
ABSTRACT

LAW, SHIRLEY ELIZABETH. Combinatorial Realization of Certain Hopf Algebras of Pattern-
Avoiding Permutations. (Under the direction of Nathan Reading.)

A general lattice theoretic construction of Reading constructs Hopf subalgebras of the

Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of

these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. This thesis

further develops the understanding of these Hopf subalgebras. The goal is to find an intrinsic

combinatorial description of a particular family of these Hopf subalgebras. A simple Hopf alge-

bra in the family has a natural basis given by permutations that we call Pell permutations. The

Pell permutations are in bijection with combinatorial objects that we call sashes, that is, tilings

of a 1 by n rectangle with three types of tiles: black 1 by 1 squares, white 1 by 1 squares, and

white 1 by 2 rectangles. The bijection induces a Hopf algebra structure on sashes. We describe

the product and coproduct in terms of sashes, and the natural partial order on sashes. We also

describe the dual coproduct and dual product of the dual Hopf algebra of sashes. In general, this

family of Hopf subalgebras has a natural basis that is in bijection with combinatorial objects

that we call partial evaluations. We give a description of the product and the partial order of

partial evaluations, and we give a partial description of the coproduct of partial evaluations.
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Chapter 1

Introduction

1.1 Background

A unital associative algebra over a field K is a vector space V over K with an associative bilinear

product m ∶ V ⊗ V → V and a unit ε ∶ K → V such that the diagrams in Figure 1.1 commute.

The map I is the identity from V to V . Similarly, a counital coassociative coalgebra over K is

a vector space V over K with a coproduct ∆ ∶ V → V ⊗V and a counit ζ ∶ V → K such that the

diagrams in Figure 1.2 commute.

A bialgebra is a vector space that is both a unital associative algebra and a counital coasso-

ciative coalgebra, such that the diagram in Figure 1.3 commutes. The map T ∶ V ⊗ V → V ⊗ V

is the twist map that sends v2 ⊗ v1 ↦ v1 ⊗ v2, for all v1, v2 ∈ V .

A graded vector space over K is a direct sum ⊕
n≥0
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Figure 1.1: Algebra Commutative Diagrams
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Figure 1.2: Coalgebra Commutative Diagrams
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Figure 1.3: Bialgebra Commutative Diagram

vector space over K. A bialgebra on a graded vector space V =⊕
n≥0

Vn is a graded bialgebra if m

maps Vp ⊗ Vq to Vp+q for all p ≥ 0 and q ≥ 0, and if ∆ maps Vn to ⊕
p+q=n

Vp ⊗ Vq.

In general, a Hopf algebra is a bialgebra, with an additional map from V to V called the

antipode, satisfying certain conditions. However, every graded bialgebra possesses an antipode.

Thus a graded Hopf algebra is nothing more than a graded bialgebra. We refer to each graded

Hopf algebra by a triple (V,m,∆), where V is a graded vector space, m is a product map, and

∆ is a coproduct map. More information about Hopf algebras (graded or not) can be found

in [14].

Example 1.1.1. Let V be a graded vector space of polynomials such that for each grade n ≥ 0,

the basis vector is xn. We will describe the Hopf algebra of polynomials by defining a product

and a coproduct on the basis vectors.

m(xp ⊗ xq) = xp+q

∆(xn) = n

∑
i=0

(n
i
)(xi ⊗ xn−i)

2



The focus of this research is on combinatorial Hopf algebras: Hopf algebras such that the

basis elements of the underlying vector space are indexed by a family of combinatorial objects.

For each n ≥ 0, let On be a finite set of “combinatorial objects”. We define a graded vector space

over a field K, such that for each grade n the basis vectors of the vector space are indexed by

the elements of On. That is, the graded vector space is: K[O∞] = ⊕n≥0K[On]. For simplicity,

we refer to a basis element of this vector space by the combinatorial object indexing it. There is

a more sophisticated approach for defining combinatorial Hopf algebras. For more information

see [1].

The Malvenuto-Reutenauer Hopf algebra of permutations (MR) is a graded combinatorial

Hopf Algebra (K[S∞],●,∆). Given a field K, let K[Sn] be a vector space whose basis ele-

ments are indexed by the elements of Sn, where Sn is the group of permutations of the set

[n] = {1,2, . . . , n}. We identify the basis elements with the permutations themselves and thus

write elements of K[Sn] as K-linear combinations of permutations in Sn.

The product in MR is called the shifted shuffle. To multiply two permutations,

x = x1x2⋯xp ∈ Sp and y = y1y2⋯yq ∈ Sq, we begin by shifting y. Define y′ = y′1⋯y′q where

y′i = yi + p. A shifted shuffle of x and y is a permutation z ∈ Sn where n = p + q, such that the

total order of the entries 1 through p of z, is given by x, and the total order of the entries p+ 1
through n of z, is given by y′. The product of x and y in MR is the sum of all the shifted

shuffles of x and y and is denoted by either m(x⊗ y) or x ● y.
Example 1.1.2. The product of two basis elements 21 and 312:

21 ● 312 = 21534 + 25134 + 25314 + 25341 + 52134+
52314 + 52341 + 53214 + 53241 + 53421

The coproduct map is defined by separating a permutation in all possible places and then

standardizing the result. The notion of standardization is illustrated as part of Example 1.1.3,

and a precise definition of standardization is given in Section 1.2. We standardize so that all

of the terms of the coproduct are composed of permutations. For example, if we separate the

3



permutation 32154 between the 2 and the 1 we have 32 and 154. Standardizing these pieces

gives the term 21⊗ 132.

The coproduct in MR is

∆(x) = n∑
i=0

st(x1⋯xi)⊗ st(xi+1⋯xn)

where st(x1⋯x0) and st(xn+1⋯xn) are both interpreted as the empty permutation ∅, the unique
element of S0.

Example 1.1.3.

∆(32154) = ∅⊗ 32154 + 1⊗ 2143 + 21⊗ 132 + 321 ⊗ 21 + 3214⊗ 1 + 32154 ⊗∅

Notice that the product is the sum of the natural ways of combining two basis elements,

and the coproduct is the sum of the natural ways of splitting a basis element into two pieces.

Another well-known combinatorial Hopf algebra is NSym [6]. NSym can be represented as

the Hopf algebra of noncommutative symmetric functions, the Hopf algebra of compositions, or

as the Hopf algebra of subsets, but we will describe it here in terms of another combinatorial

object: a tiling of a 1 × n rectangle with black 1 × 1 squares and/or white 1 × 1 squares. This

representation will be relevant to the description of the Hopf algebra of Sashes in Chapter 2 and

to the description of the Hopf algebra of partial evaluations in Chapter 3. More information

about this Hopf algebra can be found in [2].

Fix a 1×n rectangle, and let Υn be the set of tilings of that rectangle by black and/or white

1×1 squares, see Figure 1.4. We now describe the Hopf algebra (K[Υ∞],●Υ,∆Υ), whereK[Υ∞] =
⊕n≥0K[Υn−1]. Let A ∈ Υp and B ∈ Υq. The product map is given by: A ●Υ B = A B +A B.

The coproduct is more complicated, so we will leave the description until Chapter 3.

An important Hopf subalgebra of MR is the Loday-Ronco Hopf algebra, defined on a graded

vector space with basis elements indexed by planar binary trees. A planar binary tree is a rooted

tree (a tree with a distinguished vertex called the root) in which every vertex either has no

4



Υ−1 ∅
Υ0 ‖

Υ1 ,

Υ2 , , ,

Υ3 , , , ,
, , ,

Figure 1.4: Elements of Υn for −1 ≤ n ≤ 3

Figure 1.5: The five planar binary trees in PBT3.

children or has two children, one designated as a right child and one as a left child. Vertices

with no children are called leaves. We draw the trees with the leaves lined up horizontally and

the root above them, with edges drawn so that, for each leaf, the path from that leaf to the

root is monotone up. Let PBTn be the set of planar binary trees with n+1 leaves. For example,

the five trees of PBT3 are shown in Figure 1.5. A description of the product and coproduct of

this combinatorial graded Hopf algebra is found in [9].

The final combinatorial Hopf algebra we mention here is the Hopf algebra of diagonal rect-

angulations (K[dRec∞],●dR,∆dR) as described in [8]. A diagonal rectangulation of size n is a

n × n square divided into n rectangles such that the interior of each rectangle intersects the

diagonal of the square with negative slope. The bottom left corner of the square is on the origin

of the Cartesian plane, and all points of intersection within the rectangulation have integer

coordinates. Figure 1.6 shows a diagonal rectangulation of size 20. The diagonal is shown in

gray. The number of diagonal rectangulations of size n are counted by the Baxter numbers.

Let dRecn stand for the set of rectangulations of size n. The set dRec0 has a single element,

the rectangulation of a 0 × 0 square having no rectangles. This empty rectangulation is repre-

5



Figure 1.6: A diagonal rectangulation of size 20

●dR = sum of completions of

= + + + +

Figure 1.7: A product calculation in the Hopf algebra dRec

sented by the symbol ∅. The set dRec1 also has a single element, the “division” of a square into

a single square. The Hopf algebra dRec is the graded vector space K[dRec∞] =⊕n≥0K[dRecn],
with the product and coproduct that we now describe.

Let R1 ∈ dRecp and R2 ∈ dRecq, where p + q = n. The product in dRec is the sum over all

completions of the following “incomplete rectangulation”: A n×n square with the interior of R1

in the upper left corner and the interior of R2 in the lower right corner. That is, we sum over

all rectangulations of size n that can be defined by adding additional lines to the incomplete

rectangulation. We give two examples in Figures 1.7 and 1.8, marking, for the sake of clarity,

the point (p,n − p) in each diagonal rectangulation in the product.

Before we describe the coproduct ∆dR, we first need to define some terminology. Let R

be a diagonal rectangulation of size n and consider any path γ from the top-left corner of R

to the bottom-right corner of R, traveling only along edges of rectangles, and traveling only

downwards and to the right. The path γ divides the rectangles of R into two groups: There are

6



●dR = sum of completions of

= + + + + + .

Figure 1.8: A product calculation in the Hopf algebra dRec

p rectangles below/left of the path and q rectangles above/right of the path, with p + q = n.
We associate to the path γ an element Aγ ⊗Bγ of dRec⊗dRec. If p = 0 then the element

Aγ is ∅. Otherwise, Aγ is obtained as follows: First, delete from R everything that lies on

or is above/right of γ, except for the outer edges of the square. Then, scale this incomplete

rectangulation down to a p × p size square. The element Aγ is the sum over all completions of

this incomplete diagonal rectangulation. Similarly, Bγ = ∅ if q = 0, and otherwise Bγ is obtained

by deleting from R everything that lays on or is below/left of γ, except for the outer edges of

the square, scaling the result to a q × q square, and then summing over all completions of the

resulting incomplete diagonal rectangulation. The coproduct of R is the sum, over all paths γ,

of Aγ ⊗Bγ .

Consider, for example, the coproduct of

.

Figure 1.9 shows each path γ and the associated Aγ and Bγ . The figure uses the abbreviation

“c.” to mean “the sum over all completions of appropriate size.”

7



γ Aγ Bγ

∅ c. =

c. = c. = +

c. = c. =

c. = c. = +

c. = + c. =

c. = c. =

c.

= + +
c. =

c. = c. =

c. = ∅

Figure 1.9: A coproduct calculation in the Hopf algebra dRec
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1.2 Hopf Algebra of Pattern-avoiding Permutations

Let Sn be the group of permutations of the set [n] = {1,2, . . . , n}. Also define [n,n′] =
{n,n + 1, . . . , n′} for n′ ≥ n. For x = x1x2⋯xn ∈ Sn, an inversion of x is a pair (xi, xj) where
i < j and xi > xj , and the inversion set of x is the set of all such inversions. The weak order

is the partial order on Sn with x ≤ x′ if and only if the inversion set of x is contained in the

inversion set of x′. The weak order is a lattice. The inverse x−1 of a permutation x ∈ Sn is the

permutation x−1 = y = y1⋯yn ∈ Sn such that yi = j when xj = i.

Let T be a set consisting of integers t1 < t2 < ⋯ < tn. Given a permutation x ∈ Sn, the

notation (x)T stands for the permutation of T whose one-line notation has tj in the ith position

when xi = j. On the other hand, given a permutation x of T , the standardization, st(x), is the
unique permutation y ∈ Sn such that (y)T = x.

Now let T be a subset of [n]. For x ∈ Sn, the permutation x∣T is the permutation of T

obtained by removing from the one-line notation for x all entries that are not elements of T .

Example 1.2.1. Let x = 31254, T1 = {2,3,6,8,9}, and T2 = {2,3,5}. Then, (x)T1
= 62398 and

thus st(62398) = 31254. Also, x∣T2
= 325.

The Malvenuto-Reutenauer Hopf algebra MR is a graded Hopf Algebra (K[S∞],●,∆), as we
explained in Section 1.1. We now reiterate a description of MR with more detail and with some

variations to notation. Let K[S∞] =⊕n≥0K[Sn] be a graded vector space. Let x = x1x2⋯xp ∈ Sp

and y = y1y2⋯yq ∈ Sq. Define y′ = y′1⋯y′q to be (y)[p+1,p+q] so that y′i = yi + p. A shifted shuffle of

x and y′ is a permutation z ∈ Sn where n = p + q, z∣[p] = x and z∣[p+1,n] = y′. The product of x

and y in MR is the sum of all the shifted shuffles of x and y. Equivalently,

x ● y =∑[x ⋅ y′, y′ ⋅ x] (1.1)

where x ⋅ y′ is the concatenation of the permutations x and y′, and ∑[x ⋅ y′, y′ ⋅ x] denotes the
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sum of all the elements in the weak order interval [x ⋅ y′, y′ ⋅ x]. The coproduct in MR is:

∆(x) = p∑
i=0

st(x1⋯xi)⊗ st(xi+1⋯xp) (1.2)

where st(x1⋯x0) and st(xp+1⋯xp) are both interpreted as the empty permutation ∅.

Define the map Inv ∶ Sn → Sn by Inv(x) = x−1 and extend the map linearly to a map

Inv ∶ KS∞ → KS∞. MR is known to be self dual [10] and specifically Inv is an isomorphism

from (K[S∞],●,∆) to the graded dual Hopf algebra (K[S∞],∆∗,m∗). Let x ∈ Sp, y ∈ Sq, and

z ∈ Sn, where p + q = n. Given a subset T of p elements of [n], TC denotes the complement of

T in [n]. The dual product is given by:

∆∗(x⊗ y) = Inv(x−1 ● y−1) = ∑
T⊆[n],
∣T ∣=p

(x)T ⋅ (y)TC , (1.3)

and the dual coproduct is:

m∗(z) = (Inv⊗ Inv)(∆(z−1)) = n∑
i=0

z∣[i] ⊗ st(z∣[i+1,n]) (1.4)

where z∣[0] and z∣[n+1,n] are both interpreted as the empty permutation ∅.

Now that we have explicitly described both the Hopf algebra of permutations and the dual

Hopf algebra of permutations, we will present a family of Hopf subalgebras that are defined by a

particular pattern-avoidance condition. This family of Hopf algebras is defined by Reading [12].

For some k ≥ 2, let V ⊆ [2, k − 1] such that ∣V ∣ = j and let V C be the complement of

V in [2, k − 1]. A permutation x ∈ Sn avoids the pattern V (k1)V C if for every subsequence

xi1xi2⋯xik of x with ij+2 = ij+1 + 1, the standardization st(xi1xi2⋯xik) is not of the form

v(k1)v′ for any permutation v of the set V and any permutation v′ of V C . In the notation

of Babson and Steingrimsson [4] avoiding V (k1)V C means avoiding all patterns of the form

v1−⋯−vj−k1−v
′
1−⋯−v

′
k−j−2, where v1⋯vj is a permutation of V and v′1⋯v

′
k−j−2 is a permutation

of V C .
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Let U be a set of patterns of the form V (k1)V C , where ∣V ∣ and k can vary. Define Avn

to be the set of permutations in Sn that avoid all of the patterns in U . We define a graded

Hopf algebra (K[Av∞],●Av,∆Av) as a graded Hopf subalgebra of MR. Let K[Avn] be a vector

space, over a field K, with basis vectors indexed by the elements of Avn, and let K[Av∞] be
the graded vector space ⊕n≥0K[Avn]. The product and coproduct on K[Av∞] are described

below.

We define a map π↓ ∶ Sn → Avn recursively. If x ∈ Avn then define π↓(x) = x. If x ∈ Sn, but

x ∉ Avn, then x contains an instance of a pattern V (k1)V C in U . That is, there exists some

subsequence xi1xi2⋯xik of x, where ij+2 = ij+1 + 1 and j = ∣V ∣, such that st(xi1xi2⋯xik) = vk1v′
for some permutations v and v′ of V and V C . Exchange xij+1 and xij+2 in x to create a new

permutation x′, calculate π↓(x′) recursively and set π↓(x) = π↓(x′). The recursion must termi-

nate because an inversion of x is destroyed at every step, and because the identity permutation

is in Avn. The map π↓ is well-defined as explained in [12, Remark 9.5]. We emphasize that the

definition of π↓ is dependent on U .

The map π↓ defines an equivalence relation with permutations x,x′ ∈ Sn equivalent if and

only if π↓(x) = π↓(x′). The set Avn is a set of representatives of these equivalence classes. This

equivalence relation is a lattice congruence on the weak order. Therefore the poset induced

on Avn by the weak order is a lattice (also denoted by Avn) and the map π↓ is a lattice

homomorphism from the weak order to Avn. The congruence classes defined by π↓ are intervals,

and π↓ maps an element to the minimal element of its congruence class. Let π↑ be the map that

takes an element to the maximal element of its congruence class.

The following proposition is a special case of [12, Proposition 2.2]. The congruence on Sn

defined by π↓ is denoted by Θ. For x ∈ Sn, the congruence class of x mod Θ is denoted by [x]Θ.
Proposition 1.2.2. Given Sn a finite lattice, Θ a congruence on Sn, and x ∈ Sn, the map

y → [y]Θ restricts to a one-to-one correspondence between elements of Sn covered by π↓(x) and
elements of Avn covered by [x]Θ.
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Example 1.2.3. A well known lattice is the Tamari lattice which is isomorphic to Avn for

U = {2(31)}. Let Gn be the set of objects of this lattice. The elements of Gn are strings of

n factors grouped into pairs by n − 1 sets of parentheses. The partial order relation for the

Tamari lattice is (A(BC)) Ì ((AB)C), where A, B, and C are elements of Gh, Gi, and Gj

respectively, for some 1 ≤ h, i, j ≤ n − 2 such that h + i + j = n.

Both π↓ and π↑ are order preserving and π↑ ○ π↓ = π↑ and π↓ ○ π
↑ = π↓. A π↓-move is the

result of switching two adjacent entries of a permutation in the manner described above. That

is, it changes ⋯k1⋯ to ⋯1k⋯ for some pattern in U . A π↑-move is the result of switching two

adjacent entries of a permutation in a way such that a π↑-move undoes a π↓-move. That is, it

changes ⋯1k⋯ to ⋯k1⋯.

We define a map r ∶ K[S∞] → K[Av∞] that identifies the representative of a congruence

class. Given x ∈ Sn,

r(x) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x if x ∈ Avn

0 otherwise.

Similarly, we define a map c ∶ K[Av∞] → K[S∞] that takes an avoider to the sum of its

congruence class:

c(x) = ∑
y such that
π↓(y)=x

y.

We now describe the product and coproduct in (K[Av∞],●Av,∆Av). Let x ∈ Avp, and let

y ∈ Avq. Then:

mAv(x⊗ y) = x ●Av y = r(x ● y). (1.5)

Just as the product in MR is ∑[x ⋅ y′, y′ ⋅ x], we can view this product as:

x ●Av y =∑[x ⋅ y′,π↓(y′ ⋅ x)], (1.6)

where [x ⋅ y′,π↓(y′ ⋅ x)] is an interval on the lattice Avn.
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The coproduct is:

∆Av(z) = (r ⊗ r)(∆(c(z))). (1.7)

We now describe the Hopf algebra (K[Av∞],∆∗Av,●
∗
Av) that is dual to (K[Av∞],●Av,∆Av).

We extend the map π↓ linearly, so π↓ is a map from K[S∞] to K[Av∞]. The map that is dual

to the map c is c∗ ∶ K[S∞] → K[Av∞], where c∗(x) = π↓(x) for x ∈ K[S∞]. The map that is

dual to the map r is r∗ ∶ K[Av∞]→ K[S∞], where r∗(x) = x for x ∈ K[Av∞].
Let z ∈ Avn, where n = p + q. The dual coproduct is given by dualizing Equation (1.5), so

that:

m∗Av(z) =m∗(z). (1.8)

The dual product ∆∗Av is given by dualizing Equation (1.7):

∆∗Av(x⊗ y) = π↓∆∗(x⊗ y). (1.9)

Combining Equation (1.9) with Equation (1.3), we have:

∆∗Av(x⊗ y) = ∑
T⊆[n]
∣T ∣=p

π↓((x)T ⋅ (y)TC) (1.10)

Equation (1.10) leads to the following order theoretic description of the coproduct ∆Av,

which was worked out jointly with Nathan Reading.

Given z ∈ Avn, a subset T ⊆ [n] is good with respect to z if there exists a permutation

z′ = z′1⋯z
′
n with π↓(z′) = z such that T = {z′1, . . . , z′∣T ∣}. Suppose T is good with respect to z, let

p = ∣T ∣ and let q = n − p. Let zmin be minimal, in the weak order on Sn, among permutations

equivalent to z and whose first p entries are the elements of T . Let zmax be maximal, in the

weak order, among such permutations. Define IT to be the sum over the elements in the interval

[st(zmin∣T ),π↓ st(zmax∣T )] in Avp and define JT to be the sum over the elements in the interval

[st(zmin∣TC),π↓ st(zmax∣TC)] in Avq.
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Theorem 1.2.4. Let z ∈ Avn. Then

∆Av(z) = ∑
T is good

IT ⊗ JT

where IT = ∑[st(zmin∣T ),π↓ st(zmax∣T )], JT = ∑[st(zmin∣TC),π↓ st(zmax∣TC)].
To prove Theorem 1.2.4, we first need several lemmas.

Lemma 1.2.5. The elements in the interval [zmin, zmax] are equivalent to z and their first p

entries are the elements of T .

Proof. All of the elements in the interval [zmin, zmax] are equivalent to z because equivalence

classes are intervals in the weak order. To prove the rest of the lemma, suppose for the sake of

contradiction that there is an element z′ ∈ [zmin, zmax] whose first p entries are not the elements

of T . That is, z′ has some y ∈ TC before some x ∈ T . If x < y, then (y,x) ∈ Inv(z′), but
(y,x) ∉ Inv(zmax), so z′ ∉ [zmin, zmax]. If y < x, then (x, y) ∈ Inv(zmin), but (x, y) ∉ Inv(z′),
so z′ ∉ [zmin, zmax]. Therefore the first p entries of elements in the interval [zmin, zmax] are the

elements of T .

Lemma 1.2.6. Suppose T ⊆ [n] with ∣T ∣ = p. Let q = n − p. Suppose also that x1 ≤ x2 ≤ x3

in Avp, and that y1 ≤ y2 ≤ y3 in Avq. If π↓((x1)T ⋅ (y1)TC) = π↓((x3)T ⋅ (y3)TC) = z, then

π↓((x2)T ⋅ (y2)TC) = z.
Proof. If x1 ≤ x2 ≤ x3, and y1 ≤ y2 ≤ y3, then (x1)T ⋅ (y1)TC ≤ (x2)T ⋅ (y2)TC ≤ (x3)T ⋅ (y3)TC .

Since π↓ is an order preserving map, π↓((x1)T ⋅(y1)TC) ≤ π↓((x2)T ⋅(y2)TC) ≤ π↓((x3)T ⋅(y3)TC).
The assertion of the lemma follows.

Lemma 1.2.7. Suppose x1, x2 ∈ Sp and y1, y2 ∈ Sq. Suppose T ⊆ [n], where n = p + q, and with

∣T ∣ = p. The following identities hold:

(x1)T ⋅ (y1)TC ∨ (x2)T ⋅ (y2)TC = (x1 ∨ x2)T ⋅ (y1 ∨ y2)TC

(x1)T ⋅ (y1)TC ∧ (x2)T ⋅ (y2)TC = (x1 ∧ x2)T ⋅ (y1 ∧ y2)TC
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Proof. First we consider the identity with joins. There are three different kinds of inversions in

(x1)T ⋅ (y1)TC : inversions within x1, inversions within y1, and inversions between T and TC . The

inversion set of the permutation on the left hand side of the equation is the union of: inversions

within x1 in terms of T , inversions within y1 in terms of TC , inversions within x2 in terms of T ,

inversions within y2 in terms of TC , and inversions between T and TC . Similarly, the inversion

set of the permutation on the right hand side of the equation is the union of: inversions within

x1 or x2 in terms of T , inversions within y1 or y2 in terms of TC , and inversions between T and

TC . Therefore the permutation on the left hand of the equation and the permutation on the

right hand of the equation have identical inversion sets and are thus the same.

The proof for the identity with meets is identical except for examining intersections of the

inversion sets instead of unions.

Proof of Theorem 1.2.4. In light of Equation (1.10), ∆Av(z) is the sum, over T ⊆ [n], of terms

x⊗ y ∈ Avp⊗Avq such that π↓((x)T ⋅ (y)TC ) = z. Some terms x⊗ y may appear in ∆Av(z) with
coefficient greater than 1, but for each T , a term x ⊗ y occurs at most once. Let terms(z,T )
be the set {x ⊗ y ∶ π↓((x)T ⋅ (y)TC ) = z}. It is immediate that when terms(z,T ) is nonempty,

T is good with respect to z. On the other hand, if T is good with respect to z, then let z′

have π↓(z′) = z and {z′1, z′2, . . . , z′∣T ∣} = T . Let x ∈ Sp and y ∈ Sq be such that z′ = (x)T ⋅ (y)TC .

Then π↓(x) ∈ Avp and π↓(y) ∈ Avq. Since π↓(x) is obtained from x by a sequence of π↓-moves,

and π↓(y) is obtained similarly from y, we see that (π↓(x))T ⋅ (π↓(y))TC is obtained from

z′ = (x)T ⋅ (y)TC by a sequence of π↓-moves. Thus, π↓((π↓(x))T ⋅ (π↓(y))TC ) = π↓(z′) = z, so

π↓(x)⊗ π↓(y) ∈ terms(z, t) and in particular terms(z,T ) is nonempty.

Next, we need to show that, for each good subset T , the set terms(z,T ) is of the form

IT ⊗ JT . For convenience, we consider each x⊗ y as an element of Avp ×Avq without rewriting

x⊗ y as (x, y).
Suppose x1 ⊗ y1 and x2 ⊗ y2 are in terms(z,T ). Then by Lemma 1.2.7,

π↓((x1 ∨ x2)T ⋅ (y1 ∨ y2)TC) = π↓((x1)T ⋅ (y1)TC ∨ (x2)T ⋅ (y2)TC).
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Since π↓ is a lattice homomorphisim, the latter is

π↓((x1)T ⋅ (y1)TC) ∨ π↓((x2)T ⋅ (y2)TC) = z ∨ z = z.

Thus (x1 ∨x2)⊗ (y1 ∨y2) is in terms(z,T ). The same argument holds for meets, so terms(z,T )
is closed under meets and joins in the product order Avp ×Avq. Lemma 1.2.6 implies that

terms(z,T ) is order-convex in Avp ×Avq. An order-convex subset that is closed under meets

and joins is necessarily an interval.

Suppose x ⊗ y < st(zmin∣T ) ⊗ st(zmin∣TC) in Avp ×Avq. Then (x)T ⋅ (y)TC < zmin in Sn.

Thus π↓((x)T ⋅ (y)TC) ≠ z, by the definition of zmin, and therefore x ⊗ y /∈ terms(z,T ). Thus
st(zmin∣T )⊗ st(zmin∣TC) is the minimal element of terms(z,T ).

Now suppose x ⊗ y > π↓ st(zmax∣T ) ⊗ π↓ st(zmax∣TC) in Avp ×Avq. Then since π↑ is order-

preserving and π↑ ○π↓ = π
↑, we see that π↑(x)⊗π↑(y) > π↑ st(zmax∣T )⊗ π↑ st(zmax∣TC). Thus on

the lattice Sn,

(π↑(x))
T
⋅ (π↑(y))

TC > (π↑ st(zmax∣T ))T ⋅ (π↑ st(zmax∣TC))
TC . (1.11)

The right side of Equation (1.11) is obtained from zmax by standardizing the first part of the

permutation, doing some π↑-moves, unstandardizing, and then repeating for the last part of the

permutation. The same result can be obtained by simply applying the corresponding π↑-moves to

zmax, without standardizing and unstandardizing. In particular, the right side of Equation (1.11)

is greater than or equal to zmax. Now Equation (1.11) implies that (π↑(x))
T
⋅ (π↑(y))

TC is

strictly greater than zmax. The definition of zmax says that π↑(x) ⊗ π↑(y) /∈ terms(z,T ). Thus
(π↑(x))

T
⋅ (π↑(y))

TC is not equivalent to z.

But (π↑(x))
T
⋅ (π↑(y))

TC is obtained from (x)T ⋅ (y)TC by standardizing the first part,

doing some π↑-moves, unstandardizing, and then repeating for the last part. The same result

is again obtained by simply applying the the corresponding π↑-moves to (x)T ⋅ (y)TC , without

standardizing and unstandardizing. Thus (π↑(x))
T
⋅ (π↑(y))

TC is equivalent to (x)T ⋅ (y)TC ,
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which is therefore not equivalent to z. We have shown that x⊗ y /∈ terms(z,T ).
Thus, we have shown that terms(z,T ) equals

[st(zmin∣T )⊗ st(zmin∣TC),π↓ st(zmax∣T )⊗ π↓ st(zmax∣TC)].

Any interval in Avp ×Avq is the product of an interval in Avp with an interval in Avq. Thus

terms(z,T ) is IT ⊗ JT .

The proof of Theorem 1.2.4 also establishes the following more detailed statement.

Proposition 1.2.8. For some T ⊆ [n], x ⊗ y ∈ terms(z,T ) if and only if x ⊗ y is a term of

IT ⊗ JT in ∆Av(z).
Proof. Since x ⊗ y ∈ terms(z,T ) means that π↓((x)T ⋅ (y)TC) = z, we see from Equation(1.10)

and Theorem 1.2.4 that for a fixed set T , x ⊗ y is a term of the summand indexed by T in

∆Av(z) if and only if z is the summand indexed by T in ∆∗Av(x⊗ y).

1.3 Combinatorial Realizations

All of the Hopf algebras described in Section 1.1 are Hopf subalgebras of MR. Also, each is

isomorphic to (K[Av∞],●Av,∆Av) for choices of U shown here.

Object U

polynomial {(21)}
black/white square tilings {2(31), (31)2}

planar binary trees {2(31)}
diagonal rectangulations {2(41)3,3(41)2}

In Chapter 2, we consider a particular Hopf algebra given by U = {2(31), (41)23} and

describe it in terms of a natural combinatorial object. To begin, we compute how many basis

vectors the Hopf subalgebra has for each grade. Next we find a combinatorial object that

is in bijection with those basis vectors. Then we compute a product and coproduct on the
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combinatorial objects by using the bijection to map the combinatorial objects to permutations,

computing the operation on the permutations, and then mapping the permutations back to the

combinatorial object. However, the goal of this research is to find an intrinsic representation of

these operations; an operation directly on the objects that will produce the same output as the

method described.

For U = {2(31), (41)23}, the set Avn is counted by the Pell numbers, so (K[Av∞],●Av,∆Av)
might be called the Hopf algebra of Pell permutations. In Section 2.1 we define Pell permu-

tations, and we also introduce a combinatorial object called sashes. There is a bijection from

Pell permutations to sashes which is used to determine the operations on the Hopf algebra of

sashes.

In Section 2.2 we describe the Hopf algebra of sashes and the dual Hopf algebra of sashes

by defining the product, dual coproduct, dual product, and coproduct intrinsically. These four

operations are all defined directly in terms of sashes.

In Chapter 3, we consider a family of Hopf subalgebras of which the Hopf Algebra of

sashes is a member. This family is indexed by a parameter k, and each Hopf Algebra is

(K[Av∞],●Av,∆Av), for U = {2(31), (k1)23⋯k − 1}. We realize these Hopf algebras via combi-

natorial objects we call partial evaluations. In Section 3.1, we describe the avoiders Avn. Then

we define a bijection from avoiders to partial evaluations. In Section 3.2 we describe the product

in the Hopf algebra of partial evaluations and give partial results on the coproduct.
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Chapter 2

The Hopf Algebra of Sashes

2.1 Pell Permutations and Sashes

In this section, we describe a particular combinatorial Hopf algebra that is isomorphic to a Hopf

subalgebra of pattern-avoiding permutations. To begin, we define a set of permutations called

Pell permutations.

Given a permutation x = x1x2⋯xn ∈ Sn, for each i ∈ [n − 1], there is a nonzero integer j

such that xi = xi+1 + j. If j > 0, then there is an descent of size j in the ith position of x. A Pell

permutation is a permutation of [n] with no descents of size larger than 2, and such that for

each descent xi = xi+1 + 2, the element xi+1 + 1 is to the right of xi+1. We write Pn for the set

of Pell permutations in Sn.

Let us consider how many Pell permutations of length n there are. Given x ∈ Pn−1, we can

place n at the end of x or before n − 1. We can also place n before n − 2, but only if n − 1 is

the last entry of x. Therefore ∣Pn∣ = 2∣Pn−1∣ + ∣Pn−2∣. This recursion, with the initial conditions

∣P0∣ = 0 and ∣P1∣ = 1, defines the Pell numbers as defined by [13, Sequence A000129].

Lemma 2.1.1. Pn = Avn for U = {2(31), (41)23}.
Proof. Suppose x ∈ Pn. Since x does not have any descents larger than 2, it avoids (41)23. For
each descent xi = xi+1 + 2 in x, the element xi+1 + 1 is to the right of xi+1. Thus x also avoids
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(a) Σ3

(b) Σ4

Figure 2.1: The elements of Σ3 and Σ4.

2(31). Now suppose x ∈ Avn. Suppose x has a descent xi = xi+1 + j. Because x avoids 2(31), the
entries xi+1 + 1, ..., xi+1 + j − 1 are to the right of the xi+1. Thus, since x avoids (41)23 we see

that j ≤ 2 and conclude that x ∈ Pn.

The poset induced on Pn by the weak order is a lattice (also denoted by Pn). As a conse-

quence of Lemma 2.1.1, there is a Hopf algebra (K[Av∞],●Av,∆Av) of Pell permutations. For

the rest of this chapter we fix U = {2(31), (41)23}.
There is a combinatorial object in bijection with Pell permutations that will allow us to

have a more natural understanding of the Hopf algebra of Pell permutations.

A sash of length n is a tiling of a 1×n rectangle by black 1× 1 squares, white 1× 1 squares,

and/or white 1× 2 rectangles. The set of sashes of length n is called Σn. There are no sashes of

length -1 so Σ−1 = ∅, and there is one sash of length 0, a 1 by 0 rectangle denoted ‖, so ∣Σ0∣ = 1.
There are two sashes of length 1: and . The five sashes of length 2 and the twelve sashes

of length 3 are shown in Figure 2.1. The poset structure of these sashes will be explained later

in this section.

A sash of length n starts with either a black square, a white square, or a rectangle. Thus

20



∣Σn∣ = 2∣Σn−1∣+ ∣Σn−2∣. Since ∣Σ−1∣ = 0 and ∣Σ0∣ = 1, there is a bijection between Pell permutations

of length n and sashes of length n−1. We now describe a bijection that we use to induce a Hopf

Algebra structure on sashes.

Definition 2.1.2. We define a map σ from Sn to Σn−1. Let x ∈ Sn. We build a sash σ(x) from
left to right as we consider the entries in x from 1 to n − 1. For each value i ∈ [n − 1], if i + 1 is

to the right of i, place a black square on the sash, and if i + 1 is to the left of i, place a white

square on the sash. There is one exception: If i + 1 is to the right of i, and i + 2 is to the left

of i (and of i + 1), then place a rectangle in the ith and (i + 1)st positions of the sash. We also

define σ(1) = ‖ and σ(∅) = ∅.
From the definition of the map σ we see that σ sometimes involves replacing an adjacent

black square and white square by a rectangle. Later, we will sometimes break a rectangle into

a black square and a white square.

Example 2.1.3. Here is the procedure for computing σ(421365).
2 is to the left of 1 →
3 is to the right of 2 →
4 is to the left of 3 and also to the left of 2 →
5 is to the right of 4 →
6 is to the left of 5 but to the right of 4 →

Let T be a set of n integers and let x be a permutation of T . We define σ(x) = σ(st(x)).
Example 2.1.4. σ(742598) = σ(st(742598)) = σ(421365) =
Definition 2.1.5. We define a map η ∶ Σn−1 → Pn. To calculate η(A) for a sash A ∈ Σn−1, we

place the numbers 1 through n one at a time. Place the number 1 to begin and let i run from

1 to n− 1. If A has either a black square or the left half of a rectangle in the ith position, place

i + 1 at the right end of the permutation. If A has either a white square or the right half of a

rectangle in the ith position, place i+1 immediately to the left of i or i−1 respectively. We also

define η(‖) = 1 and η(∅) = ∅.
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It is immediate that this construction yields a Pell permutation because the output has no

descents of size larger than 2, and for each descent of size 2, the value in between the values of

the descent is to the right of the descent.

Example 2.1.6. Here are the steps to calculate η(A) for A = .

→ 1

→ 21

→ 213

→ 4213

→ 42135

→ 421365

Theorem 2.1.7. The restriction of σ to the Pell permutations is a bijection σ ∶ Pn → Σn−1

whose inverse is given by η ∶ Σn−1 → Pn.

Proof. Let A ∈ Σn−1. We first show that σ(η(A)) = A. If A has a black square in position i,

then η(A) has i + 1 to the right of i and i + 2 not to the left of i. So σ(η(A)) also has a black

square in the ith position. If A has a white square in position i, then η(A) has i+1 immediately

to the left of i. So σ(η(A)) also has a white square in the ith position. If A has a rectangle in

positions i and i+1, then η(A) has i+1 to the right of i, and i+2 immediately to the left of i. So

σ(η(A)) also has a rectangle in the ith and (i + 1)st positions. We conclude that σ(η(A)) = A.
We have constructed a Pell permutation η(A) that maps to A under σ, therefore σ is

surjective. Since we know ∣Pn∣ = ∣Σn−1∣, the map σ restricted to Pell permutations is a bijection.

The inverse map of σ is η.

Proposition 2.1.8. x, y ∈ Sn are equivalent if and only if σ(x) = σ(y).
Proof. The permutations x = x1⋯xn and y = y1⋯yn are equivalent if and only if π↓(x) = π↓(y).
Thus to prove the forward direction of the proposition, it is enough to consider the case where y

is obtained from x by a single π↓-move. Consider a π↓-move switching xi and xi+1 of x. First we

suppose that xi ≥ xi+1+3. The relative position of xi with regard to xi+1 is irrelevant to the map
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σ, thus σ(x) = σ(y). Now we suppose that xi = xi+1 + 2. There can only be a π↓-move switching

xi and xi+1 of x if xi+1 + 1 is to the left of xi. In this case, both σ(x) and σ(y) have a white

square in the ith position and a black square in the (i + 1)st position. Therefore σ(x) = σ(y).
To prove the reverse implication suppose that x and y are not equivalent, that is

π↓(x) ≠ π↓(y). Since π↓(x) and π↓(y) are Pell permutations, and σ is a bijection from Pell

permutations to sashes, σ(π↓(x)) ≠ σ(π↓(y)). But by the previous paragraph, σ(π↓(x)) = σ(x)
and σ(π↓(y)) = σ(y).

The partial order on Σn−1 is such that the map σ ∶ Pn → Σn−1 is an order isomorphism from

the lattice of Pell permutations to Σn−1. We refer to this lattice as Σn−1.

From Proposition 1.2.2, the cover relations in Σn−1 are exactly the relations σ(y) Ì σ(x)
where x ∈ Pn and y is covered by x in Sn.

Proposition 2.1.9. The cover relations on sashes are

1. A B Ì A B for any sash A and for a sash B whose leftmost tile is not a white square

2. A B Ì A B for any sash A and any sash B

3. A B Ì A B for any sash A and any sash B

Proof. Let x ∈ Pn and let y ∈ Sn such that y is covered by x in the weak order. That is,

x = x1⋯xixi+1⋯xn and y = x1⋯xi+1xi⋯xn ∈ Sn for some xi > xi+1.

Suppose xi = xi+1 + 1 and xi + 1 is not to the left of xi. Let A = σ(x∣[1,xi+1]) = σ(y∣[1,xi+1])
and let B = σ(x∣[xi,n]) = σ(y∣[xi,n]). Thus, A B = σ(y) Ì σ(x) = A B, where the leftmost tile

of B is not a white square.

Suppose xi = xi+1 + 1 and xi + 1 is to the left of xi. Let A = σ(x∣[1,xi+1]) = σ(y∣[1,xi+1]) and
let B = σ(x∣[xi+1,n]) = σ(y∣[xi+1,n]). Thus, A B = σ(y) Ì σ(x) = A B.

Suppose xi = xi+1 + 2. Let A = σ(x∣[1,xi+1]) = σ(y∣[1,xi+1]) and let B = σ(x∣[xi,n]) = σ(y∣[xi,n]).
Thus, A B = σ(y) Ì σ(x) = A B.

Example 2.1.10. See Figure 2.1 for the poset on Σ3 and Σ4.
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2.2 The Hopf Algebra (and Dual Hopf Algebra) of Sashes

The bijection σ allows us to carry the Hopf algebra structure on Pell permutations to a Hopf

algebra structure (K[Σ∞],●S ,∆S) on sashes and a dual Hopf algebra (K[Σ∞],∆∗S ,m∗S) on

sashes, where K[Σ∞] is a vector space, over a field K, whose basis elements are indexed by

sashes. In order to do this, we extend σ and η to linear maps. For each grade n of the vector

space, the basis elements are represented by the sashes of length n − 1. Recall that the sash of

length -1 is represented by ∅, and the sash of length 0 is represented by ‖. Let A, B, and C be

sashes. Using σ, we define a product, coproduct, dual product, and dual coproduct of sashes:

mS(A,B) = A ●S B = σ(η(A) ●Av η(B)) (2.1)

∆S(C) = (σ ⊗ σ)(∆Av(η(C))) (2.2)

∆∗S(A⊗B) = σ(∆∗Av(η(A)⊗ η(B))) (2.3)

m∗S(C) = (σ ⊗ σ)(m∗Av(η(C))) (2.4)

These operation definitions are somewhat unsatisfying because they require computing the

operation in MR. That is, calculating a product or coproduct in this way requires mapping

sashes to permutations, performing the operations in MR, throwing out the non-avoiders in the

result, and then mapping the remaining permutations back to sashes. In the rest of this chapter

we show how to compute these operations directly in terms of sashes.
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2.2.1 Product

Proposition 2.2.1. The empty sash ∅ is the identity for the product ●S. For sashes A ≠ ∅ and

B ≠ ∅, the product A ●S B equals:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑[A B,A′ B] if A = A′

∑[A B,A B] if A ≠ A′

where ∑[D,E] is the sum of all the sashes in the interval [D,E] on the lattice of sashes.

To clarify, here are some more specific cases of the product on sashes. If A = A′ , then

∑[A B,A′ B] equals:
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A B +A B′ +A B +A′ B if B = B′

A B +A B +A′ B if B ≠ B′

and if A ≠ A′ , then ∑[A B,A B] equals:
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A B +A B′ +A B if B = B′

A B +A B if B ≠ B′

The case where A = ‖ is an instance of A ≠ A′ , and similarly for B = ‖.

Proof. We begin by computing the product of Pell permutations. We showed in Section 1.2 that

the product of Pell permutations is the sum over the interval [x ⋅ y′,π↓(y′ ⋅ x)] in the lattice of

Pell permutations, where x ∈ Pp, y ∈ Pq, and y′ = (y)[p+1,n].
To compute the product of sashes we can apply the map σ to the product of Pell permu-

tations. Let σ(x) = A and σ(y) = B, thus A ●S B = σ(x ●P y) = ∑[σ(x ⋅ y′),σ(π↓(y′ ⋅ x))] =
∑[σ(x ⋅ y′),σ(y′ ⋅ x)]. The map σ takes the first p values of x ⋅ y′ to A and the last q values to

B. Because p + 1 is to the right of p and since p + 2 is not to the left of p, σ(x ⋅ y′) = A B.
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Similarly, σ takes the first p values of y′ ⋅x to A and the last q values to B. Since p+ 1 is to the

left of p, to compute σ(y′ ⋅ x) we need to consider whether or not p − 1 is before p in x.

Suppose p−1 is before p in x. Thus, A ends with a black square so σ(y′ ⋅x) replaces the last
black square of A with a rectangle in positions p − 1 and p. That is σ(y′ ⋅ x) = A′ B, where

A = A′ .

Suppose p − 1 is not before p in x. Thus, A either ends with a white square, the right half

of a rectangle, or p − 1 does not exist. Thus, σ(y′ ⋅ x) places a white square after A and before

B, so σ(y′ ⋅ x) = A B.

In informal terms, the product of two sashes is the sum of the sashes created by joining the

two sashes with a black square and a white square, and if by so doing an adjacent black square

to the left of a white square is created, then the product has additional terms with rectangles

in the places of the adjacent black square and white square.

Example 2.2.2. Let A = and let B = . Notice that for A′ = and B′ = ‖, both

A = A′ and B = B′.

A ●S B = A B + A B′ + A B + A′ B

●S = + + +

2.2.2 Dual Coproduct

From Equation (1.8) and Equation (1.4), it follows that:

m∗S(C) = n∑
i=0

σ(η(C)∣[i])⊗ σ(η(C)∣[i+1,n]) (2.5)

Proposition 2.2.3. The dual coproduct on a sash C ∈ Σn is given by:

m∗S(C) = n∑
i=−1

Ci ⊗Cn−i−1

Where Ci ∈ Σi is a sash identical to the first i positions of C (unless C has in position i,
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in which case Ci ends with ), and Cn−i−1 ∈ Σn−i−1 is a sash identical to the last n − i − 1

positions of C (unless C has in position i+ 2, in which case Cn−i−1 begins with ), and we

define C0 = C
0 = ‖ and C−1 = C

−1 = ∅.

Proof. We need to show that C is a term of A ●S B if and only if A⊗B is a term of m∗S(C).
Suppose that C ∈ Σn is a term of A ●S B, with A ∈ Σp, B ∈ Σq, and p + q = n − 1. Thus C is

one of the following: A B, A B, A′ B, or A B′, for A′ and B′ as in Proposition 2.2.1.

In any case, m∗S(C) has a term A⊗B because Cp = A and Cn−p−1 = B.

Now suppose that for A ∈ Σp and B ∈ Σq, A ⊗ B is a term of m∗S(C), where C ∈ Σn and

p + q = n − 1. Thus Cp = A and Cn−p−1 = Cq = B. If C is A B or A B, then C is a term

of A ●S B. If C is A′ B, then A = A′ , and C is a term of A ●S B. If C is A B′, then

B = B′, and C is a term of A ●S B. Therefore in all cases C is a term of A ●S B and we have

shown that the map m∗S is the dual coproduct on sashes.

2.2.3 Dual Product

From Equation (1.9), it follows that:

∆∗S(A⊗B) = ∑
T⊆[n]
∣T ∣=p

σ((η(A))T ⋅ (η(B))TC) (2.6)

We now prepare to describe the dual product ∆∗S directly on sashes.

Definition 2.2.4. Given a set T ⊆ [n] such that ∣T ∣ = p and n = p+q, and given sashes D ∈ Σp−1

and E ∈ Σq−1, define a sash γT (D ⊗E) by the following steps. First, write D above E. Then,

label D with T , by placing the elements of T in increasing order between each position of D,

including the beginning and end. Label E similarly using the elements of TC .
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Example 2.2.5. Let T = {1,2,4,7,8,9, 12,13}, D = , and E =

1 2 4 7 8 9 12 13

3 5 6 10 11 14 15

Next, draw arrows from i to i + 1 for all i ∈ [n − 1]. Lastly, follow the path of the arrows

placing elements in a new sash based on the following criteria:

Place a rectangle in the ith and (i + 1)st positions of the new sash if either of the following

conditions are met:

1. if the ith arrow is from D to E, the (i + 1)st arrow is from E to D, and there is a or

in D in between i and i + 2

2. if the ith arrow is from E to E, the (i+ 1)st arrow is from E to D, and there is a or

in E in between i and i + 1

If the above criteria are not met, then the following rules apply:

1. if the ith arrow is from D to D (or from E to E), place whatever is in between i and i+ 1

in D (or in E) in the ith position.

2. if the ith arrow is from D to E, place a black square in the ith position.

3. if the ith arrow is from E to D, place a white square in the ith position.

Note that it may be necessary to replace the left half of a rectangle by a black square or

to replace the right half of a rectangle by a white square (as in the first step of the example

below).
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Example 2.2.6. Let T , D, and E be as in Example 2.2.5. Then we compute γT (D ⊗ E) to
obtain: γ{1,2,4,7,8,9,12,13}( ⊗ ) = .

1 2 4 7 8 9 12 13

3 5 6 10 11 14 15
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Theorem 2.2.7. The dual product of sashes D ∈ Σp−1 and E ∈ Σq−1, for p + q = n, is given by:

∆∗S(D ⊗E) = ∑
T⊆[n],
∣T ∣=p

γT (D ⊗E)

Proof. For D ∈ Σp−1 and E ∈ Σq−1 such that η(D) = x ∈ Pp and η(E) = y ∈ Pq, where p + q = n,

we consider Equation (2.6) to define the dual product of sashes.

Let T ⊆ [n] such that ∣T ∣ = p. It is just left to show that γT (D ⊗E) = σ((x)T ⋅ (y)TC).
Case 1: i, i + 2 ∈ T and i + 1 ∈ TC such that i + 2 is to the left of i in (x)T .

γT (D ⊗E) outputs a rectangle in the ith and (i + 1)st positions because the ith arrow is from

D to E, the (i + 1)st arrow is from E to D, and there is a or in D in between the labels

i and i + 2. The sash σ((x)T ⋅ (y)TC) has a rectangle in the ith and (i + 1)st positions because
i + 1 is to the right of i, and because i + 2 is to the left of i.

Case 2: i, i + 1 ∈ TC and i + 2 ∈ T such that i + 1 is to the right of i in (y)TC .

γT (D ⊗E) outputs a rectangle in the ith and (i + 1)st positions because the ith arrow is from

E to E, the (i + 1)st arrow is from E to D, and there is a or in E in between the labels

i and i + 1. The sash σ((x)T ⋅ (y)TC) has a rectangle in the ith and (i + 1)st positions because
i + 1 is to the right of i, and because i + 2 is to the left of i.

Case 3: i ∈ T , i + 1 ∈ TC , and if i + 2 ∈ T , then i + 2 is to the right of i in (x)T .
γT (D⊗E) outputs a black square in the ith position because the ith arrow is from D to E, and

the criteria to place a rectangle is not met. The sash σ((x)T ⋅ (y)TC) has a black square in the
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ith position because i + 1 is to the right of i, and because i + 2 is not to the left of i.

Case 4: i ∈ TC , i+1 ∈ T , if i−1 ∈ T then i+1 is to the right of i−1 in (x)T , and if i−1 ∈ TC

then i is to the left of i − 1 in (y)TC .

γT (D⊗E) outputs a white square in the ith position because the ith arrow is from E to D, and

the criteria to place a rectangle is not met. The sash σ((x)T ⋅ (y)TC) has a white square in the

ith position because i + 1 is to the left of i, and because i − 1 is not in between i + 1 and i.

Case 5: i, i + 1 ∈ T .

γT (D ⊗E) outputs whatever is in between the labels i and i + 1 in D in the ith position. The

sash σ((x)T ⋅ (y)TC ) has the same.

Case 6: i, i + 1 ∈ TC , and if i + 2 ∈ T then i + 1 is to the left of i in (y)TC .

γT (D ⊗E) outputs whatever is in between the labels i and i + 1 in E in the ith position. The

sash σ((x)T ⋅ (y)TC ) has the same.

Therefore we have shown that σ((x)T ⋅(y)TC) and γT (D⊗E) have the same object in every

position.

2.2.4 Coproduct

We now describe the coproduct in the Hopf algebra of sashes and we begin with some definitions.

Definition 2.2.8. For C ∈ Σn−1, a dotting of C is C with a dot in any subset of the n − 1

positions of C. An allowable dotting of C is a dotting of C that meets all of the following

conditions

1. has at least one dot

2. the first dot can be in any position, and dotted positions alternate between a black square

(or the left half of a rectangle) and a white square (or the right half of a rectangle)

3. has no instances of or
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Figure 2.2: The allowable dottings of a sash

Figure 2.2 shows the allowable dottings of the sash .

Consider an allowable dotting d = c1 ●1 c2 ●2 ⋯cj ●j cj+1 of a sash C, where each ci is a sub

sash of C without any dots, and ●i is a single dotted position. If any ●i is on the right half of a

rectangle, then the the left half of the rectangle in the last position of ci is replaced by a black

square. If ●i and ●i+1 are in adjacent positions, then ci+1 = ‖. (If any ●i is on the left half of a

rectangle, then ●i+1 is on the right half of the same rectangle, so ci+1 = ‖.)

We use C and d to define two objects A and B that are similar to sashes, but have an

additional type of square , which we call a mystery square. If ●1 is on a black square or the

left half of a rectangle, then let A be the concatenation of the odd ci with a mystery square in

between each ci (where i is odd), and let B be the concatenation of the even ci with a mystery

square in between each ci (where i is even). For example, if ●1 is on a black square and j is

even, then A = c1 c3 ⋯ cj+1 and B = c2 c4 ⋯ cj . If ●1 is on a white square

or the right half of a rectangle, then let A be the concatenation of the even ci with a mystery

square in between each ci, and let B be the concatenation of the odd ci with a mystery square

in between each ci.

We use the objects A and B to define four sashes A, A, B, and B.

To compute A, consider each mystery square in A. If the mystery square follows ci and the

ith and (i+1)st dots of d are on the same rectangle, , then replace the mystery square after

ci with a white square. Otherwise replace the mystery square with a black square.

To compute A, consider each mystery square in A from left to right. If the mystery square

follows ci and the ith and (i + 1)st dots of d are on an adjacent black square and white square,

, then we check to see whether or not the mystery square is followed by a white square.
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If the mystery square is followed by a white square (i.e. if ci+2 starts with a white square),

then replace the mystery square and the white square with a rectangle. Otherwise replace the

mystery square with a black square. If the mystery square follows ci and the ith and (i + 1)st
dots of d are not on an adjacent black square and white square, then we check to see whether

or not the mystery square is preceded by a black square. If either ci ends in a black square or

ci = ‖ and the previous mystery square has been changed to a black square, then replace the

mystery square after ci and the black square before it with a rectangle. Otherwise replace the

mystery square after ci with a white square.

To compute B, replace all mystery squares of B with black squares.

To compute B, replace all mystery squares of B with white squares, unless the mystery

square is preceded by a black square, in which case replace both the black square and the

mystery square with a rectangle.

Example 2.2.9. If d = , then c1 = , c2 = c3 = ,

c4 = c5 = c6 = ‖, c7 = , c8 = , c9 = c10 = c11 = ‖, and ●1 is on a black square. Thus,

A = c1 c3 c5 c7 c9 c11 and B = c2 c4 c6 c8 c10. Using the rules above

to compute A, B, and the four sashes A, A, B, and B, we have:

A = B =

A = B =

A = B =

Given an allowable dotting d of a sash C we define Id = ∑[A,A] and Jd = ∑[B,B] for A,

A, B, and B computed as above. Thus the notation Id ⊗ Jd denotes ∑D∈[A,A]

E∈[B,B]

D ⊗E.

Theorem 2.2.10. Given C ∈ Σn−1:

∆S(C) = ∅⊗C +C ⊗∅ + ∑
allowable
dottings
d of C

Id ⊗ Jd
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To prove Theorem 2.2.10, we need to introduce some more terminology. Given an allowable

dotting d of a sash C and the objects A and B defined above, we define two more objects Â and

B̂. These objects are similar to sashes, but have three additional types of squares: , , and

. We call these squares: black-plus square, white-plus square, and mystery square respectively.

If ●i and ●i+1 are on an adjacent black square and white square, i.e. , then replace the

after ci on A with a on Â. If ●i and ●i+1 are on a rectangle, i.e. , then replace the

after ci on A with a on Â. The resulting objects are Â and B̂. Note B = B̂.

We say that a sash D is of the form Â if D is identical to Â except for the following allowable

substitutions:

• A black-plus square on Â is replaced by a black square on D.

• A white-plus square on Â is replaced by a white square on D.

• A mystery square on Â is replaced by a either a black square or a white square on D.

• A black-plus square or a mystery square on Â, and a white square, a white-plus square,

or a mystery square following it, are replaced by a rectangle on D.

• A white-plus square or a mystery square on Â, and a black square, a black-plus square,

or a mystery square preceding it, are replaced by a rectangle on D.

Similarly, a sash E is of the form B̂ if it follows the same rules as above. Since B̂ does not

have any black-plus squares or white-plus squares, E is of the form B̂ if E is identical to B̂

except for the following allowable substitutions:

• A mystery square on B̂ is replaced by a either a black square or a white square on E.

• A mystery square on B̂, and a white square or a mystery square following it, are replaced

by a rectangle on E.

• A mystery square on B̂, and a black square or a mystery square preceding it, are replaced

by a rectangle on E.
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Lemma 2.2.11. The sash A is minimal with respect to sashes of the form Â.

Proof. The sash A is of the form Â, because every white-plus square on Â is replaced by a

white square on A and every black-plus square and mystery square on Â is replaced by a black

square on A.

Suppose the sash A′ is obtained from A by going down by a cover relation. We want to

show that A′ is not of the form Â.

Case 1: A′ = A1 A2 and A = A1 A2, where the leftmost tile of A2 is not a white square.

Let ∣A1∣ = i− 1, so A′ has a black square in the ith position and A has a white square in the ith

position. Thus, Â either has a white square or a white-plus square in the ith position. Either

way, A′ is not of the form Â.

Case 2: A′ = A1 A2 and A = A1 A2.

Let ∣A1∣ = i − 1, so A′ has a black square and white square in the ith and (i + 1)st positions

and A has a rectangle in the ith and (i + 1)st positions. Thus, Â has a rectangle in the ith and

(i + 1)st positions, and A′ is not of the form Â.

Case 3: A′ = A1 A2 and A = A1 A2.

Let ∣A1∣ = i− 1, so A′ has a rectangle in the ith and (i+ 1)st positions and A has a white square

in both the ith and (i + 1)st positions. There are four possibilities of what occupies the ith and

(i + 1)st positions of Â: , , , or . In any case, A′ is not of the form Â.

Lemma 2.2.12. The sash A is maximal with respect to sashes of the form Â.

Proof. The sash A is of the form Â, because black-plus squares followed by white-plus squares,

mystery squares, or white squares on Â are replaced by a rectangle on A, white-plus squares

and mystery squares preceded by black-plus squares or black squares on Â are replaced by a

rectangle on A, all other black-plus squares on Â are replaced by black squares on A, and all

other white-plus squares and mystery squares on Â are replaced by white squares on A.

Suppose the sash A′ is obtained from A by going up by a cover relation. We want to show

that A′ is not of the form Â.
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Case 1: A = A1 A2 and A′ = A1 A2, where the leftmost tile of A2 is not a white square.

Let ∣A1∣ = i − 1, so A has a black square in the ith position and A′ has a white square in the

ith position. Thus, Â either has a black square or a black-plus square in the ith position. Either

way, A′ is not of the form Â.

Case 2: A = A1 A2 and A′ = A1 A2.

Let ∣A1∣ = i−1, so A has a black square and white square in the ith and (i+1)st positions and A′

has a rectangle in the ith and (i + 1)st positions. Thus, Â has a black square and white square

in the ith and (i + 1)st positions, and A′ is not of the form Â.

Case 3: A = A1 A2 and A′ = A1 A2.

Let ∣A1∣ = i− 1, so A has a rectangle in the ith and (i+ 1)st positions and A′ has a white square

in both the ith and (i + 1)st positions. There are five possibilities of what occupies the ith and

(i+1)st positions of Â: , , , , or . In any case, A′ is not of the form Â.

Lemma 2.2.13. The sash B is minimal with respect to sashes of the form B̂.

Proof. The sash B is of the form B̂, because every mystery square on B̂ is replaced by a black

square on B.

Suppose the sash B′ is obtained from B by going down by a cover relation. We want to

show that B′ is not of the form B̂.

Case 1: B′ = B1 B2 and B = B1 B2, where the leftmost tile of B2 is not a white square.

Let ∣B1∣ = i− 1, so B′ has a black square in the ith position and B has a white square in the ith

position. Thus, B̂ has a white square in the ith position, and B′ is not of the form B̂.

Case 2: B′ = B1 B2 and B = B1 B2.

Let ∣B1∣ = i − 1, so B′ has a black square and white square in the ith and (i + 1)st positions

and B has a rectangle in the ith and (i + 1)st positions. Thus, B̂ has a rectangle in the ith and

(i + 1)st positions, and B′ is not of the form B̂.

Case 3: B′ = B1 B2 and B = B1 B2.

Let ∣B1∣ = i−1, so B′ has a rectangle in the ith and (i+1)st positions and B has a white square
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in both the ith and (i + 1)st positions. Thus, B̂ has a white square in both the ith and (i + 1)st
positions, and B′ is not of the form B̂.

Lemma 2.2.14. The sash B is maximal with respect to sashes of the form B̂.

Proof. The sash B is of the form B̂, because every mystery square on B̂ is replaced by a black

square on B, unless it is preceded by a black square, in which case the black square and the

mystery square are replaced by a rectangle on B.

Suppose the sash B′ is obtained from B by going up by a cover relation. We want to show

that B′ is not of the form B̂.

Case 1: B = B1 B2 and B′ = B1 B2, where the leftmost tile of B2 is not a white square.

Let ∣B1∣ = i− 1, so B has a black square in the ith position and B′ has a white square in the ith

position. Thus, B̂ has a black square in the ith position, and B′ is not of the form B̂.

Case 2: B = B1 B2 and B′ = B1 B2.

Let ∣B1∣ = i − 1, so B has a black square and white square in the ith and (i + 1)st positions

and B′ has a rectangle in the ith and (i + 1)st positions. Thus, B̂ has a black square and white

square in the ith and (i + 1)st positions, and B′ is not of the form B̂.

Case 3: B = B1 B2 and B′ = B1 B2.

Let ∣B1∣ = i−1, so B has a rectangle in the ith and (i+1)st positions and B′ has a white square

in both the ith and (i + 1)st positions. Thus, B̂ either has a rectangle or a black square and

mystery square in the ith and (i + 1)st positions. Either way, B′ is not of the form B̂.

Proposition 2.2.15. If a sash D is of the form Â, then D ∈ [A,A].
Proof. Suppose that D is of the form Â and that D ≠ A. We want to show that there exists a

sash D′ such that D′ Ì D and D′ is of the form Â.

Case 1: For some white-plus square of Â, it is not replaced by a white square on D.

Since D is of the form Â, the white-plus square of Â is preceded by either a black square, a

black-plus square, or a mystery square and is replaced by the right half of a rectangle on D.

Thus D =D1 D2. Let D
′ =D1 D2, so that D′ Ì D. In any case, D′ is of the form Â.
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Case 2: For some black-plus square of Â, it is not replaced by a black square on D.

Since D is of the form Â, the black-plus square of Â is followed by either a white square, a

white-plus square, or a mystery square and is replaced by the left half of a rectangle on D.

Thus D =D1 D2. Let D′ =D1 D2, so that D′ Ì D. In any case, D′ is of the form Â.

Case 3: For some mystery square of Â, it is not replaced by a black square on D.

Subcase 3a: The mystery square of Â is replaced by a white square on D. If D =D1 D2,

where the first tile of D2 is not a white square, then let D′ = D1 D2, so that D′ Ì D. If

D =D1 D3, then let D′ =D1 D3, so that D′ Ì D. Either way, the sash D′ is of the form

Â.

Subcase 3b: The mystery square of Â is replaced by the left half of a rectangle on D.

Since D is of the form Â, the mystery square of Â is followed by either a white square, a

white-plus square, or another mystery square. Thus D = D1 D2. Let D′ = D1 D2, so

that D′ Ì D. In any case, D′ is of the form Â.

Subcase 3c: The mystery square of Â is replaced by the right half of a rectangle on D.

Since D is of the form Â, the mystery square of Â is preceded by either a black square, a

black-plus square, or another mystery square. Thus D =D1 D2. Let D
′ =D1 D2, so that

D′ Ì D. In any case, D′ is of the form Â.

Now, suppose that D is of the form Â and that D ≠ A. We want to show that there exists

a sash D′ such that D Ì D′ and D′ is of the form Â. Consider a black-plus square, white-plus

square, or mystery square in the ith position of Â.

Case 1: D =D1 D2 where ∣D1∣ = i−1, and the (i+1)st position of D is not a white square.

Let D′ = D1 D2, so that D Ì D′. If the ith position of Â is a black-plus square, then D = A.

So, the ith position of Â is a mystery square. The sash D′ is of the form Â.

Case 2: D =D1 D2 where ∣D1∣ = i − 1.
Let D′ = D1 D2, so that D Ì D′. The ith position of Â is either a black-plus square or a

mystery square. The (i + 1)st position of Â is either a white square, a white-plus square, or a

mystery square. Thus, the sash D′ is of the form Â.
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Case 3: D =D1 D2 where ∣D1∣ = i − 1.
Let D′ = D1 D2, so that D Ì D′. The ith position of Â is either a black-plus square or

a mystery square. Suppose that the ith position of Â is a black-plus square. If the (i + 1)st
position of Â is either a white square, a white-plus square, or a mystery square, then D = A.

If the (i + 1)st position of Â is any other object, then D is not of the form Â. Thus, the ith

position of Â is a mystery square, and the (i + 1)st position of Â is either a white square, a

white-plus square, or a mystery square. The sash D′ is of the form Â.

Case 4: D =D1 D2 where ∣D1∣ = i − 2.
Let D′ = D1 D2, so that D Ì D′. The ith position of Â is either a white-plus square or a

mystery square. If the (i − 1)st position of Â is either a black square or a black-plus square,

then D = A. So, the (i − 1)st position of Â is a mystery square, and the sash D′ is of the form

Â.

Case 5: D =D1 D2 where ∣D1∣ = i − 2, and the (i − 1)st position of Â is a black square.

Let D′ = D1 D2, so that D Ì D′. The ith position of Â is either a white-plus square or a

mystery square. Thus, the sash D′ is of the form Â.

Proposition 2.2.16. If a sash E is of the form B̂, then E ∈ [B,B].
Proof. Suppose that E is of the form B̂ and that E ≠ B. We want to show that there exists a

sash E′ such that E′ Ì E and E′ is of the form B̂. If E ≠ B, then for some mystery square of

B̂, the mystery square is not replaced by a black square on E.

Case 1: The mystery square in the ith position of B̂ is replaced by a white square on E.

Subcase 1a: E = E1 E2, where the first tile of E2 is not a white square.

Let E′ = E1 E2, so that E′ Ì E. The sash E′ is of the form B̂.

Subcase 1b: E = E1 E2.

Let E′ = E1 E2, so that E′ Ì E, and where i − 1 = ∣E1∣. The (i + 1)st position of B̂ is either

a white square or a mystery square. Either way, E′ is of the form B̂.

Case 2: The mystery square of B̂ is replaced by the left half of a rectangle on E.

Thus the mystery square of B̂ is followed by a white square or another mystery square, and
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E = E1 E2. Let E′ = E1 E2, so that E Ì E′. The sash E′ is of the form B̂.

Case 3: The mystery square of B̂ is replaced by the right half of a rectangle on E.

Thus the mystery square of B̂ is preceded by a black square or another mystery square, and

E = E1 E2. Let E′ = E1 E2, so that E Ì E′. The sash E′ is of the form B̂.

Now, suppose that E is of the form B̂ and that E ≠ B. We want to show that there exists a

sash E′ such that E Ì E′ and E′ is of the form B̂. Consider a mystery square in the ith position

of B̂.

Case 1: E = E1 E2 where ∣E1∣ = i−1, and the (i+1)st position of E is not a white square.

Let E′ = E1 E2, so that E Ì E′. The sash E′ is of the form B̂.

Case 2: E = E1 E2 where ∣E1∣ = i − 1.
Let E′ = E1 E2, so that E Ì E′. The (i + 1)st position of B̂ is either a white square or a

mystery square. Thus, the sash E′ is of the form B̂.

Case 3: E = E1 E2 where ∣E1∣ = i − 1.
Let E′ = E1 E2, so that E Ì E′. The (i + 1)st position of B̂ is either a white square or a

mystery square. Thus, the sash E′ is of the form B̂.

Case 4: E = E1 E2 where ∣E1∣ = i − 2.
Let E′ = E1 E2, so that E Ì E′. If the (i− 1)st position of B̂ is a black square, then E = B.

So, the (i − 1)st position of B̂ is a mystery square. Thus, the sash E′ is of the form B̂.

Case 5: E = E1 E2 where ∣E1∣ = i − 2, and the (i − 1)st position of B̂ is a black square.

Let E′ = E1 E2, so that E Ì E′. Thus, the sash E′ is of the form B̂.

Definition 2.2.17. Consider an allowable dotting d of a sash C ∈ Σn−1. Place the numbers 1

through n before, after, and in between each of the n − 1 positions of C. Let T be the set of

numbers such that either the nearest dotted square to their right is a black square (or the left

half of a rectangle), or the nearest dotted square to their left of a white square (or the right

half of a rectangle). We say a set T is an allowable set for C if it arises in this way from an

allowable dotting of C.

39



(C){3,4,5} = (C){1,2,3} = (C){1,3,4,5} =(C){3} = (C){1,2,3,5} = (C){1,3} =(C){3,5} = (C){1,3,5} =

Figure 2.3: The allowable sets and allowable dottings of a sash C

Example 2.2.18. For d = , the allowable set for C is T = {1,4,5,6,8}.

1 2 3 4 5 6 7 8

Definition 2.2.19. For T , an allowable set for C, we define (C)T to be the allowable dotting

d of C such that there is a dot in the ith position of d either if i ∈ T and i + 1 ∉ T or if i + 1 ∈ T

and i ∉ T .

Example 2.2.20. ( ){1,4,5,6,8} =
Figure 2.3 shows the allowable set associated with each of the allowable dottings in Fig-

ure 2.2.

We define a map τ from pairs (C,T ) where C is a sash and T is an allowable set with

respect to C, to permutations. The output is a permutation where the elements of T appear

before the elements of TC , and as we will verify in Proposition 2.2.23, the map σ takes τ(C,T )
to C. The map τ does not necessarily output a Pell permutation.

Definition 2.2.21. Let T be an allowable set for a sash C ∈ Σn−1. First draw a vertical line.

We eventually build a permutation by placing all of the elements of T on the left of the vertical

line, and all of the elements on TC on the right of the vertical line, and then removing the line.

If 1 ∈ T then place a 1 on the left of the line; otherwise, place the 1 on the right. The guiding

principle in defining this map is to place each number i as far right as possible while still making

it possible for σ(τ(C,T )) to be C and for all entries of T to appear before all entries of TC .

Read the sash from left to right from position 1 to position n − 1.
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i i + 1 i + 2

i, i + 1, i + 2 ∈ T
or i, i + 1, i + 2 ∈ TC

(a) no dots

i i + 1 i + 2

i + 2 ∈ T
and i, i + 1 ∈ TC

(b) one dot

i i + 1 i + 2

i, i + 2 ∈ T
and i + 1 ∈ TC

(c) two dots

Figure 2.4: Possible rectangle dottings of the ith and (i + 1)st positions of C

Suppose C has a black square in the ith position. If i + 1 ∈ T , then place i + 1 immediately

to the left of the vertical line. If i+ 1 ∈ TC , then place i+ 1 on the far right of the permutation.

Suppose C has a white square in the ith position. If i, i + 1 ∈ T or if i, i + 1 ∈ TC , then place

i+ 1 immediately to the left of i. If i+ 1 ∈ T and i ∈ TC , then place i+ 1 immediately to the left

of the vertical line. The case where i ∈ T and i+ 1 ∈ TC is ruled out because if there were a dot

on the ith position of C, which is a white square, then i ∈ TC and i + 1 ∈ T .

Suppose C has a rectangle in the ith and (i + 1)st positions. All of the possible dottings of

the ith and (i + 1)st positions of C are shown in Figure 2.4. If i ∈ T , then i + 2 ∈ T . Place i + 2

immediately to the left of i. There are two possibilities for placing i + 1. If i + 1 ∈ T , then place

i+1 immediately to the left of the vertical line, and if i+1 ∈ TC , then place i+1 at the far right

of the permutation. If i ∈ TC , then i + 1 ∈ TC . Place i + 1 at the far right of the permutation.

There are two possibilities for placing i + 2. If i + 2 ∈ T , then place i + 2 immediately to the left

of the vertical line, and if i + 2 ∈ TC , then place i + 2 immediately to the left of i.

Now τ(C,T ) is the permutation that results from ignoring the vertical line.
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Example 2.2.22. For C = and T = {1,4,5,6,8}, the following procedure com-

putes τ(C,T ) = 16548237.
1 ∈ T → 1 ⋮

→ 1 ⋮ 2

→ 14 ⋮ 23

→ 154 ⋮ 23

→ 1654 ⋮ 23

→ 1654 ⋮ 237

→ 16548 ⋮ 237

Proposition 2.2.23. If T is an allowable set for C ∈ Σn−1, then σ(τ(C,T )) = C
Proof. Let T be an allowable set for C. Suppose C has a black square in the ith position. Since

T is allowable, we cannot have i ∈ TC and i + 1 ∈ T . If there is a white square in the (i + 1)st
position then we cannot have i, i + 1 ∈ TC and i + 2 ∈ T . For every situation τ(C,T ) maps i + 1

to the right of i and does not map i+ 2 to the left of i, thus σ(τ(C,T )) also has a black square

in the ith position.

Suppose C has a white square in the ith position. Since T is allowable, we cannot have i ∈ T

and i+1 ∈ TC . If there is a black square in the (i−1)st position then we cannot have i−1, i ∈ TC

and i + 1 ∈ T . For every situation τ(C,T ) maps i + 1 to the left of i and, if i − 1 is to the left

of i, does not map i + 1 to the left of i − 1, thus σ(τ(C,T )) also has a white square in the ith

position.

Suppose C has a rectangle in the ith and (i + 1)st positions. Considering every possible

dotting arrangement as shown in Figure 2.4, we see τ(C,T ) maps i+1 to the right of i and i+2

to the left of i, thus σ(τ(C,T )) also has a rectangle in the ith and (i + 1)st positions.
Proposition 2.2.24. T is an allowable set for a sash C ∈ Σn−1, T = [n], or T = ∅ if and only

if T is good as described in Section 1.2. That is, the entries of T are the first elements of a

permutation z′ ∈ Sn where σ(z′) = C.

Proof. Suppose T = [n] or T = ∅, and let z′ = η(C). The entries of T are the first elements of

z′ such that σ(z′) = C. Suppose T is an allowable set for a sash C, and let z′ = τ(C,T ) ∈ Sn.
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The entries of T are the first elements of z′ such that σ(z′) = C.

To prove the reverse implication, suppose z′ ∈ Sn such that σ(z′) = C, and let Tj be the set

containing the first j entries of z′. If j = 0 or j = n, then the proposition is true. Assume that

0 < j < n. Let d be a dotting of C such that there is a dot in the ith position of C either if i ∈ Tj

and i + 1 ∈ TC
j or if i ∈ TC

j and i + 1 ∈ Tj. We want to show that Tj is an allowable set for C;

that is, we want to verify that d is an allowable dotting for C.

Since 0 < j < n, there exists some i such that i ∈ Tj and i + 1 ∉ Tj , so d has at least one dot.

If i ∈ Tj and i + 1 ∈ TC
j then d has a dot in the ith position. We know that entries in TC

j

come after entries of Tj in z′, so i + 1 is to the right of i in z′. Thus the ith dot is on a black

square or the left half of a rectangle of C. Similarly, if i ∈ TC
j and i+1 ∈ Tj , then the ith dot of d

is on a white square or the right half of a rectangle of C. Thus the first dot of d can be on any

object, and dotted positions alternate between a black square (or the left half of a rectangle)

and a white square (or the right half of a rectangle).

Suppose that there is a rectangle in the ith and (i+1)st positions of C. If i ∈ Tj and i+1 ∈ TC
j ,

then i+ 2 is not an element of TC
j because i+ 2 is to the left of i in z′. Thus d has no instances

of .

Suppose that there is a black square in the ith position of C and a white square in the

(i + 1)st position of C. If i, i + 1 ∈ TC
j , then i + 2 is not an element of Tj because i + 2 is to the

right of i in z′. Thus d has no instances of .

Therefore we have shown that Tj is an allowable set for C.

Let z ∈ Pn and let C ∈ Σn−1 such that σ(z) = C. Let IT and JT be as defined in Section 1.2.

From Theorem 1.2.4 we have that the coproduct on sashes is given by:

∆S(C) = ∑
T is allowable,
T=∅, or T=[n]

σ(IT )⊗ σ(JT ) (2.7)
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Notice I∅ = ∅, J∅ = z, I[n] = z, and J[n] = ∅, so we have:

∆S(C) = ∅⊗C +C ⊗∅ + ∑
T is allowable

σ(IT )⊗ σ(JT ) (2.8)

From Proposition 1.2.8 and our discussion of the relationship between the coproduct and

the dual product in Section 1.2, we see:

∆S(C) = ∅⊗C +C ⊗∅ + ∑
T is allowable

∑
D and E such that

γT (D⊗E)=C

D ⊗E (2.9)

Proposition 2.2.25. Given an allowable set T and a sash C such that (C)T = d, D ⊗E is a

term of Id ⊗ Jd if and only if γT (D ⊗E) = C.

Proof. Recall the notation d = c1 ●1 c2 ●2 ⋯cj ●j cj+1. Assume that j is even and that ●1 is

on a black square or the left side of a rectangle, thus 1 ∈ T . The cases where j is odd or

where ●1 is on a white square or the right side of a rectangle are identical, other than some

adjustments to indices. Let T2i−1 be the ith set of consecutive integers in T and let T2i be the

ith set of consecutive integers in TC . Thus T = T1 ∪ T3 ∪ ⋅ ⋅ ⋅ ∪ Tj+1 and TC = T2 ∪ T4 ∪ ⋅ ⋅ ⋅ ∪ Tj ,

where 1 ∈ T1 ⊆ T . Recall A = c1 c3 ⋯ cj+1 and B = c2 c4 ⋯ cj. Notice that

ci = σ(η(C)∣Ti).
If h,h + 1 ∈ T , then for some index 2i − 1 we have h,h + 1 ∈ T2i−1. Thus, the hth position of

C is in c2i−1 and we refer to that position on A as the position corresponding to h. Similarly, if

h,h+ 1 ∈ T2i ⊆ T
C , then the hth position of C is in c2i and we refer to that position on B as the

position corresponding to h.

Suppose that D ⊗E is a term of Id ⊗ Jd, that is D ∈ [A,A] and E ∈ [B,B].
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As we compute γT (D ⊗E), we begin by labeling D with the elements of T and labeling E

with the elements of TC . Notice that the hth arrow meets one of the following conditions:

1. If h,h + 1 ∈ T , then the hth arrow is in the position of D corresponding to h.

2. If h,h + 1 ∈ TC , then the hth arrow is in the position of E corresponding to h.

3. If h ∈ T and h + 1 ∈ TC , then the hth arrow is from D to E.

4. If h ∈ TC and h + 1 ∈ T , then the hth arrow is from E to D.

Case 1: h,h + 1, h + 2 ∈ T .

Whatever is in the hth position of C is also in the position of D corresponding to h. The map

γT (D⊗E) places whatever is in the position of D corresponding to h in the hth position of the

output.

Case 2: h,h + 1, h + 2 ∈ TC .

Whatever is in the hth position of C is also in the position of E corresponding to h. The map

γT (D⊗E) places whatever is in the position of E corresponding to h in the hth position of the

output.

Case 3: h,h + 1 ∈ T and h + 2 ∈ TC .

If C has a rectangle in the hth and (h + 1)st positions, then the dotting d would have a dot in

the (h + 1)st position, which is the right half of a rectangle. The allowable set associated with

such a dotting has h,h + 1 ∈ TC and h + 2 ∈ T which is a contradiction, so C does not have a

rectangle in the hth and (h + 1)st positions.
If whatever is in the hth position of C is also in the position of D corresponding to h, then

γT (D⊗E) places whatever is in the position of D corresponding to h in the hth position of the

output.

If C has a black square in the hth position, then D may have the left half of a rectangle in

the position corresponding to h. The map γT (D ⊗E) places a black square in the hth position

of the output.
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Case 4: h,h + 1 ∈ TC and h + 2 ∈ T .

If C has a black square in the hth position, then the dotting d would have an instance of ,

which is a contradiction. Thus, C does not have a black square in the hth position.

If C has a white square or the right half of a rectangle in the hth position, then E has

the same object in the position corresponding to h. The map γT (D ⊗E) places either a white

square or the right half of a rectangle respectively in the hth position of the output and a white

square in the (h + 1)st position.
If C has the left half of a rectangle in the hth position, then E either has a black square

or left half of a rectangle in the position corresponding to h. The map γT (D ⊗ E) places a

rectangle in the hth and (h + 1)st positions of the output.

Case 5: h ∈ T and h + 1, h + 2 ∈ TC .

If C has a rectangle in the hth and (h+1)st positions, then the dotting d would have an instance

of , which is a contradiction. Thus, C does not have a rectangle in the hth and (h + 1)st
positions and C does have a black square in the hth position. The map γT (D ⊗ E) places a

black square in the hth position of the output.

Case 6: h,h + 2 ∈ T and h + 1 ∈ TC .

If C has a black square in the hth position and a white square in the (h + 1)st position, then
A has a black square in the position between the labels h and h + 2, and A has either a black

square or the left half of a rectangle in the position between the labels h and h + 2. Thus, D

has either a black square or the left half of a rectangle in the position between the labels h and

h + 2. The map γT (D ⊗E) places a black square in the hth position and a white square in the

(h + 1)st position of the output.

If C has a rectangle in the hth and (h + 1)st positions, then A has a white square in the

position between the labels h and h + 2, and A has either a white square or the right half of a

rectangle in the position between the labels h and h + 2. Thus, D has either a white square or

the left half of a rectangle in the position between the labels h and h + 2. The map γT (D ⊗E)
places a rectangle in the hth and (h + 1)st positions of the output.
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Case 7: h ∈ TC and h + 1, h + 2 ∈ T .

C either has a black square or the left half of a rectangle in the hth position, and whatever is in

the (h+1)st position of C is also in the position of D corresponding to h+1. We see from cases

4 and 6 that γT (D⊗E) places either a black square or the left half of a rectangle, respectively,

in the hth position of the output. Also, γT (D ⊗ E) places whatever is in the position of D

corresponding to h + 1 in the (h + 1)st position of the output.

Case 8: h,h + 2 ∈ TC and h + 1 ∈ T .

We see from cases 4 and 6 that whatever is in the hth position of C is also in the hth position

of γT (D ⊗E), and we see from cases 5 and 6 that whatever is in the (h + 1)st position of C is

also in the (h + 1)st position of γT (D ⊗E).
Therefore we have shown that γT (D ⊗E) = C.

Now let us suppose γT (D ⊗E) = C, and we will show that D ⊗E is a term of Id ⊗ Jd. It is

enough to show that D is of the form Â and that E is of the form B̂ because of Proposition 2.2.15

and Proposition 2.2.16. We refer to the position of D or E that is labeled with the hth arrow

as the position of D or E corresponding to h.

Case 1: h,h + 1, h + 2 ∈ T .

The object in the position of D corresponding to h is the same as the object in the hth position

of C, which is also the same as the object in the position of Â corresponding to h.

Case 2: h,h + 1, h + 2 ∈ TC .

The object in the position of E corresponding to h is the same as the object in the hth position

of C, which is also the same as the object in the position of B̂ corresponding to h.

Case 3: h,h + 1 ∈ T and h + 2 ∈ TC .

As we showed above, C does not have a rectangle in the hth and (h+1)st positions. If D has the

left half of a rectangle in the position corresponding to h, then C has a black square in the hth

position. Thus, the sash Â has a black square in the position corresponding to h and a mystery

square in the following position. If D has any other object in the position corresponding to h,

then C has the same object in the hth position and the sash Â has the same object as D in the
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position corresponding to h.

Case 4: h,h + 1 ∈ TC and h + 2 ∈ T .

As we showed above, C does not have a black square in the hth position. If E has a white square

or the right half of a rectangle in the position corresponding to h, then C has the same object

as E in the hth position and a white square in the (h + 1)st position. Thus, B̂ has the same

object as E in the position corresponding to h followed by a mystery square. If E has a black

square or the left half of a rectangle in the position corresponding to h, then C has a rectangle

in the hth and (h + 1)st positions. Thus, B̂ has a black square in the position corresponding to

h followed by a mystery square.

Case 5: h ∈ T and h + 1, h + 2 ∈ TC .

If there is a black square in the position of E corresponding to h+ 1, then the (h+ 1)st position
of C is either a black square or the left half of a rectangle. If h + 3 ∈ T , then C has a rectangle

in the (h + 1)st and (h + 2)nd positions, and the sash B̂ has a black square in the position

corresponding to h + 1 followed by a mystery square. If h + 3 ∉ T , then C has a black square in

the (h+ 1)st position, and the sash B̂ has a black square in the position corresponding to h+ 1.

If there is the left half of a rectangle in the position of E corresponding to h + 1, then the

(h + 1)st position of C is the left half of a rectangle. If h + 3 ∈ T , then the sash B̂ has a black

square in the position corresponding to h + 1 followed by a mystery square. If h + 3 ∉ T , then

the sash B̂ has a the left half of a rectangle in the position corresponding to h + 1.

If there is either a white square or the right half of a rectangle in the position of E corre-

sponding to h + 1, then the (h + 1)st position of C is a white square. The sash B̂ has a white

square in the position corresponding to h + 1 preceded by a mystery square.

Case 6: h,h + 2 ∈ T and h + 1 ∈ TC .

If D has a black square in the position between the labels h and h+2, then C has a black square

in the hth position and a white square in the (h + 1)st position. The sash Â has a black-plus

square in the position between the labels h and h + 2.

If D has the left half of a rectangle in the position between the labels h and h+2, then C has
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a black square in the hth position and a white square in the (h+ 1)st position. If h+ 3 ∈ T , then
the sash Â has a black-plus square in the position between the labels h and h+ 2 followed by a

white square. If h + 3 ∉ T , then the sash Â has a black-plus square in the position between the

labels h and h + 2 followed by either a white square, a white-plus square, or a mystery square.

If D has a white square in the position between the labels h and h+2, then C has a rectangle

in the hth and (h + 1)st positions. The sash Â has a white-plus square in the position between

the labels h and h + 2.

If D has the right half of a rectangle in the position between the labels h and h + 2, then

C has a rectangle in the hth and (h + 1)st positions. The sash Â has a white-plus square in the

position between the labels h and h+ 2, preceded by either a black square, a black-plus square,

or a mystery square..

Case 7: h ∈ TC and h + 1 ∈ T .

This case has already been fully considered in cases 4 and 6.

We have shown, by checking every position, that D is of the form Â and that E is of the

form B̂. Therefore, D ∈ [A,A], E ∈ [B,B], and D ⊗E is a term of Id ⊗ Jd.

Theorem 2.2.10 follows directly from Equation (2.9) and Proposition 2.2.25.
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Chapter 3

The Hopf Algebra of Partial

Evaluations

3.1 Limited Descent Avoiders and Partial Evaluations

In this chapter we examine a family of Hopf algebras that are defined by the pattern-avoidance

conditions described in Chapter 1.2. The Hopf algebra of sashes is a member of the family

described in this chapter. Consider the set Avn[2(31), (k1)234⋯k−1] of permutations of length

n that avoid the patterns 2(31) and (k1)234⋯k − 1. For brevity we call this set “avoiders” and

refer to it as Avkn.

Proposition 3.1.1. x ∈ Avkn if and only if x has no descent larger than k − 2 and for every

descent (j, i) of x, all of the entries i + 1, . . . , j − 1 are to the right of i in x.

Proof. Let x ∈ Avkn and consider (j, i) a descent of x. Because x avoids 2(31) all of the entries

from i + 1 to j − 1 are to the right of the descent. Since x also avoids (k1)234⋯k − 1, it does

not have k − 2 entries with values from i + 1 to j − 1 to the right of the descent. Thus there are

at most k − 3 entries between i + 1 and j − 1. Therefore x has no descent larger than k − 2, and

for each descent the entries between the values of the descent are positioned to the right of the

descent.
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Suppose x has no descent larger than k−2 and for every descent (j, i) of x, all of the entries
i + 1, . . . , j − 1 are to the right of i in x. With no descent larger than k − 2, the permutation

x does not have a (k1)234⋯k − 1 pattern. And because for every descent (j, i) of x, all of the
entries i+1, . . . , j −1 are to the right of i in x, the permutation x does not have a 2(31) pattern.
Thus, x ∈ Avkn.

If a permutation has no descent larger than k − 2, then it also has no descent larger than

k − 1, thus Avkn ⊆ Av
k+1
n . The number of elements in Avn[2(31)] are counted by the Catalan

numbers. That is ∣Avn[2(31)]∣ = Cn where Cn is the nth Catalan number. A formula for these

numbers is given by [13, Sequence A000108]:

Cn =
1

n + 1
(2n
n
)

The number of elements in Avkn is given by the following proposition.

Proposition 3.1.2.

∣Avkn ∣ = ∣Avkn−1 ∣ + k−2∑
i=1

Ci−1∣Avkn−i ∣
Proof. We count the elements of Avkn in the following manner. There are ∣Avkn−1 ∣ that have n

in the last position. Now we consider those that do not have n in the last position. Suppose

that n is followed by n− i. That is, n is part of a descent of size i. Since these permutations are

elements of Avkn, each descent must be less than or equal to k − 2, thus 1 ≤ i ≤ k − 2. Suppose

there were an entry j < n − i to the right of any entry ( ∈ [n − i + 1, n − 1], then (n − i) − ( − j
would be a 2(31) pattern. Thus, the entries [n − i + 1, n − 1] are at the end of each of these

permutations. The entries [n − i + 1, n − 1] avoid the pattern 2(31) so there are Ci−1 ways for

them to be arranged at the end of the permutation. Therefore Ci−1∣Avkn−i ∣ counts the number

of elements of Avkn such that n is followed by n − i.

Lemma 3.1.3. A permutation x ∈ Sn has a 2(31) pattern if and only if x has a 2−3−1 pattern.

This fact can be verified easily. See [12]
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Proposition 3.1.4. Any permutation avoiding 2(31) is of the form

x11x
1
2⋯x

1
j1y

1
1y

1
2⋯y

1
%1x

2
1x

2
2⋯x

2
j2y

2
1y

2
2⋯y

2
%2⋯x

h
1x

h
2⋯x

h
jh
yh1y

h
2⋯y

h
%h

with

• x1j1 = 1

• the entries xi1⋯x
i
ji

are in decreasing order

• the entries xi1⋯y
i
%i

are all of the values in [xiji , xi1]
• xi+11 is the leftmost entry of the permutation larger than xi1

• xi+1ji+1
= xi1 + 1

Proof. Let x ∈ Av[2(31)]. Label the entry 1 by x1j1 . All of the entries of x before 1 are in

decreasing order or else x would have a 2(31) pattern. Label all of the entries of x before 1 by

x11, x
1
2,⋯x

1
j1−1

. Label the leftmost entry of x that is larger than x11 by x21, label the entry x11 + 1

by x2j2 , and label all of the entries in between by x22,⋯x
2
j1−1

. All of the entries labeled x2j are

larger than x11 or else x11 − x
2
1 − x

2
j would form a 2(31) pattern. All of the entries labeled x2j are

in decreasing order or else x2% − x
2
j −x

2
j2

would form a 2(31) pattern when ( < j and x2% < x
2
j . By

continuing the process we see that it is possible to label the leftmost entry of x that is larger

than xi1 by xi+11 , and to label xi1 + 1 by xi+1ji+1
, such that the entries xi1⋯x

i
ji

are in decreasing

order.

Label the unlabeled entries immediately to the right of xiji by yi1⋯y
i
%i
. We know that xi+11 is

the leftmost entry of x larger than xi1, so the entries yi1⋯y
i
%i
are less than xi1. The entries y

i
1⋯y

i
%i

are larger than xiji , because x
i
ji
is either xi−11 +1 or 1. If xiji = 1, then yi1⋯y

i
%i
are larger than 1. If

xiji = x
i−1
1 + 1, then yi1⋯y

i
%i
are larger than xiji or else xi−11 − x

i
ji
− yi% would form a 2(31) pattern.

For the sake of contradiction, let z be an entry of x with a value between xiji and xi1, such that

z ≠ xij and z ≠ yi%. If z is to the left of xi1, then z − xi1 − x
i
ji
forms a 2(31) pattern. If z is to the
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right of xi+11 , then xi1 − x
i+1
1 − z forms a 2(31) pattern. Thus such a z does not exist and the

entries xi1⋯y
i
%i
are all of the values in [xiji , xi1].

Avoiders are in bijection with a combinatorial object we call partial evaluations. First we

will describe a bijection between the set Av[2(31)] and an object called a full evaluation. Then,

we will use that bijection to define a bijection between avoiders and partial evaluations.

Definition 3.1.5. A full evaluation of size n or a fully evaluated block of size n for n ≥ 1, is an

object such that if n = 1, then the block is ( ) and if n ≥ 2 the block is a string of n factors

grouped into pairs by n − 1 sets of parentheses.

The number of full evaluations of size n is given by Cn−1 as seen in [13, Sequence A000108].

Example 3.1.6. The five full evaluations of size 4:

( ( ( ))) ( (( ) )) (( )( )) (( ( )) ) ((( ) ) )
A pair of parentheses is comprised of an open-parenthesis “(” and a closed-parenthesis“)”.

Each open-parenthesis has a unique closed-parenthesis as the other half of its pair. We say that

two pairs of parentheses are nested if one pair is contained within the other pair. Two pairs of

parentheses are non-nested if the set of squares in one pair of parentheses is disjoint from the

set of squares in the other. Any two pairs of parentheses are either nested or non-nested.

Definition 3.1.7. A sub-block of a full evaluation X is a full evaluation contained in and

including a pair of parentheses in X.

Fully evaluated blocks extend the definition of a full evaluation to blocks of size 1.

Definition 3.1.8. A partial evaluation of length n is a sequence consisting of fully evaluated

blocks and unevaluated blocks of size 1, i.e. . Let Σn be the set of partial evaluations where

the total of the sizes of the evaluated blocks, plus the number of unevaluated blocks, is n.

We think of the squares as “factors” to be operated on by a binary operation. Thus, this

object is called a “partial evaluation” because the parentheses indicate in what order to evaluate
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( ) ( ) ( )( )( ) ( ) ( ) ( )( ) ( )( )( )( ) ( ) ( )( ) ( )( )( ( )) (( ) )

Figure 3.1: The fourteen partial evaluations of length 3, i.e. the elements of Σ3

the operation, but only partially. For example, some squares are left unevaluated, hence the

unevaluated squares.

The symbol ‖ denotes the partial evaluation of length 0 that is the unique element of Σ0.

For X ∈ Σn, we use the notation ∣X ∣ = n to describe the length of a partial evaluation. The set

of partial evaluations of length n with evaluated blocks of size less than or equal to k − 2 is

called Σk
n. Fully evaluated blocks of size 1 are called evaluated squares and unevaluated blocks

of size 1 are called unevaluated squares.

Proposition 3.1.9.

∣Σk
n∣ = ∣Σk

n−1∣ + k−2∑
i=1

Ci−1∣Σk
n−i∣

Proof. We count the elements of Σk
n in the following manner. There are ∣Σk

n−1∣ partial evaluations
that have an unevaluated square in the last position. Now we consider those that do not have

an unevaluated square in the last position. Suppose that the last block of a partial evaluation

is of size i. Since these partial evaluations are elements of Σk
n, each block must be less than

or equal to k − 2, thus 1 ≤ i ≤ k − 2. There are Ci−1 blocks that could be in the last position.

Therefore Ci−1∣Σk
n−i∣ counts the number of elements of Σk

n such that the last evaluated block of

a partial evaluation is of size i.

Before we define the bijection between avoiders and partial evaluations, we define a map τ

from Sn to full evaluations of size n+ 1. Variations of this map have appeared in many sources

including [3, 5, 7, 9, 11]. For x = x1x2⋯xn ∈ Sn, begin with n + 1 squares and label the n spaces
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between the squares:

1 2 ⋯ n

Then, read x from right to left and evaluate in the xthi position:

1 2 ⋯( xn )⋯ n

Continue to x1 and then remove the labels. We define τ(∅) = ( ).
Example 3.1.10. Computation of τ (3214) = ((( ) )( )):

τ (3214) ⇒ 1 2 3 4

3214 ⇒ 1 2 3( 4 )
3214 ⇒ ( 1 )2 3( 4 )
3214 ⇒ (( 1 )2 )3( 4 )
3214 ⇒ ((( 1 )2 )3( 4 ))

⇒ ((( ) )( ))
Let M be a set of n integers and let x be a permutation of M . We define τ(x) = τ(st(x)).

Example 3.1.11. τ(6539) = τ(st(6539)) = τ(3214) = ((( ) )( ))
Lemma 3.1.12. If x ∈ Avn[2(31)] and y ∈ Sn such that y is obtained from x by a series of

π↑-moves, then τ(x) = τ(y).
Proof. It is enough to show that the statement is true when y is obtained from x by a single

π↑-move. Let x = ⋯xj⋯xixi+1⋯ and let y = ⋯xj⋯xi+1xi⋯ such that x and y only vary in the ith

and (i + 1)st positions and xi < xj < xi+1. The blocks τ(x) and τ(y) are equivalent except for

the order that the xthi and xsti+1 positions are evaluated. Since xj is to the left of xi and xi+1,

and because xi < xj < xi+1, we see that the parentheses placed when evaluating the xthi position

and the parentheses placed when evaluating the xsti+1 position are non-nested. Thus the same

result is achieved regardless of which position is evaluated first.

55



Lemma 3.1.13. Let x ∈ Avn[2(31)] and write x in the form described in Proposition 3.1.4. If

x̂ = x11⋯x
1
j1
x21⋯x

2
j2
⋯xh1⋯x

h
jh
y11⋯y

1
%1
y21⋯y

2
%2
⋯yh1⋯y

h
%h
, then τ(x) = τ(x̂).

Proof. Let i1 < i2. The sub sequence of x: xi11 − y
i1
% −x

i2
j is a 2− 1− 3 pattern. Since xi11 is to the

left of yi1% for any (, swapping adjacent entries of the form yi1% and xi2j is a π↑-move. Thus x̂ is

obtained from x by a series of π↑-moves, and from Lemma 3.1.12 we have τ(x) = τ(x̂).
Define ρ to be the map from fully evaluated blocks of size n + 1 to Avn[2(31)] described as

follows:

Begin with a full evaluation of size n+ 1 and insert the numbers 1 to n in between each square.

Between the ith and (i+1)st squares there may be some close-parentheses, possibly followed by

some open-parentheses. Place i after the close-parentheses and before the open-parentheses.

An evaluated block of size n+1 has n pairs of parentheses. The map ρ builds a permutation

by removing a pair of parentheses from the block and placing an entry of the permutation at

each step. When we remove the outermost pair of parentheses from a fully evaluated block,

we are left with two sub-blocks or squares. Find the leftmost fully evaluated block, remove the

outermost pair of parentheses, and place the number in between the revealed sub-blocks or

squares as the next entry of the permutation in the output. Continue until all n numbers have

been written in a permutation. Define ρ[( )] = ∅.
Example 3.1.14. We use the map ρ to compute ρ [((( ) )( ))] = 3214:

⇒ ((( 1 )2 )3( 4 ))
((( 1 )2 )3( 4 )) ⇒ 3

(( 1 )2 )3( 4 ) ⇒ 32

( 1 )2 3( 4 ) ⇒ 321

1 2 3( 4 ) ⇒ 3214

We prove by induction that the output of ρ is a permutation that avoids 2(31). The only

evaluated block of size 1 is ( ), and ρ[( )] = ∅ ∈ S0 which does not contain a 2(31) pattern.
Also, the only evaluated block of size 2 is ( ), and ρ[( )] = 1 which does not contain a
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2(31) pattern. Assume that if the input to ρ is an evaluated block of size less than or equal

to i, then the output of ρ does not contain a 2(31) pattern. Let X be an evaluated block of

size i + 1. Consider ρ(X). When we remove the outermost pair of parentheses, we are left with

two blocks or squares, X1 and X2, of size less than or equal to i. Let X2 begin in the (j + 1)st
position of X. The output of ρ is of the form: j ⋅ ρ(X1) ⋅ (ρ(X2))[j+1,i]. Notice that j is greater

than all of the entries of ρ(X1) and less than all of the entries of (ρ(X2))[j+1,i]. There are no

2(31) patterns where j serves as a “2”. By induction, there are no 2(31) patterns within ρ(X1)
and there are no 2(31) patterns within (ρ(X2))[j+1,i]. Also there are no 2(31) patterns where
an entry of ρ(X1) serves as a “2”, because all of the entries of (ρ(X2))[j+1,i] are larger than all

of the entries of ρ(X1). Therefore the output of ρ does not contain a 2(31) pattern.
Proposition 3.1.15. The restriction of τ to 2(31)-avoiding permutations is a bijection to fully

evaluated blocks with inverse ρ.

Proof. Both Avn[2(31)] and fully evaluated blocks are counted by the Catalan numbers. So

it is enough to show that the map τ is onto. Notice that τ(ρ(X)) = X, because the map ρ

unravels an evaluated block from the outside in, and the map τ builds an evaluated block from

the inside out. Therefore τ−1 = ρ.

We are now ready to define a map σ from Sn to Σk
n−1. Given a permutation, start with the

entry 1 which we call a. Look for an entry of x that we call b, that is the smallest entry of x

larger and to the left of a such that b − a ≤ k − 2. If no such entry exists, then output and

move on to the entry a + 1 which we call the new a. If there is an entry b, then we examine

x∣[a+1,b−1] and output τ(x∣[a+1,b−1]). We call b the new a and repeat the process until a = n.

Example 3.1.16. k = 6, σ(421395867) = ( )( ) (( ( )) )
a = 1, b = 2 421395867 ⇒ τ(∅) = ( )
a = 2, b = 4 421395867 ⇒ τ(3) = ( )
a = 4, no b 421395867 ⇒
a = 5, b = 9 421395867 ⇒ τ(867) = (( ( )) )
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Example 3.1.17. k = 6, σ(941257836) = ( ( )) (( )( ))
a = 1, b = 4 941257836 ⇒ τ(23) = ( ( ))
a = 4, no b 941257836 ⇒
a = 5, b = 9 941257836 ⇒ τ(786) = (( )( ))

Remark 3.1.18. Each element x ∈ Avkn is of the form described in Proposition 3.1.4. The

entries of x that serve as a when computing σ(x) are the entries xij . The entries of x that are

operated on by τ are the entries yi%.

Let M be a set of n integers and let x be a permutation of the entries of M . Define

σ(x) = σ(st(x)).
Example 3.1.19. σ(14 ⋅ 12 ⋅ 11 ⋅ 13 ⋅ 19 ⋅ 15 ⋅ 18 ⋅ 16 ⋅ 17) = σ(st(14 ⋅ 12 ⋅ 11 ⋅ 13 ⋅ 19 ⋅ 15 ⋅ 18 ⋅ 16 ⋅ 17)) =
σ(421395867) = ( )( ) (( ( )) )

Define a map µ from Σk
n−1 to Avkn as follows: First place the number 1 which we call a.

Given X ∈ Σk
n−1, examine the first block X1. Let j be the size of X1. We place the numbers a+1

through a+ j in the next step. If X1 is an unevaluated square, place a+ j which equals a+ 1 at

the far right of the permutation. If X1 is a fully evaluated block, then place a + j immediately

to the left of a, and place (ρ(X1))[a+1,a+j−1] at the far right of the permutation. Continue this

process with the next block letting the old a + j serve as the new a.

Example 3.1.20. Computation of µ[( )( ) (( ( )) )] = 421395867
⇒ 1

( ) ⇒ (ρ[( )])∅ = ∅ ⇒ 21

( ) ⇒ (ρ[( )])[3,3] = 3 ⇒ 4213

⇒ 42135

(( ( )) ) ⇒ (ρ[(( ( )) )])[6,8] = 867 ⇒ 421395867

We need to verify that the output of the map µ is an element of Avkn. We consider each step

of computing µ(X) for some partial evaluation X. If X has a block of size 1, then at most a
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descent of size 1 is created. If X has a block of size j > 1, then a descent of size j is created.

The largest j can be is k − 2 and the entries placed to the far right of the permutation also can

not have any descents larger than k − 2. Every time a descent is created, the entries in between

the values of the descent are placed to the right of the descent. Also, the output of the map ρ

avoids 2(31) patterns. Therefore the output of the map µ is an element of Avkn.

Proposition 3.1.21. The restriction of σ to Avkn is a bijection to Σk
n−1 with inverse µ.

Proof. Let X ∈ Σk
n−1 and we consider σ(µ(X)). Let Xi be the ith block of X such that Xi

begins in the jth position of X. If Xi = , the map µ places j + 1 to the right of j and nothing

larger than j is placed to the left of j. When computing the ith block of σ(µ(X)), the entry j

serves as a and there are no entries of µ(X) larger and to the left of j, so σ outputs . If Xi

is a fully evaluated block of size h, then µ places j + h immediately to the left of j, and places

(ρ(Xi))[j+1,j+h−1] to the right of j. Thus j + h is the smallest thing left of and larger than j in

µ(X), so σ(µ(X)) outputs τ((ρ(Xi))[a+1,a+j−1]) = τ(ρ(Xi)) =Xi. Therefore σ(µ(X)) =X.

Let x ∈ Avkn and consider µ(σ(x)). Let us examine the output of one step in the process to

compute σ(x). Recall that x is of the form described in Proposition 3.1.4. We begin with xij ,

an entry of x.

Case 1: j ≠ 1.

xij−1 is the smallest entry of x larger and to the left of xij such that xij−1−x
i
j ≤ k−2. Consider the

entries [xij + 1, xij−1 − 1]. They are to the right of the descent (xij−1, xij). Let ( ∈ [xij + 1, xij−1 − 1].
There are no values h smaller than xij after any of the entries [xij+1, xij−1−1], because xij−(−h is

a 2(31) pattern. There are no values h larger than xij−1 before any of the entries [xij +1, xij−1−1]
and after xij−1, because xij−1 − h − ( is a 2(31) pattern. Thus the entries [xij + 1, xij−1 − 1] are an

adjacent substring of x. The map σ outputs τ(x∣[xi
j+1,x

i
j−1−1]

). And µ acting on this block places

xij−1 immediately to the left of xij and places ρ(τ(x∣[xi
j+1,x

i
j−1−1]

)) to the right of the permutation

such that there are no entries smaller than xij after them, and there are no entries larger than

xij−1 between xij−1 and the entries [xij + 1, xij−1 − 1].
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Case 2: j = 1.

There is no entry of x called b such that b−xi1 ≤ k−2. The map σ outputs an unevaluated square.

The map µ acting on the unevaluated square places xi1 + 1 to the right of the permutation and

no entries larger than xi1 are placed to the left of xi1.

Therefore µ(σ(x)) = x.
Proposition 3.1.22. x, y ∈ Sn are equivalent if and only if σ(x) = σ(y).
Proof. From section 1.2 we know that the permutations x = x1⋯xn and y = y1⋯yn are equivalent

if and only if π↓(x) = π↓(y). Thus to prove the forward direction of the proposition, it is enough

to consider the case where y is obtained from x by a single π↓-move. Let’s consider a π↓-move

in the ith position of x. First we will suppose that xi − xi+1 ≥ k − 1. The relative position of

xi with regard to xi+1 is irrelevant to the map σ, thus σ(x) = σ(y). Now we suppose that

2 ≤ xi − xi+1 ≤ k − 2. There can only be a π↓-move in the ith position of x if an entry with a

value in [xi+1 + 1, xi − 1] is to the left of xi. In this case, both σ(x) and σ(y) have a block

corresponding to the entries from xi+1 to the smallest such entry in [xi+1 + 1, xi − 1] that is to
the left of xi. Therefore σ(x) = σ(y).

To prove the reverse implication suppose that x and y are not equivalent, that is π↓(x) ≠
π↓(y). Since π↓(x) and π↓(y) are avoiders, and avoiders are in bijection with partial evaluations,

σ(π↓(x)) ≠ σ(π↓(y)). By the previous paragraph, σ(x) = σ(π↓(x)) ≠ σ(π↓(y)) = σ(y).
Fundamentally, a partial evaluation is made of up two types of positions that we call “black”

positions and “white” positions as shown in Figure 3.2. Unevaluated squares are black positions

and evaluated squares are white positions. Within a fully evaluated block with more than one

square, any square immediately to the right of an open-parenthesis is a black position, and any

square immediately to the left of a close-parenthesis is a white position.

The reason behind this categorization of squares is seen when we relate a partial evaluation

X to any permutation x such that σ(x) =X.
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Blocks of size 1 Squares within a block
of size greater than 1

Black positions: (
White positions: ( ) )

Figure 3.2: A summary of black positions and white positions

Lemma 3.1.23. Suppose σ(x) =X. Then position h of X is black if and only if h+ 1 is to the

right of h in x and white if and only if h + 1 is to the left of h in x.

Proof. Suppose h+1 is to the right of h in x. If X has an unevaluated square at position h, then

position h is a black position. If a fully evaluated block of X begins at h, then since h+1 is to the

right of h in x, the fully evaluated block is not of size 1. So again h is a black position. Otherwise

the hth position of X is either the middle or end of a block. There exist some entries (1 and (2

of x such that the block that spans the hth position of X is τ(x∣[%1+1,%2−1]). Note that h ≠ (2 − 1

because h + 1 is to the right of h, and (2 is to the left of (2 − 1. Thus h,h + 1 ∈ [(1 + 1, (2 − 1].
When τ is acting on x∣[%1+1,%2−1] it reads the permutation from right to left, so the (h+1− (1)th
position is evaluated before the (h − (1)th position. Thus the (h − (1)th position of the block,

which is the hth position of X, is a black position.

Suppose that position h of X is a black position. If position h of X is an unevaluated square,

then the permutation x has h+ 1 to the right of h. If the hth position is the first position of the

block of size ≥ 2 that contains position h of X, then h + 1 is to the right of h in x. Otherwise

there would be an evaluated square in the hth position of X. If the hth position is not the

first position of the block that spans position h of X, then the block spans the hth and h + 1st

positions of X. When computing σ(x), the map τ will evaluate the h+ 1st position of X before

the hth, thus h + 1 is to the right of h in x.

We now describe the partial order on partial evaluations. From Proposition 1.2.2, the cover

relations in Σk
n are exactly the relations σ(y) Ì σ(x) where x ∈ Avkn and y is covered by x in

Sn.
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Proposition 3.1.24. The cover relations on partial evaluations are:

1. For partial evaluations A and D, and for full evaluations B and C such that ∣B∣+∣C ∣ ≤ k−2:

A(BC)D Ì ABCD

(where (( )C) = ( C), (B( )) = (B ), and (( )( )) = ( ))
2. For partial evaluations A and C, and for either a full evaluation B such that ∣B∣ = k − 2

or for B = :

A BC Ì A( )BC and A Ì A( )

3. For partial evaluations A, B1, and C, and for a full evaluation B2 of size ≥ 2, where B1 is

the partial evaluation obtained by removing every pair of parentheses from B2 that include

the first square of B2, removing the first square from B2, and evaluating any remaining

unevaluated squares:

A B1C Ì AB2C

4. For partial evaluations A and C, and for full evaluations or unevaluated squares U , V ,

and W :

A(U(V W ))C Ì A((UV )W )C

Proof. Let x ∈ Avkn and y ∈ Sn such that y is covered by x in the weak order. That is, x =

x1⋯xhxh+1⋯xn and y = x1⋯xh+1xh⋯xn, where xh+1 < xh. We consider σ(x) and σ(y). Recall
that x is of the form described in Proposition 3.1.4. We consider the cases where either xh+1 = x

i
j

for j ≥ 2 or xh+1 = y
i
% for ( ≥ 2, because if xh+1 = x

i
1 or if xh+1 = y

i
1 then xh < xh+1.

Case 1: For j > 2, xh+1 = x
i
j and xh−1 − xh+1 ≤ k − 2.

It follows that xh = xij−1 and xh−1 = xij−2. Let A = σ(y∣[1,xh+1]) = σ(x∣[1,xh+1]), let B =

σ(x∣[xh+1,xh]), let C = σ(x∣[xh ,xh−1]), and let D = σ(y∣[xh−1,n]) = σ(x∣[xh−1,n]). Notice that

y∣[xh+1,xh−1] = xh−1 ⋅ xh+1 ⋅ xh ⋅ (y∣[xh+1+1,xh−1])(y∣[xh+1,xh−1−1]). Since xh is the farthest left of
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all the entries in y with values between xh+1 and xh−1, when computing this block of σ(y),
the position labeled xh will be the last to be evaluated. Thus, we see that this block is

((τ(y∣[xh+1+1,xh−1]))(τ(y∣[xh+1,xh−1−1]))) = (BC). If xh = xh+1+1, then B = ( ) and y∣[xh+1,xh−1] =

( C). If xh−1 = xh + 1, then C = ( ) and y∣[xh+1,xh−1] = (B ). If both xh = xh+1 + 1 and

xh−1 = xh + 1, then y∣[xh+1,xh−1] = ( ). Therefore, we have shown that the first partial order

relation of the proposition holds:

A(BC)D = σ(y) Ì σ(x) = ABCD

Case 2: For j > 2, xh+1 = x
i
j, xh = x

i
j−1 = xh+1 + 1 and xh−1 = x

i
j−2 = xh+1 + k − 1.

Let A = σ(y∣[1,xh+1]) = σ(x∣[1,xh+1]), let B = σ(y∣[xh,xh−1]) = σ(x∣[xh,xh−1]), and let

C = σ(y∣[xh−1,n]) = σ(x∣[xh−1,n]). Notice that xh−1 − xh = k − 2; thus the block B is of size

k − 2. We see σ(y∣[xh+1,xh]) = and σ(x∣[xh+1,xh]) = ( ). Therefore, we have shown that the

second partial order relation of the proposition holds for B such that ∣B∣ = k − 2:

A BC = σ(y) Ì σ(x) = A( )BC

Case 3: xh+1 = x
i
2 and xh = x

i
1 = xh+1 + 1.

Suppose that xh < n. Thus xh + 1 = xi+1ji+1
. Let A = σ(y∣[1,xh+1]) = σ(x∣[1,xh+1]) and let

C = σ(y∣[xh+1,n]) = σ(x∣[xh+1,n]). We see σ(y∣[xh+1,xh]) = , σ(x∣[xh+1,xh]) = ( ), and

σ(y∣[xh,xh+1]) = σ(x∣[xh,xh+1]) = . Therefore, we have shown that the second partial order

relation of the proposition holds for B such that B = :

A C = σ(y) Ì σ(x) = A( ) C

If xh = n, then let A = σ(y∣[1,xh+1]) = σ(x∣[1,xh+1]). We see:

A = σ(y) Ì σ(x) = A( )
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Case 4: For j ≥ 2, xh+1 = x
i
j , xh = x

i
j−1 ≠ xh+1 + 1, and if xij−2 exists then xij−2 −xh+1 > k − 2.

We see that σ(y) = σ(y∣[1,xh+1]) σ(y∣[xh+1+1,xh])σ(y∣[xh,n]). Let A = σ(y∣[1,xh+1]) = σ(x∣[1,xh+1]),
let B1 = σ(y∣[xh+1+1,xh]), let B2 = σ(x∣[xh+1,xh]) and let C = σ(y∣[xh,n]) = σ(x∣[xh,n]).

We now consider B1 in more detail. Let y∣[xh+1+1,xh] = xh⋯x%m⋯x%2⋯x%1⋯(xh+1+1)⋯, where
x%1 is the smallest thing left of and larger than xh+1 + 1 such that x%1 − (xh+1 + 1) ≤ k − 2, the
entry x%2 is the smallest thing left of and larger than x%1 such that x%2 − x%1 ≤ k − 2, and so on.

It is possible for xh = x%1 . We know that xh − (xh+1 + 1) ≤ k − 2 because xh − xh+1 ≤ k − 2, so for

xh+1 + 1 and for each x% there exists an entry of y∣[xh+1+1,xh] that is the smallest thing left of

and larger than it such that their difference is less than k − 2. Thus B1 is a partial evaluation

made up of m + 1 blocks of size x%1 − (xh+1 + 1), x%2 − x%1 , and so on, respectively. Notice that

B1 does not have any unevaluated squares.

Now we consider B2. The fully evaluated block B2 is such that ∣B2∣ = ∣B1∣ + 1. Note B2 =

σ(x∣[xh+1,xh]) = σ(xhxh+1⋯x%m⋯x%2⋯x%1⋯(xh+1+1)⋯) = τ(⋯x%m⋯x%2⋯x%1⋯(xh+1+1)⋯). Let B̂1

be the partial evaluation obtained by changing all of the evaluated squares of B1 to unevaluated

squares. To compute B2 we begin with an unevaluated square followed by B̂1. All that is left

to evaluate are the positions (xh+1 +1), (1, . . . , (m in increasing order. Each of these additional

evaluations will add a pair of parentheses to B2 with an open parenthesis before the initial

square.

Therefore B1 is the partial evaluation obtained by removing every pair of parentheses from

B2 that include the first square of B2, removing the first square from B2, and evaluating any

remaining unevaluated squares, and we have shown that the third partial order relation of the

proposition holds:

A B1C = σ(y) Ì σ(x) = AB2C

Case 5: For j ≥ 2, xh+1 = y
i
j.

Let ( be the smallest integer such that the entry xi% < xh+1. Thus, x
i
% < xh+1 < xh < xi%−1. Let

A = σ(y∣[1,xi
!
]) = σ(x∣[1,xi

!
]) and let C = σ(y∣[xi

!−1
,n]) = σ(x∣[xi

!−1
,n]). Let B1 = σ(y∣[xi

!
,xi

!−1
]) =

τ(y∣[xi
!
+1,xi

!−1
−1]) and let B2 = σ(x∣[xi

!
,xi

!−1
]) = τ(x∣[xi

!
+1,xi

!−1
−1]). B1 and B2 are fully evaluated
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blocks, and A and C are partial evaluations. Since y∣[xi
!
+1,xi

!−1
−1] and x∣[xi

!
+1,xi

!−1
−1] differ by

switching xh and xh+1, B2 covers B1 in the Tamari lattice. That is, B1 can be represented as

(U(V W )) and B2 can be represented as ((UV )W ) for full evaluations or unevaluated squares

U , V , and W . Therefore:

A(U(V W ))C = σ(y) Ì σ(x) = A((UV )W )C

3.2 The Hopf Algebra of Partial Evaluations

In this section, we describe the product on partial evaluations and we give a partial description of

the coproduct on partial evaluations. From section 1.2, we know that for

U = {2(31), (k1)23 . . . k − 1}, the Hopf algebra of avoiders is given by (K[Av∞],●Av,∆Av).
Thus for x ∈ Avkp and y ∈ Avkq , such that y′ = (y)[p+1,p+q], σ(x) =X, and σ(y) = Y , the product

of avoiders is:

x ●Av y = [x ⋅ y′,π↓(y′ ⋅ x)]
and the product of partial evaluations is:

X ●PE Y = σ(x) ●PE σ(y) = [σ(x ⋅ y′),σ(y′ ⋅ x)]

Definition 3.2.1. We define a map δ from partial evaluations whose first block is an uneval-

uated square to full evaluations. To compute δ[X], mark all of the unevaluated squares and

unevaluate all of the evaluated squares. Then begin with the rightmost marked square and

evaluate it with the block immediately following it. Continue evaluating this block with the

block immediately following it until you reach the far right of the partial evaluation. Repeat

this process with the rightmost marked square until you have a fully evaluated block.
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Example 3.2.2. δ[ ( ( )) ( )( )] = (( ( ( )))( (( ) )))
( ( )) ( )( )

Mark unevaluated squares: ( ( )) ( )( )
Unevaluate evaluated squares: ( ( ))
Start with rightmost marked square

and evaluate to right:
( ( )) (( ) )

Using the next rightmost marked

square, evaluate to right:
( ( ))( (( ) ))

Using the next rightmost marked

square, evaluate to right:
(( ( ( )))( (( ) )))
(( ( ( )))( (( ) )))

Definition 3.2.3. Let X ∈ Σk
n. We define partial evaluations X1 and X2 such that X is

the concatenation of the partial evaluations X1 and X2. The partial evaluation X2 has an

unevaluated square in the first position and ∣X2∣ is as large as possible such that ∣X2∣ ≤ k − 3.
Theorem 3.2.4.

X ●PE Y = [X Y,X1δ[X2( )]Y ]
Example 3.2.5. X = ( ) ( ( )) ( ), Y = (( ( )), and k = 11. Since k − 3 =

8, X1 = ( ) and X2 = ( ( )) ( ). Recall δ[X2( )] = δ[ ( ( )) ( )( )] =
(( ( ( )))( (( ) ))).

X ● Y = [X Y,X1δ[X2( )]Y ]
= [( ) ( ( )) ( ) ( ( )), ( )(( ( ( )))( (( ) )))( ( ))]

Proof of Theorem 3.2.4. Let x ∈ Avkp such that σ(x) = X and let y ∈ Avkq such that σ(y) = Y .

Let y′ = (y)[p+1,n], where n = p + q. We want to show that σ(x ⋅ y′) = X Y and σ(y′ ⋅ x) =
X1δ[X2( )]Y .
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Consider σ(x ⋅ y′). None of the entries of y′ are left of the entries of x, and all of the entries

of y′ are larger than the entries of x. Thus σ(x ⋅ y′) outputs X as it evaluates the first p entries

of x ⋅ y′. Then it outputs because there is nothing larger than p to the left of it, and p + 1 is

an entry of y′ to the right. Lastly σ(x ⋅ y′) outputs Y as it evaluates the last q entries of x ⋅ y′.

Therefore, σ(x ⋅ y′) =X Y .

Consider σ(y′ ⋅x). We know p+1 is the smallest entry of y′ that is larger and to the left of any

of the entries of x. Recall that the permutation x is of the form described in Proposition 3.1.4. Let

xh = x
i
1 for the smallest i such that p+1−xi1 ≤ k−2. Consider σ(x∣[1,xh]) and σ(x∣[xh,p]). Because

xh = x
i
1, the first block of σ(x∣[xh,p]) is an unevaluated square. The partial evaluation σ(x∣[xh,p])

is of size p−xh. Since xh = x
i
1 for the smallest i such that p+1−xh ≤ k−2, we know ∣σ(x∣[xh ,p])∣

is as large as possible such that ∣σ(x∣[xh ,p])∣ ≤ k − 3. Thus, X1 = σ(x∣[1,xh]) and X2 = σ(x∣[xh ,p]).
Therefore σ(y′ ⋅x) = σ(x∣[1,xh])σ(y′ ⋅x∣[xh,p+1])σ(y′∣[p+1,p+q]) =X1σ(y′ ⋅x∣[xh,p+1])Y , and it is left

to show that σ(y′ ⋅ x∣[xh,p+1]) = δ[X2( )].
The size of the block σ(y′ ⋅x∣[xh,p+1]) is p+1−xh and σ(y′ ⋅x∣[xh,p+1]) = σ((p+1)⋅xh ⋅x∣[xh+1,p]) =

τ(x∣[xh+1,p]). Let x̂ = st(x∣[xh+1,p]). The permutation x̂ = x̂11⋯x̂
1
j1
ŷ11⋯ŷ

1
%1
⋯x̂h1⋯x̂

h
jh
ŷh1⋯ŷ

h
%h

avoids

the pattern 2(31) so it is of the form described in Proposition 3.1.4. Let us consider τ(x̂). Recall
the the map τ begins with p−xh+1+2 squares and then evaluates positions of a block as dictated

by reading a permutation from right to left. Lemma 3.1.13 shows that we get the same result

if we think of τ as a two-step process: first acting on entries of the form ŷij, and then acting on

entries of the form x̂ij. As we read x̂ from right to left, entries of the form ŷij give us all of the

fully evaluated blocks of X2 that are of size ≥ 2. Now let us consider entries of the form x̂ij . For

a particular i, the entries of the form x̂ij are in descending order, and if i1 < i2 then, x̂i1j < x̂
i2
% .

Mark each unevaluated square in the output that is in the x̂iji position. As we read x̂ from right

to left, entries of the form x̂ij evaluate the first position after the rightmost marked square and

evaluate each of the unevaluated positions to the end, then they evaluate the first position after

the new rightmost marked square and evaluate each of the unevaluated positions to the end,

and so on. This process is precisely δ[X2( )]. Therefore σ(y′ ⋅ x) =X1δ[X2( )]Y .
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no dots: ((( ) )( ))
one dot on the last square: ((( ) )( ))
non-nested parentheses: ((( ) )( )) ((( ) )( ))

((( ) )( )) ((( ) )( ))
((( ) )( )) ((( ) )( ))

Figure 3.3: Allowable dottings of σ(614325)

We now give a partial description of the coproduct of partial evaluations. First, we need to

develop a combinatorial understanding of what a good set as defined in Section 1.2 looks like

in terms of avoiders and partial evaluations.

Definition 3.2.6. For a partial or full evaluation X, a dotting of X is X with some set of

positions dotted. An allowable dotting of a full evaluation X is a dotting that meets one of the

following conditions:

1. no dots

2. one dot on the last square

3. for a set of non-nested pairs of parentheses, dots on the first and last square within each

pair of parentheses

Definition 3.2.7. An allowable dotting of a partial evaluation X is a dotting that meets all of

the following conditions:

1. dots alternate between black and white positions of X (there is at least one dot and the

first dot can be on either a black or a white position)

2. each fully evaluated block meets one of the conditions for an allowable dotting of a full

evaluation
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3. if the first dot to the right of an unevaluated square that has not been dotted is on a

white position, then that dotted white position is k − 2 or more positions to the right of

the unevaluated square

Example 3.2.8. Some allowable dottings of σ(142385679):
( ) ( ( )) is allowable for k ≥ 5

( ) ( ( )) is allowable for k = 5, but not for k > 5

Definition 3.2.9. Consider an allowable dotting of a partial evaluation X ∈ Σk
n−1. Place the

numbers 1 through n before, after, and in between each of the n− 1 squares of X. Let T be the

set of numbers such that either the nearest dotted position to their right is a black position,

or the nearest dotted position to their left is a white position. We define such a T to be an

allowable set for X.

Example 3.2.10. d = ((( ) )( ))⇒ (((1 2 )3 )4( 5 6))⇒ T = {1,4,6}
Each allowable dotting of X has a unique allowable set. Given a partial evaluation X and

an allowable set T for X, we can compute the associated allowable dotting by placing a dot

in each position i of X such that either i ∈ T and i + 1 ∉ T or i ∉ T and i + 1 ∈ T . Thus, each

allowable set of X has a unique allowable dotting of X. For an allowable set of X, we denote

the corresponding allowable dotting of X by [X]T .
Example 3.2.11. [((( ) )( ))]{1,4,6} = ((( ) )( ))

We now define a map µ̂ from pairs (X,T ) where X is a partial evaluation and T is an

allowable set with respect to X, to permutations. The output is not necessarily an avoider.

Definition 3.2.12. Let T be an allowable set for a partial evaluation X ∈ Σk
n−1. Let T

C be all

of the integers in [n] that are not contained in T . We define a map µ̂ by the following process.

First draw a vertical line. We will build a permutation by placing all of the elements of T on

the left of the vertical line, and all of the elements on TC on the right of the vertical line, and

then removing the line. If 1 ∈ T then place a 1 on the left of the line; otherwise, place the 1 on
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the right. The numbers 2 through n are each placed as far right as possible while still making

it possible for σ(µ̂(X,T )) = X. We will consider each block of X from left to right and place

the numbers 2 through n in the following manner.

Suppose X has an unevaluated square in the ith position. If i + 1 ∈ T , then place i + 1

immediately left of the vertical line. If i + 1 ∈ TC , then place i + 1 on the far right of the

permutation.

Suppose X has a fully evaluated block Xi of size j beginning in the ith position. We will

examine the possible assignments of the entries [i, i + j] to the sets T and TC , based on the

possible allowable dottings associated with T .

Case 1: [X]T has no dots on the block Xi.

If [i, i+j] ⊆ T , then place i+j immediately to the left of i and place (ρ(Xi))[i+1,i+j−1] immediately

left of the vertical line. If [i, i + j] ⊆ TC , then place i + j immediately to the left of i and place

(ρ(Xi))[i+1,i+j−1] to the far right of the permutation.

Case 2: [X]T only has a dot in the last position of Xi, which is a white position.

i + j ⊆ T and [i, i + j − 1] TC . Place i + j immediately left of the vertical line, and place

(ρ(Xi))[i+1,i+j−1] to the far right of the permutation.

Case 3: [X]T has dots on the first and last square within pairs of non-nested parentheses.

Since the first dot of [X]T is in a black position, i ∈ T . Since the last dot of [X]T is in a white

position, i + j ∈ T . Place i + j immediately to the left of i, place ρ(X)∣[i+1,i+j−1]∩T immediately

left of the vertical line and place ρ(X)∣[i+1,i+j−1]∩TC to the far right of the permutation.

The output of µ̂(X,T ) is the permutation that results from ignoring the vertical line.

Example 3.2.13. ForX = ( )( )( ( )) and T = {1,5,6,8}, the computation µ̂(X,T ) =
18564237.

1 ∈ T → 1 ⋮

→ 1 ⋮ 2

( ) → 1 ⋮ 423

( ) → 15 ⋮ 423

( ( )) → 1856 ⋮ 4237
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Proposition 3.2.14. For a partial evaluation X and for T an allowable set of X,

σ(µ̂(X,T )) =X

Proof. Suppose that we are in the process of computing µ̂(X,T ), and we are now examining a

block of X that we call Xi. This block begins in the ithposition of X. Assume that up to this

point, µ̂(X,T ) is computed in such a way that σ(µ̂(X,T )) =X.

Case 1: Xi is an unevaluated square.

The map µ̂(X,T ) maps i + 1 to the right of i. If i ∈ T , then µ̂(X,T ) does not map any entry

larger than i to the left of i. If i ∈ TC , then µ̂(X,T ) maps the smallest entry of T that is larger

than i to the left of i. For i ∈ TC , the smallest entry of T that is larger than i is one plus the

position of the first dot on [X]T after the ith position. The position of the first dot on [X]T
after the ith position must be larger than i+k−2, because [X]T is an allowable dotting. So the

smallest number that is larger than i and to the left of i in µ̂(X,T ) is larger than i+k−1. Note

i + k − 1 − i > k − 2. Thus regardless of whether i ∈ T or i ∈ TC , σ(µ̂(X,T )) has an unevaluated

square in the ith position.

Case 2: Xi is a fully evaluated block of size j.

The map µ̂(X,T ) maps i+ j to the left of i, such that i+ j is the smallest thing larger than and

left of i. Thus, σ(µ̂(X,T )) has a block of size j in the ith position. It is just left to show that the

block outputted is Xi. We have µ̂(X,T )∣[i,i+j] = (i+ j) ⋅ i ⋅ρ(X)∣[i+1,i+j−1]∩T ⋅ρ(X)∣[i+1,i+j−1]∩TC .

So σ(µ̂(X,T )∣[i,i+j]) = τ(ρ(X)∣[i+1,i+j−1]∩T ⋅ ρ(X)∣[i+1,i+j−1]∩TC ).
Suppose for sake of contradiction that Xi ≠ τ(ρ(X)∣[i+1,i+j−1]∩T ⋅ ρ(X)∣[i+1,i+j−1]∩TC ), that

is, there is some entry h ∈ [i + 1, i + j − 1] ∩ T and an entry ( ∈ [i + 1, i + j − 1] ∩ TC such that

the position h − i of τ( st(ρ(X)∣[i+1,i+j−1]∩T ⋅ ρ(X)∣[i+1,i+j−1]∩TC )) needs to be evaluated before

the position ( − i to obtain Xi. Because h ∈ T , in the dotting [X]T the nearest dotted position

to the right of h is a black position or the nearest dotted position to the left of h is a white

position. Similarly, because ( ∈ TC , in the dotting [X]T the nearest dotted position to the left
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of ( is a black position or the nearest dotted position to the right of ( is a white position.

Subcase 2a: For some fully evaluated blocks or unevaluated squares U , V , and W , there

is a sub-block of Xi that can be represented as ((UV )W ) where V begins in the hth position

of X and W begins in the (th position of X.

In order to meet the conditions above [X]T has a dot in a black position within the sub-block

of Xi represented by V . However, every dot in a black position within the sub-block of Xi

represented by V is followed by a dot in a white position within the sub-block of Xi represented

by V . This is a contradiction because ( is right of a dot in a black position.

Subcase 2b: For some fully evaluated blocks or unevaluated squares U , V , and W , there

is a sub-block of Xi that can be represented as (U(V W )) where V begins in the (th position

of X and W begins in the hth position of X.

In order to meet the conditions above [X]T has a dot in a white position within the sub-

block of Xi represented by V . However, every dot in a white position within the sub-block

of Xi represented by V is preceded by a dot in a black position within the sub-block of Xi

represented by V . This is a contradiction because ( is left of a dot in a white position.

Thus we have shown σ(µ̂(X,T )) has Xi in the ith position.

Proposition 3.2.15. Let X ∈ Σk
n−1 and x ∈ Avkn such that σ(x) =X. T is an allowable set for

X, T = ∅, or T = [n] if and only if T is good with respect to x.

Proof. Recall from Section 1.2 that a set T is good if the entries of T are the first elements of a

permutation x′ ∈ Sn where σ(x′) =X. Suppose that T is an allowable set for X ∈ Σk
n−1, and let

µ̂(X,T ) = x′ ∈ Sn. Observe that the entries of T are the first elements of x′ and that σ(x′) =X.

If T = ∅ or if T = [n], then the entries of T are the first elements of x.

Now, suppose x′ ∈ Sn such that σ(x′) =X, and let Th be the set containing the first h entries

of x′. If h = 0 or h = n, then Th = ∅ or T = [n] respectively. For 1 ≤ h ≤ n − 1, we want to show

that Th is an allowable set for X, that is, we want to show that [X]Th
is an allowable dotting

for X.
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If i ∈ Th and i+1 ∈ TC
h then [X]Th

has a dot in the ith position. We know that entries in TC
h

come after entries of Th in x′, so i + 1 is to the right of i in x′. Thus the ith dot is on a black

position of X. Similarly, if i ∈ TC
h and i+1 ∈ Th, then the ith dot of [X]Th

is on a white position

of X. Thus the dots of [X]Th
alternate between black positions and white positions of X.

Suppose that there is a fully evaluated block Xi of size j beginning in the ith position of

X. If [i, i + j] ⊆ Th or if [i, i + j] ⊆ TC
h , then there are no dots on Xi in the dotting [X]Th

. If

j + 1 ∈ Th and [i, i + j − 1] ⊆ TC
h , then the dotting [X]Th

has one dot in the last position of Xi.

If i, i+ j ∈ Th and the entries [i+1, i+ j −1] are either all in Th or all in TC
h , then let us consider

σ(x′∣[i,i+j]) = τ(x′∣[i+1,i+j−1]). As the map τ reads the permutation x′∣[i+1,i+j−1] from right to

left, it will first evaluate the positions corresponding to entries in [i + 1, i + j − 1] ∩ TC
h . At this

step in the process, the resulting block will look like fully evaluated sub-blocks separated by

any number of unevaluated squares. The dotting [X]Th
has dots in the first and last position

of each of these fully evaluated sub-blocks. Thus, for a set of non-nested pairs of parentheses,

the dotting [X]Th
has a dot in the first and last square in each pair of parentheses. Therefore

we have shown that each block of [X]Th
meets one of the conditions for an allowable dotting

of a full evaluation.

Suppose that [X]Th
has an unevaluated square in the ith position that has not been dotted,

and that the first dot to the right of that square is in a white position j positions to the right

of the unevaluated square. Thus [i, i+ j] ⊆ TC
h and i+ j + 1 ∈ Th. That is, i+ j + 1 is the smallest

entry larger than and to the left of i in x′. If i + j + 1 − i ≤ k − 2, then X would have a block of

size j + 1 in the ith position instead of an unevaluated square. Thus i + j + 1 − i > k − 2, that is,

j > k − 3, or equivalently j ≥ k − 2, because j and k are integers.

Thus we conclude the general discussion of the coproduct of partial evaluations. Now we

describe the coproduct of partial evaluations for k = 3, and then we will give a partial description

of the coproduct of partial evaluations that is isomorphic to the coproduct for avoiders of the

set U = {2(31)}. A dual version of this coproduct is found in [2, Chapter 17.3]. Aguiar and

Mahajan’s map was instrumental in the understanding of the dual product and coproduct of
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sashes, as well as the coproduct of the tilings that we mention here.

The Hopf algebra of partial evaluations for k = 3 has already been introduced in Chapter 1.1.

Consider the tilings of black squares and white squares to be tilings of unevaluated squares and

evaluated squares respectively. Of the cover relations defined in Proposition 3.1.24, only (2)

applies to the k = 3 case. Thus, the cover relation for tilings is given by D E Ì D( )E,

where D and E are tilings of evaluated and unevaluated squares. From Definition 3.2.7 we

see that allowable dottings of these objects are dottings that alternate between evaluated and

unevaluated squares. That is, conditions (2) and (3) of Definition 3.2.7 do not create any

additional restrictions for allowable dottings.

Given an allowable dotting d for a tiling C ∈ Υn, we define two objects A and B that

are similar to tilings, but they contain an additional object called a mystery square . Let

d = c1 ●1 c2 ●2 ⋯cj ●j cj+1, where each ci is a sub tiling of C without any dots.

If ●1 is on an unevaluated square, then let A be the concatenation of the odd ci with a

mystery square in between each ci (where i is odd), and let B be the concatenation of the even

ci with a mystery square in between each ci (where i is even). If ●1 is on an evaluated square,

then let A be the concatenation of the even ci with a mystery square in between each ci, and

let B be the concatenation of the odd ci with a mystery square in between each ci.

We use the objects A and B to define four tilings A, A, B, and B. The tilings A and B

are obtained by replacing all of the mystery squares on A or B respectively with unevaluated

squares. The tilings A and B are obtained by replacing all of the mystery squares on A or B

respectively with evaluated squares.

Let Id = ∑[A,A] and Jd = ∑[B,B]. Thus Id ⊗ Jd denotes ∑D∈[A,A]
E∈[B,B]

D ⊗E. The coproduct

of tilings is given by:

∆Υ(C) = ∅⊗C +C ⊗∅ + ∑
allowable
dottings
d of C

Id ⊗ Jd (3.1)

Now we will give a partial description of the coproduct on partial evaluations with no
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restriction on the size of the fully evaluated blocks. Let Av∞n denote the set Avn[{2(31)}].
Also, Σ∞n−1 is the set of partial evaluations of length n − 1 with no restriction on the size of the

fully evaluated blocks.

Lemma 3.2.16. Let z ∈ Av∞n , and let T be good with respect to z. Recall zmin and zmax from

Section 1.2.

zmin∣T = z∣T
zmin∣TC = z∣TC

zmax∣T = π↑(z)∣T
zmax ∣TC = π↑(z)∣TC

Proof. Given z ∈ Av∞n and a good set T , consider the π↑-moves required to transition from z

to zmin. Beginning with the permutation z, each entry of T that is right of an entry of TC in z

moves to the left until all of the entries of T are to the left of the entries of TC . This permutation

is zmin. Because none of the entries of T changed their relative order, we can conclude the first

two equations of the Lemma.

We make a similar argument for the last two equations by considering the π↓-moves required

to transition from π↑(z) to zmax.

Lemma 3.2.17. Let z ∈ Av∞n , and let T be good with respect to z such that ∣T ∣ = p.

σ(z∣T ) = σ(π↑(z)∣T )

Proof. Since z ∈ Av∞n , the permutation st(z∣T ) ∈ Av∞p . So, st(z∣T ) is of the form st(z∣T ) =
x11⋯x

1
j1
y11⋯y

1
%1
⋯xh1⋯x

%
jh
yh1⋯y

h
%h
. Assume that computations of σ(z∣T ) and σ(π↑(z)∣T ) produce

identical output when evaluating the values from 1 to x, and we will consider their output for

the following block.
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Case 1: x = xi1.

The output of σ(z∣T ) is an unevaluated square, because there is nothing larger than xi1 to the

left of xi1 in st(z∣T ). Thus, there is nothing larger than xi1 to the left of xi1 in st(π↑(z)∣T ), so
the output of σ(π↑(z)∣T ) is an unevaluated square.

Case 2: x = xij for j ≥ 2.

The output of σ(z∣T ) is a fully evaluated block of size xij−1−x
i
j, because x

i
j−1 is the smallest thing

larger and to the left of xij in st(z∣T ). Particularly, the output is the block τ((z∣T )[xi
j+1,x

i
j−1−1]

).
Since all of the values in [xij+1, xij−1−1] are to the right of xij in st(z∣T ), the smallest thing larger

and to the left of xij in st(π↑(z)∣T ) is also xij−1. Thus, the output of σ(π↑(z)∣T ) is a block of size

xij−1 − x
i
j , and is specifically τ((π↑(z)∣T )[xi

j+1,x
i
j−1−1]

). By Lemma 3.1.12, τ((z∣T )[xi
j+1,x

i
j−1−1]

) =
τ((π↑(z)∣T )[xi

j+1,x
i
j−1−1]

).
From the previous two Lemmas and from Section 1.2, we now have:

∆PE(Z) = ∅⊗Z +Z ⊗∅ + ∑
allowable
dottings d

σ(IT )⊗ σ(JT )

= ∅⊗Z +Z ⊗∅ + ∑
allowable
dottings d

[σ(zmin∣T ),σ(zmax ∣T )]⊗ [σ(zmin∣TC),σ(zmax ∣TC)]

= ∅⊗Z +Z ⊗∅ + ∑
allowable
dottings d

[σ(z∣T ),σ(π↑(z)∣T )]⊗ [σ(z∣TC ),σ(π↑(z)∣TC )]

= ∅⊗Z +Z ⊗∅ + ∑
allowable
dottings d

σ(z∣T )⊗ [σ(z∣TC ),σ(π↑(z)∣TC )]

Consider an allowable dotting d of a partial evaluation Z ∈ Σ∞n−1, where Z = σ(z) for some

z ∈ Av∞n . We now define a sash A that is obtained from d. In Proposition 3.2.19 we will show

that A = σ(z∣T ) for the set T associated with d. If the first dot of d is in a white position, then

delete everything in d before the first dot and delete the position with the first dot. If the last

dot of d is in a black position, then delete everything in d after the last dot and delete the

position with the last dot. Note that if the first dot of d is in a white position, then it is either
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on an evaluated square or in the last position of a fully evaluated block, and if the last dot of

d is in a black position, then it is on an unevaluated square. Thus we are left with a dotting d̂

such that if it has any dots, they begin on a black position and end on a white position.

If d̂ does not have any dots, then A = d̂. If d̂ does have dots, then examine the dots from left

to right and execute the following procedure: If a dot in a black position is on an unevaluated

square, then delete all of the positions of the partial evaluation in between and including the

black position and the following dotted white position. Replace the deleted portion of the partial

evaluation with an unevaluated square.

If a dot in a black position is not on an unevaluated square, then consider the innermost pair

of parentheses around both the dotted black position and the following dotted white position.

If these dots are in the first and last positions of a fully evaluated block, then replace the entire

block with an evaluated square. Otherwise, replace these parentheses and everything inside of

them with a square.

Example 3.2.18.

d = ( )( ) ( )( ( )) (( ( ( ))) )( ) ( )
d̂ = ( )( ( )) (( ( ( ))) )( )
A = ( ) (( ) )( )

Proposition 3.2.19. Let z ∈ Av∞n and let T be good with respect to z such that σ(z) = Z ∈ Σ∞n−1
and such that [Z]T = d. If A is as defined above, then A = σ(z∣T ).
Proof. Let T = {t1, t2, . . . , tp} for t1 < t2 < ⋅ ⋅ ⋅ < tp. If the first dot of d is in the hth position of Z,

which is a white position, then the values [1, h] are in TC and have no barring on z∣T . Similarly,

if the last dot of d is in the (th position of Z, which is a black position, then the values [(+1, n]
are in TC and have no barring on z∣T . Thus (ρ(d̂))[h+1,%]∣T = z∣T , where h = 0 if the first dot of

d is in a black position and ( = n if the last dot of d is in a white position.
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If d̂ has a dot on an unevaluated square in the ith position of Z, followed by a dot in the

jth position of Z, which is a white position, then i, j + 1 ∈ T such that i = tr and j + 1 = tr+1 for

some r. In z, the entry j + 1 is to the right of i, and nothing larger than i is to the left of i.

Thus in z∣T , the entry tr+1 is to the right of tr, and nothing larger than tr is to the left of tr.

The sash A has an unevaluated square in the rth position, so (ρ(A))T has the entry tr+1 to the

right of tr, and nothing larger than tr is to the left of tr.

If d̂ has a dot on the first position of a block in the ith position of Z, followed by a dot on

the last position of that block in the jth position of Z, which is a white position, then i, j+1 ∈ T

such that i = tr and j + 1 = tr+1 for some r. In z, the entry j + 1 is to the left of i. Thus in z∣T ,
the entry tr+1 is the smallest thing larger and to the left of tr. The sash A has an evaluated

square in the rth position, so in (ρ(A))T the entry tr+1 is the smallest thing larger and to the

left of tr.

Suppose d̂ has dots in the first and last position of some set of non-nested parentheses within

a single block of Z. Let the block be size j and begin in the ith position of Z. Let all of the

dots on black positions within the block be in the ist1 , i
nd
2 , . . . , and iths positions of Z. Similarly,

let all of the dots on white positions within the block be in the jst1 , jnd2 , . . . , and jths positions

of Z. Thus the set T contains the entries: [i, i1] ∪ [j1 + 1, i2] ∪ [j2 + 1, i3] ∪ ⋯ ∪ [js + 1, i + j].
Let i = tr1 and i + j = tr2 . Notice that in both z∣T and (ρ(A))T , the entry i + j is the smallest

thing larger and to the left of i. Thus, σ(z∣[tr1 ,tr2]∩T ) = τ(z∣[tr1+1,tr2−1]∩T ), which is precisely

σ((ρ(A))∣[tr1 ,tr2 ]∩T ). That is σ(z∣[tr1 ,tr2 ]∩T ) is the same as the block obtained by replacing each

set of non-nested dotted parentheses in the dotted block of d̂ and everything inside of them

with a square.

Since σ((ρ(A))T ) = A we have shown that A = σ(z∣T ).
Therefore, for a partial evaluation Z:

∆PE(Z) = ∅⊗Z +Z ⊗∅ + ∑
allowable
dottings d

A⊗ [σ(z∣TC ),σ(π↑(z)∣TC )]
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