
Abstract

COMER, MATTHEW T. Error Correction for Symbolic and Hybrid Symbolic-Numeric Sparse
Interpolation Algorithms. (Under the direction of Erich L. Kaltofen.)

We introduce error correction to two problems of sparse polynomial interpolation. In the

first problem, we recover a t-sparse polynomial f(x) (in the power basis) from values f(ωi−1),

i = 1, 2, . . . , 2t(2E + 1), where ω is a field element of our choice, and at most E values contain

random/misleading errors. Our algorithm is adapted from the linear recurrence-based algorithm

of [Prony III (1795), J. de l’École Polytechnique, 1:24-76]. In the exact setting, error correction

is implemented directly in the computation of the minimal generator of the linearly recurrent

sequence {f(ωi−1)}. In the numeric setting, where every evaluation is perturbed by a small

relative “noise” error and at most E evaluations are perturbed by large “outlier” errors, we

appeal to the results of [Kaltofen and Lee 2003, J. Symbolic Comput., 36(3-4):365-400] and

[Kaltofen, Lee, and Yang 2011, Proc. 2011 Internat. Workshop on Symbolic-Numeric Comput.,

pages 130-136] for computation of the approximate minimal generator.

In the second problem, we compute a shift s that will yield the sparsest representation of

a polynomial f(x) in the shifted power basis (x − s)k. To this end, two algorithms are pre-

sented. The first algorithm computes the representation from polynomials f(ωi+z) ∈ F[z]. The

polynomials are interpolated densely, using Blahut’s decoding method for Reed-Solomon error-

correction, then the shift s and sparsity t are computed from the error-free “values” f(ωi−1+z),

where now i = 1, 2, . . . , 2t + 1. The second step employs the results of [Giesbrecht, Kaltofen,

and Lee 2003, J. Symbolic Comput., 36(3-4):401-424]. The second algorithm takes advantage

of the representation f(x) =
∑t

i=1 ci(x − s)ei being the Taylor expansion of f(x) at x = s.

Erroneous evaluations are detected by first interpolating f(x) densely, then comparing all eval-

uations to their corresponding values of the interpolant. Both algorithms have adaptations for

the numeric setting; the first algorithm relies on results of [Hutton, Kaltofen, and Zhi 2010,

Proc. 2010 Internat. Symp. Symbolic Algebraic Comput., pages 227-234] to determine the shift

and sparsity.

We also present an algorithm for counting square singular Hankel matrices with entries

from a finite field, where some anti-diagonals on or above the main diagonal (equivalently, on

or below the main anti-diagonal) may be fixed to prescribed values. The count follows one of

three formulas, depending on which anti-diagonals are fixed and to what values. The result

is obtained by extending a result of [Kaltofen and Yuhasz 2013a, ACM Trans. Algorithms, to

appear], where the Berlekamp/Massey algorithm is executed on the sequence of anti-diagonal

values of the matrix.
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Chapter One

Introduction

Error-correcting decoding is ubiquitous in modern computing. With polynomial interpolation

being used as a key step for error-correcting decoding, it is a natural extension to account for

errors in the process of polynomial interpolation itself. Without errors, the process of recovering

a polynomial from a sampling of its points has been studied in various contexts. For example, to

interpolate a polynomial f(x) of degree less than d, one could obtain d evaluations of f(x) (at

distinct x-values) and then solve a Vandermonde system to produce a representation of f(x). It

is important to note that given any set of d points (again, for distinct x-values), a Vandermonde

system will yield a polynomial of degree less than d that passes through each point: one cannot

simply inspect the proposed interpolant to determine if some evaluations were faulty.

As with many schemes of error-correcting (de)coding, the introduction of redundancy en-

ables the problem of error-correcting interpolation to become more tractable. Specifically, if we

wish to interpolate a polynomial of degree less than d, but we have a bound E on the maximum

number of erroneous evaluations in a given set, then obtaining d + 2E evaluations guarantees

that there can be only one E-error interpolant (i.e., a polynomial that passes through all but

k points, where k ≤ E). For suppose there were two E-error interpolants, f(x) and g(x), each

of degree less than d. Then it must be that f and g agree for at least d points, which implies

f = g (because the polynomial f − g, also of degree less than d, has at least d roots). As a

counter-example for d = E = 1, consider the d+ 2E − 1 = 2 points (x1, y1) and (x2, y2), where

x1 6= x2 and y1 6= y2. Then f(x) = y1 and g(x) = y2 are each a 1-error interpolant for the set of

two points. One can generalize this example for arbitrary d and E (starting with d − 1 points

common to f and g, then including E points unique to each of f and g) to show that d + 2E

points are necessary and sufficient to guarantee uniqueness of the interpolant.

Even when we can certify that all evaluations of a polynomial are correct, there exists the
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optimization problem of minimizing the number of evaluations needed to recover the unique

interpolant. Knowing only that a polynomial is of degree less than d, one generally requires

d points for interpolation. However, if we know that the polynomial has few terms compared

to its degree – that is, the polynomial is sparse – then the minimum number of evaluations

may be decreased, due to a phenomenon discovered by Prony during the French Revolution.

In [Prony III (1795)], it is shown that one can interpolate a sum of t exponential functions,

say, f(x) =
∑t

i=1 cib
x
i , from only 2t evaluations. Here, Prony used not an arbitrary set of

evaluations, but rather a sequence of evaluations at consecutive multiples of a single x-value:

0, α, 2α, . . . , (2t− 1)α.

Prony showed that this sequence of evaluations satisfies a particular recurrence relation: if

we denote the evaluations by ai = f(iα), then

γ0a0+i + γ1a1+i + . . .+ γt−1at−1+i + at+i = 0, i = 0, 1, . . . , t− 1,

for some constants γi. (More accurately, the sequence satisfies a homogeneous linear recurrence

relation with constant coefficients, which will continue to be called simply a recurrence relation,

and such a sequence will be called simply a linearly recurrent sequence.) By examining the

ratios a1/a0, a2/a0, . . . , a2t−1/a0, Prony derived explicit formulas for the γi and showed that

the polynomial Λ(λ) =
(∑t−1

i=0 γiλ
i
)
+ λt factors as Λ(λ) =

∏t
i=1(λ− b

α
i ). Thus, from only the

sequence of evaluations, one can determine (through formulas and polynomial factorization) all

of the bases bi. Equivalently, if we re-write f(x) =
∑t

i=1 cib
eix, where ei = logb(bi), then we

have Λ(λ) =
∏t

i=1(λ− b
e1α), so that we wish to recover the exponents ei.

A special case is t = 1: the recurrence relation is given by γ0ai = ai+1, so that the sequence

is geometric. Indeed,

f
(
(n+ 1)α

)

f(nα)
=
c1b

(n+1)αe1

c1bnαe1
=

(bαe1)n+1

(bαe1)n
= bαe1 ,

from which one can recover e1 (knowing b and α). Then the only unknown quantity in f(x) =

c1b
e1x is c1, which can be recovered immediately from a0 = c1. For general t, one computes the ex-

ponents e1, e2, . . . , et from the 2t evaluations, then one can compute the coefficients c1, c2, . . . , ct

from any subset of t evaluations (e.g., by solving a t × t Vandermonde system). To relate this

result to polynomials, we note that if we substitute α = logb(ω), then this becomes

f
(
logb(ω

n+1)
)

f
(
logb(ω

n)
) = blogb(ω)e1 = ωe1 =

g(ωn+1)

g(ωn)
, for g(x) = c1x

e1 .

Thus, we can interpolate a polynomial with t terms (called a t-sparse polynomial) from eval-

uations at consecutive powers of a single x-value: 1, ω, ω2, . . . , ω2t−1. Whether we interpolate
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sparse functions in an exponential or polynomial basis, the focus is the computation of the re-

currence relation among a0, a1, . . . , a2t−1. Furthermore, if some of the evaluations are erroneous,

then we must have some method of accounting for errors in the recovery of the recurrence re-

lation. By introducing redundancy as in the general/dense polynomial example above, we are

able to detect and correct errors, but we appeal to a more modern algorithm for computing a

recurrence relation.

Seventeen decades after Prony’s discovery, Berlekamp introduced a decoding method for

multiple-error-correcting binary Bose-Chaudhuri-Hocquenghem (BCH) codes; Algorithm 7.4 of

[Berlekamp 1968] is presented for determining the shortest feedback-shift-register (i.e., minimal

recurrence relation) of a sequence of digits representing the (possibly erroneous) transmission

of a codeword. (Such a minimal recurrence relation exists due to the module structure of the

space of all sequences being acted-on by the univariate polynomial ring; see, e.g., Section 12 of

[von zur Gathen and Gerhard 1999].) In Berlekamp’s formulation, the recurrence relation gives

the coefficients of the “error locator polynomial” (also called the generator of the sequence),

whose roots are the reciprocals of Galois field elements that represent the locations where errors

occurred.

One immediate advantage over Prony’s method is that Berlekamp’s algorithm iterates

through the sequence, processing one entry at a time: for each n = 1, 2, . . ., the minimal gen-

erator is found for the first n entries of the sequence, using the computations that produced

the generator for the first n − 1 entries (where the generator for n = 0 is the polynomial 1 by

convention). Berlekamp proved that the degree of the minimal generator (equivalently, length

of the minimal recurrence relation) could be computed at the beginning of each iteration by

testing if the generator for n entries continues to generate the (n+ 1)-st entry.

Whereas Berlekamp’s algorithm was intended for sequences that arise in BCH decoding,

Massey generalized Berlekamp’s algorithm to the realm of arbitrary linearly generated se-

quences, granting the name “Berlekamp Iterative Algorithm” (see Section III of [Massey 1969]),

which later adopted the name Berlekamp/Massey Algorithm. Through direct manipulation of

recurrence relations, Massey showed that the degree of the minimal generator follows a concise

rule: if we denote by Ln(a) the degree of the minimal generator for the first n entries of the

sequence a, then Ln+1(a) = max{Ln(a), n + 1 − Ln(a)}. This property allows the iterative

step of the Berlekamp/Massey Algorithm to depend on a simple switch: whether or not there

is a length change (i.e., Ln+1 > Ln). It is the nature of this length change test that allows us

to introduce error correction to the minimal generator computation: eventually in a linearly

generated sequence, a single error will cause a large increase in the length of the generator.

In Chapter 2, we formally define the problem of error correction for linearly generated

sequences: suppose that a sequence a0, a1, . . . of elements from a field, F, has a minimal generator

Λ of degree t. Given a sequence b0, b1, . . . , bn−1 where bi 6= ai for at most E values of i, we wish to
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recover Λ (the intended generator) and correct the errors in the sequence. (Counter-)examples 1

and 2 show that one must have n ≥ 2t(2E+1) for the problem to have a unique solution, at least

when char(F) 6= 2. Given this lower bound on n, the determination of the intended generator

amounts to a “majority vote” of generator candidates obtained by executing the Berlekamp/

Massey algorithm on each contiguous subsequence of 2t entries; this follows from Lemma 3.

After recovering the intended generator, detection and correction of errors is not as simple

as applying the generator to the entire sequence {bi}, changing entries as necessary to fit

the recurrence. Rather, it may be that an erroneous “block” of 2t entries yields the intended

generator. For example, consider the two sequences

0̄, 0, 1, 0̄, 0, 2

0̄, 1, 1, 0̄, 2, 2
, 0̄ =

t−2 times︷ ︸︸ ︷
0, . . . , 0,

both of which yield−2+λt as minimal generator. Suppose the entire intended sequence {ai} were

a continuation of the first sequence (using −2+λt to generate further entries), but the erroneous

sequence {bi} were formed by substituting the first block as above. Testing the generator with

the first block as initial input, the recurrence would fail at locations that agree with the intended

sequence. We call such a block as above a “deceptive block”; Theorem 4 proves that a deceptive

block will cause more than E such failure locations, so that one will know to use a different

block as initial input to the generator test. It is also proven that the method works when only

a bound T ≥ t is known.

Thus having an error-correction strategy for linearly generated sequences, Prony’s method

becomes part of an error-correcting algorithm for sparse interpolation. We describe the full algo-

rithm as an adaptation of Ben-Or’s & Tiwari’s algorithm for error-free sparse interpolation (see

[Ben-Or and Tiwari 1988]), which applies Prony’s method to the multivariate case, substituting

a distinct prime for each variable.

We also explore a numeric/approximate adaptation of the univariate case, where we choose

ω to be an appropriate complex root of unity (for numerical stability); Section 2.6 describes the

algorithm and presents some experiments where every evaluation is perturbed by a (relatively)

small “noise” error, while only a few evaluations are perturbed by a (relatively) large “outlier”

error. It should be noted that when the evaluations are only approximate, the Berlekamp/

Massey algorithm cannot be directly implemented, as it includes an explicit test for zero (when

determining whether a recurrence relation holds); thus, we appeal to the results of [Kaltofen and

Lee 2003] and [Kaltofen, Lee, and Yang 2011] to compute the approximate minimal generator.

Also, it may be that the majority vote is inconclusive, so we appeal to oversampling: several

sequences of evaluations are obtained, substituting different values for ω.

In the exact case where the field F is a finite field, choosing ω to be a primitive root of
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unity causes the sparse interpolation with errors problem to be dual to that of decoding Reed-

Solomon codes, as shown in Section 2.3. With a result of [Blahut 1983], we present the sparse

interpolation with errors problem from the perspective of error-correcting coding.

Whereas Chapter 2 addresses the problem of sparse polynomial interpolation with errors in

the power basis (1, x, x2, . . .), Chapter 3 addresses a similar problem, but in the shifted power

basis: 1, (x− s), (x− s)2, . . . for some constant value s, which is a priori unknown. This results

in an optimization problem: find the value of s that yields the fewest terms in the shifted

representation f(x) =
∑t

i=1 ci(x− s)
ei .

For a first interpolation algorithm, we appeal to the results of [Kaltofen and Lee 2003].

Consider that g(x) = f(x + s) is sparse in the (un-shifted) power basis, so the sequence of

evaluations a0 = g(1), a1 = g(ω), a2 = g(ω2), . . . is linearly generated by Λ(λ) =
∏t

i=1(λ− ω
ei).

Equivalently, the Hankel matrix Hm = [ai+j−2]
m
i,j=1 is singular for m = t + 1, with a column

relation given by the coefficients of Λ. Furthermore, Theorem 4 of [Kaltofen and Lee 2003] states

that, with high probability, Hm is non-singular for 1 ≤ m ≤ t when ω is randomly sampled

from a sufficiently large subset of F.

In [Giesbrecht, Kaltofen, and Lee 2003], by defining two sequences ai = f(ωi
1 + z) and

bi = f(ωi
2 + z) with z an indeterminate for s and ω1, ω2 each randomly sampled, it is shown

that (again, with high probability) if one computes the GCD of the determinants of the m×m

Hankel matrices formed by the two sequences, then z + s will be the first non-trivial GCD,

exactly when m = t + 1. To introduce error correction in the function evaluations, we pre-

condition the evaluations by performing dense interpolation with errors (based on Blahut’s

method for decoding Reed-Solomon codes) on f(ωi + z), as a dense polynomial in z.

If we view the representation f(x) =
∑t

i=1 ci(x− s)
ei as the Taylor expansion of f at x = s,

then we see that s must be a root of all derivatives of f whose order is not some ei. Thus, we

search for the root where the most derivatives vanish, which immediately gives all values ei as

well. If f has no more than half the possible number of terms, then Theorem 1 of [Lakshman

Y. N. and Saunders 1996] guarantees that the value of s is unique and rational. We show that

one need compute only the 2t highest-order derivatives (the highest being the (deg(f) − 1)-st

derivative in this context) to find s, with the possibility of early termination. To compute these

derivatives without having knowledge of s, one would need methods of dense interpolation with

errors to compute the 2t highest-order terms of f . Due to the necessary division in Taylor

coefficients, we restrict this algorithm to fields of characteristic zero.

We give numeric adaptations of both algorithms, where again we assume that every evalu-

ation is perturbed by a (relatively) small “noise” error, while only a few evaluations are per-

turbed by a (relatively) large “outlier” error. In addition, we focus on the error-locating stage

of Blahut’s method for decoding Reed-Solomon codes. As described in Section 3.3, locating

outliers in a sequence of dense polynomial evaluations (in the exact setting) relies on a sparse
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polynomial interpolation, where the exponents of the sparse polynomial correspond to the error

locations in the sequence of dense polynomial evaluations. In particular for the numeric setting,

we explore the relative difference between the magnitudes of noise and outlier in the 1-outlier

case, giving a sufficient condition that will guarantee recovery of the error location. We show

some experiments of what can happen when the magnitude of an outlier approaches that of

general noise.

Chapter 4 addresses the problem of enumerating square singular Hankel matrices with

entries from a finite field Fq, specifically when some of the anti-diagonals may be fixed to

particular values. Though not directly related to sparse interpolation, the solution is intimately

connected to the Berlekamp/Massey algorithm, as a Hankel matrix H = [ai+j−2]
n
i,j=1 can be

represented by the sequence a0, a1, . . . , a2n−2. By executing the Berlekamp/Massey algorithm

on the sequence, one can determine which leading principal submatrices of H are non-singular,

due to Lemma 2 of [Kaltofen and Yuhasz 2013a]: there will be a length change, Lm > Lm−1,

exactly when the Lm × Lm leading principal submatrix is non-singular.

We use this property to determine, for any singular Hankel matrix, a unique anti-diagonal

that, if changed to any of the other q− 1 values in Fq, will cause the matrix to be non-singular.

This induces a map from the set of singular Hankel matrices to the power set of non-singular

Hankel matrices (see Section 4.3). By showing that the images of the map will partition the set

of non-singular matrices, we can prove the already-established property that a fraction of 1/q of

all Hankel matrices are singular. In addition, because the singularity-controlling anti-diagonal

is found on or below the main anti-diagonal, we can determine singularity when any of the anti-

diagonals on or above the main anti-diagonal are fixed (while the other anti-diagonals range

over Fq). Theorem 5 shows the three cases for counting square singular Hankel matrices, which

depend on the choice of fixed anti-diagonals and the values of those anti-diagonals. The result

is analogous when some anti-diagonals are fixed on or below the main anti-diagonal, but not

when anti-diagonals above and below the main anti-diagonal are fixed.

We also provide counts for the number of block-Hankel matrices with block generic rank

profile, i.e., matrices H of rank mr (where blocks are size m ×m) such that rank(Hk) = mk

for k = 1, 2, . . . , r, where Hk is the k × k block leading principal submatrix of H. We compare

this result to that of [Kaltofen and Lobo 1996], where Toeplitz matrices of generic rank profile

(i.e., block size 1) are counted.
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Chapter Two

Sparse Polynomial Interpolation

with Noise and Outliers (SPINO)

This chapter is [Comer, Kaltofen, and Pernet 2012], except for the modifications listed in Note 2.

2.1 Introduction

The problem of reconstructing a sparse polynomial from its values stands at the nexus of

symbolic and numeric computing. The astounding success of the numerical versions of the

exact symbolic sparse interpolation algorithms [Grigoriev and Karpinski 1987; Ben-Or and

Tiwari 1988; Kaltofen, Lakshman Y. N., and Wiley 1990; Kaltofen and Lee 2003], namely the

“GLL”-algorithm [Giesbrecht, Labahn, and Lee 2009], in medical signal processing by Annie

Cuyt, Wen-shin Lee, and others (see, e.g., http://smartcare.be) leads to a statistical problem

variant: allow for outlier measurement errors in addition to noise.

2.1.1 Exact Sparse Interpolation With Errors

We begin by investigating the exact, symbolic problem formulation: we give algorithms that

reconstruct a sparse polynomial from its values even if some values are incorrect. More precisely,

we give algorithms that from 2T (E+1) values at points of our choice (evaluations at consecutive

powers of an element, e.g., roots of unity) can compute a t-sparse interpolant, where the input

includes upper bounds T ≥ t and E ≥ e, where e evaluations are incorrect. The output can be

a list of at most E interpolants, but necessarily containing the correct one. We can produce a

unique t-sparse interpolant from 2T (2E + 1) evaluations at points of our choice. Our method

7
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is based on Ben-Or’s and Tiwari’s (1988) algorithm, which computes the sparse support (the

set of non-zero terms) via a linear recurrence. We compute the linear generators for multiple

segments of the sequence to expose the faults in some of the segments.

We also study on its own the Berlekamp/Massey algorithm on input sequences with faulty

elements, and show that uniqueness of a linear generator of degree t cannot be guaranteed from

a sequence segment of < 2t(2e+ 1) consecutive elements with e errors. For sequence segments

of ≥ 2T (2E + 1) consecutive elements with e ≤ E errors, we not only can easily recover the

unique linear generator of degree t ≤ T where the bounds T,E are input, but we can also locate

and correct the errors. For sequences arising in sparse interpolation, fewer elements may suffice

for a unique interpolant, as we do not have the corresponding counterexamples.

The exact dense interpolation problem with errors is studied in [Khonji, Pernet, Roch, Roche,

and Stalinsky 2010]. The exact sparse problem is also investigated in [Saraf and Yekhanin 2011],

where it is assumed, as we do not, that the support of the sparse polynomial is known. However,

Saraf’s CCC ’11 talk has motivated our investigations.

2.1.2 The Nature of Noise

In numerical data, noise is a result of imprecise measurement or of floating point arithmetic.

It is assumed that there is some accuracy in the data. In digital data, noise spoils several

bits and accuracy is measured as having a small Hamming distance. When approximating a

transcendental function by a Taylor series or Padé fraction, noise is the model error of the

inexact representation. Hybrid symbolic-numeric algorithms have traditionally assumed that

the input scalars have with some relative error been deformed. For instance, if one allows

substantial oversampling, a sparse polynomial can be recovered from numerical noisy values,

where each value has a relative error of 0.5 [Giesbrecht and Roche 2011], perhaps even 0.99, with

still more oversampling. Here we consider errors in the Hamming distance sense, i.e., several

incorrect values without assumption on any accuracy. But we can combine our model with that

of numerical noise in all other values, hence we borrow the statistical term outlier for the nature

of these errors.

One could also presume, as Annie Cuyt does, that the black box mechanism that produces

the values for our interpolant, with possibly both inaccuracies and outlier errors, represents an

unknown, possibly irrational, function that the sparse polynomial model approximates. However,

the model fitting algorithm cannot distinguish errors in the model from noise and outliers in the

values, at least not if the produced errors are independent on the locality of the input probe.
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2.1.3 Numeric Sparse Interpolation

Linear recurrence-based sparse interpolation goes back to the French revolution [Prony III

(1795)]. In fact, Prony’s algorithm is Ben-Or’s/Tiwari’s if one replaces the polynomial variables

by exponential functions x = ey. For imaginary replacements x = ei y one obtains periodic

sparse sinusoid (finite Fourier) signals (cf. [Cadzow 1988]). Prony’s algorithm disappeared from

numerical analysis books for reason of conditioning [Wen-shin Lee, private communication]. The

probabilistic analysis of the randomized early termination algorithm [Kaltofen and Lee 2003]

together with analysis of the distribution of the corresponding condition numbers [Giesbrecht,

Labahn, and Lee 2009; Kaltofen, Lee, and Yang 2011] now justifies its use, even numerically.

Ill-conditioning arises precisely at the point of termination, and condition number estimation or

stochastic input sensitivity analysis can be used to identify this point. Already Prony’s paper

shows that the sparse terms can have negative, and possibly rational, exponents.

2.1.4 Numeric Outliers

Important variants of our algorithms can deal with numerical noise, from floating point or

empirical input values, and outliers. We demonstrate that the Prony-GLL style algorithms

[Giesbrecht, Labahn, and Lee 2009; Kaltofen, Lee, and Yang 2011] are applicable to our major-

ity voting approach by describing our early-terminated numeric version of the Ben-Or/Tiwari

Algorithm; some particular examples are given in Section 2.6.

2.1.5 The Ben-Or/Tiwari Algorithm

We briefly review Ben-Or’s/Tiwari’s algorithm in the setting of univariate sparse polynomial

interpolation. Let f be a univariate polynomial, mj its distinct terms, t the number of terms,

and cj the corresponding non-zero coefficients:

f(x) =
t∑

j=1

cjx
ej =

t∑

j=1

cjmj 6= 0, ej ∈ Z.

Theorem 1. [Ben-Or and Tiwari 1988] Let bj = ωej , where ω is a value from the coefficient

domain to be specified later, let ai = f(ωi) =
∑t

j=1 cjb
i
j , and let Λ(λ) =

∏t
j=1(λ − bj) =

λt+γt−1λ
t−1+· · ·+γ0. The sequence (a0, a1, . . .) is linearly generated by the minimal polynomial

Λ(z).

The Ben-Or/Tiwari algorithm then proceeds in the four following steps:

1. Find the minimal-degree generating polynomial Λ for (a0, a1, . . .), using the Berlekamp/

Massey algorithm.
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2. Compute the roots bj of Λ, using univariate polynomial factorization.

3. Recover the exponents ej of f , by repeatedly dividing bj by ω.

4. Recover the coefficients cj of f , by solving the transposed t× t Vandermonde system




1 1 . . . 1

b1 b2 . . . bt
...

...
. . .

...

bt−1
1 bt−1

2 . . . bt−1
t







c1

c2
...

ct



=




a0

a1
...

at−1



.

By Blahut’s theorem [Blahut 1979; Massey and Schaub 1988], the sequence (ai)i≥0 has linear

complexity t, hence only 2t coefficients suffice for the Berlekamp/Massey algorithm to recover

the minimal polynomial Λ. In the presence of errors in some of the evaluations, this fails. Our

work shows how to overcome that obstruction.

2.2 Length Bounds for Computing Linear Generators From Se-

quences with Error

2.2.1 Necessary Length of the Input Sequence

Example 1. Suppose the base field is F, where char(F) 6= 2. Given e, t ≥ 1, let 0̄ denote the

zero vector of length t− 1. Consider the following sequence of length 4t:

(0̄, 1, 0̄, 1︸︷︷︸
−1

, 0̄, 1, 0̄,

1︷︸︸︷
−1 )

⇒ −1 + λt

⇒ 1 + λt
.

Here, the underbrace and overbrace represent distinct “corrections” that would yield two

different minimal linear generators (1 + λt and −1 + λt, respectively). If we concatenate this

sequence with itself e− 1 times, then append the sequence (0̄, 1, 0̄), the result is a sequence of

length 4et+2t− 1 = 2t(2e+1)− 1, where two sets of “corrections” would each yield a different

minimal linear generator. Thus, at least 2t(2e+ 1) sequence entries are necessary to guarantee

a unique solution.

Example 2. Suppose again that the base field is F, where char(F) 6= 2. Let α be an e-th root

of unity, for e even, and consider the following sequence of 2(2e+ 1)− 1 entries:

(1, α, . . . , αe−1, 1,−α, . . . , (−α)e−1, 1, α, . . . , αe−1, 1,−α, . . . , (−α)e−1, 1).

10



If the odd powers of −α are changed to odd powers of α, then −α + λ is the minimal linear

generator. However, if the odd powers of α are changed to odd powers of −α, then α+ λ is the

minimal linear generator. Note that there are e changes made to the sequence in either case.

Thus, at least 2(2e+ 1) entries are required to guarantee a unique solution when t = 1.

For the case t > 1, we place the zero-vector of length t − 1 in between each entry above,

and on each end of the sequence. Again, we see that at least 2t(2e+ 1) entries are required to

guarantee a unique solution.

As an explicit example, let e = 4, t = 1, and consider the following sequence:

(1, i︸︷︷︸
−i

,−1, −i︸︷︷︸
i

, 1,

i︷︸︸︷
−i ,−1,

−i︷︸︸︷
i , 1, i︸︷︷︸

−i

,−1, −i︸︷︷︸
i

, 1,

i︷︸︸︷
−i ,−1,

−i︷︸︸︷
i , 1).

When e is odd, we can take the example for e+ 1, remove the last 4t entries, then change the

last αe to −αe. The resulting sequence has 2t(2(e + 1) + 1) − 1 − 4t = 2t(2e + 1) − 1 entries,

as in the case where e is even. As an explicit example, let t = 1 and e = 3. We start with the

example for e = 4:

(1, α︸︷︷︸
−α

, α2, α3
︸︷︷︸
−α3

, 1,

α︷︸︸︷
−α , α2,

α3

︷︸︸︷
−α3, 1, α︸︷︷︸

−α

, α2, α3
︸︷︷︸
−α3

, 1,

α︷︸︸︷
−α , α2,

α3

︷︸︸︷
−α3, 1)

then modify it to

(1, α︸︷︷︸
−α

, α2, α3
︸︷︷︸
−α3

, 1,

α︷︸︸︷
−α , α2,

α3

︷︸︸︷
−α3, 1, α︸︷︷︸

−α

, α2,

α3

︷︸︸︷
−α3, 1).

2.2.2 Bounds on Generator Degree and Location of Last Error

Lemma 1. Suppose the infinite sequence (a0, a1, . . .) has monic minimal linear generator Λ(λ)

with Λ(0) 6= 0. If we introduce errors into the sequence, with the last error at entry k, then

λkΛ(λ) is the monic minimal linear generator of the infinite sequence (b0, b1, . . ., bk−1, ak,

ak+1, . . .), where bk−1 6= ak−1.

Proof. Write the monic minimal linear generator of the erroneous sequence as λlΞ(λ), where

Ξ(0) 6= 0. The polynomial λkΛ will generate the erroneous sequence, which implies λlΞ | λkΛ.

Note that for m = max{l, k}, Λ and Ξ are both linear generators for (am, am+1, . . .), but Λ is

minimal by Lemma 3, so Λ | Ξ.

Let Ξ = ΛΓ. Then Γ is monic and has a non-zero constant term (because both Λ and Ξ

do), so then λlΛΓ | λkΛ, say λlΛΓp = λkΛ. Then we have λlΛ(Γp − λk−l) = 0, which implies
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Γp = λk−l because Λ 6= 0, where l ≤ k due to the divisibility statements above. Thus, both Γ

and p are monomials in λ, but this forces Γ = 1, so Ξ = Λ.

To finish the proof, note that if l < k, then λlΞ = λlΛ would fail to generate (b0, b1, . . . , bk−1,

ak, ak+1, . . . , ak+t−1), so we must have l = k and the minimal linear generator of the erroneous

sequence is λkΛ.

Theorem 2. Suppose the infinite sequence (a0, a1, . . .) has monic minimal linear generator

Λ(λ) with Λ(0) 6= 0 and deg(Λ) = t, and suppose that errors are introduced into the sequence,

with the last error occurring at entry k. If only bounds for t and k are known, say, t ≤ T and

k ≤ K, then Algorithm 1 and Algorithm 2 can be used to recover Λ and the intended sequence,

if given min{K + 2T, k + t+K + T} entries of the erroneous sequence.

Proof. If given K + 2T entries, then calling Algorithm 1 on the sequence (aK+2T−1, aK+2T−2,

. . . , aK), which contains no error, will return Λsr (i.e., the scaled reciprocal polynomial of Λ) by

Lemma 4. We can then call Algorithm 2 with Λsr, K, and (aK+T−1, aK+T−2, . . . , a0) as input.

However, if T ≫ t, then K + 2T entries may be more than necessary, as we may be able

to find Λ from an early-terminated Algorithm 1 running in the forward direction. Specifically,

if a sequence has a monic minimal linear generator of unknown degree d and d ≤ δ, where

δ is known, then Algorithm 1 will compute the (reciprocal polynomial of the) generator after

processing 2d entries. After processing d + δ entries, any future discrepancy would cause the

degree of the generator to exceed δ, so the algorithm may stop; see Theorem 5 of [Kaltofen

and Yuhasz 2013a]. Here, we have d = k + t (by Lemma 1) and δ = K + T , so Algorithm 1

may stop after processing k+ t+K + T entries, which will be fewer than K +2T entries when

T > k + t.

2.3 Reed-Solomon decoding

We show in this section that the problem of sparse interpolation with errors is dual with that

of Reed-Solomon decoding. This rapid overview on error correcting codes is not comprehensive.

The reader can refer to [Moon 2005] for a treatment of the subject in appropriate details.

2.3.1 Reed-Solomon as Evaluation Codes

The popular Reed-Solomon codes can be defined (as in their original presentation by [Reed and

Solomon 1960]) as evaluation interpolation codes. Let K be the finite field Fq, set n = q − 1

and let ξ be a primitive n-th root of unity in K.

A message is a vector of k < n symbols from Fq, forming a polynomial f = a0 + a1X +

· · · + ak−1X
k−1 of degree at most k − 1. The encoding of the message is the vector of the n
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evaluations of f in the consecutive powers of ξ:

c = Ev(f) = (f(ξ0), f(ξ1), . . . , f(ξn−1)) = Vξf, where Vξ =




1 1 . . . 1

1 ξ . . . ξn−1

...
...

. . .
...

1 ξn−1 . . . ξ(n−1)2




is the Vandermonde matrix of the evaluation points 1, ξ, ξ2, . . . ξn−1. For simplicity, we equate

a polynomial with the vector of its coefficients. This procedure defines the (n, k)-Reed-Solomon

code as the set C of evaluations of all polynomials of degree at most k − 1:

C = {(f(ξ0), f(ξ1), . . . , f(ξn−1)) | f ∈ Fq[X], deg(f) ≤ k}.

Decoding works by a simple interpolation. Suppose that a weight e error ε affects the

communication, so that one receives the message c′ = c + ε, where e coefficients of ε are non

zero. A consequence of the BCH theorem is that if E = ⌊n−k
2 ⌋ and e ≤ E, then c is the unique

codeword at distance no more than E to c′. This makes it possible to correct and decode a

codeword affected by up to E errors.

Let I be the interpolation function associated to the points ξ, ξ2, . . . , ξn. As I is linear, it

satisfies I(c′) = I(c)+ I(ε) = f + I(ε). In particular, the last n−k monomials of I(c′) are those

of I(ε), which form a contiguous subsequence of the Discrete Fourier Transform of ε called

the syndrome. Blahut’s Theorem [Blahut 1983] states that the D.F.T. of a vector of weight t is

linearly generated by a polynomial of degree less than t. Hence applying the Berlekamp/Massey

algorithm on these n− k ≥ 2t coefficients will recover this generating polynomial, called error

locator: it vanishes at the ξi where errors occurred.

2.3.2 Relation with Sparse Interpolation with Errors

To summarize, the Reed-Solomon decoding problem is the following:

Given c′ ∈ F
n
q , find f of degree less than k and ε of weight t such that c′ = Vξf + ε.

This problem has a unique solution provided t ≤ n−k
2 . In comparison, the sparse interpolation

problem can be written as

Given c′ ∈ F
n
q , find an error f and a sparse polynomial ε of weight t such that c′ = f + Vξε.

The Vandermonde matrix Vξ satisfies V
−1
ξ = Vξ−1/n, hence its inverse is a (scaled) Vandermonde

matrix and corresponds, up to sign, to the evaluation function in the powers of ξ−1. Left-

multiplying c′ = f + Vξε by V −1
ξ makes it a Reed-Solomon decoding problem (based on the
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primitive root ξ−1). This problem has a unique solution provided that the 2t trailing coefficients

of the error vector f are zeros. Hence, a t-sparse polynomial can be recovered from n evaluations

provided that the last 2t of them are not erroneous.

Now as the location of a consecutive sub-sequence of 2t non-faulty evaluations is a priori

unknown, one needs to inspect several segments of length 2t. In the Reed-Solomon decoding

viewpoint, one tries to decode that same sequence with several Reed-Solomon codes (of varying

length, dimension and set of evaluation points). This adaptive decoding is similar to the one

proposed in [Khonji, Pernet, Roch, Roche, and Stalinsky 2010] for decoding CRT codes. In this

context, the uniqueness of the solution is no longer guaranteed. In the following sections, we

will propose two decoding algorithms: the first decodes with the shortest sequence of evaluation

points, but can return a list a several candidates, and the second guarantees a unique solution,

but a with a longer sequence of evaluations, however optimal, with respect to the lower bound

proven in Section 2.2.

2.4 A Fault-Tolerant Berlekamp/Massey algorithm

We address the problem of recovering the minimal-degree monic polynomial that generates a

sequence of n elements, where at most E entries have been modified by errors; we address

this problem first by a heuristic: it returns a list of at most E candidates, but that necessarily

contains the correct one.

We recall in Algorithm 1 the specification of the well-known Berlekamp/Massey algorithm

to find the monic minimal generating polynomial of a sequence; this algorithm can recover the

monic generating polynomial of least degree t from 2t consecutive sequence entries.

Algorithm 1: Berlekamp/Massey

Input: (a0, a1, . . . , an−1), a sequence of field elements

Output: Λ(λ) =
∑Ln

i=0 γiλ
i, a monic polynomial of minimal degree Ln ≤ n such that∑Ln

i=0 γiai+j = 0 for j = 0, 1, . . . , n− Ln − 1

Lemma 2. Let S = (a0, a1, . . .) be an infinite sequence generated by a minimal linear relation

of degree t, so that ai+t =
∑t−1

j=0 γjai+j for all i ≥ 0 with γ0 6= 0. Let Λ(λ) = λt −
∑t

j=0 γjλ
j.

Then calling Algorithm 1 on any subsequence (ai, . . . , ai+2t−1) will return Λ.

In a sequence of 2T (E + 1) elements affected by at most E errors, there has to be at least

one clean subsequence of length 2T . However, some unlikely combination of errors may lead to

a block of 2T elements for which the Berlekamp/Massey algorithm will produce a degree t ≤ T
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generating polynomial that is not the original generating polynomial. We can discriminate

against some of these false positive cases by checking the generating polynomial against the

remaining elements in the sequence. This is done by Algorithm 2, which can then be used in

Algorithm 3 to select only the polynomials of degree t that generate a sequence of Hamming

distance less than E to the input sequence. Unfortunately, some false positive may still generate

the sequence with less than E errors, as shown in Section 2.2. Section 2.5 will address this issue

with a stronger assumption on the length of the sequence: n ≥ 2T (2E + 1).

Algorithm 2: Sequence Clean-up (scu)

Input: Λ(λ) =
∑t

i=0 γiλ
i, a monic polynomial of degree t, such that Λ(0) 6= 0

Input: E, the maximum number of changes to the sequence allowed
Input: (a0, . . . , an−1) a sequence of field elements where n ≥ 2t+ 1.
Input: k ≤ n− 2t− 1, the initial position for clean-up

Output: ((c0, . . . , cn−1), e), a sequence of field elements, such that either e > E or
(c0, . . . , cn−1) is a linearly recurrent sequence of field elements, generated by Λ, of
Hamming distance at most E to (a0, . . . , an−1), such that (ck, . . . , ck+2t−1) = (ak,
. . . , ak+2t−1)

scu1 Initialize (c0, . . . , cn−1)← (a0, . . . , an−1).
If (c0, . . . , cn−1) is already linearly recurrent of length/degree t or less, then the output
will be ((a0, . . . , an−1, 0).

scu2 Initialize i← k + 2t and e← 0.

scu3 While i ≤ n− 1 and e ≤ E, perform steps scu4-scu5.
We re-write sequence entries to force a linear recurrence of length/degree t or less.

scu4 If
∑t

j=0 γjcj+i−t 6= 0, then set ci ← −
∑t−1

j=0 γjci+j−t and e← e+ 1.

scu5 Increment i← i+ 1.

scu6 Set i← k − 1.

scu7 While i ≥ 0 and e ≤ E, perform steps scu8-scu9.
These steps are similar to steps scu4-scu5, but process the sequence in the reverse
direction.

scu8 If
∑t

j=0 γjcj+i 6= 0, then set ci ← −
∑t

j=1
γj
γ0
ci+j and e← e+ 1.

scu9 Decrement i← i− 1.

scu10 Return (c0, . . . , cn−1), e.
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Algorithm 3: Fault Tolerant Berlekamp/Massey (ftbm)

Input: (a0, . . . , an−1), a sequence of field elements
Input: T , an upper bound for t, the degree of the monic minimal generator
Input: E, an uppper bound on the number of errors

Output: L, a list of pairs ((c0, . . . , cn−1),Λ) formed by a sequence of distance less than E
to (a0, . . . , an−1) and its minimal degree monic generating polynomial. We require
Λ(0) 6= 0.

ftbm1 Initialize L← [ ] (the empty list) and i← 0.

ftbm2 While i ≤
⌊

n
2T

⌋
− 1, perform Steps ftbm3-ftbm6.

ftbm3 Call Algorithm 1 on (a2T i, . . . , a2T i+2T−1); store the output as Λ.

ftbm4 If Λ(0) 6= 0, then call Algorithm 2 on (Λ, E, (a0, . . . , an−1), 2Ti);
store the output as ((c0, . . . , cn−1), e).

ftbm5 If e ≤ E, then append ((c0, . . . , cn−1),Λ) to the list L.

ftbm6 Increment i← i+ 1.

ftbm7 Return L.

Theorem 3. If n ≥ 2T (E + 1), Algorithm 3 run on a sequence altered by at most E errors

returns a list of less than E polynomials containing the generating polynomial of the initial clean

sequence. It runs in O(T 2E) arithmetic operations.

Proof. As n ≥ 2T (E +1), there has to be an iteration where the segment (a2T i, . . . , a2T i+2T−1)

has no error, and for which the Berlekamp/Massey algorithm will return the correct polynomial

and the call to Algorithm 2 will fix the sequence with less than E corrections. The complexity

is that of E applications of the Berlekamp-Massey algorithm on 2T elements.

Note that the condition on the length of the sequence n ≥ 2T (E+1) is the tightest possible

in order to apply a syndrome decoding. Indeed if n < 2T (E + 1) some errors of weight E,

e.g. e =
∑⌊ n

2T
⌋

i=1 e2T i where ei denotes the i-th canonical vector, are such that no length 2T

consecutive sub-sequence of evaluations is error-free, and Ben-Or/Tiwari’s algorithm can not

be applied on any part of such a sequence.

On the other hand, this algorithm can also return a list of several candidates. Each recon-

structed sparse polynomial can be tested on a few more evaluations until only one remains.
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2.5 The Majority Rule Berlekamp/Massey algorithm

If one has e errors in a sequence of 2t(2e + 1) linearly generated elements by a generator of

degree t, then e+ 1 “blocks” of 2t elements must have the same correct generator. However, it

is not so clear that with the correct generator one can locate and correct the errors, because

an erroneous block could still have the same correct generator. Here, we show that location

and correction of errors are always possible, and that one only needs upper bounds T ≥ t and

E ≥ e.

Algorithm 4: Majority Rule Berlekamp/Massey (mrbm)

Input: (a0, . . . , a2T (2E+1)−1) + ~ε, where (ai) is a linearly recurrent sequence (of degree
t ≤ T ) of field elements, and ~ε is a vector of Hamming weight e ≤ E. Denote this
sequence as (bi).

Input: T , an upper bound for t, the degree of the monic minimal linear generator
Input: E, an upper bound for the number of errors in the above sequence

Output: (a0, . . . , a2T (2E+1)−1), the intended sequence

Output: Λ, the monic minimal linear generator of the intended sequence

mrbm1 For i = 0, . . . , 2E, call Algorithm 1 on (b0+2T i, . . . , b2T−1+2T i);
store the outputs as Λi, respectively.

mrbm2 Initialize L← [0, 1, . . . , 2E] and m← 0.

mrbm3 For i ∈ L, perform Steps mrbm4-mrbm7.
We perform a majority vote on the candidates Λ0, . . . ,Λ2E.

mrbm4 Initialize Li ← [ ] (the empty list).

mrbm5 For j ∈ L, perform Step mrbm6.

mrbm6 If Λi = Λj , then set Li ← Li ∪ {j} and L← L \ {j}.

mrbm7 If card(Li) > card(Lm), then set m← i.

mrbm8 Set Λ← Λm.

mrbm9 For i ∈ Lm, perform Steps mrbm10-mrbm11.

mrbm10 Call Algorithm 2 on (Λ, E, (b0, . . . , b2T (2E+1)−1), 2Ti);
store the output as ((c0, . . . , c2T (2E+1)−1), e).

mrbm11 If e ≤ E, then break (i.e., proceed immediately to Step mrbm12).

mrbm12 Return (c0, . . . , c2T (2E+1)−1),Λ.
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2.5.1 Properties and Correctness

For convenience, we first assume that T = t. By supplying Algorithm 4 with 2t(2E+1) sequence

entries, we guarantee that during Step mrbm1, at least E + 1 of the Λi will be the correct

(“intended”) generator, Λ, by Lemma 3. If exactly E + 1 of the Λ agree, then every block with

Λ as a generator is “clean”, while every other block contains exactly one error.

Lemma 3. Suppose the infinite sequence (a0, a1, . . .) has monic minimal linear generator Λ(λ)

with Λ(0) 6= 0 and deg(Λ) = t. Then Λ is also the minimal linear generator of (ak, ak+1, . . .),

for any integer k ≥ 0.

Proof. First, consider k = 1. Let Γ(λ) be the minimal linear generator for the sequence

(a1, a2, . . .). This sequence is generated by Λ as well, so we have Γ | Λ, which implies deg(Γ) ≤

deg(Λ). Suppose that deg(Γ) < deg(Λ). We have that λΓ generates the sequence (a0, a1,

. . .), so we must have Λ | λΓ as well, so deg(Λ) ≤ deg(λΓ). But deg(λΓ) ≤ deg(Λ) because

deg(Γ) < deg(Λ), thus we have deg(λΓ) = deg(Λ). Both of these polynomials are monic, so

Λ | λΓ implies that Λ = λΓ, which implies Λ(0) = 0, contradiction. Thus, deg(Γ) = deg(Λ),

so that Γ | Λ implies Γ = Λ (again because both polynomials are monic). We can inductively

repeat this argument to show that Λ is the monic minimal linear generator for any k > 1 as

well.

Lemma 4. Suppose the sequence (a0, a1, . . . , a2t−1) has monic minimal linear generator Λ(λ)

with Λ(0) 6= 0 and deg(Λ) = t, where Λ = −γ0 − γ1λ− · · · − γt−1λ
t−1 + λt. Then the sequence

(a2t−1, a2t−2, . . . , a0) has monic minimal linear generator Λsr = (1/γ0)(−1+γt−1λ+· · ·+γ1λ
t−1+

γ0λ
t), called the (scaled) reciprocal polynomial of Λ (see, e.g., [Imamura and Yoshida 1987,

Section V]).

Lemma 5. Suppose the sequence (a0, a1, . . . , a2t−1) has monic minimal linear generator Λ(λ)

with Λ(0) 6= 0 and deg(Λ) = t, where Λ = −γ0 − γ1λ − · · · − γt−1λ
t−1 + λt. If we introduce at

most t errors into the sequence, with the last error no later than entry t, or equivalently the

first error no earlier than entry t+1, then the erroneous sequence cannot also have Λ as monic

minimal linear generator.

Proof. First, we consider the case of the last error no later than entry t. Suppose that Λ also

generated the erroneous sequence. Let the last error be located at entry k and denote the

erroneous sequence by

(b0, b1, . . . , bk−1, ak, ak+1, . . . , at, . . . , a2t−1),

where bk−1 6= ak−1. Denote by H and H ′ the t × t Hankel matrices generated by the first
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2t− 1 entries of the original and erroneous sequences, respectively, and denote by ~x the vector

(γ0, γ1, . . . , γt−1)
T . Then H~x = H ′~x = (at, at+1, . . . , a2t−1)

T , so that (H −H ′)~x = ~0.

Note that row k of H −H ′ is (ak − bk, 0, 0, . . . , 0), so that entry k of (H −H ′)~x is (ak−1 −

bk−1)γ0 6= 0, contradiction. Thus, the erroneous sequence cannot have f as monic minimal linear

generator.

For the case of the first error no earlier than entry t + 1, let the first error be located at

entry k and consider the reversed sequences (a2t−1, . . . , a0) and

(b2t−1, b2t−2, . . . , bk−1, ak−2, ak−3, . . . , at−1, . . . , a0),

noting by Lemma 4 that the former sequence has Λsr as monic minimal linear generator. The

original erroneous sequence has Λ as monic minimal linear generator if and only if the reversed

erroneous sequence has Λsr as monic minimal linear generator, again by Lemma 4. We then

repeat the argument above to show that the reversed erroneous sequence cannot have Λsr as

monic minimal linear generator. Therefore, the original erroneous sequence cannot have Λ as

its monic minimal linear generator.

Corollary 1. Suppose the sequence (a0, a1, . . . , a2t−1) has monic minimal linear generator Λ(λ)

with Λ(0) 6= 0 and deg(Λ) = t. Then the one-error sequence (a0, a1, . . ., ak−2, bk−1, ak, . . .,

a2t−1), bk−1 6= ak−1 cannot also have monic minimal linear generator Λ.

As stated earlier, if exactly E+1 of the Λi agree in Step mrbm1, then each of the E remaining

blocks of 2t entries must contain exactly one error. In this case, we can run Algorithm 2 during

Steps mrbm10-mrbm11 in parallel, correcting each erroneous block with the nearest clean block.

If more than E+1 of the Λi agree in Step mrbm1, then there may be an erroneous block of

of 2t entries that falsely yields the correct generator; call this a “deceptive block”. This block

must contain at least one error in both its first t entries and its last t entries, by Lemma 5. In

this case, we show that Algorithm 2 must return e > E if it is seeded in Step mrbm10 with a

deceptive block.

Theorem 4. If Algorithm 2 is called in Step mrbm10 of Algorithm 4 with a deceptive block,

then Algorithm 2 will return e > E.

Proof. For convenience, assume the deceptive block is first, i.e., (b0, . . . , b2t−1). Suppose the last

error in the deceptive block is bk−1 6= ak−1, where t + 1 ≤ k ≤ 2t. If (b2t, b2t+1, . . . , bk+t−1) =

(a2t, a2t+1, . . . , ak+t−1), then there must be a (non-zero) discrepancy in Step scu4 in Algorithm 2

for i = k+ t−1 because bk−1 is the only erroneous value in the test of the linear recurrence, and

is multiplied by Λ(0) 6= 0. In this case, an “erroneous correction” will occur (i.e., Algorithm 2

will change bk+t−1 to b′k+t−1 6= ak+t−1).
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If there is at least one error in entries b2t, b2t+1, . . . , bk+t−1, then it is possible for Algorithm 2

to make no change before entry bk+t−1, in which case there was at least one “deceptive error”

in the second block. If Algorithm 2 does make a correction before entry bk+t−1, then it is not

necessarily erroneous.

Denote by (c2t, c2t+1, . . . , ck+t−1) the output of Algorithm 2 when run on entries b2t, b2t+1,

. . . , bk+t−1 (whether or not there is an error). Let cs be the last entry such that cs 6= as; note

that this must exist because bk−1 6= ak−1, so that Algorithm 2 cannot return (c2t, c2t+1, . . . ,

ck+t−1) = (a2t, a2t+1, . . . , ak+t−1). Considering entries bs+1, bs+2, . . . , bs+t, we can repeat the

above arguments to show that there will be at least one correction (erroneous or not) or deceptive

error during the execution of Algorithm 2.

Continuing this process, we see that after entry k, there will be at least one correction or

deceptive error in every block of length t. At least two errors occurred in the first block of length

2t, so there may be at most E − 2 deceptive errors. At the (E +1)-st correction, the first block

of length 2t must have been deceptive.

To prove why we will see the (E+1)-st correction, note that in Step mrbm1 of Algorithm 4,

there must be a clean block no later than the (E + 1)-st block. At this point, we relax the

assumption that the deceptive block is first. The deceptive block must occur before the (E+1)-

st block in order to be used for seeding in Step mrbm10 of Algorithm 4. To see the (E + 1)-st

correction in Algorithm 2, we need at most 2t + t(E − 2) + t(E + 1) = t(2E + 1) consecutive

entries (including the seeded 2t block), but we are guaranteed at least 2t(E + 2) consecutive

entries. Thus, Algorithm 2 will return e > E.

It follows immediately from Theorem 4 that deceptive blocks will be exposed until the first

clean block is found (Steps mrbm9-mrbm11 of Algorithm 4), at which point all remaining errors

will be found and corrected.

Now suppose that T > t. If the first block of 2T entries that yields Λ is clean, then the

intended generator Λ will be found in Step mrbm8 of Algorithm 4 and all errors will be detected

and corrected thereafter. If the first block of 2T entries that yields Λ is deceptive, then we look

to the properties of the corresponding block of 2t entries.

If entries 1, 2, . . . , 2t are clean, then there must be an error before entry 2T , but the first

non-zero discrepancy after entry 2t, say at entry r > 2T , will cause

Lr = max{Lr−1, r − Lr−1} = max{t, r − t} > t

by [Massey 1969]. This contradicts the deceptive 2T -block yielding Λ.

If the block of entries 1, 2, . . . , 2t is itself deceptive, then we repeat the argument of The-

orem 4, as we will see at least one correction or deceptive error in every block of length t,

following entry 2t.
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If the block of entries 1, 2, . . . , 2t is itself erroneous, i.e., yields generator Γ 6= Λ, then we

must have deg(Γ) ≤ t, else L2T > t, contradiction. If deg(Γ) = t′ < t, i.e., if L2t = t′ < t, then

there must be a degree jump before entry 2T , say at entry r > 2t; at this jump, we will have

Lr = max{Lr−1, r − Lr−1} = r − Lr−1 = r − t′ > 2t− t′ > t,

again by [Massey 1969], so in fact L2T > t, hence the deceptive block of 2T entries cannot yield

Λ, contradiction.

If deg(Γ) = t, then there must be a non-zero discrepancy before entry 2T , say at entry

r > 2t, else the deceptive block yields Γ 6= Λ, contradiction. But then

Lr = max{Lr−1, r − Lr−1} = max{t, r − t} > t,

which again contradicts the deceptive 2T -block yielding Λ.

Therefore, even in the case of T > t, Algorithm 4 will return the intended sequence and

generator.

2.6 Implementation and Experiments of SPINO

We now adopt the strategy of Majority Rule to account for outlier errors in an early-terminated

numeric version of the sparse polynomial interpolation algorithm in [Ben-Or and Tiwari 1988],

which is recalled in the algorithm that follows Theorem 1. Here, we assume only upper bounds

T ≥ t and D ≥ d = deg(f); early termination follows from the algorithm detailed in [Kaltofen,

Lee, and Yang 2011]: instead of executing the Berlekamp/Massey algorithm to determine t,

we compute the 2-norm relative condition number of the leading principal submatrices of the

Hankel matrix H = [ui+j−2]
2T
i,j=1, where uk = f(ωk+1). Note that by [Rump 2003], for any

Hankel matrix H̄, the reciprocal of ‖H̄−1‖2 is the distance from H̄ to the nearest singular

Hankel matrix.

In the numeric setting, we choose for ω a complex root of unity, with prime order p > D.

The algorithm also works for interpolation of sparse Laurent polynomials, in which case we

choose p > D−Dlow, where Dlow is a lower bound on the low degree of f . We implement noise

as a (randomly positive or negative) scaling factor on a random floating-point number between

1 and 5 times ‖f‖2, which is added to each evaluation. Outliers simply multiply a random

position by 5. All computations are done in double floating point precision.

Note 1. Wen-shin Lee has told us that the algorithm will work even when f is a polynomial

and Dlow > 0: the condition p > D −Dlow is still sufficient when determining a value for p. In

particular, the algorithm will work when Dlow = D = d, in which case f(x) = cxd and p ≥ 2.
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Substituting the (complex) 2-nd root of unity ω = −1 allows recovery of c in the exact case by

Majority Rule.

As noted in Section 1 of [Kaltofen, Lee, and Yang 2011], the leading principal submatrices of

H are (with high probability) well-conditioned up to and including dimension t; the (t+1)×(t+1)

leading principal submatrix will be ill-conditioned unless substantial noise (and/or an outlier)

interferes. Thus, we set a threshold for ill-conditionedness, then obtain an estimate t′ for t. We

then determine Λ by obtaining a least squares solution to a well-conditioned t′ × t′ Hankel

system. (In the exact case, the coefficients of Λ form the solution to the non-singular Hankel

system.)

After finding the roots bj of Λ, we take advantage of the fact that ω is a prime-order root of

unity, by comparing the arguments of ω and bj to determine ej (modulo p, but there is a unique

representative in the set {0, 1, . . . , D} because p > D). Finally, we determine the coefficients ci

of f by obtaining a least squares solution to a transposed Vandermonde system.

For Majority Rule to expose outliers, we require 2E+1 segments of 2T+1 evaluations, where

again we assume there are e ≤ E outlier errors in the evaluations. As suggested in Section 3 of

[Kaltofen, Lee, and Yang 2011], our implementation allows the use of several roots of unity as

(initial) evaluation points in a single execution of the algorithm; in this case, we set t′ to the

maximum of all sparsity estimates.

In contrast to the symbolic case, a majority is not guaranteed in the numeric case, because

the numeric algorithm can under- and even overestimate t due to unlucky randomization and

noise, respectively. Similarly, wrong majorities may arise. In the cases where a majority does

not exist, segments with outliers are indistinguishable from faulty noisy ones, so the algorithm

returns FAIL if there is no majority for any root of unity. A hypothetical example of Majority

Rule with four roots of unity and E = 1 (i.e., three segments per root) is shown in Table 1

below.

Table 1: Majority Rule example

Root Sparsity Estimates Majority Vote

ω1 5 5 7 5
ω2 - 5 - -
ω3 4 6 5 -
ω4 4 4 - 4

Computed Sparsity max{5, 4} = 5
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When substantial/unlucky noise does interfere, we still may be able to recover some accurate

information. For example, given the 10-term Laurent polynomial

f = 48x32 + 24x25 − 53x22 + 67x−1 − 69x−7 − 5x−10 − 63x−16 − 37x−28 − 25x−35 + 16x−43

with Dlow = −100, D = 100, T = 15, a noise scaling factor of 10−7, ill-conditionedness threshold

of 103, and three random roots of unity, a particular randomization (of random floating point

noise distribution and choice of roots of unity) yields an interpolant f9 that has only nine terms

and is a poor fit to the noisy evaluations (compared to f itself). However, the nine exponents

of f9 are found in f , and ‖f9‖2 has a relative error (with respect to ‖f‖2, ignoring the dropped

monomial) of 0.036.

Another randomization yields an interpolant f10 that has ten terms and is a slightly better

fit to the noisy data than f itself; in this case, ‖f10‖2 has a relative error (with respect to

‖f‖2) on the order of 10−7. Yet another randomization yields an interpolant f11 that has eleven

terms and is also a slightly better fit to the noisy data than f itself, though a worse fit than

f10. However, ‖f11‖2 has a smaller relative error (with respect to ‖f‖2, ignoring the extra

monomial) than ‖f10‖, which suggests that the behavior of the noise is partially encoded in the

extra monomial of f11, where the coefficient has absolute value on the order of 10−6.

2.7 Future Work

Our problem formulation, smoothing over incorrect values during the process of sparse recon-

struction, applies to all such inverse problems, e.g., supersparse polynomial interpolation [Garg

and Schost 2009] and [Kaltofen 2010, Section 2.1], computing the sparsest shift [Grigoriev and

Karpinski 1993; Giesbrecht, Kaltofen, and Lee 2003] and the supersparsest shift [Giesbrecht and

Roche 2010], or the more difficult exact and numeric sparse and supersparse rational function

recovery [Kaltofen, Yang, and Zhi 2007; Kaltofen and Nehring 2011]. Our methods immediately

apply to algorithms that are based on computing a linear recurrence, such as the supersparse

interpolation algorithms in [Kaltofen 2010] and [Garg and Schost 2009]. The former needs no

modification, and for the latter, one uses the majority rule algorithm for the sparse recovery

with errors of the modular images f(x) mod (xp − 1), where p is chosen sufficiently large (and

random). The sparse interpolation with errors is at ω = (xr mod (xp−1 + · · ·+ 1)), where r

is random for early termination. One may assume that some polynomial residues f(ωi) mod

(xp−1 + · · · + 1) are faulty. The Chinese remaindering of the term exponents with several

p can be done by diversification [Giesbrecht and Roche 2011]. The sparsest shift algorithms

in [Giesbrecht, Kaltofen, and Lee 2003] can be modified similarly. When computing symbolic

polynomial values f(yi + z) with y and z variables one can use Reed-Solomon error correction.
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Algorithms for the supersparsest shift and sparse and supersparse rational function recovery

with outliers in the values are subjects of current research.

As stated in the introduction, an important variant is the hybrid symbolic-numeric algorithm

for noisy sequences that also contain outlier errors. We have demonstrated that our approach can

be combined with the Prony-GLL algorithms [Giesbrecht, Labahn, and Lee 2009; Kaltofen, Lee,

and Yang 2011], which in turn could be incorporated into the Zippel (1990) variable-by-variable

multivariate ZNIPR-algorithm for polynomials [Kaltofen, Yang, and Zhi 2007]. In addition,

numeric Reed-Solomon decoding based on approximate polynomial GCD can be incorporated

into ZNIPR. That and the numeric properties of the sparsest shift algorithm in the presence

of noise and outliers are subjects of papers in preparation. A sparse interpolation algorithm

using blocking and the matrix Berlekamp/Massey algorithm is described in [Kaltofen 2010,

Section 2.2], which potentially has better error detection/noise reduction properties.
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Note 2. The following modifications have been made from [Comer, Kaltofen, and Pernet 2012].

1. Page 7: “interpolations algorithms” has been changed to “interpolation algorithms”.

2. Page 9: “is Ben-Or/Tiwari’s” has been changed to “is Ben-Or’s/Tiwari’s”.

3. Page 12: the citation in the proof of Theorem 2 has been updated.

4. Page 13: “Berlekamp-Massey” has been changed to “Berlekamp/Massey”.

5. Page 14: “and the second guaranties” has been changed to “and the second guarantees”.

6. Algorithms 1, 2, 3, and 4 have been reformatted.

7. The input (c0, . . . , cn−1) of Algorithm 3 has been changed to (a0, . . . , an−1).

8. Page 16: “are error-free” has been changed to “is error-free”.

9. Page 17: “errors in a t of ” has been changed to “errors in a sequence of”

10. Page 17: “generator of degree t, e+1 ‘blocks’ ” has been changed to “generator of degree

t, then e+ 1 ‘blocks’ ”.

11. The title of Section 2.5.1 has been changed.

12. Page 18: “with bands given by” has been changed to “generated by”.

13. The title of Section 2.6 has been changed.

14. Note 1 has been added.

15. Page 23: “some polynomials residues” has been changed to “some polynomial residues”.
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Chapter Three

Sparse Polynomial Interpolation

by Variable Shift

This chapter is [Boyer, Comer, and Kaltofen 2012], except for the modifications listed in Note 3.

3.1 Introduction

Sparse polynomial interpolation algorithms, where the number of values required depends on

the number of non-zero terms in a chosen representation base rather than on the degree of the

polynomial, originate from two sources. One is Prony’s 1795 algorithm for reconstructing an

exponential sum [Prony III (1795)] (see also [Brezinski 2002]) and another is Blahut’s exact

sparse polynomial interpolation algorithm in the decoding phase of the Reed-Solomon error

correcting code. Both algorithms first determine the term structure via the generator (“error

locator polynomial”) of the linear recurrent sequence of the values f(ωi), i = 0, 1, 2, . . ., of the

sparse function f . Blahut’s algorithm has led to a rich collection of exact sparse multivariate

polynomial interpolation algorithms, among them [Ben-Or and Tiwari 1988; Kaltofen, Laksh-

man Y. N., and Wiley 1990; Zippel 1990; Lakshman Y. N. and Saunders 1995; Kaltofen and

Lee 2003]. Prony’s algorithm suffers from numerical instability unless randomization controls,

with high probability and for functions of significant sparsity, the conditioning of intermediate

Hankel matrices. The probabilistic spectral analysis in the GLL algorithm [Giesbrecht, Labahn,

and Lee 2004, 2009] adapts the analysis of the exact early termination algorithm of [Kaltofen

and Lee 2003]. The resulting numerical sparse interpolation algorithms have recently had a

high impact on medical signal processing; see the web site http://smartcare.be of Wen-shin

Lee and her collaborators. The GLL algorithm can be generalized to multivariate polynomial
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and rational function recovery via Zippel’s variable-by-variable sparse interpolation [Kaltofen,

Yang, and Zhi 2007].

Already in the beginning days of symbolic computation, the choice of polynomial basis was

recognized: (x− 2)100 + 1 is a concise representation of a polynomial with 101 terms in power

basis representation. The discrete-continuous optimization problem of computing the sparsest

shift of an exact univariate polynomial surprisingly has a polynomial-time solution [Grigoriev

and Karpinski 1993; Grigoriev and Lakshman 2000; Giesbrecht, Kaltofen, and Lee 2003]. Our

subject is the computation of an approximate interpolant that is sparsified through a shift. One

can interpret our algorithm as a numerical version of the exact sparsest shift algorithms. As in

least squares fitting, noise can be controlled by oversampling (cf. [Giesbrecht and Roche 2011]).

The main difficulty is that the shift is unknown. Our numerical algorithm adapts Algorithm

UniSparsestShifts 〈one proj, two seq 〉 in [Giesbrecht, Kaltofen, and Lee 2003] to compute

the shift: UniSparsestShifts 〈one proj, two seq 〉 carries the shift as a symbolic variable z

throughout the sparse interpolation algorithm. Since the coefficients of the polynomials in the

shift variable z are spoiled by noise, the GCD step becomes an approximate polynomial GCD.

A main question answered here is whether the arising non-linear optimization problems remain

well-conditioned. Our answer is a conditional yes: an optimal approximate shift is found among

the arguments of all local minima, but the number of local minima is high, preventing the

application of standard approximate GCD algorithms. Instead, we perform global optimization,

as a fallback, by computing all zeros of the gradient ideal. In addition, our algorithm requires

high precision floating point arithmetic.

In [Comer, Kaltofen, and Pernet 2012], we have introduced outlier values to the sparse inter-

polation problem. There, outlier removal requires high oversampling, as the worst case of k-error

linear complexity is 2t(2k+1), where t is the generator degree. However, ours is only an upper

bound for sparse interpolation. The situation is different for Algorithm UniSparsestShifts 〈one

proj, two seq 〉. Outliers can be removed at the construction stage of the values containing

the shift variable z, by a numeric version of Blahut’s decoding algorithm for interpolation with

errors. The algorithm, numerical interpolation with outliers, is interesting in its own right. As

we will show in Section 3.3, the analysis in [Giesbrecht, Labahn, and Lee 2009; Comer, Kaltofen,

and Pernet 2012] does not directly apply, as randomization can only be applied with a limited

choice of random evaluation points. We have successfully tested it as a subroutine of our nu-

merical sparsest shift algorithm. Note that a few outliers per interpolation lead to a very small

sparse interpolation problem for error location, which can be handled successfully by sparse

interpolation with noisy values.

For the sake of comparison with this algorithm, we restrict to characteristic 0 and compare

a sparse shift representation to a Taylor expansion expressed at a point that will make the

representation sparse. This leads to finding a root common to many derivatives. Combined
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with a weighted least squares fit for removing outliers and tolerating noise, we manage to

compare favorably to the main algorithm.

In Section 3.4, we present the preliminary experimental results that our algorithms can

recover sparse models even in the presence of substantial noise and outliers. See Section 3.4.3

for our conclusions.

3.2 Computing Sparse Shifts

We introduce in this subsection an algorithm to compute a shifted sparse interpolant in a

numerical setting. The exact algorithm accepts outliers and uses early termination; we adapt it

to a numerical setting, considering noisy and erroneous data. It is based on a numerical version

of Blahut’s decoding algorithm.

3.2.1 Main Algorithm with Early Termination.

The Early Termination Theorem in [Kaltofen and Lee 2003] is at the heart of computing a

sparsest shift. Let

g(x) =
t∑

j=1

cjx
ej , cj 6= 0 for all 1 ≤ j ≤ t,

be a t-sparse polynomial with coefficients in an integral domain D. Furthermore, let

αi(y) = g(yi) ∈ D[y], for i = 1, 2, . . .

be evaluations of g at powers of an indeterminate y. Prony’s/Blahut’s theorem states that the

sequence of the αi is linearly generated by
∏t

j=1(λ−y
ej ). Therefore, if one considers the Hankel

matrices

Hi(y) =




α1 α2 . . . αi

α2 α3 . . . αi+1

...
...

. . .
...

αi αi+1 . . . α2i−1



∈ D[y]i×i, for i = 1, 2, . . .

one must have det(Ht+1) = 0. Theorem 4 in [Kaltofen and Lee 2003] simply states that

det(Hi) 6= 0 for all 1 ≤ i ≤ t. One can replace the indeterminate y by a randomly sam-

pled coefficient domain element to have det(Hi) 6= 0 for all 1 ≤ i ≤ t with high probability

(w.h.p.).

We seek an s in any extension of the field of K such that for a given f(x) ∈ K[x] the

polynomial f(x + s) = h(x) is t-sparse for a minimal t. Now consider g(x) = f(x + z) ∈ D[x]

with D = K[z]. We have ∆i(y, z) = det(Hi) ∈ (K[z])[y]; note that αi(y, z) = g(yi) = f(yi + z).
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By the above Theorem 4, the sparsest shift is an s with ∆t+1(y, s) = 0 for the smallest t.

Algorithm UniSparsestShifts 〈one proj, two seq 〉 computes s as

z + s divides (w.h.p.) GCD(∆t+1(y1, z),∆t+1(y2, z)), where y1, y2 are random in K;

note that the first t with a nontrivial GCD is possibly smaller for the projection by y = y1 and

y = y2, but with low probability.

For numeric sparse interpolation with a shift, we assume that for f(x) ∈ C[x] we can obtain

f(ζ) + noise+ outlier error, for any ζ ∈ C.

Here only a fraction of the values contain an outlier error, and noise is a random perturbation

of f(ζ) by a relative error of 10−10, say. Our algorithm returns a sparse interpolant g(x) that at

all probed values ζ, save for a fraction that are removed as outliers, approximates the returned

f(ζ) + noise. Note that probing f at ζ twice may produce a different noise and possibly an

outlier.

We now give the outline of our Algorithm ApproxUniSparseShift 〈one proj, sev seq 〉.

Note that because of the approximate nature of the shifted sparse interpolant, there is a trade-

off between backward error and sparsity. Hence we call our algorithm a “sparse shift” algorithm.

As in Algorithm UniSparsestShifts 〈one proj, two seq 〉, for L complex values y = ω[1], ω[2],

. . ., ω[L] we compute δ̃
[ℓ ]
i (z) = ∆̃i(ω

[ℓ ], z) from α̃i(ω
[ℓ ], z), ℓ = 1, 2, . . . , L. Here the tilde accent

mark ˜ indicates that the values have noise in their scalars. As in [Giesbrecht, Labahn, and Lee

2009], we choose the ω[ℓ ] to be different random roots of unity of prime order. Our algorithm

consists of the four following tasks:

Step 1: For ℓ = 1, 2, . . . , L, compute the numeric complex polynomials α̃i(ω
[ℓ ], z) via a

numeric version of the Blahut decoding algorithm; see Section 3.3. Step 1 is assumed to have

removed all outliers.

Step 2: Compute the determinants δ̃
[ℓ ]
i (z) of numeric polynomial Hankel matrices H̃

[ℓ ]
i (z)

for all ℓ, iterating Steps 3 and 4 on i. We perform the determinant computations with twice

the floating point precision as we use for Steps 1, 3 and 4.

Step 3: Determine the sparsity and an approximate shift. Note that the approximate shift

s̃ is an approximate root of the polynomials δ̃
[1]
i (z), δ̃

[2]
i (z), . . ., δ̃

[L]
i (z). Our method finds the

smallest perturbation of the δ̃
[ℓ ]
i (z) that produces a common root, simultaneously for all ℓ. If

that distance is large, we assume that there is no common root and the dimension of the Hankel
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matrix was too small. It might happen that an accurate shift is diagnosed too early, but then

the constructed model produces a worse backward error.

The 2-norm distance to the nearest polynomial system with a common root s̃ is given by

formula (see [Hutton, Kaltofen, and Zhi 2010] and the literature cited there):

s̃ = arginf
ζ∈C

L∑

ℓ=1

|δ̃
[ℓ ]
i (ζ)|2

/( d∑

m=0

|ζm|2
)
,

where d = maxℓ{deg(δ̃
[ℓ ]
i (z))} and in all polynomials, any term coefficients of zm, where m ∈

{0, 1, . . . , d}, can be deformed.

In our experiments in Section 3.4, we have only considered real shifts s̃ ∈ R. The optimization

problem is then

s̃real = arginf
ξ∈R

L∑

ℓ=1

(
(ℜδ̃

[ℓ ]
i )(ξ)2 + (ℑδ̃

[ℓ ]
i )(ξ)2

)/( d∑

m=0

ξ2m
)
, (1)

where ℜδ̃
[ℓ ]
i and ℑδ̃

[ℓ ]
i are the real and imaginary parts of the polynomials δ

[ℓ ]
i , respectively. We

find s̃real among the real roots of the numerator of the derivative of the objective function in

(1),

∂
∑

l((ℜδ̃
[ℓ ]
i )(z)2 + (ℑδ̃

[ℓ ]
i )(z)2)

∂z
×
( d∑

m=0

z2m
)

−
L∑

ℓ=1

((ℜδ̃
[ℓ ]
i )(z)2 + (ℑδ̃

[ℓ ]
i )(z)2)×

( d∑

m=0

(2m)z2m−1
)
, (2)

and choose the root that minimizes the objective function in (1).

We have observed that a larger number L of separate ω[ℓ ] can improve the accuracy of the

optimal shift, at a cost of oversampling. We have also observed that the optimization problem (1)

and (2) has numereous local optima, some near the optimal approximate shift, which prevents

the use of any local approximate GCD algorithm.

Step 4: With the approximate sparsest shift s̃, complete the sparse polynomial reconstruc-

tion, as in [Giesbrecht, Labahn, and Lee 2006] and [Comer, Kaltofen, and Pernet 2012, Section 6].

One reuses the evaluations from previous steps, having removed those that were declared out-

liers in Step 1.
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In the remainder of this section, we restrict ourselves to characteristic 0. We now describe a

more näıve approach for the same problem. Some early termination can also be achieved here.

Unlike the main algorithm, this one cannot recover errors in the exact setting.

3.2.2 Using Taylor Expansions

Let f(x) =
∑t

i=1 ci(x − s)ei be a t-sparse shifted polynomial of degree d. We can see this

expression as a Taylor expansion of f at x = s :

f(x) =

∞∑

i=0

(
∂if/∂xi

)
(s)

i!
(x− s)i .

A sparsest shift is then an s that is a root of the maximum number of polynomials in the list

S =
{(
∂if/∂xi

)
(x) | i ∈ {0, . . . , d− 1}

}
.

Remark 1. It is stated in Theorem 1 in [Lakshman Y. N. and Saunders 1996] that if t ≤

(d+1)/2 then the shift s is unique and rational. Moreover, the proof gives the stronger statement:

for any other shift ŝ, with a sparsity t̂, one has t̂ > d+ 1− t.

This statement is not true in characteristic p 6= 0: for instance, consider the two shifts −1

and 0 in the polynomial (x+ 1)p = xp + 1 mod p.

Lemma 6. Let S2t be the list of the last 2t elements in S. The root that zeros the maximum

number of polynomials in S2t is the sparsest shift.

Proof. We prove this by contradiction. Assume a shift s appears r times in S2t and another

shift ŝ appears r̂ times. We first notice that the number of elements in S for which ŝ is a root,

and the number of elements for which it is not a root, sum to d+ 1. So we have the inequality

r̂ + t̂ ≤ d+ 1.

Suppose now that r̂ ≥ r. The sparsity of f in the s-shifted basis being t, the number of

elements in S2t that do not have ŝ as a root is 2t − r̂ ≤ t, thus r̂ ≥ t. On the other hand,

t̂ > d+1− t. Summing these last two inequalities yields r̂+ t̂ > d+1, which is impossible.

Early termination can be achieved; indeed, under certain circumstances, one need not com-

pute all 2t derivatives. For example, suppose that the degree (d− 1) term of f in the sparsest

shifted basis is missing and try s̄, the root of
(
∂d−1f/∂xd−1

)
(x), as a shift; this is the Tschirn-

haus transformation (originally introduced for solving cubic equations). If the “back-shifted”

polynomial f(x+ s̄) has fewer than (d+1)/2 terms, then by Remark 1, s̄ is the unique sparsest

shift. We can extend this technique by trying all rational roots in the list Sτ for a small τ .

Now we state the näıve algorithm based on the above, then we modify it for a numeric

setting. Consider first the following exact algorithm:
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Step 1: Compute the exact interpolant using D + 1 calls to the black box, where D ≥ d.

Step 2: Try early termination on Sτ , for a small τ , and return if successful.

Step 3: Compute all remaining derivatives in Sθ, for θ = min(2T,D).

Step 4: The sparsest shift is the rational root s that zeros the most derivatives in Sθ.

Step 5: The “back-shifted” polynomial f(x+ s) gives the support for the sparse polynomial.

This algorithm can be easily translated to a numerical one, based on least squares fitting:

Step 1: Compute a degree-D weighted least squares fit with O(D+E) calls to the black box.

Step 2: Remove outliers by comparing relative errors, then update the fit.

Step 3: Compute the θ derivatives in Sθ (possibly terminate early and proceed to Step 6).

Step 4: The approximate root s that zeros most derivatives is the sparsest shift.

Step 5: The polynomial f(x+ s) gives the support for the sparse polynomial.

Step 6: A Newton iteration can be conducted on the result of Step 5 to increase accuracy.

3.2.3 Discussion on the Numeric Algorithm

Step 4 is sensitive to noise and requires more sampling from Step 1. The approximate roots

are determined to be equal up to a certain tolerance (for instance 10−2). In Steps 5 and 6, the

coefficients near 0 may be forced to 0 (which would accelerate convergence in Step 6). Step

6 is conducted on the function f(m′
1, · · · ,m

′
k, s

′) =
∑k

i=1m
′
i(x − s

′)hi , with initial condition

from Step 5, random samples xj and noisy evaluations f(xj); the outliers are removed by

checking relative errors. If the random samples xj are not only taken from data in Step 1, then

oversampling will help “de-noising” the outputs.

Remark 2. It is unknown to us, in the exact algorithm, how to use a number of calls to

the black box in Step 1 depending only on T , in order to compute the derivatives. However,

it is reasonable to expose the following: we are only interested in the higher-degree terms of

f . Consider the Euclidean division f(x) = Q(x)xq + R(x); then, with high numeric precision

and big random xi, we can recover an approximation of Q by a least squares fit on samples

f(xi)/x
q
i ≈ Q(xi).
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3.3 Numeric Interpolation with Outliers

Blahut’s decoding algorithm for Reed/Solomon codes is based on sparse interpolation. Suppose

one has values of

f(x) = cd−1x
d−1 + · · ·+ c0 ∈ K[x], deg(f) ≤ d− 1

at powers ωi: ai = f(ωi), i = 0, 1, 2, . . . , n−1, where n = d+2E. Furthermore suppose for k ≤ E,

where the upper bound E is known, those values are spoiled by k outlier errors: bi = ai+a
′
i, with

a′ej 6= 0 exactly at the indices 0 ≤ e1 < e2 < · · · < ek ≤ d+2E−1. If ω is an n’th = (d+2E)’th

primitive root of unity, then the n× n Fourier (Vandermonde) matrix V (ω) = [ωi·m]0≤i,m≤n−1

satisfies

W = V (ω)−1 =
1

n
V (ω−1) where ω−1 = ωn−1, (3)

hence

W~b =W~a+W~a′ =

[
~c

0

]
+

1

n
V (ω−1)~a′. (4)

The last 2E entries in W~b allow sparse interpolation of g(x) =
∑k

j=1 a
′
ej
xej :

c′l = (V (ω−1)~b )l = g(ω−l) for d ≤ l ≤ d+ 2E − 1.

Note that all vectors are indexed 0, 1, . . . , n− 1, e.g.,

~a =




a0
...

an−1


 and ~b =




b0
...

bn−1


 .

By our convention, primed ′ quantities contain outlier information. Thus, as in Section 3.2,

the sequence c′d, c
′
d+1, . . . is linearly generated by Λ(λ) =

∏k
j=1(λ − ω−ej ) (called the “error

locator polynomial”), which is a squarefree polynomial by virtue of the primitivity of ω. One

may also compute Λ from the reverse sequence c′d+2E−1, c
′
d+2E−2, . . ., which is linearly generated

by the reciprocal polynomial
∏k

j=1(λ− ω
ej ).

Not knowing k, the probabilistic analysis of early termination as in [Kaltofen and Lee 2003]

and Section 3.2 does not directly apply, as the choice of ω is restricted to a primitive n’th root

of unity. Furthermore, the locations ej of the outlier errors a′ej may depend on the evaluation

points ωi. Blahut’s decoding algorithm processes all 2E values c′l.

If one has (in addition to outliers) numerical noise ǫi in each evaluation, namely b̃i =
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ai + a′i + ǫi, where |aej − a
′
ej
|/|aej | ≫ 0 (one may assume that ǫej = 0), then

W
~̃
b =

[
~c

0

]
+

1

n
V (ω−1)~a′ +

1

n
V (ω−1)~ǫ,

so

c̃′l = (V (ω−1)
~̃
b )l = g(ω−l) + (V (ω−1)~ǫ )l = g(ω−l) + ǭl for d ≤ l ≤ d+ 2E − 1,

where |ǭl| ≤ |ǫ1|+ · · ·+ |ǫn|. Again, there is an immediate trade-off between noise and outliers:

at what magnitude does noise ǫi become an outlier a′i? For now we assume that the relative

error in noise is small, say 10−10, while the relative error in outliers is big, say 105. The recovery

of an approximate interpolant g̃(x) =
∑k

j=1 ã
′
ej
xej for the evaluations c̃′l hinges on the condition

number of the k × k Hankel matrix

H̃′
k =




c̃′d c̃′d+1 . . . c̃′d+k−1

c̃′d+1 c̃′d+2 . . . c̃′d+k

...
...

. . .
...

c̃′d+k−1 c̃′d+k . . . c̃′d+2k−2



.

If the matrix is well-conditioned, the error locations ej can be determined from the approx-

imate linear generator Λ̃ as in the GLL algorithm [Giesbrecht, Labahn, and Lee 2009; Comer,

Kaltofen, and Pernet 2012]. As is shown there, the conditioning is bounded by 1/|ωeu − ωev |.

Large values there are prevented by randomizing ω, as the term exponents ej are fixed for any

evaluation. Using an ωr instead of ω here, where GCD(r, n) = 1, allows redistributing of the

ωej , but the ej may then become different.

A special case is k = 1: In that case

H̃′
1 = [c̃′d] = [g(ω−d) + ǭd] = [a′e1ω

−de1 + ǭd],

which, by our assumption on a large outlier a′e1 and small noise, is a well-conditioned matrix.

This is the case we tested in Section 3.4.

Remark 3. When the relative difference between the magnitudes of the outlier a′e1 and noise

ǫ0, ǫ1, . . . , ǫd+2E−1 is not so pronounced, erroneous recovery of the exponent e1 can occur: we

have (c̃′d, c̃
′
d+1, . . . , c̃

′
d+2E−1) = (c̃′d, c̃

′
d+1), so the linear generator Λ̃(λ) = λ − ω−e1 can be ap-

proximated by computing

c̃′d+1

c̃′d
=
a′e1ω

−(d+1)e1 + ǭd+1

a′e1ω
−de1 + ǭd

= ω−e1 +
ǭd+1 − ω

−e1 ǭd
a′e1ω

−de1 + ǭd
= ω̃. (5)
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For this reason, we define a bound εnoise ≥ maxi |ǫi| and assume nεnoise < |a
′
e1
| so that

|ω̃ − ω−e1 | =

∣∣∣∣
ǭd+1 − ω

−e1 ǭd
a′e1ω

−de1 + ǭd

∣∣∣∣ ≤
|ǭd+1|+ |ǭd|

|a′e1 | − |ǭd|
≤

2nεnoise
|a′e1 | − nεnoise

. (6)

By the distribution of complex roots of unity (of order n) on the unit circle, we have that

|ωs+1−ωs| = |ω− 1| = 2 sin(π/n) for any integer s. Thus, |ω̃−ω−e1 | < sin(π/n) will guarantee

|ω̃ − ω−e1 | < |ω̃ − ωs| for any s 6≡ −e1 (mod n). Combining this fact with (6) above, we arrive

at the sufficient condition

|ω̃ − ω−e1 | ≤
2nεnoise

|a′e1 | − nεnoise
< sin(π/n) ⇔ nεnoise < |a

′
e1
| ·

sin(π/n)

2 + sin(π/n)
. (7)

Table 2 shows some experiments of decreasing Θ
[abs]
outlier for a fixed ε

[abs]
noise. Throughout the

experiment, we have f(x) = 87x11−56x10−62x8+97x7−73x4−4x3−83x−10 and d−1 = 11,

evaluating at powers of the order n = d+2E = 14 complex root of unity ω = exp(2πi /14). We

add to each evaluation noise, which is implemented as a complex number with polar modulus

uniformly chosen at random in the range [0, ε
[abs]
noise] and polar argument uniformly chosen at

random in the range [0, 2π]. An absolute outlier value is chosen the same way, but the modulus

is in the range [Θ
[abs]
outlier, 2Θ

[abs]
outlier]; the exponent e1 is also chosen uniformly at random from

{0, 1, . . . , d + 2E − 1 = 13}. Each row of the table corresponds to 1000 realizations of the

random variable that generates noise and outliers, re-seeding the random number generator

with each run. All computations were performed with 15 floating point digits of precision. In

the table, Cn = sin(π/n)/
(
2 + sin(π/n)

)
.

The column “% Circle” shows the percentage of runs where |ω̃−ω−e1 | < sin(π/n); “% Sector”

shows the percentage of runs where |ω̃ − ω−e1 | ≥ sin(π/n), but |ω̃ − ω−e1 | < |ω̃ − ωs| for any

s 6≡ −e1 (mod n); “% Wrong” shows the percentage of the remainder of the runs. When the

ratio ε
[abs]
noise/Θ

[abs]
outlier is either sufficiently large or small, one can see from (5) that the value of ω̃

is determined mainly by the value of either a′e1 or ǭd+1/ǭd, respectively; this corresponds with

the first and last rows of each section of Table 2, where ǭd+1/ǭd is far from ω−e1 in general.

However, between the extreme values of ω̃, more interesting behavior can occur. Figure 1

shows two individual algorithm runs of the table rows for ε
[abs]
noise = 1. Each power of ω is

represented by a “×”; the sphere of radius sin(π/n) is drawn around each power of ω, as well as

the corresponding (interior) sector; the solid square denotes ω−e1 , while the solid circle denotes

ǭd+1/ǭd; a complex outlier a′e1 = ξ is fixed, then the function ω̃(tξ) (for t ∈ [2−7, 27]) is plotted as

a curve, with several points whose label is the relative error of tξ compared to ω−e1 . In Figure 1a,

outliers of relative error less than 6% cause ω̃ to approach 0, so that it becomes infeasible to

compute a reliable guess for e1; here, noise constitutes approximately a 0.38% relative error.
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Table 2: Experiments of varying outlier error in the presence of noise

ε
[abs]
noise Θ

[abs]
outlier

nε
[abs]
noise

CnΘ
[abs]
outlier

nε
[abs]
noise

Θ
[abs]
outlier

% Circle % Sector % Wrong

2.5e-01 8.0e+00 4.4e+00 4.4e-01 99.7 0.3 0.0
2.5e-01 4.0e+00 8.7e+00 8.8e-01 92.4 5.0 2.6
2.5e-01 2.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5
2.5e-01 1.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9
2.5e-01 5.0e-01 7.0e+01 7.0e+00 4.2 15.0 80.8
2.5e-01 2.5e-01 1.4e+02 1.4e+01 1.8 9.2 89.0

5.0e-01 1.6e+01 4.4e+00 4.4e-01 99.7 0.3 0.0
5.0e-01 8.0e+00 8.7e+00 8.8e-01 92.4 5.0 2.6
5.0e-01 4.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5
5.0e-01 2.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9
5.0e-01 1.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8
5.0e-01 5.0e-01 1.4e+02 1.4e+01 1.8 9.2 89.0

1.0e+00 3.2e+01 4.4e+00 4.4e-01 99.7 0.3 0.0
1.0e+00 1.6e+01 8.7e+00 8.8e-01 92.4 5.0 2.6
1.0e+00 8.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5
1.0e+00 4.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9
1.0e+00 2.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8
1.0e+00 1.0e+00 1.4e+02 1.4e+01 1.8 9.2 89.0

By contrast, Figure 1b shows an example where nearly any outlier relative error greater than

0.375% would result in |ω̃ − ωs| < sin(π/n) for one of three values of s (mod n), so that the

“nearest ωs neighbor” criterion is no longer reliable; here, noise constitutes approximately a

0.40% relative error.

Decoding the interpolant W~b can also be done via the extended Euclidean algorithm for

any ω with ωeu 6= ωev : the Berlekamp-Welch algorithm; see [Khonji, Pernet, Roch, Roche, and

Stalinsky 2010]. We will study the numerical properties of variants based on approximate GCD

techniques in follow-up work.
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(a) (b)

Figure 1: Examples of varying outlier relative error (labeled as percentages). Noise relative
error is approximately 0.40%.

3.4 Implementation and Experiments of NumericSparsestShift

3.4.1 Illustrative Examples for the Main Algorithm

We reversely engineer a noisy black box for

f1(x) = 2 (x− 7)3 + 3 (x− 7)6 − 7 (x− 7)10 =

− 7x10 + 490x9 − 15435x8 + 288120x7 − 3529467x6 + 29647422x5 − 172941825x4

+ 691755542x3 − 1815804312x2 + 2824450258x− 1976974482. (8)

Our algorithm computes with a precision of 100 floating-point digits (except in Step 2, where

the precision is doubled). To each evaluation, we add random noise causing a relative error of

1×10−28. For each interpolation problem of a given degree i in Step 1, we add one outlier error

of relative error 5. We use L = 3 different 17’th roots of unity ω[ℓ ].

Step 1 correctly locates each of the outliers in its 21 = 3×7 interpolation calls. The relative

2-norm differences

‖δ
[ℓ ]
4 (z)− δ̃

[ℓ ]
4 (z)‖2/‖δ

[ℓ ]
4 (z)‖2
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of the coefficient vectors of the 4 × 4 matrix determinants after Step 2 are 2.126 × 10−27,

2.681× 10−27, 6.596× 10−27 for ℓ = 1, 2, 3 all within the added noise (after outlier removal).

The polynomial (2) in Step 3 has 4 real roots, and its minimum objective function value

(1) is at s̃ = 6.9989162726 with an objective function value of 2.028× 10−57, as opposed to the

exact case (without noise) of 2.280 × 10−71 at s = 7 (there is 1 more root with much larger

objective value).

The sparse model recovered from s̃ produces the correct term exponents e1 = 3, e2 = 6,

and e3 = 10, and the least squares fit at the non-erroneous 252 = 273 − 21 prior black box

evaluations produces the approximate model for (8),

2.009369(x− s̃)3 + 2.998102(x− s̃)6 − 6.997705(x− s̃)10, s̃ = 6.9989162726.

The relative 2-norm backward error of the model (with respect to the noisy black box evalua-

tions) is 1.596557 × 10−3, while that of f1 itself is 5.774667 × 10−28. A similar model can be

produced with 90 floating-point digits, but not with 80.

When doubling the noise to relative error 2 × 10−28 with 100 floating-point digits, the

computed model is

2.036489(x− s̃)3 + 2.992182(x− s̃)6 − 6.991277(x− s̃)10, s̃ = 6.9957389337,

with relative 2-norm backward error 6.222096 × 10−3, compared to 1.154933 × 10−27 for f1.

Even with relative noise of 4× 10−28, the computed model is

2.125876(x− s̃)3 + 2.967832(x− s̃)6 − 6.972579(x− s̃)10, s̃ = 6.9848087178,

with relative 2-norm backward error 2.151040× 10−2, compared to 2.309866× 10−27 for f1. At

relative noise of 8 × 10−28, the algorithm fails to determine a sparse approximant, even when

increasing the number of sequences to L = 10.

Such failure is deceptive. The lack of sparsity, namely 3 of a maximum of 11 terms, allows

for denser models that provide fits. In addition, a shift of 7 produces large evaluations at roots

of unity, as indicated in the power basis representation of (8). Making the shift smaller and the

degree larger, and considering the polynomial

f2(x) = 2 (x− 1.55371)3 + 3 (x− 1.55371)6 − 7 (x− 1.55371)15,

we can recover from L = 3 sequences, with a relative noise in the evaluations of 1× 10−14, and

38



again 1 outlier per interpolation, the approximate model

1.999718(x− s̃)3 + 2.998609(x− s̃)6 − 7.000117(x− s̃)15, s̃ = 1.5537114392,

with relative 2-norm backward error 8.000329× 10−1, compared to 8× 10−1 (to 7 digits) for f1

itself.

For this particular example, we see a case of the effect mentioned in [Comer, Kaltofen, and

Pernet 2012], where the sparse model can fit the noisy evaluations nearly as well (and sometimes

better) than the exact black box.

Increasing the noise still, another model with s̃ = 1.5537013193 can be recovered with

relative noise of 2 × 10−13, where now the model and f1 relative 2-norm backward errors are

5.180450 × 10−2 and 1.108027 × 10−11, respectively. In this case, a different choice of L = 3

different 17’th roots of unity was needed in order to compute a sparse model. Both computations

used 357 black box evaluations.

3.4.2 Comparison with the Näıve Algorithm

For the examples given above, the näıve algorithm recovers the sparsest representation with

noise such as 1 × 10−10 and precision 20 floating point digits. The precision obtained is close

to the level of noise (1× 10−8 relative error for the shift and 2× 10−10 maximum relative error

on the coefficients in the shifted basis). The number of calls to the black box is below 170.

For a more demanding example such as a degree 55 polynomial with sparsity 8 and a shift

between 1 and 2, a level of relative noise 1 × 10−28 is tolerable with precision 200 digits (as

in an example above). However, the number of calls was above 600 to get a relative error less

than 1 × 10−20 on shift and coefficients. Due to the numerical optimization in Step 3, this is

unattainable with the main algorithm, for the moment. The Tschirnhaus early termination was

not used yet.

Besides, with more calls to the black box during the Newton iterations, we can further

increase the precision on the shift and coefficients, this may however be considered as de-noising.

We can also run experiments on a black box of the type P + Qǫ where P is a polynomial

with a sparse shift representation and Qǫ is a dense polynomial of same degree with coefficients

bounded by ǫ – this may be viewed as perturbation on the coefficients. The algorithms described

perform well, however they do not remove outliers if they are introduced as an erroneous term.

3.4.3 Discussion

Our preliminary experiments lead to the following conclusions: Our correction of 1 outlier per

interpolation with Blahut’s numerical decoding is highly numerically reliable. The optimization

39



problem in Step 3 requires substantial precision for its real root finding, and is numerically

sensitive when the shift is large and there is noise in the evaluations. Our main algorithm works

well without noise and outliers, or in high precision with noise when the shift is small and the

sparsity is high. We plan to work on a more thorough experimental analysis, including the case

of two or more outliers per interpolation. The näıve algorithm gives motivation and potential

for improvements to the main one. On the other hand, the number of calls to the black box in

the former could be reduced.
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Note 3. The following modifications have been made from [Boyer, Comer, and Kaltofen 2012].

1. Page 31: the footnote has been removed.

2. Page 31: “sparsity of f n the” has been changed to “sparsity of f in the”.

3. Page 31: “by Section 2.2” has been changed to “by Remark 1”.

4. Page 32: “possibly early terminate” has been changed to “possibly terminate early”

5. Remark 3 has been added.

6. The title of Section 3.4 has been changed.
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Chapter Four

Counting Singular Hankel Matrices

over a Finite Field

This chapter is [Comer and Kaltofen 2012], except for the changes listed in Note 4.

4.1 Introduction

Throughout the discussion, entries will be taken from the field Fq of q elements, and we will

identify a square Hankel matrix




a0 a1 . . . an−2 an−1

a1 a2 . . . an−1 an
...

... . .
. ...

...

an−2 an−1 . . . a2n−4 a2n−3

an−1 an . . . a2n−3 a2n−2




= [ai+j−2]
n
i,j=1

with the list [a0, a1, . . . , a2n−2]. A Toeplitz matrix is the mirror image [an+i−j−1]
n
i,j=1.

Our investigation was motivated by the question of Ramamohan Paturi who asked in Octo-

ber 2009 how many Toeplitz matrices over Fq with zeros on the main diagonal were non-singular.

Paturi needed the estimate for the complexity of circuit satisfiability for lower bounds [Paturi

and Pudlák 2010].

Daykin (1960) proved theorems regarding the number of Hankel matrices over a finite field

with a specified rank or determinant. Kaltofen and Lobo (1996) established some of Daykin’s

counts using the extended Euclidean algorithm form of the Berlekamp/Massey algorithm for
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polynomials [Sugiyama, Kasahara, Hirasawa, and Namekawa 1975]. Additionally, they gave the

number of square Toeplitz matrices with generic rank profile. Generic rank profile means that

for a matrix A of rank r, the first r leading principal submatrices A1, . . . , Ar are non-singular.

We prove analogous results here, albeit with a different approach, for the Hankel case. The

counts for Toeplitz and Hankel matrices of generic rank profile are not the same.

The determination of singularity of a Hankel matrix has a natural connection with running

the Berlekamp/Massey algorithm on the list [a0, a1, . . . , a2n−2], and for this reason we count

how many Hankel matrices have zeros along the anti-diagonal in order to answer the question

regarding Toeplitz matrices. Kaltofen and Lee (2003) have observed that the Berlekamp/Massey

algorithm [Massey 1969, cf. Theorem 1] detects the non-singular leading principal submatrices

of a Hankel matrix from those non-zero discrepancies that increase the linear generator degrees,

and that the corresponding sequence elements determine the singularity of the corresponding

leading principal submatrices.

We will use this property to partition the space of Hankel matrices into unique correspon-

dences of one singular Hankel matrix to q − 1 non-singular Hankel matrices. This process

generalizes when particular entries of the list [a0, . . . , a2n−2] are fixed to arbitrary values (such

as the case of zeros along the anti-diagonal).

We then investigate the properties of block-Hankel matrices. We have no explicit formula

for how many block-Hankel matrices are singular (with or without certain blocks fixed), but

we present some brute-force counts that we have computed with Maple. Last, we follow in the

theme of [Kaltofen and Lobo 1996] by counting block-Hankel matrices with block generic rank

profile. A block matrix A (of square submatrices of dimension m) of rank mr has block generic

rank profile if for k = 1, 2, . . . , r, we have rank(Ak) = mk, where Ak is the k × k block leading

principal submatrix of A.

The counts for unblocked rank r Hankel matrices are given in [Garc̀ıa-Armas, Ghorpade,

and Ram 2011].

4.2 Connection with the Berlekamp/Massey Algorithm

Given a list of n field elements, [a0, . . . , an−1], the Berlekamp/Massey algorithm will produce

for each r ∈ {1, 2, . . . , n} a monic polynomial

Λr = c0 + c1z + · · ·+ cLr−1z
Lr−1 + zLr

of minimal degree Lr ≤ r − 1 such that

− c0ai − c1ai+1 − · · · − cLr−1ai+Lr−1 = ai+Lr
, i = 0, 1, . . . , r − Lr − 1. (9)
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Such a polynomial is called a (minimal) generating polynomial, and Lr is called the minimal

length required to generate the first r elements of the sequence. Theorem 2 in [Massey 1969]

states that if a polynomial (of minimal degree Ln) generates the list [a0, . . . , an−1] but fails

to generate an (i.e., equation (9) does not hold for i = n − Lr), then the minimal generating

polynomial of [a0, . . . , an] will be of degree Ln+1 = n− Ln + 1.

We visualize the generating polynomials in the following way: for each r = 1, 2, . . . , n, define

Hr =




a0 a1 . . . aLr−2 aLr−1

a1 a2 . . . aLr−1 aLr

...
... . .

. ...
...

ar−Lr−1 ar−Lr
. . . ar−1 ar−2

ar−Lr
ar−Lr+1 . . . ar−2 ar−1




, λr =




−c0

−c1
...

−cLr−2

−cLr−1




, hr =




aLr

aLr+1

...

ar−1

ar




,

so that by definition of Λr above, we have Hrλr = hr (for r = 1, 2, . . . , n− 1) except possibly in

the last entry (which corresponds to equation (9) for i = r − Lr). The last entry of Hrλr will

not be ar if and only if Λr generates [a0, . . . , ar−1] but not ar.

Suppose that Λn′ of degree Ln′ ≤ n′ generates [a0, . . . , an−1] but not an. Then the vector

~Λn′ = [−λn′ 1]T = [cLn′
cLn′−1 . . . c1 1]T

is a null-space vector of the leading (n− Ln′)× (Ln′ + 1) submatrix of the matrix depicted in

Figure 2; the first Ln′ columns of this submatrix form the first n− Ln′ rows of Hn−1.

As noted above, Theorem 2 in [Massey 1969] implies that the minimal length required to

generate [a0, . . . , an] is Ln+1 = n− Ln′ + 1. Thus, Hn+1 will have n− Ln′ + 1 columns, and in

fact, the entire (n − Ln′ + 1) × (n − Ln′ + 1) leading principal submatrix in Figure 2 will be

non-singular. For completeness, we now give those details in the proof of Lemma 2 in [Kaltofen

and Yuhasz 2013a], which justify that claim.

If we post-multiply the (n− Ln′ + 1)× (n− Ln′ + 1) leading principal submatrix




a0 . . . aLn′−1 . . . an−Ln′

... . .
. ... . .

. ...

aLn′−1 . . . a2(Ln′−1) . . . an−1

... . .
. ... . .

. ...

an−Ln′
. . . an−1 . . . a2(n−Ln′ )



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an′

Ln′′

an−1

an+1

a2Ln′−1

an−1

Ln′

an

Ln′ + 1

Ln′ + 1

a2n−2Ln′+1

a2n−2Ln′+2

an−Ln′

an−Ln′

a1

an−Ln′+1

an

an

an

aLn′+1

aLn′

an−Ln′

L2Ln−1 = Ln = n− Ln′ + 1

n− Ln′ + 1

a0

aLn′−1

n− Ln′ + 2

Ln′

an−Ln′

Figure 2: Berlekamp/Massey algorithm, as seen in [Kaltofen and Lee 2003]
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by 


ILn′

cLn′
0 · · · 0 0

cLn′−1 cLn′

. . .
...

...
... cLn′−1

. . . 0
...

c1
...

. . . cLn′
0

0m1×m2

1 c1
. . . cLn′−1 cLn′

0 1
. . .

... cLn′−1

... 0
. . . c1

...
...

...
. . . 1 c1

0 0 · · · 0 1




,
m1 = n− 2Ln′ + 1

m2 = Ln′

, (10)

the result is




H̄ 0m1×m2

*

0 · · · · · · 0 α
... . .

.
. .
.

α ∗
... 0 . .

.
∗

...

0 α . .
. ... ∗

α ∗ · · · ∗ ∗




,
m1 = Ln′

m2 = n− 2Ln′ + 1
, α 6= 0, (11)

where H̄ is the Ln′ ×Ln′ leading principal submatrix of H and α 6= 0 is the last entry of Hnλn.

The (n− Ln′ + 1)× (n− Ln′ + 1) leading principal submatrix of H will be non-singular if the

above matrix is non-singular, which will happen if H̄ is non-singular. This can be shown as a

consequence of Lemmas 7 and 8 below.

Lemma 7. Given a list [0, 0, . . . , 0, α] with α 6= 0 as the (k + 1)-st entry, the first Hr with

Lr > 0 will be Hk+1 = [0 0 · · · 0 α].

Proof. The Berlekamp/Massey algorithm initializes Λ0 = 1, which generates the zero sequence

of any length. Thus we have Λ1 = · · · = Λk = 1 and L0 = · · · = Lk = 0, where Λk generates

a0, a1, . . . , ak−1 (the zero sequence) but not ak = α. We then have

Lk+1 = max{Lk, k − Lk + 1} = max{0, k − 0 + 1} = k + 1,

and Λk+1 = zk+1.

So for r ≤ k, Hr is of size (r − Lr + 1) × Lr = (r + 1) × 0 (i.e., a matrix of r + 1 empty
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rows), and Hk+1 is of size

(k + 1− Lk+1 + 1)× Lk+1 = (k + 1− (k + 1) + 1)× (k + 1) = 1× (k + 1),

and thus Hk+1 has the proposed form.

With Hk+1 as in Lemma 7, the Hr matrices will keep augmenting rows until a length change

(in the minimal generator) occurs. We can show that a length change will not occur until the

Hr matrices “fill-up” the rest of the rows of the Lk+1 ×Lk+1 leading principal submatrix of H.

Lemma 8. Suppose Hp is a leading submatrix of rows of the Lp×Lp leading principal submatrix

of H, and suppose Lp = Lp+1 = · · · = Lp+q < Lp+q+1. Then Hp+q will have at least Lp + 1

rows, and Hp+q+1 will have exactly Lp + 1 rows.

Proof. We see thatHp, Hp+1, . . . , Hp+q all have the same number of columns, so by the definition

of Hr for arbitrary r, these matrices will be formed by augmenting by one row at a time. Also

by the definition of Hr, we have

Hp+q =




a0 . . . aLp+q−1

... . .
. ...

ap+q−Lp+q
. . . ap+q−1


 =




a0 . . . aLp−1

... . .
. ...

ap+q−Lp
. . . ap+q−1


 .

Because of the length change between Lp+q and Lp+q+1, we will have

Lp+q+1 = max{Lp+q, (p+ q)− Lp+q + 1}

= (p+ q)− Lp+q + 1

= p+ q − Lp + 1

> Lp+q = Lp,

so that Hp+q will have more than Lp rows. Also, we will have

Hp+q+1 =




a0 . . . aLp+q+1−1

... . .
. ...

ap+q+1−Lp+q+1 . . . ap+q


 =




a0 . . . ap+q−Lp

... . .
. ...

aLp
. . . ap+q


 ,

so that Hp+q+1 will have Lp + 1 rows.

Corollary 2. If Lr+1 > Lr, then Hr+1 is a leading submatrix of rows of the Lr+1×Lr+1 leading

principal submatrix of H.

47



From Lemma 7, it is clear that the first Lp × Lp leading principal submatrix of H is non-

singular (for Lp > 0). From Lemma 8, we see that when the next length change occurs,

say Lp+q+1 > Lp, Hp+q will have at least Lp + 1 rows, which corresponds to Λp generating

[a0, . . . , ap+q−1] but not ap+q. We can post-multiply the Lp+q × Lp+q leading principal subma-

trix by an appropriate matrix like (10) to obtain a matrix product whose result is analogous

to (11). Because H̄ here is the Lp ×Lp non-singular leading principal submatrix of H, we have

that the Lp+q × Lp+q leading principal submatrix of H is non-singular.

Using induction on Lemma 8, we conclude that for all n, the Ln × Ln leading principal

submatrix is non-singular (when Ln > 0).

Lemma 9. Given an n × n Hankel matrix H, let r be maximal such that r − Lr + 1 ≤ n and

Lr ≤ n (i.e., Hr is a submatrix of H but Hr+1 is not). Then Hr+1 will have n+ 1 rows and at

most n columns.

Proof. We make the convention that if Ls = 0 for some s, then Hs has s−Ls+1 = s+1 empty

rows, and is (trivially) a submatrix of H.

If Lr+1 = Lr ≤ n, then we will have

Hr+1 =




a0 a1 . . . aLr+1−1

a1 a2 . . . aLr+1

... . .
.

. .
. ...

ar−Lr+1 . . . . . . ar−1

ar+1−Lr+1 . . . . . . ar




=




a0 a1 . . . aLr−1

a1 a2 . . . aLr

... . .
.
. .
. ...

ar−Lr
. . . . . . ar−1

ar+1−Lr
. . . . . . ar




=




Hr

ar+1−Lr
ar+1−(Lr−1) . . . ar


 ,

so that Hr+1 has Lr+1 = Lr ≤ n columns. By the maximality of r, we must have

n < (r + 1)− Lr+1 + 1 = (r − Lr + 1) + 1 ≤ n+ 1,

so Hr+1 has n+ 1 rows.

If Lr+1 > Lr, then by Theorem 2 in [Massey 1969] we have Lr+1 = r−Lr +1 ≤ n, so Hr+1

has at most n columns. Again by the maximality of r, we must have

n < (r + 1)− Lr+1 + 1 = (r + 1)− (r − Lr + 1) + 1 = Lr + 1 ≤ n+ 1,

so again Hr+1 has n+ 1 rows.
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Lemma 9 implies the following for any n × n Hankel matrix H: if we run the Berlekamp/

Massey algorithm on the entries of H, then there will be an r ∈ {1, . . . , 2n−2} such that Hr is a

leading submatrix of entire columns of H, and Hr+1 is obtained by augmenting an appropriate

row of entries to Hr, but Hr+1 is not a submatrix of H.

Definition 1. We will say that the Berlekamp/Massey algorithm exits an n×nHankel matrixH

at r ifHr is a submatrix ofH butHr+1 is not. We make the convention that if L1 = · · · = Ln = 0

(so that Hn−1 is n × 0 and Hn is (n + 1) × 0), then we say that the algorithm exits at n − 1.

Also, we use the terminology exits at 2n− 1 even though a2n−1 is not defined in H.

Lemma 10. Let H be a square Hankel matrix. If A is a non-singular leading principal submatrix

of H, then Hr = A for some r ≥ 1, when running the Berlekamp/Massey algorithm on the

entries of H.

Proof. Let

A =




a0 . . . ak−1

... . .
. ...

ak−1 . . . a2k−2


 .

Then because A is a square Hankel matrix, Lemma 9 implies that the Berlekamp/Massey

algorithm will exit A at one of k − 1, k, . . . , 2k − 1. Let m − 1 be that index and suppose

m− 1 ≤ 2k − 2. Then we may write

Hm =

[
Ã

yT

]

(m−Lm+1)×Lm

, hm =

[
ã

α

]

(m−Lm+1)×1

,

where Ã is an appropriate leading submatrix of columns of A, and ã is an appropriate column

of A. Then we have

A =
[
Ã ã B

]
,

so that

[
Ã ã B

]
·



λm

−1

0


 = 0,

hence A is singular, a contradiction.

Thus, we must have that the Berlekamp/Massey algorithm exits A at 2k − 1, so that

H2k =

[
H2k−1

yT

]
=

[
A

yT

]
,

hence H2k−1 = A.
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Corollary 3. The Berlekamp/Massey algorithm will exit an n× n Hankel matrix H at one of

n− 1, n, . . . , 2n− 2 if and only if the matrix is singular; the algorithm will exit at 2n− 1 if and

only if the matrix is non-singular.

Proof. By the proof of Lemma 10, the algorithm will exit at 2n− 1 if H is non-singular.

Now suppose that the algorithm exits at 2n− 1. Then H2n will be formed by adding a row

to H2n−1, which will be H itself, and we have

H2n =

[
H2n−1

yT

]
=

[
H

yT

]
,

so that

H = H2n−1 =




a0 . . . aL2n−1−1

... . .
. ...

a2n−1−L2n−1 . . . a2n−2


 .

We see then that L2n−1 = n, hence H is L2n−1×L2n−1, and thus non-singular by the proof

of Lemma 2 in [Kaltofen and Yuhasz 2013a].

4.3 Counting Singular Hankel Matrices

Let Hn×n denote the set of all n× n Hankel matrices. We define maps

ϕ : Hn×n
non−singular → H

n×n
singular

[a0, . . . , ak, . . . , a2n−2] 7→ [a0, . . . , ak−1, a
′
k, ak+1, . . . , a2n−2]

and

ψ : Hn×n
singular → P(H

n×n
non−singular)

[a0, . . . , ak, . . . , a2n−2] 7→
{
[a0, . . . , ak−1, a

′
k, ak+1, . . . , a2n−2]

∣∣ a′k ∈ Fq \ ak
}

in the following way: we run the Berlekamp/Massey algorithm on the list of entries associated

with a Hankel matrix H, and we let k be maximal such that Lk < n and k − Lk + 1 = n (i.e.,

Hk is a proper submatrix of columns of H). Because Lk < n, Hk+1 will exit H if and only if

H is singular; Hk+1 will have Lk+1 > Lk columns (and remain a submatrix of H) if and only

if H is non-singular.
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We may block H as

[
Hk hk B

]
=




a0 . . . aLk−1
aLk

B
... . .

. ...
...

ak−Lk
. . . ak−1 ak




=




yT0 aLk

B
...

...

yTk−Lk
ak




where B may be empty, and Hkλk − hk = (0, 0, . . . , 0, yTk−Lk
λk − ak)

T .

We will have H non-singular if and only if yTk−Lk
λk 6= ak, again by the proof of Lemma 2 in

[Kaltofen and Yuhasz 2013a], so we define

ϕ(H) = [a0, . . . , ak−1, y
T
k−Lk

λk, ak+1, . . . , a2n−2].

Similarly, if H is singular (so that yTk−Lk
λk = ak), then changing ak to any other value will

result in a non-singular matrix, so we define

ψ(H) =
{
[a0, . . . , ak−1, a

′
k, ak+1, . . . , a2n−2]

∣∣ a′k 6= ak
}
.

Lemma 11. Given H ∈ Hn×n
singular, ϕ

(
ψ(H)

)
= H.

Proof. Given H ∈ Hn×n
singular, say H = [a0, . . . , a2n−2], we run the Berlekamp/Massey algorithm

on the list of entries of H to get

ψ(H) =
{
[a0, . . . , ak−1, a

′
k, ak+1, . . . , a2n−2]

∣∣ a′k 6= ak
}
.

If we run the Berlekamp/Massey algorithm on ψ(H), then Hi, hi and λi will agree for

i = 1, 2, . . . , k, and we will have yTk−Lk
λk = ak 6= a′k. By the discussion of ϕ above, we will have

ϕ
(
ψ(H)

)
= [a0, . . . , ak−1, y

T
k−Lk

λk, ak+1, . . . , a2n−2]

= [a0, . . . , ak−1, ak, ak+1, . . . , a2n−2]

= H

as proposed.

Lemma 11 immediately implies that if H 6= H̄ in Hn×n
singular, then ψ(H) ∩ ψ(H̄) = {∅}: if a

matrix ¯̄H were in the intersection, then we would have H = ϕ( ¯̄H) = H̄, a contradiction.
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We now use these maps to count singular n × n Hankel matrices, allowing a collection of

entries to be fixed to prescribed values.

Definition 2. Given an n× n Hankel matrix [a0, . . . , a2n−2], we define

L = (Lind, Lval) = ([i1, . . . , ik], [α1, . . . , αk])

(where k ≤ 2n − 1) to represent fixed entries in H, where aij is fixed to αj . When counting

singular Hankel matrices over Fq, we let ai vary over Fq if i 6∈ Lind. We will let Hn×n
L denote

the set of Hankel matrices with entries fixed according to L. Note that card(Hn×n
L ) = q2n−1−k.

Theorem 5 (General Count). The number of singular n×n Hankel matrices with entries fixed

according to L (as in Definition 2), where either Lind ⊆ {0, . . . , n−1} or Lind ⊆ {n−1, . . . , 2n−

2}, is equal to

σ(n, q, L) =





q2n−2−k, if n− 1 6∈ Lind

or if n− 1 ∈ Lind with some

other j ∈ Lind and αj 6= 0

q2n−2−k − qn−2, if n− 1 ∈ Lind, αn−1 6= 0,

and all other αj = 0

q2n−2−k − qn−2 + qn−1, if n− 1 ∈ Lind, αn−1 = 0,

and all other αj = 0

.

Proof. We first prove the counts for Lind ⊆ {0, . . . , n− 1}.

Suppose that n − 1 6∈ Lind. Given a singular Hankel matrix H ∈ Hn×n
L , we run the Berle-

kamp/Massey algorithm on the entries of H; the algorithm will exit at one of the entries on

the bottom row because H is singular. Note that n− 1 6∈ Lind implies that ϕ−1(H) will yield a

unique set of q− 1 non-singular Hankel matrices for every singular H ∈ Hn×n
L (because there is

no restriction on any entry of the bottom row). It follows that a fraction of 1/q of the q2n−1−k

matrices in Hn×n
L will be singular.

Next, suppose that n−1 ∈ Lind and αj 6= 0 for some other j ∈ Lind. We again run the Berle-

kamp/Massey algorithm on the entries of a singularH ∈ Hn×n
L , but now we have a restriction on

an element of the bottom row (i.e., an−1), which poses a problem if the algorithm exits at an−1.

However, the condition αj 6= 0 for some j ∈ {0, . . . , n − 2} guarantees that the largest proper

non-singular leading principal submatrix will have size at least 1 × 1, so the algorithm cannot

exit at an−1. Thus, the map ϕ is defined for each non-singular H ∈ Hn×n
L and is surjective, so

the count follows as in the case of n− 1 6∈ Lind.
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Now suppose that n − 1 ∈ Lind, αn−1 6= 0, and all other αj ∈ Lval are zero. Consider the

subset N of Hn×n
L where a0 = · · · = an−2 = 0; there are qn−1 such matrices, which are all

non-singular because αn−1 6= 0. The map ϕ is not defined on this set because the Berlekamp/

Massey algorithm would exit at an−1, and thus ϕ would attempt to change an−1 to zero, which

cannot be done. The matrices in N do not contribute to the count, so we restrict the domain

of ϕ to (Hn×n
L ∩Hn×n

non−singular) \N . As above, the condition αj 6= 0 for some j ∈ {0, . . . , n− 2}

guarantees that the map ϕ is defined for each non-singular matrix in Hn×n
L \ N , and again

is surjective. It follows that a fraction of 1/q of the q2n−1−k − qn−1 matrices in Hn×n
L \ N is

singular.

Last, suppose that n− 1 ∈ Lind, αn−1 = 0, and all other αj ∈ Lval are zero. We consider the

set N from above, but now all matrices in N are singular because αn−1 = 0. Restricting ϕ to

(Hn×n
L ∩Hn×n

non−singular) \N yields the same result, so we simply add the qn−1 singular matrices

in N to the previous count.

To prove the result for Lind ⊆ {n− 1, . . . , 2n− 2}, let

Jn =




0 . . . 0 1

0 1 0

. .
. ...

1 0 0



∈ F

n×n
q

be the “anti-identity” matrix. Consider the linear transformation

TJ : Hn×n
L → Hn×n

L′ via H 7→ JnHJ
−1
n ,

which is a bijection onto its image, where L′ is the set obtained by mapping each j ∈ Lind to

2n− 2− j.

Note that in Hn×n
L′ , all fixed entries are along or above the anti-diagonal, as they were in

the case of Lind ⊆ {0, . . . , n − 1}. We can therefore use the methods above to conclude the

same counts in Hn×n
L′ . Because TJ is a bijection onto its image (and preserves singularity/non-

singularity), we conclude the same counts for Hn×n
L .

4.4 Counting Block-Hankel Matrices with Block Generic Rank

Profile

Definition 3. We say that a block matrix A (of square submatrices of dimension m) of rank

mr has block generic rank profile if rank(Ak) = mk for k = 1, 2, . . . , r, where Ak is the k × k

block leading principal submatrix of A.
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Lemma 12. The number of block-Hankel matrices (m×m submatrices arranged in r× r block-

Hankel form) of rank mr with block generic rank profile, denoted by Hmr×mr
bgrp (r), is equal to

qm
2(r−1)

(∏m−1
i=0 (qm − qi)

)r
.

Proof. The proof follows by induction. For the case r = 1, Hm×m
blps is simply the number of

non-singular m×m matrices over Fq, which is
∏m−1

i=0 (qm − qi).

Now let r > 1 and suppose that the (r− 1)× (r− 1) block leading principal submatrix Ar−1

is non-singular:

H =




M0 M1 . . . Mr−2 Mr−1

M1 M2 . . . Mr−1 Mr

... . .
.

. .
. ...

...

Mr−2 Mr−1 . . . M2r−4 M2r−3

Mr−1 Mr . . . M2r−3 M2r−2




=

[
Ar−1 Br−1

Cr−1 M2r−2

]
.

We derive conditions on M2r−3 and M2r−2 that make H non-singular. It is clear that for

any choice of M2r−3, the system Ar−1X = M2r−3 has a unique solution. We now determine

conditions on the columns of M2r−2.

Let the columns of Br−1 be denoted b0, b1, . . . , bm−1, and the columns of M2r−2 denoted

v0, v1, . . . , vm−1, and consider the matrix

[
Ar−1 b0

Cr−1 v0

]
.

The system Ar−1x = b0 will have a unique solution x regardless of b0, and correspondingly

the block 2× 2 matrix above will have full column rank if and only if Cr−1x 6= v0. Thus, there

are (qm − 1)-many choices for v0.

Next, suppose that we have chosen v0, . . . , vt−1 so that the matrix

[
Ar−1 b0 . . . bt−1

Cr−1 v0 . . . vt−1

]

has full column rank. Then the matrix

[
Ar−1 b0 . . . bt−1 bt

Cr−1 v0 . . . vt−1 vt

]

will have full column rank if and only if the vector (bt, vt)
T is not in the span of the previous

54



columns. We see that if the system

[
Ar−1

Cr−1

]
x =

[
bt +

∑t−1
i=0 αibi

vt +
∑t−1

i=0 αivi

]

has a solution, then it will be unique by the non-singularity of Ar−1. Thus, for each choice of

(α0, . . . , αt−1) ∈ F
t
q, there is one vector that vt must avoid, and so there are (qm − qt)-many

choices for vt. It follows that the number of suitable matrices M2r−2 is
∏m−1

i=0 (qm − qi).

Combining this with the fact thatM2r−3 may be arbitrary, we see that the number of block-

Hankel matrices (with Ar−1 as the mr×mr block leading principal submatrix) that have every

block leading principal submatrix non-singular is qm
2(∏m−1

i=0 (qm − qi)
)
.

Overall, it follows that there are qm
2(r−1)

(∏m−1
i=0 (qm − qi)

)r
block-Hankel matrices of rank

mr with block generic rank profile.

Theorem 6. The number of block-Hankel matrices (m × m submatrices arranged in n × n

block-Hankel form) of rank mr with block generic rank profile, denoted by Hmn×mn
bgrp (r), is equal

to

Hmn×mn
bgrp (r) =





qm
2r
(m−1∏

i=0
(qm − qi)

)r

, r < n

qm
2(r−1)

(m−1∏
i=0

(qm − qi)
)r

, r = n

.

Proof. The case r = n is proved in Lemma 12, so we assume r < n. Let H be such a matrix.

Then we can write

H =




M0 . . . Mr−1 Mr Mr+1 . . . Mn−1

... . .
. ...

...
... . .

. ...

Mr−1 . . . M2r−2 M2r−1 M2r . . . Mn+r−2

Mr . . . M2r−1 M2r M2r+1 . . . Mn+r−1

... . .
. ...

...
... . .

. ...

Mn−1 . . . Mn+r−2 Mn+r−1 Mn+r . . . M2n−2




=




Ar Br

D
Cr+1 M2r

...
...

Cn Mn+r−1



,

where Ar is non-singular. It is clear that for any choice of M2r−1, the system ArX = Br has a

unique solution.

Let the columns of Br be denoted b0, b1, . . . , bm−1, and similarly let the columns of

55



[MT
2r . . . MT

n+r−1]
T be denoted v0, v1, . . . , vm−1. As in the proof of Lemma 12, consider the

matrix [
Ar b0

Cr+1 v0

]
.

The system Arx = b0 will have a unique solution x regardless of b0, and correspondingly

the block 2× 2 matrix above will have rank mr if and only if Cr+1x = v0. The matrix H must

have rank mr, so we see that v0 is predetermined.

Next, suppose that [
Ar b0 . . . bt−1

Cr+1 v0 . . . vt−1

]

has rank mr. Then the matrix

[
Ar b0 . . . bt−1 bt

Cr+1 v0 . . . vt−1 vt

]

will have rank mr if and only if the vector (bt, vt)
T is in the span of the previous columns, which

is equivalent to (bt, vt)
T being in the span of the first mr columns. Given any bt, we see that

the system [
Ar

Cr+1

]
x =

[
bt

vt

]

will have at most one solution, by the non-singularity of Ar. There is a unique choice of vt that

will make the system solvable: we set vt to Cr+1x, where x is the unique solution to Arx = bt.

Thus, vt is predetermined. It follows that M2r, . . . ,Mn+r−1 are predetermined.

Moreover, Mn+r, . . . ,M2n−2 are predetermined, a fact that was corrected by an anonymous

referee. To see why, note that the first mr columns of H form a basis for the column space of

H. If we denote the columns of D by d0, d1, . . . , dn−r−1, then the matrix




Ar Br

d0

Cr+1 M2r

...
...

Cn Mn+r−1




will have rank mr if and only if d0 is in the span of the first m(r + 1) columns of H, which

equals the span of the first mr columns of H. By the non-singularity of Ar, the resulting

column relation would be unique, so the last m entries of d0 (i.e., the first column of Mn+r) are

predetermined. The same argument follows inductively for every column of D, so that each of

Mn+r, . . . ,M2n−2 is predetermined.
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Because only M2r−1 may be arbitrary, it follows that H is one of

qm
2(r−1)

(m−1∏

i=0

(qm − qi)

)r

· qm
2
= qm

2r

(m−1∏

i=0

(qm − qi)

)r

many matrices.

For the case m = 1, Theorem 6 implies that the number of n × n Hankel matrices (with

entries from Fq) of rank r with generic rank profile is

Hn×n
bgrp(r) =




qr(q − 1)r, r < n

qr−1(q − 1)r, r = n
.

We can compare this to the result in [Kaltofen and Lobo 1996], which states that the number

of n× n Toeplitz matrices (with entries from Fq) of rank r with generic rank profile is

Nr =





q2n−2

(
1−

1

q

)2(
1−

q − 1

q2

)r−1

, 0 < r < n

q2n−1

(
1−

1

q

)(
1−

q − 1

q2

)n−1

, r = n

.

We have investigated the properties of block-Hankel matrices, but we do not know explicit

formulas for how many block-Hankel matrices are singular (with or without certain blocks fixed).

Presented below are some brute-force counts for the number of singular block-Hankel matrices

(m×m submatrices arranged in n× n block-form, with entries from Fq).
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Table 3: Fraction of singular block-Hankel matrices with entries from a finite field

m n q Singular/Total

2 2 2
2704

4096
=
24 · 132

212

2 2 3
226881

531441
=
34 · 2801

312

2 3 2
701440

1048576
=
210 · 5 · 137

220

3 2 2
93790208

134217728
=
213 · 1072

227

2 2 5
58080625

244140625
=
54 · 19 · 67 · 73

512

2 4 2
180158464

268435456
=
216 · 2749

228
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Note 4. The following modifications have been made from [Comer and Kaltofen 2012].

1. Page 44: The citation of Lemma 2 has been updated.

2. Page 47: “adding rows” has been changed to “augmenting rows”.

3. Page 50: The citation of Lemma 2 has been updated.

4. Page 51: “We may factor H” has been changed to “We may block H”.

5. Page 51: The citation of Lemma 2 has been updated.
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Chapter Five

Conclusion

5.1 Future Work

For counting square singular Hankel matrices, an explicit formula is still not known for the case

of fixing anti-diagonals above and below the main anti-diagonal. Here, specific non-zero values

of fixed anti-diagonals can determine a different number of singular matrices; by contrast, the

General Count of Theorem 5 depends mostly on whether we fix anti-diagonals to zero. For

example, consider the 2× 2 Hankel matrix denoted by H = [a0, a1, a2]. If we fix both a0 and a2

to α0 and α2, respectively, then the number of singular such matrices depends on solutions (in

a1) of the equation a21 = α0α2. Over F3, there are 2 singular such matrices for (α0, α2) = (1, 1),

but no singular such matrix for (α0, α2) = (1, 2).

Also still not known is an explicit formula for the number of singular block-Hankel matrices,

even for the case when no block-anti-diagonal is fixed (see Table 3). It may be that the Matrix

Berlekamp/Massey algorithm of [Kaltofen and Yuhasz 2013b] could provide some insight for

the count in this case.

For linearly generated sequences with errors, Examples 1 and 2 prove the necessary number

of sequence entries to guarantee a unique set of corrections and intended minimal generator.

These examples do not directly generalize to show a necessary bound for the number of evalua-

tions for sparse interpolation in general. It should be noted that the sequence entries in Prony’s

sparse interpolation algorithm have more structure than our arbitrary linearly generated se-

quences: Prony’s sequence entries are evaluations of a sparse polynomial at consecutive powers

of a field element; one should be able to take advantage of this additional structure in order

to decrease the required number of evaluations. Also, with regard to the numeric algorithm of

Section 2.6, it is not clear how to prevent numeric “deceptive blocks”: a deception (or failed
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majority vote) can occur due to misleading noise as well as an outlier error.

In the numeric versions of shifted-basis sparse interpolation algorithms (see Section 3.2), we

implement outlier detection at a different time than the power basis algorithm: outlier errors are

detected as an immediate pre-conditioning on the evaluations, then the error-free algorithms

are executed on presumably “clean” input. It would be interesting to explore the inner steps of

each algorithm to see if error-correction can be integrated into the existing steps of the error-

free algorithms, as in the power basis case. Before exploring this, however, both algorithms of

Section 3.2 should be analyzed for steps that can be numerically unstable.

5.2 Concluding Remarks

The Majority Rule Berlekamp/Massey algorithm of Section 2.5 addresses error correction for

linearly generated sequences with exact arithmetic. For characteristic not equal to 2, we have

shown optimality in the number of sequence entries required to guarantee a unique minimal

generator and set of corrections; for characteristic 2, the algorithm still computes unique results.

This error-correction algorithm can be integrated into Prony’s sparse interpolation algorithm,

where the only change to the algorithm inputs would be oversampling during the collection of

evaluation points. It does require, of course, that the error model is such that one can place

a bound E on the number of errors obtained from a sufficiently large set of evaluations, as is

described in Remark 1.1 of [Kaltofen and Yang 2013].

The high error rate of the error-correcting algorithm, requiring an additional 4t sequence

entries for each error that may be introduced into the sequence, calls into question the practi-

cality of implementing it as an error-correcting coding scheme: changing only a few entries in

an already-linearly-generated sequence, without supplying additional sequence entries, causes

the recovery of the intended sequence and minimal generator to become much more difficult (if

possible at all, considering that deceptions may now occur). However, from a suggestion of one

of the referees of [Comer, Kaltofen, and Pernet 2012], this high k-error linear complexity may

prove useful in the realm of cryptography, where it is an advantage to have simultaneously an

“easy encoding process” and “difficult decoding process” for private communications across a

public channel.

The results of Section 3.3 show a floating-point-arithmetic implementation of Blahut’s de-

coding algorithm for Reed-Solomon codes, which was originally implemented for finite fields.

Currently, we have the algorithm analyzed for the case of k = 1 (i.e., one erroneous evaluation)

in an interpolation of a dense polynomial; the bound in (7) shows a sufficient condition to

guarantee proper recovery of the error location. The plotted curves in Figure 1, which show

the trend when the outlier magnitude approaches that of general noise, show what can happen

when no outlier occurred; that is, they show the case k = 0 as well. Thus, before determining
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where an outlier occurred, it is a non-trivial step to determine whether we should search for

an outlier at all. As seen in Figure 1a, one can obtain a “deception” during outlier detection

if in fact no outlier occurred. While the case of k = 1 is conducive to obtaining conditions for

outlier detection/deception, multiple outliers may interfere with each other to cause deceptions

even when their individual magnitudes are large, so that the case k ≥ 2 provides an interesting

challenge.
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