
ABSTRACT

BALL, KENNETH RAY. Structure Preserving Integrators and Hamel’s Equations. (Under the
direction of Dmitry Zenkov.)

Hamel’s formalism is a representation of Lagrangian mechanics obtained by measuring the

velocity components relative to a frame which is not related to a system’s local configuration

coordinates. The use of this formalism often leads to a simpler representation of dynamics. This

dissertation extends Hamel’s formalism to the discrete setting, utilizing the methods of varia-

tional integrators. The research presented is motivated by observations that, in some mechanical

systems subject to non-integrable constraints and/or symmetries, an approach to discretization

based on Hamel’s formalism results in numerical integrators that preserve certain structures.

These discrete Hamel’s equations are demonstrated to be variational integrators, and their

application in mechanical systems is examined.
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Chapter 1

Introduction

This dissertation provides an exposition and examination of structure preserving integrators

that are motivated by Hamel’s formalism of Lagrangian mechanical systems. The work presented

is guided by two important observations in the study of mechanics. The first, dating back to

Euler’s work on the rigid body in the mid-18th century, is that the use of moving frames

may greatly simplify the analysis of motion. The second is that integrators approximating the

evolution of Lagrangian mechanical systems may be derived through a discretization of the

variational principle that is equivalent to the differential equations of motion. Significantly,

these integrators naturally conserve various geometric and mechanical structures.

1.1 Hamel’s Equations: A Brief Introduction and History

As pointed out above, the first observation that motivates the work presented in this dissertation

is that the equations of motion of a mechanical system and their analysis may be greatly

simplified through the introduction of a non-coordinate frame in the velocity space. Euler [18]

was probably the first to use body frames to measure the angular velocity components of a

rotating rigid body; such frames tremendously simplify the study of rotational dynamics of a

rigid body. Lagrange [29], and later Poincaré [43], generalized Euler’s pioneering work to more

general Lagrangians on the rotation group and to systems on arbitrary Lie groups, respectively.

The general form of the differential equations of motion written with the aid of a frame has

been studied in the work of Hamel [22] (and more recently in Bloch, Marsden, and Zenkov [10])

and is referred to as Hamel’s equations.

The configuration of a mechanical system with n degrees of freedom can be represented

(locally) by n generalized coordinates (qi)ni=1 that are local coordinates in an n-dimensional

configuration space Q (a differentiable manifold). The dynamics are dictated by a Lagrangian—

a function on the tangent bundle of Q, which is the system’s velocity phase space; for most
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physical systems the Lagrangian is the difference between kinetic and potential energy.

A coordinate-induced frame is a set of n vector fields that are tangent to the n coordinate

lines at each point in a coordinate chart on Q, and as such they form a basis of the tangent

space at each point in this neighborhood. We often use the notation (qi, q̇i) to denote the lift of

the local coordinate chart to the tangent bundle; in doing so we assume that the components

q̇ of a velocity vector in TqQ are measured against the coordinate-induced frame. When we use

this frame as the basis to measure the velocity components the resulting equations of motion

of our mechanical system are the well-known Euler–Lagrange equations.

There are circumstances in which an alternate frame can make the analysis of dynamics

simpler. We have already mentioned the free rigid body: Euler’s body frame approach uncouples

kinematics and dynamics and makes analysis of the rigid body system manageable. This proves

to be a vast simplification over the approach of calculating the Euler–Lagrange equations in

local coordinates on the configuration space SO(3).

Next, we follow Poincaré in his 1901 paper [43], and consider the Euler–Poincaré equa-

tions on a Lie algebra [10, 25, 37]. The free rigid body is then just a particular implementation

of the Euler–Poincaré equations. The equations themselves, written in terms of generalized

coordinates, include structure constants of the associated Lie algebra. These are actually con-

sistent with the Euler–Poincaré equations as developed by Lagrange [29] for reasonably general

Lagrangians on the rotation group (see Marsden and Ratiu [35] for details and history).

Our next historical leap is relatively brief: in the early 20th century, the German mathemati-

cian Georg Hamel was studying unlinked velocity and position measurements on an arbitrary

configuration space, and in 1904 presented a particular generalization of the Euler–Poincaré

equations to the case of a generalized differentiable manifold [22].

Remark 1.1. For the sake of historical accuracy, we point out that it is not clear whether or not

Hamel was familiar with Poincaré’s 1901 work [43] when he published his 1904 paper [22]. As a

student of Hilbert who finished his thesis in 1901, it seems likely that Hamel would have been

familiar with Poincaré’s results, and by the end of his 1904 paper he does relate his findings

to contemporary results in Lie group theory. However, Hamel does not mention Poincaré’s

paper directly, instead arriving at his conclusions through examination of non-commutativity

of variations and time derivatives. Nonetheless, it is natural to consider Hamel’s equations as a

generalization of the aforementioned Euler–Poincaré equations.

An important observation that characterizes Hamel’s result (as a generalization of Poincaré)

is that the identification of TG with G×g described above can be thought of as the introduction

of a non-coordinate frame onto each of the fibers comprising TG. From this perspective, the

components of the vector ġ measured against the new frame are denoted by ξ.

An arbitrary (local) frame field over an n-dimensional differentiable manifold is a more
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general object, which is a set of n vector fields that, at each point q, define a basis of the vector

space TqQ. These frames need not be tied in any formal way to a coordinate chart. Furthermore,

the structure constants of a Lie algebra become structure functions, as they will vary with the

configuration of the system. We will see that Hamel’s equations include a bilinear function,

identified with the structure functions and varying with configuration. This term does not

appear in the Euler–Lagrange equations and is a generalization of the bracket of the associated

Lie algebra in the Euler–Poincaré formalism mentioned above.

Remark 1.2. Bloch, Marsden, and Zenkov [10] (working locally) identify each tangent fiber TqQ

with an individual Lie algebra Vq, and present a view of Hamel’s formalism as the mechanics

of a system on a Lie algebra bundle, formalizing the perspective that Hamel’s equations are

a generalization of the above formulation of the Euler–Poincaré equations. In this case, the

Lagrangian function is viewed as a mapping from the Lie algebra bundle to the reals. From this

perspective, we see that the Euler–Poincaré formalism is nothing but Hamel’s formalism on a

Lie group, where all fibers are the same Lie algebra.

This perspective is geometrically appealing, but not strictly necessary in the formulation

of Hamel’s equations. Indeed, we need not introduce any extra geometric structures in our

description of Hamel’s equations. In our development we will consider the components of velocity

as either measured against a frame induced by coordinates, or the components of the same

velocity vector measured against an alternate frame. More succinctly, each perspective is simply

a different coordinate chart of TQ. Hamel’s equations are the Euler–Lagrange equations, after

a (linear) velocity substitution.

Hamel’s formalism provides a natural framework for incorporating non-coordinate frames

in the study of dynamics of complex mechanical systems. Study of Hamel’s equations has

been motivated by recent insight into their application in stabilization and control of systems

with nonholonomic constraints (see, for example, recent publications by Bloch, Marsden, and

Zenkov [9, 10]). See e.g. Neimark and Fufaev [40] and Bloch et al. [10] for the history and

contemporary exposition of Hamel’s formalism.

1.2 Variational Integrators: A Brief Introduction and History

Numerical integration, in one form or another, of the differential equations describing the evo-

lution of mechanical systems has been an important topic of inquiry and a useful tool for

mathematicians. An early, although most likely entirely incidental, example of the use of nu-

merical integration occurs in the late 17th century. In the first book of his Principia [41],

Newton provides a geometric proof of Kepler’s second law (the well-known statement that the

ray connecting two masses in the two-body problem sweeps out equal area in equal time), which
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from a modern-perspective is essentially geometric numerical integration of Newton’s law for

the two-body problem using the Störmer-Verlet scheme. In this early instance Newton was pre-

senting a geometric justification of an analytic solution to a solveable differential equation to

an audience largely ignorant of calculus: it should not be construed that Newton had geometric

numerical integration in the modern sense on his mind. See Figure 1.1 for Newton’s illustration,

and the introductory section of Hairer, Lubich, and Wanner [21] for more details.

Figure 1.1: An illustration from Newton’s Principia [41] describing his geometric analysis of
Kepler’s second law. Thanks to the Newton Project, www.newtonproject.sussex.ac.uk.

For any given system of ordinary differential equations, a variety of numerical integrators

that approximate evolution of the system may be developed. While the integrators converge

to exact solutions of the equations, for finite time steps the behavior of various integrators

may be quite different. In this paper we examine a particular class of integrators of mechanical

systems called variational integrators, so-named because rather than being derived via a direct

discretization of the differential equations of motion, they are instead obtained by discretization

of an underlying variational principle. This observation, that numerical integrators may be

derived by discretization of an underlying variational principle, is the second important idea

that gives rise to the results presented in this dissertation.

The general philosophy, illustrated in Figure 1.2, is that Hamilton’s principle is discretized,

and the resulting discrete variational principle will be a statement that discrete trajectories

satisfying the variational integrator must be critical points of a discretized action. The result-

ing update maps are second-order difference equations, and, as we shall see, have structural

similarities to the second-order ordinary differential equations they approximate.

A major advantage of variational integrators is that they are naturally structure-preserving,
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Hamilton’s Principle
Discretization−−−−−−−−−−−−→ Discrete Hamilton’s Principlex xy∣∣ Variational Integratory

Euler–Lagrange Equations
Discretization−−−−−−−−−−−−→ Other Numerical Integrators

Figure 1.2: Diagram of discretization approaches. It should be noted that particular discretiza-
tions of the Euler–Lagrange equations may inadvertently return an integrator that happens to
be variational (an idea that we shall use later in this paper), but this is not guaranteed to be
the case.

because they conserve a discrete symplectic two-form and display discrete momentum conser-

vation in the presence of symmetry [36]. Conservation of a symplectic form is a feature of

mechanics commonly presented in the context of the Hamiltonian formulation. In this case, a

symplectic two-form over the phase space is conserved by solutions of Hamilton’s equations.

Marsden and West detail an analogous formulation in the context of Lagrangian mechanics,

where Lagrangian flows conserve a symplectic two-form over the tangent bundle to the con-

figuration space TQ [36]. In this paper we will favor the Lagrangian development, as Hamel’s

equations are viewed as a coordinate generalization of the Euler–Lagrange equations.

Thus, by focusing on variational integrators, we contribute to the process of developing

structure-preserving integrators. In many circumstances, symplectic (and reversible) integrators

display relatively good long-term behavior in simulation, often evidenced by energy evolution

that is bounded, if not conserved [36].

The development of variational integrators that will be presented in the next chapter is

based largely on the extensive review of the subject by Marsden and West [36] and in some

aspects Hairer, Lubich, and Wanner [21]. Marsden and West themselves cite an extensive va-

riety of sources in control literature dating from the 1960’s as laying the groundwork for the

understanding of variational integration presented in their paper.

1.3 Variational Integration of Hamel’s Equations

Having presented the two observations in mechanics that are integral to our subsequent work,

we now state the central questions addressed in this dissertation.

1. Can we develop, via a discrete variational principle, numerical integrators that take ad-

vantage of simplifications that arise in the continuous equations of motion when we select

an appropriate, simplifying, non-coordinate frame?
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2. Furthermore, are these discrete Hamel’s equations variational integrators, and conse-

quently are they structure-preserving integrators?

We will answer both of these questions in the affirmative by presenting geometrically-

motivated discrete Hamel’s equations that are variational integrators derived via a discretized

action principle.

An outline of the remainder of this dissertation follows. Chapter 2 will present a more de-

tailed background on Lagrangian mechanics, variational integrators, and Hamel’s equations.

In Chapter 3 we present the aforementioned geometrically-motivated derivation of the discrete

Hamel’s equations, documented in a preprint by Ball and Zenkov [5], and we will also describe

an application to the derivation of integrators of nonholonomic systems. Chapter 4 documents

results found in Ball, Zenkov, and Bloch [4] on a variational derivation of the Hamel’s equa-

tions, and also an extension of the Hamilton–Pontryagin principle to the discretization of non-

holonomic systems with symmetries. In Chapter 5 we demonstrate that the discrete Hamel’s

equations are, in fact, variational integrators, and we both examine and demonstrate the conse-

quential geometric structure preservation. Finally, in Chapter 6 we summarize our results and

suggest future avenues of work.

6



Chapter 2

Background

In this chapter we shall cover a variety of topics that serve as the foundation upon which we will

study numerical integration of Hamel’s equations. We will start with an overview of Lagrangian

mechanics, variational calculus, and frames leading to a definition of Hamel’s equations that

illustrates their relationship to the Euler–Lagrange equations. We will present a more detailed

account of how Euler’s equations for the free rigid body are a special case of Hamel’s equations

before transitioning into a discussion of variational integrators following the work of Marsden

and West [36].

2.1 Lagrangian Mechanics

A brief summary of Lagrangian mechanics follows, primarily intended to formally introduce

our notation. This formalism originated in [29]. For a more thorough discussion of the topic we

refer the reader to Arnold [3], Abraham and Marsden [1], and Marsden and Ratiu [35].

2.1.1 Lagrangian Mechanical Systems

A Lagrangian mechanical system is an abstract representation of a physical system the config-

uration of which may be described by a point in an n-dimensional differentiable manifold Q,

called the configuration space . The system is specified by a Lagrangian L : TQ→ R, which

for most physical systems is the difference of kinetic and potential energies.

The differentiable manifold Q is described by a covering atlas of compatible coordinate

charts; each local coordinate chart mapping q 7→ (qi)ni=1 ∈ Rn for all q ∈ U where U ⊂ Q

is open. In the subsequent chapters we will work primarily in local coordinates; it will be

understood that (qi)ni=1 refers to coordinates of the point q ∈ Q corresponding to an unspoken

choice of coordinate chart.
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A coordinate chart over an open set U ⊂ Q induces a natural chart on the tangent bundle

TU such that (q, v) 7→ (qi, vi)ni=1. The induced charts on the fibers of the tangent bundle should

be understood in terms of the coordinate-induced frame. For every q ∈ U , the chart induces

n vector fields ∂/∂qi, i = 1, . . . , n, such that at each point q ∈ U , span{∂/∂qi}ni=1 = TqQ.

In other words, the set {∂/∂qi}ni=1 ⊂ TqQ forms a basis of the vector space TqQ, called the

coordinate-induced basis. A vector ∂/∂qi ∈ TqQ has a useful interpretation of a differential

operator acting on smooth functions on Q and represented in local coordinates as a partial

derivative.

For a vector v ∈ TqQ, we denote the components of v measured against the basis ∂/∂qi as

(vi)ni=1.

Likewise, a dual frame (dqi)ni=1 is induced on the cotangent bundle T ∗U ; the n covectors at

each point q ∈ U span the fiber T ∗qQ of the cotangent bundle (note that dqi(∂/∂qj) = δij). This

in turn is associated with a chart on the cotangent bundle, (q, p) 7→ (qi, pi)
n
i=1. In summary, for

(q, v) ∈ TQ and (q, p) ∈ T ∗Q,

v = vi
∂

∂qi
and p = pidq

i, (2.1)

where i = 1, . . . , n and where the pairs of repeated indices are understood to indicate summation

as is typical with Einstein summation notation.

2.1.2 Path Space and the Action

Given an n-dimensional differentiable manifold Q and a time interval [t0, tF ] ⊂ R, we define the

path space C(Q) to be the set

C(Q) =
{
q : [t0, tF ]→ Q | q ∈ C2(Q)

}
.

Furthermore suppose we select points q0, qF ∈ Q, then the set of paths in C(Q) between the

points and parameterized on the interval [t0, tF ] will be referred to by the notation

C(Q, q0, qF ) = {q ∈ C(Q) | q(t0) = q0, q(tF ) = qF } . (2.2)

Given a Lagrangian mechanical system on Q specified with Lagrangian L : TQ → R, the

action is defined as the functional S : C(Q)→ R, a path integral of the Lagrangian:

S(q) =

∫ tF

t0

L(q(t), q̇(t))dt. (2.3)
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2.1.3 Variations

Consider a path q ∈ C(Q, q0, qF ). A variation of q is a one parameter family of paths β :

[t0, tF ] × [−ε, ε] → Q in C(Q) such that β(t, 0) = q(t). A virtual displacement at q(t) is

defined in terms of a variation to be the vector δq(t) ∈ Tq(t)Q such that

δq(t) =
∂

∂ε

∣∣∣∣
ε=0

β(t, ε). (2.4)

This definition of variations of curves on Q induces a definition of variations of curves on the

tangent bundle TQ by differentiation of the parameterized path β. The t (time) derivative of q

is denoted as q̇ ∈ C(TQ). We define the (induced) variation of q̇ as a one parameter family of

paths β̇ : [t0, tF ]× [−ε, ε]→ TQ such that β̇(t, ε) = ∂
∂tβ(t, ε) and therefore β̇(t, 0) = (q(t), q̇(t)).

A virtual displacement at q̇(t) is then a vector (δq(t), δq̇(t)) ∈ T(q(t),q̇(t))TQ such that δq(t) is

defined as in (2.4) and

δq̇(t) =
∂

∂ε

∣∣∣∣
ε=0

∂

∂t
β(t, ε).

By commutativity of mixed partial derivatives, we see that the we may either define virtual

displacements δq̇(t) in terms of equivalence classes of β̇’s, or equivalently take the time derivative

of virtual displacements δq(t) ∈ Tq(t)Q for t ∈ [t0, tF ]. In other words, the time derivative and

taking variations are commuting operators:

∂

∂ε

∣∣∣∣
ε=0

∂

∂t
β(t, ε) =

∂

∂t

∂

∂ε

∣∣∣∣
ε=0

β(t, ε) =
d

dt
δq(t),

hence δq̇(t) =
d

dt
δq(t).

(2.5)

2.1.4 Hamilton’s Principle

Recall that in local coordinates on the configuration space Q, the dynamics of a mechanical

system is given by the Euler–Lagrange equations

d

dt

∂L

∂q̇i
=
∂L

∂qi
, i = 1, . . . , n. (2.6)

These equations were originally derived by Lagrange [29] in 1788 by requiring that simple force

balance F = ma be covariant, i.e. expressible in arbitrary generalized coordinates. A variational

derivation of the Euler–Lagrange equations, namely Hamilton’s principle, came later in the work

of Hamilton [23,24] in 1834/35.

Theorem 2.1 (Hamilton’s Principle). The following statements are equivalent:

1. The path q(t), where t ∈ [t0, tF ], is a critical point of the action functional (2.3) on C(Q),
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where we choose variations such that δq(t0) = δq(tF ) = 0 (in other words, we restrict the

one parameter families of paths β so that β(t0, ε) = q0 and β(tF , ε) = qF for all ε).

2. The path q(t) satisfies the Euler–Lagrange equations (2.6).

We refer the readers to Marsden and Ratiu [35] and Bloch [6] for details and proof.

2.1.5 Symplecticity of the Lagrangian Flow

In the subsequent section we follow the exposition of Marsden and West [36], and for the sake

of consistency use some of their notations and definitions to illustrate the conservation of a

symplectic two-form by the Lagrangian flow. Following Marsden and West [36], let Q̈ be the

submanifold of TTQ defined as

Q̈ = {w ∈ TTQ | TπQ(w) = πTQ(w)},

where πQ : TQ → Q and πTQ : TTQ → TQ are the canonical tangent bundle projections. In

other words, elements of Q̈ are elements of the form ((q, q̇), (q̇, q̈)). Define the Euler–Lagrange

map DELL : Q̈→ T ∗Q by the formula

DELL =

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
dqi. (2.7)

We define a second order vector field XL : TQ → Q̈ on TQ to be a Lagrangian vector field

if it satisfies the condition that XL ◦ DELL = 0, and the flow of XL is the Lagrangian flow

FL : TQ × R → TQ. We will write the Lagrangian flow evaluated at the instantaneous time t

as F tL : TQ → TQ. Then if a path q satisfies the Euler–Lagrange equations (2.6), (q, q̇) is an

integral curve of XL. Note that for an arbitrary Lagrangian, the field XL may not be uniquely

defined, under which circumstances the flow may not exist; this matter is resolved by requiring

that L be hyperregular. The Legendre transform of the Lagrangian is defined as a mapping

FL : TQ→ T ∗Q and is expressed in coordinates as

FL(q, q̇) =

(
q,
∂L(q, q̇)

∂q̇

)
= (q, p)

A function L is regular if FL is a local isomorphism, and is hyperregular if FL is a global

isomorphism. If L is regular then the Euler–Lagrange equations may be expressed in local

coordinates such that q̈ is a well-defined function of (q, q̇), and XL will be uniquely defined

locally and local flows exist for reasons discussed in Marsden and West [36].

We will define solution space CL(Q) ⊂ C(Q) to be the set of paths q ∈ C(Q) that are

solutions of the Euler–Lagrange equations, or equivalently are integral curves of XL. Such

10



curves are uniquely determined by an initial condition (q0, v0), hence the solution space may

be identified with the space of initial conditions TQ. We may therefore restrict the action S to

integral curves of XL, identified by TQ; define the restricted action Ŝ : TQ→ R so that

Ŝ(q0, v0) = S(q), q ∈ CL(Q) and (q(t0), q̇(t0)) = (q0, v0). (2.8)

Given a Ck Lagrangian L (where k ≥ 2), we will see that the Euler–Lagrange map and a

unique Ck−1 one-form ΘL(q, q̇) ∈ T ∗(q,q̇)(TQ) called the Lagrangian one-form, defined in coor-

dinates as

ΘL(q, q̇) =
∂L

∂q̇i
dqi,

are fundamentally related to the action (2.3). Suppose we arbitrarily select a variation of the

curve q ∈ C(q), in other words we arbitrarily select smoothly varying virtual displacement

δq(t) ∈ TqC(Q). The variational derivative of the action S(q) with respect to δq is defined

as the change in S to the first order in δq. Because S is a real-valued function on an infinite

dimensional space, we understand the derivative in a weak (Gâteaux) sense. Thus the variational

derivative of S is expressible in coordinates as

δS(q) =

∫ tF

t0

(
∂L

∂qi
δqi +

∂L

∂q̇i
d

dt
δqi
)
dt

=

∫ tF

t0

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqidt+

∂L

∂q̇i
δqi
∣∣∣∣tF
t0

,

by commutativity of mixed partial derivatives and and integration by parts. The term remaining

in the integral is the Euler–Lagrange map (2.7), and we have integrated out the Lagrange one-

form paired with the virtual displacement so that variation of the action may be written as

δS(q) =

∫ tF

t0

〈DELL(q̈), δq〉 dt+ 〈ΘL(q̇), (δq, δq̇)〉
∣∣∣∣tF
t0

.

Now, taking the variation of the restricted action Ŝ for arbitrary (δq, δv) ∈ T(q,v)(TQ) (of

course satisfying q ∈ CL(Q) and (q(t0), q̇(t0)) = (q, v)) we see that because the path is required

to be an integral curve of XL, the Euler–Lagrange map term disappears and the variation of Ŝ

is written in terms of ΘL as

dŜ(q, v) · (δq, δv) = ΘL(q(tF ), q̇(tF )) · (F tFL )∗(δq, δv)−ΘL(q, v) · (δq, δv)

=
(

(F tFL )∗ΘL(q, v)−ΘL(q, v)
)
· (δq, δv).

Then, because d2Ŝ = 0 and by compatibility of the pullback with the exterior derivative, we
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see that

d
(

(F tFL )∗ΘL −ΘL

)
= 0 ⇒ (F tFL )∗dΘL − dΘL = 0 ⇒ (F tFL )∗ΩL(q, q̇) = ΩL(q, q̇),

where ΩL(q, q̇) is the Lagrangian symplectic form, given in coordinates as

ΩL(q, q̇) =
∂2L

∂qi∂q̇j
dqi ∧ dqj +

∂2L

∂q̇i∂q̇j
dq̇i ∧ dqj .

To summarize, the Lagrangian flow FL preserves the Lagrangian symplectic form.

2.2 Hamel’s Equations

A variety of problems in mechanics are best treated by the introduction of a frame for measuring

the velocity components. In this section we shall endeavor to provide a concise and useful

definition of a frame and the space that frames “live” in and introduce a generalized use of

frames in mechanics that motivates our work. Finally we will illustrate the usefulness of Hamel’s

equations by examining its application in physical examples.

2.2.1 The Frame Bundle Associated with the Tangent Bundle

Suppose E is the total space of a vector bundle over base space M (a differentiable manifold),

so that the projection π : E → M is a continuous surjection and the fiber π−1(p) = Ep over

each p ∈ M is an n-dimensional vector space. Then a frame at p ∈ M is an isomorphism

mapping Ep → Rn [2]. Equivalently, a frame may be viewed as an ordered basis of the vector

space Ep. The collection of all such frames related to all the fibers over M that constitute E

defines the frame bundle FM , a principal fiber bundle associated to E. Formally,

FM = {(p, f) | f is a frame at p}.

Because the tangent bundle TQ of an n-dimensional manifold Q is a vector bundle, Q has a

special frame bundle associated with TQ that we denote as FQ.

A frame can be identified with a set of vectors {ui(q)}ni=1 at point q ∈ Q that forms a basis

of the tangent fiber TqQ. A smooth section of the frame bundle is therefore a frame field (one

frame at each fiber) varying smoothly over the base space Q. Whether or not the frame bundle

FQ is able to admit a global smooth section is closely related to the notion of whether or not

the manifold is parallelizable; for the remainder of this section we shall assume that we are

working on a local set in Q over which the tangent frame bundle is trivial.

A local coordinate chart induces a frame {∂/∂qi}ni=1 that forms a basis of the tangent fiber
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TqQ, which we refer to as the coordinate induced frame . Then, given a coordinate chart

and a frame field {uj}nj=1 (a section of FQ), there exists ψ(q) ∈ GL(n) at each q such that, in

coordinates,

uj(q) = ψij(q)
∂

∂qi
. (2.9)

In this way we see that FQ is a principal GL(n) bundle with the projection π : FQ → Q;

each fiber is isomorphic to GL(n) so that an element of a fiber FqQ may be identified with an

invertible linear operator on the vector space TqQ.

We shall hereon assume that a frame field {uj}nj=1 is a C2 section of the frame bundle FQ,

i.e., the n2 functions {ψij(q)}ni,j=1 are C2 over the local coordinate neighborhood.

Just as we define FQ as the frame bundle associated to the vector bundle TQ, we likewise

may define F ∗Q to be the frame bundle associated with the cotangent bundle T ∗Q, itself a vector

bundle. We shall refer to frames in F ∗Q as coframes, paralleling the terminology of vectors

and covectors. Thus, a coframe at q is a set of n covectors that form a basis of the cotangent

space T ∗qQ. The coordinate induced coframe at q is the dual to the coordinate induced

frame: it is denoted by the set of covectors {dqi}ni=1 that are dual to the vectors comprising the

coordinate induced frame.

The covectors uj(q) comprising a particular coframe may be defined in terms of the coordi-

nate induced coframe as

uj(q) = (ψ−1)ji (q)dq
i = φji (q)dq

i. (2.10)

For the remainder of this document we shall denote the inverse of ψ as φ. Notice that in this

case the covectors uj(q) for j = 1, . . . , n are dual to the vectors uj(q).

2.2.2 Hamel’s equations

Let q ∈ C(Q, q0, qF ) be a path parameterized by time t ∈ [t0, tF ]. Then given a coordinate chart

on Q, (q(t), q̇(t)) ∈ TQ has natural coordinates expressed as

(q(t), q̇(t)) 7→ (qi(t), q̇i(t)) ∈ R2n,

where q̇i(t) are the components of the velocity vector q̇(t) measured against the coordinate

induced frame ∂/∂qi. Now suppose we have selected a C2 section of the frame bundle uj(q)

defined as in (2.9). Then the components of q̇(t) are likewise expressible in terms of the new

frame according to the equation

q̇ = q̇i
∂

∂qi
= ξjψij(q)

∂

∂qi
= ξjuj(q)
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so that

q̇i = ξjψij(q).

We next rewrite the Lagrangian in terms of the new velocity components, so that in coor-

dinates

L(qi, q̇i) = L(qi, ξjψij(q)) = `(qi, ξj). (2.11)

Define the structure functions cmij (q) by the equations

cmij (q)um(q) = [ui(q), uj(q)], (2.12)

where [·, ·] is the Jacobi–Lie bracket of vector fields on Q. The structure functions at q are also

expressible in terms of ψ(q) ∈ GL(n) and its inverse φ(q) as

cmij (q) = ψai (q)ψbj(q)(φ
m
a,b(q)− φmb,a(q)). (2.13)

Given two vectors v, w ∈ TqQ, we define the anti-symmetric bracket [·, ·]q : TqQ×TqQ→ TqQ

so that

[v, w]mq um(q) = [viui(q), w
juj(q)].

Then we see that the vector space TqQ is isomorphic to an n-dimensional Lie algebra Vq equipped

with the bracket operation [·, ·]q, and the tangent bundle is (locally) diffeomorphic to a Lie

algebra bundle. Furthermore, the bracket operation induces a dual bracket [·, ·]q : TqQ×T ∗qQ→
T ∗qQ by 〈

[v, p]∗q , w
〉

= 〈p, [v, w]q〉

for v, w ∈ TqQ and p ∈ T ∗qQ, and where 〈·, ·〉 denotes the natural pairing between TqQ and

T ∗qQ [10].

We denote the directional derivatives of the function ` at (q, ξ) along the vectors u(q) by

the notation u[`](q, ξ), so that in index notation

uj [`](q, ξ) =
∂`(q, ξ)

qi
ψij(q). (2.14)

The equations of motion expressed in this new coordinate chart on the velocity phase space

TQ are known as Hamel’s equations, originally appearing in the work of Georg Hamel [22].

Hamel’s equations in index notation read

d

dt

∂`

∂ξj
=

∂`

∂qi
ψij(q) +

∂`

∂ξm
ξicmij (q). (2.15)

Theorem 2.2 (Zenkov, Bloch, and Marsden [10]). Let L : TQ → R be a Lagrangian and ` be
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its representation in local coordinates (q, ξ). Then, the following statements are equivalent:

1. The curve q(t), where a ≤ t ≤ b, is a critical point of the action functional∫ b

a
L(q, q̇) dt (2.16)

on the space of curves in Q connecting qa to qb on the interval [a, b], where we choose

variations of the curve q(t) that satisfy δq(a) = δq(b) = 0.

2. The curve q(t) satisfies the Euler–Lagrange equations

d

dt

∂L

∂q̇
=
∂L

∂q
.

3. The curve (q(t), ξ(t)) is a critical point of the functional∫ b

a
`(q, ξ) dt (2.17)

with respect to variations δξ, induced by the variations

δq = u(q) · ζ ≡ ui(q)ζi, (2.18)

and given by

δξ = ζ̇ + [ξ, ζ]q.
1 (2.19)

4. The curve (q(t), ξ(t)) satisfies the Hamel equations

d

dt

∂`

∂ξ
=

[
ξ,
∂`

∂ξ

]∗
q

+ u[`]

coupled with the equations q̇ = u(q) · ξ ≡ ξiui(q).

For the early development of these equations see [43] and [22]. More details, historical back-

ground, and proof can be found in Zenkov, Bloch, and Marsden [10]. We shall present a deriva-

tion of Hamel’s equations from an alternate variational principle in Chapter 4.

2.2.3 The Free Rigid Body and Hamel’s Equations

A fundamental result and a precursor of Hamel’s formalism is found in Euler’s equations de-

scribing the evolution of a freely rotating rigid body. This rich problem is found in a variety

1If Q is a Lie group, this formula is derived in Bloch, Krishnaprasad, Marsden, and Ratiu [11].
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of texts on mathematics and mechanics, including Arnold [3], wherein the equations are often

derived from and motivated by conservation laws and symmetries. We present a brief review of

the problem not designed for its historicity, but rather to illustrate the usefulness of Hamel’s

equations in a well-understood setting.

A rigid body is a system of point masses, subject to holonomic constraints that state that

the distance between each pair of points of the body is constant [3]. A free rigid body is neither

subject to external forces, nor is it subject to external constraints. In the case of the free rigid

body rotating about a fixed point, the configuration space is the Lie group SO(3) as long as at

least three points on the body are not in a straight line. Without loss of generality, we further

consider the rigid body as rotating around its center of mass.

The angles (qi)3
i=1 = (θ, φ, ψ), Euler angles (see Figure 2.1), locally parameterize the rotation

group and thus are a local coordinate chart of the configuration manifold. The Lagrangian of

our system is then defined as

L(qi, q̇i) =
1

2
Mij(q)q̇

iq̇j (2.20)

where Mij(q) are the components of the inertia tensor that are functions of the configuration

coordinates, symmetric in its indices but not diagonal. Note the q dependence of M ; indeed

if we fix our coordinate system in space (as we have) and allow our body to rotate about its

center of mass the distribution of mass of the body will change (relevant to our fixed coordinate

system) and its moments of inertia must be updated to reflect the instantaneous distribution.

−→

φ

θ
ψ

Figure 2.1: A depiction of the Euler angles, used as configuration coordinates for the free rigid
body.

The Euler–Lagrange equations describing the evolution of the system are then

Mij,a(q)q̇
aq̇i +Mij(q)q̈

i =
1

2
Mia,j(q)q̇

iq̇a,
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which it first glance don’t seem complicated, but recall we have refrained from explicitly writing

out the functions comprising the inertia tensor Mij(q). In fact, expanded out in terms of the

Euler angles, the Euler–Lagrange equations of the rigid body are

(
J1 cos2 ψ + J2 sin2 ψ

)
θ̈ + (J1 − J2) sin θ sinψ cosψ φ̈+ (J2 − J1) sin 2ψ θ̇ψ̇

−
(
J1 sin2 ψ + J2 cos2 ψ − J3

)
sin 2θ φ̇2 + (J1 cos 2ψ − J2 cos 2ψ + J3) sin θ φ̇ψ̇ = 0,(

J1 − J2

)
sin θ sinψ cosψ θ̈ +

(
J1 sin2 θ sin2 ψ + J2 sin2 θ cos2 ψ + J3 cos2 θ

)
φ̈

+J3 cos θ ψ̈ +
(
J1 − J2

)
cos θ sin 2ψ θ̇2 +

(
J1 sin2 ψ + J2 cos2 ψ − J3

)
sin 2θ θ̇φ̇

+
(
J1 cos 2ψ − J2 cos 2ψ − J3

)
sin θ θ̇ψ̇ +

(
J1 − J2

)
sin2 θ sin 2ψ φ̇ψ̇ = 0,

J3

(
cos θ φ̈+ ψ̈ − sin θ θ̇φ̇

)
= 0,

where J1, J2, J3 are the moments of inertia about the principle axes.

This system of three second-order equations may be greatly simplified by the introduction

of a moving frame; in this case the principle axes of inertia. Because M(q) is a real symmetric

matrix, it is always possible to find an orthogonal matrix φ(q) that diagonalizes M as follows

[M(q)] = [φ(q)]T

J1 0 0

0 J2 0

0 0 J3

 [φ(q)]

where Ji is the moment of inertia about the i-th principal axis, and we shall refer to the

components of the above diagonal matrix as Jij . Define (ξ1, ξ2, ξ3) to be the components of

q̇ ∈ TqSO(3) measured against the principal axes of inertia, our frame. Then we may rewrite

our Lagrangian as

L(qi, q̇i) =
1

2
Jijφ

i
a(q)q̇

aφjb(q)q̇
b

=
1

2
Jijξ

iξj = `(ξi).

Note that `(q, ξ) is written as `(ξ), reflecting the rotational invariance of the free rigid body.

Referring to (2.15), Hamel’s equations written in the body frame describe the dynamics of

the rigid body and are expressed by the system of equations

d

dt

∂`

∂ξj
= Jij ξ̇

i = Jamξ
aξicmij =

∂`

∂qi
ψij(q) +

∂`

∂ξm
ξicmij (q)⇒

J1ξ̇
1 = (J2 − J3)ξ2ξ3,

J2ξ̇
2 = (J3 − J1)ξ3ξ1,

J3ξ̇
3 = (J1 − J2)ξ1ξ2,
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which are Euler’s equations for a freely rotating rigid body. The full dynamics of the rigid

body are described by these equations coupled with the kinematic reconstruction equations

q̇ = u(q) · ξ. The structure functions cmij may be verified by direct computation.

Thus we see that Euler’s equations of the free rigid body are a special case of Hamel’s

equations where the frame selected is the body frame. The advantage of the introduction of

the body frame is apparent in the comparative simplicity of Hamel’s equations to the Euler–

Lagrange equations.

2.3 Variational Integrators

2.3.1 Discrete Euler–Lagrange Equations

A discrete analogue of Lagrangian mechanics can be obtained by discretizing Hamilton’s prin-

ciple; this approach underlies the construction of variational integrators. See Marsden and

West [36], and references therein, for a more detailed discussion of discrete mechanics.

Our approach to discretization is motivated by the observation that the product of the

configuration manifold with itself, Q × Q, is locally isomorphic to TQ and hence local open

subsets of Q×Q can be understood to contain the same information, locally, as TQ (again, see

Marsden and West [36]).

The use of TQ instead of Q × Q for constructing variational integrators has been studied

earlier in Bou-Rabee and Marsden [14] and in Kobilarov, Marsden, and Sukhatme [27]. Our

approach to some extent develops these ideas even further, but we should emphasize that our

version of the discrete Lagrange–d’Alembert principle is different from that of the aforemen-

tioned authors.

Assuming that we will use N integration steps in our approximation, we introduce a mesh

on the time interval [t0, tF ] by defining {tk = kh+ t0 | k = 0, . . . , N}, such that tN = tF . Then

we may define the the discrete path space to be the space of discrete trajectories:

Cd(Q) = {qd : {tk}Nk=0 → Q}

and the discrete trajectories may be identified by qk = qd(tk) so that qd = {qk}Nk=0.

A key notion is that of the discrete Lagrangian, which is a map Ld : Q × Q → R
that approximates the action integral along an exact solution of the Euler–Lagrange equations

joining the configurations qk, qk+1 ∈ Q,

Ld(qk, qk+1) ≈ ext
q∈C(Q,qk,qk+1)

∫ tk+1

tk

L(q, q̇) dt, (2.21)

where C(Q, qk, qk+1) is defined as in (2.2), and ext denotes extremum.
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In the discrete setting, the action integral of Lagrangian mechanics is replaced by an action

sum

Sd(qd) =

N−1∑
k=0

Ld(qk, qk+1),

where qd = {qk}Nk=0 ⊂ Q is a finite sequence in the configuration space. Equations implicitly

defining an update map are obtained by the discrete Hamilton’s principle, which extremizes

the discrete action given fixed endpoints q0 and qN .

Variations in the discrete setting are defined similarly to the continuous case: a variation

of a discrete trajectory qd is a one-parameter family of trajectories βd : {tk}Nk=0 × [−ε, ε] → Q

such that βd(tk, 0) = qk. Then virtual displacements in the discrete setting are defined as

δqk =
∂

∂ε

∣∣∣∣
ε=0

βd(tk, ε), (2.22)

and we refer to a set of discrete displacements as δqd = {(qk, δqk)}Nk=0 ⊂ TQ. In this manner

the discrete Hamilton’s principle may be written as

δSd(qd) = dSd(qd) · δqd = 0 for δq0 = δqN = 0.

Taking the extremum over q1, . . . , qN−1 gives the discrete Euler–Lagrange equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0, (2.23)

for k = 1, . . . , N − 1. This implicitly defines the update map FLd : Q × Q → Q × Q, where

FLd(qk−1, qk) = (qk, qk+1) and Q×Q replaces the velocity phase space TQ of continuous-time

Lagrangian mechanics.

The equations (2.23) motivate a definition of discrete fiber derivatives mappings F+Ld,

F−Ld : Q×Q→ T ∗Q defined as

F+Ld(qk, qk+1) · v = D2Ld(qk, qk+1) · v,

F−Ld(qk, qk+1) · v = −D1Ld(qk, qk+1) · v.
(2.24)

The discrete fiber derivatives can also be understood as discrete Legendre transforms writ-

ten as

F+ : (qk, qk+1) 7→ (qk+1, pk+1) = (qk+1, D2Ld(qk, qk+1)) ,

F− : (qk, qk+1) 7→ (qk, pk) = (qk,−D1Ld(qk, qk+1)) .
(2.25)

When both discrete fiber derivatives are local isomorphisms, the discrete Lagrangian is said
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to be regular , and when these same fiber derivatives are global isomorphisms the discrete

Lagrangian is said to be hyperregular (see Marsden and West [36]). In our later derivations

we will assume that Q is a vector space and that Ld is hyperregular so that the update map is

well-defined.

We have seen thatQ×Q is a discrete analogue of the velocity phase space; in the same vein we

replace submanifold Q̈ of TTQ with its discrete analogue, a submanifold Q̈d of (Q×Q)×(Q×Q),

defined as

Q̈d = {((qk, qk+1), (q̄k, q̄k+1)) | qk+1 = q̄k} ⊂ (Q×Q)× (Q×Q).

In other words, Q̈d is simply the subset of points in (Q×Q)× (Q×Q) that can be written as

((qk−1, qk), (qk, qk+1)). Then, as verified in Marsden and West [36], given a discrete Lagrangian

Ld that is Ck, there exists a unique Ck−1 discrete Euler-Lagrange map DDELLd : Q̈d →
T ∗Q and two unique Ck−1 one-forms Θ−Ld and Θ+

Ld
on the discrete velocity phase space Q×Q

so that variation of the discrete action is expressible as

δSd(qd) =
N−1∑
k=1

DDELLd((qk−1, qk), (qk, qk+1))δqk

−Θ−Ld(q0, q1)δq0 + Θ+
Ld

(qN−1, qN )δqN ,

(2.26)

where the discrete Lagrangian one-forms in the coordinate representation are

Θ−Ld(qk, qk+1) = −D1Ld(qk, qk+1)dqk,

Θ+
Ld

(qk, qk+1) = D2Ld(qk, qk+1)dqk+1,

and DDELLd((qk−1, qk), (qk, qk+1)) = Θ+
Ld

(qk−1, qk) − Θ−Ld(qk, qk+1). Thus, the discrete Euler–

Lagrange equations (2.23) are equivalent to the condition DDELLd((qk−1, qk), (qk, qk+1)) = 0.

2.3.2 Update Maps are Symplectic

The update maps implicitly defined by (2.23) can be shown to conserve a discrete symplec-

tic two-form over Q × Q. In a manner similar to (2.8), we will define the restricted discrete

action Ŝd as the discrete action restricted to the solution space of discrete Euler–Lagrange

equations (2.23). A sequence {qk}Nk=0 ⊂ Q is formed by iteration of the update map FLd , so

assuming the update map is well-defined, such a sequence may be uniquely identified by initial

conditions (q0, q1) ∈ Q×Q. The restricted action is then the map Ŝd : Q×Q→ R such that

Ŝd(q0, q1) = Sd({qk}Nk=0), (qk, qk+1) = FLd(qk−1, qk), ∀k = 1, . . . , N − 1.
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Then variation of the restricted discrete action, that is restricting (2.26) to the solution space,

results in

dŜd(q0, q1) · (δq0, δq1) = −Θ−Ld(q0, q1) · (δq0, δq1)

+ Θ+
Ld

(FN−1
Ld

(q0, q1)) · (FN−1
Ld

)∗(q0,q1)(δq0, δq1)

=
(

(FN−1
Ld

)∗Θ+
Ld
−Θ−Ld

)
((q0, qq), (δq0, δq1))

because DDELLd evaluated over the solution space is necessarily zero. In fact, evaluation of

the discrete Lagrangian one-forms restricted to the solution space results in the condition

Θ+
Ld

(qk−1, qk) = Θ−Ld(qk, qk+1), and therefore dΘ+
Ld

(qk−1, qk) = dΘ−Ld(qk, qk+1). Finally, because

d2Ŝ = 0 and by compatibility of the pullback with the exterior derivative, we see that the above

results imply conservation of a discrete two-form:

(FN−1
Ld

)∗(ΩLd) = ΩLd ,

where ΩLd = dΘ+
Ld

= dΘ−Ld is defined to be the discrete Lagrangian symplectic form on

Q×Q. The above process also holds for any single step, and thus a single step conserves the

discrete Lagrangian symplectic form: (FLd)
∗ΩLd = ΩLd . The update map FLd : Q×Q→ Q×Q

is therefore defined as a discrete symplectic map (see Marsden and West [36]). ΩLd is

expressible in coordinates as

ΩLd(qk, qk+1) =
∂2Ld(qk, qk+1)

∂qik∂q
j
k+1

dqik ∧ dq
j
k+1.

We have shown that the discrete Lagrangian flow FLd is a discrete symplectic map, conserving

the discrete symplectic form ΩLd .

2.3.3 Discrete Noether’s Theorem

In the presence of symmetry, variational integrators are symplectic-momentum integrators,

meaning that, in addition to the discrete symplectic two-form, they conserve a discrete analogue

of momentum associated with symmetry. We will describe the momentum conservation property

by presenting a discrete formulation of Noether’s theorem, following the exposition in Marsden

and West [36].

Suppose a Lie group G with associated Lie algebra g acts on Q via the left (or right) action

Φ : G×Q→ Q. The lift of the action to the tangent bundle is a mapping ΦTQ : G×TQ→ TQ
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defined so that ΦTQ(g, (q, v)) = Φ∗g(q, v), or in index notation:

ΦTQ(g, (q, v)) =

(
Φi(g, q),

∂Φi

∂qj
(g, q)vj

)
.

Furthermore, given a vector ξ ∈ g we define the infinitesimal generator ξQ : Q → TQ in

the following sense. Consider the usual exponential mapping exp : g → G. Then the vector ξ

induces a one parameter subgroup of G as t 7→ exp(tξ) ∈ G. The infinitesimal generator can be

thought of in this case as

ξQ(q) =
d

dt

∣∣∣
t=0

(exp(tξ) · q),

in other words as the action of the subgroup of G on q. Marsden and West [36] define the

infinitesimal generator in terms of the group action as

ξQ(q) =
d

dg
(Φ(g, q)) · ξ,

which can be expressed in index notation as:

ξQ(q) =

(
qi,

∂Φi

∂gj
(e, q)ξj

)
where e ∈ G is the group identity. The span of the all such generators at q forms a vector

subspace of TqQ that we identify as a symmetry space of the mechanical system when L is

invariant under the tangent lift of the group action: i.e. when L ◦ ΦTQ
g = L.

The continuous-time Noether’s theorem states that when a Lagrangian system with La-

grangian L : TQ → R is invariant under the tangent lift of the action Φ : G × Q → Q, the

Lagrangian momentum map JL : TQ→ g∗ defined by

JL(q, q̇) · ξ =

〈
∂L

∂q̇
(q, q̇), ξQ(q)

〉
,

is a conserved quantity of the Lagrangian flow FL, i.e. for all t ∈ [t0, tF ], JL ◦ FL = JL. More

details and proof can be found in Marsden and Ratiu [35] and Marsden and West [36].

The action Φ can likewise be extended to Q×Q by defining ΦQ×Q : G× (Q×Q)→ Q×Q
so that

ΦQ×Q(g, (qk, qk+1)) = (Φ(g, qk),Φ(g, qk+1)) . (2.27)

We also extend our definition of an infinitesimal generator so that for ξ ∈ g, ξQ×Q : Q ×Q →
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T (Q×Q) is a mapping given by

ξQ×Q(qk, qk+1) = (ξQ(qk), ξQ(qk+1)) =

(
(qik, q

i
k+1),

(
∂Φi

∂gj
(e, qk)ξ

j ,
∂Φi

∂gj
(e, qk+1)ξj

))
. (2.28)

We may then define two discrete Lagrangian momentum maps J±Ld : Q×Q→ g∗ so that

for some ξ ∈ g,

J−Ld(qk, qk+1) · ξ = 〈−D1Ld(qk, qk+1), ξQ(qk)〉 = Θ−Ld · ξQ×Q(qk, qk+1),

J+
Ld

(qk, qk+1) · ξ = 〈D2Ld(qk, qk+1), ξQ(qk+1)〉 = Θ+
Ld
· ξQ×Q(qk, qk+1).

(2.29)

For reference, the discrete momentum maps may be written in index notation as

J−Ld(qk, qk+1) · ξ = (Θ−Ld)i
∂Φi

∂gj
(e, qk)ξ

j ,

J+
Ld

(qk, qk+1) · ξ = (Θ+
Ld

)i
∂Φi

∂gj
(e, qk+1)ξj .

Now that we have formally defined our discrete Lagrangian momentum maps in terms of a

Lie group action on Q × Q, we are almost ready to formulate and prove the discrete version

of Noether’s theorem. However, first recall that we defined a discrete symplectic map, such as

f : Q×Q→ Q×Q, by the condition that it conserved a discrete symplectic form: f∗ΩLd = ΩLd .

We will define a special discrete symplectic map by a more restrictive condition: that such

a map f : Q×Q→ Q×Q satisfy the conditions f∗Θ+
Ld

= Θ+
Ld

and f∗Θ−Ld = Θ−Ld .

Theorem 2.3 (Discrete Noether’s Theorem). Suppose Ld : Q × Q → R is the discrete La-

grangian of a discrete Lagrangian mechanical system on Q×Q, and furthermore suppose that

Ld is invariant with respect to the action Φ of a Lie group G lifted to Q×Q as in (2.27). Then:

1. ΦQ×Q
g : Q×Q→ Q×Q is a special discrete symplectic map. Also, the discrete Lagrangian

momentum maps will be equivalent so that J+
Ld

= J−Ld = JLd and can thus be referred to

as one map JLd : Q×Q→ g∗.

2. The discrete Lagrangian map FLd conserves the discrete Lagrangian momentum map JLd,

i.e. JLd ◦ FLd = JLd.

Proof. A more detailed proof can be find in Marsden and West [36], who furthermore rely on

results in Marsden and Ratiu [35]. Nonetheless, we provide a basic outline of a proof here,

drawing from these sources but editing for clarity of exposition and relevance.

In the first statement, invariance of Ld with respect to Φ can be expressed by the equation
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Ld ◦ ΦQ×Q
g = Ld. Differentiating with respect to qk we see that

D1Ld
(
ΦQ×Q(g, (qk, qk+1))

)
· ∂Φ(g, qk)

∂qk
dqk = D1Ld(qk, qk+1)dqk ⇒(

ΦQ×Q
g

)∗
(−Θ−Ld) = −Θ−Ld .

Similarly we can show
(

ΦQ×Q
g

)∗
(Θ+

Ld
) = −Θ+

Ld
. Thus ΦQ×Q

g is a special discrete symplectic

map. Furthermore, invariance of Ld implies infinitesimal invariance, which is expressible by the

condition dLd · ξQ×Q = 0 for any ξ ∈ g, so that

dLd · ξQ×Q(qk, qk+1) = D1Ld(qk, qk+1) · ξQ(qk) +D2Ld(qk, qk+1) · ξQ(qk+1)

= −Θ−Ld(qk, qk+1) · ξQ(qk) + Θ+
Ld

(qk, qk+1) · ξQ(qk+1) = 0.

Next by applying the definition of the discrete Lagrangian momentum maps (2.29), the above

implies that

J−Ld(qk, qk+1) · ξ = J+
Ld

(qk, qk+1) · ξ.

Hence, the discrete Lagrangian momentum maps are equivalent and we may refer to them as

one map JLd .

To verify that FLd conserves JLd , we first note that Φ naturally induces an action of G on

the space of trajectories Cd(Q) (the trajectories simply being a set of N + 1 points in Q). Then,

evaluating the discrete action with the infinitesimal generator, one obtains

dSd(qd) · ξCd(Q)(qd) =

N−1∑
k=0

dLd(qk, qk+1) · ξQ×Q(qk, qk+1) = 0,

because, as we have just seen, invariance of Ld implies infinitesimal invariance.

Next, if we restrict trajectories to solutions of the discrete Euler–Lagrange equations, the

definition of the discrete restricted action in terms of initial conditions (q0, q1) implies that the

above can also be written as

dSd(qd) · ξCd(Q)(qd) = dŜd(q0, q1) · ξQ×Q(q0, q1)

=
(

(FNLd)
∗Θ+

Ld
−Θ−Ld

)
· ξQ×Q(q0, q1)

=
(

(FNLd)
∗J+
Ld

(q0, q1)− J−Ld(q0, q1)
)
· ξ = 0.

This holds for arbitrary ξ ∈ g and, as before, the above argument is applicable to an arbitrary

number of time-steps, including a single time-step. Thus, since J+
Ld

= J−Ld = JLd , we see that

(FLd)
∗JLd = JLd ◦ FLd = JLd and we have demonstrated that when the discrete Lagrangian is

invariant with respect to the action Φ of group G on Q, solutions of the discrete Euler–Lagrange
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equations conserve discrete momentum maps.
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Chapter 3

Discrete Hamel’s Equations

In the following chapter we propose and derive via a discrete variational principle a numerical

integrator approximating the evolution of a Lagrangian mechanical system that we call the

discrete Hamel’s equations. The form of the integrators and their equivalent variational prin-

ciple will first be motivated by a second examination at the of the discrete Euler–Lagrange

equations within which we shall present the discrete Hamilton’s principle in an alternate but

equivalent form. This alternate viewpoint will motivate a discrete variational principle that is

not equivalent to the discrete Hamilton’s principle, but that gives rise to the discrete Hamel’s

equations.

The material presented in this chapter may be found in a preprint by Ball and Zenkov [5],

submitted for publication in 2013.

As we have already seen, discrete Lagrangian mechanics is obtained by discretizing Hamil-

ton’s principle. This approach leads to symplectic- and, for systems with symmetry, momentum-

preserving integrators. By discretizing the Lagrange–d’Alembert principle, nonconservative

forces (see Marsden and West [36]) and nonholonomic constraints (see Cortés and Mart́ınez [17])

can be incorporated as well. As pointed out in Cortés and Mart́ınez [17], the versions of the

discrete Lagrange–d’Alembert principle used in [36] and [17] are incompatible in the following

sense: In the nonholonomic setting, discretizing constraints as opposed to discretizing their re-

actions generically results in different discrete models. In other words, the notion of an ideal

constraint of continuous-time mechanics is not preserved by the discretization of Cortés and

Mart́ınez. Ideal constraints can be replaced by reaction forces, in other words work done by the

constraint forces disappears under virtual displacements.

We develop discrete Hamel’s formalism by discretizing Hamilton’s principle for Hamel’s

equations. The principal difficulty in extending this program to the Hamel’s setting is caused

by the bracket terms, as a discrete analogue of the Jacobi–Lie bracket is known only for left-

or right-invariant vector fields on Lie groups (Moser and Veselov [39], Marsden, Pekarsky, and

26



Shkoller [34], Bobenko and Suris [12,13]). In this chapter we resolve the bracket term discretiza-

tion issue for systems on vector spaces.

When a continuous-time system is discretized, we first select the vector fields that are used to

measure the velocity components, and then set up the discrete variational principle. In general,

the outcome is a somewhat different discrete dynamical system than the outcome of the usual

variational discretization procedure. Remarkably, a modification of our formalism for systems

with nonholonomic constraints resolves the ideal constraint issue of Cortés and Mart́ınez. That

is, the discrete Lagrange–d’Alembert principle for Hamel equations is identical to the discrete

Lagrange–d’Alembert principle of Marsden and West.

3.1 Discrete Lagrangian Mechanics Revistited

We have already seen how a discrete analogue of Lagrangian mechanics can be obtained by

discretizing Hamilton’s principle; this approach underlies the construction of variational in-

tegrators. In this section we present an alternate viewpoint on the same principle: this new

viewpoint will subsequently guide our derivation of the discrete Hamel’s equations.

Recall that the discrete Euler–Lagrange equations (2.23) are derived in the process of finding

a discrete trajectory qd ∈ Cd(Q) that extremizes the discrete action Sd : Cd(Q) → R. The

discrete action is the summation of a discrete Lagrangian Ld : Q × Q → R, and the discrete

Lagrangian is itself understood as an approximation of the continuous action (a path integral

of the Lagrangian function L) via an identification of the tangent bundle TQ with Q×Q.

In the case that Q is a vector space, it may be convenient to use (qk+1/2, vk,k+1) ∈ TQ, where

qk+1/2 = 1
2(qk + qk+1) and vk,k+1 = 1

h(qk+1 − qk), as a state of a discrete mechanical system. In

such a representation, the discrete Lagrangian becomes a function of (qk+1/2, vk,k+1), which we

will denote as Ld : TQ→ R so that

Ld(qk+1/2, vk,k+1) = Ld(qk, qk+1),

and the discrete Euler–Lagrange equations read

1
2

(
D1L

d(qk−1/2, vk−1,k) +D1L
d(qk+1/2, vk,k+1)

)
+ 1

h

(
D2L

d(qk−1/2, vk−1,k)−D2L
d(qk+1/2, vk,k+1)

)
= 0.

These equations are equivalent to the variational principle

δSd =
N−1∑
k=0

(
D1L

d(qk+1/2, vk,k+1)δqk+1/2 +D2L
d(qk+1/2, vk,k+1)δvk,k+1

)
= 0, (3.1)
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where the variations δqk+1/2 and δvk,k+1 are induced by the variations δqk and are given by the

formulae

δqk+1/2 = 1
2

(
δqk+1 + δqk

)
, δvk,k+1 = 1

h

(
δqk+1 − δqk

)
.

It is straightforward to show that the principle (3.1) is equivalent to the discrete Hamilton’s

principle expressed as (2.26), and that the form of the discrete Euler–Lagrange equations pre-

sented here is likewise equivalent to (2.23). The discrete Hamel formalism introduced below

may be interpreted as a generalization of the representation (3.1) of discrete mechanics.

Q = R2

qk

qk+1

qk+1/2

δqk

δqk+1

δqk+1/2
Tqk+1/2

Q

δqk+1/2

TqkQ

δqk

Tqk+1
Q

δqk+1

Figure 3.1: The virtual displacement vectors associated with an arbitrary variation at the step
defined by (qk, qk+1) ∈ Q×Q in a flat two-dimensional vector space.

3.2 Discrete Hamel’s Equations

In the rest of the chapter we assume that Q is a vector space. Start with a sequence of config-

urations specified by a trajectory qd = {qk}Nk=0. Given a parameter τ ∈ [0, 1], define the points

qk+τ := (1 − τ)qk + τqk+1 for each 1 ≤ k ≤ N − 1 to be interpolation points. We intro-

duce a procedure for defining a “discrete velocity” vk,k+1 ∈ Tqk+τQ by taking the parameter

τ -derivative of the interpolation point definition, so that

vk,k+1 =
1

h

d

ds

∣∣∣∣
s=τ

((1− s)qk + sqk+1) =
1

h
(qk+1 − qk). (3.2)
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Q = R2

qk

qk+1

qk+1/2

δqk

δqk+1

δqk+1/2

vk,k+1 δvk,k+1

δqk+1/2

δqk+1/2 δvk,k+1

T(qk+1/2,vk,k+1)(TQ)

Figure 3.2: Virtual displacements (δqk+1/2, δvk,k+1) ∈ T(qk+1/2,vk,k+1)(TQ), again where Q is a
two-dimensional vector space.

Notice that in the case of τ = 1
2 , the value of (qk+1/2, vk,k+1) under this definition is precisely the

midpoint representation of the state of a discrete mechanical system presented in the previous

section.

The velocity components relative to the frame u(q) at qk+τ will be denoted ξk,k+1 =

(ξ1
k,k+1, . . . , ξ

n
k,k+1). Similar to [14,27], the phase space for the suggested discretization of Hamel’s

equation is the tangent bundle TQ. That is, in local coordinates (q, ξ) on TQ the discrete La-

grangian `d : TQ → R reads `d = `d(qk+τ , ξk,k+1). To discretize a continuous-time system, we

suggest the following procedure:

1. Select a frame u(q) and identify the continuous-time Lagrangian l(q, ξ), as in (2.11).

2. Construct the discrete Lagrangian using the formula

`d(qk+τ , ξk,k+1) = h`(qk+τ , ξk,k+1).

The action sum then is

sd =

N−1∑
k=0

`d(qk+τ , ξk,k+1), (3.3)

which is an approximation of the action integral (2.3) of the continuous-time system.
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Given τ ∈ [0, 1], define ζk+τ by the formula

ζk+τ = (1− τ)ζk + τζk+1. (3.4)

The vectors ζk, ζk+1, and ζk+τ in Tqk , Tqk+1
Q, and Tqk+τQ will be used below to establish

the discrete analogues of the variation formulae.

Define the discrete conjugate momentum by

µk,k+1 := D2`
d(qk+τ , ξk,k+1). (3.5)

Below, we use the notations

uk+τ := u(qk+τ ), `dk+τ := `d(qk+τ , ξk,k+1), u
[
`d
]
k+τ

:= u
[
`d
]
(qk+τ , ξk,k+1),

etc. Recall that the term u[`d](q, ξ) is defined to be to the directional derivatives of the (discrete)

Lagrangian along the vectors u(q) as in(2.14), so that

uj [`
d](q, ξ) =

∂`d(q, ξ)

∂qi
ψij(q).

Theorem 3.1. The sequence
(
qk+τ , ξk,k+1

)
∈ TQ for k = 0, . . . , N − 1 satisfies the discrete

Hamel’s equations

1
h

(
µk−1,k − µk,k+1

)
+ τu

[
`d
]
k−1+τ

+ (1− τ)u
[
`d
]
k+τ

+ τ
[
ξk−1,k, µk−1,k

]∗
qk−1+τ

+ (1− τ)
[
ξk,k+1, µk,k+1

]∗
qk+τ

= 0 (3.6)

if and only if

δsd = δ

N−1∑
k=0

`d(qk+τ , ξk,k+1) = 0,

where

δqk+τ = u(qk+τ ) · ζk+τ = ζjk+τuj(qk+τ ), (3.7)

δξk,k+1 = 1
h

(
ζk+1 − ζk

)
+
[
ξk,k+1, ζk+τ

]
qk+τ

. (3.8)

Here ζ0 = ζN = 0, and ζk+τ is defined in (3.4), k = 0, . . . , N − 1.

Remark 3.1. In order to obtain a complete system of equations, one supplements (3.6) with a

discrete analogue of the kinematic equation q̇ = u(q) · ξ. There is a certain freedom in doing

that.
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Here we have already stated in (3.2) that the discrete velocity is related to the parameteri-

zation qk+τ = (1− τ)qk + τqk+1. Thus, for now we assume this discrete analogue to be

qk+1 − qk
h

= uk+τ · ξk,k+1

so that in index notation

ξjk,k+1 =

(
qik+1 − qik

h

)
φji (qk+τ ).

In coordinate form1, the discrete Hamel’s equations and the formulae for variations read

1
h

(
µk−1,k;j − µk,k+1;j

)
+ τuj

[
`d
]
k−1+τ

+ (1− τ)uj
[
`d
]
k+τ

+ τcaij(qk−1+τ )ξik−1,kµk−1,k;a + (1− τ)caij(qk+τ )ξik,k+1µk,k+1;a = 0,

and

δqik+τ = ψib(qk+τ )ζbk+τ ,

δξbk,k+1 = 1
h

(
ζbk+1 − ζbk

)
+ cbij(qk+τ ) ξik,k+1ζ

j
k+τ ,

respectively.

Remark 3.2. Unlike the continuous-time case, the formulae for variations (3.7) and (3.8) cannot

be derived in a manner presented in the proof of Theorem 2.2 (see Zenkov, Bloch, and Mars-

den [10] or more recently Ball and Zenkov [5] for the proof). The situation here is somewhat

similar to the issue encountered and resolved by Chetaev in his work [16] on the equivalence of

the Lagrange–d’Alembert and Gauss principles for systems with nonlinear nonholonomic con-

straints. Recall that Chetaev’s approach was to define variations in such a way that the two

aforementioned principles become equivalent.

Proof. Using formulae (3.7) and (3.8) and computing the variation of the action sum (3.3), one

1We use a semi-colon to distinguish the index of the covector component from the index of the step (k, k+ 1).
This should not be confused with the covariant derivative. Hence, µk,k+1;a should be understood as the a-th
component of the covector µk,k+1 ∈ T ∗qk+1/2

Q.

31



obtains

δsd =

N−1∑
k=0

D1`
d(qk+τ , ξk,k+1) δqk+τ +D2`

d(qk+τ , ξk,k+1) δξk,k+1

=
N−1∑
k=0

〈
D1`

d
k+τ , uk+τ · ζk+τ

〉
+
〈
D2`

d
k+τ , (ζk+1 − ζk)/h+

[
ξk,k+1, ζk+τ

]
qk+τ

〉
=

N−1∑
k=1

〈
1
h(µk−1,k − µk,k+1), ζk

〉
+
〈
u
[
`d
]
k+τ

+
[
µk,k+1, ξk,k+1

]∗
qk+τ

, (1− τ)ζk + τζk+1

〉
=

N−1∑
k=1

〈
1
h(µk−1,k − µk,k+1), ζk

〉
+
〈
τu
[
`d
]
k−1+τ

+ (1− τ)u
[
`d
]
k+τ

, ζk

〉
+
〈
τ
[
µk−1,k, ξk−1,k

]∗
qk−1+τ

+ (1− τ)
[
µk,k+1, ξk,k+1

]∗
qk+τ

, ζk

〉
.

Thus, vanishing of δsd for arbitrary ζk, k = 1, . . . , N − 1, is equivalent to discrete Hamel’s

equations (3.6).

The formulae for variations (3.7) and (3.8) in the discrete setting are motivated by the

following observations. First, recall that in the continuous-time setting the formula (2.19) for

δξ follows from the formula

δ(u · ξ)− d

dt
(u · ζ) = 0. (3.9)

A discrete analogue of δ(u · ξ) is relatively straightforward to obtain. Indeed, using the formula

δqk+τ = uk+τ · ζk+τ ≡ uk+τ ·
(
(1− τ)ζk + τζk+1

)
and the interpretation of the operator δ as a directional derivative, one obtains

δuk+τ =
(
ζk+τ · u[u]k+τ

)
,

and therefore

δ(uk+τ · ξk+1) = δuk+τ · ξk,k+1 + uk+τ · δξk,k+1

= uk+τ · δξk,k+1 +
(
ζk+τ · u

[
ξk,k+1 · u

])
k+τ

.

However, a discrete analogue of the formula d
dt(u · ζ) is not immediately available, as the opera-

tion of time differentiation is not intrinsically present in the discrete setting. A workaround that
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we suggest is to view the transition from qk to qk+1 as a motion along a straight line segment

at a uniform rate, as we defined in the beginning of the current section:

qk+τ = (1− τ)qk + τqk+1, 0 ≤ τ ≤ 1, (3.10)

so that qk+τ = qk when τ = 0 and qk+τ = qk+1 when τ = 1. Since the time step is h, the

analogue of continuous-time velocity is vk,k+1 = (qk+1 − qk)/h. From (3.10),

qk+1 − qk
h

=
1

h

dqk+τ

dτ
,

leading to an interpretation of the operator

1

h

d

dτ

as a discrete analogue of time differentiation of continuous-time mechanics.

The discrete analogue of the term d
dt(u · ζ) thus is

1

h

d

dτ

(
uk+τ · ζk+τ

)
=

1

h

duk+τ

dτ
· ζk+τ + uk+τ ·

1

h

dζk+τ

dτ

= uk+τ ·
1

h

dζk+τ

dτ
+
(
ξk,k+1 · u

[
ζk+τ · u

]
k+τ

)
= uk+τ ·

ζk,k+1 − ζk
h

+
(
ξk,k+1 · u

[
ζk+τ · u

]
k+τ

)
.

To summarize, the discrete analogue of (3.9) reads

uk+τ · δξk,k+1 = uk+τ ·
ζk,k+1 − ζk

h
+
[
u · ξk,k+1, u · ζk+τ

]
qk+τ

,

which implies formula (3.8) for variation δξk,k+1.

Remark 3.3. The discrete Hamel’s equations are, generally, distinct from the discrete Euler–

Lagrange equations. That is, the discrete Hamel’s equations and the discrete Euler–Lagrange

equations are algebraically distinct second order difference equations. This will be discussed

further in Chapter 5.

3.3 Hamel’s Formalism and Nonholonomic Integrators

In this section we study some of the structure-preserving properties of discrete Hamel’s formal-

ism in the presence of velocity constraints.
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3.3.1 The Lagrange–d’Alembert Principle

Assume now that there are velocity constraints imposed on the system. We confine our attention

to constraints that are homogeneous in the velocity. Accordingly, we consider a configuration

space Q and a distribution D on Q that describes these constraints. Recall that a distribution

D is a collection of linear subspaces of the tangent spaces of Q; we denote these spaces by

Dq ⊂ TqQ, one for each q ∈ Q. A curve q(t) ∈ Q will be said to satisfy the constraints if

q̇(t) ∈ Dq(t) for all t. This distribution will, in general, be nonintegrable; i.e., the constraints

are, in general, nonholonomic.2

Consider a Lagrangian L : TQ → R. Assume that the constraints are ideal , that is, they

can be replaced with reaction forces3 that at each q ∈ Q belong to the null space D◦q ⊂ T ∗qQ
of Dq. The equations of motion are given by the following Lagrange–d’Alembert principle .

Definition 3.2. The Lagrange–d’Alembert equations of motion for the system are those

determined by

δ

∫ b

a
L(q, q̇) dt = 0,

where we choose variations δq(t) of the curve q(t) that satisfy δq(a) = δq(b) = 0 and δq(t) ∈
Dq(t) for each t where a ≤ t ≤ b.

This principle is supplemented by the condition that the curve q(t) itself satisfies the constraints.

Note that we take the variation before imposing the constraints; that is, we do not impose the

constraints on the family of curves defining the variation. This is well known to be important

to obtain the correct mechanical equations (see [28] and [8] for a discussion and references).

3.3.2 The Constrained Hamel’s Equations

Given a nonholonomic system, that is, a Lagrangian L : TQ → R and constraint distribution

D, select the independent local vector fields

ui : Q→ TQ, i = 1, . . . , n,

such that Dq = span{u1(q), . . . , un−p(q)}. Each q̇ ∈ TQ can be uniquely written as

q̇ = u(q) · ξD + u(q) · ξU , where u(q) · ξD ∈ Dq, (3.11)

2Constraints are nonholonomic if and only if they cannot be rewritten as position constraints.
3This means that the constraints are not present anymore, but forces are imposed on the unconstrained

system, and the dynamics of the forced Lagrangian system is identical to that of the constrained system.
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i.e., u(q) · ξD is the component of q̇ along Dq and u(q) · ξU is the complementary component.

Similarly, each a ∈ T ∗Q can be uniquely decomposed as

a = aD · u∗(q) + aU · u∗(q),

where aD ·u∗(q) is the component of a along the dual of Dq, where aU ·u∗(q) is the complementary

component, and where u∗(q) ∈ T ∗Q× · · · × T ∗Q denotes the dual frame of u(q). Using (3.11),

the constraints read

ξ = ξD or ξU = 0. (3.12)

This implies

δξ = δξD or δξU = 0. (3.13)

The Lagrange–d’Alembert principle in combination with (3.13) proves the following theorem:

Theorem 3.3. The dynamics of a nonholonomic system is represented by the constrained

Hamel’s equations (
d

dt

∂`

∂ξ
−
[
ξD,

∂`

∂ξ

]∗
q

− u[`]

)
D

= 0, ξU = 0,

coupled with the kinematic equation

q̇ = u(q) · ξD.

The constrained Lagrangian is the restriction of the Lagrangian to the constraint distri-

bution. Thus, using Hamel’s formalism, the constrained Lagrangian reads

`c(q, ξ
D) = `(q, ξD, 0) ≡ `(q, ξ)|ξU=0.

It is straightforward to check that an alternative form of the constrained Hamel equations is

d

dt

∂`c
∂ξD

−
([
ξD,

∂`

∂ξ

]∗
q

)
D
− uD[`c] = 0, ξU = 0. (3.14)

3.3.3 Continuous-Time Chaplygin Systems

As an important special case, consider commutative Chaplygin systems, which are non-

holonomic systems with a commutative symmetry group H and subject to the condition that

at each q ∈ Q the tangent space TqQ is the direct sum of the constraint distribution and the
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tangent space to the orbit OrbH(q) of H through q:

TqQ = Dq ⊕ Tq OrbH(q). (3.15)

To avoid technical difficulties, assume that the group H acts freely and properly on the config-

uration space Q, so that π : Q → Q/H is a principle fiber bundle, where π is the projection.

Elements of Q/H and H will be denoted by x and s, respectively.

Following [8], define an Ehresmann connection by requiring that the group directions

and the constraint distribution provide a vertical and horizontal spaces, respectively. These

spaces are denoted Vq and Hq.

In other words, the nonholonomic kinematic constraints provide an Ehresmann connection

on the principal bundle π : Q → Q/H. Under the assumptions made above, the equations of

motion drop to the reduced space D/H, which in this special case is the same as Q/H.

Recall that an Ehresmann connection A is a vertical-valued vector one-form that is a projec-

tion on Vq; i.e., Aq : TqQ→ Vq for each q and A(v) = v for all v ∈ Vq. In the bundle coordinates

(x, s) the form A reads

A = ωa
∂

∂sa
, where ωa(q) = Aaα(x) dxα + dsa, (3.16)

where α = 1, . . . , (n−p), and where a = (n−p+ 1), . . . , n. Recall also that the horizontal space

Hq = kerA, so that TqQ = Hq ⊕ Vq, in full agreement with (3.15).

The curvature of A is the vector-valued two-form defined by

B(X,Y ) = −A([horX,horY ]),

where horX and horY are the horizontal parts of the vectors X,Y ∈ TqQ, respectively. In the

bundle coordinates (xα, sa),

B(X,Y ) = Ba
αβX

αY β ∂

∂sa
,

where

Ba
αβ =

∂Aaα
∂rβ

−
∂Aaβ
∂rα

.

The constrained Lagrangian is the restriction of Lagrangian onto the constraint distri-

bution, Lc = L|D. For Chaplygin systems, L and Lc naturally reduce to function on TQ/H and

on D/H. In the bundle coordinates (x, s) this simply means that L is independent of s,4 i.e.,

L = L(x, ẋ, ṡ), and the constrained Lagrangian reads

Lc(x, ẋ) = L(x, ẋ,−A(x) ẋ).

4For a noncommutative symmetry group, L depends on (s, ṡ) through the combination s−1ṡ.
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The equations of motion for Chaplygin systems

d

dt

∂Lc
∂ẋ
− ∂Lc

∂x
=

〈
∂L

∂ṡ
, iẋB

〉
, (3.17)

or, in coordinates,
d

dt

∂Lc
∂ẋα

− ∂Lc
∂xα

= − ∂L
∂ṡa

Ba
αβẋ

β,

α, β = 1, . . . , (n−p), were first derived, by a coordinate calculation, by Chaplygin in [15]. They

are called the Chaplygin equations.

We now obtain equations (3.17) using Hamel’s formalism. Recall that connection (3.16) is

defined by the constraint distribution. Equivalently, the constraints read

ṡ+A(x) ẋ = 0.

Associated with the constraint distribution are the vector fields

uα = hor ∂xα = ∂xα −Aaα∂sa , ua = ∂sa . (3.18)

Using this frame,

q̇ = ẋαuα + (ṡa +Aaαẋ
α)ua,

α = 1, . . . , (n− p), a = (n− p+ 1), . . . , n, or, equivalently,

ξD = ẋ, ξU = ṡ+A(x) ẋ, q̇ = uD · ξD + uU · ξU ,

and

`(x, ξ) = L(x, ξD, ξU −A(x)ξD), `c(x, ξ
D) = L(x, ξD,−A(x)ξD). (3.19)

Evaluating the Jacobi–Lie brackets of the fields (3.18), one obtains

[uα, uβ] =

(
∂Aaα
∂xβ

−
∂Aaβ
∂xα

)
∂

∂sa
≡ Ba

αβ

∂

∂sa
, [uα, ua] = [ua, ub] = 0,

which implies ([
ξD,

∂`

∂ξ

]∗
q

)
D

=

〈
∂L

∂ṡ
, iẋB

〉
,

and thus (3.17) are just the constrained Hamel equations (3.14). Recall that B is the curvature

of the form A.

An important remark is that, form Chaplygin’s prospective, equations (3.17) are the Euler–
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Lagrange equations on the configuration space Q/H subject to a nonconservative force〈
∂L

∂ṡ
, iẋB

〉
.

This force may be interpreted as a shape component of the constraint reaction.

Another important remark is that ẋα in the classical literature are viewed as the reduced

configuration velocities, whereas from the point of view of Hamel’s formalism ẋα represent the

velocity components along the non-commuting fields uα.

3.3.4 Discrete Nonholonomic Systems

Discrete nonholonomic systems (nonholonomic integrators) were introduced by Cortés and

Mart́ınez in [17].

Let Q be a configuration space. According to Cortés and Mart́ınez, a discrete nonholonomic

mechanical system on Q is characterized by:

• A discrete Lagrangian Ld : Q×Q→ R;

• An (n− s)-dimensional distribution D on TQ;

• A discrete constraint manifold Dd ⊂ Q×Q which has the same dimension as D and

satisfies the condition (q, q) ∈ Dd for all q ∈ Q.

The dynamics is given by the following discrete Lagrange–d’Alembert principle (see [17]):

N−1∑
k=0

(
D1L

d(qk, qk+1) +D2L
d(qk−1, qk)

)
δqk = 0, δqk ∈ Dqk , (qk, qk+1) ∈ Dd.

Here D1L
d and D2L

d denote the partial derivatives of the discrete Lagrangian with respect to

the first and the second inputs, respectively.

As pointed out in [19, 20], the discrete constraint manifold should be carefully selected

when a continuous-time nonholonomic system is discretized. For the details on the properties

of discrete nonholonomic systems we refer the reader to papers [17,19,20]. In a recent paper [27],

a somewhat different approach to discretizing nonholonomic systems has been suggested.

Cortés and Mart́ınez also study the dynamics of discrete Chaplygin systems. In particular,

given a continuous-time Chaplygin system, they discretize the Euler–Lagrange equations with

constraint reactions, and conclude that in general the resulting discrete system is inconsistent

with the outcome of their discrete Lagrange–d’Alembert principle. In other words, the concept

of ideal constraints is not acknowledged by their discretization procedure.
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Lynch and Zenkov [31, 32] proved that the discrete dynamics defined by the Lagrange–

d’Alembert principle of Cortés and Mart́ınez may lack structural stability. For example, it is

possible for the discretization of a continuous-time Chaplygin system to change the dimension

and/or stability of manifolds of relative equilibria of the said continuous-time system.

Below, we will show that a different definition of the discrete Lagrange–d’Alembert principle

exists that is free of the aforementioned issues. In particular, the dimension and stability of

manifolds of relative equilibria are kept intact if this new version of the Lagrange–d’Alembert

principle is utilized.

3.3.5 Hamel’s Formalism for Discrete Nonholonomic Systems

Recall that the Lagrange–d’Alembert principle for continuous-time nonholonomic systems as-

sumes that the variation of action is carried out before imposing the constraints. The outcome

is the constrained Hamel equations, as discussed in Section 3.3.2. In a similar manner, we accept

that the dynamics of a discrete nonholonomic system is determined by the discrete Lagrange–

d’Alembert equations, obtained by first taking the variation of the discrete action, as in

Section 3.2, and then imposing the discrete constraints. We point out that the definition of the

discrete Lagrange–d’Alembert principle given here is not the same as the definition of Cortés

and Mart́ınez reproduced in Section 3.3.4.

In the continuous-time setting, the constraints are represented by formula (3.12). We thus

suggest that, under the same assumptions on the frame selection as in Section 3.3.2, the discrete

constraints are

ξk,k+1 = ξDk,k+1 or ξUk,k+1 = 0.

The dynamics of a discrete nonholonomic system then is given by the constrained Hamel

equations

1
h

(
µk−1,k − µk,k+1

)
D +

(
τu
[
`d
]
k−1+τ

+ (1− τ)u
[
`d
]
k+τ

)
D

+
(
τ
[
ξDk−1,k, µk−1,k

]∗
qk−1+τ

+ (1− τ)
[
ξDk,k+1, µk,k+1

]∗
qk+τ

)
D = 0, (3.20)

where, as before, µk,k+1 is given by formula (3.5). Of a special interest is the value τ = 1/2, in

which case one verifies that the order of approximation of (3.20) is 2.

3.3.6 Discrete Chaplygin Systems

Given a continuous-time Chaplygin system, we construct its discretization by utilizing the

discrete Hamel formalism. Using the frame (3.18) and the continuous-time Lagrangians (3.19)

introduced in Section 3.3.3, the discrete Lagrangian and the discrete constrained Lagrangian
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read

`d(xk+τ , ξk,k+1) = h`(xk+τ , ξk,k+1),

`dc(xk+τ , ξ
D
k,k+1) = `d(xk+τ , ξ

D
k,k+1) ≡ h`c(xk+τ , ξ

D
k,k+1).

The dynamics is then given by equation (3.20), with

(µk,k+1)D = D2 `
d
c(xk+τ , ξ

D) ≡ D2 `
d(xk+τ , ξk,k+1)|ξUk,k+1=0

and µk,k+1 defined as in (3.5).

We now convert this dynamics into a discrete analogue of the Chaplygin equations (3.17).

Following the general discretization procedure, we obtain the formulae

ξDk,k+1 = ∆xk/h, ξUk,k+1 = ∆sk/h+A(xk+τ )∆xk/h,

where ∆xk = (xk+1 − xk) and ∆sk = (sk+1 − sk). Then, invoking (3.19), it is straightforward

to see that

`d(xk+τ , ξk,k+1) = h`(xk+τ , ξk,k+1)

= hL(xk+τ , ξ
D
k,k+1, ξ

U
k,k+1 −A(xk+τ )ξDk,k+1) (3.21)

and

`dc(xk+τ , ξ
D
k,k+1) = `d(xk+τ , ξ

D
k,k+1) = h`c(xk+τ , ξ

D
k,k+1)

= hLc(xk+τ , ξ
D
k,k+1) = hLc(xk+τ ,∆xk,k+1/h)

= hL(xk+τ ,∆xk/h,−A(xk+τ )∆xk/h), (3.22)

where L(x, ẋ, ṡ) is the Lagrangian of the continuous-time Chaplygin system. From formulae

(3.21), (3.22), and (3.18), one obtains

µk,k+1 = D2 `
d(xk+τ , ξk,k+1),

(µk,k+1)D = D2 `
d
c(xk+τ , ξ

D
k,k+1)

= hD2 Lc(xk+τ , ξ
D
k,k+1) = hD2 Lc(xk+τ ,∆xk/h),

(µk,k+1)U = D3 `
d(xk+τ , ξ

D
k,k+1, ξ

U
k,k+1)

= hD3 L(xk+τ , ξ
D
k,k+1, ξ

U
k,k+1 −A(xk+τ )ξDk,k+1)

= hD3 L(xk+τ ,∆xk/h,∆sk/h).
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Next, since we utilize the frame (3.18) just like in the continuous-time setting, the formula

([
ξDk,k+1, µk,k+1

]∗
qk+τ

)
D

=
〈
µk,k+1, iξDk,k+1

Bqk+τ

〉
=
〈

(µk,k+1)U , iξDk,k+1
Bqk+τ

〉
=
〈
(µk,k+1)U , i∆xk/hBqk+τ

〉
=
〈
hD3 L(xk+τ ,∆xk/h,−A(xk+τ )∆xk/h), i∆xk/hBqk+τ

〉
is established with an aid of the arguments of Section 3.3.3. To keep the formulae shorter, we

write the latter expression as 〈
hD3 L, i∆xk/hB

〉
k+τ

.

Finally,

(
u[`d](qk+τ , ξk,k+1)

)
D = D1 `

d(xk+τ , ξ
D
k,k+1)

= D1 `
d
c(xk+τ , ξ

D
k,k+1) = hD1 Lc(xk+τ ,∆xk/h).

Summarizing, the dynamics of the discrete Chaplygin system reads

1
h

(
(D2 Lc)k+τ − (D2 Lc)k−1+τ

)
= τ(D1 Lc)k−1+τ + (1− τ)(D1 Lc)k+τ

+ τ
〈
D3 L, i∆xk−1/hB

〉
k−1+τ

+ (1− τ)
〈
D3 L, i∆xk/hB

〉
k+τ

, (3.23)

where (D i Lc)k+τ := D i Lc(xk+τ ,∆xk/h). Remarkably, the discrete Chaplygin equations (3.23)

are identical to the discretization of continuous-time Chaplygin equations (3.17) viewed as

forced Euler–Lagrange dynamics. For more details on this latter discretization of the Chaplygin

equations see [17] and [32].

3.3.7 Stability

In this section we link up stability of relative equilibria of Chaplygin systems with structural

stability of nonholonomic integrators.

Consider a commutative Chaplygin system characterized by the Lagrangian L and the con-

straint distribution D, as discussed in Section 3.3.3. Assume that the dynamics of the Chaplygin

system (3.17) is invariant with respect to the action of a commutative group G on Q/H.5 Often

such a situation is the result of the original system being invariant with respect to the semidirect

product of groups G and H. The elements of the group G are denoted g, and we assume that

the action of G on Q/H is free and proper, so that Q/H has the structure of a principle fiber

bundle with the structure group G. Thus, locally, there exist the bundle coordinates x = (r, g)

5The general noncommutative setting is not studied in this chapter.
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on Q/H. Let dimG = m.

Under certain assumptions (see e.g. [26] and [52]), the dynamics has an m-dimensional

manifold of relative equilibria, which are the solutions of (3.17) that in the bundle coordinates

(r, g) read

r = re, ġ = ηe.

As established in Karapetyan [26], some of these relative equilibria may be partially asymptoti-

cally stable. Karapetyan justifies stability using the center manifold stability analysis techniques,

which, for nonholonomic systems under consideration, reduces to verifying that the nonzero

spectrum of linearization at the relative equilibrium of interest belongs to the left half-plane.6

Partially asymptotically stable relative equilibria are a part of the ω-limit set of dynam-

ics (3.17). Similarly, relative equilibria that become partially asymptotically stable after time

reversal are a part of the α-limit set of dynamics (3.17).

It is important for a long-term numerical integrator to preserve the manifold of relative

equilibria of (3.17) and their stability types. Indeed, if the limit sets of an integrator are different

from the limit sets of the continuous-time dynamics, this integrator will not adequately simulate

the continuous-time dynamics over long time intervals.

As shown in [31,32], the discrete Lagrange–d’Alembert principle of Cortés and Mart́ınez may

produce discretizations that fail to preserve the manifold of relative equilibria. For instance, it

may change the dimension of this manifold, thus changing the structure of limit sets.

A relative equilibrium of a discrete Chaplygin system (3.23) with commutative symmetry

is a solution

rk = const, ∆gk = const.

Assume now that τ = 1/2 in equations (3.23). Let h > 0 be the time step.

Theorem 3.4 (Lynch and Zenkov [31, 32]). Discretization (3.23) preserves the manifold of

relative equilibria of the continuous-time Chaplygin system, that is, rk = re, ∆gk = hηe is

a relative equilibrium of the discretization (3.23) if and only if r = re, ġ = ηe is a relative

equilibrium of the continuous-time system. The conditions for partial asymptotic stability of the

equilibria of the continuous-time system and of its discretization are the same.

Summarizing, the proposed discrete Lagrange–d’Alembert principle ensures the necessary

conditions for structural stability of the associated nonholonomic integrator.

6The stability analysis of relative equilibria of nonholonomic systems has a long history, starting form the
results of Walker [48] and Routh [44]; see [52] for some of this history and for the energy-momentum method for
nonholonomic systems.
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Chapter 4

Variational Principles for

Continuous-Time Hamel’s Equations

In this chapter we present a variational derivation of Hamel’s equations from an extension of

Hamilton’s principle: the Hamilton–Pontryagin principle. The result is part of a recent paper [4]

by Ball, Zenkov, and Bloch.

An earlier variational derivation of Hamel’s equations (2.15) is based on the formula for

variations of velocity components that generalizes the variation formula for the Euler–Poincaré

equations (see Marsden [33], Marsden and Ratiu [35], and Bloch et al. [10] for details). In

this manner we may think of the Hamel’s equations as a generalization of the Euler–Poincaré

equations, which describe the mechanics of a system specified by a left-invariant Lagrangian

acting on the tangent bundle of a Lie group. Bou-Rabee and Marsden [14] develop structure-

preserving variational integrators for the Euler–Poincaré equations through a discretization of

the Hamilton–Pontryagin principle.

It is plausible to assume that the derivation of variational integrators for Hamel’s equa-

tions may be based on the Hamilton–Pontryagin principle adapted for Hamel’s equations.

This approach, eschewing the constrained variation approach of Bloch et al. [10] in favor of

constraint-free variations, is examined below in the context of variational integrators for Chap-

lygin systems.

Just as in the Euler–Poincaré case, Hamel’s equations contain terms whose structure at

first appears to be non-variational. The presence of these terms is caused by non-vanishing

Jacobi–Lie bracket of the vector fields that are used to measure the velocity components. The

variational derivation of Hamel’s equations we present below utilizes the Hamilton–Pontryagin

principle and produces these bracket terms using unconstrained variations, albeit taken in a

different, larger-dimensional space.

The origins of the Hamilton–Pontryagin principle may be traced back to Livens [30]; see
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also Pars [42]. The recent results of Yoshimura and Marsden [49–51] reveal the links between

this principle, implicit Lagrangian systems, and Dirac structures. The latter are important in

interconnected mechanical systems, electric circuits, electromechanical systems, and control,

as discussed in e.g. van der Schaft and Maschke [46, 47], van der Schaft [45], and Bloch and

Crouch [7]. As shown in Yoshimura and Marsden [50], the dynamics and the Legendre transform

are the outcomes of a variational procedure when the Hamilton–Pontryagin principle is used.

4.1 The Hamilton–Pontryagin Principle

Let Q be a manifold, TQ be its tangent, and T ∗Q be its cotangent bundles. Let q, (q, v), and

(q, p) be local coordinates on Q, TQ, and T ∗Q, respectively. Let t 7→ (q(t), v(t), p(t)), t ∈ [t0, tF ],

be a curve in the Pontryagin bundle TQ ⊕ T ∗Q. Following Yoshimura and Marsden [49–51],

define the action functional on TQ⊕ T ∗Q by the formula

SHP =

∫ tF

t0

[L (q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉] dt. (4.1)

Consider the space of curves in TQ⊕T ∗Q that satisfy the conditions q(t0) = q0, q(tF ) = qF ,

with t0 ≤ t ≤ tF , where q0 and qF are two points in the configuration space Q. The variation

of action (4.1) on this space of curves is computed to be

δSHP =

∫ tF

t0

[(
∂L

∂q
− ṗ
)
δq +

(
∂L

∂v
− p
)
δv + (q̇ − v) δp

]
dt.

Theorem 4.1. The following statements are equivalent:

1. The curve (q(t), v(t), p(t)) is a critical point of the action functional (4.1) on the space of

curves in TQ ⊕ T ∗Q connecting q0 ∈ Q to qF ∈ Q on the interval [a, b], with variations

satisfying δq(t0) = δq(tF ) = 0.

2. The curve (q(t), v(t), p(t)) satisfies the implicit Euler–Lagrange equations

∂L

∂q
− ṗ = 0, p =

∂L

∂v
, q̇ = v. (4.2)

Equations (4.2) include the Euler–Lagrange equations, the Legendre transform p = ∂vL,

and the second order condition q̇ = v. We emphasize that variations δv and δp are not induced

by variations δq.
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4.2 Hamel’s Equations and the Hamilton–Pontryagin Principle

We start by rewriting action (4.1) using the frame ui(q), i = 1, . . . , n, as defined in (2.9). Denote

the components of q̇, v, and p relative to the frame ui(q) and its dual by ξ, η, and µ, respectively:

q̇ = ξjuj = ξjψij
∂

∂qi
, (4.3a)

v = ηjuj = ηjψij
∂

∂qi
, (4.3b)

p = µju
j = µjφ

j
idq

i. (4.3c)

The action functional (4.1) becomes

SHP =

∫ tf

t0

[` (q(t), η(t)) + 〈p(t), q̇(t)− v(t)〉] dt, (4.4)

where q̇, v, and p are given by formulae (4.3).

Theorem 4.2. The following statements are equivalent:

1. The curve (q(t), η(t), µ(t)), t0 ≤ t ≤ tF , is a critical point of the action functional (4.4)

on the space of curves in TQ⊕ T ∗Q connecting q0 and qF on the interval [t0, tF ], where

we choose variations of the curve (q(t), η(t), µ(t)) that satisfy δq(t0) = δq(tF ) = 0.

2. The implicit Hamel’s equations

uj [`]− µ̇j + φkm,rψ
m
i ψ

r
jµkη

i − φkr,mψmi ψrjµkξi = 0, (4.5a)

µ =
∂`

∂η
, (4.5b)

ξ = η (4.5c)

hold. Coupled with (4.3a), the implicit Hamel’s equations capture the dynamics for the

Lagrangian `(q, ξ).

Proof. Taking the variation of (4.4) gives

δS =

∫ tf

t0

[δ` (q, η) + δ 〈p, q̇ − v〉] dt

=

∫ tf

t0

[
∂`(q, η)

∂qi
δqi +

∂`(q, η)

∂ηi
δηi + 〈δp, q̇ − v〉+ 〈p, δq̇〉 − 〈p, δv〉

]
dt.
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Next, we evaluate δv and obtain

δv = δηiui + ηiδui = δηiui + ηiψmi,sδq
s ∂

∂qm

= δηiui + ηiψmi,sφ
k
mδq

suk

= δηiui − ηiψmi φkm,sδqsuk,

(4.6)

where the last step is a consequence of the inverse matrix differentiation rule: ∂(ψ)φ = −ψ∂(φ).

Therefore, the term 〈p, δv〉 becomes

〈p, δv〉 = µiδη
i − µkηiψmi φkm,sδqs.

Integration by parts replaces the term 〈p, δq̇〉 with −〈p, δq〉, as the term d〈p, δq〉/dt vanishes

after integration. Evaluating ṗ, we obtain

ṗ = µ̇ju
j + µi

dui

dt
= µ̇ju

j + φks,rψ
r
i µkξ

idqs

= µ̇jφ
j
sdq

s + φks,rψ
r
i µkξ

idqs.

Therefore,

−〈ṗ, δq〉 = −µ̇jφjsδqs − φks,rψri µkξiδqs.

Using these formulae (and through a change of indices in the −〈ṗ, δq〉 term), the variation of

action (4.4) becomes

δSHP =

∫ tF

t0

[(
∂`

∂qs
− µ̇jφjs − φks,rψri µkξi + µkη

iψmi φ
k
m,s

)
δqs

+

(
∂`

∂ηi
µi

)
δηi + 〈δp, q̇ − v〉

]
dt

=

∫ tF

t0

[(
∂`

∂qm
ψmj − µ̇j − φkr,mψmi ψrjµkξi + φkm,rψ

m
i ψ

r
jµkη

i

)
φjsδq

s

+

(
∂`

∂ηi
µi

)
δηi + 〈δp, q̇ − v〉

]
dt.

Recall that the variations δv and δp are not induced by δq. By the independence of the variation

δq, δη, and δp, vanishing of the variation of the action functional (4.4) is equivalent to the

implicit Hamel’s equations (4.5).

Recall that structure functions are defined in index notation in (2.13). Thus substituting

(4.5b) and (4.5c) in (4.5a) and utilizing (2.13) produces Hamel’s equations (2.15).
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We emphasize that equations (4.5) include Hamel’s equations, the Legendre transform µ =

∂η`, and the second order condition ξ = η.

Remark 4.1. As we have seen from the above development, in the case of regular Lagrangian

mechanical systems, the Hamilton–Pontryagin principle unifies the Lagrangian and Hamiltonian

formulations of mechanics. This is illustrative in the case of variational integrators, as seen in

Bou-Rabee and Marsden [14], where integrators derived from a discretized Hamilton–Pontryagin

principle give rise to discrete analogues of the reconstruction condition (i.e. identifying ξ with

q̇) and Legendre transform. Bou-Rabee and Marsden further describe the implementation of an

s-stage Runge–Kutta discretization of the kinematic constraints in the discretized Hamilton–

Pontryagin principle, yielding higher order symplectic partitioned Runge–Kutta methods [14].

4.3 The Hamilton–Pontryagin Principle and Discrete Chaply-

gin Equations

In this section we present an alternate discretization of the Chaplygin equations using the

Hamilton–Pontryagin principle. The derivations presented below will illustrate both the use-

fulness of the Hamilton–Pontryagin perspective and of frame selection in non-holonomically

constrained systems.

4.3.1 A Discrete Variational Principle on the Pontryagin Bundle

We would now like to describe a discrete path through the Pontryagin bundle and a corre-

sponding discrete action mapping such discrete paths to the field of real numbers. Note that in

the arbitrary path through the Pontryagin bundle, v(t) and p(t) do not necessarily correspond

to the dynamical velocity and momentum of the system but are arbitrarily selected smooth

sections of the tangent and cotangent bundles. It is only through the variational principle that

we identify v(t) with the time-derivative of position q̇(t) and p(t) with the corresponding mo-

mentum via a Legendre transform. In the following development, note that vk,k+1 is similarly

considered to be an arbitrary vector, and is only identified with the discrete velocity through

the discrete Hamilton–Pontryagin principle.

Taking a cue from our previous discretization, we define discrete vectors and covectors at

the k-th steps as vectors and covectors at the interpolation points, so that

vk,k+1 ∈ Tqk+τQ and pk,k+1 ∈ T ∗qk+τQ.

As such, our discrete path is the union of discrete positions, velocities and momenta

{qk, vk,k+1, pk,k+1} = {qk}Nk=0 ∪ {vk,k+1}N−1
k=0 ∪ {pk,k+1}N−1

k=0
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and the corresponding discrete action SdHP on the Pontryagin bundle is the mapping

SdHP ({qk, vk,k+1, pk,k+1}) = h

N−1∑
k=0

[
L(qk+τ , vk,k+1) +

〈
pk,k+1,

1

h

d

ds

∣∣∣
s=τ

(qk+s)− vk,k+1

〉]
.

Variations in the discrete Pontryagin bundle case work similarly to discrete variations dis-

cussed previously, except now we consider the 2N arbitrarily selected perturbations of the

discrete vectors and covectors as δvk,k+1 and δpk,k+1 at the quadrature point of each step in

addition to the variations of the (N − 1) step points δqk.

It is straightforward to show that the discrete variational principle

δSdHP ({qk, vk,k+1, pk,k+1}) = 0, (4.7)

where variations are fixed at the endpoints so that δq0 = δqN = 0, results in the usual discrete

Euler–Lagrange equations, and additionally identifies vk,k+1 with the discrete velocity 1
h
d
dτ qk+τ

and pk,k+1 with a discrete version of the Legendre transform.

4.3.2 The Chaplygin System and the Pontryagin Bundle

We now present a variational derivation of the equations of motion of a (commutative) Chaply-

gin system using the Pontryagin bundle. We refer to Section 3.3.3 for the overall development

of the system.

We consider an action on the Pontryagin bundle over Q (in the presence of structures

associated with a commutative Chaplygin system) to be

SHP (x, s, v, η, p, µ) =

∫ tF

t0

[L(xα, sa, vα, ηa) + 〈p, ṙ − v〉+ 〈µ, ṡ− η〉] dt

where p and v denote covector and vector sections of the Pontryagin bundle over Q/H and

µ and η likewise denote covector and vector sections of the Pontryagin bundle over H, a Lie

group acting on the configuration space.

Remark 4.2. In this section, we will constrain ourselves to the case when H is a commutative

group, as in Chapter 3. While the development in the noncommutative case is robust, it is also

significantly more complicated without offering additional insight into the usefulness of frames

in the treatment of nonholonomically constrained systems. The commutative case will also fit

better into the overall development of this dissertation.

In the noncommutative case left trivialized velocities are defined as ξ = s−1ṡ ∈ h. In the

commutative case, ξ is trivially associated with ṡ, so that ṡ = ξ ∈ h.

The Chaplygin systems have two distinguishing features. First, the Lagrangian L is invariant
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with respect to the group action of H. As mentioned in the remark above, the group velocity ṡ

is naturally identified with a vector in h , and {∂sa} and {dsa} will correspond to ordered bases

of the Lie algebra h and its dual space h∗ respectively.

Second, the system is subject to velocity constraints given by the connection

A(x) : Tx(Q/H)× h→ h.

Specifically, the constraint is such that when the connection acts on vectors in the tangent

bundle over the entire configuration space, the result is zero so that A(x)(ẋ, ṡ) = 0. The

connection itself is defined to be of the form A(x)(ẋ, ṡ) = ṡ+A(x)ẋ. Thus, the constraint reads

ṡ = −A(x)ẋ, and the connection form may be described in terms of components with respect

to the coordinate induced frame and coframe as a p× (n− p) matrix A(x):

Aa(x) = dsa +Aaα(x)dxα.

Now, according to the Lagrange–d’Alembert principle, we do not impose our constraints on

the system before we take variations in order to find suitable paths through the Pontryagin

bundle. Rather we impose constraints after after taking variations. However, the constraints do

come into play in the context of horizontal variations, as discussed below. This means that for

horizontal variations, (δx, δs) become

(δx, δs) 7→ (δx,−A(x)δx). (4.8)

To summarize, the action SHP defined for paths over the Pontryagin bundle corresponding to

our Chaplygin system is defined as

SHP (x, s, v, η, p, µ) =

∫ tF

t0

[L(xα, vα, ηa) + 〈p, ẋ− v〉+ 〈µ, ṡ− η〉] dt.

In this setting it is fairly straightforward to show that the variational principle over the Pon-

tryagin bundle,

δSHP (x, s, v, η, p, µ) = 0,

49



subject to horizontal variations defined in equation (4.8), reduces to the condition

∫ tF

t0

[(
∂L

∂xα
− ṗα + µ̇aA

a
α(x)− [µ, ṡ]∗aA

a
α(x)

)
δxα

+

(
∂L

∂vα
− pα

)
δvα +

(
∂L

∂ηa
− µa

)
δηa

+ δpα (ẋα − vα) + δµa (ṡa − ηa)

]
dt = 0.

Linear independence of the various displacement vectors and covectors allow us to look at each

piece of the above equation independently. The differential equations describing the evolution

of the Chapylgin system in terms of the unconstrained Lagrangian, given in coordinate form

with respect to the basis ∂
∂xα are

∂L

∂xα
− d

dt

∂L

∂ẋα
+
d

dt

∂L

∂ṡa
Aaα(x) = 0.

Now we would like to impose our constraint, namely ṡ = −A(x)ẋ. Notice this allows us to

define a new constrained Lagrangian Lc : T (Q/H)→ R such that

Lc(xα, ẋα) = L(xα, ẋα,−Aaα(x)ẋα),

which we will differentiate as follows in order to substitute into our differential equation

∂Lc

∂xα
=

∂L

∂xα
− ∂L

∂ṡa
Aaβ,αẋ

β

d

dt

∂Lc

∂ẋα
=

d

dt

∂L

∂ẋα
− d

dt

∂L

∂ṡa
Aaα(x)− ∂L

∂ṡa
Aaα,β(x)ẋβ.

(4.9)

Thus our differential equations describing the evolution of the Chaplygin system in terms of

the constrained Lagrangian are

∂Lc

∂xα
− d

dt

∂Lc

∂ẋα
=
∂L

∂ṡa
ẋβ
(
Aaα,β(x)−Aaβ,α(x)

)
=
∂L

∂ṡa
ẋβBa

α,β(x)ẋβ.

(4.10)

4.3.3 The Chaplygin System and Frame Selection

In the previous section, we derived the differential equations of motion of a Chaplygin system

through the Hamilton–Pontryagin principle. To describe vectors and covectors in this action we

used components defined with respect to the coordinate induced frame and coframe spanning
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the Pontryagin bundle, locally

span

{
∂

∂xα
,
∂

∂sa
, dxα, dsa

}
= (Tx(Q/H)× h)⊕ (T ∗x (Q/H)× h∗) .

We now investigate a frame based on the connection A(x) that clarifies the imposition of the

constraint, consistent with work by Maruskin et al. [38]. Recall that our constraint may be

written (in the local coordinate-induced frame) as

A(x)(v, η) = (vαAaα(x) + ηa)
∂

∂sa
= 0,

so that a vector on the principal bundle (v, η) satisfies the constraints if and only if η = −A(x)v.

Suppose we (locally) select a new frame over each fiber such that span{uα(x), ua(x)} =

Tx(Q/H) × h and we define the frame as an x-dependent linear transformation of the locally

induced coordinate frame as

uα(x) =
∂

∂xα
−Aaα(x)ea and ua(x) =

∂

∂sa
. (4.11)

It is fairly straightforward (using the natural pairing 〈uα + ua, uβ + ub〉 = 0) to show that the

corresponding dual spanning the covector bundle is

uα(x) = dxα and ua(x) = dsa +Aaα(x)dxα. (4.12)

Notice that this frame (and its dual) are a specific choice of the more general class of non-

coordinate frames that we might select in Hamel’s formalism. For the sake of convenience we

shall refer to (4.11) and (4.12) as the Chaplygin frame and coframe.

We would next like to examine the components of a vector written with respect to the

Chaplygin frame as they relate to the components of the same vector in the coordinate induced

frame. Suppose that our vector (v, η) has coordinate-induced frame components (vα, ηa) as

usual, but the components of the same vector with respect to (4.11) are (wα, ζa). That is,

(v, η) = vα
∂

∂xα
+ ηa

∂

∂sa
= wαuα(x) + ζaua(x).

Expanding the Chaplygin frame out in terms of the coordinate induced frame gives us the

equation

wα
∂

∂xα
+ (ζa −Aaα(x)wα)

∂

∂sa
= vα

∂

∂xα
+ ηa

∂

∂sa

thus, we see that components of vectors over the orbit space are unaffected by the change of
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frame and components of vectors in the Lie algebra undergo a linear transformation, so that

ζaua(x) = (ηa +Aaα(x)vα)ua(x).

Through a similar calculation, we can show that the components of covectors in the dual Lie

algebra remain unchanged when we introduce the Chaplygin coframe, but components of the

covectors in the cotangent bundle over the orbit space undergo a linear transformation so that

the components in the Chaplygin coframe will be

wαu
α(x) = (pα − µaAaα(x))uα(x), or equivalently, pα = wα + µaA

a
α(x).

Notice that because of our choice of Chaplygin frame, the constraint condition on a vector

(ẋ, ṡ) (namely ṡ = −A(x)ẋ) is identical to the condition that the ξa components of the vector

(ẋ, ṡ) with respect to the Chaplygin frame are zero. In fact, the vector ξaua(x) = ṡa ∂
∂sa +

Aaα(x)ẋα ∂
∂sa corresponds exactly to the term Ω defined in Kobilarov, Marsden, and Sukhatme

[27] as the fixed angular velocity , and ξU in the development in Chapter 3. This makes

implementation of our constraint almost trivial:

ξa = 0 ⇐⇒ ṡa = −Aaα(x)ẋα.

In particular, it is easy to see that the constrained Lagrangian `c is representable by first

examining the Lagrangian ` written in terms of our Chaplygin frame:

L(xα, vα, ηa) = L(xα, vα, ζa −Aaα(x)vα) = `(xα, vα, ζa)

and when we impose the constraint, ζa = 0 allows us to write `(xα, vα, 0) = `c(xα, vα). In fact,

this is equivalent to the approach of Kobilarov et al. dealing with systems with nonholonomic

constraints and symmetries: ζaua(x) corresponds to their fixed angular velocity term Ω. Since

we don’t wish to impose the constraint until after we carry through the Hamilton–Pontryagin

principle, our action function on the Pontryagin bundle may be written in terms of the Chap-

lygin frame (including the ζa components) as

SHP (x, v, p, η, µ) =

∫ tF

t0

[`(xα, vα, ζa) + 〈p, ẋ− v〉+ 〈µ, ṡ− η〉] dt

=

∫ tF

t0

[`(xα, vα, ζa) + (pα − µaAaα(x))(ẋα − vα) + µa(ṡ
a +Aaα(x)ẋα − ζa)] dt

=

∫ tF

t0

[`(xα, vα, ζa) + pα(ẋα − vα) + µa(ṡ
a − ζa) + µaA

a
α(x)vα] dt.
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The Hamilton–Pontryagin principle results in the dynamical condition on the system

∫ tF

t0

[(
∂`

∂xα
− ṗα + µ̇aA

a
α(x)− [µ, ṡ]∗aA

a
α(x) + µaA

a
β,α(x)vβ

)
δxα

+

(
∂`

∂vα
− pα + µaA

a
α(x)

)
δvα +

(
∂`

∂ζa
− µa

)
δζa

+ δpα (ẋα − vα) + δµa (ṡa +Aaα(x)vα − ζa)

]
dt = 0.

Again, by linear independence of our virtual displacement vectors, we can start to identify our

arbitrary paths through the tangent and cotangent bundles with the dynamical velocity and

momentum of our system, so that

vα = ẋα, ζa = ṡa +Aaα(x)ẋα, µa =
∂`

∂ζa
, and pα =

∂`

∂ẋα
+ µaA

a
α(x).

Thus, upon substitution of these terms (including the time-derivative of pa), and imposition of

the constraint, linear independence of the δxα displacement components again gives us the dif-

ferential equations (4.10) corresponding to the Chaplygin setting. Recall that, by commutativity

of H, the dual bracket term disappears:

d

dt

∂`c

∂ẋα
− ∂`c

∂xα
=

∂`

∂ζa
ẋβ
(
Aaβ,α −Aaα,β

)
.

In this case the differential equations are given in components with respect to the vectors

uα(x) of the Chaplygin coframe. Of course, recall that we have established that these (n − p)
covectors are identical to the coordinate induced coframe, that is uα(x) = dxα. In other words,

the Chaplygin equations are just the (n − p) Hamel’s equations associated with horizontal

variations.

4.3.4 The Discrete Chaplygin Equations

Now that we have defined the Chaplygin frame and coframe as (locally) spanning the Pontryagin

bundle built on the principal bundle Q, it will be relatively straightforward to show how to use

our discretization technique (4.7) to find discrete difference equations that approximate the

dynamics of our system. In particular let us describe our interpolation paramaterizations in the

Orbit space Q/H and the Lie group H as

τxk+1 + (1− τ)xk = xk+τ and τsk+1 + (1− τ)sk = sk+τ .
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Then we may identify the discrete dynamic velocities scaled by time-step h1 for parameter

value τ ∈ [0, 1] as

∆xk,k+1 =
1

h

d

dτ
(xk+τ ) =

xk+1 − xk
h

∈ Txk+τ (Q/H),

∆sk,k+1 =
1

h

d

dτ
(sk+τ ) =

sk+1 − sk
h

∈ h.

We then may define the discrete action of our Chaplygin system (in coordinates with respect

to the Chaplygin frame and coframe) as

SdHP =
N−1∑
k=0

h`(xαk+τ , v
α
k,k+1, ζ

a
k,k+1) + pk,k+1;α(∆xαk,k+1 − vαk,k+1)

+ µk,k+1;a(∆s
a
k,k+1 +Aaα(xk+τ )∆xαk,k+1 − ζak,k+1),

(4.13)

where again, ζa are the components of the section (v, η) through the tangent bundle corre-

sponding to the ua(x) terms of the Hamel frame. Now the discrete variational principle on the

given action results in the condition

N−1∑
k=0

h
∂`k+τ

∂xα
δxαk+τ + h

∂`k+τ

∂vα
δvαk,k+1 + h

∂`k+τ

∂ζa
δζak,k+1 − pk,k+1;αδv

α
k,k+1

+ µk,k+1;aA
a
α(xk+τ )δ∆xαk,k+1 − µk,k+1;aδζ

a
k,k+1 + δpk,k+1;α(∆xαk,k+1 − vαk,k+1)

+ δµk,k+1;a(∆s
a
k,k+1 +Aaα(xk+τ )∆xαk,k+1 − ζak,k+1) + µk,k+1;aA

a
β,α(xk+τ )∆xβk,k+1δx

α
k+τ

+ pk,k+1;α
1

h

d

dτ
(δxαk+τ ) + µk,k+1;a

1

h

d

dτ
(δsk+τ )a = 0.

(4.14)

We will go through the process of grouping like terms and using the linear independence of our

discrete virtual displacement vectors and covectors in the above condition in order to simplify

the equation to a difference relation involving only the δx virtual displacements. As such, we

will need to identify the virtual displacement of the quadrature in the symmetry group with

the displacements in our orbit space according to the constraint given by the connection A(x).

That is, we will say that

δsk+τ = −A(xk+τ )δxk+τ . (4.15)

Returning to our discretization (4.14), it is straightforward to group terms by their linearly

independent virtual displacements to arrive at the identifications of the discrete velocities and

1Recall that in Chapter 3 we defined ∆xk = d
dτ

(xk+τ ). In this chapter, for notational convenience we include
the time step h in our definition of discrete velocity. In this way, ∆xk,k+1 is understood as a discrete analogue
of dynamical velocity.
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momenta as

vαk,k+1 = ∆xαk,k+1 =
1

h
(xαk+1 − xαk ),

ζak,k+1 = ∆sak,k+1 +Aaα(xk+τ )∆xαk,k+1,

µk,k+1;a = h
∂`k+τ

∂ζa
, and

pk,k+1;α = h
∂`k+τ

∂ẋα
.

Thus, we see that (4.14) reduces to

N−1∑
k=0

h
∂`k+τ

∂xα
δxαk+τ + µk,k+1;aA

a
β,α(xk+τ )∆xβk,k+1δx

α
k+τ

+
1

h

(
h
∂`k+τ

∂ẋα
+ µk,k+1;aA

a
α(xk+τ )

)(
δxαk+1 − δxαk

)
+

1

h
µk,k+1;a(δs

a
k+1 − δsak) = 0.

(4.16)

We rewrite the third line of (4.16) in terms of the constraint on the virtual displacements (4.15)

as 〈
µk,k+1,

1

h

d

dτ
(δsk+τ )

〉
= −

〈
µk,k+1,

1

h

d

dτ
(A(xk+τ )δxk+τ )

〉
.

Thus, carrying through with the parameter τ -derivative, and inserting our constrained La-

grangian function `c, our whole condition becomes (with respect to the Chaplygin frame at

uα(xk+τ ))

N−1∑
k=0

∂`ck+τ

∂xα
δxαk+τ + µk,k+1;aA

a
β,α(xk+τ )∆xβk,k+1δx

α
k+τ

+
1

h

(
∂`ck+τ

∂ẋα
+ µk,k+1;aA

a
α(xk+τ )

)(
δxαk+1 − δxαk

)
− µk,k+1;aA

a
α,β(xk+τ )∆xβk,k+1δx

α
k+τ −

1

h
µk,k+1;aA

a
α(xk+τ )

(
δxαk+1 − δxαk

)
= 0.

(4.17)

Then, the discrete dynamic condition describing our Chaplygin system reads

N−1∑
k=0

(
∂`ck+τ

∂xα
+ µk,k+1;a∆x

β
k,k+1

(
Aaβ,α(xk+τ )−Aaα,β(xk+τ )

)
+

(
1

h

∂`ck+τ

∂ẋα
(
δxαk+1 − δxαk

))
δ∆xαk,k+1 = 0,

wherein we include the discrete constraint on velocities ∆sk,k+1 = −A(xk+τ )∆xk,k+1 or equiv-
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alently ζk,k+1 = 0.

Finally, we note again that our discrete virtual displacements in the above equation take

the form δxk+τ = τδxk+1 + (1 − τ)δxk. If we change the indices of summation to account for

the fact that variations at the endpoints δx0 = δxN = 0, we arrive at the discrete Chaplygin

equations

1

h

(
∂`ck+τ

∂ẋα
−
∂`ck+τ−1

∂ẋα

)
− (1− τ)

∂`ck+τ

∂xα
− τ

∂`ck+τ−1

∂xα

= (1− τ)µk,k+1;a∆x
β
k,k+1

(
Aaβ,α(xk+τ )−Aaα,β(xk+τ )

)
+ τµk−1,k;a∆x

β
k−1,k

(
Aaβ,α(xk+τ−1)−Aaα,β(xk+τ−1)

)
.

(4.18)

These equations are identical to the discrete Chaplygin equations derived in Chapter 3. The de-

velopment presented in the current chapter is intended to emphasize the usefulness of both the

discrete Hamilton–Pontryagin principle and Hamel’s formalism to the incorporation of nonholo-

nomic constraints. We have assumed hyperregularity of the Lagrangian so that the “discrete”

Legendre transforms defined above are consistent; the discrete Hamilton–Pontryagin addition-

ally provides a discrete perspective on a unification of Lagrangian and Hamiltonian mechanics.

Again, notice that when we write the Lagrangian with respect to the Chaplygin frame as

described above, imposing the constraint becomes as easy as setting the components ζa = 0 for

a = 1, . . . , p. The Lagrangian ` also naturally incorporates the constraint; there is no need to

refer to formulas such as those in equations (4.9) to transform partial derivatives. The discrete

Chaplygin equations are the (n − p) discrete Hamel’s equations associated with horizontal

variation.
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Chapter 5

Discrete Hamel’s Equations as

Structure Preserving Integrators

5.1 A Road Map to Discrete Structure Preservation

In 2.3.2 we showed that the update map of associated with the discrete Euler–Lagrange equa-

tions conserves a discrete symplectic two-form. This was observed (in a procedure laid out

by Marsden and West [36]) to be a consequence of the discrete Lagrangian one-forms being

obtained via differentiation of the discrete Lagrangian function:

dLd(qk, qk+1) = D1Ld(qk, qk+1)dqk +D2Ld(qk, qk+1)dqk+1

= −Θ−Ld(qk, qk+1) + Θ+
Ld

(qk, qk+1).

Using the property of the external derivative (d(dLd) = 0),

0 = −dΘ−Ld(qk, qk+1) + dΘ+
Ld

(qk, qk+1) ⇒

dΘ−Ld(qk, qk+1) = dΘ+
Ld

(qk, qk+1) = ΩLd(qk, qk+1).

Thus, at each step specified by (qk, qk+1) ∈ Q × Q, while there are two distinct Lagrangian

one-forms, there is guaranteed to be only one symplectic two-form ΩLd(qk, qk+1). The form

itself is clearly conserved under the transformation FLd : points (qk−1, qk), (qk, qk+1) ∈ Q × Q
that satisfy FLd(qk−1, qk) = (qk, qk+1) by definition are solutions of the discrete Euler–Lagrange

equations (2.23) and hence

Θ−Ld(qk, qk+1) = Θ+
Ld

(qk−1, qk) ⇒

dΘ−Ld(qk, qk+1) = dΘ+
Ld

(qk−1, qk) ⇒

ΩLd(qk, qk+1) = ΩLd(qk−1, qk).
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We have recalled this procedure to provide context to a natural question about the discrete

Hamel’s equations obtained in (3.6): does the discrete update map F`d induced by these inte-

grators similarly conserve a modified discrete symplectic two-form? The earlier derivation in

Section 3.2 does not lend itself to the above procedure; our variational principle in that case

was based on a flexible interpretation of variations themselves (see Figures 5.1, 5.2, and 5.3 for

a geometric illustration). Specifically, we defined variations in terms of vectors ζk ∈ TqkQ for

k = 1, . . . , N − 1 so that

δsd(qd) =

N−1∑
k=0

d`d(qk+τ , ξk,k+1)(δqk+τ , δξk,k+1)

=
N−1∑
k=0

d`d(qk+τ , ξk,k+1)
(
u(qk+τ ) · ζk+τ ,

1
h(ζk+1 − ζk) + [ξk,k+1, ζk+τ ]k+τ

)
,

where ζk+τ = (1−τ)ζk+τζk+1 and the transition from (δqk+τ , δξk,k+1) to the vectors (ζk, ζk+1)

is defined by equations (3.7) and (3.8).

u1(qk)

u2(qk)

δqk

u1(qk+1/2)

u2(qk+1/2)

δqk+1/2

u1(qk+1)

u2(qk+1)

δqk+1

(a) Virtual displacement vectors. (b) Vectors measured against new frame.

Figure 5.1: In Figures 5.1a and 5.1b, the virtual displacement vectors δqk and δqk+1, and the
vector δqk+1/2 induced by the pushforward of the discretization mapping Q × Q → TQ are
transformed into the frame ui. The underlying configuration space is assumed to be Q = R2.
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u1(qk+1/2)

u2(qk+1/2)

ζk+1/2

δqk+1/2

(a) Vector ζk+1/2 in the frame.

ζk+1/2

δqk+1/2

∂q1

∂q2

(b) Transforming to the coordinate basis.

Figure 5.2: In Figure 5.2a, ζk+1/2 is depicted in components as the linear average of φ(qk)δqk
and φ(qk+1)δqk+1. Furthermore, notice that in Figure 5.2b, ζk+1/2 6= φ(qk+1/2)δqk+1/2.

While this principle has been shown to be equivalent to the desired discrete Hamel’s equa-

tions (3.6), it is not immediately clear how to implement the above procedure of Marsden

and West to show symplecticity. Specifically, it is not immediately apparent that the exterior

derivative of an underlying function on Q×Q gives rise to two distinct one-forms. Nonetheless,

examining (3.6), one may expect that the discrete Hamel’s one-forms Θ−`d and Θ+
`d

over

Q×Q should be

−Θ−`d(qk, qk+1) =

(
−1

h
µk,k+1 + (1− τ)u[`d]k+τ + (1− τ)[ξk,k+1, µk,k+1]∗qk+τ

)
· (u(qk), 0)

Θ+
`d

(qk, qk+1) =

(
1

h
µk,k+1 + τu[`d]k+τ + 1− τ [ξk,k+1, µk,k+1]∗qk+τ

)
· (0, u(qk+1))

(5.1)

as it is then clear that the discrete Hamel’s equations will be equivalent to the condition

Θ−`d(qk, qk+1)j = Θ+
`d

(qk−1, qk)j .

It is straightforward to verify that these one-forms Θ±`d are not simply the discrete La-

grangian one-forms Θ±Ld written in a different frame; they are instead geometrically distinct

one-forms over Q×Q, i.e.

Θ±Ld(qk, qk+1) 6= Θ±`d(qk, qk+1) · (u(qk), u(qk+1)).

Likewise, the one-forms Θ±`d are not expressible in terms of exterior derivative of `d or any other
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ζk

ζk+1

ζk+1/2

(a) Vectors ζk, ζk+1/2, ζk+1 in the coordinate frame. (b) Variation of the step at (qk, qk+1).

Figure 5.3: The vectors ζk, ζk+1/2, ζk+1 defined in Figure 5.2 are now written with respect
to the coordinate basis. In Figure 5.3b, we see an interpretation of the two displaced steps.
Vectors ζk, ζk+1/2, ζk+1 correspond to the interpretation of variations presented in Chapter 3.
In the current chapter we will interpret variations in a manner consistent with the vectors
δqk, δqk+1/2, δqk+1 and compensate with the diffeomorphism Φ defined below. The problem can
be summarized up in the inequality:

φji (qk+1/2)(δqik + δqik+1)/2 6= φji (qk)δq
i
k/2 + φji (qk+1)δqik+1/2.

discretization of the Lagrangian presented so far. This is just as well: if the converse were the

case then we might come to the conclusion that the discrete Hamel’s equations are algebraically

equivalent to the discrete Euler–Lagrange equations and would therefore not present any new

or useful insight (beyond some algebraic manipulation) into the mechanical systems we seek to

simulate.

Instead, the discrete Hamel’s equations are distinct from the discrete Euler–Lagrange equa-

tions. However, if we seek to prove that the resulting update maps conserve a modified discrete

symplectic two-form over Q×Q following Marsden and West [36], we must first show that there

exists a hypothetical function Ld : Q×Q→ R such that dLd = −Θ−`d + Θ+
`d

.In the next section

we will make use of the Poincaré lemma to prove the existence of such a function in the case

where Q is a vector space.
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5.2 Structure Preservation

As we have throughout this dissertation, we define a Lagrangian mechanical system and Hamel’s

equations as in 2.2.2, and a discrete Lagrangian function Ld : Q×Q→ R as in equation (2.21).

Furthermore, recall that we restrict ourselves to the case where Q is a vector space. Again,

in order to prove that the discrete update map generated by solutions of the discrete Hamel’s

equations conserves a symplectic two-form over Q×Q, we seek a function Ld : Q×Q→ R such

that

dLd = −Θ−`d + Θ+
`d
, (5.2)

where Θ±`d are defined in (5.1) as the discrete Hamel’s one-forms.

Recall that we have defined (qk+τ , vk,k+1) ∈ TQ in Chapter 3 in terms of the discretization

mapping Q×Q→ TQ as

(qk+τ , vk,k+1) =
(

(1− τ)qk + τqk+1,
1
h
d
ds

∣∣∣
s=τ

((1− s)qk + sqk+1)
)
, (5.3)

and furthermore we use the notation ξk,k+1 to refer to the components of the vector vk,k+1 ∈
Tqk+τQ measured against the frame, i.e. ξk,k+1 · u(qk+τ ) = vk,k+1, or in index notation:

ξjk,k+1 = 1
h
d
ds

∣∣∣
s=τ

(
(1− s)qik + sqik+1

)
φji (qk+τ ).

5.2.1 A Modified Discrete Variational Principle

We start with the following observation: we may define a diffeomorphism Ψ : T (Q×Q)→ T (TQ)

so that hdL ◦Ψ(qk,qk+1) = −Θ−`d(qk, qk+1) + Θ+
`d

(qk, qk+1) ∈ T ∗(Q×Q).

Theorem 5.1. Define the mapping Ψ : T (Q×Q)→ T (TQ) (in index notation) to be

Ψ((qk, qk+1), (δqk, δqk+1))

=

(
(qk+τ , vk,k+1),((

(1− τ)δqjkφ
m
j (qk) + τδqjk+1φ

m
j (qk+1)

)
ψim(qk+τ ) ∂

∂qi

∣∣∣
qk+τ

,

1

h

d

ds

∣∣∣
s=τ

((
(1− s)δqjkφ

m
j (qk) + sδqjk+1φ

m
j (qk+1)

)
ψim(qk+s)

)
∂
∂vi

∣∣∣
vk,k+1

))
(5.4)

for arbitrary ((qk, qk+1), (δqk, δqk+1)) ∈ T (Q × Q). Furthermore, recall that we have defined ψ

(and its inverse φ) in 2.2.2 to represent a frame field comprised of C1 sections of FQ. Then:

1. Ψ is a C1-diffeomorphism when τ = 1/2, and
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2. hdL ◦Ψ = −Θ−`d + Θ+
`d

.

Proof. First, we note that Ψ acting on the spaces Q×Q→ TQ is nothing but the discretization

mapping (5.3), which is differentiable and an isomorphism when Q is a vector space.

Next, we carry out the parameter derivative in (5.4), and note that Ψ(qk,qk+1) acts on vectors

(δqk, δqk+1) linearly, so that in index notation:

Ψ(qk,qk+1)(δq
i
k, δq

i
k+1) =((

(1− τ)ψjm(qk+τ )φmi (qk)
)
δqik +

(
τψjm(qk+τ )φmi (qk+1)

)
δqik+1,(

−1

h
ψjm(qk+τ )φmi (qk) + (1− τ)ψjm,a(qk+τ )vak,k+1φ

m
i (qk)

)
δqik

+

(
1

h
ψjm(qk+τ )φmi (qk+1) + τψjm,a(qk+τ )vak,k+1φ

m
i (qk+1)

)
δqik+1

)
.

Thus, as the mapping Ψ(qk,qk+1) is a linear mapping between vector spaces T(qk,qk+1)(Q × Q)

and T(qk+τ ,vk,k+1)(TQ), the operation is expressible in matrix notation as

[
Ψ(qk,qk+1)

] [ δqk

δqk+1

]
∈ T(qk+τ ,vk,k+1)(TQ),

where the matrix [Ψ(qk,qk+1)] is written in block form as

[
Ψ(qk,qk+1)

]
=[

(1− τ)ψ(qk+τ )φ(qk) τψ(qk+τ )φ(qk+1)(
− 1
hψ(qk+τ ) + (1− τ)ψ,a(qk+τ )vak,k+1

)
φ(qk)

(
1
hψ(qk+τ ) + τψ,a(qk+τ )vak,k+1

)
φ(qk+1)

]
.

A block matrix
(
A B
C D

)
is invertible if A and its Schur complement D−CA−1B are invertible.

Clearly, “A” in the above matrix expression of Ψ is nonsingular, since ψ and φ are necessarily

in GL(n) for all q ∈ Q. Furthermore, CA−1B is

CA−1B =
(
− 1
hψ(qk+τ ) + (1− τ)ψ,a(qk+τ )vak,k+1

)
φ(qk) ·

(
ψ(qk)φ(qk+τ )

1− τ

)
· τψ(qk+τ )φ(qk+1)

=
τ

1− τ
(
− 1
hψ(qk+τ ) + (1− τ)ψ,a(qk+τ )vak,k+1

)
φ(qk+1),
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and hence the Schur complement of A is the matrix

D − CA−1B =

(
1

h

(
1 +

τ

1− τ

)
ψ(qk+τ ) + (τ − (1− τ))ψ,a(qk+τ )vak,k+1

)
φ(qk+1)

=

(
1

h

(
1

1− τ

)
ψ(qk+τ ) + (2τ − 1)ψ,a(qk+τ )vak,k+1

)
φ(qk+1).

If we select τ = 1/2 (the choice of parameter that leads to the midpoint approximation), the

Schur complement reduces to

D − CA−1B =
2

h
ψ(qk+1/2)φ(qk+1)

and is clearly nonsingular. Therefore, the matrix representation of Ψ(qk,qk+1) is invertible, hence

the mapping is a (at least C1) diffeomorphism. Thus, we see that Ψ : T (Q×Q)→ T (TQ) is a

C1-diffeomorphism as long as τ = 1/2.

The second result of the theorem is proved by direct computation. The exterior derivative

of the Lagrangian function L : TQ → R returns a one-form on TQ, i.e. dL ∈ T ∗(TQ), or

dL : T (TQ)→ R. This one-form is expressible in coordinates as

dL(q, v) =
∂L(q, v)

∂qi
dqi +

∂L(q, v)

∂vi
dvi,

and if we recall that in Hamel’s formalism we have expressed the Lagrangian as `(qi, ξj) =

`(qi, q̇iφji (q)) = L(qi, q̇i), we see that the partial derivatives constituting the components of dL

above may be written as

∂L(q, q̇)

∂qi
=
∂`(q, ξ)

∂qi
+
∂`(q, ξ)

∂ξa
ξbψjb(q)φ

a
j,i(q) and

∂L(q, q̇)

∂q̇i
=
∂`(q, ξ)

∂ξj
φji (q).

Therefore, dL evaluated at the point (qk+τ , vk,k+1) ∈ TQ is also expressible as

dL(qk+τ ,vk,k+1) =

(
∂`k+τ

∂qi
+
∂`k+τ

∂ξa
ξbψjb(qk+τ )φaj,i(qk+τ )

)
dqi +

(
∂`k+τ

∂ξj
φji (qk+τ )

)
dvi

where we recall that we have defined the shorthand notation `k+τ = `(qk+τ , ξk,k+1). Then,

applying equation (5.4), the one-form dL ◦ Ψ ∈ T ∗(Q × Q) acts on vectors (δqk, δqk+1) ∈
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T(qk,qk+1)(Q×Q) so that

dL ◦Ψ(qk,qk+1)(δqk, δqk+1) =(
∂`k+τ

∂qi
+
∂`k+τ

∂ξm
ξrψar (qk+τ )φma,i(qk+τ )

)
ψib(qk+τ )

(
(1− τ)δqjkφ

b
j(qk) + τδqjk+1φ

b
j(qk+1)

)
+

(
∂`k+τ

∂ξm
φmi (qk+τ )

)(
−1

h
ψib(qk+τ ) + (1− τ)ψib,a(qk+τ )ξrk,k+1ψ

a
r (qk+τ )

)
φbj(qk)δq

j
k

+

(
∂`k+τ

∂ξm
φmi (qk+τ )

)(
1

h
ψib(qk+τ ) + τψib,a(qk+τ )ξrk,k+1ψ

a
r (qk+τ )

)
φbj(qk+1)δqjk+1.

Considering that ∂ψ · φ = −ψ · ∂φ because φ = ψ−1, and remembering that the structure

functions are defined in terms of ψ and φ as

cmij (q) = ψai (q)ψbj(q)(φ
m
a,b(q)− φmb,a(q)),

it takes only a small amount of index gymnastics to verify that the above equation may be split

up further so that:

hdL ◦Ψ(qk,qk+1)(δqk, δqk+1) =(
(1− τ)

(
∂`dk+τ

∂qi
ψij(qk+τ ) +

∂`dk+τ

∂ξm
ξik,k+1c

m
ij (qk+τ )

)
− 1

h

∂`dk+τ

∂ξj

)
φjb(qk)δq

b
k

+

(
τ

(
∂`dk+τ

∂qi
ψij(qk+τ ) +

∂`dk+τ

∂ξm
ξik,k+1c

m
ij (qk+τ )

)
+

1

h

∂`dk+τ

∂ξj

)
φjb(qk+1)δqbk+1,

where we have also scaled by the time-step h (remember that `d = h`). Recall that we have

identified the directional derivative operator at qk+τ with respect to the frame as

uj [`
d]k+τ =

∂`dk+τ

∂qi
ψij(qk+τ ),

the discrete momentum as

µk,k+1;j =
∂`dk+τ

∂ξj
,

and the dual bracket operating on discrete velocity and momentum as

[ξk,k+1, µk,k+1]∗qk+τ ;ju
j(qk+τ ) = µk,k+1;mξ

i
k,k+1c

m
ij (qk+τ )uj(qk+τ ) ∈ T ∗qk+τQ.

Furthermore, notice that φjm(qk)δq
m
k are just the components of the vector δqk measured against

the frame on the fiber TqkQ. Then the coordinate expression for the one-form hdL◦Ψ over Q×Q
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is written as

hdL ◦Ψ(qk, qk+1) =

(
(1− τ)

(
u[`d]k+τ + [ξk,k+1, µk,k+1]∗qk+τ

)
− 1

h
µk,k+1

)
· u(qk)

+

(
τ
(
u[`d]k+τ + [ξk,k+1, µk,k+1]∗qk+τ

)
+

1

h
µk,k+1

)
· u(qk+1)

= −Θ−`d(qk, qk+1) + Θ+
`d

(qk, qk+1)

so that we see hdL◦Ψ is exactly the difference of the Hamel’s one-forms, i.e. hdL◦Ψ = Θ+
`d
−Θ−`d ,

as expressed in equation (5.1).

The above theorem also shows us that the discrete Hamel’s equations are equivalent to a

modification of the discrete Hamilton’s principle.

Corollary 5.2. The following statements are equivalent.

1. The discrete trajectory qd ∈ Cd(Q) satisfies the modified variational principle

N−1∑
k=0

dL ◦Ψ(qk,qk+1)(δqk, δqk+1) = 0 (5.5)

for arbitrary virtual displacements defined as in equation (2.22) where the variation is

fixed at the endpoints so that δq0 = δqN = 0.

2. The discrete trajectory satisfies the discrete Hamel’s equations (3.6) for k = 1, . . . , N − 1.

Proof. The proof is straightforward following the method of Marsden and West [36] and re-

counted in earlier 2.3. Specifically, note that the modified variational principle is written in

index notation as

N−1∑
k=0

−Θ−`d(qk, qk+1)jφ
j
i (qk)δq

i
k + Θ+

`d
(qk, qk+1)jφ

j
i (qk+1)δqik+1 = 0

as a consequence of the previous theorem. We may manipulate the summation index so that

the principle states

N−1∑
k=0

−Θ−`d(qk, qk+1)jφ
j
i (qk)δq

i
k +

N∑
k=1

Θ+
`d

(qk−1, qk)jφ
j
i (qk)δq

i
k = 0

and because variation at the endpoints is fixed we find the principle is equivalent to the state-
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ment
N−1∑
k=1

(
−Θ−`d(qk, qk+1)j + Θ+

`d
(qk−1, qk)j

)
φji (qk)δq

i
k = 0.

Finally, we note that because φ is an invertible matrix, for arbitrary displacements δqk the

discrete trajectory qd equivalently satisfies the discrete Hamel’s equations. These equations

may be expressed in terms of the one forms Θ−`d ,Θ
+
`d
∈ T ∗(Q×Q) as

π−Θ−`d(qk, qk+1) = π+Θ+
`d

(qk−1, qk),

where π± are the two natural projections mapping T ∗(Q×Q)→ T ∗Q, defined so that

π−(dqk, dqk+1)(qk,qk+1) = dqk ∈ T ∗qkQ and

π+(dqk, dqk+1)(qk,qk+1) = dqk+1 ∈ T ∗qk+1
Q

Remark 5.1. It is straightforward to demonstrate that the discrete Hamel’s one-forms Θ±`d , as

defined above, reduce to the discrete Lagrangian one-forms Θ±Ld when the transformations ψ

and φ describing the frame are the identity. This corresponds to the trivial case when the frame

is the coordinate-induced frame, where in the continuous setting the Hamel’s equations reduce

to the Euler–Lagrange equations. In the discrete setting, this implies that the discrete Hamel’s

equations reduce to the discrete Euler–Lagrange equations in the case of a trivial frame.

5.2.2 A Closed One-Form and the Poincaré Lemma

Now that we have shown that hdL ◦ Ψ, a one-form over Q × Q induces through a variational

principle the discrete Hamel’s equations in much the same way that the dLd induces the dis-

crete Euler–Lagrange equations, our next step will be to determine whether or not the form is

closed. We begin with a statement that illustrates how the exterior derivative behaves under

composition.

Proposition 5.3. Suppose M and N are n-dimensional differentiable manifolds, f : TN → R
such that f is differentiable, and Ψ : TM → TN where Ψ is a local C1-diffeomorphism. Then

the mapping is f ◦ Ψ : TM → R is (locally) differentiable. For arbitrary (α, β) ∈ T(q,v)M , in

local coordinates

d(f ◦Ψ)(q,v)(α, β) = 〈dfΨ(q,v), (Ψ∗)(q,v)(α, β)〉 (5.6)

where 〈·, ·〉 is the natural pairing between the vector space TΨ(q,v)(TN) and its dual T ∗Ψ(q,v)(TN).

Remark 5.2. This result is an easily verifiable consequence of the chain rule and the push-

forward in differential geometry. f in the above proposition can be thought of as a C1 one-form
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on the manifold N , likewise f ◦ Ψ as the same on M . The exterior derivative of f ◦ Ψ can be

thought of as a mapping d(f ◦Ψ) : T (TM)→ TR ∼= R2 such that

d(f ◦Ψ)(q,v) : T(q,v)(TM)→ R

d(f ◦Ψ)(q,v) ∈ T ∗(q,v)(TM).

The relation described above leads directly to the observation that the one-form hdL ◦ Ψ

that induces the discrete Hamel’s equations in our modified discrete variational principle (5.5)

is closed.

Theorem 5.4. The one-form hdL ◦Ψ defined over Q×Q is closed.

Proof. The verification of this theorem is made trivial by the above proposition. dL is a C1

one-form over Q×Q, so by (5.6),

d(hdL ◦Ψ)((qk,qk+1),(vk,vk+1))((αk, αk+1), (βk, βk+1)) =〈
hd(dL)Ψ((qk,qk+1),(vk,vk+1)), (Ψ∗)((qk,qk+1),(vk,vk+1))((αk, αk+1), (βk, βk+1))

〉
,

and because d(dL) = 0, d(hdL ◦Ψ) = 0 for arbitrary vectors in T((qk,qk+1),(vk,vk+1))(T (Q×Q)).

Now, recall that one of our stated goals is to find a function Ld : Q × Q → R satisfying

equation (5.2). Because we have specified that Q (and hence Q ×Q) is a vector space, by the

Poincaré lemma we may conclude that since hdL ◦ Ψ = −Θ−`d + Θ+
`d

is closed by theorem 5.4,

it is also exact and consequently there must exist a function Ld : Q×Q→ R such that

dLd = hdL ◦Ψ = −Θ−`d + Θ+
`d
. (5.7)

Furthermore, this allows us to reformulate our modified variational principle (5.5) into a more

familiar form as a principle of critical action, where the modified discrete action is defined

as

sd(qd) =
N−1∑
k=0

Ld(qk, qk+1) (5.8)

and the principle itself may be stated as follows.

Corollary 5.5. The following statements are equivalent:

1. The discrete trajectory qd ∈ Cd(Q) is critical with respect to the modified discrete action

sd(qd) =
N−1∑
k=0

Ld(qk, qk+1)
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where qd is fixed at the endpoints q0, qN ∈ Q.

2. The discrete trajectory qd = {qk}N−1
k=0 satisfies the discrete Hamel’s equations (3.6) for

k = 1, . . . , N − 1.

Proof. Variation of the action results in

δsd(qd) =
N−1∑
k=0

dLd(qk, qk+1)(δqk, δqk+1)

=

N−1∑
k=0

(
−Θ−`d(qk, qk+1) + Θ+

`d
(qk, qk+1)

)
(δqk, δqk+1)

by the relation specified in equation (5.7). Next, manipulation of the summation index reveals

δsd(qd) =
N−1∑
k=0

(
−Θ−`d(qk, qk+1)

)
(δqk, δqk+1) +

N∑
k=1

(
Θ+
`d

(qk−1, qk)
)

(δqk−1, δqk)

=

N−1∑
k=1

[
−Θ−`d(qk, qk+1)δqk + Θ+

`d
(qk−1, qk)δqk

]
−Θ−`d(q0, q1)δq0 + Θ+

`d
(qN−1, qN )

and since the trajectory is fixed at the endpoints, i.e. δq0 = δqN = 0, then the trajectory is

critical with respect to the action (that is, δsd(qd) = 0) if and only if

π−Θ−`d(qk, qk+1) = π+Θ+
`d

(qk−1, qk)

for k = 1, . . . , N − 1, which, again, is exactly the statement of the discrete Hamel’s equations

(3.6).

Remark 5.3. The application of the Poincaré lemma above depends upon Q being a vector

space. If Q were a general differentiable manifold, we could assert at least local existence of

Ld as long as the local coordinate chart is a mapping to an open contractible subset of Rn,

i.e. the manifold is locally contractible. The following arguments demonstrating conservation

of a symplectic form might be thus extended to the case were Q is a general differentiable

manifold by emphasizing that symplecticity would only be a local property. Nonetheless, for

our purposes and for applications it suffices to prove conservation of a symplectic two-form in

the case where Q is a vector space.

Remark 5.4. In Section 2.3 we defined regular (and hyperregular) discrete Lagrangian functions

Ld : Q × Q → R as functions whose discrete Legendre transforms/fiber derivatives are local

(or global) isomorphisms F±Ld : Q × Q → T ∗Q. Consequently, the discrete Euler–Lagrange
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equations are said to be locally or globally well defined when the underlying discrete Lagrangian

is, respectively, regular or hyperregular.

Similarly, the discrete Hamel’s equations are well defined when the function Ld is hyperreg-

ular. The discrete fiber derivatives and Legendre transforms can be developed in an identical

manner to the exposition in Section 2.3. However, for a Lagrangian function L, the relationship

between regularity/hyperregularity of the discrete functions Ld and Ld is not quite clear for an

arbitrary choice of non-coordinate frame. In other words, it is an open question as to whether

regularity of Ld implies regularity of Ld. Of course, in applications a frame will be chosen so that

the discrete Hamel’s equations are a simplification of the discrete Euler–Lagrange equations, so

it is not too restrictive to assume that the function Ld is hyperregular, as we shall do for the

remainder of this paper.

5.2.3 Structure Conservation

Corollary 5.6. The discrete update map F`d induced by the discrete Hamel’s equations (3.6)

conserves a discrete symplectic two-form Ω`d = dΘ−`d = dΘ+
`d

that we refer to as the discrete

Hamel’s symplectic two-form.

Proof. We have already shown that the one-form dLd = hdL ◦Ψ is expressible as the difference

of the discrete Hamel’s one-forms so that hdL ◦Ψ = −Θ−`d + Θ+
`d

. As a consequence of theorem

5.4,

d(dL ◦Ψ) = 0 = −dΘ−`d + dΘ+
`d
⇒

dΘ−`d(qk, qk+1) = dΘ+
`d

(qk, qk+1) = Ω`d(qk, qk+1)

so that at each step specified by (qk, qk+1) for k = 0, . . . , N − 1, there is a unique two-form

Ω`d(qk, qk+1).

Next, as in Section 2.3.2, we observe that through iteration of F`d , a discrete trajectory

qd = {qk}Nk=0 is uniquely identified by initial conditions (q0, q1) ∈ Q × Q. We may similarly

define a restricted discrete modified action ŝd : Q × Q → R as the modified discrete action sd

(5.8) restricted to the trajectory induced through iteration of the initial conditions (q0, q1) by

F`d :

ŝd(q0, q1) = sd({qk}N−1
k=0 ), (qk, qk+1) = F`d(qk−1, qk), ∀k = 1, . . . , N − 1.

Then variation of the restricted modified discrete action returns

dŝd(q0, q1) · (δq0, δq1) = −Θ−`d(q0, q1) · (δq0, δq1)

+ Θ+
`d

(FN−1
`d

(q0, q1)) · (FN−1
`d

)∗(q0,q1)(δq0, δq1)

=
(

(FN−1
`d

)∗Θ+
`d
−Θ−`d

)
((q0, q1), (δq0, δq1)) ,
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where again we are left with only the terms that would otherwise cancel out when we con-

sider variation at the endpoints fixed, because when the trajectory is restricted to solutions

of the discrete Hamel’s equations, Θ−`d(F`d(qk, qk+1)) = Θ+
`d

(qk, qk+1). In fact, this implies that

dΘ+
`d

(qk−1, qk) = dΘ−`d(qk, qk+1) when we restrict the discrete Hamel’s one-forms to the solution

space. Finally, because d2ŝ = 0 and by compatibility of the pullback with the exterior derivative,

we see that the above results imply conservation of the two-form Ω`d

(FN−1
`d

)∗(Ω`d) = Ω`d

where Ω`d = dΘ+
`d

= −dΘ−`d is defined as the discrete Hamel symplectic form on Q×Q. Just

as in Section 2.3.2, the process holds for any contiguous sequence of substeps, and thus a single

step induced by the update map F`d also conserves the discrete symplectic form: F ∗`d(Ω`d) = Ω`d .

The update map F`d : Q × Q → Q × Q is therefore a discrete symplectic map. Symplecticity

(i.e. skew symmetry, isotropy, and nondegeneracy) is easily verified because the two-form is

expressible in coordinates in terms of the function Ld as

Ω`d =
∂2Ld(qk, qk+1)

∂qik∂q
j
k+1

dqik ∧ dq
j
k+1.

It is important to remember that Ω`d is a two-form over Q × Q, and hence is thought of as a

mapping T (Q×Q)× T (Q×Q)→ R. Isotropy is demonstrated when we verify that, in fact:

(Ω`d)(qk,qk+1) ((vk, vk+1), (vk, vk+1)) =
∂2Ld(qk, qk+1)

∂qik∂q
j
k+1

(
vikv

j
k+1 − v

i
k+1v

j
k

)
= 0

by commutativity of mixed partial derivatives. Skew-symmetry is a trivial consequence of

isotropy, and nondegeneracy is verifiable because Ld has been assumed to be hypperregular.

The discrete Hamel’s equations satisfy a discrete version of Noether’s theorem 2.3 in much

the same way as the discrete Euler–Lagrange equations. Again, we consider the group action

Φ : G×Q→ Q extended to Q×Q as ΦQ×Q : G× (Q×Q)→ Q×Q in (2.27), and infinitesimal

generator ξQ×Q : Q × Q → T (Q × Q) given in (2.28). The discrete Hamel’s momentum

maps J±`d : Q×Q→ g∗ are defined such that for ξ ∈ g

J−`d(qk, qk+1) · ξ = 〈−D1Ld(qk, qk+1), ξQ(qk)〉 = Θ−`d · ξQ×Q(qk, qk+1), and

J+
`d

(qk, qk+1) · ξ = 〈D2Ld(qk, qk+1), ξQ(qk+1)〉 = Θ+
`d
· ξQ×Q(qk, qk+1)

(5.9)

This proof of the following theorem is easily demonstrated by replacing all instances of the

discrete Lagrangian Ld with Ld in Section 2.3.3.
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Theorem 5.7 (Discrete Noether’s Theorem for Hamel’s Formalism). Suppose Ld : Q×Q→ R
is a discrete function such that hdL◦Ψ = dLd, approximating a Lagrangian mechanical system,

and furthermore suppose that Ld is invariant with respect to the action Φ of a Lie group G lifted

to Q×Q as in (2.27). Then:

1. ΦQ×Q
g : Q×Q→ Q×Q is a special discrete symplectic map. Also, the discrete Lagrangian

momentum maps will be equivalent so that J+
`d

= J−`d = J`d and can thus be referred to as

one map J`d : Q×Q→ g∗.

2. The update map F`d conserves the discrete Lagrangian momentum map J`d, i.e. J`d◦F`d =

J`d.

Remark 5.5. We note that it is unnecessary for the actual derivation of the discrete Hamel’s

equations to explicitly compute Ld. Thus, it may ultimately be useful to examine how invariance

of Ld might relate to invariance on Ld. We leave this for future development.
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Chapter 6

Conclusions and Future Work

This dissertation has introduced variational integrators motivated by Hamel’s formalism for

the equations of motion in mechanics. Recall that Hamel’s equations are a generalization of the

Euler–Poincaré equations, and also of the Euler–Lagrange equations. In much the same way,

from a very broad perspective the discrete Hamel’s equations introduced in this dissertation

might be thought of as a generalization of the discrete Euler–Poincaré numerical integrators

derived by Bou-Rabee and Marsden [14], and also of the discrete Euler–Lagrange equations

reviewed in Marsden and West [36].

Notably, it has been demonstrated that the discrete Hamel’s equations, as variational inte-

grators, are structure-preserving in that they conserve a discrete symplectic two-form and, in

the case of symmetry, conserve discrete momentum. In systems where the Hamel’s equations

are a simplification over the Euler–Lagrange equations, preliminary results indicate that similar

simplifications will carry over to the discrete setting.

While the results presented in this dissertation are largely theoretical, it should be reiterated

that the discrete Hamel’s equations have practical implications. It may be noted that, when

an appropriate frame is selected, simulations designed using the discrete Hamel’s equations

can preserve manifolds of relative equilibria of certain nonholonomic systems, and thus are of

interest in the construction of nonholonomic integrators.

The results presented in this dissertation offer a variety of future avenues of research. Such

possibilities include:

• It may be of particular interest to more closely examine the relationship between the

variational integrators developed in this dissertation and recent integrators developed by

Bou-Rabee and Marsden [14] on Lie groups, especially linking their retraction selection

with the idea of frame selection in this dissertation. This may also serve as a first step

towards extension of the discrete Hamel’s formalism to manifolds.
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• Extensions of the currently presented Hamel’s formalism to the development and study

of energy conserving integrators may be of interest.

• Future developments may also include an extension of Hamel’s formalism to higher order

approximations of mechanical systems.
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poincaré equations and double bracket dissipation. Communications in mathematical
physics, 175(1):1–42, 1996.

[12] A I Bobenko and Yu B Suris. Discrete Lagrangian reduction, discrete Euler–Poincaré
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