
Abstract

BRENNEMAN, KATHRYN ALETA. Lifting k-Involutions from the Root System to the Lie
Algebra. (Under the direction of A. G. Helminck.)

We use the idea of admissibility as described in [Helminck(1988)]. Since every admissible
(Γ, θ)-index is a combination of admissible absolutely irreducible (Γ, θ)-indices, it suffices to
classify the admissible absolutely irreducible (Γ, θ)-indices and the admissible k-involutions re-
lated to these indices. In this thesis, we begin the classification of k-involutions by building
the classification for the "first" non-algebraically-closed k, the R-involutions. It is a result of
[Helminck(1988)] that the R-involutions can be classified by commuting pairs of C-involutions.
Before we can classify the R-involutions by way of commuting pairs of C-involutions, we must
first know how to lift C-involutions. Since the existing results in the literature are incorrect
[Watson(2010)], we begin with our own construction and analysis of C-involutions.
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Chapter 1:

Introduction

1.1 Background and Motivation

Symmetric spaces have been studied for over 100 years. Initially they were only studied over the
real numbers, but in the last 25 to 30 years generalization of symmetric spaces over other fields
have become important in other areas of mathematics as well. In the following we will give a
brief introduction.

Definition 1.1.1. Let G be a group, θ ∈ Aut(G) an involution, i.e. θ2 = id and

H = Gθ = {x ∈ G | θ(x) = x}

the fixed point group of θ. Let τ : G→ G be the map defined by τ(x) = xθ(x)−1 and

Q = τ(G) = {xθ(x)−1 | x ∈ G}.

Then Q ' G/H is called a generalized symmetric space. If G is a reductive linear algebraic
group defined over a field k of characteristic not 2, then Q is also called a symmetric k-variety .
When k 6= R, then it is usually called a reductive symmetric space.

If k = R, then Q is also called an affine symmetric space. Moreover if H is compact, then X
is also called a Riemannian symmetric space. These symmetric spaces play an essential role in
many areas of mathematics including mathematical physics, Lie theory, representation theory
and differential geometry. We note that with this definition every linear algebraic group is a
symmetric k-variety.
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Example 1.1.2. Group case: Consider G1 = G × G and θ(x, y) = (y, x), then H = {(x, x) |
x ∈ G} ' G embedded diagonally and Q = {(x, x−1) | x ∈ G} ' G embedded anti-diagonally.

1.2 Fine structure of involutions and k-groups

There is a natural fine structure related to reductive algebraic groups, which comes from the
root system and associated Weyl group of a maximal torus. For a reductive algebraic group G
defined over a field k the k-structure of the group gives rise to a natural fine structure as well,
which is related to a maximal k-split torus. For an involution θ of a reductive group G it was
shown in Helminck [Helminck(1988)] that there is a similar fine structure related to maximal
θ-split tori. Here a torus A is called θ-split if θ(a) = a−1 for all a ∈ A. To study k-involutions
one needs to combine the fine structure related to the involution with the fine structure related
to the k-structure of the group. The natural fine structure related to symmetric k-varieties and
k-involutions comes from the maximal (θ,k)-split tori. In this case, a torus A is called (θ,k)-split
if it is both θ-split and k-split. In this section we will introduce all this fine structure.

1.2.1 Root Data

To deal with the notion of root system in reductive groups it is quite useful to work with the
notion of root datum.

Notation 1.2.2. If T is a torus of G, then we denote by

X = X∗(T ), the set of characters,
Φ = Φ(T ), the set of roots,

X∨ = X∗(T ), the set of one parameter subgroups,
Φ∨ = Φ∨(T ), the set of co-roots, and
W = W (T ), the Weyl group of T with respect to G.

Definition 1.2.3. If T is a torus in a reductive group G, such that Φ(T ) is a root system
with Weyl group W (T ), then the root datum associated to the pair (G,T ) is the quadruple
Ψ = (X,Φ, X∨,Φ∨).

Remark 1.2.4. If T1 and T2 are tori and φ is a homomorphism of T1 into T2, then the mapping
tφ of X∗(T2) into X∗(T1), defined by

tφ(χ2) := χ2 ◦ φ, χ2 ∈ X∗(T2) (1.2.4 (a))

is a module homomorphism. If φ is an isomorphism, then tφ−1 is a module isomorphism from
(X∗(T1),Φ(T1)) onto (X∗(T2),Φ(T2)).
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1.2.5 Actions on root data

In the study of k-involutions one has to combine the k-structure of the group with the structure
of the involution. For this one has to combine the actions on the related root data. This can
be seen as follows. Let G be a reductive k-group, T a maximal k-torus of G, X = X∗(T ),
Φ = Φ(T ), K a finite Galois extension of k which splits T and Γ = Gal(K/k) the Galois group
of K/k. If φ ∈ Aut(G,T ) is defined over k, then φ? := t(φ|T )−1 satisfies

σφ? = φ?σ for all σ ∈ Γ. (1.2.5 (a))

If θ ∈ Aut(G,T ) is a k-involution, then we will also write θ for θ? := t(θ|T )−1 ∈ Aut(X,Φ). Both
Γ and θ act on (X,Φ). Let Eθ = {id,−θ} ⊂ Aut(X,Φ) be the subgroup spanned by −θ|T . Let
EΓ ⊂ Aut(X,Φ) be the subgroup corresponding to the action of Γ on (X,Φ) and let Γθ = EΓ.Eθ
be the subgroup of Aut(X,Φ) generated by EΓ and Eθ. It was shown in [Helminck(2000)] that
Γθ is a finite subgroup of Aut(X,Φ). The actions of Γ, θ, resp. Γθ on (X,Φ) all lead to natural
restricted root systems and as it turns out these are precisely the restricted root systems related
to a maximal k-split, θ-split resp. (θ,k)-split torus. Since all three of these actions on the root
datum can be described in a similar manner we will consider in the remainder of this section
the action of an arbitrary finite group E on (X,Φ).

1.2.6. Let Ψ = (X,Φ, X∨,Φ∨) be a root datum with Φ 6= ∅ and let E be a finite group acting
on Ψ. For σ ∈ E and χ ∈ X we will also write χσ or σ(χ) for the element σ.χ ∈ X. Write
W = W (Φ) for the Weyl group of Φ. Now define the following:

X0 = X0(E) := {χ ∈ X |
∑
σ∈E

χσ = 0} and Φ0 = Φ0(E) := Φ ∩X0. (1.2.6 (a))

Then X0 is a co-torsion free submodule of X and Φ0 is a closed subsystem of Φ, both invariant
under the action of E . Denote the Weyl group of Φ0 by W0 and identify it with the subgroup
of W (Φ) generated by the reflections sα, α ∈ Φ0. Put W E := {w ∈ W | w(X0) = X0}, XE :=

X/X0(E) and let π be the natural projection from X to XE . If we take A = {t ∈ T | χ(t) =

e for all χ ∈ X0} to be the annihilator of X0 and Y = X∗(A), then Y may be identified with
XE = X/X0. Let ΦE := π(Φ− Φ0(E)) denote the set of restricted roots of Φ relative to E .

Remark 1.2.7. In the case that E = Γ, then X0 is the annihilator of a maximal k-split torus
A of T . Similarly in the case that E = Eθ, then X0 is the annihilator of a maximal θ-split torus
A of G. In both these cases, if A is maximal k-split resp. θ-split in G then ΦE is the root system
of A with Weyl group W E .

We define now an order on (X,Φ) related to the action of E as follows.
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Definition 1.2.8. A linear order on X which satisfies

if χ � 0 and χ 6∈ X0, then χσ � 0 for all σ ∈ E (1.2.8 (a))

is called a E-linear order . A fundamental system of Φ with respect to a E-linear order is called
a E-fundamental system of Φ or a E-basis of Φ.

A E-linear order on X induces linear orders on Y = X/X0 and X0, and conversely, given
linear orders on X0 and on Y , these uniquely determine a E-linear order on X, which induces
the given linear orders (i.e. if χ 6∈ X0, then define χ � 0 if and only if π(χ) � 0). Instead of
the above E-linear order one could give a more general definition of a linear order on X using
only the fact that X0 is a co-torsion free submodule of X. In the following we give a number of
properties of an E-linear order on X.

1.2.9 Restricted fundamental system

Fix a E-linear order � on X, let ∆ be a E-fundamental system of Φ and let ∆0 be a fundamental
system of Φ0 with respect to the induced order on X0. Let A = {t ∈ T | χ(t) = e for all χ ∈ X0}
be the annihilator of X0 and define ∆E = π(∆ − ∆0). This is called a restricted fundamental
system of Φ relative to A or also a restricted fundamental system of ΦE . The following proposition
lists some properties of these fundamental systems.

Proposition 1.2.10. Let X, X0, Φ, Φ0, ΦE , etc. be defined as above and let ∆, ∆′ be E-
fundamental systems of Φ. Then we have the following

(1) ∆0 = ∆ ∩ Φ0.

(2) ∆ = ∆′ if and only if ∆0 = ∆′0 and ∆E = ∆
′
E .

(3) If ∆E = ∆
′
E , then there exists a unique w′ ∈W0 such that ∆′ = w′∆.

1.2.11 Restricted Weyl group

There is a natural (Weyl) group associated with the set of restricted roots, which is related
to W E/W0. Since W0 is a normal subgroup of W E , every w ∈ W E induces an automorphism
of XE = X/X0 = Y . Denote the induced automorphism by π(w). Then π(wχ) = π(w)π(χ)

(χ ∈ X). DefineW E := {π(w) | w ∈W E}. We call this the restricted Weyl group with respect to
the action of E onX. It is not necessarily a Weyl group in the sense of Bourbaki [Bourbaki(1981),
Ch.VI,no.1], however, we do have the following.

Proposition 1.2.12. Let X, X0, Φ, Φ0, ΦE , ∆, ∆0, ∆E , W0, W
E , W E be defined as above

and let A be the annihilator of X0. Then we have:
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(1) If w ∈W E , then w(∆) is an E-fundamental system.

(2) Given w ∈W E , w ∈W0 iff π(w) = 1 iff π(w)∆E = ∆E .

(3) W E ≈W E/W0.

(4) W E/W0 ≈ NG(A)/ZG(A), where NG(A) and ZG(A) are respectively the normalizer and
centralizer of A in G.

Remarks 1.2.13. (1) In the case that A is a maximal k-split, θ-split or (θ,k)-split torus, then
ΦE is actually a root system with Weyl group W E . (2) In the remainder of this section we will
also write Φ, ∆, W instead of ΦE , ∆E , W E whenever it causes no confusion.

1.2.14 Action of E on ∆

From Proposition 1.2.12 it follows thatW E acts on the set of E-fundamental systems of Φ. There
is also a natural action of E on this set. If ∆ is a E-fundamental system of Φ, and σ ∈ E , then the
E-fundamental system ∆σ := {ασ | α ∈ ∆} gives the same restricted basis as ∆, i.e. ∆

σ
= ∆.

This follows from the fact that αi ≡ ασi mod X0 for all αi ∈ ∆, σ ∈ E . From Proposition 1.2.10
it follows that there is a unique element wσ ∈ W0 such that ∆σ = wσ∆. This means we can
define a new operation of E on X as follows:

χ[σ] := w−1
σ χσ, χ ∈ X, σ ∈ E . (1.2.14 (a))

It is easily verified that χ→ χ[σ] is an automorphism of the triple (X,Φ,∆) and that χ[σ][γ] =

χ[σγ] for all σ, γ ∈ E , χ ∈ X.

1.3 (Γ, θ)-indices

The actions of Γ and θ on the root datum can be described by an index. These indices not
only determine the fine structure of restricted root systems with multiplicities etc. of the corre-
sponding k-group and symmetric variety, but also play an important role in the classifications
of k-groups and symmetric varieties (or equivalently involutions of reductive groups). In this
section we extend these indices to get an index that describes the action of a k-involution. Sim-
ilar as for k-groups and symmetric varieties this index describes the fine structure of restricted
root systems with multiplicities etc. of the corresponding symmetric k-variety, and again plays
an important role in the classification of k-involutions.
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1.3.1 The index of E

Throughout this section let Ψ be a semisimple root datum with Φ 6= ∅, E a (finite) group acting
on Ψ, as in 1.2.6, ∆ a E-basis of Φ and ∆0 = ∆0(E) = ∆ ∩ X0(E). In equation (1.2.14 (a))
we defined an action of E on ∆, which we denote by [σ]. The action of E on Ψ is essentially
determined by ∆, ∆0 and [σ]. Following Tits [Tits(1966)] we will call the quadruple (X, ∆, ∆0,
[σ]) an index of E or an E-index . We will also use the name E-diagram, following the notation
in Satake [Satake(1971), 2.4].

1.3.2

As in [Tits(1966)] we make a diagrammatic representation of the index of E by coloring black
those vertices of the ordinary Dynkin diagram of Φ, which represent roots in ∆0(E) and indi-
cating the action of [σ] on ∆ by arrows. An example in type D` is:

v f v v f�� v
@@ v [σ]

�

]

To use these E-indices in the characterization of isomorphy classes of reductive k-groups or
involutions, we need a notion of isomorphism between them.

Definition 1.3.3. Let Ψ and Ψ′ be semisimple root data and E a group acting on them. A
congruence ϕ of the E-index (X, ∆, ∆0, [σ]) of Ψ onto the E-index (X ′, ∆′, ∆′0, [σ]′) of Ψ′ is
an isomorphism which maps (X, ∆, ∆0)→ (X ′, ∆′, ∆′0), and satisfies [σ]′ = ϕ[σ]ϕ−1.

For k-involutions it suffices to consider two actions of E on the same root datum. In that
case we will also use the term isomorphic E-indices instead of congruent E-indices. In this case
one can differentiate between inner and outer automorphisms.

Definition 1.3.4. Let Ψ be a root datum and E1, E2 ⊂ Aut(Ψ) the subgroups of Aut(Ψ)

corresponding to actions of E on Ψ. Two indices (X, ∆, ∆0(E1), [σ]1) and (X,∆′,∆′0(E2), [σ]2)

are said to be W (Φ)-isomorphic (resp. Aut(Φ)-isomorphic) if there is a w ∈ W (Φ) (resp.
w ∈ Aut(Φ)), which maps (∆,∆0(E1)) onto (∆′,∆′0(E2)) and satisfies w[σ]1w

−1 = [σ]2. Instead
of W (Φ)-isomorphic we will also simply use the term isomorphic.
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Remark 1.3.5. An index of E may depend on the choice of the E-basis of Φ, i.e. for two E-
bases ∆, ∆′, the corresponding indices (X, ∆, ∆0(E), [σ]) and (X, ∆′, ∆′0(E), [σ]′) need not be
isomorphic. However this cannot happen if ΦE is a root system with Weyl group W E :

Proposition 1.3.6. Let Ψ be a semisimple root datum and E ⊂ Aut(Ψ) a group acting on Ψ

such that ΦE is a root system with Weyl group W E . If ∆, ∆′ are E-bases of Φ, then (X, ∆,
∆0(E), [σ]) and (X, ∆′, ∆′0(E), [σ]′) are isomorphic.

Theorem 1.3.7. Let G1, G2 be connected semisimple groups defined over k. For i = 1, 2 let Ti
be a maximal k-torus of Gi, Ψi = (X∗(Ti), Φ(Ti), X∗(Ti), Φ∨(Ti)) the root datum corresponding
to (Gi, Ti), E a (finite) group acting on Ψi, X0(E , Ti) = {χ ∈ X∗(Ti) |

∑
σ∈E χ

σ = 0}, Ai =

{t ∈ Ti | χ(t) = e for all χ ∈ X0(E , Ti)} the annihilator of X0(E , Ti), ∆(Ti) a E-basis of Φ(Ti),
∆0(Ti) = ∆(Ti) ∩X0(E) and [σ]i the action of E on ∆(Ti). If ϕ : (G1, T1, A1)→ (G2, T2, A2) is
a k-isomorphism and ϕ? = t(ϕ|T1)−1 is as in (1.2.4 (a)), then there exists a unique w ∈W E(T2)

such that w(ϕ?(∆(T1))) = ∆(T2) and ϕ[?] := wϕ? is a congruence from (X∗(T1), ∆(T1), ∆0(T1),
[σ]1) to (X∗(T2), ∆(T2), ∆0(T2), [σ]2).

Definition 1.3.8. If φ : (G1, T1, A1) → (G2, T2, A2) is a k-isomorphism as in Theorem 1.3.7,
then we will call the congruence ϕ[?] := wϕ? of the E-indices (X∗(T1), ∆(T1), ∆0(T1), [σ]1) and
(X∗(T2), ∆(T2), ∆0(T2), [σ]2) the congruence associated with ϕ.

In the cases of E = Eθ and E = Γ we get the well known θ-index and Γ-index , which are
essential in the respective classifications. Since the classification of k-involutions depends on a
classification of these, we will briefly review these in the next subsections. First, though, we
need a notion of irreducibility for E-indices.

Definition 1.3.9. Let E ⊂ Aut(X,Φ) be a subgroup and ∆ a E-basis of Φ. An index D = (X,
∆, ∆0, [σ]) is E-irreducible if ∆ is not the union of two mutually orthogonal [σ]-invariant (non-
empty) subsystems ∆′, ∆′′. The system D is absolutely irreducible if ∆ is connected. In the case
E = EΓ (resp. Eθ) we will also call an E-irreducible index a k-irreducible index (resp. θ-irreducible
index ).

By abuse of notation, we will say θ ∈ Aut(X,Φ) is an irreducible (resp. absolutely irreducible)
involution if it has θ-irreducible (resp. absolutely irreducible) index.

1.3.10 θ-indices

In this subsection we discuss the index associated with an involutorial automorphism of a re-
ductive algebraic group. Let G be a reductive algebraic group, θ ∈ Aut(G) an involution and T
a θ-stable maximal torus of G. Again, write X = X∗(T ), Φ = Φ(T ) and let Eθ = {id,−θ} ⊂
Aut(X,Φ) be the subgroup spanned by −θ|T . In this case we will also write X0(θ), Xθ, Φ0(θ),
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Φθ, W1(θ), W θ, ∆0(θ), ∆θ instead of, respectively, X0(Eθ), XEθ , Φ0(Eθ), ΦEθ , W0(Eθ), W1(Eθ),
W Eθ , ∆0(Eθ), ∆Eθ .

Definition 1.3.11. A Eθ-order on X will also be called a θ-order on X, a Eθ-basis of Φ a θ-basis
of Φ, and a Eθ-index a θ-index .

Let ∆ be a θ-basis of Φ. To find the θ-index we need to find the action of [−θ] on (X,Φ,∆).
Since θ(−∆) is also a θ-basis of Φ with the same restricted basis, it follows from Proposition
1.2.10 that there is w0(θ) ∈ W0(θ) such that w0(θ)θ(∆) = −∆. Put θ∗ = θ∗(∆) = −w0(θ)θ.
Then θ∗ = [−θ]. Note that θ∗(∆) ∈ Aut(X,Φ,∆) := {φ ∈ Aut(X,Φ) | φ(∆) = ∆}, θ∗(∆)2 = id

and θ∗(∆0(θ)) = ∆0(θ).

Proposition 1.3.12. Let A be a maximal θ-split torus of G, T ⊃ A a maximal torus and ∆ a
θ-basis of Φ(T ). The θ-index (X, ∆, ∆0, θ∗) is uniquely determined (up to congruence) by the
isomorphy class of θ.

1.3.13 Γ-indices

In this subsection we introduce the index related to the isomorphy classes of semisimple k-groups.
For the remainder of this section let G be a reductive k-group, A a k-split torus of G, T ⊃ A a
maximal k-torus, K the smallest Galois extension of k which splits T . Let Γ = Gal(K/k) be the
Galois group of K/k, X = X∗(T ), Φ = Φ(T ), X0 = X0(Γ), Φ0 = Φ0(Γ), etc. Let G0 = G(Φ0)

denote the connected semisimple subgroup of G generated by {Uα | α ∈ Φ0}. Note that the
group G0 is the semisimple part of ZG(A). If A is a maximal k-split torus, then G0 is anisotropic
over k and is uniquely determined (up to k-isomorphy) by the k-isomorphism class of G. In
that case G0 is also called the k-anisotropic kernel of G.

1.3.14

Let ∆ be a Γ-basis of Φ, and let ∆0 = ∆ ∩ X0. As in (1.2.14 (a)) we have an action of Γ on
∆, which we denote by [σ]. The 4-tuple (X, ∆, ∆0, [σ]) is called the Γ-index of (G,T,A). If
A is a maximal k-split torus of G, then we will also call this the Γ-index of G. It was shown
by Tits [Tits(1966)] that the k-isomorphism class of G uniquely determines, up to congruence,
the Γ-index of G. Using Proposition 1.3.6 this can also be seen easily as follows. Let G1, G2 be
connected semisimple groups defined over k and φ : G1 → G2 a k-isomorphism. For i = 1, 2

let Ai ⊂ Gi be a maximal k-split torus, Ti ⊃ Ai a maximal k-torus of Gi and ∆(Ti) a Γ-
basis of Φ(Ti). Now φ(A1) is a maximal k-split torus of G2, hence there exists a g ∈ Gk

such that Int(g)φ(A1) = A2. Then Int(g)φ(T1) ⊃ A2 is a maximal k-torus. Let K be the
smallest Galois extension of k which splits T1 and T2. Then there exists x ∈ GK such that
Int(x) Int(g)φ(T1) = T2. Let φ1 = Int(x) Int(g)φ. Then φ1 : (G1, T1, A1) → (G2, T2, A2) is
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a K-isomorphism and by Theorem 1.3.7 ϕ?1 = t(ϕ1|T1)−1 as in (1.2.4 (a)) (modulo a Weyl
group element of W (T2)) is a congruence from the Γ-index of (G1, T1, A1) onto the Γ-index of
(G2, T2, A2). Summarized we have now the following result:

Proposition 1.3.15 ([Tits(1966)]). The k-isomorphism class of G uniquely determines (up to
congruence) the Γ-index (X, ∆, ∆0(Γ), [σ]) of G.

1.3.16 (Γ, θ)-indices

In this subsection we discuss indices related to the isomorphy classes of k-involutions. Let G
be a connected semisimple k-group, θ ∈ Aut(G) an k-involution, A a (θ,k)-split torus of G,
T ⊃ A a θ-stable maximal k-torus of G and X = X∗(T ), Φ = Φ(T ). Let K be a finite Galois
extension of k which splits T , Γ = Gal(K/k) the Galois group of K/k and Eθ = {1,−θ} ⊂
Aut(X,Φ) be the subgroup spanned by −θ|T as in 1.3.10. Let EΓ ⊂ Aut(X,Φ) be the subgroup
corresponding to the action of Γ on (X,Φ) and let Γθ = EΓ.Eθ the subgroup of Aut(X,Φ)

generated by EΓ and Eθ. As in 1.2.6 (a) let X0 = X0(Γθ), Φ0 = Φ0(Γθ), etc. We will also use
the notation Φ0(Γ, θ) (resp. ∆0(Γ, θ)) for Φ0(Γθ) (resp. ∆0(Γθ)). In addition, let G0 = G(Φ0)

denote the connected semisimple subgroup of G generated by {Uα | α ∈ Φ0}. The group G0 is
the semisimple part of ZG(A). Moreover ΦΓθ = Φ(A) is the set of restricted roots of A, which,
by [Helminck and Wang(1993), 5.9] is a root system if A is a maximal (θ,k)-split torus of G. Let
∆ be a Γθ-bases of Φ, and let ∆0 = ∆ ∩X0. Similar as in (1.2.14 (a)) we have an action of Γθ

on ∆, which we denote by [σ]. The 4-tuple (X, ∆, ∆0, [σ]) is called the Γθ-index of (G,T,A, θ).
If A is a maximal (θ,k)-split torus of G, then we will also call this the Γθ-index of (G,T, θ). In
the case of θ-indices or Γ-indices the indices did not depend on the choice of the maximal torus,
when one choose the torus A involved to be maximal. The above Γθ-index of (G,T, θ) depends
on the choice of T ⊃ A. For example one can choose T such that T−θ is maximal θ-split or one
can choose T such that T+

θ is a maximal torus of ZG(A) ∩H. In most cases this leads to non
congruent Γθ-indices. We can obtain a Γθ-index uniquely determined by the isomorphy class of
the k-involution by taking A maximal (θ,k)-split and T ⊃ A a θ-standard maximal k-torus of
ZG(A), i.e. T contains a maximal k-split torus and T−θ is a maximal θ-split k-torus of G. We
will call a Γθ-index of (G,T,A, θ) a Γθ-index of (G, θ) if A is a maximal (θ,k)-split and T ⊃ A
a θ-standard maximal k-torus of G. This index is uniquely determined by the isomorphy class
of the k-involution θ:

Proposition 1.3.17. Let θ1 be a k-involution of G. The k-isomorphism class of θ1 uniquely
determines (up to congruence) the Γθ-index (X, ∆, ∆0(Γθ), [σ]) of (G, θ1).

Remark 1.3.18. Similar as for the θ-index and Γ-index one easily determines the restricted
root system of a maximal (θ,k)-split torus of G from the Γθ-index (X, ∆, ∆0, [σ]) of (G, θ).
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1.3.19 (Γ, θ)-order

The Γθ-index of (G, θ), as defined above, corresponds to a Γθ-order on (X,Φ). However there
is a lot of additional structure present, which is not represented in the Γθ-index. We also have
a θ-index and a Γ-index. This can be seen as follows. Assume A is a maximal (θ,k)-split torus
of G, Ã ⊃ A a maximal k-split torus of G and T ⊃ Ã a θ-standard maximal k-torus. Let
X = X∗(T ) and Φ = Φ(T ). Then we have the usual Γ-order on (X,Φ). On the other hand
since T−θ is a maximal θ-split torus of G, we also have a θ-order on (X,Φ). Finally since A is
maximal (θ,k)-split we also have a Γθ-order. All these can be defined simultaneously on (X,Φ)

as follows.

Definition 1.3.20. Let Ψ be a semisimple root datum and let Γ, θ act on (X,Φ). A linear
order on X which is simultaneously a Γ-, θ- and Γθ-order is called a (Γ, θ)-order. A fundamental
system of Φ with respect to a (Γ, θ)-order is called a (Γ, θ)-fundamental system of Φ.

From the above remarks it follows that if A, A1, S, T are as above, then a (Γ, θ)-order
on (X,Φ) exists. However not every Γθ-order is a (Γ, θ)-order. Another characterization of a
(Γ, θ)-order is given in the following result.

Proposition 1.3.21. Let Ψ be a semisimple root datum and assume Γ, θ act on (X,Φ). The
following are equivalent:

(1) (X,Φ) has a (Γ, θ)-order.

(2) Φ0(Γ, θ) = Φ0(Γ) ∪ Φ0(θ).

(3) If Φ1 ⊂ Φ0(Γ, θ) irreducible component then Φ1 ⊂ Φ0(θ) or Φ1 ⊂ Φ0(Γ).

Remarks 1.3.22. (1) A (Γ, θ)-order, as above, is completely determined by the sextuple

(X, ∆, ∆0(Γ), ∆0(θ), [σ], θ∗). (1.3.22 (a))

We will call this sextuple an index of (Γ, θ) or an (Γ, θ)-index. This terminology follows again
Tits [Tits(1966)]. We will also use the name (Γ, θ)-diagram, following the notation in Satake
[Satake(1971), 2.4]. (2) The above index of (Γ, θ) determines the indices of both Γ and θ and
vice versa.

(3) We can make a diagrammatic representation of the (Γ, θ)-index by coloring black those
vertices of the ordinary Dynkin diagram of Φ, which represent roots in ∆0(Γ, θ) and giving the
vertices of ∆0(Γ)∪∆0(θ) which are not in ∆0(Γ)∩∆0(θ) a label Γ or θ if α ∈ ∆0(Γ)−∆0(Γ)∩
∆0(θ) or α ∈ ∆0(θ) − ∆0(Γ) ∩ ∆0(θ) respectively. The actions of [σ] and θ∗ are indicated by
arrows. Here is an example with Φ of type D10:
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Figure 1.1: (Γ, θ)-index with Φ of type D10

This (Γ, θ)-index is obtained by gluing together the indices
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of Γ resp. θ with the above recipe. (4) A (Γ, θ)-index of Γθ may depend again on the choice
of the (Γ, θ)-basis of Φ. However if ΦΓθ is a root system, then it follows similar as in Proposition
1.3.6 that the (Γ, θ)-index is independent of the choice of the (Γ, θ)-basis.

1.4 Isomorphy classes of involutions and k-groups

In each of the cases of symmetric varieties, symmetric k-varieties and semisimple k-groups
there is a natural fine structure associated with these spaces. For a study of these spaces and
their representation theory it is important to have a classification of these spaces together with
this fine structure of restricted root systems with multiplicities and Weyl groups. This fine
structure easily follows from the index as defined in section 1.3. On the other hand this index
can also be used as an invariant to characterize the isomorphy classes. In the case of isomorphy
classes of involutions these indices completely characterize the isomorphy classes. In the case
of isomorphy classes of semisimple k-groups one needs a second invariant to characterize the
isomorphy classes and in the case of isomorphy classes of k-involutions three invariants are
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needed. Since the classification of k-involutions depends on the classifications of semisimple k-
groups (see [Tits(1966)]) and the classification of involutions over algebraically closed fields (see
[Helminck(1988)]), we will first briefly review some facts about both these classifications, which
will be needed later in the classification of the k-involutions.

1.4.1 Characterization of the isomorphy classes of involutions

The classification of isomorphy classes of involutions can be reduced to a classification ofW (T )-
conjugacy classes of involutions normally related to a maximal torus T (see [Helminck(1988)]).
In this subsection we briefly review these results. We use the same notation as in 1.3.10. In
particular let G be a reductive algebraic group, θ ∈ Aut(G) an involution and T a maximal
torus of G. Write X = X∗(T ) and Φ = Φ(T ). To relate the isomorphy classes of involutions to
the indices as in 1.3.10, we define the following:

Definition 1.4.2. Let T be a maximal torus of G. An automorphism θ of G of order ≤ 2 is
said to be normally related to T if θ(T ) = T and T−θ is a maximal θ-split torus of G.

Note that, since all maximal tori of G are conjugate under Int(G), every involutorial auto-
morphism of G is conjugate to one which is normally related to T . The involutions normally
related to T can be characterized now as follows (see [Helminck(1988), 3.7]).

Theorem 1.4.3. Let θ1, θ2 ∈ Aut(G) be such that θ2
1 = θ2

2 = id and assume θ1, θ2 are normally
related to T . Then we have the following:

(1) θ1 and θ2 are conjugate under Int(G) if and only if θ1|T and θ2|T are conjugate under
W (T ).

(2) θ1 and θ2 are conjugate under Aut(G) if and only if θ1|T and θ2|T are conjugate under
Aut(T ).

We showed in Proposition 1.3.12 that the G-isomorphy class determines the θ-index up to
congruence. From Theorem 1.4.3 it follows now that these indices actually completely char-
acterize the isomorphy classes. To formulate this result we need to define first a notion of
admissibility.

Definition 1.4.1 (admissible involution). Let θ ∈ Aut(X,Φ) be an involution. Then θ is
called admissible if there exists an involution θ̃ ∈ Aut(G,T ) such that θ̃|T = θ and T−

θ̃
is a

maximal θ̃-split torus of G. If X is semisimple, then the indices of admissible involutions of
(X,Φ) are called admissible θ-indices.

We have the following characterization of the isomorphy classes of involutions in terms of θ-
indices. Note that these θ-indices yield most of the fine structure of the corresponding symmetric
variety G/Gθ.
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Theorem 1.4.4. Let G, T be as above and assume G is semisimple. Then there is a bijec-
tion of the set of Int(G) (resp. Aut(G)) conjugacy classes of involutorial automorphisms of G
and the W -congruence (resp. Aut(Φ)-congruence) classes of indices of admissible involutions of
(X∗(T ),Φ(T )).

1.4.5 Characterization of the isomorphy classes of semisimple
k-groups

In the remainder of this section we give a characterization of the isomorphy classes of semisimple
k-groups. Most of these results can be found in [Tits(1966)] and [Satake(1971)].

1.4.6

We use the same notation as in the previous section. In particular let G be a connected semisim-
ple groups defined over k and let A ⊂ G be a maximal k-split torus, T ⊃ A a maximal k-torus of
G, X = X∗(T ), Φ = Φ(T ), K the smallest Galois extension of k which splits T and ∆ = ∆(T ) a
Γ-basis of Φ(T ). In Proposition 1.3.15 we demonstrated that the Γ-index is an invariant for the
isomorphy classes of semisimple k-groups. Another invariant is the following. Let G0 = G(Φ0)

denote the connected semisimple subgroup of G generated by {Uα | α ∈ Φ0}. The group G0 is
the semisimple part of ZG(A) and is k-anisotropic if A is maximal k-split. Let T0 = T ∩ G0.
This is a maximal k-torus of G0. Since all maximal k-split tori of G are conjugate under Gk, it
follows that G0 is uniquely determined (up to k-isomorphism) by the k-isomorphism class of G.
We will call G0 the k-anisotropic kernel of G. We have shown now that the k-isomorphism class
of G uniquely determines the Γ-index (X, Φ, ∆0(Γ), [σ]) of G and the k-anisotropic kernel G0

of G. The following result shows that these two actually suffice to characterize the isomorphy
classes (see [Tits(1966)] or [Satake(1971)]).

Theorem 1.4.7. Let G, G′ be connected semi-simple algebraic groups defined over k. Let T ,
A, X, G0, T0, etc., T ′, A′, X ′, G′0, T

′
0 etc. be as defined above, and corresponding to G and

G′, respectively. There exists a k-isomorphism ϕ : (G, T, A) → (G′, T ′, A′) if and only if the
following conditions are satisfied:

(i) There exists a congruence φ : (X, ∆, ∆0(Γ), [σ]) → (X ′, ∆′, ∆′0(Γ), [σ]′) of the Γ-index
of G onto the Γ-index of G′.

(ii) There exists a k-isomorphism ϕ0 : (G0, T0) → (G′0, T
′
0) such that the restriction φ0 of φ

to (X0,∆0(Γ), [σ]|X0) is associated to ϕ0 as in 1.3.8 (i.e., ϕ[?]
0 = φ0).

The Γ-indices, which belong to connected semi-simple groups will be called admissible. They
are defined as follows:
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Definition 1.4.8. If X is a free module of rank n, ∆ a fundamental system of a root system Φ in
X, ∆0(Γ) a subset of ∆, and [ · ] a homomorphism of the Galois group Γ into Aut(X,∆,∆0(Γ)),
we will say that the system D = (X, ∆, ∆0(Γ), [σ]) is admissible if there exists a connected
semi-simple group G defined over k having D as Γ-index.

Remark 1.4.9. The above result reduces the problem of classifying connected semisimple al-
gebraic groups defined over k to the following two problems:

(1) Classification of all admissible Γ-indices.

(2) Classification of all k-anisotropic semisimple algebraic groups.

For arbitrary base fields not much is known about the k-anisotropic semisimple algebraic groups.
The first problem is discussed in Tits [Tits(1966)].

1.4.10

For k = R every complex semisimple group contains a compact real form, which is unique up
to isomorphism (see [Helgason(1978)]). So in this case there is a one-to-one correspondence be-
tween isomorphy classes of k-anisotropic semisimple groups and isomorphy classes of complex
semisimple groups. Since the latter (modulo the center) are completely characterized by the
corresponding Dynkin diagram, the classification of real semisimple groups reduces to a classi-
fication of the admissible Γ-indices. For a p-adic field k = Qp the only k-anisotropic semisimple
groups are SL(1,K), where K/k is a normal division algebra . So in particular the Γ-index of
a k-anisotropic semisimple group over Qp can only consist of copies of the Dynkin diagrams of
type An.

1.4.11 Isomorphy classes of k-involutions

The characterization and classification of k-involutions is much more complicated than simply
combining the invariants characterizing involutions in the algebraically closed case and invariants
characterizing the k-structure of a reductive algebraic group defined over a field k. In most cases
a third invariant is needed and the interplay of these 3 invariants adds additional complications.
In this subsection we briefly review the characterization of the k-involutions. LetG be a reductive
k-group and θ a k-involution of G. We will consider isomorphy classes of k-involutions under
the action of Int(Gk), Intk(G) and Autk(G). We will say that two k-involutions are isomorphic
under Gk (or Gk-isomorphic) if they are isomorphic under Int(Gk). We want to characterize the
isomorphism classes in a such a way that we also get a classification of the natural root systems
of the symmetric k-varieties. This means we need to characterize the isomorphism classes of the
k-involutions on a fixed maximal k-split torus. For this we define the following notion:
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Definition 1.4.12. Let A be a maximal k-split torus of G. A k-involution θ of G is normally
related to A if θ(A) = A and A−θ is a maximal (θ,k)-split torus of G.

Lemma 1.4.13. Let A be a maximal k-split torus of G and T ⊃ A a maximal k-torus. Every
k-involution is Gk-isomorphic to one normally related to A and T .

The admissible k-involutions are now defined as follows.

Definition 1.4.2 (admissible k-involution). Let G be a reductive k-group, A a maximal
k-split torus of G and T ⊃ A a maximal k-torus of G, K ⊃ k a splitting extension for T .
An involution θ ∈ Aut(X∗(T ),Φ(T )) is said to be an admissible k-involution (with respect to
(G, T, A)) if there exists a k-involution θ̃ of G, normally related to A and T such that θ̃|T = θ.
We will call the (Γ, θ)-index corresponding to an admissible k-involution an admissible (Γ, θ)-
index .

Involutions normally related to A and T determine the (Γ, θ)-index up to congruence:

Theorem 1.4.14. Let A be a maximal k-split torus of G, T ⊃ A a maximal k-torus, K a finite
Galois extension of k which splits T and Γ = Gal(K/k) the Galois group of K/k. Let θ1, θ2 be
k-involutions of G normally related to A and T . If θ1 and θ2 are isomorphic under Gk then the
corresponding (Γ, θ)-indicies of θ1 and θ2 are congruent.

The second invariant characterizing the k-structure of a reductive algebraic group defined
over k was the k-anisotropic kernel. Combining this with the characterization of involutions
over algebraically closed fields, we get that the induced involutions of the k-anisotropic kernel
need to be isomorphic. These involutions can be characterized as follows.

Theorem 1.4.15. Let G be a connected semi-simple algebraic group defined over k, A a maximal
k-split torus of G and θ1, θ2 k-involutions of G, normally related to A. Then θ1|ZG(A) and
θ2|ZG(A) are isomorphic under Gk if and only if θ1 is Gk-isomorphic to θ2 Int(a) for some
a ∈ A−θ2.

k-inner elements

Denote the set of a ∈ A−θ such that θ Int(a) is a k-involution of G by Ik(A−θ ). This will be called
the set of k-inner elements of A−θ . Note that for any a ∈ A−θ the automorphism θ Int(a) is an
involution of G. So the question is for which a ∈ A−θ this involution is in fact a k-involution of G.
Since θ is a k-automorphism this is equivalent to the condition that Int(a) is a k-automorphism
of G. What remains to determine is the different Gk-isomorphic classes of involutions θ Int(a)

for a ∈ Ik(A−θ ). Unfortunately this isomerphy can not always be restricted to the normalizer in
Gk of the maximal k-split torus A. The main reason for this is that there is not always a unique
Hk-conjugacy class of maximal (θ,k)-split tori.
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Reduction of the classification of k-involutions

It was shown in [Helminck(2000)] that the classification of k-involutions of G reduces to the
following 3 problems:

(1) Classification of admissible (Γ, θ)-indices.

(2) Classification of the Gk-isomorphy classes of k-involutions of the k-anisotropic kernel of
G.

(3) Classification of the Gk-isomorphy classes of k-inner elements of G.

For more details, see [Helminck(2000)]. The admissible (Γ, θ)-indices determine most of the fine
structure of the symmetric k-varieties and a classification of these was included in [Helminck(2000)]
as well. For k algebraically closed the full classification can be found in [Helminck(1988)]. For
other fields a classification of the remaining two invariants is still lacking. In particular the case
of symmetric k-varieties over the p-adic numbers is of interest.

1.4.16 Involutions of compact real groups

For k = R there is a one-to-one correspondence between isomorphy classes of k-anisotropic
semisimple groups and isomorphy classes of complex semisimple groups (see 1.4.10). For invo-
lutions of compact groups we have a similar correspondence. This can be seen as follows. If
θ is an involution of a complex group G, then there exists a conjugation σ of a compact real
form U of G such that θσ = σθ (see [Helminck(1988), 10.3]). Then θ|U is an involution of
U . Conversely any involution of U can be lifted to an involution of G by extending the base
field. It is easy to show then that there exists a one to one correspondence between isomorphy
classes of involutions of k-anisotropic semisimple groups and isomorphy classes of involutions of
complex semisimple groups (see [Helgason(1978), Chap. X, 1.4]). By Theorem 1.4.3 the latter
are characterized by isomorphy classes of admissible involutions. This means that the classifica-
tion of the k-involutions reduces to the first and third problem in 1.4.11. A classification of the
isomorphy classes of k-involutions, for k = R, together with all the fine structure, can be found
in [Helminck(1988)].

1.4.17

In this thesis we are concerned with the problem of explicitly constructing the k-involution of
G from a given (Γ, θ)-index using the a suitable Chevalley basis. By finding this k-involution
explicitly, we will be able to do computations symbolically in symmetric k-varieties, which is
impossible without an explicit realization of the involution. The first step in this process is to
lift C-involutions from the root system to involutions of the Lie algebra and to establish the
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algorithmic infrastructure for constructing the Lie algebra involutions from the root system
data. The next step toward lifting k-involution for arbitrary k is to lift R-involutions. We can
do this by lifting pairs of commuting C-involutions as described below.

1.5 R-involutions

1.5.1 Reduction to ordered pairs of commuting involutions of
complex reductive groups

The isomorphic classes of involutions of real reductive groups correspond bijectively with the
isomorphic classes of ordered pairs of involutions of a complex group. We review these results
in this section.

1.5.2 Real forms and conjugations.

We reference Knapp [Knapp(2005), p. 34] for the following. Let V be a vector space over k and
consider the tensor product space V ⊗kK. If c is a member of K, then multiplication by c, which
we denote temporarily by m(c), is k linear from K to K. Thus 1⊗m(c) defines a k linear map
of V ⊗k K to itself, and we define this to be scalar multiplication by c in V ⊗k K. With the
definition V ⊗k K becomes a vector space over K. We write V K for this vector space. The map
c 7→ v ⊗ 1 allows us to identify V canonically with a subset of V K. If {vi} is a basis of V over
k, then {vi ⊗ 1} is a basis of V K over K. If W is a vector space over the extension field K of k,
we can restrict the definition of scalar multiplication to scalars in k, thereby obtaining a vector
space over k. This vector space we denote by Wk. In the special case that k = R and K = C
and V is a real vector space, the complex vector space V C is called the complexification of V .
By these definition we have the identification

(V C)R = V ⊕ iV (1.5.2 (a))

as real vector spaces, where V means V ⊗ 1 in V ⊗R C and the i refers to the real linear
transformation of multiplication by i.

Definition 1.5.3 (real form, [Knapp(2005), p. 35]). When a complex vector space W and a
real vector space V are related by

WR = V ⊕ iV,

we say that V is a real form of the complex vector space W .

Note that any real vector space is a real form of its complexification.
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Definition 1.5.4 (conjugation). In eq. (1.5.2 (a)) the R linear map that is 1 on V and −1 on
iV , i.e. conjugate linear, is called the conjugation of the complex vector space V C with respect
to the real form V .

Similarly, if g0 is a real Lie algebra, the complex Lie algebra (g0)C is called the complexifi-
cation of g0, and when a complex Lie algebra g and a real Lie algebra g0 are related as vector
spaces over R by

gR = g0 ⊕ ig0 (1.5.4 (a))

we say that g0 is the real form of g. Any real Lie algebra is a real form of its complexification. The
conjugation of a complex Lie algebra with respect to a real form is a Lie algebra isomorphism
of gR with itself.

1.5.5 Building R-involutions from conjugations.

Let G be a connected reductive group defined over a field k, let Gk denote the set of k-rational
points of G, and let g denote the Lie algebra of G. If k = R, then the Galois group Γ = Gal(C/k)

has order 2. If δ 6= id ∈ Γ, then δ acts on the complex Lie algebra g of G as a conjugation , i.e.

• δ has order 2,

• δ is linear with respect to addition, and

• δ is conjugate linear with respect to scalar multiplication.

For the rest of this section, the symbol δ denotes the conjugation defined by the Galois group
Gal(C/R).

Definition 1.5.6 (gδ). Let gδ denote the set of fixed points in g of the conjugation δ:

gδ = {X ∈ g | δ(X) = X}

Lemma 1.5.7. gδ is exactly the (real) Lie algebra of the group GR.

Lemma 1.5.8. The Lie algebra gδ is a real form of g and there is a one-to-one correspondence
between real forms of g and conjugations of g.

1.5.9 σ and δ commute

Let σ ∈ Aut(GR) be a R-involution. Denote the involution of gδ induced by σ also by σ. By
extending the base field we can lift our involution σ from GR to G and similarly from gδ to g.
Since σ is an involution of gδ we can write gδ = h + q as a sum of eigenspaces, i.e.
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h = {X ∈ gδ | σ(X) = X} (σ-stable)
q = {X ∈ gδ | σ(X) = −X} (σ-split)

The space q is called a local affine symmetric space.

Note. From σ(gδ) = gδ it follows that σ and δ commute.

1.5.10 Replace σ on gδ with (σ, δ) on g

So, instead of considering the action of σ on gδ we can consider the action of the pair (σ, δ) on
the complex Lie algebra g. Simplifying further: Instead of the pair (σ, δ) of an involution and a
conjugation commuting with it, consider a pair of commuting involutions by replacing δ with
the Cartan involution, θ, corresponding to gδ.

1.5.11 Constructing the Cartan involution

In order to construct the Cartan involution we have to consider a compact real form. Helminck
showed that there is a compact real form u that is δ- and σ-stable.

Lemma 1.5.12. Let u be a compact real form of g that is δ- and σ-stable and τ a conjugation
of u. Then

στ = τσ and δτ = τδ

Let θ = τδ = δτ . Since both δ and τ are conjugations (therefore of order 2), it follows that
θ is an involution of gδ and g and θ

∣∣gδ is a Cartan involution of gδ. Furthermore,

σθ = στδ = τσδ = τδσ = θσ (1.5.12 (a))

Remark 1.5.13. Up to isomorphy there exists a unique compact real form u defined by the
fact that the Killing form is negative definite on u [Helminck(1988), 10.3].

1.5.14 An involution in R ←→ commuting involutions in C

Theorem 1.5.15. ∃ bijection between the isomorphy classes of real forms of complex semisimple
Lie algebras and the isomorphy classes of involutions of complex semisimple Lie algebras.

[gR ⊂ g] ←→
[
θ ∈ Aut(g), θ2 = id

]
(1.5.15 (a))
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This gives us a bijection between involutions in Aut(gR) and ordered pairs of involutions
(σ, θ) ∈ Aut(g):

σ ∈ Aut(gR), σ2 = id
complexification−−−−−−−−−−−−−−−−→

bijection (1.5.15 (a))
(σ, θ) ∈ Aut(g) such that σθ = θσ

σ ∈ Aut(gR), σ2 = id
ordered pair←−−−−−−−−−−−
ensures 1-to-1

(σ, θ) ∈ Aut(g) such that σθ = θσ

Remark 1.5.16. This means we can identify real algebras with Cartan involutions.

1.6 Summary of results in this thesis

Since every admissible (Γ, θ)-index is a combination of admissible absolutely irreducible (Γ, θ)-
indices, it suffices to classify the admissible absolutely irreducible (Γ, θ)-indices and the admis-
sible k-involutions related to these indices. Hence, from now on we will restrict our attention
to these. In the remainder of this thesis, we begin the classification of k-involutions by building
the classification for the "first" non-algebraically-closed k, the R-involutions. Before we can
classify the R-involutions by way of commuting pairs of C-involutions, however, we must first
know how to lift single C-involutions. Since the existing results in the literature are incorrect
[Watson(2010)], we begin with our own construction and analysis of C-involutions.

In the following we use this notation:

Notation 1.6.1. Let X,Φ,∆,∆θ, g, t, θ be as in Section 1.2.9, and ∆ = ∆θ. Let the set of Xα

where α ∈ Φ be a Chevalley basis of g. For an automorphism of order two τ of a vector space
V we denote by V ±τ the (±1)-eigenspaces of τ in V .

The main result of Part II is the following theorem:

Theorem 1 (θ∆). Let θ∆ ∈ Aut(g, t) be the unique automorphism lifted from θ ∈ Aut(X,Φ)

such that θ∆|t = θ and
θ∆ (Xαi) = Xαi for all αi ∈ ∆.

Then θ∆ is an involution for any admissible absolutely irreducible involution θ except when θ
is of type D(`−1)/2

` IIIb.

In Part III we give a classification of admissible ordered pairs of commuting involutions,
(σ, θ) ∈ Aut(X,Φ), for which we construct a standard lifted pair from (σ∆, θ∆) ∈ Aut(g, t).
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Definition 1.6.2 ([Helminck(1988), 6.11]). Let ∆ be a basis of Φ(T−σ,θ). A pair of commuting
involutorial automorphisms (σ̃, θ̃) of G is called a standard pair if, for all λ ∈ ∆ we have

dim(gλ)+

σ̃θ̃
≥ dim(gλ)−

σ̃θ̃
.

Helminck showed that there is always a standard pair and it is unique [Helminck(1988)], and
in particular that it is useful because of the following result: For a subgroup M ∈ G, denote by
WM (A) = NM (A)/ZM (A) the Weyl group of A in M .

Proposition 1.6.3. If (σ, θ) is standard, H = Gσ and K = Gθ the fixed point subgroups of σ
and θ in G respectively, and A a maximal (σ, θ)-split torus, then

W(A) =WH(A) =WK(A) =WH∩K(A).

Hence we can compute representatives of the W(A) orbits of the k-inner elements and
therefore representatives of non-isomorphic involutions on the Lie algebra.

We find that in most cases, the corresponding pair (σ∆, θ∆) ∈ Aut(g, t) is a pair of commuting
involutions and is standard. We call these "Nice" pairs. The next largest class of (σ, θ) is the
set of "Decent" pairs for which the pair (σ∆, θ∆) commutes but is not standard. We also call
these pairs "Corrected-for-Standard." The few remaining cases fall into two classes: "Better-
than-Okay," which is the closest that any pair containing θ of type D(`−1)/2

` IIIb can come to
being "Nice," and "Feisty," which describes those pairs for which the lifted involutions found in
Part II do not commute and hence are also not standard.
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Chapter 2:

Results from S. Klein

We will take advantage of the following results from S. Klein [Klein(2009)], the interested reader
may refer to the proofs there. By abuse of notation, we will refer to a Lie algebra with compact
real form as a compact Lie algebra.

Notation 2.1.4 ([Klein(2009), 3]). Let g be a compact semisimple Lie algebra. We consider the
complexification gC of g; via the complexification of the Lie bracket of g, gC becomes a complex
semisimple Lie algebra. It should be noted that the Killing form of gC equals the complexification
κ of the Killing form of g. The complexification tC of the Cartan subalgebra t of g is a Cartan
subalgebra of gC, and we put for any α ∈ (tC)∨

gCα := {X ∈ gC | ∀H ∈ tC, ad(H)X = α(H)X}

= {X ∈ gC | ∀H ∈ t, ad(H)X = α(H)X}

The the root system {α ∈ (tC)∨\{0} | gCα 6= {0}} of gC equals the roots system Φ of g, and
we have the root space decomposition

gC = tC ⊕
∑
α∈Φ

gCα .

Definition 2.1.5 (Chevalley basis of gC). A family of vectors (Xα)α∈Φ is called a Chevalley
basis of gC, if we have Xα ∈ gCα for every α ∈ Φ and if there exists a family of real numbers
(Nα,β)α,β∈Φ, called the Chevalley constants corresponding to (Xα), so the for all α, β ∈ Φ we
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have

[Xα , Xβ] =


Nα,βXα+β if α+ β ∈ Φ

α∨ if α+ β = 0

0 otherwise

(2.1.5 (a))

and

N−α,−β = −Nα,β (2.1.5 (b))

For formal reasons we put Nα,β := 0 whenever α, β ∈ Φ such that α+ β /∈ Φ and β 6= −α.

Note. Though the Chevalley constants do depend on the choice of the Chevalley basis, their
squares are uniquely determined by the structure of the Lie algebra (as shown below in propo-
sition 2.1.8), and therefore the transition from one Chevalley basis to another can change the
corresponding Chevalley constants only in sign.

Proposition 2.1.6 ([Klein(2009), 3.2]). gC has a Chevalley basis.

Definition 2.1.7 (root string coefficients). We will refer to the coefficients (p, q) defining the
α-string through β, {β + kα | −p ≤ k ≤ q}, as the root string coefficients corresponding to the
ordered pair of roots (α, β).

Proposition 2.1.8 ([Klein(2009), 3.3]). Let (Xα) be a Chevalley basis of gC and (Nα,β) be the
corresponding Chevalley constants. Suppose α, β, γ, δ ∈ Φ. Then we have

(a) Nβ,α = −Nα,β.

(b) κ(Xα , X−α) = 1, where κ is the Killing form of gC.

(c) Xα = a ·X−α, with a := κ(Xα , Xα) < 0.

(d) Suppose α+ β + γ = 0. Then we have Nα,β = Nβ,γ = Nγ,α.

(e) Suppose α+β+ γ+ δ = 0 such that none of the roots α, β, γδ is the negative of one of the
others. Then we have Nα,βNγ,δ +Nβ,γNα,δ +Nγ,αNβ,δ = 0

(f) We have

N2
α,β =

q · (1 + p)

2
· ‖α ‖2,

where {β + kα | −p ≤ k ≤ q} is the α-string through β; note that this implies that we
have Nα,β 6= 0 if α+ β ∈ Φ.
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Proposition 2.1.9 ([Klein(2009), 3.4]). Let (Xα) be a Chevalley basis of gC with the corre-
sponding constants (Nα,β).

(a) Let constants zα ∈ C× for every α ∈ Φ be given, so that the following properties are
satisfied:

(i) For every α ∈ Φ we have zα · z−α = 1.

(ii) For every α, β ∈ Φ with α+ β ∈ Φ we have εα,β :=
zα·zβ
zα+β

∈ {±1}.

Then (zα ·Xα)α∈Φ is another Chevalley basis of gC, the corresponding Chevalley constants
are (εα,β ·Nα,β)α,β∈Φ.

(b) Every Chevalley basis of gC is obtained by the construction of (a).

Proposition 2.1.10 ([Klein(2009), 3.5]). For every non-simple positive root α ∈ Φ+\∆, fix a
decomposition α = ζα + ηα with ζα, ηα ∈ Φ+. Then there exists a Chevalley basis (Xα) (with
corresponding Chevalley constants (Nα,β) with the following properties:

(i) For every α ∈ Φ+ we have X−α = −Xα. (Compare Proposition 2.1.8 (c).)

(ii) For every α ∈ Φ+\∆ we have Nζα,ηα > 0.

Any two such Chevalley bases have the same Chevalley constants (Nα,β).

To completely describe the Lie bracket of gC, it suffices to fix a Chevalley basis (Xα) of
gC, and calculate the corresponding Chevalley constants (Nα,β). Up to sign, they are deter-
mined by proposition 2.1.8(f). We now show how to calculate the sign correctly if (Xα) is a
Chevalley basis of the kind of proposition 2.1.10, corresponding to a family of decompositions
(α = ζα + ηα)α∈Φ+\∆. By Proposition 2.1.8 (a) and (d) and eq. (2.1.5 (b)) we have for any
α, β ∈ Φ+ with β 6= α

N−α,−β = −Nα,β and Nα,−β = −N−α,β =


N(β−α),α if β − α ∈ Φ+

N(α−β),β if β − α ∈ (−Φ+)

0 otherwise

(2.1.10 (a))

The above identities show us that it suffices to calculate Nα,β for α, β ∈ Φ+. This is achieved
by the following algorithm, but first a definition.

Definition 2.1.11 (ht(α) =
∑
ri). Write any root α ∈ Φ as α =

∑
αi∈∆ riαi, then define the

height of the root to be

ht(α) =
∑

ri where ri ∈ Z such that ri ≥ 0 or ri ≤ 0∀i
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Note that ht(α) may be positive or negative but never zero, and more often than not we will
restrict ourselves to the positive roots so that ri ≥ 0.

Algorithm 2.2 ([Klein(2009), p. 34]).

(C1) [Nα,β with α+ β /∈ Φ.] Iterate the following for all α, β ∈ Φ+:
If α+ β /∈ Φ+, put Nα,β = 0.

(C2) [Iterate on height.] Iterate steps (C3) to (C8) for ht = 2, . . . , L where L denotes the
maximal height of roots occurring in Φ.

(C3) [Iterate on roots of height ht.] Iterate steps (C4) to (C8) with α running through all
positive roots in Φ of height ht.

(C4) Set ζ := ζα and η = ηα.

(C5) [Calculate Nζ,η and Nη,ζ .] Let p be the smallest integer so that η− (p+ 1)ζ /∈ Φ holds and
put q := p− 2 (η,ζ)

‖ ζ ‖2 ,

Nζ,η :=

√
q · (1 + p)

2
· ‖ ζ ‖

and Nη,ζ := −Nζ,η.

(C6) [Iterate on decompositions of α.] Iterate step (C7) for all pairs (γ, δ) of positive roots
with γ + δ = α and γ, δ /∈ {ζ, η}.

(C7) [Calculate Nγ,δ.] Put

n11 :=


Nη,(γ−η) if γ − η ∈ Φ+

Nγ,(η−γ) if γ − η ∈ −Φ+

0 otherwise

n12 :=


Nδ,(ζ−δ) if ζ − δ ∈ Φ+

Nζ,(δ−ζ) if ζ − δ ∈ −Φ+

0 otherwise

n21 :=


N(ζ−γ),γ if ζ − γ ∈ Φ+

N(γ−ζ),ζ if ζ − γ ∈ −Φ+

0 otherwise

n22 :=


Nη,(δ−η) if δ − η ∈ Φ+

Nδ,(η−δ) if δ − η ∈ −Φ+

0 otherwise

Then put Nγ,δ := 1
Nζ,η
· (n11n12 + n21n22)

(C8) [End of loops.]
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Remark 2.2.1. It is useful to note that since ζ + η = α = γ + δ it will always be the case that

η − γ = δ − ζ ⇐⇒ γ − η = ζ − δ (2.2.1 (a))

and likewise

δ − η = ζ − γ ⇐⇒ η − δ = γ − ζ (2.2.1 (b))

which implies that n11 = 0 ⇐⇒ n12 = 0 and likewise for n21 and n22. We will make use of this
identity repeatedly in later proofs.

Lemma 2.2.2 (lifting constants on X̃α). Let (Xα)α∈Φ as in proposition 2.1.10 and (X̃α) =

(zαXα) as in proposition 2.1.9. It follows immediately that if ϕ ∈ Aut(g, t) such that ϕ∨|t∨ = φ

where φ ∈ Aut(X,Φ) defined by
ϕ(Xα) = cϕαXφ(α),

then
ϕ(X̃α) = cϕα

zα
zφ(α)

X̃φ(α).

Proof. This follows directly from the linearity of the Lie algebra automorphism:
Define ϕ(Xα) and X̃α as above, then

ϕ(X̃α) = ϕ(zαXα) = zαϕ(Xα) = zαc
ϕ
αXφ(α) = zαc

ϕ
α

(
1

zφ(α)
X̃φ(α)

)
= cϕα

zα
zφ(α)

X̃φ(α).

Remark 2.2.3. It is useful to note that if ϕ is an involution on the chosen Chevalley basis
(Xα), then it is also an involution on any other Chevalley basis. That is, if ϕ2(Xα) = Xα for
all α ∈ Φ, then ϕ2(X̃α) = zαϕ

2(Xα) = zαXα = X̃α for all α ∈ Φ. This means that in lifting an
involution from the root system to the Lie algebra it is sufficient to construct an involution on
the chosen basis (Xα).
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Chapter 3:

Root Decomposition and the Chevalley
Constants

In order to optimize our computation, we use the root decompositions {ζα, ηα} derived during
the computation of the positive roots.

Algorithm 3.1 (Construction of the Positive Roots, Φ+). Let ` denote the rank of the root
system. SetupLPrts[]:=Module[

Local Variables: i,j,ht,ialpha,ibeta,alpha,beta,diffroot,zerovector,ind,q,newroot;
(* start by constructing the simple roots *)
LPrts:={α1, α2, . . . α`}
LPrtsHeight:={{1, . . . `}}; (*LPrtsHeight is a list of lists each containing the indices of
the roots of a particular height *)
LPrtZetaEtaPQ:=ConstantArray[Undefined,`];
zerovector:=ConstantArray[0,`];
ht=1;
While [Length[LPrtsHeight] ≥ ht,

For Each ialpha ∈ LPrtsHeight[1] and ibeta ∈ LPrtsHeight[ht]

alpha=LPrts[ialpha]; (* a simple root *)
beta=LPrts[ibeta]; (* a root of height ht *)
diffroot=beta-alpha;
(* if beta 6= alpha and we’re working with simple roots or beta-alpha isn’t a root,
then calculate q for the root string construction with p=0, otherwise do nothing
*)
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If diffroot6=zerovector AND
(ht=1 OR diffroot /∈ LPrts[LPrtsHeight[ht-1]]),
then
q = −((2 RtInnerProd[beta,alpha])/RtInnerProd[alpha,alpha]);
For [j = 1 , j ≤ q , j + +,

newroot=beta+j*alpha;
(* if the newroot has not already been added to LPrts, then append it to the
list,otherwise do nothing *)
If newroot /∈ LPrts[ibeta. . . -1]
then
AppendTo[LPrts,newroot];
(* if the ht to which newroot belongs has not been created, then append an
empty list to LPrtsHeight *)
If Length[LPrtsHeight]<ht+j
then
AppendTo[LPrtsHeight,{}];
(* put the index of new root in its ht *)
AppendTo[LPrtsHeight[ht+j],Length[LPrts];

(* record the initial decomposition of newroot along with its root string data
p,q *)

AppendTo[LPrtZetaEtaPQ,{{ialpha,Position[LPrts,beta+(j-1) alpha]}, {j−
1, q − j + 1}}]; ]; ];

];

ht=ht+1];

LMaxHeight=ht-1;
LNumPrts=Length[LPrts];

];

As we proceed through the rest of this chapter (and beyond), we will find the following
Chevalley identities in Table 3.1 useful.
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Table 3.1: Chevalley Constant Identities

Identity = Condition Ref

N−α,−β =−Nα,β

Nβ,α =−Nα,β

Nα,β
2 = q(1+p)‖α ‖2

2 where β + nα ∈ Φ, with −p ≤ n ≤ q.

Nα,β =Nβ,γ = Nγ,α if α, β, γ ∈ Φ and α+ β + γ = 0

N−α,α+β=N−β,−α = −N−α,−β if α, β, α+ β ∈ Φ

Nα,β =−N−α,−β = N−α,α+β Combining the above relations.

=−Nα,−α−β = N−α−β,α

Nγ,δ = 1
Nζ,η
· (N−η,γN−ζ,δ +Nγ,−ζN−η,δ) ζ + η = α = γ + δ 2.1.8(e) and 2.1.5 (b)

N−η,γ =Nγ,(η−γ) 2.1.8(d)

=−N−γ,(γ−η) 2.1.5 (b)

=N(γ−η),−γ 2.1.8(a)

=Nη,(γ−η) 2.1.8 and 2.1.5 (b)
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3.2 Chevalley orders

Definition 3.2.1 (lexicographic ordering). We will say a decomposition of a root α = γ + δ is
lexicographically ordered if γ =

∑k
i rjαj and δ =

∑
j>i sjαj . We will also denote this by

γ ≺lex δ.

Remark 3.2.2. Notice that for any non-simple positive root we take an initial minimal decom-
position in the following sense. For α ∈ Φ+\∆, we write α = ζα + ηα, where ζα is a simple root
αi with the smallest possible index i (i.e. the one encountered first by our algorithm). However,
there may be some αj in the support of α such that j < i, and hence the minimal decomposi-
tion may not be lexicographically ordered. By choosing Nζα,ηα > 0, we dictate the signs of the
Chevalley constants for all other decompositions of α.

Definition 3.2.3 (Nζα,ηα in minimal form). We will say Nζα,ηα is in minimal form if it corre-
sponds to a minimal decomposition α = ζα + ηα as described in remark 3.2.2.

3.2.4 Chevalley order for Type A

Lemma 3.2.5. For any connected root (sub)system of type A,

Nγ,δ > 0 ⇐⇒ γ ≺lex δ.

Proof. Given any non-simple positive root of height m, we choose an initial minimal decompo-
sition α = αi + βi+1 such that βi+1 =

∑
i+1≤j≤m αj where αi, αj ∈ ∆ and put

Nαi,βi+1
=

√
q(1 + p)‖αi ‖2

2
> 0.

Suppose for induction that Nαi,
∑n
j=i+1 αj

> 0 for any n < m.

Note. This implies that we also assume that N∑n
j=i+1 αj ,αi

< 0.

We then determine the Chevalley constants for all other decompositions of α relative to the
initial one. In type A, these are of the form α = (α−βk) +βk where βk =

∑
k≤j≤m αj such that

k ≥ i + 2. That is, if k = i + 2, we find Nαi+αi+1,βi+2
by step (C7). Case k = i + 2: In order

to apply our rules from (C7) with

ζ = αi, η = βi+1, γ = αi + αi+1, δ = βi+2, (3.2.5 (a))
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we determine that

γ − η = ζ − δ = αi − βi+2 = αi −
m∑
i+2

αj /∈ Φ (3.2.5 (b))

δ − η = ζ − γ = αi − (αi + αi+1) = −αi+1 ∈ −Φ+ (3.2.5 (c))

and, so, we find by Algorithm 2.2 and the definition of the minimal form:

n11 = 0 n12 = 0

n21 = Nαi+1,αi < 0 n22 = Nαi+2+···+αm,(αi+1) < 0,

and

Nαi+αi+1,βi+2
=

1

Nαi,βi+1

· (n11n12 + n21n22) > 0.

Case k = i+ 3:

Let

ζ = αi, η = βi+1, γ = (αi + αi+1 + αi+2), δ = βi+3, (3.2.5 (d))

then

γ − η = (αi + αi+1 + αi+2)− βi+1 = αi − βi+3 = ζ − δ /∈ Φ (3.2.5 (e))

ζ − γ = αi − (αi + αi+1 + αi+2) = −αi+1 − αi+2 = δ − η ∈ −Φ+. (3.2.5 (f))

Hence

n11 = 0 n12 = 0 (3.2.5 (g))

n21 = N((αi+αi+1+αi+2)−αi),αi < 0 n22 = Nβi+3,(βi+1−βi+3) < 0 (3.2.5 (h))

and so, again Nγ,δ > 0. If we continue in this manner, we see

γ − η =
k−1∑
j=i

αj − βi+1 = αi − βk = ζ − δ /∈ Φ (3.2.5 (i))

ζ − γ = αi −
k−1∑
j=i

αj = −
k−1∑
j=i+1

αj = δ − η ∈ −Φ+. (3.2.5 (j))

It follows from induction on the index k, that if the root decomposition (γ, δ) is in lexicographic
order, the corresponding Chevalley constant will be positive.

Definition 3.2.6 (diagrammatically ordered). Assuming we draw and label the simple Dynkin
diagrams as in Helgason [Helgason(1978)], we will say a root decomposition α = ζ + η used to
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index a Chevalley constant Nζ,η is diagrammatically ordered if ζ is supported on roots which
come before the support of η in the Dynkin diagram when reading left to right.

Lemma 3.2.7. Let Φ be a simple root system of type A, B, C, D, E, F, or G. Let the Chevalley
constants (Nα,β) be chosen as in Algorithm 2.2. Let α ∈ Φ+\∆ be a non-simple positive root
that is only supported on simple roots which form a type A subsystem. Let α = αi + β be the
minimal decomposition of α, then any diagrammatically ordered decomposition α = γ + δ will
have positive Chevalley constant:

Nγ,δ = Nαi,β > 0.

Proof. Let α =
∑m

j=i αj ∈ Φ+ where 1 ≤ i < m ≤ `− 1. Then the minimal decomposition of α
is

α = αi + β (3.2.7 (a))

where β =
∑m

j=i+1 αj is of height htα− 1. By construction, ‖αi ‖ = ‖αj ‖ for all i, j < ` and

Nαi,β = +

√
q(1 + p)‖αi ‖2

2
= +

√
‖αi ‖2

2
> 0.

We claim Nαi,β = Nαi+αi+1,β−αi+1
= · · · = N∑m−1

j=i αj ,αm
> 0. We will prove this using the

following relation:

Nγ,δ =
1

Nζ,η
· (N−η,γN−ζ,δ +Nγ,−ζN−η,δ) such that ζ + η = α = γ + δ (3.2.7 (b))

where we take ζ = αi and η = β =
∑m

j=i+1 αj :

Nγ,δ =
1

Nαi,β
· (N−β,γN−αi,δ +Nγ,−αiN−β,δ) such that αi + β = α = γ + δ (3.2.7 (c))

Base Case: Let γ = αi + αi+1 and δ = β − αi+1, then noting that we have

γ − η = (αi + αi+1)− (β) = αi + αi+1 − (αi+1 + · · ·+ αm) = αi − αi+2 − · · · /∈ Φ

δ − η = (β − αi+1)− (β) = −αi+1 = (αi)− (αi + αi+1) = ζ − γ ∈ −Φ+,
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we see that

Nαi+αi+1,β−αi+1
=

1

Nαi,β
· (N−β,αi+αi+1

N−αi,β−αi+1
+Nαi+αi+1,−αiN−β,β−αi+1

)

=
1

Nαi,β
· (0 +Nαi+αi+1,−αiN−β,β−αi+1

)

=
1

Nαi,β
· (0 + (Nαi+1,αi)(−Nβ−αi+1,−β)) by eq. (2.1.10(a))

=
1

Nαi,β
· (0 + (−Nαi,αi+1)(−Nαi+1,β−αi+1

)) by eq. (2.1.10(a)).

Now, since both (Nαi,αi+1) and (Nαi+1,β−αi+1
) are in minimal form, we have

Nαi,αi+1 =

√
‖αi ‖2

2
= Nαi,β and Nαi+1,β−αi+1

=

√
‖αi+1 ‖2

2
=

√
‖αi ‖2

2
= Nαi,β.

Hence Nαi+αi+1,β−αi+1
= Nαi,β . Inductive step: Suppose now for roots ρ =

∑p
j<` αj ∈ Φ+,

such that ht ρ < htα that all diagrammatic decompositions correspond to positive Chevalley
constants:

N(αi+···+αk),(αk+1+···+αp) > 0

Let γ = αi + αi+1 + · · ·+ αk and δ = β − (αi+1 + · · ·+ αk), then

ζ − δ = γ − η = (αi + αi+1 + · · ·+ αk)− (β)

= (αi + αi+1 + · · ·+ αk)− (αk+1 + · · ·+ αm) /∈ Φ

ζ − γ = δ − η = (β − (αi+1 + · · ·+ αk))− (β)

= −(αi+1 + · · ·+ αk)

= (αi)− (αi + αi+1 + · · ·+ αk) ∈ −Φ+.

⇒ Nγ,δ =
1

Nζ,η
· (n11n12 + n21n22)

=
1

Nαi,β

(
0 +N(αi+αi+1+···+αk−αi),αi ·Nβ−(αi+1+···+αk),(β−β−(αi+1+···+αk))

)
=

1

Nαi,β

(
−Nαi,αi+1+···+αk

)
·
(
N(αi+1+···+αk)+(αk+1+···+αm),−(αi+1+···+αk)

)
=

1

Nαi,β

(
−Nαi,αi+1+···+αk

)
·
(
−N−(αi+1+···+αk),(αi+1+···+αk)+(αk+1+···+αm)

)
=

1

Nαi,β

(
−Nαi,αi+1+···+αk

)
·
(
−N(αi+1+···+αk),(αk+1+···+αm)

)
.
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Since all roots of a type A subsystem have the same length, the Chevalley constants in the
previous equation all have the same magnitude because the ordered pairs of roots all have root
string coefficients (p, q) = (0, 1):

Nαi,β =
‖αi ‖√

2
= Nαi,αi+1+···+αk = N(αi+1+···+αk),(αk+1+···+αm)

Hence Nγ,δ = Nαi,β > 0 for any diagrammatically ordered decomposition of α.

3.2.8 Chevalley order for Type B

Lemma 3.2.9 (Type B Chevalley ordering). Let Φ be a root system of type B`. Let α` be the
short simple root and (Nα,β) be chosen as in Algorithm 2.2. If α =

∑`
j=i rjαj = γ + δ such that

(γ, δ) are in lexicographic order with γ =
∑k

j=i sjαj, with sj > 0, and δ =
∑`

j=m+1(rj − sj)αj
and

(1) (γ, δ) have disjoint support in ∆, then Nγ,δ > 0.

(2) (γ, δ) do not have disjoint support in ∆ (i.e. m+ 1 ≤ k ≤ `), then Nγ,δ < 0.

Remark 3.2.10. Note that for α =
∑`

j=i rjαj ∈ Φ+ we have that si ≤ ri ≤ 1 and so we can
simply choose the smallest index i so that ri = 1 = si by our ordering.

Proof. By our construction, we assume that non-simple positive roots in type B have the form

αi + · · ·+ αm + 2αm+1 + · · ·+ 2α` such that i ≤ m ≤ `, (3.2.10 (a))

and we have the following identities to work with:

η − δ = (α− ζ)− (α− γ) = −ζ + γ = γ − ζ (3.2.10 (b))

η − γ = η − δ + δ − γ = γ − ζ + δ − γ = δ − ζ. (3.2.10 (c))

This follows directly from lemma 3.2.7.

Suppose α =
∑`

j=i rjαj = ζ + η = γ + δ ∈ Φ+\∆ such that (ζ, η) and (γ, δ) are both ordered
decompositions of α. Let (ζ, η) be the minimal decomposition of α such that ζ ∈ ∆ and η = α−ζ
be , then Nζ,η = Nζ,α−ζ > 0. Without loss of generality, let (γ, δ) 6= (ζ, η) be any other ordered
decomposition of α.

By the skew-symmetry of the Lie bracket, it is sufficient to consider the diagrammatically-
ordered pairs (γ, δ).

Case 1: (γ, δ) have disjoint support in ∆.
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Case (a): α =
∑n

i αj with i < n ≤ `. In this case any decomposition (γ, δ) of α must
have disjoint supports in ∆. We take ζ = αi, γ =

∑m
i αj , and δ =

∑n
m+1 αj . By

following an argument similar to that of the proof for lemma 3.2.7, we find that
Nγ,δ > 0.

Case (b): α =
∑`

j=i rjαj =
∑m

j=i αj + 2
∑`

j=m+1 αj such that i ≤ m < `. In this case,
our construction gives us the following minimal decomposition,

ζ = αm+1 and η =
m+1∑
j=i

αj + 2
∑̀

j=m+2

αj .

Note that in assuming that Nζ,η > 0 we determine that the Chevalley constant
corresponding to the lexicographically-ordered pair Nη,ζ < 0, which is in accor-
dance with the statement of (1).

(γ, δ) have disjoint supports and are in lexicographic order:

γ =

k∑
j=i

αj , such that i ≤ k < m, and δ =

m∑
j=k+1

αj + 2
∑̀

j=m+1

αj

We see that

η − δ = γ − ζ =

k∑
j=i

αj − αm+1 (3.2.10 (d))

/∈ Φ since k < m (3.2.10 (e))

and

η − γ = δ − ζ =

 m∑
j=k+1

αj + 2
∑̀

j=m+1

αj

− αm+1 (3.2.10 (f))

=

 m+1∑
j=k+1

αj + 2
∑̀

j=m+2

αj

 (3.2.10 (g))

∈ Φ+ ⊂ Φ (3.2.10 (h))

Since

Nγ,δ =
1

Nζ,η
(n11n12 + n21n22)
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such that

n11 :=


Nη,(γ−η) if γ − η ∈ Φ+

Nγ,(η−γ) if γ − η ∈ −Φ+

0 otherwise

n12 :=


Nδ,(ζ−δ) if ζ − δ ∈ Φ+

Nζ,(δ−ζ) if ζ − δ ∈ −Φ+

0 otherwise

n21 :=


N(ζ−γ),γ if ζ − γ ∈ Φ+

N(γ−ζ),ζ if ζ − γ ∈ −Φ+

0 otherwise

n22 :=


Nη,(δ−η) if δ − η ∈ Φ+

Nδ,(η−δ) if δ − η ∈ −Φ+

0 otherwise

,

in this case we have

Nγ,δ =
1

Nζ,η
(n11n12) =

Nγ,(η−γ)Nζ,(δ−ζ)

Nζ,η

=
N∑k

j=i αj ,(
∑m+1
j=k+1 αj+2

∑`
j=m+2 αj)

Nαm+1,(
∑m+1
j=k+1 αj+2

∑`
j=m+2 αj)

Nαm+1,
∑m+1
j=i αj+2

∑`
j=m+2 αj

.

Then by straightforward (but somewhat tedious) induction on k and m and the
definition of the minimal form we have Nγ,δ > 0 using the base case where γ = αi

and δ = αi+1 + 2αi+2 such that k = i,m = k + 1 = i+ 1, ` = m+ 1 = i+ 2:

Nγ,δ =
1

Nζ,η
(n11n12) =

Nγ,(η−γ)Nζ,(δ−ζ)

Nζ,η

=
Nαi,αi+1+αi+2Nαi+2,αi+1+αi+2

Nαi+2,αi+αi+1+αi+2

=
(+)(+)

(+)

> 0 by Case 1(a) and the minimal form.

Case 2: (γ, δ) do not have disjoint support in ∆.

As in Case 1(b) we write α =
∑`

j=i rjαj =
∑m

j=i αj + 2
∑`

j=m+1 αj such that i ≤ m < `,
and have the minimal decomposition ζ = αm+1 and η =

∑m+1
j=i αj + 2

∑`
j=m+2 αj . In

this case, γ =
∑k

j=i sjαj and δ =
∑`

j=m+1(rj − sj)αj such that m + 1 ≤ k ≤ `, and we
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see that

η − δ = γ − ζ =
k∑
j=i

sjαj − αm+1

=

(
m+1∑
i

αj + 2
k∑

m+2

αj

)
− αm+1

=
m∑
i

αj

∈ Φ+ only if k = m+ 1

and

η − γ = δ − ζ =
∑̀

j=m+1

(rj − sj)αj − αm+1

=

(
αm+1 +

k∑
m+2

αj + 2
∑̀
k+1

αj

)
− αm+1

∈ Φ+ only if k > m+ 1.

Hence η − δ = γ − ζ ∈ Φ⇒ η − γ = δ − ζ /∈ Φ and vice versa, and Nγ,δ < 0:

Nγ,δ =


1

Nζ,η
(N(γ−ζ),ζ ·Nδ,(η−δ)) = (+)((+) · (−)) if k = m+ 1

1
Nζ,η

(Nγ,(η−γ) ·Nζ,(δ−ζ)) = (+)((−) · (+)) if k > m+ 1.

This again follows by a straightforward induction using the base case wherem = i,m+1 =

i+ 1, k = i+ 2, and ` = i+ 2.

3.2.11 Chevalley orders for Types C and D

We find the following two results by a similar proofs process:

Note. In our construction, we assume that non-simple positive roots in type C have the form:

αi + · · ·+ αk−1 + 2αk + · · ·+ 2α`−1 + α`

such that i ≤ k ≤ `− 1 or i+ 1 ≤ k − 1 ≤ `.

Lemma 3.2.12 (Type C Chevalley ordering). Let Φ be a root system of type C`. Let α` be the
long simple root and (Nα,β) be chosen as in Algorithm 2.2. Let α =

∑n
i rjαj = γ + δ ∈ Φ+ with
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rj ≥ 0 such that (γ, δ) is any ordered decomposition such that

γ =
m∑
x

sjαj , with 0 < sj ≤ rj

and

δ =
n∑
y

(rj − sj)αj , with m < n

then Nγ,δ > 0.

Remark 3.2.13. Note that in this ordering the important thing is that the simple root of
greatest index αn with rn 6= 0 is only in the support of δ.

If Φ is of type D, we assume that non-simple positive roots have the form:

∑̀
i

rjαj such that ri = 1, r`−1, r` ≤ 1

and if rk = 2 then rj = 2 ∀ j such that k ≤ j ≤ `− 2 and r`−1 = r` ≤ 1 = 1.

Lemma 3.2.14 (Type D Chevalley ordering). Let Φ be a root system of type D`. Let α`−1 and
α` be the spin nodes and (Nα,β) be chosen as in Algorithm 2.2. If α =

∑n
i rjαj = γ + δ such

that (γ, δ) are in lexicographic order with

γ = αi +

k∑
i+1

sjαj and δ =

n∑
m

(rj − sj)αj such that i ≤ k < n

such that

(1) (γ, δ) have disjoint support in ∆ and

(a) k > `− 2 such that δ is one of the spin nodes, i.e. δ = α`−1 or δ = α` ⇒ Nγ,δ < 0.

(b) k ≤ `− 2 and k < m such that α is in a type A subsystem or δ is supported on both
spin nodes ⇒ Nγ,δ > 0.

(2) (γ, δ) do not have disjoint support in ∆ (i.e. m ≤ k ≤ `− 2⇒ rk = 2), then Nγ,δ < 0.

Remark 3.2.15. Note that by our ordering if α =
∑n

j=i rjαj ∈ Φ+, we have ri = 1 = si and
αn is only in the support of δ except in the case where δ = α`−1 and n = `.

Proof Outline. Let α =
∑n

i rjαj = γ + δ such that γ = αi +
∑k

i+1 sjαj and
δ =

∑n
m(rj − sj)αj where 0 ≤ sj ≤ 1, i ≤ k < n.
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(1) (γ, δ) have disjoint support in ∆ and

(a) k > `−2 (⇒ α =
∑n

i αj) such that δ is one of the spin nodes, i.e. δ = α`−1 or δ = α`

γ =
`−2∑
i

αj + α`−1 or γ =
`−2∑
i

αj + α`.

⇒ Nγ,δ < 0.

(b) k ≤ `− 2 and k < m such that α is in a type A subsystem or δ is supported on both
spin nodes.

Case 1: If α is in a type A subsystem such that

γ =

k∑
i

αj and δ =

`−2∑
k+1

αj + α`−1 or δ =

`−2∑
k+1

αj + α`.

Case 2: If α is supported on both spin nodes such that

γ =

k∑
i

αj and δ =

`−3∑
k+1

rjαj + (α`−2 + α`−1 + α`).

⇒ Nγ,δ > 0.

(2) α = αi+
∑`

i+1 rjαj such that (γ, δ) do not have disjoint support in ∆. That is, in following
decomposition m ≤ k ≤ `− 2 such that rk = 2:

γ =
k∑
i

sjαj and δ =
`−3∑
m

(rj − sj)αj + (α`−2 + α`−1 + α`)

such that sj = 0 ∀j > k and sj = 1 ∀i ≤ j ≤ k. ⇒ Nγ,δ < 0.

3.3 Chevalley constants for diagramatically ordered root

decompositions.

Let Φ be a connected root system and ∆ the set of simple roots. Let the Chevalley constants be
chosen by Algorithm 2.2 with the ordering of the positive roots as determined by Algorithm 3.1.
Let αm, αm+1 ∈ ∆ be simple roots such that 〈αm, αm+1〉 6= 0 so that αm + αm+1 ∈ Φ+. For
simplicity, assume without loss of generality that αm ≺ αm+1 as indicated by the indices so that
Nαm,αm+1 > 0 is in minimal form.
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3.3.1 Disjoint diagrammatic decompositions.

Notation 3.3.2. Write α = γ+δ in diagrammatic order such that their supports on the simple
roots are disjoint. We will use the following notation

• Φγ =< supp∆(γ) >, the root system generated by the support of γ on the simple roots.

• Φδ =< supp∆(δ) >, the root system generated by the support of δ on the simple roots.
Note that by our diagrammatic ordering, for any αi ∈ supp∆(γ) and αj ∈ supp∆(δ) we
assume that i < j.

• Φα =< supp∆(α) >, the root system generated by the support of α on the simple roots.
Note that Φα = Φγ ⊕ Φδ.

• αi, αm ∈ supp∆(γ) such that i is the least index and m the maximum in the support of γ.

• αm+1 ∈ supp∆(δ) such that m + 1 is the least index in the support of δ and adjacent to
αm.

By the above notation we assume that ht(γ) = m− i and ht(δ) ≥ 1.

Case 1: Φγ is type A. In this case γ is connected to δ according to the Cartan matrix of Φ in
one of the following ways.

Case (a): 〈αm, αm+1〉 = −1, such that fm fm+1

⇒ Φδ is type A,B,C,D,E, or F . Note
that in types D and E, the m + 1 index may, in fact, correspond to a different
index in the diagram, though this changes nothing about the relation between the
simple roots.

Case (b): 〈αm, αm+1〉 = 0 but 〈αm−1, αm〉 = −1 and 〈αm−1, αm+1〉 = −1, such that

f f�� f
HH fm−1m−2 m

m+1

⇒ Φ is type D or E and Φδ is type A.

Case (c): 〈αm, αm+1〉 = −2, such that fm fm+1

⇒ Φδ is type B or F .

Case (d): 〈αm+1, αm〉 = −2, such that fm fm+1

⇒ Φδ is type C.

Case (e): 〈αm, αm+1〉 = −3, such that fm fm+1

⇒ Φ is type G and the only root with
disjoint decomposition is αm + αm+1 and hence only the minimal decomposition
has Nγ,δ = Nαm,αm+1 > 0.
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Case 2: Φγ is not of type A. In this case, we have two options for Φ:

Case (a): Φ is of type F4. In this case, Φγ is of type B3 and Φδ is of type A1.

f f fm fm+1

Figure 3.1

Case (b): Φ is of type E6, E7 or E8. In this case, Φγ is of type D5 or type E. In either of
these cases, Φδ is of type A.

1 3 4 m m+ 1

2

Figure 3.2

3.3.3 General observations about decompositions when (γ, δ) 6= (ζ, η).

Let α =
∑n

i rjαj = γ + δ = ζ + η such that the pair (γ, δ) is lexicographically ordered and
the pair (ζ, η) is the minimal decomposition of α. Recall that the minimal decomposition is not
always lexicographically ordered. We then have the following cases.

Case 1: γ and δ have disjoint support: supp∆(γ) ∩ supp∆(δ) = ∅.

γ =

m∑
i

rjαj such that i ≤ m δ =

n∑
m+1

rjαj such that m+ 1 ≤ n

⇒ i < m+ 1 ≤ n.

Case (a): supp∆(ζ) ∩ supp∆(η) = ∅.

Case i: ζ = αi ⇒ η =
∑n

i+1 rjαj , and since i < m+ 1 and ri = 1:

γ − η = ζ − δ = αi −
n∑

m+1

rjαj /∈ Φ

δ − η = ζ − γ = αi −
m∑
i

rjαj = −
m∑
i+1

rjαj ∈ −Φ+
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Case ii: ζ = αn ⇒ η =
∑n−1

i rjαj , and since n ≥ m+ 1 and rn = 1 :

γ − η = ζ − δ = αn −
n∑

m+1

rjαj = −
n−1∑
m+1

rjαj ∈ −Φ+

δ − η = ζ − γ = αn −
m∑
i

rjαj /∈ Φ

Case (b): supp∆(ζ) ∩ supp∆(η) = ζ.

Case i: ζ = αi ⇒ η = (ri − 1)αi +
∑n

i+1 rjαj such that i < m+ 1

γ − η = ζ − δ /∈ Φ and δ − η = ζ − γ ∈ −Φ+

follows from the same argument as above.

Case ii: ζ = αk such that i < k < n and rk ≥ 2

⇒ η =
∑k−1

i rjαj + (rk − 1)αk +
∑n

k+1 rjαj

γ − η = ζ − δ = αk −
n∑

m+1

rjαj

∈ −Φ+ only if n > k ≥ m+ 1

/∈ Φ if i < k ≤ m

δ − η = ζ − γ = αk −
m∑
i

rjαj

∈ −Φ+ only if i < k ≤ m

/∈ Φ if n > k ≥ m+ 1

Case iii: ζ = αn ⇒ η =
∑n−1

i rjαj + (rn − 1)αn

γ − η = ζ − δ ∈ −Φ+ and δ − η = ζ − γ /∈ Φ

follows from the same argument as above.

Case 2: γ and δ do not have disjoint support: supp∆(γ) ∩ supp∆(δ) 6= ∅. If there is such a
decomposition of α then it must be the case that ∃ a minimum k such that rk ≥ 2 in the
coefficients of the simple roots composing α.

γ =
m∑
i

rjαj such that i ≤ m δ =
n∑
k

rjαj such that i < k ≤ m ≤ n

Case (a): supp∆(ζ) ∩ supp∆(η) = ∅.

Case i: ζ = αi ⇒ η =
∑n

i+1 rjαj , i < k ≤ m (otherwise ζ = γ) and ri = 1:

γ − η = ζ − δ = αi −
n∑
k

rjαj /∈ Φ

δ − η = ζ − γ = αi −
m∑
i

rjαj = −
m∑
i+1

rjαj ∈ −Φ+
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Case ii: ζ = αn ⇒ η =
∑n−1

i rjαj , and since rn = 1 we know that n > m ≥ k :

γ − η = ζ − δ = αn −
n∑
k

rjαj = −
n−1∑
k

rjαj ∈ −Φ+

δ − η = ζ − γ = αn −
m∑
i

rjαj /∈ Φ

Case (b): supp∆(ζ) ∩ supp∆(η) = ζ.

Case i: ζ = αi ⇒ η = (ri − 1)αi +
∑n

i+1 rjαj such that i < m+ 1

γ − η = ζ − δ /∈ Φ and δ − η = ζ − γ ∈ −Φ+

follows from the same argument as above.

Case ii: ζ = αk such that i < k < n and rk ≥ 2

⇒ η =
∑k−1

i rjαj + (rk − 1)αk +
∑n

k+1 rjαj

γ − η = ζ − δ = αk −
n∑
k

rjαj

∈ −Φ+ only if n > k ≥ m+ 1

/∈ Φ if i < k ≤ m

δ − η = ζ − γ = αk −
m∑
i

rjαj

∈ −Φ+ only if i < k ≤ m

/∈ Φ if n > k ≥ m+ 1

Case iii: ζ = αn ⇒ η =
∑n−1

i rjαj + (rn − 1)αn

γ − η = ζ − δ ∈ −Φ+ and δ − η = ζ − γ /∈ Φ

follows from the same argument as above.

In the next Part, we will explore lifting single involutions from the root system to the Lie algebra
over C using the results of Part I.
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Part II

Single Involutions
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Chapter 4:

C-Involution Preliminaries

Since every admissible (Γ, θ)-index is a combination of admissible absolutely irreducible (Γ, θ)-
indices corresponding to connected (Γ, θ)-diagrams, it suffices to classify the admissible abso-
lutely irreducible (Γ, θ)-indices and the admissible k-involutions related to these indices. Hence,
from now on we will restrict our attention to these. In the remainder of this thesis, we begin
the classification of k-involutions by building the classification for the "first" non-algebraically-
closed k, the R-involutions. Before we can classify the R-involutions by way of commuting pairs
of C-involutions, however, we must first know how to lift single C-involutions. Since the existing
results in the literature are incorrect, we begin with our own construction and analysis of C-
involutions. The main result of this Part is the following theorem which follows from the results
of Chapter 6.

Theorem 1 (θ∆). Let θ∆ ∈ Aut(g, t) be the unique automorphism lifted from θ ∈ Aut(X,Φ)

such that θ∆|t = θ and
θ∆ (Xαi) = Xαi for all αi ∈ ∆.

Then θ∆ is an involution for any admissible absolutely irreducible involution θ except when
θ is of type D(`−1)/2

` IIIb.

We begin with some definitions and notation:

4.1 Definitions and Notation

4.1.1 Admissible involutions

We will use the same notation as in Part I. Recall,
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Definition 1.4.1 (admissible involution). Let θ ∈ Aut(X,Φ) be an involution. Then θ is called
admissible if there exists an involution θ̃ ∈ Aut(G,T ) such that θ̃|T = θ and T−

θ̃
is a maximal

θ̃-split torus of G. If X is semisimple, then the indices of admissible involutions of (X,Φ) are
called admissible θ-indices.

Equivalently, in terms of the Lie algebra,

Definition 4.1.2 (admissible involution, [Daniel and Helminck(2008)]:3.3.2). An involution θ
of (X(t),Φ(t)) will be called admissible if there is an involution θ̃ of (g, t) such that θ̃ induces
θ on (X(t),Φ(t)) and such that t−θ = {X ∈ t | θ(X) = −X} is a maximal toral subalgebra
contained in p.

Definition (ht(α) =
∑
ri). Write any root α ∈ Φ(T ) as α =

∑
αi∈∆ riαi, then define the height

of the root to be

ht(α) =
∑

ri (4.1.2 (a))

Note that this may be positive or negative but never zero.

Definition 4.1.3 (θ̃ lifting constants). The action of any automorphism θ̃ ∈ Aut(g, t) lifted
from an involution θ ∈ Aut(X,Φ) is determined by its action on the root spaces

θ̃ : Xαi 7→ cθ̃αXθ(αi) ∀α ∈ Φ. (4.1.3 (a))

We will call these constants cθ̃α the lifting constants for θ̃.

Lemma 4.1.4 (cθ̃α+β). For any θ̃ ∈ Aut(g, t) such that θ̃|t∨ = θ and for any α, β ∈ Φ such that
α+ β ∈ Φ,

cθ̃α+β = cθ̃α c
θ̃
β

Nθ(α),θ(β)

Nα,β
(4.1.4 (a))

Corollary 4.1.5 (cθ̃α). For any α ∈ Φ, cθ̃α is determined by the cθ̃αi for αi ∈ ∆.

The following unique automorphism was defined by Steinberg (see [Steinberg(1968), Theo-
rem29]):

Definition. Let ∆ be a basis of Φ. For an involution θ ∈ Aut(X,Φ) let θ∆ ∈ Aut(G,T ) denote
the unique automorphism of G such that

θ∆(xα(ξ)) = xθ(α)(ξ) for all α ∈ ∆, ξ ∈ k. (4.1.5 (a))

From [Steinberg(1968), Theorem 29] it follows that cθ∆α = ±1 for all α ∈ Φ.
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Due to the relation between a maximal torus T ⊂ G and its Lie algebra t ∈ g, it is sufficient
to work with the corresponding involution on the Lie algebra whose structure constants are
likewise defined. In fact, the lifting constants are the same in both definitions.

Definition 4.1.6 (θ∆). Let ∆ be a basis of Φ. For an involution θ ∈ Aut(X,Φ) let θ∆ ∈ Aut(g, t)

denote the unique automorphism of g such that

θ∆(Xαi) = Xθ(αi) for all αi ∈ ∆ (4.1.6 (a))

and

θ∆(Xα) = cθ∆α Xθ(α) for all α ∈ Φ (4.1.6 (b))

in general.

In order to determine the lifting constants cθ∆α+β for a non-simple root, α+ β, we must
establish an order on the Chevalley basis since the Jacobi identity on g enforces that Nα,β =

−Nβ,α. We will choose a natural ordering given by the Dynkin diagram and our construction
of the positive roots by Algorithm 2.2. In Chapter 3, we determined the partial orders for the
simple root systems given by our construction which we will use to prove results about θ∆.

Example 4.1.7. In type A, recall that the Chevalley order is both diagrammatic and lexico-
graphic on the simple roots such that not only Nα1,α2+α3 > 0 but also Nα1+α2,α3 > 0.

In the non-simply laced cases, we have differing results:

Example 4.1.8. In type C, our Chevalley ordering is again diagrammatic, i.e. if i is the greatest
index such that αi is in the support of γ and j the least index such that αj is in the support of
δ, then Nγ,δ > 0 only if i ≤ j. For example, if α = α1 + α2 and β = α1 + α2 + 2α3 + 2α4 + α5,
then Nα,β > 0 and if α = α4 + α5 and β = α3 + α4, then Nα,β < 0.

In type B, however, the Chevalley ordering is only lexicographic if the supports of the
decomposing roots on the simple roots are disjoint. For example in type B3,

Nα1+α2,α3 > 0 but Nα1+α2,α2+2α3 < 0.

Lemma 4.1.9. Any automorphism of a root system φ ∈ Aut(X,Φ) preserves the magnitude of
the Chevalley constants

|Nα,β| = |Nφ(α),φ(β)|. (4.1.9 (a))

Proof. To be an automorphism of a root system, φ must preserve the geometry of the system
and therefore also the root strings: If {β + nα ∈ Φ| − p ≤ n ≤ q} is a root string in Φ then
{φ(β) +nφ(α) ∈ Φ|− p ≤ n ≤ q} must also be. In preserving the geometry, φ must preserve the
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inner product (α, β) = (φ(α), φ(β)) and so (α, α) = ‖α ‖2 = ‖φ(α) ‖2 = (φ(α), φ(α)). Hence

N2
α,β =

q(1 + p)‖α ‖2

2
=
q(1 + p)‖φ(α) ‖2

2
= N2

φ(α),φ(β)

and so

|Nα,β| =

∣∣∣∣∣
√
q(1 + p)‖α ‖2

2

∣∣∣∣∣ = |Nφ(α),φ(β)|.

In addition to the results above, the following proposition will allow us to determine when θ∆

is an involution. It will be pivotal in the classification of the absolutely irreducible θ ∈ Aut(Φ).

Proposition 4.1.10. θ∆ ∈ Aut(g, t) if and only if cθ∆θ(α) = 1 for all α ∈ ∆.

Proof. By definition,

θ∆(H) = H ∀H ∈ t ⇒ θ2
∆(H) = H

θ∆(Xα) = Xθ(α) ∀α ∈ ∆ ⇒ θ2
∆(Xα) = cθ∆θ(α)Xα ∀α ∈ ∆ (4.1.10 (a))

θ∆(Xα+β) = cθ∆α+βXθ(α+β) ∀α+ β ∈ Φ ⇒ θ2
∆(Xα+β) = cθ∆α+βc

θ∆
θ(α+β)Xα+β

(level 1) (⇒) If θ∆ is an involution then cθ∆θ(α) = 1 ∀α ∈ ∆.

(⇐) If cθ∆θ(α) = 1 for all α ∈ ∆ then cθ∆α+βc
θ∆
θ(α+β) = 1, and this implies θ2

∆(Xγ) = Xγ for all
γ ∈ Φ:
By the skew symmetry of the Lie bracket, we have the following identities to work with for any
α, β, α+ β ∈ Φ:

cθ∆α+β =
Nθ(α),θ(β)

Nα,β
cθ∆α cθ∆β (4.1.10 (b))

and
1

cθ∆α
= cθ∆−α (4.1.10 (c))

So,

cθ∆α+β =
Nθ(α),θ(β)

Nα,β
cθ∆α cθ∆β (4.1.10 (d))

cθ∆θ(α+β) = cθ∆θ(α)+θ(β) =
Nα,β

Nθ(α),θ(β)
cθ∆θ(α)c

θ∆
θ(β) (4.1.10 (e))

and

cθ∆α+βc
θ∆
θ(α+β) =

Nθ(α),θ(β)

Nα,β

Nα,β

Nθ(α),θ(β)
cθ∆α cθ∆β cθ∆θ(α)c

θ∆
θ(β)

= cθ∆α cθ∆β cθ∆θ(α)c
θ∆
θ(β) (4.1.10 (f))
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(level 2) Let α, β ∈ ∆, α+ β ∈ Φ, then

c
θ2
∆
α+β = cθ∆α+βc

θ∆
θ(α+β) = cθ∆α cθ∆β cθ∆θ(α)c

θ∆
θ(β)

= 1 · 1 · cθ∆θ(α)c
θ∆
θ(β) (by defintion)

= 1 ∀α, β ∈ ∆

(level 3) Let α, β, γ ∈ ∆, α+ β, α+ β + γ ∈ Φ, then

c
θ2
∆
α+β+γ = cθ∆α+β+γc

θ∆
θ(α+β+γ) = cθ∆α+βc

θ∆
γ cθ∆θ(α+β)c

θ∆
θ(γ)

= cθ∆α+βc
θ∆
θ(α+β) c

θ∆
γ cθ∆θ(γ) (const’s commute)

= 1 · cθ∆γ cθ∆θ(γ) (by level 2)

= 1 ∀α, β, γ ∈ ∆ (by level 1)

Inductive assumption: Assume ∀α =
∑m

j=1 αj ∈ Φ αi ∈ ∆,m ≤ k − 1, cθ
2
∆
α = cθ∆α cθ∆θ(α) = 1.

(level k) Let α = α1 + α2 + · · ·+ αi, β = αi+1 + · · ·+ αk, α+ β ∈ Φ then

c
θ2
∆
α+β = cθ∆α+βc

θ∆
θ(α+β) = cθ∆α cθ∆β cθ∆θ(α)c

θ∆
θ(β)

= cθ∆α cθ∆θ(α) c
θ∆
β cθ∆θ(β)

= 1 · 1
= 1

Thus by induction, if cθ∆θ(α) = 1 ∀α ∈ ∆, then c
θ2
∆
α = cθ∆α cθ∆θ(α) = 1 ∀α ∈ Φ+ and therefore

∀α ∈ Φ by equation 4.1.10 (c).
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Chapter 5:

Correction Vectors

5.1 Calculating Correction Vectors for Admissible In-

volutions

By definition, any admissible involution θ can be lifted and therefore by proposition 5.2.2, there
exists an h ∈ T such that θ∆Int(h) is an involution. If θ∆ is already an involution then h = id ∈ T
so that θ∆ = θ∆Int(h).
Suppose we have θ∆ such that for some αi ∈ ∆,

θ2
∆(Xαi) = cθ∆αi c

θ∆
θ(αi)

Xαi 6= Xαi . (5.1.0 (a))

For admissible involutions θ, we find the only occurrence of this is when

θ2
∆(Xαi) = −1 ·Xαi . (5.1.0 (b))

5.1.1 Int(h)(Xα)

Let h ∈ G and H ∈ g such that H = SΛS−1, H =
∑
yjHj where Hj ∈ t such that

Hj = α∨j =
2Hαj

(αj ,αj)
, so that H = y1H1 + y2H2 + · · ·+ y`H` where yi ∈ C for any H ∈ t and

α(Hj) = α

(
2Hαj

(αj , αj)

)
=

2(α, αj)

(αj , αj)
= 〈α, αj〉.
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Then

Int(h)(Xα) = hXαh
−1 = Ad(h)(Xα) = Ad(exp(H))(Xα)

= exp(ad(H)(Xα))

= Xα + [H , Xα] +
[H , [H , Xα]]

2!
+ · · ·

= Xα + α(H)Xα +
α(H)2Xα

2!
+ · · ·

=

∞∑
k=0

(α(H))k(Xα)

k!

= exp (α (H))Xα

= exp
(
α
(∑

yjHj

))
Xα

= exp
(∑

yjα (Hj)
)
Xα

= exp
(∑

yj〈α, αj〉
)
Xα

= e(
∑
yj〈α,αj〉)Xα.

5.1.2 θ∆ Int(t)(Xα)

In order to determine an involution from θ∆, we can find a vector H ∈ t corresponding to an
h ∈ T such that

θ∆ Ad(h)(Xα) = θ∆

(
e(

∑
yj〈α,αj〉)Xα

)
= cθ∆α · e(

∑
yj〈α,αj〉)Xθ(α)

and

(θ∆ Ad(h))2 (Xα) = cθ∆α e(
∑
yj〈α,αj〉) · cθ∆θ(α)e

(
∑
yj〈θ(α),αj〉)Xα

= cθ∆α cθ∆θ(α) · e
(
∑
yj〈α,αj〉)e(

∑
yj〈θ(α),αj〉)Xα

= cθ∆α cθ∆θ(α) · e
(
∑
yj〈α,αj〉+

∑
yj〈θ(α),αj〉)Xα

= Xα.

In fact, by a result of Helminck (see proposition 5.2.2), we know that we can limit our search
to h ∈ T+

θ . By the above we need to solve the equation

cθ∆α cθ∆θ(α) · e
(
∑
yj〈α,αj〉 +

∑
yj〈θ(α),αj〉) = 1
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or, since cθ∆α 6= 0,

e(
∑
yj〈α,αj〉 +

∑
yj〈θ(α),αj〉) =

1

cθ∆α cθ∆θ(α)

.

We find that 1

c
θ∆
α c

θ∆
θ(α)

= ±1. Let k ∈ Z, then

Case 1: 1

c
θ∆
α c

θ∆
θ(α)

= +1:

e(
∑
yj〈α,αj〉+

∑
yj〈θ(α),αj〉) = 1 = e2kiπ

giving us the equation (∑
yj〈α, αj〉+

∑
yj〈θ(α), αj〉

)
= 2kiπ∑

yj (〈α, αj〉+ 〈θ(α), αj〉) = 2kiπ.

Case 2: 1

c
θ∆
α c

θ∆
θ(α)

= −1:

e(
∑
yj〈α,αj〉+

∑
yj〈θ(α),αj〉) = −1 = e(2k+1)iπ

corresponding to ∑
yj (〈α, αj〉+ 〈θ(α), αj〉) = (2k + 1)iπ.

In order to ensure that θ∆ Ad(h) is indeed an involution, we must satisfy a system of such
equations. Given that we have previously seen that all the lifting constants cθ∆α are determined
by the set {cθ∆αi |αi ∈ ∆}, and therefore also all the cθ∆θ(α), we need only consider the system of
equations corresponding to the set of αi ∈ ∆.

5.2 Correction Vector Algorithm for θ∆

In the following example, θ∆ is not the standard involution and we show the relation between
the two.

Example 5.2.0.1 (Involutions in sl(2,C)). In sl(2,C) there is only one conjugacy class of
involutions, which may be represented by abuse of notation by θ(X) = −XT , corresponding
to the opposition involution on the root system A1, θ(α) = −α = −θ∗(α) = − id∗(α). If
we take a natural basis of sl(2,C), it is clear by simple calculation that the lifting constants
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cθα = −1 = cθ−α:

Hα =

(
a 0

0 −a

)
, Xα =

(
0 1

0 0

)
, X−α =

(
0 0

1 0

)
then

[Hα , Xα] = aXα − (−a)Xα = 2aXα

[Hα , X−α] = −aX−α − aX−α = −2aX−α

and

θ : Hα 7→

(
−a 0

0 a

)
= −Hα = H−α = Hθ(α)

Xα 7→

(
0 0

−1 0

)
= −X−α = −Xθ(α) = cθαXθ(α)

X−α 7→

(
0 −1

0 0

)
= −Xα = −Xθ(−α) = cθ−αXθ(−α)

Composition with

Int(hα) = Int

(
exp

(
iπ

2a
Hα

))
= Int

(
e
iπ
2 0

0 e−
iπ
2

)

gives us another involution that has the same action on the root space, but different lifting
constants:

θ Int(hα) : Hα
Int(hα)7−−−−→

(
a 0
0 −a

)
θ7−→
(
−a 0
0 a

)
= −Hα = H−α = Hθ(α)

Xα
Int(hα)7−−−−→

(
0 −1
0 0

)
θ7−→
(

0 0
1 0

)
= X−α = Xθ(α) = c

θ Int(hα)
α Xθ(α)

X−α
Int(hα)7−−−−→

(
0 0
−1 0

)
θ7−→
(

0 1
0 0

)
= Xα = Xθ(−α) = c

θ Int(hα)
−α Xθ(−α)

So in this example we have shown that θ∆ = θ Int(hα).
This process allows us to choose the θ̃ ∈ Aut(G,T ) to which we lift θ ∈ Aut(Φ).

For the admissible involutions, θ , if θ∆ is not an involution on g , and hence not on G, then
by the following results we can find a correction vector H ∈ t+θ such that θ∆ Int(exp(H)) is an
involution in g. First, the following lemma is well-known:
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Lemma 5.2.1. The exponential map from the Lie algebra of a torus to the torus is surjective:

exp : t→ T

Proposition 5.2.2 ([Helminck(2000), 10.8]). Let θ ∈ Aut(X,Φ) be an involution and ∆ a basis
of Φ (T, G). Then the following are equivalent :

(1) θ can be lifted.

(2) There is a h ∈ T such that θ∆ Int(h) is an involution.

(3) There is a h ∈ T+
θ such that θ∆ Int(h) is an involution.

(4) There is a h ∈ T such that cθ∆θ(α) = α(θ(h)h) for all α ∈ ∆.

(5) There is a h ∈ T+
θ such that cθ∆θ(α) = α(h) for all α ∈ ∆.

Corollary 5.2.3. Let θ ∈ Aut (X, Φ ) be an involution and ∆ a basis of Φ (T, G). Then the
following are equivalent :

(1) θ can be lifted.

(2) There is a H ∈ t so that exp(H) = h ∈ T such that θ∆ Int(h) = θ∆ Ad(exp(H)) =

θ∆ exp(ad(H)) is an involution.

(3) There is a H ∈ t+θ so that exp(H) = h ∈ T+
θ such that θ∆ exp(ad(H)) is an involution.

The following algorithm is implemented in our k-Involutions Mathematica package as

getCorrectionVectors[myInvol_admissibleInvolution].

It is the method by which we correct θ∆ to an involution and follows from the computations
above.

Algorithm 5.3 (Correction Vector for θ∆).
Input: θ∆

Output: all solutions H ∈ t+θ such that cθ∆ exp(ad(H))
α c

θ∆ exp(ad(H))
θ(α) = 1

As usual, let ` be the rank of Φ, θ ∈ Aut(Φ) the root action corresponding to θ∆, Hj = α∨j ∈ t,
and denote ~H = (H1, H2, . . . ,H`).

(CorrVec 1) If θ∆ is an involution, then put H = 0 and cθ∆ exp(ad(H))
α = cθ∆α .

Go to (CorrVec 3).

(CorrVec 2) If θ∆ is an not involution, then
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(a) Let ~y = (yi)
`
1 be the coefficient vector of H as in Section 5.1.1,

(b) Put M = (〈αi, αj〉) + (〈θ(αi), αj〉) for αi, αj ∈ ∆ so that
c
θ∆ exp(ad(H))
αi c

θ∆ exp(ad(H))
θ(αi)

= cθ∆αi c
θ∆
θ(αi)

e(M.~y)i ,

(c) Let ~yform =
∑
bjβj for βj ∈ ∆0, bj ∈ C⇒ H ∈ t+θ , and

(d) Solve the system of equations cθ∆ exp(ad(H))
αi c

θ∆ exp(ad(H))
θ(αi)

= 1 for ~y with the
restriction that ~y is of the form ~yform.

(CorrVec 3) Return all solutions H = ~y. ~H along with the general form of cθ∆ exp(ad(H))
α and

assumptions for each. End.

5.3.1 D2
5IIIb Example

Let ∆ = {α1, α2, α3, α4, α5} be a basis for a root system Φ of type D5 and θ an involution on Φ

of Cartan Type D2
5IIIb. Then the θ-diagram is shown below in Figure 5.1 and the θ-action on

∆ and the lifting constants for θ∆ are shown in Table 5.2.
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1 2 3

4

5

Θ*

Figure 5.1: D2
5IIIb θ-diagram

Table 5.2: D2
5IIIb: θ∆ Lifting Constants on the α-basis

αi 7→ θ(αi) cθ∆αi cθ∆θ(αi)
α1 7→ α1 1 1
α2 7→ −α1 − α2 − α3 1 1
α3 7→ α3 1 1
α4 7→ −α3 − α5 1 −1
α5 7→ −α3 − α4 1 −1
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We choose a Chevalley basis with respect to ∆ and a maximal toral subalgebra, t, of the
corresponding complex Lie algebra, g, such that Hi corresponds to αi in the normal way and
therefore the Hi’s form a basis of t as a vector space. Thus any H ∈ t may be expressed as

H = y1H1 + y2H2 + y3H3 + y4H4 + y5H5

such that yi ∈ C.
In order to find the correction vector H ∈ t such that θ∆ exp(ad(H)) is an involution, we need
to solve the following system:

e
∑5
j=1 yj(〈α1,αj〉+〈θ(α1),αj〉) = 1

e
∑5
j=1 yj(〈α2,αj〉+〈θ(α2),αj〉) = 1

e
∑5
j=1 yj(〈α3,αj〉+〈θ(α3),αj〉) = 1 (5.3.1 (a))

e
∑5
j=1 yj(〈α4,αj〉+〈θ(α4),αj〉) = −1

e
∑5
j=1 yj(〈α5,αj〉+〈θ(α5),αj〉) = −1

which can be solved as the following linear system where ki ∈ Z:

5∑
j=1

yj (〈α1, αj〉+ 〈(α1), αj〉) = 2k1iπ

5∑
j=1

yj (〈α2, αj〉+ 〈(−α1 − α2 − α3), αj〉) = 2k2iπ

5∑
j=1

yj (〈α3, αj〉+ 〈(α3), αj〉) = 2k3iπ (5.3.1 (b))

5∑
j=1

yj (〈α4, αj〉+ 〈(−α3 − α5), αj〉) = (2k4 + 1)iπ

5∑
j=1

yj (〈α5, αj〉+ 〈(−α3 − α4), αj〉) = (2k5 + 1)iπ.
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Cartan Matrix for Φ:

(〈αi, αj〉) =


2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 −1

0 0 −1 2 0

0 0 −1 0 2


θ-Permuted Cartan Matrix:

(〈θ(αi), αj〉) =


2 −1 0 0 0

−1 0 −1 1 1

0 −1 2 −1 −1

0 1 −1 1 −1

0 1 −1 −1 1


yi-Coefficient Matrix:

M = (〈αi, αj〉) + (〈θ(αi), αj〉) =


4 −2 0 0 0

−2 2 −2 1 1

0 −2 4 −2 −2

0 1 −2 3 −1

0 1 −2 −1 3


So, we solve the equation

(cθ∆αi c
θ∆
θ(αi)

e(M.~y)i)∆ =


e4y1−2y2

e−2y1+2y2−2y3+y4+y5

e−2y2+4y3−2y4−2y5

ey2−2y3+3y4−y5

ey2−2y3−y4+3y5

 =


1

1

1

1

1


and by restricting to our ~yform, this becomes

(cθ∆αi c
θ∆
θ(αi)

e(M.~yform)i)∆ =


e4y1

e−2y1−2y3

e4y3

e−2y3

e−2y3

 =


1

1

1

1

1


giving us the solution

{y1, y2, y3, y4, y5} =

{
1

2
iπ (4x1 − 1) , 0,

1

2
iπ (4x3 − 1) , 0, 0

}
or

H =
1

2
iπ ((4x1 − 1)Hα1 + (4x3 − 1)Hα3)
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where xi ∈ Z. For computation purposes we choose the simplest representation where xi = 0:

H = −1

2
iπ (Hα1 +Hα3) .

Hence we find the lifting constants for the corrected automorphism

θ∆ exp

(
ad

(
−1

2
iπ (Hα1 +Hα3)

))
and see that it is clearly an involution:

αi 7→ θ(αi) c
θ∆ Int(h)
αi c

θ∆ Int(h)
θ(αi)

α1 7→ α1 −1 −1
α2 7→ −α1 − α2 − α3 −1 −1
α3 7→ α3 −1 −1
α4 7→ −α3 − α5 i −i
α5 7→ −α3 − α4 i −i
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Chapter 6:

Lifting to θ∆ over C

This results in this chapter can be generalized to any algebraically closed field of characteristic
not 2. We restrict our attention to the complex numbers.

6.1 General results

Recall, we define the height of a root to be the sum of the coefficients in the basis:

ht(α) =
n∑
i=1

ri

when α =
∑n

i=1 riαi for αi ∈ ∆.

Lemma 6.1.1 (Black roots). Any fixed root α ∈ Φo(θ) has cθ∆α = 1:

θ∆ : Xα 7→ Xα ∀α ∈ Φ0(θ) (6.1.1 (a))

Proof. For any α =
∑

∆0(θ) siαi ∈ Φ0(θ), either α = αi ∈ ±∆0 in which case cθ∆α
def
= 1 or

α = β + γ such that β, γ ∈ Φ0. Which gives us

Nθ(β),θ(γ)

Nβ,γ
=
Nβ,γ

Nβ,γ
= 1

and
cθ∆α

def
= cθ∆β cθ∆γ

Nθ(β),θ(γ)

Nβ,γ
= cθ∆β cθ∆γ ,

so, by simple induction cθ∆α = 1 for any α ∈ Φ0(θ).
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Alternatively, recall that by definition we take the black dots of a θ-diagram to be the simple
roots fixed by θ, see for example Figures 6.1 and 6.2. Since θ acts linearly on Φ, it is also true for
any α =

∑
∆0(θ) siαi ∈ Φ0(θ) that θ(α) = θ

(∑
∆0(θ) siαi

)
=
∑

∆0(θ) siθ(αi) =
∑

∆0(θ) siαi = α.

αi+m−1αiαi−1 αi+1 αi+mαi+m−2

Figure 6.1: Black middle with θ∗ = id: α =
∑
siαi ∈ Φ0.

θ
∗

αi αi+m−1αi+m−2αi+1 αi+mαi−1

Figure 6.2: Black middle with θ∗ 6= id: α =
∑
siαi ∈ Φ0.

Remark 6.1.2. We also have the relation that if θ(αi) = −αi then cθ∆θ(αi) =
1

cθ∆αi
= 1 if αi ∈ ∆.

Lemma 6.1.3 (All white dots and θ∗ = id). If − id = θ ∈ Aut(X,Φ), corresponding to the
involution diagram of all white dots and no arches, then any automorphism θ̃ ∈ Aut(g, t) lifted
from θ must be an involution. In particular, θ∆ is an involution with structure constants

cθ∆α = (−1)ht(α)−1.

Proof. First we will show that any automorphism θ̃ ∈ Aut(g, t) lifted from − id = θ ∈ Aut(X,Φ)

is an involution and then we will prove the claim about the lifting constants, cθ∆α .

(Part 1) In this case, θ(α) = −α for all α ∈ Φ. We know that for any set of structure constants
for a lifted involution, cθ̃−α = 1/cθ̃α. Hence

θ̃2(Xα) = cθ̃αc
θ̃
θ(α)Xα = cθ̃α

1

cθ̃α
Xα = Xα
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and θ̃ is an involution of the Lie algebra. In the particular case of θ∆,

θ∆
2(Xα) = cθ∆α cθ∆θ(α)Xα = (±1)

1

(±1)
Xα = (±1)2Xα = Xα.

(Part 2) Next we will prove cθ∆α = (−1)ht(α)−1 for all α ∈ Φ. By definition cθ∆−α = cθ∆α and
(−1)n−1 = (−1)−n−1 for any n ∈ Z, so, it is sufficient to consider only α ∈ Φ+.

Case 1: ht(α) = 1. By definition, for any simple root αi ∈ ∆, cθ∆αi = 1 = (−1)0.

Case 2: ht(α) = 2. Assume α, β ∈ ∆ are simple roots. Recalling Table 3.1 and eq. (4.1.10
(b)):

Nα,β = −N−α,−β = −Nθ(α),θ(β)

giving us

cθ∆α+β = cθ∆α cθ∆β
Nθ(α),θ(β)

Nα,β
= cθ∆α cθ∆β

N−α,−β
Nα,β

= cθ∆α cθ∆β
−Nα,β

Nα,β
= −1 · cθ∆α cθ∆β

hence
cθ∆α+β = −1 · cθ∆α cθ∆β = −1 · 1 · 1 = (−1)1.

Case k: ht(α) = k.
cθ∆α = (−1)k−1.

Case k+1: ht(α+ αi) = k + 1. Assume ht(α) = k and ht(αi) = 1, then ht(α+ αi) = k + 1

by definition. Then

cθ∆α+αi
= cθ∆α cθ∆α

N−α,−αi
Nα,αi

(6.1.3 (a))

= −1 · cθ∆α cθ∆αi (6.1.3 (b))

= −1 · (−1)k−1 · 1 (6.1.3 (c))

= (−1)(k+1)−1. (6.1.3 (d))

Therefore by induction, cθ∆α = (−1)ht(α)−1 for all α ∈ Φ.

Remark 6.1.4. w0(θ) only acts non-trivially on roots containing or adjacent to roots containing
αi ∈ ∆0(θ). This is because all other roots are orthogonal to the roots in Φ0 and therefore also
to the reflections that compose w0(θ). Hence for any root α ∈ Φ\Φ0 that is acted on trivially
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by w0(θ):
θ(α) = − id θ∗ w0(θ)(α) = −θ∗(α)

Lemma 6.1.5. Remark 6.1.4, in turn, implies that θ∆ acts as involution on the root spaces
corresponding to α ∈ Φ\Φ0 upon which w0(θ) acts trivially.

Proof. Let α ∈ Φ\Φ0 upon which w0(θ) acts trivially as in remark 6.1.4. Since we’ve already
proved this to be true in the case when θ∗ = id, it is sufficient to prove the result when θ∗ 6= id.

Base Case 1: Consider first α = αi ∈ ∆\∆0 :

θ2
∆(Xαi) = cθ∆αi c

θ∆
θ(αi)

Xαi

= 1 · cθ∆−αjXαi such that αj ∈ ∆

= Xαi by remark 6.1.2.

Base Case 2: Let α = αi + αi+1 such that αi−1 . . . αi+1 ∈ ∆\∆0. Then

cθ∆θ(α) = cθ∆θ(αi)+θ(αi+1) = cθ∆θ(αi) · c
θ∆
θ(αi+1) ·

Nθ(θ(αi)),θ(θ(αi+1))

Nθ(αi),θ(αi+1)
=

Nαi,αi+1

Nθ(αi),θ(αi+1)
.

In types A and E,

cθ∆θ(α) =
Nαi,αi+1

Nθ(αi),θ(αi+1)
=

Nαi,αi+1

N−αj ,−αj−1

=
Nαi,αi+1

Nαj−1,αj

= 1 = cθ∆α ⇒ θ2
∆(Xα) = Xα.

In type D, this can only occur when αi = α`−2 and αi+1 is a spin node. Since
θ∗ : α`−1 ↔ α`, it is sufficient to consider one of these cases:

cθ∆θ(α) =
Nαi,αi+1

Nθ(αi),θ(αi+1)
=

Nα`−2,α`−1

Nθ(α`−2),θ(α`−1)
=

Nα`−2,α`−1

N−α`−2,−α`
=
Nα`−2,α`−1

−Nα`−2,α`

,

and

cθ∆α =
Nθ(α`−2),θ(α`−1)

Nα`−2,α`−1

=
N−α`−2,−α`
Nα`−2,α`−1

=
−Nα`−2,α`

Nα`−2,α`−1

=
1

cθ∆θ(α)

,

hence again θ2
∆(Xα) = Xα.

The result follows by induction on ht(α).
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6.2 θ-diagram components.

In this section we make a few remarks pertaining to the diagrammatic representation of irre-
ducible θ-indices.

Example 6.2.1. Consider the following θ-diagram component in Figure 6.3 and suppose the
white dots continue on to the left and the black dots in the middle. Then w0(θ)(αi−1) = αi−1

whereas w0(θ)(αi) 6= αi because αi is adjacent to a fixed root and αi−1 is not.

αi αi+m+1αi+1 αi+2 αi+m−1 αi+mαi−1 αi+m+2

Figure 6.3: White adjacent to black middle with θ∗ = id.

Remark 6.2.2 (θ action on white segments). Let αi ∈ ∆\∆0 such that its immediate neighbor-
ing αj are also white (∈ ∆\∆0), then θ acts on αi only by − id .θ∗. If θ∗ = id then θ : αi 7→ −αi,
if θ∗ 6= id then θ : αi 7→ −αj for some αj ∈ ∆\∆0. In either case cθ∆θ(αi) = 1 and hence θ∆ acts
as an involution on the corresponding root spaces Xαi .

αi

Figure 6.4: Type A segment with only white dots with θ∗ = id: αi ∈ ∆\∆0.

θ
∗

αi αℓ−i+1

Figure 6.5: In type A, the diagram automorphism maps αi ↔ α`−i+1 for all αi ∈ ∆.
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αℓ−1

θ
∗

αℓ

Figure 6.6: In type D, the diagram automorphism maps α` ↔ α`−1 and fixes all other αi ∈ ∆.

α1 α3 α4

θ
∗

α5 α6

α2

Figure 6.7: In type E6, the diagram automorphism maps α1 ↔ α6 and α3 ↔ α5 and fixes α2

and α4.

Proof. This follows directly from remark 6.1.4 above and the definition of a diagram automor-
phism.

Lemma 6.2.3 (White next to black middle). θ∆ acts as an involution on Xαi for any root
supported on an simple root like αi in Figure 6.8 with white dots to the left and black dots to the
right all simply laced.

αi αi+m+1αi+1 αi+2 αi+m−1 αi+mαi−1 αi+m+2

Figure 6.8: White adjacent to black middle with θ∗ = id.

Proof. First note that θ : αi 7→ − idwo(θ)(αi) = −αi−αi+1− · · · −αi+m. For cleaner notation,
let β = αi+1 + · · ·+ αi+m be the sum of the black roots, so, θ(αi) = −αi − β. Then

cθ∆θ(αi) = cθ∆−αi−β = cθ∆−αi · c
θ∆
−β ·

Nθ(−αi),θ(−β)

N−αi,−β

66



By definition 4.1.6 and lemma 6.1.1, we have

cθ∆−αi =
1

cθ∆αi
= 1 = cθ∆−β

and, so,

cθ∆θ(αi) =
Nαi+β,−β
−Nαi,β

=
−N−β,αi+ββ
−Nαi,β

=
−Nαi,β

−Nαi,β
= 1

6.3 Lifting Absolutely Irreducible Involutions over C

Theorem 1 (θ∆). Let θ∆ ∈ Aut(g, t) be the unique automorphism lifted from θ ∈ Aut(X,Φ)

such that θ∆|t = θ and
θ∆ (Xαi) = Xαi for all αi ∈ ∆.

Then θ∆ is an involution for any admissible absolutely irreducible involution θ except when
θ is of type D(`−1)/2

` IIIb.

Proof. This follows directly from the results in Table 6.1 and the explicit computations for the
exceptional root systems E, F, and G found below.

6.4 The lifting constants: cθ∆θ(αi)

Lemma 6.4.1. Let α ∈ Φ+\∆ and (ζ, η) be the minimal decomposition of α, then

cθ∆α = cθ∆η ⇐⇒ Nθ(ζ),θ(η) > 0.

Proof. We know |Nθ(ζ),θ(η)| = |Nζ,η| and hence
Nθ(ζ),θ(η)

Nζ,η
= ±1. By the definition of the minimal

decomposition, we also know that Nζ,η > 0. Therefore

cθ∆α = cθ∆ζ · c
θ∆
η ·

Nθ(ζ),θ(η)

Nζ,η
= 1 · cθ∆η ·

Nθ(ζ),θ(η)

Nζ,η
= cθ∆η

if and only if Nθ(ζ),θ(η) > 0.
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6.4.2 cθ∆θ(αi)
for the Classical Root Systems

For ease of reference, we present the θ-permuted lifting constants cθ∆αi for the simple roots of the classical Lie algebras in the following
Table 6.1. Proofs which are immediate from previously results are omitted.

Table 6.1: cθ∆θ(αi) for Admissible Involutions on the Simple Roots of Classical Lie Algebras.

θ(αi) = α cθ∆θ(αi) = cθ∆α θ-type(s)

θ(αi) = αi 1 AII, AIIIa, BI,CIIa,
DIa

(1)

θ(αi) = −αi 1 AI, BI, CI, DIa, DIb (2)

θ(αi) = −αj 1 DIb (`− 1↔ ` odd) (3)

θ(αi) = −α`−i+1 1 AIIIa (4)
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Table 6.1: Continued

θ(αi) = α cθ∆θ(αi) = cθ∆α θ-type(s)

θ(αi) = −αi−1 − αi − αi+1 1 :

Proof. Let γ = αi−1 and δ = αi + αi+1, then θ(γ) = γ
and θ(δ) = −αi − γ, so

cθ∆θ(αi) = 1 · cθ∆−δ ·
N−γ,γ+αi

−Nγ,δ

= cθ∆−αi · c
θ∆
−αi+1

·
Nθ(−αi),θ(−αi+1)

N−αi,−αi+1

Nγ,αi

−Nγ,αi+αi+1

= 1 · 1 ·
Nγ+δ,−αi+1

−Nαi,αi+1

Nγ,αi

−Nγ,αi+αi+1

=
Nαi−1+αi,αi+1

−Nαi,αi+1

Nαi−1,αi

−Nαi−1,αi+αi+1

= 1

by disjoint decomposition and lexicographic ordering
(see lemma 3.2.7).

AII, CIIa, DIIIa, DIIIb (5)

θ(αi) = −αi−1 − αi − αi+2 1 : cθ∆θ(α) = cθ∆−α`−3
· cθ∆−α`−2−α` ·

Nθ(−α`−3),θ(−α`−2−α`)

N−α`−3,−α`−2−α`
This minimal disjoint decomposition behaves like the
lexicographically-ordered one in row (5).

DIIIa (i = `− 2) (6)

θ(αi) = −αi − αi+1 − αi+2 1 : cθ∆−α`−1
· cθ∆−α`−2−α` ·

Nθ(−α`−1),θ(−α`−2−α`)

N−α`−1,−α`−2−α`
This minimal disjoint decomposition behaves like the
lexicographically-ordered one in row (5).

DIa (i = `− 2) (7)
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Table 6.1: Continued

θ(αi) = α cθ∆θ(αi) = cθ∆α θ-type(s)

θ(αi) = −αi+1 − αi+2 · · · − αi+m+1 1 :

Proof. Let γ = αi+1 + αi+2 · · · + αi+m ∈ Φ0(θ) and
δ = αi+m+1 ∈ ∆, then θ(γ) = γ and θ(δ) = −αi − γ,
and cθ∆δ = 1 = cθ∆γ , so

cθ∆θ(αi) = cθ∆−γ · c
θ∆
−δ ·

Nθ(−γ),θ(−δ)

N−γ,−δ

= 1 ·
Nθ(−γ),θ(−δ)

N−γ,−δ
=
−1

−1
·
Nθ(γ),θ(δ)

Nγ,δ

=
Nγ,−αi−γ
Nγ,δ

=
−N−γ,γ+αi

Nγ,δ
=
−Nγ,αi

Nγ,δ
=
Nαi,γ

Nγ,δ

Using lemma 3.2.7, we know that both the numerator
and the denominator are positive, and since the mag-
nitude of the Chevalley constants are all the same in a
type A subsystem, we have:

cθ∆θ(αi) =
Nαi,αi+1+αi+2···+αi+m

Nαi+1+αi+2···+αi+m,αi+m+1

= +1.

AIIIa (8)

θ(αi) = −αi−m−1 − αi−m · · · − αi−1 1 : Follows by similar argument as in row (8). AIIIa (9)
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Table 6.1: Continued

θ(αi) = α cθ∆θ(αi) = cθ∆α θ-type(s)

θ(αi) = −αi − 2
∑̀
i+1

αj 1 :

Proof. Let γ = αi+1 and δ = αi + αi+1 + 2
∑`

i+2 such
that θ(αi) = −γ − δ, ζδ = αi and ηδ = αi+1 + 2

∑`
i+2.

Then we know that ζδ ∈ ∆ and γ, ηδ ∈ Φ0(θ)
such that cθ∆γ = 1 = cθ∆ζδ = cθ∆ηδ . We also know
θ(ζδ) = θ(αi) = −γ − ζδ − ηδ and θ(δ) = −ζδ − γ.
Hence,

cθ∆θ(αi) = cθ∆−γ · c
θ∆
−δ ·

Nθ(−γ),θ(−δ)

N−γ,−δ

= 1 ·
(
cθ∆−ζδ · c

θ∆
−ηδ ·

Nθ(−ζδ),θ(−ηδ)

N−ζδ,−ηδ

)
Nθ(−γ),θ(−δ)

N−γ,−δ

=

(
Nθ(ζδ),θ(ηδ)

Nζδ,ηδ

)
Nθ(γ),θ(δ)

Nγ,δ

=

(
N−ζδ−ηδ−γ,ηδ

Nζδ,ηδ

)
Nγ,−ζδ−γ
Nγ,δ

By lemma 3.2.9, given a lexicographic decomposition
(γ, δ), Nγ,δ > 0 if γ and δ have disjoint support and
Nδ,γ > 0 if they do not. Hence

cθ∆θ(αi) =

(
Nηδ,ζδ+γ

Nζδ,ηδ

)
Nζδ,γ

Nγ,δ
= 1 · 1 = 1.

BI (10)
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Table 6.1: Continued

θ(αi) = α cθ∆θ(αi) = cθ∆α θ-type(s)

θ(αi) = −αi−1 − αi − 2
`−1∑
i+1

αj − α` 1 :

Proof. Let γ = αi−1 and δ = αi + 2
∑`−1

i+1 αj +α`, then
θ(γ) = γ and θ(δ) = −αi−γ, so by the work in row (8)
we have
cθ∆θ(αi) = cθ∆δ ·

Nαi,αi−1

Nγ,δ
.

Now letting ζδ = αi and ηδ = δ − αi ∈ Φ0(θ), and
noting that θ(ζδ) = θ(αi) = −γ − δ = −γ − ηδ − ζδ,

cθ∆θ(αi) = 1 ·
Nθ(ζδ),θ(ηδ)

Nζδ,ηδ

· (−1)

= −1 ·
N−γ−ηδ−ζδ,ηδ
Nαi,δ−αi

= −1 ·
Nηδ,γ+ζδ

Nαi,δ−αi

= −1 ·
N2αi+1+2

∑`−1
i+2 αj+α`,αi−1+αi

Nαi,δ−αi

= −1 · −1 = 1 by lemma 3.2.12.

CIIa (11)

θ(αi) = −2αi−1 − αi 1 : Follows by similar argument. CIIb (i = `) (12)
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Table 6.1: Continued

θ(αi) = α cθ∆θ(αi) = cθ∆α θ-type(s)

θ(αi) = −αi − 2
`−2∑
i+1

αj − α`−1 − α` 1 :

Proof. Let γ = αi+1 and δ = αi + αi+1 + 2
∑`−2

i+2 αj +
α`−1 + α`

cθ∆θ(αi) = cθ∆−γ · c
θ∆
−δ ·

Nθ(−γ),θ(−δ)

N−γ,−δ

= 1 · cθ∆−δ ·
N−γ,αi+γ
−Nγ,δ

= 1 · cθ∆δ ·
−Nαi,γ

−Nγ,δ
= cθ∆δ

Now let ζδ = αi ∈ ∆ and ηδ = δ − αi ∈ Φ0(θ):

= cθ∆ζδ · c
θ∆
ηδ
·
Nθ(ζδ),θ(ηδ)

Nζδ,ηδ

= 1 · 1 ·
N−ζδ−γ−ηδ,ηδ

Nζδ,ηδ

=
Nηδ,ζδ+γ

Nζδ,ηδ

Then we see that we have a reverse lexicographic
non-disjoint form in the numerator and a lexico-
graphic disjoint form in the denominator, and hence
by lemma 3.2.14:

cθ∆θ(αi) =
Nαi+1+2

∑`−2
i+2 αj+α`−1+α`,(αi+αi+1)

Nαi,δ−αi
= 1.

DIa (i < `− 2) (13)
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Table 6.1: Continued

θ(αi) = α cθ∆θ(αi) = cθ∆α θ-type(s)

θ(αi) = −α`−2 − αi±1 −1 :

Proof. It is sufficient to prove the case when i = `.

cθ∆θ(αi) = cθ∆−α`−2
· cθ∆−α` ·

Nθ(−α`−2),θ(−α`)

N−α`−2,−α`

= 1 · 1 ·
−Nθ(α`−2),θ(α`)

−Nα`−2,α`

=
−Nα`−2,−α`−2−α`−1

−Nα`−2,α`

=
N−α`−2,α`−2+α`−1

−Nα`−2,α`

=
Nα`−2,α`−1

−Nα`−2,α`

= −1

by definition of the minimal form.

DIIIb (i = ` − 1 or `)
Note: This appears to
be the only instance
when a simple rootis
mapped to a root of
height 2.

(14)
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6.5 Type A

θ∆ is always an involution.

Theorem 6.5.1 (Type A: θ∆ ∈ Aut(g, t) is an involution). For any admissible absolutely
irreducible involution θ ∈ Aut(X,Φ) where Φ is a type A root system, θ∆ ∈ Aut(g, t) is an
involution.

Proof. Follows directly from the results in Table 6.1.

cθ∆α Formulas

Remark 6.5.2. Let θ ∈ Aut(X,Φ) have absolutely irreducible θ-index, then there are two cases
in Type A:

Case 1: θ∗ is the identity (i.e. θ = −id · w0(θ)) ⇒ θ is an outer automorphism (i.e. acts by
transpose inverse on the group level and by − id ·XT on the Lie algebra) and cθ∆α =

(−1)ht(α)−1.

Case 2: θ∗ is not the identity (i.e. θ∗ = −θ w0(θ) = −w0) ⇒ θ is an inner automorphism (i.e.
acts by conjugation on the group level and by ad on the Lie algebra) and cθ∆α = 1.

6.6 Type B

θ∆ is always an involution.

Theorem 6.6.1 (Type B: θ∆ ∈ Aut(g, t) is an involution). For any admissible absolutely ir-
reducible involution θ ∈ Aut(X,Φ) where Φ is a type B root system, θ∆ ∈ Aut(g, t) is an
involution.

Proof. Follows directly from the results in Table 6.1.

cθ∆α Formulas

Lemma 6.6.2 (Type Bp
` I: θ∆ Constants). For any involution θ of type Bp

` I, write α ∈ Φ+(T )

as α =
∑
riαi +

∑
sjβj where αi ∈ ∆\∆0 and βj ∈ ∆0, then the structure constants for θ∆ are

determined by
∑
ri:

cθ∆α = (−1)
∑
ri−1 (6.6.2 (a))

Note. Roots that include an odd number of white roots have +1 coefficient and roots with even
number of white roots have coefficient −1.

Proof. Follows from relations of the Chevalley constants and the action of the involution.
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6.7 Type C

θ∆ is always an involution.

Theorem 6.7.1 (θ∆ in Type C). For any admissible absolutely irreducible involution θ ∈
Aut(X,Φ) where Φ is a type C root system, θ∆ ∈ Aut(g, t) is an involution.

Proof. Follows directly from the results in Table 6.1.

6.8 Type D

6.8.1 θ∆ is almost always an involution.

DIa & DIb Write α =
∑

αi∈∆\∆0
riαi +

∑
βj∈∆0

sjβj , then

cθ∆α = (−1)
∑
ri−1 (6.8.1 (a))

Note. DIb falls into the general case for −id = θ, i.e. cθ∆α = (−1)
∑
ri−1 = (−1)ht(α)−1.

DIIIa For type DIIIa, defined only for even rank, θ∆ is and involution and we can define the
structure constants piecewise: Let ` = rank(Φ), and write α =

∑`
i=1 riαi.

v f v f v f f
v

α1 α2 α3 α4 α`−3 α`−2

α`−1

α`
. . . ��

�
HHH

Figure 6.9: Dp
` IIIa, ` even and p = `/2

DIIIb This is the only case when θ∆ is not an involution. As we observed in Table 6.1, this is
precisely because there are αi ∈ ∆ such that cθ∆θ(αi) = −1 6= 1 . Rather unsurprisingly, it
is the spin nodes that require the correction of θ∆. To correct θ∆, we find a (non-unique)
correction vector H ∈ t+θ corresponding to h ∈ T+

θ of the following form:

H =
iπ

2

∑
αi∈∆0(θ)

(4xi − 1)Hαi , where xi ∈ Z.

Using this correction vector we find our lifted involution

θ∆ Int(h) = θ∆ exp (ad (H)) .
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For computation, we may choose a simplest form of H such that xi = 0:

H = − iπ
2

∑
αi∈∆0(θ)

Hαi .

Example 6.8.2 (Lifting θ of type D2
5IIIb.). Recall the example from Chapter 5:

1 2 3

4

5

Θ*

Figure 6.10: D2
5IIIb θ-diagram

Table 6.2: D2
5IIIb: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ α1 1 1

α2 7→ −α1 − α2 − α3 1 1

α3 7→ α3 1 1

α4 7→ −α3 − α5 1 −1

α5 7→ −α3 − α4 1 −1

Table 6.3: D2
5IIIb: θ∆ exp

(
ad
(
−1

2 iπ (Hα1 +Hα3)
))

Lifting Constants on the α-basis

α 7→ θ(α) c
θ∆ Int(h)
α c

θ∆ Int(h)
θ(α)

α1 7→ α1 −1 −1

α2 7→ −α1 − α2 − α3 −1 −1

α3 7→ α3 −1 −1

α4 7→ −α3 − α5 i −i
α5 7→ −α3 − α4 i −i
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6.9 Type E

θ∆ is always an involution.

Lemma 6.9.1 (Type E: cθ∆θ(α2) = 1). For any absolutely irreducible involution in type E, cθ∆α2
= 1.

Proof. For any absolutely irreducible θ on a type E root system θ|α2 = id or θ|α2 = − id. Hence
by previous results cθ∆α2

= 1.

Henceforth we will only address the lifting constants of the remaining simple roots in ∆ in
order to show cθ∆αi = 1 and hence that θ∆ is an involution.

Type E rank 6

EI All white dots with θ∗ = id: The lifting constants are cθ∆α = (−1)ht(α)−1 (see lemma 6.1.3).

1

2

3 4 5 6

Figure 6.11: E6
6I θ-diagram

Table 6.4: E6
6I: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α1 1 1
α2 7→ −α2 1 1
α3 7→ −α3 1 1
α4 7→ −α4 1 1
α5 7→ −α5 1 1
α6 7→ −α6 1 1
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EII θ∆ is an involution: θ acts as − id on {α2, α4}, therefore by lemma 6.1.3, cθ∆θ(α2) = 1 =

cθ∆θ(α4). Similarly, θ acts as −θ∗ on the remaining simple roots and so for α ∈ ∆ such that

θ∗(α) 6= α, θ(αi) = −αj and so cθ∆θ(αi) = cθ∆−αj = 1. Hence, cθ∆αi c
θ∆
θ(αi)

= 1 for all αi ∈ ∆ and
θ∆ is an involution.

1

2

3 4 5 6

Θ*

Figure 6.12: E4
6II θ-diagram

Table 6.5: E4
6II: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α6 1 1
α2 7→ −α2 1 1
α3 7→ −α5 1 1
α4 7→ −α4 1 1
α5 7→ −α3 1 1
α6 7→ −α1 1 1
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EIII For θ of type EIII, θ∆ is an involution. It is sufficient to show that α1, α6 ∈ ∆\∆0 have
cθ∆θ(α) = 1 which in fact follows from the arguments presented for type A.

1

2

3 4 5 6

Θ*

Figure 6.13: E2
6III θ-diagram

Table 6.6: E2
6III: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α3 − α4 − α5 − α6 1 1
α2 7→ −α2 − α3 − 2α4 − α5 1 1
α3 7→ α3 1 1
α4 7→ α4 1 1
α5 7→ α5 1 1
α6 7→ −α1 − α3 − α4 − α5 1 1
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EIV For θ of type EIV, θ∆ is an involution. It is sufficient to show that α1, α6 ∈ ∆\∆0 have
cθ∆θ(α) = 1.

1

2

3 4 5 6

Figure 6.14: E2
6IV θ-diagram

Table 6.7: E2
6IV: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α1 − α2 − 2α3 − 2α4 − α5 1 1
α2 7→ α2 1 1
α3 7→ α3 1 1
α4 7→ α4 1 1
α5 7→ α5 1 1
α6 7→ −α2 − α3 − 2α4 − 2α5 − α6 1 1
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Type E rank 7

EV All white dots with θ∗ = id: The lifting constants are cθ∆α = (−1)ht(α)−1 (see lemma 6.1.3).

1

2

3 4 5 6 7

Figure 6.15: E7
7V θ-diagram

Table 6.8: E7
7V: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α1 1 1
α2 7→ −α2 1 1
α3 7→ −α3 1 1
α4 7→ −α4 1 1
α5 7→ −α5 1 1
α6 7→ −α6 1 1
α7 7→ −α7 1 1
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EVI For θ of type EVI, θ∆ is an involution.

1

2

3 4 5 6 7

Figure 6.16: E4
7VI θ-diagram

Table 6.9: E4
7VI: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α1 1 1
α2 7→ α2 1 1
α3 7→ −α3 1 1
α4 7→ −α2 − α4 − α5 1 1
α5 7→ α5 1 1
α6 7→ −α5 − α6 − α7 1 1
α7 7→ α7 1 1

83



EVII

Lemma 6.9.2. For θ of type EVII, θ∆ is an involution.

Proof. It is sufficient to show that αi ∈ ∆\∆0 have cθ∆θ(αi) = 1. This follows from the proof
of Section 6.9 and

1

2

3 4 5 6 7

Figure 6.17: E3
7VII θ-diagram

Table 6.10: E3
7VII: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α1 − α2 − 2α3 − 2α4 − α5 1 1
α2 7→ α2 1 1
α3 7→ α3 1 1
α4 7→ α4 1 1
α5 7→ α5 1 1
α6 7→ −α2 − α3 − 2α4 − 2α5 − α6 1 1
α7 7→ −α7 1 1
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Type E rank 8

EVIII All white dots with θ∗ = id: The lifting constants are cθ∆α = (−1)ht(α)−1 (see lemma 6.1.3).

1

2

3 4 5 6 7 8

Figure 6.18: E8
8VIII θ-diagram

Table 6.11: E8
8VIII: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α1 1 1
α2 7→ −α2 1 1
α3 7→ −α3 1 1
α4 7→ −α4 1 1
α5 7→ −α5 1 1
α6 7→ −α6 1 1
α7 7→ −α7 1 1
α8 7→ −α8 1 1
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EIX It from the proofs of Section 6.9 and lemma 6.1.3 that For θ of type EIX, θ∆ is an
involution.

1

2

3 4 5 6 7 8

Figure 6.19: E4
8IX θ-diagram

Table 6.12: E4
8IX: θ∆ Lifting Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α1 − α2 − 2α3 − 2α4 − α5 1 1
α2 7→ α2 1 1
α3 7→ α3 1 1
α4 7→ α4 1 1
α5 7→ α5 1 1
α6 7→ −α2 − α3 − 2α4 − 2α5 − α6 1 1
α7 7→ −α7 1 1
α8 7→ −α8 1 1

86



6.10 Type F

θ∆ is always an involution.

FI All white dots with θ∗ = id: The lifting constants are cθ∆α = (−1)ht(α)−1 (see lemma 6.1.3).

1 2 3 4

Figure 6.20: F 4
4 I θ-diagram

Table 6.13: F 4
4 I: θ∆ Lifting Constants on

the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α1 1 1
α2 7→ −α2 1 1
α3 7→ −α3 1 1
α4 7→ −α4 1 1

FII Write α =
∑
riαi +

∑
sjβj where αi ∈ ∆\∆0 and βj ∈ ∆0. Then the lifting constants are

cθ∆ =

1 if r4 = 0 (all black dots)

(−1)
∑
sj if r4 6= 0

1 2 3 4

Figure 6.21: F 1
4 II θ-diagram

Table 6.14: F 1
4 II: θ∆ Lifting Constants on

the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ α1 1 1
α2 7→ α2 1 1
α3 7→ α3 1 1
α4 7→ −α1 − 2α2 − 3α3 − α4 1 1
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6.11 Type G

θ∆ is an involution.

All white dots with θ∗ = id: The lifting constants are cθ∆α = (−1)ht(α)−1 (see lemma 6.1.3).

1 2

Figure 6.22: G2
2 θ-diagram

Table 6.15: G2
2: θ∆ Lifting

Constants on the α-basis

α 7→ θ(α) cθ∆α cθ∆θ(α)

α1 7→ −α1 1 1
α2 7→ −α2 1 1
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Part III

Commuting Pairs of Involutions

89



Chapter 7:

Introduction

As discussed in Part I, we will now classify commuting pairs of involutions over the algebraically
closed field C of the simple Lie algebras. From now on we will let Φ(g, t) be an irreducible root
system and hence g a simple Lie algebra. Let (σ, θ) ∈ Aut(X,Φ) be an ordered pair of commuting
admissible involutions of the root system, (σ̃, θ̃) ∈ Aut(g, t) be the corresponding arbitrary lifted
involutions of the Lie algebra and (σ∆, θ∆) ∈ Aut(g, t) be as in definition 4.1.6. For each ordered
pair of admissible involutions in Aut(Φ) we will find the standard pair (see definition 7.1.11),
and for this we will need the notion of the signature of a lifted pair and some more notation.

Notation 7.0.1. The following notation will appear in our discussion of commuting pairs of
involutions:

Table 7.1: Notation

Symbol : Definition

G : a semisimple (usually simple) Lie group
T : a fixed maximal torus (i.e. maximal connected diagonalizable subgroup) of

G

g : the simple Lie algebra of G
t : a maximal toral subalgebra of g
a : a toral subalgebra ⊂ t

Φ : Φ(T ) the root system with respect to T
X : ZΦ - an integer lattice of Φ, may be a root or weight lattice, (X∗(T ) char-

acters)
W : W (T ) Weyl group with respect to T
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Table 7.1: Continued

Symbol : Definition

Ψ : (X∗(T ) , Φ(T ) , X∗(T ) , Φ∨(T )), the root datum corresponding to T

Nα,β : Chevalley constants
cσ∆
α , cθ∆α : lifting constants of σ∆ and θ∆ respectively
cσθα : lifting constants of the involution lifted from σθ = θσ

〈αi, αj〉 : The product defined by the Killing form on g that relates the root system
and its dual.

T−σ , T
+
σ : the σ-split and σ-stable tori respectively, likewise for T±θ

T−(σ,θ), T
+
(σ,θ) : the (σ, θ)-split and (σ, θ)-stable tori respectively

T−σθ, T
+
σθ : the σθ-split and σθ-stable tori respectively

g(A, λ) : For λ ∈ Φ(A) let g(A, λ) = {X ∈ g | [H,X] = λ(H)X ∀H ∈ a} be the
corresponding root space. Since σθ(λ) = λ, we have σθ(g(A, λ)) = g(A, λ).

g(A, λ)±σθ : {X ∈ g(A, λ) | σθ(X) = ±X}
m±(λ, σθ) : dimkg(A, λ)±σθ
Φ(T, λ) : {α ∈ Φ(T ) | α|A = λ}
msplit(λ, σθ) : |Φsplit(λ, σθ)| such that Φsplit(λ, σθ) = {α ∈ Φ(T, λ) | σθ(α) 6= α}
mcheck(λ, σθ): |Φcheck(λ, σθ)| such that Φcheck(λ, σθ) = {α ∈ Φ(T, λ) | σθ(α) = α}

m(λ) :
dimk g(A, λ) = m+(λ, σθ) +m−(λ, σθ) = |Φ(T,λ)|

= msplit(λ, σθ) +mcheck(λ, σθ)

In this chapter we will discuss the following lifting admissible involutions to simple Lie
algebras. Let us first recall some definitions.

7.1 Preliminaries

7.1.1 Admissible pairs

The formal definition of an admissible pair of commuting involutions is as follows:

Definition 7.1.2 (admissible pair,[Helminck(1988), 5.18] ). Let T be a maximal torus of G. A
pair of commuting involutorial automorphisms (σ, θ) of (X∗(T ),Φ(T )) is said to be admissible
(with respect to G) if there exists a pair of commuting involutorial automorphisms (σ̃, θ̃) of G,
normally related to T and such that σ̃

∣∣
T

= σ, θ̃
∣∣
T

= θ.

We will however use the following equivalent definition which is more combinatorial.
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Definition 7.1.1 (admissible pair). Let (σ, θ) be a pair of commuting involutions of (X,Φ).
Then (σ, θ) is admissible if and only if (σ, θ) is basic and both σ and θ are admissible
[Helminck(1988), 7.11].

Such that "basic" is defined as follows:

Definition 7.1.3 (basic). A pair of commuting involutions (σ, θ)of (X,Φ) is called basic if Φ

has a strong (σ, θ)-basis ∆ for which w0(θ), w0(σ), σ∗, θ∗ mutually commute, where a (σ, θ)-order
� on Φ is called a strong (σ, θ)-order if it is simultaneously a σ- and a θ-order of Φ. A basis of
Φ with respect to a strong (σ, θ)-order will be called a strong (σ, θ)-basis.

We again have nice combinatorial equivalent definition:

Theorem 7.1.4 (Combinatorial Conditions of basic (σ, θ)). Let σ, θ be related involution of
(X,Φ) and ∆ a [Helminck(1988), relating basis, 7.12] of Φ with respect to (σ, θ). Then (σ, θ) is
basic if and only if

(1) σ∗ and θ∗ commute,

(2) ∆0(θ) is σ∗-stable and ∆0(σ) is θ∗-stable

(3) for every connected component ∆1 of ∆0(θ)∪∆0(σ) we have ∆1 ⊂ ∆0(θ) or ∆1 ⊂ ∆0(σ).
[Helminck(1988), 7.16]

Definition 7.1.5 ([Helminck(1988), 5.2]). A torus A of G is called (σ, θ)-split if A is σ- and
θ-split. A torus T of G, which is σ- and θ-stable shall be called (σ, θ)-stable. We then put

T−(σ,θ) = {t ∈ T | σ(t) = θ(t) = t−1}0.

7.1.6 ([Helminck(1988), 5.6]). Let T be a (σ, θ)-stable maximal torus of G, denote by Ψ =

(X∗(T ), Φ(T ), X∗(T ), Φ∨(T )) the corresponding root datum and write A = T−(σ,θ). For the
moment we do not yet assume that A is a maximal (σ, θ)-split torus of G. Using the notations
of Part I we have the following identifications:

Lemma 7.1.7. Let T,Ψ, σ, θ and A be as above. Then

(i) X0(σ, θ) = {χ ∈ X∗(T ) | χ(A) = 1};

(ii) Φ(σ,θ) = Φ(A);

(iii) W1(σ, θ) = {w ∈W (T ) | w(A) = A} and W0(σ, θ) = {w ∈W (T ) | w|A = id};

(iv) W (A) ≈W1(σ, θ)/w0(σ, θ) ≈W (σ,θ).
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Lemma 7.1.8 ([Helminck(1988), 5.10]). If Φ(G,T ) is irreducible, i.e. G is simple, and σ 6=
id, θ 6= id, then non-trivial (σ, θ)-split tori exist.

Proposition 7.1.9 ([Helminck(1988), 5.13]). There exist (σ, θ)-stable maximal tori T of G such
that T−(σ,θ) is a maximal (σ, θ)-split torus of G, T−σ is a maximal σ-split torus of G and T−θ is a
maximal θ-split torus of G. Moreover all such maximal tori of G are conjugate under (Gσ∩Gθ)0.

[Helminck(1988), Section 6] Let T be a (σ, θ)-stable maximal torus of G and A = T−(σ,θ) a
non-trivial maximally (σ, θ)-split torus of G with (not necessarily reduced) root system Φ(A) =

Φ(σ, θ), the restricted root system of the pair of involutions, (σ, θ).

Definition 7.1.10. For λ ∈ Φ(A) call m(λ) the multiplicity of λ and (m+(λ, σθ),m−(λ, σθ))

the signature of λ.

For every λ ∈ Φ(σ, θ), the signature is determined by the dimension of the ±1 eigenspace of
the lifted involution σ̃θ̃ in the Lie algebra, g. For λ ∈ Φ(A) let

g(A, λ) = {X ∈ g | [H,X] = λ(H)X ∀H ∈ a}

be the corresponding root space. Since σθ(λ) = λ, we have σθ(g(A, λ)) = g(A, λ).

g(A, λ) : {X ∈ g | [H,X] = λ(H)X ∀H ∈ a}
g(A, λ)±σθ : {X ∈ g(A, λ) | σθ(X) = ±X}
m±(λ, σθ) : dimkg(A, λ)±σθ
Φ(T, λ) : {α ∈ Φ(T ) | α|A = λ}
m(λ) : dimk g(A, λ) = m+(λ, σθ) +m−(λ, σθ) = |Φ(T,λ)|

Now, we can define the standard pair in terms of the signature.

Definition 7.1.11 ([Helminck(1988), 6.11]). A pair of commuting involutorial automorphisms
(σ̃, θ̃) of G is called a standard pair if m+(λ, σθ) ≥ m−(λ, σθ) for any maximal (σ, θ)-split torus
A of G and any λ ∈ Φ(A) such that 1

2λ /∈ Φ(A).

7.2 Finding the signature for α ∈ Φ(T, λ)

For α ∈ Φ(T, λ), we get two cases. Let λ = πσθ(α).

Case 1: σθ(α) 6= α. If σθ(α) 6= α, then it must be the case that σθ(α) = β ∈ Φ(T, λ) and
σθ(β) = α. In this case, the corresponding subspace splits nicely regardless of the lift-
ing constants, cσθα , into the two eigenspaces: one vector to the +1- and one to the −1-
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eigenspace. i.e.

σθ(Xα + σθ(Xα)) = σθ(Xα + cσθα Xσθ(α))

= cσθα Xα + cσθα c
σθ
σθ(α)Xα

= σθ(Xα) +Xα

= Xα + σθ(Xα) ∈ g(A, λ)+
σθ

σθ(Xα − σθ(Xα)) = σθ(Xα)−Xα

= −(Xα − σθ(Xα)) ∈ g(A, λ)−σθ

Case 2: σθ(α) = α. If α ∈ Φ(T, λ) such that σθ(α) = α, then since σ and θ are both involutions:

σθ(α) = α ⇐⇒ σ(α) = θ(α)

and

λ =
1

4
(α− σ(α)− θ(α) + σθ(α))

=
1

4
(2α− σ(α)− θ(α))

=
1

4
((α− σ(α)) + (α− θ(α)))

=
1

2
(α− σ(α)) ∈ Φσ ∩ Φσ.

In this case, there are two possible forms for λ.

Case (a): If σ(α) = θ(α) = −α, then

λ =
1

4
(2α+ 2α) = α.

Notice that this means α ∈ Φσ ∩ Φθ and Hα ∈ T−(σ,θ).

Case (b): If σ(α) = θ(α) 6= −α, then

λ =
1

2
(α− σ(α)) .

7.2.1 What we know about the lifting constants.

In the first case when σθ(α) 6= α, as seen above, the lifting constants do not effect the the
dimension of the eigenspaces. In the second case when σθ(α) = α, however, we can see easily
that cσθα = ±1: Given that we assume σ̃ and θ̃ commute on the Lie algebra, and hence σ̃θ̃ an
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involution, we know

σ̃θ̃(Xα) = cσθα Xσθ(α) = cσθα Xα (7.2.1 (a))

and

cσθα · cσθσθ(α) = (cσθα )2 = 1 (7.2.1 (b))

which implies that

cσθα = ±1. (7.2.1 (c))

In this case, we also know that σ(α) = θ(α) and, so,

cσθα = cθα · cσθ(α) = cθα · cσσ(α) = cσα · cθθ(α) (7.2.1 (d))

Again considering the two possible forms of λ:

Definition 7.2.2. Let θ ∈ Aut(G) be an involution stabilizing T. Then a root α ∈ Φ(T ) is
called

• θ-singular , if θ(α) = ±α and θ|ZG((Kerα)0) 6= id;

• real with respect to θ, if θ(α) = −α;

• noncompact imaginary with respect to θ, if θ(α) = α and α is θ-singular. In this case
cα,θ = −1, as follows also by simple computation in SL2.

• compact imaginary with respect to θ, if θ(α) = α and α is not θ-singular, then cα,θ = 1.

7.2.3 cσθα when σ(α) = θ(α) = −α

When α is real with respect to σ and θ, and imaginary with respect to σθ. This indicates that
cσθα will be decided by whether or not α is also σθ-singular. Equivalently, if cσα = cθα, then cσθα = 1

and α is compact imaginary with respect to σθ. If cσα = −cθα, then cσθα = −1 and α is noncompact
imaginary with respect to σθ. To determine the lifting constant, we can consider the action of
each involution restricted to gα. By our maximality condition on T , gα is one dimensional and
so the subalgebra tα ⊕ gα ⊕ g−α ≈ sl(2,C). Recall our example in sl(2,C),

Example 5.2.0.1 (Involutions in sl(2,C)). In sl(2,C) there is only one conjugacy class of
involutions, which may be represented by abuse of notation by θ(X) = −XT , corresponding
to the opposition involution on the root system A1, θ(α) = −α = −θ∗(α) = − id∗(α). If
we take a natural basis of sl(2,C), it is clear by simple calculation that the lifting constants
cθα = −1 = cθ−α:

Hα =

(
a 0

0 −a

)
, Xα =

(
0 1

0 0

)
, X−α =

(
0 0

1 0

)
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then

[Hα , Xα] = aXα − (−a)Xα = 2aXα

[Hα , X−α] = −aX−α − aX−α = −2aX−α

and

θ : Hα 7→

(
−a 0

0 a

)
= −Hα = H−α = Hθ(α)

Xα 7→

(
0 0

−1 0

)
= −X−α = −Xθ(α) = cθαXθ(α)

X−α 7→

(
0 −1

0 0

)
= −Xα = −Xθ(−α) = cθ−αXθ(−α)

Composition with

Int(hα) = Int

(
exp

(
iπ

2a
Hα

))
= Int

(
e
iπ
2 0

0 e−
iπ
2

)

gives us another involution that has the same action on the root space, but different lifting
constants:

θ Int(hα) : Hα
Int(hα)7−−−−→

(
a 0
0 −a

)
θ7−→
(
−a 0
0 a

)
= −Hα = H−α = Hθ(α)

Xα
Int(hα)7−−−−→

(
0 −1
0 0

)
θ7−→
(

0 0
1 0

)
= X−α = Xθ(α) = c

θ Int(hα)
α Xθ(α)

X−α
Int(hα)7−−−−→

(
0 0
−1 0

)
θ7−→
(

0 1
0 0

)
= Xα = Xθ(−α) = c

θ Int(hα)
−α Xθ(−α)

So in this example we have shown that θ∆ = θ Int(hα).
This process allows us to choose the θ̃ ∈ Aut(G,T ) to which we lift θ ∈ Aut(Φ).

7.2.4 cσθα when σ(α) = θ(α) 6= −α

This case is in fact composed of several smaller cases which analyzed in a similar manner.
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Chapter 8:

Lifting Pairs of Commuting Involutions

8.1 Terminology

Let us first define some short-hand terminology to make discussing these pairs easier.

Definition 8.1.1. We will use the following to refer to different categories of involutions:
Nice Pair We will call a pair of involutions (σ, θ) "nice" if both σ∆ and

θ∆ are involutions, σ∆θ∆ = θ∆σ∆ and (σ∆, θ∆) is standard.
Simply Lifted Another name for "Nice." We will also say a single involution

θ is "simply lifted" or "nice" if θ∆ is an involution.
Better-than-Okay Pair We will call a pair of involutions (σ, θ) "better-than-okay" if at

least one of σ∆ and θ∆ is not an involution, but the (possibly
both) corrected involutions commute σ∆ Int(hσ)θ∆ Int(hθ) =

θ∆ Int(hθ)σ∆ Int(hσ) and (σ∆ Int(hσ), θ∆ Int(hθ)) is standard.
Note that w.l.o.g. Int(hσ) may act as the identity.

Decent Pair We will say a pair of involutions (σ, θ) is "decent" if the lifted
pair (σ̃, θ̃) commutes but is not standard. In this case, we cor-
rect to the standard pair (σ̃, θ̃ Int(h)) where h ∈ T+

σθ.
Corrected for Standard Another name for "Decent".
Feisty Pair We will say a pair of involutions (σ, θ) is "feisty" if our lifted

single involutions σ̃ and θ̃ do not commute. It happens to be
the case that these only occur for a handful of involutions such
that σ̃ = σ∆ and θ̃ = θ∆. Again, we correct to the standard
pair (σ̃, θ̃ Int(h)) where h ∈ T+

σθ.
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Definition 8.1.2. Given any lifted pair of involutions (σ̃, θ̃), we will say the pair (σ̃, θ̃ Int(h))

is a corrected pair of (σ̃, θ̃). We will refer to h ∈ T or its corresponding H ∈ t such that
Int(h) = exp(ad(H)) as the correction vector for this pair. Since we "correct" to the standard
pair (or to an involution), to avoid confusion we will distinguish these shifted pairs as having
"standard" or "non-standard" correction vectors.

8.2 Constructing the standard pair

8.2.1 Lifting Algorithm for Commuting Pairs (σ, θ)

The following algorithm is implemented in our k-involutions Mathematica package as

makeAdmissiblePair[{sigma_admissibleInvolution, theta_admissibleInvolution}].

It is the method by which we find the standard pair for each admissible pair of commuting
involutions (σ, θ) ⊂ Aut(Φ).

Algorithm 8.3 (Lifting a Commuting Pair of Involutions).
Input: (σ̃, θ̃) with all data including the root ac-

tions of each
Output: Standard pair with all correction vectors.

See Algorithm 8.4.

(LiftPair 1) Compute the root action of σθ.

(LiftPair 2) Compute the projected roots π(σ,θ)(Φ
+) and determine Φ

+ and ∆.

(LiftPair 3) For each restricted root λ ∈ Φ
+, record the preimage of the projection map

π−1
(σ,θ)(λ) ⊂ Φ+ = {α ∈ Φ(T ) | α|A = λ} = Φ(T, λ).

(LiftPair 4) Record data for computing the signature of the correction vectors. For each λ ∈
Φ

+:

m(λ) = m+(λ, σθ) +m−(λ, σθ) (8.3.0 (a))

= msplit(λ, σθ) +mcheck(λ, σθ) (8.3.0 (b))

and

m±(λ, σθ) = m±split(λ) +m±check(λ) (8.3.0 (c))

(a) Determine Φsplit(λ, σθ) = {α ∈ Φ(T, λ) | σθ(α) 6= α}.

Note. m+
split(λ) = m−split(λ), and so does not indicate whether or not (σ̃, θ̃) is

standard.
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(b) Determine Φcheck(λ, σθ) = {α ∈ Φ(T, λ) | σθ(α) = α}.

Note. mcheck(λ, σθ) = m+
check(λ) +m−check(λ) and (σ̃, θ̃) is standard if

m+
check(λ) ≥ m−check(λ) which is true if and only if m+

check(λ)−m−check(λ) ≥ 0.

(c) getReducedRoots since our definition of standard only depends on λ ∈ Φ(A)

such that 1
2λ /∈ Φ(A).

(LiftPair 5) Call Algorithm 8.4: getCorrectionVectors[myPair_admissiblePair].

(LiftPair 6) getSignatures to differentiate Standard and Non-Standard Correction Vectors,
noting that lifted pairs with the same signature are isomorphic.

(LiftPair 7) Choose a representative Standard Correction Vector and use this to determine
the lifting constants cσθ exp(ad(H))

α of the standard pair. Whenever possible choose
H such that exp(ad(H)) = id.

(LiftPair 8) End.

8.3.1 Correction Vector Algorithm for (σ̃, θ̃)

Assuming σ̃ and θ̃ are involutions on the Lie algebra such that σθ = θσ on the root system, if
σ̃θ̃(Xα) 6= σ̃θ̃(Xα) for some α ∈ Φ we need to solve the equations

σ̃ θ̃ eα(H)(Xα) = θ̃ eα(H) σ̃(Xα) (8.3.1 (a))

and (
θ̃ eα(H)

)2
(Xα) = Xα. (8.3.1 (b))

This gives us the condition that θ̃ead(H) is an involution that commutes with σ̃ and hence
that σ̃θ̃ead(H) is an involution on the Lie algebra. We can limit our search still further by applying
Proposition 5.2.2 to the involution σθ:

8.3.2. Suppose (σ, θ) is admissible then σθ = θσ ⇐⇒ (σθ)2 = id. By abuse of notation denote
σ̃|T = σ and likewise for θ̃. Let ∆ be a relating basis so that σ(T ) = θ(T ) = T . Recall

T−σ, θ = {t ∈ T | σ(t) = θ(t) = t−1}0

T+
σ, θ = {t ∈ T | σ(t) = θ(t) = t}0.

Similarly,

T−σ = {t ∈ T | σ(t) = t−1}0

T+
σ = {t ∈ T | σ(t) = t}0 = (T ∩Gσ)0
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and likewise for T−θ and T+
θ . So we have the identities,

T+
σ, θ =

(
T+
σ ∩ T+

θ

)
T−σ, θ =

(
T−σ ∩ T−θ

)
.

By definition, (σ, θ) is admissible if and only if ∃σ̃, θ̃ ∈ Aut(G,T ) such that

σ̃|T = σ and θ̃|T = θ

σ̃2 = id = θ̃2

σ̃θ̃ = θ̃σ̃

which is true if and only if

(σ̃θ̃)2 = σ̃θθ̃σ̃ = id

⇒ σ̃θ̃ ∈ Aut(G,T ) is an involution.

Suppose we lift (σ, θ) to (σ̂, θ̂) such that σ̂2 = id = θ̂2 and σ̂|T = σ and θ̂|T = θ but σ̂θ̂ 6= θ̂σ̂

and so σ̃θ̃ 6= id. Since (σ, θ) is admissible, ∃(σ̃, θ̃) as above such that

σ̃θ̃ = σ̂θ̂ Int(t) for some t ∈ T+
σθ

such that by Proposition 5.2.2 (σ̃θ̃)2 = id = (σ̂θ̂ Int(t))2 and σ̂θ̂Int(t) = Int(σθ(t))σ̂θ̂ = Int(t)σ̂θ̂.

Note. T+
σθ = {t ∈ T | σθ(t) = t}0 = (T ∩Gσθ)0 = T+

σθ × T
−
σ, θ, so t = t+t− where t+ ∈ T+

σ, θ and
t− ∈ T−σ, θ.

So in order to determine conditions on t, we observe the following.

id = (σ̂θ̂ Int(t)) · (σ̂θ̂ Int(t))

= (σ̂θ̂)2 Int(σθ(t)t),

for t ∈ T+
θ σθ,

= (σ̂θ̂)2 Int(t2)

⇒ (σ̂θ̂)2 = Int(t2)−1 = Int(t−1)2.
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Now, given t ∈ T+
σθ, we also have [

θ̂Int(t)
]2

= θ̂2Int(θ(t)t)

= id Int(θ(t)t)

= Int(t+t
−1
− t+t−)

= Int(t2+) = id

if t2+ ∈ Z(G).

It follows that:

Proposition 8.3.3. Let (σ̂, θ̂) be as above, then σ̂θ̂ Int(t) = θ̂ Int(t)σ̂ if and only if t = t+t− ∈
T+
σθ such that t2+ ∈ Z(G) is a quadratic element. Hence t ∈ T+

σ ∩ T+
θ or t ∈ T−σ ∩ T−θ .

The following algorithm is implemented in our k-involutions Mathematica package as

getCorrectionVectors[myPair_admissiblePair].

It is the method by which we correct the pair (σ̃, θ̃) to the standard pair and determine the
quadratic elements corresponding to standard and non-standard lifted pairs of involutions.

Algorithm 8.4 (Correction Vectors for a Pair of Involutions).
Let σ, θ ∈ Aut(Φ) be commuting admissible involutions on the root system. Let σ̃, θ̃ ∈

Aut(g, t) be their lifted involutions of the Lie algebra. Note that in most cases (σ̃, θ̃) = (σ∆, θ∆),
though we do not assume this to be true. It is again sufficient to do computations only on the
positive roots Φ+.

For the purposes of this algorithm we will use the following notation:
Φ = Φ(σ, θ) ∆ = ∆(σ, θ)

Input: (σ̃, θ̃)

Output: The set of all correction vectors for which σ̃θ̃ = θ̃σ̃, the set of
Standard Correction Vectors, the set of Non-Standard Correction
Vectors.

(PairCV 1) Let ~y = (yi)
`
1 be the coefficient vector of H such that H = ~y. ~Hαi for which we will

solve.

(PairCV 2) For each αi ∈ ∆, solve the system of equations given by

cθ̃αi · e
αi(H) · cσ̃θ(αi) = cσ̃αi · c

θ̃
σ(αi)

· eσ(αi)(H) (8.4.0 (a))

cθ̃αic
θ̃
θ(αi)

= 1. (8.4.0 (b))
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(a) Find H ∈ t−σ, θ such that (σ̃, θ̃ exp(ad(H))) is standard if one exists.

(b) If @H ∈ t−σ, θ such that (σ̃, θ̃ exp(ad(H))) is standard, then find H ∈ t+σ, θ such
that it is.

(c) Find quadratic elementsH ∈ t−σ, θ such that (σ̃, θ̃ exp(ad(H))) is non-standard
to find other non-isomorphic pairs.

(PairCV 3) End.
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Chapter 9:

Results

9.1 Nice Pairs: Both σ∆ and θ∆ are involutions,

σ∆θ∆ = θ∆σ∆ and (σ∆, θ∆) is standard.

Remark 9.1.1 (θ∆ = σ∆). If θ∆(Xα) = σ∆(Xα) for all α ∈ Φ, then σ∆ and θ∆ commute.

Proposition 9.1.2 (∆0(σ) = ∆0(θ) = ∅). If ∆0(σ) = ∆0(θ) = ∅, then σ∆ and θ∆ commute.

Proof. If ∆0(σ) = ∆0(θ) = ∅, then σ∆ and θ∆ commute:
If ∆0(σ) = ∆0(θ) = ∅ then

σ = − id σ∗ and θ = − id θ∗ (9.1.2 (a))

Case 1: σ = θ. In this case, σ∆ = θ∆ by definition and and hence they commute. In fact, we
know that σ∗ = id or σ∗ 6= id and we showed in part I that in either of these instances,
σ∆ is an involution and so σ∆θ∆ = id.

Case 2: σ 6= θ. If σ 6= θ, then w.l.o.g. we can assume that σ∗ = id 6= θ∗ and so

σθ = θ∗ = θσ. (9.1.2 (b))

As in Case 1, we know that σ∆ and θ∆ are both involutions defined so that cθ∆αi = 1 = cσ∆
αi

103



for any simple root αi ∈ ∆. Therefore we can deduce the following:

σ∆θ∆(Xαi) = cθ∆αi c
σ∆

−θ∗(αi)X−θ∗(αi) (9.1.2 (c))

and

θ∆σ∆(Xαi) = cσ∆
αi c

θ∆
−αiX−θ∗(αi) (9.1.2 (d))

where for any αi ∈ ∆

cθ∆αi c
σ∆

−θ∗(αi) = cσ∆

−θ∗(αi) = cσ∆

θ∗(αi)
= cσ∆

αj = 1 such that αj ∈ ∆ (9.1.2 (e))

and

cσ∆
αi c

θ∆
−αi = cθ∆αi = 1. (9.1.2 (f))

Therefore σ∆ and θ∆ commute.

Remark 9.1.3. For all simple root systems the pair (θ∆, θ∆ Int(εi)) is nice except in the one
case in type D when θ∆ is not an involution. In the following sections we describe the other nice
pairs. But first, a little explanation of the tables in this Chapter.
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9.1.4 Standard vs. Non-Standard Correction

We will present our results for the standard and non-standard correction vectors in the following type of table. In these tables, we have
represented the restricted roots λi ∈ Φ(σ, θ) and their corresponding fundamental weights ωλi in terms of the simple roots ∆ of Φ.
To reduce the size of the tables in the classification, however, we have often omitted these explicit representations. Here, aαi , bαi ∈ Q
such that λi =

∑
∆ ajαj , ωλi =

∑
∆ bjαj , xj , yj ∈ C, and ωλi acts on

⇀
H such that xj .ωλj .

⇀
H = xj ·

∑
∆ bjHαj .

Table 9.1: Correction Vector Table Form

(σ,θ)-type restricted basis fundamental weights Standard Non-Standard

Φp,q(Cartan Type σ,Cartan Type θ, εi) λi {aα1 , . . . , aα`} ωλi {bα1 , . . . , bα`} {xj .ωλj .
⇀
H} {yj .ωλj .

⇀
H}

For Example, let zi ∈ Z

Table 9.2: Decent Pairs in Type A7

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

A3,4
7 (II, IIIb, εi)

λ1

{
1
4 ,

1
2 ,

1
4 , 0,

1
4 ,

1
2 ,

1
4

}
λ2

{
0, 0, 1

2 , 1,
1
2 , 0, 0

} ωλ1

{
1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
4

}
ωλ2

{
1
4 ,

1
2 ,

3
4 , 1,

3
4 ,

1
2 ,

1
4

} (2iπ (2z1 + 1)) .ωλ2 .
⇀
H

(4iπz1) .ωλ1 .
⇀
H

(4iπz1) .ωλ2 .
⇀
H
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9.1.5 Type A

Even Rank: All pairs are nice.
Odd Rank: (σ, θ) such that σ∗ = θ∗, note this automatically includes (θ∆, θ∆ Int(εi)) or ∆0(σ, θ) = ∅.

Nice Pairs in Type A`=2k.

Table 9.3: Nice Pairs in Type A`=2k

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

A`,`` (I, I, εi)

1 ≤ q ≤ p = `
(λi)

p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(2iπz1) .ωλ` .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(iπ (2z1 + 1)) .ωλ` .
⇀
H

Ap,k` (IIIa, IIIa, εi)

1 ≤ p ≤ k ≤ `/2
1 ≤ q ≤ p− 1

(λi)
p
1 (ωλi)

p
1

(4iπz1) .ωλq .
⇀
H

(8iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H

(4iπ (2z1 + 1)) .ωλp .
⇀
H

A`,p` (I, IIIa, εi)

1 ≤ p ≤ `/2
1 ≤ q ≤ p− 1

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

{}
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Nice Pairs in Type A`=2k−1.

Table 9.4: Nice Pairs in Type A`=2k−1

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

A`,`` (I, I, εi)

1 ≤ q ≤ p = `
(λi)

p
1 (ωλi)

p
1 (2iπz1) .ωλq .

⇀
H (iπ (2z1 + 1)) .ωλq .

⇀
H

A
`,(`−1)/2
` (I, II, εi)

1 ≤ q ≤ p = (`− 1)/2
(λi)

p
1 (ωλi)

p
1 (2iπz1) .ωλq .

⇀
H {}

A
`,(`+1)/2
` (I, IIIb, εi)

1 ≤ q ≤ p = (`+ 1)/2
(λi)

p
1 (ωλi)

p
1 (2iπz1) .ωλq .

⇀
H (iπ (2z1 + 1)) .ωλp .

⇀
H

A
(`−1)/2,(`−1)/2
` (II, II, εi)

1 ≤ q ≤ p = (`− 1)/2
(λi)

p
1 (ωλi)

p
1 (4iπz1) .ωλq .

⇀
H (2iπ (2z1 + 1)) .ωλq .

⇀
H

A
(`−1)/2,(`+1)/2
` (II, IIIb, εi)

` 6= 3 + 4k

1 ≤ q < p = (`− 1)/2

(λi)
p
1 (ωλi)

p
1

(4iπz1) .ωλp .
⇀
H

(8iπz1) .ωλp .
⇀
H

{}

Ap,k` (IIIa, IIIa, εi)

1 ≤ p ≤ k ≤ (`− 1)/2

1 ≤ q < p

(λi)
p
1 (ωλi)

p
1

(4iπz1) .ωλq .
⇀
H

(8iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H

(4iπ (2z1 + 1)) .ωλp .
⇀
H

A
p,(`+1)/2
` (IIIa, IIIb, εi)

1 ≤ q < p < (`+ 1)/2
(λi)

p
1 (ωλi)

p
1

(4iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H

A
(`+1)/2,(`+1)/2
` (IIIb, IIIb, εi)

1 ≤ q < p = (`+ 1)/2
(λi)

p
1 (ωλi)

p
1

(4iπz1) .ωλq .
⇀
H

(2iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H

(iπ (2z1 + 1)) .ωλp .
⇀
H
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9.1.6 Type B

Nice Pairs in Type B`=2k

Table 9.5: Nice Pairs in Type B`=2k

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

Bp,k
` (I, I, εi)

p and k both odd
1 ≤ p ≤ k ≤ `− 3

1 ≤ q ≤ p− 1

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(2iπ (2z1 + 1)) .ωλp .
⇀
H

Bp,k
` (I, I, εi)

p and k both even
2 ≤ p ≤ k ≤ `
1 ≤ q ≤ p− 1

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(2iπ (2z1 + 1)) .ωλp .
⇀
H

Bp,`−1
` (I, I, εi)

1 ≤ p ≤ `− 1

1 ≤ q ≤ p− 1

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(2iπz1) .ωλp .
⇀
H
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Nice Pairs in Type B`=2k−1

Table 9.6: Nice Pairs in Type B`=2k−1

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

Bp,k
` (I, I, εi)

p and k both odd
1 ≤ p ≤ k ≤ `
1 ≤ q ≤ p− 1

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(2iπ (2z1 + 1)) .ωλp .
⇀
H

Bp,k
` (I, I, εi)

p and k both even
1 ≤ p ≤ k ≤ `− 1

1 ≤ q ≤ p− 1

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(2iπ (2z1 + 1)) .ωλp .
⇀
H
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9.1.7 Type C

All admissible pairs are nice.

Table 9.7: Nice Pairs in Type C`=2k−1

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

C`,`` (I, I, εi), ` 6= 4k + 3

2 ≤ q ≤ `− 1 is even
2 ≤ p ≤ ` is odd

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(2iπ (2z1 + 1)) .ωλp .
⇀
H

C`,`` (I, I, εi), ` = 4k + 3

2 ≤ q ≤ `− 1 is even
2 ≤ p ≤ ` is odd

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλ`−1
.
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(2iπ (2z1 + 1)) .ωλp .
⇀
H(

1
2 iπ (2z1 + 1)

)
.ωλ`−1

.
⇀
H

C`,p` (I, IIa, εi)

1 ≤ p ≤ (`− 1)/2

1 ≤ q ≤ p− 1

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

{}

Cp,k` (IIa, IIa, εi)

1 ≤ p ≤ k < (`− 1)/2

1 ≤ q ≤ p− 1

(λi)
p
1 (ωλi)

p
1

(4iπz1) .ωλq .
⇀
H

(8iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H

(4iπ (2z1 + 1)) .ωλp .
⇀
H

C
p,(`−1)/2
` (IIa, IIa, εi)

p is even
1 ≤ q < p ≤ (`− 1)/2

(λi)
p
1 (ωλi)

p
1

(4iπz1) .ωλq .
⇀
H

(8iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H

(4iπ (2z1 + 1)) .ωλp .
⇀
H

C
p,(`−1)/2
` (IIa, IIa, εi)

p is odd
1 ≤ q < p ≤ (`− 1)/2

(λi)
p
1 (ωλi)

p
1

(4iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H
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Table 9.8: Nice Pairs in Type C`=2k

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

C`,`` (I, I, εi)

2 ≤ q ≤ ` is even
2 ≤ p ≤ `− 1 is odd

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H(

1
2 iπ (2z1 + 1)

)
.ωλ`=4n

.
⇀
H

(2iπ (2z1 + 1)) .ωλp .
⇀
H

C
`,`/2
` (I, IIb, εi)

2 ≤ q ≤ `/2 is even
1 ≤ p ≤ `/2− 1 is odd

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλ`/2=4n
.
⇀
H

C
`/2,`/2
` (IIb, IIb, εi)

2 ≤ q ≤ `/2 is even
1 ≤ p ≤ `/2− 1 is odd

(λi)
p
1 (ωλi)

p
1

(4iπz1) .ωλp .
⇀
H

(4iπz1) .ωλq .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H

(iπ (2z1 + 1)) .ωλ`/2=4n
.
⇀
H
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9.1.8 Type D

Nice Pairs in Type D` where ` is Even or Odd.

Table 9.9: Nice Pairs in Type D` where ` is even or odd

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

Dp,k
` (Ia, Ia, εi)

p ≤ k, both even or both odd
1 ≤ q < p

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(2iπ (2z1 + 1)) .ωλp .
⇀
H

Dp,`
` (Ia, Ib, εi)

1 ≤ p < `

1 ≤ q < p

(λi)
p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(2iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

D`,`
` (Ib, Ib, εi)

1 ≤ q ≤ p = `
(λi)

p
1 (ωλi)

p
1 (2iπz1) .ωλq .

⇀
H (iπ (2z1 + 1)) .ωλq .

⇀
H
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Nice Pairs in Type D`=2k

Table 9.10: Nice Pairs in Type D2k

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

D
2p,`/2
` (Ia, IIIa, εi)

1 ≤ q < p
(λi)

p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

{}

D
`,`/2
` (Ib, IIIa, εi)

1 ≤ q < p = `/2
(λi)

p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(2iπz1) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλp .
⇀
H

D
`/2,`/2
` (IIIa, IIIa, εi)

1 ≤ q < p = `/2
(λi)

p
1 (ωλi)

p
1

(4iπz1) .ωλq .
⇀
H

(2iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H

(iπ (2z1 + 1)) .ωλp .
⇀
H
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9.1.9 Type E

Rank 6: We only get nice pairs and feisty pairs.
Ranks 7 & 8: All admissible pairs are nice.

Nice Pairs in Type E6

Table 9.11: Nice Pairs in Type E6

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

E6,6
6 (I, I, εi)

1 ≤ q ≤ p = 6

λ1 {1, 0, 0, 0, 0, 0}
λ2 {0, 1, 0, 0, 0, 0}
λ3 {0, 0, 1, 0, 0, 0}
λ4 {0, 0, 0, 1, 0, 0}
λ5 {0, 0, 0, 0, 1, 0}
λ6 {0, 0, 0, 0, 0, 1}

ωλ1

{
4
3 , 1,

5
3 , 2,

4
3 ,

2
3

}
ωλ2 {1, 2, 2, 3, 2, 1}
ωλ3

{
5
3 , 2,

10
3 , 4,

8
3 ,

4
3

}
ωλ4 {2, 3, 4, 6, 4, 2}
ωλ5

{
4
3 , 2,

8
3 , 4,

10
3 ,

5
3

}
ωλ6

{
2
3 , 1,

4
3 , 2,

5
3 ,

4
3

}
(2iπz1) .ωλq .

⇀
H (iπ (2z1 + 1)) .ωλq .

⇀
H

E6,4
6 (I, II, εi)

1 ≤ q ≤ p = 4

λ1

{
1
2 , 0, 0, 0, 0,

1
2

}
λ2 {0, 1, 0, 0, 0, 0}
λ3

{
0, 0, 1

2 , 0,
1
2 , 0
}

λ4 {0, 0, 0, 1, 0, 0}

ωλ1

{
1, 1, 3

2 , 2,
3
2 , 1
}

ωλ2 {1, 2, 2, 3, 2, 1}
ωλ3

{
3
2 , 2, 3, 4, 3,

3
2

}
ωλ4 {2, 3, 4, 6, 4, 2}

(2iπz1) .ωλq .
⇀
H (iπ (2z1 + 1)) .ωλq=2k

.
⇀
H

E6,2
6 (I, IV, εi)

1 ≤ q ≤ p = 2

λ1

{
1, 1

2 , 1, 1,
1
2 , 0
}

λ2

{
0, 1

2 ,
1
2 , 1, 1, 1

} ωλ1

{
2
3 ,

1
2 ,

5
6 , 1,

2
3 ,

1
3

}
ωλ2

{
1
3 ,

1
2 ,

2
3 , 1,

5
6 ,

2
3

} (2iπz1) .ωλq .
⇀
H {}

E4,4
6 (II, II, εi)

1 ≤ q ≤ p = 4

λ1

{
1
2 , 0, 0, 0, 0,

1
2

}
λ2 {0, 1, 0, 0, 0, 0}
λ3

{
0, 0, 1

2 , 0,
1
2 , 0
}

λ4 {0, 0, 0, 1, 0, 0}

ωλ1

{
1, 1, 3

2 , 2,
3
2 , 1
}

ωλ2 {1, 2, 2, 3, 2, 1}
ωλ3

{
3
2 , 2, 3, 4, 3,

3
2

}
ωλ4 {2, 3, 4, 6, 4, 2}

(2iπz1) .ωλq=2k
.
⇀
H

(4iπz1) .ωλq=2k−1
.
⇀
H

(iπ (2z1 + 1)) .ωλq=2k
.
⇀
H

(2iπ (2z1 + 1)) .ωλq=2k−1
.
⇀
H
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Table 9.11: Continued

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

E4,2
6 (II, III, εi)

λ1

{
1
2 , 0,

1
2 ,

1
2 ,

1
2 ,

1
2

}
λ2

{
0, 1, 1

2 , 1,
1
2 , 0
} ωλ1

{
1
2 ,

1
2 ,

3
4 , 1,

3
4 ,

1
2

}
ωλ2

{
1
2 , 1, 1,

3
2 , 1,

1
2

} (4iπz1) .ωλ1 .
⇀
H

(4iπz1) .ωλ2 .
⇀
H

(2iπ (2z1 + 1)) .ωλ2 .
⇀
H

E2,2
6 (III, III, εi)

λ1

{
1
2 , 0,

1
2 ,

1
2 ,

1
2 ,

1
2

}
λ2

{
0, 1, 1

2 , 1,
1
2 , 0
} ωλ1

{
1
2 ,

1
2 ,

3
4 , 1,

3
4 ,

1
2

}
ωλ2

{
1
2 , 1, 1,

3
2 , 1,

1
2

} (8iπz1) .ωλ1 .
⇀
H

(4iπz1) .ωλ2 .
⇀
H

(4iπ (2z1 + 1)) .ωλ1 .
⇀
H

(2iπ (2z1 + 1)) .ωλ2 .
⇀
H

E2,2
6 (III, IV, εi) λ1

{
1
2 ,

1
2 ,

3
4 , 1,

3
4 ,

1
2

}
ωλ1

{
1
4 ,

1
4 ,

3
8 ,

1
2 ,

3
8 ,

1
4

}
(8iπz1) .ωλ1 .

⇀
H {}

E2,2
6 (IV, IV, εi)

λ1

{
1, 1

2 , 1, 1,
1
2 , 0
}

λ2

{
0, 1

2 ,
1
2 , 1, 1, 1

} ωλ1

{
2
3 ,

1
2 ,

5
6 , 1,

2
3 ,

1
3

}
ωλ2

{
1
3 ,

1
2 ,

2
3 , 1,

5
6 ,

2
3

} (4iπz1) .ωλ1 .
⇀
H

(4iπz1) .ωλ2 .
⇀
H

(2iπ (2z1 + 1)) .ωλ1 .
⇀
H

(2iπ (2z1 + 1)) .ωλ2 .
⇀
H
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Nice Pairs in Type E7

Table 9.12: Nice Pairs in Type E7

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

E7,7
7 (V, V, εi)

λ1 {1, 0, 0, 0, 0, 0, 0}
λ2 {0, 1, 0, 0, 0, 0, 0}
λ3 {0, 0, 1, 0, 0, 0, 0}
λ4 {0, 0, 0, 1, 0, 0, 0}
λ5 {0, 0, 0, 0, 1, 0, 0}
λ6 {0, 0, 0, 0, 0, 1, 0}
λ7 {0, 0, 0, 0, 0, 0, 1}

ωλ1 {2, 2, 3, 4, 3, 2, 1}
ωλ2

{
2, 7

2 , 4, 6,
9
2 , 3,

3
2

}
ωλ3 {3, 4, 6, 8, 6, 4, 2}
ωλ4 {4, 6, 8, 12, 9, 6, 3}
ωλ5

{
3, 9

2 , 6, 9,
15
2 , 5,

5
2

}
ωλ6 {2, 3, 4, 6, 5, 4, 2}
ωλ7

{
1, 3

2 , 2, 3,
5
2 , 2,

3
2

}
(2iπz1) .ωλq .

⇀
H

(iπ (2z1 + 1)) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

E7,4
7 (V, V I, εi)

1 ≤ q ≤ p = 4

λ1 {1, 0, 0, 0, 0, 0, 0}
λ2 {0, 0, 1, 0, 0, 0, 0}
λ3

{
0, 1

2 , 0, 1,
1
2 , 0, 0

}
λ4

{
0, 0, 0, 0, 1

2 , 1,
1
2

}
ωλ1 {2, 2, 3, 4, 3, 2, 1}
ωλ2 {3, 4, 6, 8, 6, 4, 2}
ωλ3

{
2, 3, 4, 6, 9

2 , 3,
3
2

}
ωλ4

{
1, 3

2 , 2, 3,
5
2 , 2, 1

} (2iπz1) .ωλq .
⇀
H

(iπ (2z1 + 1)) .ωλ1 .
⇀
H

(iπ (2z1 + 1)) .ωλ2 .
⇀
H

E7,3
7 (V, V II, εi)

1 ≤ q ≤ p = 3

λ1

{
1, 1

2 , 1, 1,
1
2 , 0, 0

}
λ2

{
0, 1

2 ,
1
2 , 1, 1, 1, 0

}
λ3 {0, 0, 0, 0, 0, 0, 1}

ωλ1

{
1, 1, 3

2 , 2,
3
2 , 1,

1
2

}
ωλ2

{
1, 3

2 , 2, 3,
5
2 , 2, 1

}
ωλ3

{
1, 3

2 , 2, 3,
5
2 , 2,

3
2

} (2iπz1) .ωλq .
⇀
H (iπ (2z1 + 1)) .ωλ3 .

⇀
H

E4,4
7 (V I, V I, εi)

λ1 {1, 0, 0, 0, 0, 0, 0}
λ2 {0, 0, 1, 0, 0, 0, 0}
λ3

{
0, 1

2 , 0, 1,
1
2 , 0, 0

}
λ4

{
0, 0, 0, 0, 1

2 , 1,
1
2

}
ωλ1 {2, 2, 3, 4, 3, 2, 1}
ωλ2 {3, 4, 6, 8, 6, 4, 2}
ωλ3

{
2, 3, 4, 6, 9

2 , 3,
3
2

}
ωλ4

{
1, 3

2 , 2, 3,
5
2 , 2, 1

}
(2iπz1) .ωλ1 .

⇀
H

(2iπz1) .ωλ2 .
⇀
H

(4iπz1) .ωλ3 .
⇀
H

(4iπz1) .ωλ4 .
⇀
H

(iπ (2z1 + 1)) .ωλ1 .
⇀
H

(iπ (2z1 + 1)) .ωλ2 .
⇀
H

(2iπ (2z1 + 1)) .ωλ3 .
⇀
H

(2iπ (2z1 + 1)) .ωλ4 .
⇀
H

E4,3
7 (V I, V II, εi)

λ1

{
1, 1

2 , 1, 1,
1
2 , 0, 0

}
λ2

{
0, 1

2 ,
1
2 , 1, 1, 1,

1
2

} ωλ1

{
1, 1, 3

2 , 2,
3
2 , 1,

1
2

}
ωλ2

{
1
2 ,

3
4 , 1,

3
2 ,

5
4 , 1,

1
2

} (4iπz1) .ωλ1 .
⇀
H

(4iπz1) .ωλ2 .
⇀
H

(2iπ (2z1 + 1)) .ωλ1 .
⇀
H
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Table 9.12: Continued

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

E3,3
7 (V II, V II, εi)

λ1

{
1, 1

2 , 1, 1,
1
2 , 0, 0

}
λ2

{
0, 1

2 ,
1
2 , 1, 1, 1, 0

}
λ3 {0, 0, 0, 0, 0, 0, 1}

ωλ1

{
1, 1, 3

2 , 2,
3
2 , 1,

1
2

}
ωλ2

{
1, 3

2 , 2, 3,
5
2 , 2, 1

}
ωλ3

{
1, 3

2 , 2, 3,
5
2 , 2,

3
2

}
(4iπz1) .ωλ1 .

⇀
H

(4iπz1) .ωλ2 .
⇀
H

(2iπz1) .ωλ3 .
⇀
H

(2iπ (2z1 + 1)) .ωλ1 .
⇀
H

(2iπ (2z1 + 1)) .ωλ2 .
⇀
H

(iπ (2z1 + 1)) .ωλ3 .
⇀
H
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Nice Pairs in Type E8

Table 9.13: Nice Pairs in Type E8

(σ,θ)-type res basis fund weights Standard Non-Standard

E8,8
8 (V III, V III, εi) (λi) (ωλi) (2iπz1) .ωλq .

⇀
H

(iπ (2z1 + 1)) .ωλp .
⇀
H

(iπ (2z1 + 1)) .ωλq .
⇀
H

(σ, θ)-type restricted basis fundamental weights

E8,8
8 (V III, V III, εi)

λ1 {1, 0, 0, 0, 0, 0, 0, 0}
λ2 {0, 1, 0, 0, 0, 0, 0, 0}
λ3 {0, 0, 1, 0, 0, 0, 0, 0}
λ4 {0, 0, 0, 1, 0, 0, 0, 0}
λ5 {0, 0, 0, 0, 1, 0, 0, 0}
λ6 {0, 0, 0, 0, 0, 1, 0, 0}
λ7 {0, 0, 0, 0, 0, 0, 1, 0}
λ8 {0, 0, 0, 0, 0, 0, 0, 1}

ωλ1 {4, 5, 7, 10, 8, 6, 4, 2}
ωλ2 {5, 8, 10, 15, 12, 9, 6, 3}
ωλ3 {7, 10, 14, 20, 16, 12, 8, 4}
ωλ4 {10, 15, 20, 30, 24, 18, 12, 6}
ωλ5 {8, 12, 16, 24, 20, 15, 10, 5}
ωλ6 {6, 9, 12, 18, 15, 12, 8, 4}
ωλ7 {4, 6, 8, 12, 10, 8, 6, 3}
ωλ8 {2, 3, 4, 6, 5, 4, 3, 2}
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Table 9.14: Continued

(σ,θ)-type res basis fund weights Standard Non-Standard

E8,4
8 (V III, IX, εi)

λ1

{
1, 1

2 , 1, 1,
1
2 , 0, 0, 0

}
λ2

{
0, 1

2 ,
1
2 , 1, 1, 1, 0, 0

}
λ3 {0, 0, 0, 0, 0, 0, 1, 0}
λ4 {0, 0, 0, 0, 0, 0, 0, 1}

ωλ1

{
2, 5

2 ,
7
2 , 5, 4, 3, 2, 1

}
ωλ2

{
3, 9

2 , 6, 9,
15
2 , 6, 4, 2

}
ωλ3 {4, 6, 8, 12, 10, 8, 6, 3}
ωλ4 {2, 3, 4, 6, 5, 4, 3, 2}

(2iπz1) .ωλ1 .
⇀
H

(2iπz1) .ωλ2 .
⇀
H

(2iπz1) .ωλ3 .
⇀
H

(2iπz1) .ωλ4 .
⇀
H

(iπ (2z1 + 1)) .ωλ4 .
⇀
H

(iπ (2z1 + 1)) .ωλ3 .
⇀
H

E4,4
8 (IX, IX, εi)

λ1

{
1, 1

2 , 1, 1,
1
2 , 0, 0, 0

}
λ2

{
0, 1

2 ,
1
2 , 1, 1, 1, 0, 0

}
λ3 {0, 0, 0, 0, 0, 0, 1, 0}
λ4 {0, 0, 0, 0, 0, 0, 0, 1}

ωλ1

{
2, 5

2 ,
7
2 , 5, 4, 3, 2, 1

}
ωλ2

{
3, 9

2 , 6, 9,
15
2 , 6, 4, 2

}
ωλ3 {4, 6, 8, 12, 10, 8, 6, 3}
ωλ4 {2, 3, 4, 6, 5, 4, 3, 2}

(4iπz1) .ωλ1 .
⇀
H

(4iπz1) .ωλ2 .
⇀
H

(2iπz1) .ωλ4 .
⇀
H

(2iπz1) .ωλ3 .
⇀
H

(2iπ (2z1 + 1)) .ωλ1 .
⇀
H

(2iπ (2z1 + 1)) .ωλ2 .
⇀
H

(iπ (2z1 + 1)) .ωλ4 .
⇀
H

(iπ (2z1 + 1)) .ωλ3 .
⇀
H
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9.1.10 Types F & G

All admissible pairs are nice. See Tables 9.15 and 9.17 below.

Nice Pairs in Type F4

Table 9.15: Nice Pairs in Type F4

(σ,θ)-type res. basis fund. weights

F 4,4
4 (I, I, εi)

λ1 {1, 0, 0, 0}
λ2 {0, 1, 0, 0}
λ3 {0, 0, 1, 0}
λ4 {0, 0, 0, 1}

ωλ1 {2, 3, 4, 2}
ωλ2 {3, 6, 8, 4}
ωλ3 {2, 4, 6, 3}
ωλ4 {1, 2, 3, 2}

F 4,1
4 (I, II, εi) λ1

{
1
2 , 1,

3
2 , 1
}

ωλ1

{
1
4 ,

1
2 ,

3
4 ,

1
2

}
F 1,1

4 (II, II, εi) λ1

{
1
2 , 1,

3
2 , 1
}

ωλ1

{
1
4 ,

1
2 ,

3
4 ,

1
2

}
(σ,θ)-type Standard Non-Standard

F 4,4
4 (I, I, εi)

1 ≤ q ≤ 4
(2iπz1) .ωλq .

⇀
H (iπ (2z1 + 1)) .ωλq .

⇀
H

F 4,1
4 (I, II, εi) (4iπz1) .ωλ1 .

⇀
H {}

F 1,1
4 (II, II, εi) (4iπz1) .ωλ1 .

⇀
H {}

Nice Pairs in Type G

All admissible pairs are nice. (The one and only.)

Table 9.17: Nice Pairs in Type G2

(σ,θ)-type res. basis fund. weights Standard Non-Standard

G2,2
2 (εi)

λ1 {1, 0}
λ2 {0, 1}

ωλ1 {2, 1}
ωλ2 {3, 2}

(2iπz1) .ωλ1 .
⇀
H

(2iπz1) .ωλ2 .
⇀
H

(iπ (2z1 + 1)) .ωλ1 .
⇀
H

(iπ (2z1 + 1)) .ωλ2 .
⇀
H
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9.2 Better-than-Okay: σ∆ and θ∆ Int(h) commute and are a standard pair.

9.2.1 Type D

These would be nice except that θ∆ for θ of type D(`−1)/2
` IIIb must be corrected to an involution:

θ∆ Int

exp

−iπ
2

∑
αj∈∆0(θ)

(4zj + 1)Hj

 .

Better-than-Okay Pairs in Type D`=2k−1

Table 9.18: Better-than-Okay Pairs in Type D2k−1

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

D
2p,(`−1)/2
` (Ia, IIIb, εi)

1 ≤ q < p
(λi)

p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

{}

D
`,(`−1)/2
` (Ib, IIIb, εi)

1 ≤ q < p = (`− 1)/2
(λi)

p
1 (ωλi)

p
1

(2iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

{}

D
(`−1)/2,(`−1)/2
` (IIIb, IIIb, εi)

1 ≤ q < p = (`− 1)/2
(λi)

p
1 (ωλi)

p
1

(4iπz1) .ωλq .
⇀
H

(8iπz1) .ωλp .
⇀
H

(2iπ (2z1 + 1)) .ωλq .
⇀
H

(4iπ (2z1 + 1)) .ωλp .
⇀
H
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9.3 Decent Pairs : σ∆ and θ∆ commute but (σ∆, θ∆) is not standard.

9.3.1 Decent Pairs in Type A

Odd Rank ` = 3 + 4k: A(`−1)/2,(`+1)/2
`=3+4k (II, IIIb, εi)

Decent Pairs in Type A`=3+4k

In the following table, for 1 ≤ q < p

restricted basis fundamental weights

λq=
1
4

∑2q
j=2q−1 (αj + αj+1 + α`−j + α`−j+1)

λp=
1
2

∑2p
j=2p−1(

∑`−j+1
i=j αi)

ωλq=
∑2q

j=1

(
1
4

∑`−j+1
i=j αi

)
ωλp=

1
2

∑2p
j=1

(
1
2

∑`−j+1
i=j αi

)

Table 9.19: Decent Pairs in Type A3+4k

(σ,θ)-type restricted basis fundamental weights Standard Non-Standard

A
(`−1)/2,(`+1)/2
` (II, IIIb, εi)

` = 3 + 4k

p = (`+ 1)/4

1 ≤ q < p

(λi)
p
1 (ωλi)

p
1 (2iπ (2z1 + 1)) .ωλp .

⇀
H

(4iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H
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9.3.2 Decent Pairs in Type B

Decent Pairs in Type B`

In the following table z1 ∈ Z as usual and we use x1 ∈ Z to alert the reader to a special case.

Table 9.20: Decent Pairs in Type B`

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

Bp,n
`=2k−1(I, I, εi)

1 ≤ p < n 6= `− 1

1 ≤ q < p

p odd and n even,
or p even and n odd

λq=αq
λp=

∑`
p αi

ωλq=
∑q

j=1(
∑`

i=j αi)

ωλp=
1
2

∑p
j=1(

∑`
i=j αi)

(2iπ (2z1 + 1)) .ωλp .
⇀
H

(iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H

Bp,`−1
`=2k−1(I, I, εi)

1 ≤ p < `− 1, p odd
1 ≤ q < p

(λi)
p
1 as above (ωλi)

p
1 as above

(
1
2 iπ (2x1 + 1)

)
.ωα` .

⇀
H

(iπz1) .ωλq .
⇀
H

(2iπz1) .ωλp .
⇀
H

Bp,n
`=2k(I, I, εi)

1 ≤ p < n ≤ `
1 ≤ q < p

p odd and n even,
or p even and n odd

(λi)
p
1 as above (ωλi)

p
1 as above (2iπ (2z1 + 1)) .ωλp .

⇀
H

(iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H
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9.3.3 Type D

Decent Pairs in Type D`

In the following table, for 1 ≤ q < p

restricted basis fundamental weights

λq=αq
λp=

∑`−2
p αi + 1

2(α`−1 + α`)

ωλq=
∑q

j=1

(∑`−2
i=j αi + 1

2(α`−1 + α`)
)

ωλp=
1
2

∑p
j=1

(∑`−2
i=j αi + 1

2(α`−1 + α`)
)

Table 9.21: Decent Pairs in Type D`

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

Dp,n
` (Ia, Ia, εi)

1 ≤ p < n ≤ `− 1

1 ≤ q < p

p odd and n even,
or p even and n odd

(λi)
p
1 (ωλi)

p
1 (2iπ (2z1 + 1)) .ωλp .

⇀
H

(iπz1) .ωλq .
⇀
H

(4iπz1) .ωλp .
⇀
H
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9.4 Feisty Pairs: σ∆ and θ∆ do not commute.

9.4.1 Type A

Odd Rank: Ap`IIIa with AI or AII (if admissible).

Remark 9.4.2. Any involution σ of type AI or AII has lifting constants cσ∆
α = (−1)htα−1 for

any α ∈ Φ and θ of type AIIIa has lifting constants cθ∆α = 1 for all α ∈ Φ.

Example 9.4.3 (Admissible A``I with Ap`IIIa). Note the connected components in ∆0(σ, θ)

are contained in either ∆0(σ) or ∆0(θ) (or in both):

Σ Σ Σ Σ Σ

Θ*

Figure 9.1: The (σ, θ)-index of type A9,2
9 (I, IIIa, εi)

Example 9.4.4 (Admissible A
(`−1)/2
` II with Ap`IIIa). Note the connected components in

∆0(σ, θ) are contained in either ∆0(σ) or ∆0(θ) (or in both):

Θ Σ Σ Θ

Θ*

Figure 9.2: The (σ, θ)-index of type A4,2
9 (II, IIIa, εi)

In rank ` = 7, 11, . . . , 3 + 4k, k ≥ 0 , the (σ, θ)-pair of type A(`−1)/2,2m−1
` (II, IIIa, εi) is not

admissible because the connected component in the center of the diagram that is in ∆0(σ, θ) is
contained in neither ∆0(σ) nor ∆0(θ).
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Non-Example 9.4.5 (Non-admissible A2m−1
` IIIa with AII). Note that when p = 2m− 1 is

odd the connected component in the center of the diagram which is in ∆0(σ, θ) is contained in
neither ∆0(σ) nor ∆0(θ):

1 2 3 4 5 6 7 8 9 10 11

Figure 9.3: σ-index

1 2 3 4 5 6 7 8 9 10 11

Θ
*

Figure 9.4: θ-index

Θ Θ Σ Σ Σ Θ Θ

Θ*

Figure 9.5: The (σ, θ)-index of type A5,3
11 (II, IIIa, εi)
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Feisty Pairs in Type A`=2k−1

In the following table, for 1 ≤ q < p

(σ, θ)-type restricted basis fundamental weights

A`,p` (I, IIIa, εi)
λq=

1
2 (αq + α`−q+1)

λp=
1
2

∑`−p+1
p αi

ωλq=
∑q

j=1

(
1
2

∑`−j+1
i=j αi

)
ωλp=

1
2

∑p
j=1

(
1
2

∑`−j+1
i=j αi

)
A

(`−1)/2,2p
` (II, IIIa, εi)

λq=
1
4

∑2q
j=2q−1 (αj + αj+1 + α`−j + α`−j+1)

λp=
1
4

∑2p
j=2p−1(

∑`−j+1
i=j αi)

ωλq=
∑2q

j=1

(
1
4

∑`−j+1
i=j αi

)
ωλp=

1
2

∑2p
j=1

(
1
4

∑`−j+1
i=j αi

)

Table 9.22: Feisty Pairs in Type A`=2k−1

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

A`,p` (I, IIIa, εi) (λi)
p
1 (ωλi)

p
1 (2iπ (2z1 + 1)) .ωλp .

⇀
H {}

A
(`−1)/2,2p
` (II, IIIa, εi) (λi)

p
1 (ωλi)

p
1 (4iπ (2z1 + 1)) .ωλp .

⇀
H {}
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9.4.6 Type E

Fesity Pair E6,2
6 (I, III, εi)

1

2

3 4 5 6

Figure 9.6: σ of type E6
6I

1

2

3 4 5 6

Θ*

Figure 9.7: θ of type E2
6III

Σ Σ Σ

Θ*

Figure 9.8: (σ, θ Int(εi)) of type E6,2
6 (I, III, εi)
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Feisty Pair E4,2
6 (II, IV, εi)

1

2

3 4 5 6

Θ*

Figure 9.9: σ of type E4
6II

1

2

3 4 5 6

Figure 9.10: θ of type E2
6IV

Σ

Σ Σ Σ

Σ*

Figure 9.11: (σ, θ Int(εi)) of type E4,2
6 (II, IV, εi)
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9.4.7 Feisty Pairs in Type E6

Table 9.23: Feisty Pairs in Type E6

(σ,θ)-type restricted basis fundamental weights Standard Correction Non-Standard Correction

E6,2
6 (I, III, εi)

λ1

{
1
2 , 0,

1
2 ,

1
2 ,

1
2 ,

1
2

}
λ2

{
0, 1, 1

2 , 1,
1
2 , 0
} ωλ1

{
1
2 ,

1
2 ,

3
4 , 1,

3
4 ,

1
2

}
ωλ2

{
1
2 , 1, 1,

3
2 , 1,

1
2

} (2iπ (2z1 + 1)) .ωλ1 .
⇀
H {}

E4,2
6 (II, IV, εi) λ1

{
1
2 ,

1
2 ,

3
4 , 1,

3
4 ,

1
2

}
ωλ1

{
1
4 ,

1
4 ,

3
8 ,

1
2 ,

3
8 ,

1
4

}
(4iπ (2z1 + 1)) .ωλ1 .

⇀
H {}
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Appendix A:

Useful Reference Tables
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Table A.1: Notation

Symbol : Definition

G : a semisimple (usually simple) Lie group
T : a fixed maximal torus (i.e. maximal connected diagonalizable subgroup) of

G

g : the simple Lie algebra of G
t : a maximal toral subalgebra of g
a : a toral subalgebra ⊂ t

Φ : Φ(T ) the root system with respect to T
X : ZΦ - an integer lattice of Φ, may be a root or weight lattice, (X∗(T ) char-

acters)
W : W (T ) Weyl group with respect to T
Ψ : (X∗(T ) , Φ(T ) , X∗(T ) , Φ∨(T )), the root datum corresponding to T

Nα,β : Chevalley constants
cσ∆
α , cθ∆α : lifting constants of σ∆ and θ∆ respectively
cσθα : lifting constants of the involution lifted from σθ = θσ

〈αi, αj〉 : The product defined by the Killing form on g that relates the root system
and its dual.

T−σ , T
+
σ : the σ-split and σ-stable tori respectively, likewise for T±θ

T−(σ,θ), T
+
(σ,θ) : the (σ, θ)-split and (σ, θ)-stable tori respectively

T−σθ, T
+
σθ : the σθ-split and σθ-stable tori respectively

g(A, λ) : For λ ∈ Φ(A) let g(A, λ) = {X ∈ g | [H,X] = λ(H)X ∀H ∈ a} be the
corresponding root space. Since σθ(λ) = λ, we have σθ(g(A, λ)) = g(A, λ).

g(A, λ)±σθ : {X ∈ g(A, λ) | σθ(X) = ±X}
m±(λ, σθ) : dimkg(A, λ)±σθ
Φ(T, λ) : {α ∈ Φ(T ) | α|A = λ}
msplit(λ, σθ) : |Φsplit(λ, σθ)| such that Φsplit(λ, σθ) = {α ∈ Φ(T, λ) | σθ(α) 6= α}
mcheck(λ, σθ): |Φcheck(λ, σθ)| such that Φcheck(λ, σθ) = {α ∈ Φ(T, λ) | σθ(α) = α}

m(λ) :
dimk g(A, λ) = m+(λ, σθ) +m−(λ, σθ) = |Φ(T,λ)|

= msplit(λ, σθ) +mcheck(λ, σθ)
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Table A.2: Properties of Lie Maps

Ψ : G→ Aut(G) Ψg : G→ G

Lie group homomorphism: Lie group automorphism:
Ψgh = ΨgΨh Ψg(ab) = Ψg(a)Ψg(b)

(Ψg)
−1 = Ψg−1

Ad : G→ Aut(g) Adg : g→ g

Lie group homomorphism: Lie group automorphism:
Ad gh = Ad gAdh Adg is linear

(Adg)
−1 = Adg−1

Adg [x , y] = [Adg x , Adg y]

ad : g→ Der(g) adx : g→ g

Lie algebra homomorphism: Lie algebra derivation:
ad is linear ad[x , y] = [adx , ady]

adx is linear adx [y , z] = [adx y , z] + [y , adx z]
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Table A.3: Constants Formulas and Relations

Symbol = Relation Condition

N−α,−β = −Nα,β

Nβ,α = −Nα,β

Nα,β
2 = q(1+p)‖α ‖2

2 where β + nα, with −p ≤ n ≤ q, is the α-string
through β.

Nα,β = Nβ,γ = Nγ,α if α, β, γ ∈ Φ and α+ β + γ = 0

N−α,α+β = N−β,−α = −N−α,−β if α, β, α+ β ∈ Φ

Nα,β = −N−α,−β Combining the above relations.

= N−α,α+β

= −Nα,−α−β

= N−α−β,α
Nα1+α2,α3

Nα2,α3

= Nα1,α2+α3
Nα1,α2

α1, α2, α3 ∈ Φ form a connected subsystem such
that α1 is orthogonal to α3, i.e. α1 + α3 /∈ Φ

cθ̃α+β = cθ̃α c
θ̃
β
Nθ(α),θ(β)

Nα,β
for any θ̃ ∈ Aut(g, t), such that θ̃|t∨ = θ

cθ̃−α =
1

cθ̃α
for any θ̃ ∈ Aut(g, t), such that θ̃|t∨ = θ
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