), we obtain estimate

for Ûi i = 2, 4: |Ûi| ≤ C(Q̄i + Σ2
i=1|JYi|+ |V̂i|), therefore

|Û2| ≤ C(Q̄2 + Σ2
i=1|JYi|+ P̄2 + |JV 1|+ |JV 2|)

|Û4| ≤ C(Q̄4 + Σ2
i=1|JYi|+ P̄4 + |JV 3|+ |JV 4|)

We apply Lemma (5.1.6) with jump condition (5.47) and forcing term ĥi = GU V̂i(τ) + Q̄i, we

have the system for solving the initial value AX = B with:

B =

(
JY1 +

∫ β4
α4/ε

Φ4(t, s)ĥ4(s)ds

−JY2 +
∫ β2
α2/ε

Φ2(t, s)ĥ2(s)ds

)

Now we obtain exact solutions for Ŷi(t), i = 2, 4, with estimate according to (5.35)

|Ŷi(t)| ≤ C1(|JY1|+ |JY2|+ |ĥ2|+ |ĥ4|)

≤ C1(|JY1|+ |JY2|+ P̄2 + Q̄2 + P̄4 + Q̄4 +
4∑
1

|JV i|)

(5.48)

Now we obtain the estimate of Ŷi(t), Ûi(τ), i = 1, 2, 3, 4

5.2 Periodic solution for the original system

Now we prove that there is a periodic solution for the original nonlinear system, based on the

previous Theorem 5.1.8 about the existence of the periodic solution to the linear variational

system. We prove that a contraction mapping has a fixed point as the correction solutions and

the extra time ({wi}4i=1, {ζi}4i=1).

Theorem 5.2.1. Suppose (Uapi , Y ap
i ) is given as the approximation solution that satisfies (1.5),

(1.6), with period ωap = Σ2
l=1[εβ2l−1 − εα2l−1] + Σ2

l=1[β2l − α2l]. Also assumptions (H1) is
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satisfied. Then there exists a unique exact periodic solution wex of (1.3), (1.4) with period

ωex = Σ4
i=1(β̄i − ᾱi) such that

|U ex − Uap|+ |Y ex − Y ap| = O(ελ). (5.49)

Proof. Define the residual error:

pi(τ) = Uap
′ − F (Uap, Y ap, s)

qi(t) = Ẏ ap −G(Uap, Y ap, s)

with estimates:

pi(τ) = O(ελ) i = 1, 3 pi(τ) = O(ε) i = 2, 4 (5.50)

qi(t) = O(ε0) i = 1, 3 qi(t) = O(ε) i = 2, 4

Moreover |qi(t)|L1(−ελ,ελ) = O(ελ), i = 1, 3.

We define the jump conditions according to (5.38), (5.37), (5.39), (5.40):

wi+1(Ai+1)− wi(Bi) + w
ap(1)
i+1 (Ai+1)∆Ai+1 − wap(1)

i (Bi)∆Bi = Ji, i = 1, 2, 3, 4 (5.51)

where w(1) = (dU/dτ, dY/dt)T , and

Ai =

{
αi i = 1, 3

αi/ε i = 2, 4
Bi =

{
βi i = 1, 3

βi/ε i = 2, 4

Ji = Ji(Jwi, w,∆Ai+1,∆Bi)

= wi+1(Ai+1)− wi(Bi)− [wi+1(Ai+1 + ∆Ai+1)− wi(Bi + ∆Bi)]

− wapi+1(Ai+1 + ∆Ai+1) + wapi (Bi + ∆Bi) + wapi+1(Ai+1)− wapi (Bi)

− Jwi + w
ap(1)
i+1 (Ai+1)∆Ai+1 − wap(1)

i (Bi)∆Bi

= O(|w(1)
i+1||∆Ai+1|+ |w(1)

i ||∆Bi|+ |w
ap(2)
i+1 ||∆Ai+1|2 + |wap(2)

i ||∆Bi|2 + |Jwi|)

= O((|wi+1|+ |P̄i+1|+ |Q̄i+1|)|∆Ai+1|+ (|wi|+ |P̄i|+ |Q̄i|)|∆Bi|+ |∆Ai+1|2 + |∆Bi|2 + |Jwi|)
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where Jwi = wapi+1(Ai+1)− wapi (Bi), with estimate:

Jwi = O(ελ) (5.52)

(5.51) can be rewritten as:

wi+1(Ai+1)− wi(Bi) + ζiγi = Ji, i = 1, 2, 3, 4 (5.53)

γi = (F (Ai+1), G(Ai+1))T , ζi = δ(Ai+1) for i = 1, 3

γi = (F (Bi), G(Bi))
T , ζi = −δ(Bi) for i = 2, 4

Recall that δ(Ai) = δ(Bi) = 0, i = 1, 3. Next we look for solutions ({wi}4i=1, {ζi}4i=1) of system:

(5.15), (5.17), (5.53), in the Banach space:

({wi}4i=1, {ζi}4i=1) ∈ Π4
i=1C

1[αi − δ, βi + δ]×Π4
i=1R

with the norm defined as

|| · || = sup
1≤i≤4

|wi|+ sup
1≤i≤4

|ζi|

Define an open subset O(δ) as:

O(δ) = {({wi}4i=1, {ζi}4i=1) : ||{wi}, {ζi}|| < δ}

According to Theorem (5.1.8), we have:

({wi}4i=1, {ζi}4i=1) = A−1({P̄i, Q̄i}4i=1, {Ji}4i=1, )

= L({wi}4i=1, {ζi}4i=1, {pi}4i=1, {qi}4i=1, {Jwi}4i=1) (5.54)

where L is a mapping in the Banach space: Π4
i=1C

1[ᾱi, β̄i]×Π4
i=1R to itself.

Now we look for a fixed point for the mapping L. According to (5.16) to (5.19) and (5.41), if

({wi}4i=1, {ζi}4i=1) ∈ O(δ), then we have

|P̄2|+ |P̄4|+ |Q̄2|+ |Q̄4|+ |P̄1|+ |P̄3|+ (|Q̄1|L1 + |Q̄3|L1)

≤ K(δ2 + εδ + ελ) (5.55)

Now we can verify that given a very small δ, we can choose a sufficiently small ε so that the right

hand side of (5.54) lies in O(δ). Also we can directly show that L is an contraction mapping

in O(δ). Therefore, there exists a unique fixed point for (5.54). Also the estimate (5.49) follows

according to (5.41), (5.52), (5.50), (5.55) and Theorem (5.1.8).
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Chapter 6

Chaotic Solutions

In the previous chapter we obtain a periodic solution with two slow flows on S± being two

segments of monotone curves on the z-y plane. In this chapter we construct a solution near

a pair of heteroclinic solutions, the solution spirals around the two equilibrium points with

prescribed number of rotations on S± on the z-y plane.

6.1 Formal solutions when ε = 0.

First of all, we construct a formal solution composed of two fast orbits and two slow orbits

pieced together alternatively. Those two slow orbits and two fast orbits form a formal solution.

See Figure 6.1.

Based on Lemma 4.2.2, we have a pair of fast solutions on (−∞,∞) when ε = 0 with the same

wave speed s > 0, and they are on the surfaces of opposite small y0 values. On the other hand,

in order to determine the slow orbits on S±, we notice that 0 < h′(u) < 1, so that we have a

pair of stable(unstable) spirals as slow orbits with the same s > 0(s < 0), if β is sufficiently

large, 4β > k2. The two slow orbits start from points Pi or Pj on y = ±y0 and ends on each

other. See Figure 6.2.

According to the projection of the solution in Figure 6.2 onto the y-z plane, we see that the

stable spirals start from Pj(Pi) and approach the other equilibrium ( goes beyond Pj(Pi)) as

t→∞. Recall that we only consider the two slow flows on S± within the two foldlines y = −ym
and y = ym. We observe from Figure 6.3 that there are solutions starting at a point within the

two foldlines(say P−), but do not approach P±(say P+) as t→ ±∞. Therefore we consider the

domain of influence of P±(or domain of attraction of P±), that contains all the initial points
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Figure 6.1: Formal solutions when ε = 0
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Figure 6.2: Projection of formal solutions onto z-y plane when ε = 0

(y0, z0) passing which the solutions exist for all t ≤ 0(or for all t ≥ 0), and will approach P±

as t → −∞(or as t → ∞). See Figure 6.3, the domain of attraction of stable spirals on S± is

bounded by the two foldlines.

Theorem 6.1.1. For different values of β, equilibrium P± are stable spirals if 4β > k2, sk >

0(unstable spirals if 4β > k2, sk < 0). Moreover,

for s > 0, t > 0, the contour of domain of attraction of stable spirals on S± is the solution with

initial point at A± = (±(2
√

3c3m/9 + c/
√

3),±(2
√

3c3m/9)) in the z-y plane;

for s < 0, t < 0, the contour of domain of influence of unstable spirals on S± is the solution

with initial point at A± = (±(2
√

3c3m/9 + c/
√

3),±(2
√

3c3m/9)) in the z-y plane.

Proof. We observe from Figure 6.3 that the vector field is horizontal on the initial points A±,

where the solution is tangent to the foldlines. See Figure 6.4 for 3D view. Take a point to the
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Figure 6.3: Domain of attraction of stable spirals on S±

left of B+ on the foldline y = ym, the vector field points left and up. But the solution starts

there will go back down and hit the foldline y = ym, it can’t go across the foldline, therefore

will not be able to go towards P+. To the right of A+ on the foldline y = ym, the vector field

points left and down. In fact, when u = −c/
√

3, y = −2
√

3c3m/9, z > −2
√

3c3m/9 + c/
√

3, we

have −sẏ = u−y+z > 0, therefore ẏ < 0 for s > 0, so the solutions starting there will go below

the foldlines when t > 0 and can’t approach P+ as t → ∞. These indicate that the solutions

start on A± are the contours of domain we want.

Notice that it is possible that P− is not contained in the domain of attraction of P+. Therefore,

we need the following theorem to guarantee the existence of the formal solution.

Theorem 6.1.2. The existence of the heteroclinic solution q(τ) from an equilibrium point P−

connected by fast flow to the stable spirals towards P+ is guaranteed, if and only if the equilibrium

point P− is contained in the domain of attraction on S+ in between the foldlines when projected

in y-z plane. There is a critical value β = β0 when the contours of domain of attraction(stable

spirals) exactly hit P±, See figure 6.6. Also when β ≥ β0 one equilibrium point is contained in

the domain of attraction of the other equilibrium point. See Figure 6.5.

Proof. Consider β > k2/4, sk > 0 where we have stable spirals on S±, also consider dy
dz = u−y+z

−βy
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Figure 6.4: Domain of influence of unstable spirals on S± in 3D

in the region D = {(z, y)|u− y + z > 0, y < 0} such that dy
dz decreases when β increases on the

point (z,y). Therefore we compare the differential equationsdyidz = fi(βi, z), i = 1, 2 with different

vector fields, by comparison theorem in [2] we have: if β2 > β1, then f2(β2, z) < f1(β1, z) and

y2 < y1. So if the domain of attraction doesn’t contain P−, we can increase β value continuously

so that the contour of the domain of attraction around P+ hits the z-axis exactly at P− when

β = β̄. Now we take β0 = max{β̄, k2/4}, then when β ≥ β0 one equilibrium point is contained

in the domain of attraction of the other equilibrium point.

Now that we have the formal solutions as in Figure 6.1, we can obtain an ordered sequence of

solutions q̄k(τ), k ∈ Z in between Pj , Pi by repeating the formal solutions.

6.2 Existence of exact chaotic solution when ε > 0

6.2.1 Approximation solutions and jump conditions

We first define the counting surface to be Z+ = {(z, y)|y = y0}, Z− = {(z, y)|y = −y0}, in

order to keep track of the intersections of the solutions with Z± around P±. Based on the

formal solution q̄k(τ) obtained from the previous section when ε = 0, we define Qi(Qj), i2 ≥
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Figure 6.5: The domain of attraction becomes larger as β increases

i ≥ i1, j2 ≥ j ≥ j1 to be the points, where q̄k(τ) intersects with Z± for the i-th (j-th) time, and

are close enough to P−(P+) for i ≥ i1, j ≥ j1. See Figure 6.7.

Given symbol (j, i), we define a family of approximated solutions qkji(t) when ε > 0 by truncating

the formal solutions:

qjik =

{
qslow(t) t ∈ [αl, βl] = [ε1/2, γk], l = 2

qfast(τ) τ ∈ [αl, βl] = [−γk/ε, ε−1/2], l = 1

qjik (t), t ∈ [−γk, γk] starts at qk(−γk) = Pj ∈ O(Qj) a neighborhood of Qj on S+ and ends at

Pi = qk(γk) ∈ O(Qi), a neighborhood of Qi on S−. Also notice that qjik (t) intersects with Z− i

times on S− as the perturbation of the formal solution q̄k(τ).

When we construct the exact chaotic solution, the points Wi(Wj) where the chaotic solu-

tion intersects with the Z−(Z+) for the i-th(j-th) time on the z-y plane must be close to the

equilibria P−(P+). Therefore, we should only consider the Wi(Wj) points within the neigh-

borhoods O(P±) = {Y |dist(Y, P±) < δ} to be relevant for counting, see Figure 6.8. Next

we define the extended neighborhood: O− = {O(Q1), O(Q2), O(Q3), . . . , O(Qī−1), O(P−)} such

that Wi ∈ O(Qi) ⊂ O(P−), for i ≥ ī on S−. Similarly we define O+ for Wj on S+.
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Figure 6.6: Stable spirals around one equilibrium that exactly hit the other equilibrium at P±

Given i(j), the number of intersections of the solution with Z−(Z+) on S−(S+), we want to

construct an exact chaotic solution wex when ε > 0 based on the ordered approximated solutions

qapk (t) = qjik , t ∈ [−γk, γk], k ∈ Z, such that wexk = qapk + wk, where w = (U, Y ) is the correction

solution. Notice that the approximation qjik intersects with Z− exactly i times, the exact solution

near qjik must intersect with Z− exactly i times as well.

Before we obtain the correction solution, we figure out the jump conditions at the junction of

two adjacent solutions for the correction solutions. First we define the jump conditions at the

junction of two adjacent solutions for the approximated solutions:

Uapk (−γk/ε)− Uapk−1(γk−1/ε) = JUk, (6.1)

Y ap
k (−γk)− Y ap

k−1(γk−1) = JYk (6.2)
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Figure 6.7: The formal solution q̄k intersects with the Z+ at points Qj on S+ for the j-th time

In order to obtain an exact solution where Y ex
k (−γk) = Y ex

k−1(γ̄k−1), we notice that:

Y ex
k (−γk)− Y ap

k (−γk) = Yk(−γk)

Y ex
k−1(γ̄k−1)− Y ap

k−1(γk−1)

= [Y ex
k−1(γ̄k−1)− Y ap

k−1(γ̄k−1)] + [Y ap
k−1(γ̄k−1)− Y ap

k−1(γk−1)]

= Yk−1(γ̄k−1) + δYk−1(γk−1)

Subtracting the above two equations gives us:

Yk(−γk)− Yk−1(γ̄k−1) = −JYk + δYk−1(γk−1) = − ˆJY k (6.3)

Similarly we have:

Uk(−γk/ε)− Uk−1(γ̄k−1/ε) = −JUk + δUk−1(γk−1/ε) = −ĴUk (6.4)

Lemma 6.2.1. Let Ω1 = {y = (. . . y−1, y0, y1 . . .) : |yi − yi(0)| ≤ δyi, i ∈ Z} be a rectangle in

R∞. H : Ω1 → R∞

H(y) = (. . . , g−1(y), g0(y), g1(y), . . .)

is continuous with gi > 0(< 0) if yi = yi(0) + δyi(yi = yi(0)− δyi). Then there exists a ŷ ∈ Ω1

with H(ŷ) = 0.

Proof. Let H1(y) = (. . . , y−1 − δy−1g
−1(y)/|g−1|, y0 − δy0g

0(y)/|g0|, y1 − δy1g
1(y)/|g1|, . . .) be

69



Figure 6.8: The chaotic solution intersects with the Z− at points Wi on S−.

a mapping from Ω1 to Ω1. There exists a fixed point ŷ ∈ Ω1 for H1 by Schauder fixed point

theorem. Therefore, there exists a ŷ ∈ Ω1 with H(ŷ) = 0.

6.2.2 Proof of existence of the solution to the linear variational system

We give an outline of the proof. (1) We first obtain a generalized solution wk, k ∈ Z, that

allows a gap at τ = 0 but satisfies the jump conditions by Lemma 5.1.5 and 5.1.1. During this

step, we eliminate the residual error caused by dropping the ε ddt [F
−1
U FY Ȳ ] term with iteration

method. (2) We use the Melnikov integral to eliminate the gap by shifting the y values in the

gap function gk by Lemma 6.2.1, the change of y value results in the updated domains for

the solutions. Then we obtain solutions Ûk on the updated domain as the exact solutions that

satisfy the jump conditions JUk exactly with no gap at τ = 0. However, the JY k on the updated

domain is not satisfied exactly. After we define the Y i+1
k , the difference of jump errors E(JY i+1

k )

is reduced by a multiple of a small number in the i-th iteration, due to the contraction caused

by the stable spiral near the equilibrium points. Therefore, the exact solution can be obtained

after iterations.

Theorem 6.2.2. There exists unique solution wk = (Uk(τ), Yk(t)), t ∈ [−γk, γ̄k] to the linear

variational system (5.14) with jump conditions Jk = (JUk, JYk) according to (6.3), (6.4):

Uk(−γk/ε)− Uk−1(γ̄k−1/ε) = −ĴUk, (6.5)

Yk(−γk)− Yk−1(γ̄k−1) = − ˆJY k (6.6)
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and phase condition q̇apk (0) ⊥ wk(0). We also have the estimate:

|Uk|+ |Yk| ≤ C(|P̄k|+ |Q̄k|+ |Ĵk|)

Proof. The linear variational system of equations is autonomous. So if w(t) is a solution then

w(t+k) is also a solution, where k is a constant. Without loss of generality, after a proper time

shift we assume that at time t=0 the solution is in a cross section Ti that is transverse to the

flow as in the phase condition wi(0) ∈ Ti, where Ti := {x|〈q̇api (0), x〉 = 0}.

(1) We want to solve for a generalized solution (Uk(τ), Yk(t)), t ∈ [−γk, γk].

We first solve for V̄k(τ), τ ∈ [−γk/ε, γk/ε] in (5.15) according to Lemma 5.1.5, with the

ε ddt [F
−1
U FY Y ] term dropped and Hk = P̄k, V̄k(−γk/ε) − V̄k−1(γk/ε) = −JVk, also we obtain

estimates |V̄k(τ)| ≤ C(JVk + |P̄k|).

Next we solve for Ȳk(t) with the initial condition Ȳk(−γk) = Ȳk−1(γk−1)− JYk after we plug in

V̄k(τ) into the Y equation of (5.15). We also have the estimates |Ȳk(t)| ≤ C(|V̄k(τ)|+JYk+|Q̄k|).

Now we define Ūk(τ) = V̄k(τ)− F−1
U (ετ)FY (ετ)Ȳ k(ετ) which satisfies:

Ū ′k = FU Ūk + FY Ȳk + P̄k −
d

dτ
[F−1
U FY Ȳ ] (6.7)

Notice that the first equation of (5.14) is not satisfied by Ūk because of the error term
d
dτ [F−1

U FY Ȳ ] in (6.7), we have the estimate of the d
dτ [F−1

U FY Ȳ ] as:

| d
dτ

[F−1
U FY Ȳ ]| = ε| d

dt
[F−1
U FY Ȳ ]| = Kε(|V̄ k|+ |Q̄k|+ |JY k|) ≤ Kε(|P̄ k|+ |Q̄k|+ |Jk|)

Now we have (Ūk, Ȳ k) is a good approximation with residual errors O(ε(|P̄ k|+ |Q̄k|+ |Jk|)) in

the U equation. Therefore, we can obtain the generalized solution Uk(τ), Yk(t) to (5.14) with

jump conditions (6.5) by iteration process. We have the estimates for Uk(τ) as:

|Uk| ≤ C(|Vk|+ |Yk|) ≤ C(|P̄k|+ |Q̄k|+ |Jk|)).

(2) However the above solution Uk(τ), Yk(t) is still a generalized solution that allows a gap at

τ = 0 for U as:

U i(0+)− U i(0−) = gidi
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according to Lemma 5.1.1. Here the gap is defined as:

gk(y(0))

=

∫ γk

−γk
< ψk(s), Hk(s) > ds+ < ψk(−γk), P ks (−γk)Uk(−γk) > − < ψk(γk), P

k
u (γk)U

k(γk) >

(6.8)

where y(0) = (. . . y−1(0), y0(0), y1(0) . . .). Considering qk is the perturbation of the heteroclinic

solution q(t), we have Gy = {∂g
k

∂yj
} is almost a diagonal matrix similar to (5.29). Therefore

gk mainly depends on yk(0). According to the higher dimensional Intermediate Value Theorem

Lemma 6.2.1, we obtain ŷ(0) with ŷk(0) ∈ [yk(0)−δy0, yk(0)+δy0] such that gk(ŷ(0)) = 0, k ∈ Z.

Now we have eliminated the gaps for U at at τ = 0 by shifting the equal gap surface and the y

values.

(3) After the change of y values, Ŷk(t) needs extra time ∆tk to get to the shifted equal gap

surface, which can be used to update the domain of the solutions ŵk(t), t ∈ [−γk, γ̄k], γ̄k =

γk + ∆γk. We repeat the procedure on [−γk, γ̄k] in step (1) to obtain V̂k(τ) on the updated

domain. By the change of variables, we have Ûk(τ), which eliminates the gap at τ = 0 and

satisfies the jump condition:

− ˆJV k = V̂k(−γk/ε)− V̂k−1(γ̄k−1/ε)

Next we want to obtain the Ŷk solutions that satisfy the linear variational system and the jump

condition by iteration method. First, we compare the jump errors of two adjacent Y 1 solutions

Y 1
k , Y

1
k−1: −JY 1

k−1 = Y 1
k (−γk)− Y 1

k−1(γk−1) with the updated jump errors on the updating the

domains:

−JY 2
k−1 = Y 1

k (−γk)− Y 2
k−1(γ̄k−1)

We obtain the difference of the above jump errors caused by the extra time ∆γk−1 to be

E(JY 2
k−1) = JY 2

k−1 − JY 1
k−1 = [Y 2

k−1(γ̄k−1)− Y 1
k−1(γk−1)]

In order to reduce the difference of the jump errors E(JY 2
k−1), we define the initial value

Y 2
k (−γk) for Y 2

k (t) based on Y 2
k (−γk) − Y 1

k (−γk) := E(JY 1
k ) = Y 1

k (γ̄k) − Y 0
k (γk), where Y 0

k (t)

is the Y solution obtained in step (1).

Y 1
k (t) = Y 0

k (−γk)Sk(t,−γk) +

∫ t

−γk
Sk(t,−γk)Hk(s)ds,−γk ≤ t ≤ γ̄k
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For the general iteration process, see Figure 6.9. We compare the jump errors in the i-th

iteration of two adjacent Y i solutions Y i
k , Y

i
k−1: −JY i

k−1 = Y i
k (−γk)− Y i

k−1(γik−1)(= BD) with

the updated jump errors on the updating the domains:

−JY i+1
k−1 = Y i

k (−γk)− Y i+1
k−1(γ̄ik−1)(= BC)

We define the difference of the above jump errors to be:

k
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Figure 6.9: The jump errors JY i
k−1(= BD) and updated jump errors JY i+1

k−1(= BC) result in

the difference of the jump errors E(JY i+1
k−1)(= CD), which is to be reduced in the next iteration.

E(JY i+1
k−1) = JY i+1

k−1 − JY
i
k−1 = [Y i+1

k−1(γ̄ik−1)− Y i
k−1(γik−1)](= CD)

In order to reduce the difference of the jump errors E(JY i+1
k )(= EF ), we define the initial value

Y i+1
k (−γk) for Y i+1

k (t) based on AB = Y i+1
k (−γk)− Y i

k (−γk) := E(JY i
k ) = Y i

k (γ̄ik)− Y
i−1
k (γik),

from the E(JY i
k ) in the i-th iteration (previous ith EF).

Y i+1
k (−γk) = Y i

k (−γk) + E(JY i
k )

Notice that the Y i
k solutions are changed to

Ȳ i+1
k (t) = Y i+1

k (−γk)Sk(t,−γk) +

∫ t

−γk
Sk(t,−γk)Hk(s)ds,−γk ≤ t ≤ γik
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Accordingly, the nonlinear term H in (5.20) that involves Y i
k is changed. Therefore, we need

to repeat step (2) to eliminate the gaps for the generalized solutions at τ = 0 and update the

domain as −γk ≤ t ≤ γ̄ik, where γ̄ik = γik + ∆γik. Now we define for i ≥ 1:

Y i+1
k (t) = Y i+1

k (−γk)Sk(t,−γk) +

∫ t

−γk
Sk(t,−γk)Hk(s)ds,−γk ≤ t ≤ γ̄ik

when compared with:

Y i
k (t) = Y i

k (−γk)Sk(t,−γk) +

∫ t

−γk
Sk(t,−γk)Hk(s)ds,−γk ≤ t ≤ γik

We take the sup norm of the difference of the jump errors and define:

∆i+1 = sup
k∈Z
|E(JY i+1

k )| = sup
k∈Z
|Y i+1
k (γ̄ik)− Y i

k (γik)|

We give an estimate for the difference of the jump error E(JY i+1
k )(= |EF | in Figure (6.9)):

|E(JY i+1
k )| = [Y i+1

k (γ̄ik)− Y i
k (γik)] (6.9)

= Y i
k (−γk)[Sk(γ̄ik,−γk)− Sk(γik,−γk)] + E(JY i

k )Sk(γ̄k,−γk)

+

∫ γ̄ik

−γk
Sk(γ̄

i
k,−γk)Hk(s)ds−

∫ γik

−γk
Sk(γ

i
k,−γk)Hk(s)ds

≤ Ce−2αγk |E(JY i
k )|

Here we use the fact that there are stable spirals near equilibria on S± with eigenvalues −α±
iβ, α > 0 for the linear variational system, so that the principal matrix solution Sk(t,−γk) ≤
Ce−2α(t+γk) for large enough t.

The existence of an exact solution ŵk, k ∈ Z, follows by iteration method. In fact, after the

i-th iteration, E(JY i
k ) gets reduced by a multiple of an exponentially small number. Therefore,

∆i+1 = supk∈Z |E(JY i+1
k )| ≤ Ci∆i by (6.9), where Ci << 1. Moreover, ∆i gets reduced by a

multiple of an exponentially small number. Therefore,
∑

i |Y
i+1
k − Y i

k | ≤
∑

i ∆i < ∞, and we

have limi→∞ Y
i
k = Ŷk. Now we obtain the correction solutions (Ûk, Ŷk) to the linear variational

system (5.14) with jump conditions (6.5) satisfied. Estimates of the correction solutions follow

similarly to those in step (1).

Theorem 6.2.3. In a small neighborhood of qk, there exists a unique exact chaotic solution
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wex, which satisfies (1.3), (1.4) with estimates:

|wexk − qk| ≤ Kελ 0 < λ < 1

We can prove this theorem similarly to theorem 5.2.1 by contraction mapping.

6.3 Symbolic dynamics

We want to make correspondence of the solution wex to a sequence of symbols.

Theorem 6.3.1. The chaotic solution wex that intersects with Z± exactly finite i(j) times on

S−(S+) corresponds to a sequence of symbols {(i, j)}i≥ī,j≥j̄.

Proof. Given any chaotic solution near the heteroclinic solutions with Wi ∈ O−(Wj ∈ O+), we

set y = 0 and solve for the t values on which Wi points fall into O(P−). We can keep track of the

symbols (i, j) by putting the Wi points in order according to the orientation of the spirals. For

clockwise orientation, W1 is defined to be the intersection point with the largest z value within

O(P−); W2 is defined to be the intersection point with the smallest z value within O(P−); W3 is

defined to be the intersection point with the second largest z value within O(P−); W4 is defined

to be the intersection point with the second smallest z value within O(P−), etc. We count up

to Wi(Wj).

On the other hand, given sequence of symbols {(i, j)}i≥ī,j≥j̄ , we want to obtain a chaotic solution

with Wi ∈ O−(Wj ∈ O+) which intersects with the Z± for the prescribed number of times. We

first construct the approximated solutions qji(qij) on S−(S+) when ε = 0, which intersect with

the Z± only i(j) times, then according to Theorem 6.2.3, we obtain the chaotic solution near

the approximated solutions corresponding to the symbols.
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