
ABSTRACT

NORBROTHEN, EMMA MICHELE. On Classifying the Double Cosets Hk\Gk/Hk of
SL(2, k). (Under the direction of Aloysius Helminck.)

Symmetric spaces are defined as group G/H, where G is a reductive group over an

algebraically closed field and H is the fixed point group of an involution θ, and are im-

portant particularly in mathematics and physics. Recently the study of symmetric spaces

has begun to expand to arbitrary fields and these generalizations are called symmetric

k-varieties. Similarly, symmetric k-varieties are defined as the group Gk/Hk, where Gk

and Hk are the k-points of G and H, and k is a field that is not necessarily algebraically

closed.

A problem of importance in representation theory and algebraic group theory is to

describe the action of Hk on the symmetric k-variety Gk/Hk, which can be seen as

the double cosets Hk\Gk/Hk. In the Riemannian symmetric space there is the Cartan

decomposition G = HAH of the group G, where A is a maximal θ-split torus of G.

Additionally, in real Riemannian symmetric spaces, all A are H-conjugate. In symmetric

k-varieties, the Cartan decomposition no longer holds and not all A are necessarily Hk-

conjugate. In this thesis, we study the action of Hk on Gk/Hk for G = SL(2, k) by

studying the Hk-action on maximal θ-split tori in Gk. In particular, we study the Hk-

action on maximal θ-split k-anisotropic tori, with an emphasis on the finite and p-adic

fields.
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Chapter 1

Symmetric Variety Background

Symmetric varieties, or the spaces of symmetries, are important in many sciences, par-

ticularly in mathematics and physics. They arose around 100 years ago in physics, and

were traditionally studied over the real numbers using Lie theory and analysis by Car-

tan. Riemannian symmetric spaces were studied first, followed by all symmetric spaces

over the reals, called affine symmetric spaces or real reductive symmetric spaces. Most

of the representation theory of Riemannian symmetric spaces was developed by Harish-

Chandra in [HC84]. The study of representations associated with general real reduc-

tive symmetric spaces involved the work of many mathematicians, including Brylin-

ski, Delorme, Flensted-Jensen, Matsuki, Ōshima, Sekiguchi, Schlichtkrul, and van den

Ban in [vdBS97, BD92, Del98, FJ80, OS80, OM84]. Vust, Richardson, Springer, Brion,

and Helminck then began researching symmetric varieties over algebraically closed fields

[Vus74, Ric82, Spr98, BH00]. Symmetric k-varieties emerged in the late 1980s as a nat-

ural extension, allowing symmetric spaces and their representations to be studied over

fields other than the reals and complexes, like the finite and p-adic fields, see [HW93].

For results of symmetric k-varieties over the finite fields, see [Gro92] and [Lus90]. For

results of symmetric k-varieties over p-adic fields, see [HHa, JLR93, RR96].

Symmetric k-varieties over a general field k occur in representation theory, geometry,

singularity theory, the study of character sheaves, and the study of cohomology of arith-

metic subgroups. Symmetric k-varieties over p-adic fields have particular importance in

number theory, representation theory, geometry, and harmonic analysis. For examples,
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see [HHb].

Let G be a reductive algebraic group defined over a field k, and take θ ∈ Aut(G) to

be an involution on G. The space Q = {xθ(x)−1 |x ∈ G} is a subvariety of G, called the

symmetric variety. Let H = Gθ be the fixed point group of θ in G. Then the homogeneous

spaceG/H is isomorphic to the symmetric varietyQ. The symmetric k-variety is the space

Qk = {xθ(x)−1 | ∈ Gk}, where Gk is the k-rational points of G. Similarly, taking Hk to be

the k-rational points of H, we get that Qk ' Gk/Hk. The definition of symmetric variety

can be extended even further to general groups G, in which case, the spaces Q ' G/H

are called the generalized symmetric space. The double cosets Hk\Gk/Hk can be seen

as Hk acting on the coset space Gk/Hk, or Hk acting on the symmetric variety Qk. To

study symmetric k-varieties, and then the Hk-action on symmetric k-varieties, we begin

by reviewing symmetric varieties.

In this thesis, we study the double cosets Hk\Gk/Hk over the rational, finite, and

p-adic fields. To study these, we first review symmetric varieties. We begin by reviewing

a classical approach to symmetric spaces and then a broader approach to symmetric

varieties. To conclude our review of symmetric varieties, we discuss a prominent type

of symmetric varieties, called the Riemannian symmetric space. Riemannian symmetric

spaces are of particular importance due to their formulation and resulting characteristics.

1.1 A Class of Reductive Symmetric Spaces

Let k = R and let V = kn be an n-dimensional vector space over k. Let Mn(k) be the

set of n× n matrices with entries in k. Then

GL(n, k) = {A ∈Mn(k) | det(A) 6= 0}

is the set of invertible matrices in Mn(k). Let id ∈ GL(n, k) be the identity matrix.

Let B be a nondegenerate bilinear form on V . Thus, for x, y ∈ V , B(x, y) = xTMy

for some M ∈ GL(n, k). Moreover, take B to be symmetric, thus M = MT . Take some

A ∈ Mn. Then B(Ax, y) = B(x,A′y) for some A′, and call A′ the adjoint of A. We get

that A′ = M−1ATM , and note that when M = id, we get A′ = AT . The matrix A is

orthogonal with respect to the bilinear form B if and only if AA′ = A′A = id, meaning

that B(Ax,Ay) = B(x, y) for all x, y ∈ V . The set of matrices A that are orthogonal

with respect to B forms a group, called the orthogonal group,
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O(V,B) = {A ∈ GL(n, k) |A′A = id}.

Define a map τ : GL(n, k) → GL(n, k) by τ(A) := AA′. Then the kernel of τ is

ker(τ) = τ−1(id) = O(V,B). The image of τ is Im(τ) = {AA′ |A ∈ GL(n, k)}, which we

call Q(V,B) = Im(τ). We get

GL(n, k)/O(V,B) ' Q(V,B),

and we call Q(V,B) a reductive symmetric space.

This approach to symmetric spaces was first constructed over the reals. These results

can generalize to any field k.

1.2 Our Approach to Symmetric Varieties

The bilinear form construction to symmetric varieties is limited because it leads only to

outer automorphisms in Aut(G). There are more ways to construct symmetric varieties.

We choose to define symmetric varieties based on involutions over algebraic groups.

Notation. Let k be a field of characteristics not equal to 2, let G be a reductive algebraic

group defined over k, and let Gk be the k-rational points of G. Let Aut(G) be the set of

all automorphisms of G.

Definition 1.2.1. An involution of G is an automorphism θ ∈ Aut(G) of G such that

θ2 = id yet θ 6= id. A k-involution of G is an involution of G that sends Gk to Gk.

Let θ ∈ Aut(G) be an involution of G, or a k-involution when k is not algebraically

closed. Let H = Gθ = {g ∈ G | θ(g) = g} be the fixed point group of θ in G, and let Hk

be the k-rational points of H. By a result of Steinberg in [Ste68], H0 is reductive, which

then implies that H itself is reductive.

Definition 1.2.2. For an involution θ, the symmetric variety is defined to be the

subvariety Q = {xθ(x)−1 |x ∈ G}. This space is isomorphic to G/H, thus Q ' G/H,

and both are referred to as the symmetric variety.

Both G/H and Q are considered the symmetric variety because of the following

property.
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Proposition 1.2.1. There is an isomorphism between the generalized symmetric space

G/H and Q.

Proof. Let τ : G→ G be defined by

τ(g) := g ∗ e = gθ(g)−1, (1.1)

where g ∈ G. For x, y ∈ G,

τ(x) = τ(y) ⇐⇒ xy−1 = θ(x)θ(y)−1 ⇐⇒ xy−1 ∈ H

Thus, τ−1(τ(x)) = xH for any x ∈ G. Therefore, Q ' G/H.

Richardson showed this is an isomorphism of varieties as well.

Assumed in the definition of symmetric variety is the idea that G, H, and Q are

taken over the algebraic closure of the base field k. Restricting these spaces to just their

k-points changes the nature of these spaces considerably, warranting the definition below.

Definition 1.2.3. Let Gk and Hk be the k-rational points of G and H, respectively, and

θ ∈ Aut(Gk). Let Qk = {xθ(x)−1 |x ∈ Gk}. Then Qk ' Gk/Hk is called the symmetric

k-variety, and is a generalization of symmetric spaces to general fields k.

When we take Qk ' Gk/Hk to be the symmetric k-variety, this is an isomophism

of reductive varieties, making the proof of Proposition 1.2.1 more complicated. For the

proof, see [Ric82].

Definition 1.2.4. Let G be a real reductive group. For an involution θ, the symmetric

space is defined to be subspace Q = {xθ(x)−1 |x ∈ G}. This space is isomorphic to

G/H, thus Q ' G/H, and both are referred to as the symmetric space.

There are many examples of symmetric spaces, symmetric varieties, and symmetric

k-varieties. We first consider a well-known decomposition of GL(n, k).

Example 1.2.1. Let k = R and take Gk = GL(n,R). Consider the involution

θ(x) = (xT )−1

for all x ∈ Gk. Then Hk = {x ∈ Gk |xxT = id} = O(n,R). The symmetric k-variety is

then Qk = {xxT |x ∈ Gk}. Thus, we get Gk/Hk ' Qk. Written another way, Gk ' HkQk,
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which is the decomposition of real invertible matrices into the product of orthogonal

matrices and symmetric positive-definite matrices. �

Throughout this thesis, G is assumed to be a reductive algebraic group, including

in the given definitions of symmetric variety, symmetric k-variety, and symmetric space.

The notion of symmetric spaces can, in fact, extend to any group. For the following

definition, temporarily drop the assumption that G is a reductive algebraic group.

Definition 1.2.5. Let G be a group. Let θ ∈ Aut(G) an involution of G, H = Gθ the

fixed point group of θ in G, and Q = {xθ(x)−1 |x ∈ G}, as before. Then Q ' G/H, and

both are referred to as the generalized symmetric space.

We can define a generalized symmetric space for any group. In fact, any group can

itself be seen as a generalized symmetric space.

Example 1.2.2. Let G be a group and consider the group G × G. Take the involution

θ(x, y) = (y, x) for all (x, y) ∈ G × G. Define an automorphism τ : G × G → G × G by

τ := (x, y) · θ(x, y)−1. Then H = ker(τ) = {(x, x) |x ∈ G} ' G and

Q = Im(τ) = {(x, y) · θ(x, y)−1 | (x, y) ∈ G×G} ' {(x, x−1) |x ∈ G}.

Notice that Q ' G, thus G itself can be viewed as a generalized symmetric space. �

We construct Q by acting θ on G. The space defined below helps us classify how θ

acts on G.

Definition 1.2.6. Let G be a group and θ ∈ Aut(G) an involution of G. The extended

symmetric space of G is the space R = {g ∈ G | θ(g) = g−1}.

The action of θ on an element xθ(x)−1 ∈ Q is θ(xθ(x)−1) = θ(x)x−1 = [xθ(x)−1]−1.

Thus, the symmetric space Q is contained within R, hence the name. While we conven-

tionally differentiate between symmetric spaces, symmetric k-varieties, and generalized

symmetric spaces, we refer to the set R as the extended symmetric space in all situations.

Also, if the group G is has a topology and is connected, then Q is also connected because

it is the image of τ acting on G. Contained in Q is the identity, making Q the connected

identity component of R, that is, Q = R0. Thus, Q = R0 when k = k̄ is algebraically

closed, k is the field of real numbers, or k is the field of p-adic numbers.
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Throughout this thesis, we will study k-tori inside symmetric k-varieties, for they

provide valuable information about the structure and behavior the symmetric k-varieties.

As we will see throughout this chapter, there are many results about tori inside symmetric

varieties, Riemannian symmetric spaces in particular, and many of these results do not

translate to k-tori in symmetric k-varieties. Thus, we now focus on tori. For an arbitrary

field k, we will refer to tori as k-tori to emphasize the field over which the tori are defined.

In a construction of Q, we act θ on G. Thus, we are very interested in the action of

θ on tori in G, and this leads us to the following definitions.

Definition 1.2.7. Given an involution θ ∈ Aut(G) where G is a group, a torus T is

θ-stable if θ(T ) = T .

An element inside the symmetric space Q ⊆ R has the property that θ sends it to its

inverse. Thus, we define the following property for tori.

Definition 1.2.8. Let T ⊂ G be a torus and θ ∈ Aut(G) an involution. We say that T

is θ-split if θ(t) = t−1 for every t ∈ T .

Note that θ-split tori are θ-stable by definition. Let T be a torus and let

T+ = {t ∈ T | θ(t) = t}0; (1.2)

T− = {t ∈ T | θ(t) = t−1}0. (1.3)

Then T = T+T−, and T+ ∩ T− is finite. Note that this is a group-theoretic version of an

eigenspace decomposition.

A k-torus T can also be decomposed as T = TaTd, where Ta is k-anisotropic and Td

is k-split [Bor91].

Definition 1.2.9. Let G be a group defined over k, T ⊂ G a torus, and θ ∈ Aut(G) an

involution. The torus T is (θ, k)-split if it is both θ-split and k-split.

As we review results about symmetric varieties, and Riemannian symmetric spaces in

particular, we will see many results about (θ, k)-split tori. In this thesis, we study θ-split

k-tori in general, including those that are kanisotropic. Thus, (θ, k)-split tori initially are

of great importance to this thesis.
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1.3 Riemannian Symmetric Spaces

Symmetric varieties first arose over the real numbers. Specifically, the first symmetric

variety that mathematicians researched was the Riemannian symmetric space because it

arises naturally from differential geometry. The Riemannian symmetric space has many

nice properties, and often when studying symmetric k-varieties, we are in search of prop-

erties analogous to those in the Riemannian symmetric space, should such properties

exist. Thus, we review Riemannian symmetric spaces, and most of these results can be

found in [Hel01] and [HW93].

Throughout this section, assume k = R. Let g = L(G), h = L(H), and q = L(Q) be

the Lie algebras of G, H, and Q, respectively. Let Gk be a real Lie group.

Definition 1.3.1. Let θ ∈ Aut(G) be an involution, Hk = Gθ
k the fixed point group of

θ in Gk, and Ak a θ-stable maximal k-split torus. Then θ is a Cartan involution if the

following three properties hold.

1. The subgroup Hk is maximal compact.

2. We have (k∗)2 = (k∗)4.

3. There exists a Cartan decomposition Gk = HkAkHk.

Definition 1.3.2. Let Gk be a real Lie group. Take θ ∈ Aut(Gk) to be a Cartan involu-

tion. Let Hk = Gθ
k be the fixed point group of θ in Gk, and take Qk = {xθ(x)−1 |x ∈ Gk}.

Then Qk ' Gk/Hk is the Riemannian symmetric space.

1.3.1 The Subgroup Hk is Maximal Compact

We will review several important properties of Riemannian symmetric spaces, many of

which stem from the property below.

Property 1. In a Riemannian symmetric space Qk, the fixed point group Hk is maximal

compact.

Example 1.3.1. Let Gk = SL(2,R) and take the involution θ(x) = (xT )−1. Then the

fixed point group is Hk =

{(
a b

−b a

) ∣∣∣∣ a2 + b2 = 1, a, b ∈ R

}
, which is maximal com-

pact. �
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We can conclude Property 1 from the following results in [Hel01].

Proposition 1.3.1. Every semisimple Lie algebra g over C has a real form which is

compact.

A real Lie algebra g is semisimple if and only if its killing form κ is nondegenerate.

Take k ⊂ g to be a maximal compact subalgebra. Let p = k⊥, and note that κ restricted

to p is positive definite. Then g = k⊕ p is the ±1 eigenspace decomposition. Let gC ⊃ g

be the complexification of g and σ the conjugation of gC that leaves g invariant.

Lemma 1.3.1. Let g = k ⊕ p be a real Lie algebra, gC its complexification, and σ the

conjugation of gC that leaves g invariant. Then there exists a compact real form of gC

that is σ-stable.

To prove Lemma 1.3.1, define u = k⊕ip, and note that ip is now negative definite. Let

τ denote the conjugation of gC with respect to u. Then σ(u) = u if and only if στ = τσ.

Thus, στ is of order 2, and moreover, it is a Cartan involution, leaving gστ = k.

Lemma 1.3.1 shows how to construct a Cartan involution. Combining Proposition

1.3.1 and Lemma 1.3.1 shows that each semisimple real Lie algebra has a Cartan decom-

position. Moreover, one always has a maximal compact subalgebra, as shown below in

Theorem 1.3.1, which proves Property 1 above.

Theorem 1.3.1. Let g0 be a semisimple Lie algebra over R which is the direct sum

g0 = k0 + p0, where k0 is a subalgebra and p0 is a vector space. The following conditions

are equivalent.

1. The decomposition g0 = k0 + p0 is a Cartan decomposition.

2. The mapping s0 : T +X → T −X, where T ∈ k0 and X ∈ p0, is an automorphism

of g0 and the symmetric bilinear form

Bs0(X, Y ) = −B(X, s0Y )

is strictly positive definite, that is, B < 0 on k0 and B > 0 on p0.

If these conditions are satisfied, k0 is a maximal compactly imbedded subalgebra of g0.
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Many of the other important properties of the Riemannian symmetric space follow

from the result that Hk is maximal compact. As we will see in this section and throughout

this thesis, not all of these properties generalize to symmetric k-varieties. In fact, the

property the Hk is maximal compact does not necessarily generalize to symmetric k-

varieties, as Examples 1.3.2 and 1.3.3 below demonstrate.

Example 1.3.2. Let Gk = SL(2,C) and take the involution θ(x) = (xT )−1. Then the

fixed point group is Hk =

{(
a b

−b a

) ∣∣∣∣ a2 + b2 = 1, a, b ∈ C

}
, which is noncompact. �

Examples 1.3.1 and 1.3.2 differ only by the choice of the base field. In Example 1.3.1,

we assumed k = R, which is the base field in a Riemannian symmetric space. In Example

1.3.2, we went up to k = R̄, and this was enough to break the compactness quality of

Hk.

Notation. We will use the notation Int(A) to mean conjugation by A ∈ GL(n, k).

Note that θ(g) = (gT )−1 for all g ∈ Gk, the involution used to define a Riemannian

symmetric space, is equivalent to θ(g) = Int(A)(g) with A =

(
0 1

−1 0

)
for all g ∈ Gk.

Now we consider a Lie group with a different involution.

Example 1.3.3. Let G = SL(2,R) and take the involution θ = Int(A) with A =

(
0 1

1 0

)
.

Then the fixed point group is

Hk =

{(
x y

y x

) ∣∣∣∣x2 − y2 = 1

}
=

{(
coshφ sinhφ

sinhφ coshφ

) ∣∣∣∣φ ∈ R

}
,

which is noncompact. Thus, we can see that by simply switching to another involution,

and thereby switching to a symmetric k-variety, we lose the property that Hk is maximal

compact. �

1.3.2 All Elements are Semisimple

Below is a fundamental result of the compactness of the fixed point group Hk.

Property 2. In a Riemannian symmetric space Qk, all elements are semisimple.
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Example 1.3.4. Let Gk = SL(2,R) and take θ(g) = (gT )−1 for all g ∈ Gk. Then the

Riemannian symmetric space Qk = {xxT |x ∈ G} is the set of symmetric matrices with

positive real eigenvalues, and thus consists of semisimple elements. �

Property 2 is a result of the following theorem, which was proven by Cartan. In [Hel01]

and [HW93] it has been generalized to symmetric k-varieties such that the characteristic

of k is not 0. Note that Property 1 satisfies the condition that H is anisotropic over R.

Theorem 1.3.2. Let G be a connected reductive algebraic group over k such that ch(k) =

0, Q = {xθ(x)−1 |x ∈ G}, and g = h+ q the decomposition of g = L(G) into eigenspaces

of θ. Suppose that H is anisotropic over k. Then the following conditions are true.

1. The symmetric k-variety Qk consists of semisimple elements.

2. The symmetric k-variety qk consists of semisimple elements.

In fact, for a maximal compact subgroup Hk ⊂ Gk, the space Gk/Hk is going to

consist of semisimple elements. This does not generalize to symmetric k-varieties over an

arbitrary field k.

Example 1.3.5. As in Example 1.3.3, let k = R, G = SL(2,R), and θ = Int(A) with

A =

(
0 1

1 0

)
. In this case, the symmetric k-variety is

Qk =

{(
a2 − b2 bd− ca
ca− bd d2 − c2

) ∣∣∣∣ a, b, c, d ∈ R, ad− bc = 1

}
,

which contains non-symmetric matrices and non-semisimple elements. For instance, the

values a = 1, b = 2, c = 0, and d = 1 create the matrix

(
−3 2

−2 1

)
with Jordan normal

form

(
−1 1

0 −1

)
, which is not semisimple. �

The elements in the Riemannian symmetric space Qk are semisimple, and thus con-

tained in a torus of G. Therefore, to study elements in Qk ⊂ R, we can study θ-split k-tori

instead. In symmetric k-varieties, in addition to studying k-tori, we must also study the

unipotent elements.
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1.3.3 All Elements are k-split

In a Riemannian symmetric space, semisimplicity implies the following condition.

Property 3. All elements in a Riemannian symmetric space Qk are k-split.

By Property 2, all elements in the Riemannian symmetric space are semisimple, and

now we see that they are also k-split.

Example 1.3.6. As in Example 1.3.4, let Gk = SL(2,R) and take θ(g) = (gT )−1 for all

g ∈ Gk, creating the Riemannian symmetric space Qk = {xxT |x ∈ G}. These elements

are symmetric matrices with positive real eigenvalues and can be diagonalized over the

base field. Hence they are k-split. �

By Property 1.3.1, the real Lie group Gk has an associated Cartan decomposition,

allowing us to apply the following theorem.

Theorem 1.3.3. Let H be compact, let A be a θ-stable maximal k-split torus of G, and

let Gk = HkAkHk. Then the Riemannian symmetric space Qk = {xθ(x)−1 |x ∈ Gk}
consists of k-split semisimple elements.

This result is fundamental to this thesis, because in Riemannian symmetric spaces,

semisimplicty implies that elements will split over R. As we saw in Example 1.3.5, not all

elements in symmetric k-varieties are semisimple. Further, in a symmetric k-variety, even

those that are semisimple might not be k-split. For an example, we turn to Lie algebras.

Example 1.3.7. Let gk = sl(2,R) and take θ = Int(A) with A =

(
0 1

1 0

)
. Then the

symmetric k-variety is

qk =

{(
a b

−b −a

) ∣∣∣∣ a, b ∈ k
}
.

The element

(
0 1

−1 0

)
has minimum polynomial x2 + 1 and is hence semisimple, yet has

eigenvalues ±i, and thus is not split over R. �

Elements in a Riemannian symmetric space are semisimple, which implies that they

are also k-split. In a symmetric k-variety, there are both unipotent and semisimple ele-

ments, and the semisimple elements do not always split fully over the field. Thus, in a

symmetric k-variety, there are many more components to consider.
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1.3.4 Maximal θ-split Tori are Maximal k-split

We know that elements in Qk are semisimple, k-split, and θ-split in a Riemannian sym-

metric space. This leads us to the following property.

Property 4. In a Riemannian symmetric space Qk, all maximal θ-split tori are maximal

k-split.

Example 1.3.8. As in Example 1.3.1, let Gk = SL(2,R) and θ(g) = (gT )−1 for all g ∈ Gk

to create the Riemannian symmetric space Qk = {xxT |x ∈ G}. The torus

T =

{(
x 0

0 x−1

)∣∣∣∣x ∈ R∗
}
⊂ Qk

is contained in Qk and is θ-split. Also notice that T is maximal in Gk. In this form of the

torus, we can see that all elements split over R, too. �

Theorems 1.3.3 allows us to apply the following theorem, which results in Property 4

above.

Theorem 1.3.4. Assume Qk consists of k-split semisimple elements. Then the following

are true.

1. All θ-split tori of G are k-split.

2. All maximal θ-split tori of G are maximal (θ, k)-split.

3. Given any x ∈ Qk, there is a maximal (θ, k)-split torus of G containing x.

All elements in the Riemanninan symmetric space Qk are semisimple and k-split,

hence they are contained in k-split tori. We know that Qk is θ-split because Qk ⊂ R,

thus elements in Qk are contained in (θ, k)-split tori of Gk.

Once again, these properties do not hold in symmetric k-varieties. For an example,

we turn to Lie algebra.

Example 1.3.9. As in Example 1.3.7, let gk = sl(2,R) and take θ = Int(A) with

A =

(
0 1

1 0

)
. Then the symmetric k-variety is

qk =

{(
a b

−b −a

) ∣∣∣∣ a, b ∈ k
}
.
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One of the toral subalgebras inside qk is

t =

{(
0 x

−x 0

) ∣∣∣∣x ∈ k
}
.

The Lie algebra equivalent of a θ-split torus is a toral subalgebra such that θ(t) = −t for

all t ∈ t, and note that the toral subalgebra above is indeed θ-split. The eigenvalues of

the matrices inside t are ±ix, hence the elements are semisimple and yet this maximal

toral subalgebra does not split over R. �

Theorem 1.3.4 shows us that because elements in Qk are semisimple and k-split, θ-

split tori are k-split. Proposition 1.3.2 below shows reverses this, showing that k-split

tori must be θ-split as well.

Proposition 1.3.2. Let H be compact and Gk = HkAkHk, where A is a θ-stable maximal

k-split torus of G, as in the Riemannian symmetric space. Then A is maximal θ-split.

1.3.5 All Maximal (θ, k)-split Tori are Hk-conjugate

In this thesis, we study maximal θ-split k-tori. We review what is known about (θ, k)-

split tori, and then focus on θ-split k-anisotropic tori. In particular, we analyze the Hk-

conjugation of k-tori. The following result about Hk acting on θ-split tori in Riemannian

symmetric spaces is of fundamental importance to this thesis, because, once again, it

does not hold over symmetric k-varieties.

Property 5. In a Riemannian symmetric space Qk, all maximal (θ, k)-split tori are

Hk-conjugate.

Example 1.3.10. Let Gk = SL(2,R) and θ(g) = (gT )−1 for all g ∈ Gk. In Example

1.3.3, we considered the torus

T =

{(
x 0

0 x−1

)∣∣∣∣x ∈ R∗
}
.

That is because all maximal (θ, k)-split tori in in Gk are conjugate to this form, allowing

us to only consider the torus T . �

The following is a combination of several theorems in [HW93]. Property 1 shows us

that the Riemannian symmetric space is created using a Cartan involution, allowing us

to apply the theorem below.
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Proposition 1.3.3. Let Hk be k-anisotropic and Gk = HkAkHk. Then any two maximal

(θ, k)-split tori are conjugate by an element of H0
k .

In symmetric k-varieties, maximal k-tori are not always Hk-conjugate.

Example 1.3.11. In [BH09], Beun and Helminck showed that there is an infinite number

of Hk-conjugacy classes of (θ, k)-split tori in SL(2,Q). �

We can extend Proposition 1.3.3 to create the theorem below. Let θ ∈ Aut(G) be an

involution of G, though not necessarily a Cartan involution.

Theorem 1.3.5. Let θ be an involution of G defined over k and H0 the identity compo-

nent of the θ fixed point group, Gθ. If G has a Cartan involution over k, then all maximal

(θ, k)-split tori are Hk-conjugate.

Theorem 1.3.5 shows us that as long as the group G has a Cartan involution, all of

its tori are conjugate by the fixed point group, even if the tori and the fixed point group

are created using a non-Cartan involution. In symmetric k-varieties, this is far from true.

1.3.6 The Weyl Group has Representatives in Hk

Property 6. Let Qk be a Riemannian symmetric space and T a maximal θ-split torus.

The Weyl group W (T ) has representatives in WHk
(T ).

Example 1.3.12. Let Gk = SL(2,R) and take torus T =

{(
x 0

0 x−1

) ∣∣∣∣x ∈ R∗
}

. Then

the Weyl group of T is

W (T ) = N(T )/T =

{
id,

(
0 1

−1 0

)}
.

The fixed point group is Hk =

{(
a b

−b a

) ∣∣∣∣ a2 + b2 = 1

}
. Notice that the conditions

a = 0 or b = 0 give us the following matrices when combined with the requirement

a2 + b2 = 1.

a = 0 ⇒ ha =

(
0 1

−1 0

)

b = 0 ⇒ hb =

(
1 0

0 1

)
.
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Notice that ha, hb ∈ W (T ) and ha, hb ∈ NH(T ), showing that both elements of W (T ) are

represented in WHk
(T ). �

Borel and Tits give us the following theorems.

Theorem 1.3.6. Let A be a maximal k-split torus. Then W (A) has representatives in

WGk
(A).

Theorem 1.3.7. For an involution θ, let A be a maximal θ-split torus and H be its fixed

point group in G. Then W (A) has representatives in WH(A).

Property 6 is a result of the following theorem in [HW93], which is an extension of

Theorems 1.3.6 and 1.3.7.

Theorem 1.3.8. For a Cartan involution θ, let A be a maximal (θ, k)-split torus and H

be its fixed point group in G. Then W (A) has representatives in WHk
(A).

When working over a general field k and with a general involution θ, elements in the

Weyl group are not necessarily in the fixed point group. Below is an example of when it

does not hold.

Example 1.3.13. Let Gk = SL(2,Fp) with p = 5 and θ = Int(A) with A =

(
0 1

2 0

)
.

The fixed point group of θ in Gk is

Hk =

{(
x y

2y x

) ∣∣∣∣x2 − 2y2 = 1, x, y ∈ Fp

}
.

Take the torus T =

{(
x 0

0 x−1

) ∣∣∣∣x ∈ F∗p

}
, and the Weyl group of T

WGk
(T ) = NGk

(T )/T =

{
id,

(
0 1

−1 0

)}
.

Notice that the second Weyl group element has form

(
0 1

4 0

)
, which does not fit the

form of Hk. Thus, not all elements in WGk
(T ) are contained in Hk. �

Note that in Riemannian symmetric spaces and symmetric k-varieties when k is alge-

braically closed, WG(T ) = WH(T ), for T a maximal torus. The Weyl group in H counts

the number of times the H-orbit intersects the torus itself. [HW93]
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Proposition 1.3.4. Let Hk be maximal compact, T a maximal θ-split torus, and t ∈ T .

Then Hk · t ∩ T = WHk
(T ) · t.

Proof. Consider h1 · t = h1th
−1
1 ∈ Hk · t ∩ T , where h1 ∈ Hk. All tori are Hk-conjugate,

thus h1Th
−1
1 = T1, where T1 is another maximal torus in Gk. By construction, h1Th

−1
1 ⊂

ZGk
(h1th

−1
1 ) and T ⊂ ZGk

(h1th
−1
1 ). Thus, the tori T and T1 areHk-conjugate in ZGk

(h1th
−1
1 )

as well. Therefore, there exists an h2 ∈ Hk∩ZGk
(h1th

−1
1 ) such that h2T1h

−1
2 = T1. Putting

these together, we see that there exists an h ∈ NHk
(T ) such that h1 · t = h · t, namely

h = h2h1. Thus, Hk · t ∩ T ⊂ WHk
(T ) · t. The agrument reverses, hence Hk · t ∩ T =

WHk
(T ) · t.

Example 1.3.14. Let Gk = SL(2,R) and take torus T =

{(
x 0

0 x−1

) ∣∣∣∣x ∈ R∗
}

. Con-

sider the fixed point group Hk and Weyl group WGk
(T ) from Example 1.3.12. We know

that for t ∈ T , Hk · t∩T = WHk
(T ) · t. When we consider Hk · t∩T , we get the following

relations:

abx = abx−1

(a2x+ b2x−1)(a2x−1 + b2x) = 1.

The implication of these relations is that a = 0, or b = 0, or x = ±1. Combining these

relations with the requirement that a2 + b2 = 1, we create ha, hb ∈ Hk as in Example

1.3.12, showing the Hk-orbits intersect the torus T twice. �

The proof of Proposition 1.3.4 uses the fact that in a Riemannian symmetric space,

all tori are Hk-conjugate. Thus, this relation does not necessarily hold in a symmetric

k-variety.
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Chapter 2

The Hk-orbits in Qk Background

The generalizations of symmetric spaces to an arbitrary field k are called symmetric k-

varieties, which arise in many areas of mathematics and physics, and play a particularly

important role in representation theory and number theory. In the past thirty years,

the study of symmetric k-varieties has begun to expand, unveiling many open questions.

Many of these open questions are about how the structure of symmetric spaces can be

generalized to symmetric k-varieties, if at all. Some of the structure of symmetric k-

varieties that is important to representation theory and number theory is how Gk and

Hk act on Qk ' Gk/Hk. In this thesis, we analyze how Hk acts on the symmetric k-variety

Gk/Hk.

In [Ric82], Richardson analyzes the action of H on the symmetric space G/H when G

is a group defined over an algebraically closed field. Helminck and Wang the transition to

symmetric k-varieties by analyzing Gk/Hk over fields of characteristic p. Helminck and

Schwarz study orbits of symmetric groups in symmetric k-varieties over algebraically

closed fields and the real numbers [HS09, HS02, HS04, HS11]. The results of [Ric82]

and [HS11] show that we can begin to study the movements of elements in Gk/Hk by

analyzing θ-split k-tori in Gk/Hk, where θ is a k-involution on Gk. In [BH09], Beun and

Helminck begin to analyze the θ-split k-tori by considering θ-split k-tori that are split

over k as well. These k-tori are referred to as (θ, k)-split tori. In this thesis, we analyze

θ-split k-anisotropic tori. Combined with the results of Helminck and Beun in [BH09],

we get a characterization of all maximal θ-split k-tori.
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Notation. Let G be a reductive algebraic group over an algebraically closed field. Let

θ ∈ Aut(G) be an involution on G, thus θ2 = id, and let H = Gθ be the fixed point

group of θ in G. The subvariety Q = {xθ(x)−1 | x ∈ G} can be identified with the coset

space G/H, and both are called the symmetric variety. Let g = L(G), h = L(H), and

q = L(Q) be the Lie algebras of G, H, and Q, respectively. When working over a field

that is not algebraically closed, Gk, Hk, gk, and hk denote the k-rational points of G, H,

g, and h, respectively. Then Qk = {xθ(x)−1 |x ∈ Gk} and qk = {x− θ(x) |x ∈ gk}.

2.1 The Hk-Action

In this thesis, we examine Hk acting on the symmetric k-variety Qk ' Gk/Hk. Note that

G and H act on the symmetric variety G/H by left multiplication. There are two other

actions by G and H on G/H ' Q that are important when working in symmetric spaces:

conjugation and twisted conjugation.

Notation. Take g, x ∈ G. The action of conjugation of x by g is denoted by g ·x = gxg−1.

Definition 2.1.1. Take g, x ∈ G and let θ ∈ Aut(G) be an involution. The action of

θ-twisted conjugation of x by g is g ∗ x = gxθ(g)−1.

Recall that Q = {xθ(x)−1 |x ∈ G}, thus, we can view Q as G ∗ e, the G-orbit of the

identity. In particular, the θ-twisted conjugation is an important mapping from Q to Q,

because for g ∈ G and x ∈ Q, we find that g ∗ x ∈ Q and g · x 6∈ Q. Thus, θ-twisted

conjugation is a conjugation mapping that allows Q to go to Q. When conjugating by

the fixed point group H, conjugation and θ-twisted conjugation are the same action.

In general, for x ∈ G, we have the Jordan decomposition x = xxxu, where xs is

semisimple, xu is unipotent, and xs, xu ∈ G. In [Ric82], Richardson shows that this

decomposition holds even when restricted to the symmetric space.

Theorem 2.1.1. Consider x = xsxu. Then x ∈ Q = {xθ(x)−1 |x ∈ G} if and only if

xs, xu ∈ Q.

The proof of this theorem relies on the uniqueness of the Jordan decomposition.

Richardson uses the map τ : G→ G, defined by

τ(g) := g ∗ e = gθ(g)−1,
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as in 1.1, to show that x, xs, and xu are in Q. This theorem is significant because it shows

that we can analyze elements in the symmetric space by first analyzing the semisimple

elements and the unipotent elements. In [Ric82], Richardson gives some structure to these

semisimple elements by linking them to θ-split tori.

2.2 The Hk-orbits in Qk over Algebraically Closed

Fields

Recall that a θ-split torus T is a torus such that θ(t) = t−1 for all t ∈ T . In older

literature, the concept that we define as a θ-split torus is referred to as a θ-anisotropic

torus. Anisotropic is the algebra equivalent of compact. Thus, a torus that is θ-split can

also be compact, and a θ-split toral subalgebra can also be anisotropic. For this reason,

the terminology has shifted from θ-anisotropic to θ-split, and this shift begins in Springer

and Helminck literature. In [Vus74], Vust shows that such tori exist.

Lemma 2.2.1. In a nontrivial group G, there exists a nontrivial θ-split torus.

Let T be a θ-split torus. Then τ(T ) ⊆ T because θ(τ(t)) = t−2 = θ(t)t−1 = τ(t)−1 for

any t ∈ T . When G is over k an algebraically closed field, or k such that (k∗)2 = (k∗)4,

these sets are equal. Note that τ(T ) ⊂ Q by definition, and when working over an

algebraically closed field, this implies that τ(T ) = T ⊆ Q.

Example 2.2.1. Let k = Fp for some prime p and let G = GL(2, k). Consider the torus

T =

{(
x 0

0 y

) ∣∣∣∣x+ y 6= 0, x, y ∈ Fp

}

Then τ(T ) =

{(
x2 0

0 y2

) ∣∣∣∣x, y ∈ Fp

}
. Thus, τ(T ) ( T . �

In [Ric82], Richardson presents the theorem below. It provides important structure

for studying semisimple elements inside of the symmetric space Q by linking semisimple

elements to tori.

Theorem 2.2.1. Let Q ' G/H be a symmetric space defined over an algebraically closed

field. Let x ∈ Q be semisimple. Then x is contained in a θ-split torus.
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Theorem 2.2.1 is fundamental to this thesis. Every semisimple element in Q is con-

tained in a θ-split torus, thus we can study semisimple elements by studying θ-split tori,

which will ultimately help us study general elements in Q.

When we study H acting on Q ' G/H, because of Theorem 2.1.1, we can study

H acting on semisimple elements in Q. In order to study this action on semisimple

elements, we can study the H action on θ-split tori of G contained in Q by Theorem

2.2.1. In particular, a maximal θ-split torus is a torus that is maximal when compared

with other θ-split tori. Throughout this thesis, let Aθ denote the set of maximal θ-split

tori in G, and let A ∈ Aθ be a maximal θ-split torus. In the theorem below, Vust shows

us how H acts on these maximal θ-split tori.

Theorem 2.2.2. Let A1, A2 ∈ Aθ be maximal θ-split tori in G. Then there exists an

h ∈ H0 such that h · A1 = A2.

This result is of fundamental importance in this thesis. Vust shows that all maximal

θ-split tori are H-conjugate when the field is algebraically closed. Over general fields,

this result does not hold, that is, there is sometimes more than one Hk-conjugacy class of

maximal θ-split k-tori. In this thesis, we begin to determine when maximal θ-split k-tori

are Hk-conjugate, that is, how H-conjugacy classes break up into Hk-conjugacy classes.

2.3 The Hk-orbits in Qk over General Fields

In the field of symmetric spaces, Riemannian symmetric spaces were first studied be-

cause they arise naturally over the reals. While Riemannian symmetric spaces are not

technically defined over an algebraically closed field, many of their properties also hold

in symmetric spaces when k is algebraically closed. Many of these properties do not

necessarily hold in symmetric k-varieties over general fields.

One such property in the Riemannian symmetric space is that the fixed point group

Hk is compact. In general fields k, the equivalent property is that Hk is k-anisotropic.

When Hk is k-anisotropic, many of the additional properties of Riemannian symmetric

spaces still hold.

Over general fields, including the reals, Hk is not always compact or k-anisotropic.

Recall Examples 1.3.1 and 1.3.3, both of which illustrated groups over the reals. In

Example 1.3.1 we used a Cartan involution, and the resulting fixed point group was
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compact, whereas in Example 1.3.3 we used a non-Cartan involution, and the resulting

fixed point group was noncompact. Therefore, throughout this thesis, assume Hk is not

k-anisotropic, unless we explicitly state otherwise.

As we saw in Property 2, in a Riemannian symmetric space, Qk consists only of

semisimple elements. In [Hel10], Helminck shows that this property translates to sym-

metric k-varieties when Hk is k-anisotropic and the characteristic of the field k is zero.

Theorem 2.3.1. Let k be a field such that ch(k) = 0. Let G be a connected reductive

algebraic group over k. For an involution θ ∈ Aut(G), let Q = {xθ(x)−1 |x ∈ G} be the

symmetric space. For g = L(G), we have the eigenspace decomposition g = h + q, where

h = L(H). Assume H is k-anisotropic. Then the following conditions are true.

1. The symmetric k-variety Qk consists of semisimple elements.

2. The symmetric k-variety qk consists of semisimple elements.

Below are some examples demonstrating that the condition that Hk is k-anisotropic

is necessary. Recall that for g ∈ G and A ∈ GL(n, k), the notation Int(A)(g) denotes

A · g.

Example 2.3.1. Let k = R and G = SL(2,R). Take the involution θ(g) = (gT )−1 for

all g ∈ G. Then Hk = SO(2,R), which is compact. The symmetric k-variety Qk is the

set of symmetric matrices with positive real eigenvalues, and thus consists of semisimple

elements. �

Example 2.3.2. In the previous chapter, Example 1.3.3 demonstrated how the involution

θ(g) = Int(A)(g) with A =

(
0 1

1 0

)
over G = SL(2,R) led to a noncompact Hk. In

Example 1.3.5, we saw that the resulting symmetric k-variety contained nonsemisimple

elements like

(
−3 2

−2 1

)
. Thus, we can begin to see that Hk being compact is necessary.

�

In Example 2.3.1, the involution θ(g) = (gT )−1 for all g ∈ G can also be represented

as θ(g) = Int(A)(g) with A =

(
0 1

−1 0

)
. A critical difference between the two examples

is the lower left matrix entry 1 in Example 2.3.1 and −1 Example 2.3.2. We will expand

on this important difference in the next section, in which we discuss involutions over

SL(2, k).
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The following results carries over into symmetric k-varieties, as shown by Helminck

[Hel].

Theorem 2.3.2. Let k be any field of characteristic not 2. Let x ∈ Q be semisimple.

Then x is contained in a θ-split torus.

Richardson originally presented this proof over algebraically closed fields, and in

[Ric82], Springer presents a proof that holds over fields of characteristic p. The proof

of this theorem over general fields is similar to the proof over algebraically closed fields.

2.4 The k-split Tori

We study k-tori of G that are θ-split. Historically, k-split tori were studied first, thus we

now review some of results about k-split tori from Helminck and Wang in [HW93]. For

these results, assume that k is an infinite field.

Recall from Property 1 in the previous chapter that in a Riemannian symmetric space,

whenever we have a maximal compact subgroup of G, we automatically have a Cartan

involution θ. In symmetric k-varieties over general fields, we need to refine these concepts

to properly define to the analogous involutions.

Definition 2.4.1. Let G be a reductive algebraic group defined over k, θ ∈ Aut(G)

a k-involution, and A a maximal k-split torus of G. Then θ is a generalized Cartan

involution if the following three conditions are met.

1. The fixed point group H is k-anisotropic.

2. The field k satisfies (k∗)2 = (k∗)4.

3. The Cartan decomposition Gk = HkAkHk holds.

The second condition states that the field also contains the square roots of its positive

numbers. The third condition can be replaced using any of the conditions in Proposition

2.4.1, given below.

Proposition 2.4.1. Assume that H is k-anisotropic and (k∗)2 = (k∗)4. Let A be a

maximal k-split torus of G. Then the following conditions are equivalent.

1. The group Gk = H0
kAkH

0
k .
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2. The group Gk = HkAkHk.

3. The group Gk = UkAkH
0
k and Qk consists of k-split semisimple elements.

4. The group Gk = UkAkHk and Qk consists of k-split semisimple elements.

5. The group Gk = QkHk and Qk consists of k-split semisimple elements.

To be a generalized Cartan involution, the associated fixed point group must be k-

anisotropic, however, it is possible for Hk to be k-anisotropic without the involution being

a Cartan involution. When Hk is k-anisotropic, we have the decomposition Gk = (H ·P )k,

where P is a minimal parabolic k-subgroup. When the involution is Cartan, we have

the stronger decomposition Gk = HkPk and the Cartan decomposition Gk = HkAkHk.

Note that over the reals, the Cartan decomposition and the Iwasawa decomposition,

Gk = HkAkUk, where U is the unipotent radical of P , are equivalent.

Note that over the finite fields, no notion of Cartan involution exists. Some of the

properties of Cartan involutions extend to involutions over finite fields.

Proposition 2.4.2. Let G be a reductive Lie group over a field k. Let H be maximal

k-anisotropic, θ a Cartan involution and A a maximal k-split torus. Then the following

are true.

1. The torus A is (θ, k)-split.

2. Maximal (θ, k)-split tori are H0
k-conjugate.

3. The Weyl group WGk
(A) = WHk

(A).

The first two parts of Proposition 2.4.2 shows that when the field is infinite and the

involution is a generalized Cartan involution, k-split tori are automatically (θ, k)-split

tori, and moreover, they are conjugate. The third part leads to the corollary below.

Corollary 2.4.1. Let G be a reductive Lie group over a field k. Let H be maximal k-

anisotropic, θ a Cartan involution, A a maximal (θ, k)-split torus, and a ∈ A. Then

H · a ∩WHk
· a.
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2.5 Involutions over SL(2, k)

In this thesis, we study the Hk-action on the symmetric k-varieties Qk ' Gk/Hk when

G = SL(2, k) and k is the rationals, finite fields, and p-adic fields. More specifically, we

act Hk on θ-split k-tori of Gk contained in Qk. Thus, we first review some results about

involutions over SL(2, k). We will follow the notations of Helminck, Wang, and Beun as

shown in [HW02], [Beu08], and [BH09]. Throughout this section, let G = SL(2, k) where

k is a field of characteristic not equal to 2. Let Aut(G) be the group of automorphisms

of G and Int(G) be the group of inner automorphisms of G.

Definition 2.5.1. Two involutions θ, φ ∈ Aut(G) are k-isomorphic if and only if there

is a χ ∈ Int(G) such that χ−1θχ = φ.

Involutions that are k-isomorphic are also called k-conjugate. In [HW02], Helminck

and Wu classify all involutions over SL(2, k) that are unique up to isomorphy.

Lemma 2.5.1. All the k-isomorphy classes of involutions over G are of the form Int(A)

where A ∈ GL(2, k) is of the form A =

(
0 1

m 0

)
.

The proof of this lemma relies on the fact that we can multiply the conjugating

matrix A by a scalar in an extension field of k without affecting the involution, as shown

in [HW02]. Helminck and Wu then classify which values of the matrix entry m ∈ k

create isomorphic involutions. To better understand their classification, we first need the

definition given below. Let k∗ be the product group of all nonzero elements in the field

k.

Definition 2.5.2. Let (k∗)2 be the set of all squares in k∗. The square classes in k∗

are the representatives of the coset group k∗/(k∗)2.

Square classes have been studied many mathematicians. In a sense, square classes

measure the square-ness of a number. To understand square classes more, consider the

following example.

Example 2.5.1. Let k = Fp with p = 7. Then (k∗)2 = {1, 2, 4} is the set of squares

and the set of nonsquares is {3, 5, 6}. For simplicity, in Fp, we typically represent the

squares with 1 and the nonsquares with the smallest of the nonsquares, in this case, 3.

This makes k∗/(k∗)2 = {1̄, 3̄}. �
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Note that k∗/(k∗)2 is a group of cosets. In practice, we use coset representatives in

calculations involving involutions of SL(2, k). By abuse of notation, we often will drop

the bar notation from a coset.

The following lemma about square classes can be found in [Ser73].

Lemma 2.5.2. Let k be a finite field. Then |k∗/(k∗)2| = 2.

To see this, consider the mapping φ : Fp → Fp given by φ(x) = x2. Then φ(F∗p) = (F∗p)2

is a normal subgroup and hence |F∗p/(F∗p)2| = 2.

Corollary 2.5.1. A square multiplied by a nonsquare is a nonsquare. A nonsquare mul-

tiplied by a nonsquare is a square.

Proof. Let x21 be our square and Npx
2
2 and Npx

2
3 be our nonsquares. A square multiplied

by a nonsquare gives us x21 · Npx
2
2 = Np(x1x2)

2 a nonsquare. A nonsquare multiplied by

a nonsquare gives us Npx
2
2 ·Npx

2
3 = (Npx2x3)

2 a square.

The following lemma is useful for computations involving square classes. It can be

found in [Ser73], and Wu gives a compact proof of it in [Wu02].

Lemma 2.5.3. Let p be a prime and Fp a finite field of order p. Then −1 is a square if

and only if p ≡ 1 mod 4.

Proof. Suppose x2 = −1 for some x ∈ Fp. Then |x| = 4, and |F∗p| = p − 1, thus 4|p − 1.

Therefore, p must be equivalent to 1 mod 4. The argument reverses.

The following corollary is the extension of Lemma 2.5.3 over Qp when p 6= 2.

Corollary 2.5.2. Let p be an odd prime and consider Qp. Then −1 is a square if and

only if p ≡ 1 mod 4. When p ≡ 3 mod 4, −1 ≡ Np.

Proof. Over Qp, the equivalent of −1 is (p − 1), (p− 1). Thus, −1 is a square if and

only if p − 1 ≡ −1 is a square in Fp. This happens exactly when p ≡ 1 mod 4. When

p ≡ 3 mod 4, p− 1 ≡ −1 ≡ Np in Fp.

Lemma 2.5.4. Let p = 2 and consider Qp. Then −1 not a square.

Proof. Over Qp when p = 2, −1 = 1, 1. Let x = a0 + a1p + a2p
2 + · · · ∈ Qp. Then

x2 = a20 + 2a0a1 + (2a0a2 + a21)p
2 + · · · = a20 + a21p

2 + · · · . Thus, x2 6= 1, 1.
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The following theorem shows how square classes impact conjugacy classes of involu-

tions over SL(2, k).

Theorem 2.5.1. Suppose θ, φ ∈ Aut(G) are involutions such that θ = Int(A) with

A =

(
0 1

ma 0

)
and φ = Int(B) with B =

(
0 1

mb 0

)
. Then θ is conjugate to φ if and only

if mb/ma is a square in k∗.

Theorem 2.5.1 is extremely important in this thesis. It shows us that isomorphy classes

of involutions in SL(2, k) depend exactly on the square classes in the field k.

Example 2.5.2. Recall Examples 1.3.1 and 1.3.3. In Example 1.3.1, the involution has

m = −1, which is a nonsquare in R, and the resulting fixed point group is compact. In

Example 1.3.3, the involution has m = 1, which is a square in R, and the resulting fixed

point group is noncompact. The ratio of these m-values is −1, a nonsquare in R. Thus,

these involutions produce different results because they are not k-isomorphic. �

Corollary 2.5.3. The number of isomorphy classes of involutions of SL(2, k) is |k∗/(k∗)2|.

Further, we can exactly determine the form of the involutions. From Theorem 2.5.1,

we know each involution has form θ = Int(A) with A =

(
0 1

m 0

)
, and we can take

m ∈ k∗ to be a coset representative from k∗/(k∗)2, giving us our |k∗/(k∗)2| involutions.

The following proposition shows us exactly how to determine these involutions, and is a

compilation of results from [Mah81] and [HW02].

Proposition 2.5.1. Let G = SL(2, k) and θ ∈ Aut(G) be θ = Int(A) with A =

(
0 1

m 0

)
.

Let Np ∈ k∗ be the smallest nonsquare in the field k. Then we can take m to be a coset

representative of the following square classes to create unique involutions over G.

1. Algebraically closed fields: In this case, k∗/(k∗)2 ' {1}, creating 1 involution.

2. Real numbers, R: In this case, k∗/(k∗)2 ' Z2 ' {1,−1}, creating 2 involutions.

3. Rational numbers, Q: In this case |k∗/(k∗)2| = ∞, creating an infinite number of

involutions.

4. Finite fields, Fp for p 6= 2: In this case, k∗/(k∗)2 ' Z2 ' {1, Np}, creating 2

involutions.
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5. p-adic fields, Qp for p 6= 2: In this case, k∗/(k∗)2 ' Z2 × Z2 ' {1, Np, p, pNp},
creating 4 involutions.

6. p-adic fields, Qp for p = 2: In this case, k∗/(k∗)2 = {1,−1, 2,−2, 3,−3, 6,−6},
creating 8 involutions.

An explanation of the square classes of Qp when p 6= 2 is given below in Example

2.5.3. An explanation of the square classes of Qp when p = 2 is given by Mahler in

[Mah81].

Example 2.5.3. Let k = Qp with p 6= 2. Recall that Qp is the completion of Q with

respect to the p-norm, creating

Qp =

{
∞∑

i=−n

aip
i

∣∣∣∣ ai ∈ {0, 1, . . . , p− 1}, a−n 6= 0, n ∈ Z

}
.

To determine the square classes in Qp, we can consider x to be a p-adic integer without

loss of generality. Thus, take x ∈ Qp to be x = a0 + a1p + a2p
2 + · · · with a0 6= 0 by

definition. Then x2 = a20 + 2a0a1p + (2a0a2 + a21)p
2 + · · · . If x2 = p, then a0 = 0, a

contradiction, thus p is not a square. Notice that the leading coefficient of x2 is a square.

Thus Np is also not a square in Qp. The leading coefficient also shows us that pNp is not

a square. Now, by way of contradiction, assume p and Np are in the same coset, that

is, p ≡ Np. Then pNp ≡ p2, a square, which is a contradiction. Thus, p and Np are in

different cosets. By similar logic, pNp is also in a different coset. Allowing 1 to represent

the coset of squares, for p 6= 2 we get

Q∗p/(Q∗p)2 ' {1, Np, p, pNp}. (2.1)

�

We know that any involution of Gk = SL(2, k) has the form θ = Int(A) where A is of

the form A =

(
0 1

m 0

)
and m is a representative of k∗/(k∗)2. Then the fixed point group

of θ in Gk becomes

Hk =

{(
x y

my x

) ∣∣∣∣x2 −my2 ≡ 1, x, y ∈ k

}
. (2.2)
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Recall from the previous chapter that many of the results about Riemannian sym-

metric spaces were because of the compactness of the fixed point group. In [Beu08], Beun

determines when the fixed point group of SL(2, k) is k-anisotropic for general k.

Theorem 2.5.2. Let G = SL(2, k) and θ ∈ Aut(G) be a k-involution of form θ = Int(A)

where A =

(
0 1

m 0

)
and m is a representative of k∗/(k∗)2. Then Hk is k-anisotropic if

and only if m 6≡ 1.

Thus, an involution can not be a Cartan involution if m ≡ 1.

2.6 The (θ, k)-split Tori in SL(2, k) over General Fields

In [Beu08], Beun classifies theHk-conjugacy classes of (θ, k)-split maximal tori in SL(2, k).

Her classifications depend on the theorem below from Helminck and Wang in [HW93],

and note that the only restriction on k is that the characteristic is not 2.

Theorem 2.6.1. Let A1 and A2 be maximal (θ, k)-split k-tori, and let T1 ⊂ A1 be a

maximal k-split torus. Then there exists a g ∈ (H · ZG(T1))k such that gA1g
−1 = A2.

This theorem assumes the k-tori are k-split. Historically, k-split tori were studied

before involutions were acted upon k-tori. In [BT65], Borel and Tits showed that k-split

tori are Gk-conjugate if and only if minimal parabolic k-subgroups are Gk-conjugate.

These parabolic subgroups play a major role in the study of algebraic groups, for instance,

we have the Bruhat decomposition Gk = PkWGk
(A)Pk, where Pk is a minimal parabolic

group and A is a maximal torus. There is no result analogous to that of Borel and Tits

connecting k-anisotropic tori to parabolic subgroups, because usually there is an infinite

number of Gk-conjugation classes. Therefore, Theorem 2.6.1, and hence the technique

that Beun introduces, does not apply θ-split k-tori that do not split over k, one of the

main areas of focus of this thesis.

Let Aθ denote the set of maximal θ-split k-tori in Gk and A(θ,k) the set of maximal

(θ, k)-split tori in Gk. This notation has been adapted slightly from the notation Beun

uses in [Beu08] to emphasize that maximal θ-split k-tori that are not split over k will

also be considered.

Beun uses Theorem 2.6.1 in the following way. Consider the torus
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T =

{(
x 0

0 x−1

) ∣∣∣∣x ∈ k∗
}
⊂ SL(2, k). (2.3)

and note that it is maximal in Gk. By construction, Hk acts on (H · T )k by left multipli-

cation. By Theorem 2.6.1, there exists a g ∈ (H · T )k such that gTg−1 = Ti, where Ti is

a (θ, k)-split maximal torus. Thus, each element of (H · T )k corresponds to a (θ, k)-split

maximal torus by conjugating T in Equation 2.3. This implies that Hk acts on the set

A(θ,k) by acting on (H · T )k. Therefore, by classifying the left Hk cosets of (H · T )k, she

classifies the Hk-conjugacy classes of A(θ,k) simultaneously.

Below are the summaries of the Hk-conjugacy classes of maximal (θ, k)-split k-tori in

SL(2, k) for algebraically closed, the real, the finite, and the p-adic fields.

Lemma 2.6.1. Let k be algebraically closed. Then there is one Hk-conjugacy class of

maximal (θ, k)-split tori.

Lemma 2.6.2. Let k = R. Then there is one Hk-conjugacy class of maximal (θ, k)-split

tori for each value of m.

Lemma 2.6.3. Let k = Q. Then there is an infinite number of Hk-conjugacy classes of

maximal (θ, k)-split tori for each value of m.

Theorem 2.6.2. Let k = Fp for p 6= 2 and let Np be the smallest nonsquare in k. Then

we have the following number of Hk-conjugacy classes of maximal (θ, k)-split tori.

1. When p ≡ 1 and m ≡ Np, there is 1 class of maximal (θ, k)-split tori.

2. When p ≡ 1 and m ≡ 1, there are 2 classes of maximal (θ, k)-split tori.

3. When p ≡ 3 and m ≡ 1, there is 1 class of maximal (θ, k)-split tori.

4. When p ≡ 3 and m ≡ Np, there are 2 classes of maximal (θ, k)-split tori.

Theorem 2.6.3. Let k = Qp for p 6= 2 and let Np be the smallest nonsquare in k. Then

we have the following number of Hk-conjugacy classes of maximal (θ, k)-split tori.

1. When m ≡ p, pNp, regardless of p, there is 1 class of maximal (θ, k)-split tori.

2. When p ≡ 1 and m ≡ Np, there is 1 class of maximal (θ, k)-split tori.
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3. When p ≡ 1 and m ≡ 1, there are 4 classes of maximal (θ, k)-split tori.

4. When p ≡ 3 and m ≡ 1, there are 2 classes of maximal (θ, k)-split tori.

5. When p ≡ 3 and m ≡ Np, there are 2 classes of maximal (θ, k)-split tori.

Theorem 2.6.4. Let k = Qp for p = 2 and let Np be the smallest nonsquare in k. Then

we have the following number of Hk-conjugacy classes of maximal (θ, k)-split tori.

1. When m ≡ ±2,±3,±6, regardless of p, there are 2 classes of maximal (θ, k)-split

tori.

2. When m ≡ ±1, regardless of p, there are 4 classes of maximal (θ, k)-split tori.

2.7 The θ-split k-tori in SL(2, k) over General Fields

In the previous chapter, we saw that in Riemannian symmetric spaces, every element

is naturally semisimple element, and this implies that every element is also naturally

R-split. For general fields k, in symmetric k-varieties there are elements that do not

split over the base field k. In [Beu08] and [BH09], Beun and Helminck classified the

Hk-conjugacy classes of maximal (θ, k)-split tori in SL(2, k). In this thesis, we study the

Hk-conjugacy classes of maximal θ-split k-anisotropic tori. We combine our results with

those from Beun and Helminck to give a total count of Hk-conjugacy classes of maximal

θ-split k-tori in SL(2, k). The following is a summary of our results.

First, note that all of this theory thus far is given at the Lie group level, and the

corresponding results hold at the Lie algebra level. We choose to work over Lie algebras

to make the computations less cumbersome, and the results can be lifted to Lie groups.

The maximal θ-split k-anistropic tori take two forms, Type 2 and Type 3 listed below.

t2 =

{(
0 x

−mx 0

) ∣∣∣∣x ∈ k
}

=

〈(
0 1

−m 0

)〉

t3 =

{(
x xγ

−mxγ −x

) ∣∣∣∣x ∈ k, γ ∈ k fixed

}

=

〈(
1 γ

−mγ −1

) ∣∣∣∣ γ ∈ k fixed

〉
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The Type 2 tori only have one Hk-conjugacy class, as shown in Lemma 3.2.1 below.

Lemma 2.7.1. Fix an m ∈ k∗/(k∗)2. Then there is exactly one Hk-conjugacy class of

maximal θ-split k-anisotropic tori of Type 2.

Type 3 tori are more complicated. There is a torus for every value of γ in t3 that makes

the torus k-anisotropic. One of the defining characteristics of the Hk-conjugacy classes

of these tori is whether or not a torus constructed with γ maps to a torus constructed

with −γ. Theorem 4.1.1 addresses when this is possible.

Theorem 2.7.1. Assume k = Fp or k = Qp. Let γ ∈ Γ(k,m) be a value that makes

the maximal θ-split k-tori of Type 3 not split over k. Then torus generated with γ is

Hk-conjugate to the torus generated with −γ if and only if −m ≡ 1−mγ2.

We then find two matrices in H that conjugate the generators of maximal θ-split

k-anisotropic Type 3 tori to other generators. The matrix that sends a generator with γ

to a generator with −γ is

h− = ± 1

[−m(1−mγ2)]1/2

(
mγ 1

m mγ

)
. (2.4)

The matrix that sends a generator with α to the rth multiple of a generator with β is

hr =
1

[(1 + r)2 −m(α− rβ)2]1/2

(
1 + r α− rβ

m(α− rβ) 1 + r

)
, (2.5)

where α 6= ±β.

These matrices are particularly important in certain cases in Fp, where we use the

fact that F∗p/(F∗p)2 ' Z2 to determine the number of Hk-conjugacy classes in these certain

cases, as shown below in Corollary 5.2.2.

Corollary 2.7.1. Let k = Fp, and let p ≡ 1 mod 4 and m ≡ 1 or p ≡ 3 mod 4 and

m ≡ Np. Then there are exactly 2 Hk-conjugacy classes of maximal θ-split k-anisotropic

tori of Type 3.

Sometimes we gave a lower bound, and sometimes an upper bound, on the number of

Hk-conjugacy classes of maximal θ-split tori. The theorems below summarize our results

over the rational, finite, and p-adic fields for p 6= 2.
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Theorem 2.7.2. Let k = Q and consider sl(2,Q). Then there is an infinite number

Hk-conjugacy classes of maximal θ-split k-tori.

Over the finite fields for p 6= 2, we give the following lower and upper bounds on

number of Hk-conjugacy classes of maximal θ-split tori.

Theorem 2.7.3. Let k = Fp and consider sl(2,Fp). Then there are 4 Hk-conjugacy

classes of maximal θ-split k-tori when p ≡ 1 mod 4 and m ≡ 1 or when p ≡ 3 mod 4 and

m ≡ Np.

Theorem 2.7.4. Let k = Fp and consider sl(2,Fp). Then the number of Hk-conjugacy

classes of maximal θ-split tori when p ≡ 1 mod 4 and m ≡ Np or when p ≡ 3 mod 4 and

m ≡ 1 is either 3 or 4.

We also proved that the lower bound was correct for all primes under 50.

Corollary 2.7.2. Let k = Fp where p < 50 is an odd prime, and consider sl(2,Fp). Then

there are 3 Hk-conjugacy classes of maximal θ-split tori when p ≡ 1 mod 4 and m ≡ Np

or when p ≡ 3 mod 4 and m ≡ 1.

Over the p-adics, we give the following minimum number of Hk-conjugacy classes of

maximal θ-split tori.

Proposition 2.7.1. Let k = Qp for p 6= 2. Then the following is a maximum number of

Hk-conjugacy classes of maximal θ-split k-tori in sl(2,Qp).

1. There are at most 16 Hk-conjugacy classes of of maximal θ-split k-tori when p ≡
1 mod 4 and m ≡ 1.

2. There are at most 17 Hk-conjugacy classes of of maximal θ-split k-tori when p ≡
3 mod 4 and m ≡ 1.

3. There are at most 16 Hk-conjugacy classes of of maximal θ-split k-tori of when

p ≡ 1 mod 4 and m ≡ Np.

4. There are at most 14 Hk-conjugacy classes of of maximal θ-split k-tori of when

p ≡ 3 mod 4 and m ≡ Np.

5. There are at most 16 Hk-conjugacy classes of of maximal θ-split k-tori of when

m ≡ p,Np, regardless of p.
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Chapter 3

Preliminary Results about Hk-conjugation

Classes in sl(2, k)

In this chapter, we lay the groundwork for discussing the Hk-conjugacy classes of maximal

θ-split k-anisotropic tori in sl(2, k). The k-tori take on three different forms, which we

call Type 1, Type 2, and Type 3. Type 1 tori are always split over the base field, hence we

do not need to analyze them. Type 2 and Type 3 tori are sometimes split. Tori of Type

2 have a simpler form, thus the discussion of them extends to include their actual Hk-

conjugation classes. Tori of Type 3 are more complicated, and the discussion overviews

the general results. Specific cases and total results are discussed in the following chapters.

3.1 Characterizing Tori

Throughout this thesis, let G = SL(2, k), g = sl(2, k), and θ ∈ Aut(G) an involution.

Theorem 2.5.1 shows us that all k-involutions on sl(2, k) and SL(2, k) have form θ =

Int

(
0 1

m 0

)
, where m is a coset representative from k∗/(k∗)2. By abuse of notation,

when we use m in calculations, we will use the actual value of m in the field, instead

of the coset representative. At the Lie group level, the fixed point group Hk = {x ∈
SL(2, k) | θ(x) = x} is shown below.
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Hk =

{(
x y

my x

) ∣∣∣∣x2 −my2 = 1, x, y ∈ k

}
(3.1)

Note that for hk ∈ Hk, h
−1
k =

(
x −y
−my x

)
. At the Lie algebra level, the fixed point

group, h, and symmetric k-variety, q, are shown below.

hk =

{(
0 b

mb 0

) ∣∣∣∣ b ∈ k
}

(3.2)

qk =

{(
a b

−mb −a

) ∣∣∣∣ a, b ∈ k
}

(3.3)

In a sense, q represents elements that are θ-split, meaning θ(X) = −X for X ∈ sl(2, k).

Thus, we are studying θ-split tori in sl(2, k).

Maximal k-tori in sl(2, k) that are split over both θ and k were classified by Stacy

Beun in [BH09]. We study the maximal k-tori in sl(2, k) that are θ-split k-anisotropic,

meaning we are looking at toral elements whose eigenvalues are not all contained in the

field k. Beun used the notation Aθ to denote the set of maximal (θ, k)-split tori. We study

all maximal θ-split k-tori, thus we expand this notation.

Notation. Let Aθ denote the set of maximal θ-split k-tori and let A(θ,k) denote the set

of all (θ, k)-split tori. Similarly, let aθ denote the set of maximal θ-split toral subalgebras

over k, and let a(θ,k) denote the set of maximal (θ, k)-split toral subalgebras over k.

Thus, we begin by studying tori in aθ − a(θ,k). By abuse of notation, we may refer to

toral subalgebras as tori when it is clear we are working over algebras over k.

To find the θ-split tori, we take X, Y ∈ q and determine when [X, Y ] = 0. This leaves

us with three possible tori, which we refer to as Type 1, Type 2, and Type 3, respectively.

t1 =

{(
x 0

0 −x

) ∣∣∣∣x ∈ k
}

=

〈(
1 0

0 1

)〉
(3.4)

t2 =

{(
0 x

−mx 0

) ∣∣∣∣x ∈ k
}

=

〈(
0 1

−m 0

)〉
(3.5)
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t3 =

{(
x xγ

−mxγ −x

) ∣∣∣∣x ∈ k, γ ∈ k fixed

}
(3.6)

=

〈(
1 γ

−mγ −1

) ∣∣∣∣ γ ∈ k fixed

〉

Notice that each toral subalgebra is maximal in sl(2, k). Tori of Type 1 and 2 only depend

on x ∈ k, thus making them maximal in sl(2, k). Tori of Type 3 depend on x ∈ k and γ,

a fixed constant in k, also making these tori maximal. Thus, we are studying the Ta tori

Borel described in [Bor91].

Lemma 3.1.1. For distinct values of γ, Type 3 tori are distinct.

Proof. Maximal k-tori in sl(2, k) are one-dimensional. Tori of Type 3 have at least one

dimension because of the variable x. Moreover, Type 3 tori have exactly one dimension

because γ is constant in each torus. To see this, take two tori tα, tβ ∈ t3 with γ-values α

and β, respectively. When

[tα, tβ] = 2

(
0 β − α

α− β 0

)
= 0

we must have α = β.

The following lemma shows that Type 2 and Type 3 are distinct and thus must be

analyzed separately.

Lemma 3.1.2. Type 2 and Type 3 are distinct.

Proof. Let t2 =

(
0 1

−m 0

)
and t3 =

(
1 γ

−mγ −1

)
. Suppose t2 conjugates to rt3, where

r ∈ k∗, by some h =

(
x y

my x

)
∈ Hk. This forces x = 0 and y = 0, which is a

contradiction.

The eigenvalues for tori of Type 1 are ±x. Tori of this form always split over the field

k, thus we will not consider this form because their conjugation classes have already been

classified.
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The eigenvalues for tori of Type 2 can be determined by ±(−mx2)1/2. Thus, tori of

Type 2 are k-split when −mx2 is a square in the field, which is not always the case. We

consider tori of Type 2 such that −mx2 is a not a square in k.

The eigenvalues for tori of Type 3 can be determined by ±x(1 − mγ2)1/2. Thus,

tori of Type 3 are k-split when 1 −mγ2 is a square in the field, which depends on the

combinations of m and γ ∈ k. We consider tori of Type 3 such that 1 −mγ2 is a not a

square in k.

Note that 1−mγ2 depends on the choice of m ∈ k∗/(k∗)2, which depends on the base

field k. Thus the eigenvalues depend on the base field and choice of m. When the base

field is Fp or Qp, m depends on the prime p. Thus, the eigenvalues in tori of Type 3 over

Fp and Qp depend on both p and m. We adopt the following notation. For a given field k

and m ∈ k∗/(k∗)2, let Γ(k,m) denote the set of γ-values such that 1−mγ2 is not a square

in k.

3.2 The Hk-conjugacy Classes of Type 2 Tori

Tori of Type 2 tori have form

t2 =

{(
0 x

−mx 0

) ∣∣∣∣x ∈ k
}

=

〈(
0 1

−m 0

)〉
Notice that the generator depends only on m.

Lemma 3.2.1. Fix an m ∈ k∗/(k∗)2. Then there is exactly one Hk-conjugacy class of

maximal θ-split k-anisotropic tori of Type 2.

Proof. There is only one generator for the form of Type 2 tori. Hence for each m, there

is exactly one torus. Therefore, for each m, there will be exactly one conjugation class.

What remains to be shown is whether or not each torus is k-split. That is, we must

determine when −mx2 is a square in each field, in particular, we need to determine when

−m is a square in k.
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3.2.1 The Hk-conjugacy Classes of Type 2 Tori when k = R

Maximal θ-split k-anisotropic tori over the real numbers have been studied by Helminck

and Schwarz. Some of their results from [HS11] are summarized here, though in an altered

context to match the Type 2 and Type 3 notation adopted in this thesis. Over the reals,

there are two square classes, creating two generators of maximal θ-split k-tori, as shown

below.

Example 3.2.1. When m ≡ −1, Type 2 tori are generated by

〈(
0 1

1 0

)〉
. The eigen-

values of this generator are ±1. When m ≡ 1, Type 2 tori are generated by

〈(
0 1

−1 0

)〉
.

The eigenvalues of this generator are ±i. �

Theorem 3.2.1. Let k = R and consider sl(2,R). Then we have the following number

of Hk-conjugacy classes of θ-split not k-split k-tori of Type 2.

1. There are no Hk-conjugacy classes of θ-split not k-split k-tori of Type 2 when

m ≡ −1.

2. There is 1 Hk-conjugacy class of θ-split not k-split k-tori of Type 2 when m ≡ 1.

Proof. When m ≡ −1, −m ≡ 1. This makes the eigenvalues of tori of Type 2 are ±x,

and all tori are k-split.

When m ≡ 1, −m ≡ −1. Therefore, the eigenvalues are not in the base field, making

the torus not k-split. Lemma 3.2.1 implies that, in this case, there is exactly one Hk-

conjugacy class of maximal θ-split not k-split k-tori of Type 2.

As shown in Theorem 2.5.2, when m ≡ 1, the fixed point group is not compact. Thus,

we already see an example of a symmetric k-variety in which the involution is not Cartan,

and the Cartan decomposition no longer holds.

3.2.2 The Hk-conjugacy Classes of Type 2 Tori when k = Q

Over the rationals, there is an infinite number of square classes.

Corollary 3.2.1. Let k = Q and consider sl(2,Q). Fix m 6≡ −1 ∈ Q∗(/Q∗)2. Then there

is exactly one Hk-conjugacy class of θ-split k-anisotropic tori of Type 2.
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Proof. If m 6≡ −1, then −m 6≡ 1. Therefore, the eigenvalues of a Type 2 torus are not in

the base field, making the torus not k-split. Lemma 3.2.1 implies that, in this case, there

is exactly one Hk-conjugacy class of maximal θ-split k-anisotropic tori of Type 2.

3.2.3 The Hk-conjugacy Classes of Type 2 Tori when k = Fp

Some examples nicely illustrate when −m is a square in Fp.

Example 3.2.2. Let m ≡ 1 and first consider p = 5. In this case, −m ≡ −1 and because

5 ≡ 1 mod 4, −1 ≡ 1 in k∗/(k∗)2 by Lemma 2.5.3. Thus, −m is a square. This makes

−mx2 a square, meaning that tori of Type 2 are diagonalizable when p = 5 and m ≡ 1.

Thus, there are no tori for us to consider. �

Example 3.2.3. Let m ≡ 1. When p = 5, p ≡ 1 mod 4, thus 1 ≡ −1 in k∗/(k∗)2, and

−m ≡ m. Tori have form

{(
0 x

x 0

) ∣∣∣∣x ∈ k
}

, showing that these tori will split over all

of k∗. �

Example 3.2.4. Now consider m ≡ 1 and p = 7. Again, −m ≡ −1, however when

p ≡ 3 mod 4, −1 ≡ Np, and thus −m is a nonsquare. Therefore −mx2 will never be a

square for x ∈ F∗p, and tori of this form do not diagonalize.

Calculation verifies that for all x ∈ F∗p, −mx2 is a nonsquare. The set of squares in Fp
when p = 7 is F2

p = {0, 1, 2, 4} and −mF2
p = {0, 3, 5, 6} when m ≡ 1. Comparing these,

we see that no value of x ∈ F∗p makes −mx2 a square in the base field Fp, that is, every

value of x ∈ F∗p makes −mx2 a nonsquare. Therefore, when m ≡ 1 and p = 7, we analyze

tori of Type 2 for every value of x ∈ F∗p. �

In the past examples, we saw that the k-tori were k-split or not k-split for all values

of x ∈ k∗. This is because there is exactly one torus over Fp that encompasses all values

x ∈ k∗. Thus, there is exactly one Hk-conjugation class of not k-split tori of Type 2.

Theorem 3.2.2. Let k = Fp and consider sl(2,Fp). Then we have the following number

of Hk-conjugacy classes of θ-split k-anisotropic tori of Type 2.

1. There is 1 Hk-conjugacy class of θ-split k-anisotropic tori of Type 2 when p ≡
1 mod 4 and m ≡ Np.
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2. There are no Hk-conjugacy classes of θ-split k-anisotropic tori of Type 2 when

p ≡ 1 mod 4 and m ≡ 1.

3. There is 1 Hk-conjugacy class of θ-split k-anisotropic tori of Type 2 when p ≡
3 mod 4 and m ≡ 1.

4. There no Hk-conjugacy classes of θ-split k-anisotropic tori of Type 2 when p ≡
3 mod 4 and m ≡ Np.

Proof. First consider the p ≡ 1 mod 4 and m ≡ 1 case. When p ≡ 1 mod 4, 1 ≡ −1 in

k∗/(k∗)2, thus −m ≡ m. This makes the eigenvalues of tori of Type 2 are ±x, and all

tori are k-split.

Similarly, consider the p ≡ 3 mod 4 and m ≡ Np case. When p ≡ 3 mod 4, −1 ≡ Np

in k∗/(k∗)2, thus −m ≡ N2
p . This makes the eigenvalues of tori of Type 2 are ±Npx, and

all tori are k-split.

Now consider the p ≡ 3 mod 4 and m ≡ 1 case. When p ≡ 3 mod 4, −1 ≡ Np in

k∗/(k∗)2, thus −m ≡ Np. Therefore, the eigenvalues are not in the base field, making the

torus not k-split. Lemma 3.2.1 implies that, in this case, there is exactly one Hk-conjugacy

class of maximal θ-split k-anisotropic tori of Type 2.

Similarly, consider the p ≡ 1 mod 4 and m ≡ Np case. When p ≡ 1 mod 4, −1 ≡ 1 in

k∗/(k∗)2, thus −m ≡ Np. Therefore, the eigenvalues are not in the base field, making the

torus not k-split. Lemma 3.2.1 implies that, in this case, there is exactly one Hk-conjugacy

class of maximal θ-split k-anisotropic tori of Type 2.

3.2.4 The Hk-conjugacy Classes of Type 2 Tori when k = Qp,

p 6= 2

Generalizing from the proof of Theorem 3.2.2, we have the following theorem about the

number of Hk-conjugacy classes of maximal θ-split k-anisotropic tori of Type 2.

Theorem 3.2.3. Let k = Qp and consider sl(2,Qp). Then we have the following number

of Hk-conjugacy classes of θ-split k-anisotropic tori of Type 2.

1. There are 3 Hk-conjugacy classes of θ-split k-anisotropic tori of Type 2 when p ≡
1 mod 4 and m ≡ Np, p, pNp.
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2. There are no Hk-conjugacy classes of θ-split k-anisotropic tori of Type 2 when

p ≡ 1 mod 4 and m ≡ 1.

3. There are 3 Hk-conjugacy classes of θ-split k-anisotropic tori of Type 2 when p ≡
3 mod 4 and m ≡ 1, p, pNp.

4. There no Hk-conjugacy classes of θ-split k-anisotropic tori of Type 2 when p ≡
3 mod 4 and m ≡ Np.

Proof. First consider the p ≡ 1 mod 4 and m ≡ 1 case. When p ≡ 1 mod 4, 1 ≡ −1 in

k∗/(k∗)2, thus −m ≡ m. This makes the eigenvalues of tori of Type 2 are ±x, and all

tori are k-split.

Similarly, consider the p ≡ 3 mod 4 and m ≡ Np case. When p ≡ 3 mod 4, −1 ≡ Np

in k∗/(k∗)2, thus −m ≡ N2
p . This makes the eigenvalues of tori of Type 2 are ±Npx, and

all tori are k-split.

Now consider the p ≡ 3 mod 4 and m ≡ 1, p, pNp cases. When p ≡ 3 mod 4, −1 ≡ Np

in k∗/(k∗)2, thus −m ≡ Np, pNp, p, respectively. Therefore, the eigenvalues are not in the

base field, making the torus not k-split. Lemma 3.2.1 implies that, in this case, there is

exactly one Hk-conjugacy class of maximal θ-split k-anisotropic tori of Type 2 for each

value of m.

Similarly, consider the p ≡ 1 mod 4 and m ≡ Np, p, pNp cases. When p ≡ 1 mod 4,

−1 ≡ 1 in k∗/(k∗)2, thus −m ≡ Np, p, pNp. Therefore, the eigenvalues are not in the

base field, making the torus not k-split. Lemma 3.2.1 implies that, in this case, there is

exactly one Hk-conjugacy class of maximal θ-split k-anisotropic tori of Type 2 for each

value of m.
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Chapter 4

Characterizing Hk-conjugacy Classes of

Type 3 Tori

In this chapter, we begin to analyze Type 3 tori and lay the framework that will allow us

to study Type 3 tori over specific fields. Many of the properties and formulae we establish

here will be useful in future chapters.

4.1 Characterizing Hk-conjugacy Classes of Type 3

Tori

Type 3 tori have form

t3 =

{(
x xγ

−mxγ −x

) ∣∣∣∣x ∈ k, γ ∈ k fixed

}

=

〈(
1 γ

−mγ −1

) ∣∣∣∣ γ ∈ k fixed

〉

and their eigenvalues are ±x(1−mγ2)1/2. We consider k-anisotropic tori thus we need to

determine when 1−mγ2 is not a square in the base field. This is dependent on choice of
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the constant γ and the square class representative m, hence it is also heavily dependent on

choice of field k. Throughout the rest of the thesis, we will adopt the following notation.

Notation. For a given choice of k and m, let Γ(k,m) denote the set of values of γ that

make a torus of Type 3 k-anisotropic.

Some examples will help us gain intuition about 1−mγ2.

Example 4.1.1. Consider k = Fp for p = 7. Then the set of squares in Fp when p = 7 is

F2
p = {0, 1, 2, 4}. Let m ≡ 1. Thus, 1−mγ2 will take on the values 1− F2

p = {0, 1, 4, 6}.
We need to determine the for which γ the value 1 −mγ2 is a nonsquare, and hence, tγ

is k-anisotropic. We see that F2
p ∩ (1 − F2

p) = {0, 1, 4}, thus 1 −mγ2 is a square for all

the values of γ such that 1−mγ2 = 0, 1, or 4. Similarly, 1−mγ2 is not a square for the

values of γ such that 1−mγ2 = 6. This happens precisely when γ is 3 or 4. Thus, there

are two values of γ that make a toral subalgebra of Type 3 k-anisotropic when k = Fp,
p = 7, and m ≡ 1. �

Example 4.1.2. Once again, consider k = Fp for p = 7, only this time take m ≡ Np. We

see that the smallest nonsquare in Fp is 3, thus take m = 3. Thus 1−mγ2 will have the

values 1 − 3F2
p = {1, 2, 3, 5}. Comparing these values to the squares in Fp when p = 7,

we see that we need γ-values such that 1 −mγ2 = 3 or 5. This happens precisely when

γ is 1, 2, 5, or 6. Thus, there are four values of γ that make a toral subalgebra of Type

3 k-anisotropic when k = Fp, p = 7, and m ≡ Np. �

In Example 4.1.1, observe that ±3 ∈ Γ(Fp,Np). Similarly, in Example 4.1.2, we have

±1,±2 ∈ Γ(Fp,Np). This pattern generalizes to other fields, giving us the result below.

Lemma 4.1.1. If γ ∈ Γ(Fp,m), then −γ ∈ Γ(Fp,m).

Proof. If γ ∈ Γ(Fp,m), then 1−mγ2 is a nonsquare. Then 1−m(−γ)2 = 1−mγ2 is also

a nonsquare.

Examples 4.1.1 and 4.1.2 demonstrate how the choice of m can affect the number

of maximal θ-split k-anisotropic tori. Also notice that different values of γ will generate

different tori, thus we potentially have a different torus for every γ such that 1−mγ2 is

a nonsquare.

Lemma 4.1.2. There is a bijective correspondence between the values in Γ(k,m) and the

set of maximal θ-split k-anisotropic tori in sl(2, k).
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Proof. Suppose tα and tβ are toral subalgebras of Type 3, with generators tα and tβ,

respectively, and suppose tα = tβ. Then tα = ctβ for some c ∈ k∗. Thus(
1 α

−mα −1

)
= c

(
1 β

−mβ −1

)
,

which shows that α = β.

Let tα be a toral subalgebra of Type 3. Then 1 − mα2 is not a square in k. By

definition, α ∈ Γ(k,m).

Every value of γ generates a unique torus of Type 3. We want to determine when

these tori are Hk-conjugate. We analyze Hk-conjugacy by determining when a generator

of one torus gets sent to a multiple of another generator by an element in Hk. Through

the rest of this thesis, we will adopt the following notation.

Notation. Consider distinct values α, β ∈ Γ(k,m). Consider the generator created by letting

γ = α and call it tα. Call the toral subalgebra tα generates tα. Similarly, let tβ be the

generator formed when γ = β, and its toral subalgebra be tβ. Let hk ∈ Hk be an element

of the fixed point group. Let r ∈ k be a constant. We conjugate the generator tα to the

r-multiple of tβ by hk, that is, hktαh
−1
k = rtβ.

To determine when this conjugation is possible, we must determine when it is possible

to find r ∈ k and hk ∈ Hk. The following lemma shows us what r-values are possible.

Lemma 4.1.3. Let θ = Int

(
0 1

m 0

)
, and let Hk be its fixed point subgroup of Gk. Let

α, β ∈ Γ(k,m) be distinct, and take tα, tβ ∈ a3 with generators tα and tβ, respectively.

Take hk ∈ Hk, and suppose hk conjugates tα to the r-multiple of tβ. Then r = −1 or

r = ±
[

1−mα2

1−mβ2

]1/2
.

Proof. We want to determine when the tori of Type 3 with distinct γ-values are Hk-

conjugate. Recall that the fixed point group is

Hk =

{(
x y

my x

) ∣∣∣∣x2 −my2 = 1, x, y ∈ k

}
,

and take hk =

(
x y

my x

)
∈ Hk.
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Suppose we take distinct γ-values α and β. Hence consider distinct tori tα and tβ with

generators tα and tβ, respectively. Then we want to find some h =

(
x y

my x

)
∈ Hk that

conjugates the generator tα to a multiple of the generator tβ. Call this multiple r. Thus,

we want (
x y

my x

)(
1 α

−mα −1

)(
x y

my x

)−1
= r

(
1 β

−mβ −1

)
.

Rewritten, this gives us

(
x y

my x

)(
1 α

−mα −1

)
= r

(
1 β

−mβ −1

)(
x y

my x

)
(
x−mαy αx− y
my −mαx mαy − x

)
= r

(
x+mβy y + βx

−mβx−my −mβy − x

)
.

This creates the following two relations,

x−mαy = r(x+mβy), (4.1)

αx− y = r(y + βx). (4.2)

These relations become

x(1− r) = my(α + rβ),

x(α− rβ) = y(1 + r).

Putting these together and solving for r, we find that

r = ±
[

1−mα2

1−mβ2

]1/2
, (4.3)

assuming r 6= ±1,±α/β. Therefore, we need to consider the cases when r = ±1,±α/β
separately.
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Consider r = 1. Combining Relations 4.1 and 4.2 yields y = αx, making

h = x

(
1 α

mα 1

)
. (4.4)

Then deth = x2(1 −mα2), which is a contradiction. By assumption 1 −mα2 6≡ 1, thus

we can not choose an x such that deth = 1. Therefore, the r = 1 case is impossible.

Consider r = −1. Combining Relations 4.1 and 4.2 yields α = β and x = mαy. The

condition that x = mαy makes

h = y

(
mα 1

m mα

)
. (4.5)

Then deth = −my2(1−mα2). By assumption 1−mα2 6≡ 1, thus deth 6= 1, thus deth = 1

when −m ≡ 1−mα2. Therefore, the r = −1 case is possible, depending on the choice of p

and m. Individual cases will be discussed in future chapters. The condition that α = −β
means that r = −1 will only apply to the specific cases when we are conjugating tα to

t−α

Consider r = −α/β. This relation forces y = αx. Then this case behaves exactly as

the r = 1 case, meaning that r = −α/β is impossible.

Consider r = α/β. This relation forces α = −β and x = mαy. The condition that

α = −β forces r = α/β = −1, which we already know is a possible r-value.

Therefore, r = 1 and r = α/β are impossible r-values, r = α/β is a redundant r-value

that only applies when α = −β, leaving r = −1 and r = ±
[

1−mα2

1−mβ2

]1/2
as the only

possible r-values.

As the theorem below demonstrates, when the γ-values are additive inverses of each

other is a defining characteristic of the Hk-conjugacy classes.

Theorem 4.1.1. Assume k = Fp or k = Qp. Let γ ∈ Γ(k,m) be a value that makes

the maximal θ-split k-tori of Type 3 k-anisotropic. Then torus generated with γ is Hk-

conjugate to the torus generated with −γ if and only if −m ≡ 1−mγ2.

Proof. Assume hk =

(
x y

my x

)
∈ Hk is a matrix that conjugates tγ to rt−γ for some

r ∈ F∗p. This requires
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x−mγy = r(x−mγy) (4.6)

xγ − y = r(y − xγ) (4.7)

Equation 4.7 implies that either r = −1 or y = γx. If y = γx, then det(hk) = x2(1−mγ2).
By assumption the tγ is k-anisotropic, thus we know that 1 − mγ2 6≡ 1. This forces

det(hk) 6≡ 1, which contradicts the choice of hk, thus y = γx is impossible. Inserting

r = −1 into Equation 4.6, we get that x = mγy. Now considering Equation 4.6, Lemma

4.1.3 shows us that r 6= 1, thus we again conclude x = mγy.

Thus, in order for tγ to conjugate rt−γ, we must have r = −1 and x = mγy. This

relation implies that det(hk) = −my2(1−mγ2) ≡ 1. By the definition of square classes,

y2 ≡ 1. Thus, we need −m(1 − mγ2) ≡ 1, or −m ≡ (1 − mγ2)−1. By Proposition

2.5.1, when k = Fp or k = Qp, all cosets have order 2. Thus, −m(1 − mγ2) ≡ 1 when

−m ≡ 1 − mγ2. Therefore, the tγ and t−γ maximal θ-split not k-split tori are not Hk-

conjugate when −m 6≡ 1−mγ2 because then −m(1−mγ2) will not be a square.

Now we construct the exact hk ∈ Hk that conjugates tγ to t−γ in the specific cases

listed above. The relation x = mγy forces det(hk) ≡ −m(1−mγ2), and from the above

argument, we know that that det(hk) ≡ 1 exactly when −m ≡ 1 −mγ2. Thus, we may

assume −m(1−mγ2) is a square in k∗, and hence [−m(1mγ2)]1/2 is in the base field k.

Then the matrix

h− = ± 1

[−m(1−mγ2)]1/2

(
mγ 1

m mγ

)
(4.8)

conjugates the generator tγ =

(
1 γ

−mγ −1

)
to the p − 1 multiple of the generator

t−γ =

(
1 −γ
mγ −1

)
. When calculating the h−tγh

−1
− , the coefficients from h− and h−1−

become [−m(1−mγ2)]−1, leaving us with
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h−tγh
−1
− = −m(1−mγ2)]−1

(
mγ 1

m mγ

)(
1 γ

−mγ −1

)(
mγ −1

−m mγ

)

= [−m(1−mγ2)]−1
(
mγ 1

m mγ

)(
0 mγ2 − 1

−m(mγ2 − 1) 0

)

= [−m(1−mγ2)]−1[m(1−mγ2)]

(
−1 γ

−mγ 1

)
= −t−γ.

Thus, h− conjugates tγ to the p− 1 multiple of t−γ. Therefore, the tori they generate are

Hk-conjugate.

The matrix h− given in Equation 4.8 plays a critical role in the Hk-conjugacy classes

of maximal θ-split k-anisotropic tori of Type 3. Notice that h− ∈ H, regardless of the

values of p and m. The values mγ, 1, and m are all in the base field k. The value

[−m(1−mγ2)]−1/2 is in the algebraic closure k. Thus, h− ∈ H. Moreover, h− will be in

Hk when [−m(1−mγ2)]−1/2 is in the base field k, that is, when −m(1−mγ2) is a square

in k. As Theorem 4.1.1 states, this happens exactly when −m ≡ 1−mγ2.
Now consider α, β ∈ Γ(k,m) such that α 6= ±β. When we want to analyze how tα

conjugates to tβ, we will need the following lemma.

Lemma 4.1.4. Let α, β ∈ Γ(Fp,m) be values that makes the maximal θ-split tori of Type

3 k-anisotropic. Assume α 6= ±β. Then tα is H-conjugate to rtβ by

hr =
1

[(1 + r)2 −m(α− rβ)2]1/2

(
1 + r α− rβ

m(α− rβ) 1 + r

)
(4.9)

Proof. Theorem 2.2.2, there exists an element in H that conjugates tα to tβ. Suppose

hr · tα = rtβ for some hr =

(
x y

my x

)
∈ H. Rewriting this conjugation as hrtα = rtβhr

forces the relations

x−myα = r(x+myβ) (4.10)

xα− y = r(xβ + y). (4.11)
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We can rewrite these equations as

x(1− r) = ym(α + rβ) (4.12)

x(α− rβ) = y(1 + r), (4.13)

Note that r 6= −1 and r 6= α/β by assumption. Also note that r 6= 1 and r 6= −α/β
by Lemma 4.1.3. Moreover, Equations 4.12 and 4.13 are equal exactly when 1−mα2 =

r2(1−mβ2). By assuming α 6= ±β, we know from Lemma 4.1.3 that r =

[
1−mα2

1−mβ2

]1/2
,

thus 1 − mα2 = r2(1 − mβ2). Therefore, Equations 4.12 and 4.13 are equivalent. We

choose to solve Equation 4.13 for x,

x = y

(
1 + r

α− rβ

)
. (4.14)

Plugging Relation 4.14 into h1, we create the matrix

hr =
y

α− rβ

(
1 + r α− rβ

m(α− rβ) 1 + r

)
(4.15)

To solve for y, we set det(hr) =
y2

(α− rβ)2
((1 + r)2 −m(α− rβ)2) = 1. This creates the

matrix

hr =
1

[(1 + r)2 −m(α− rβ)2]1/2

(
1 + r α− rβ

m(α− rβ) 1 + r

)
(4.16)

Moreover, hr conjugates tα to rtβ. Let c =
1

[(1 + r)2 −m(α− rβ)2]1/2
.

hrtα = c

(
1−mα2 + r(1 +mαβ) r(α + β)

−m(r(α + β)) −(1−mα2 + r(1 +mαβ))

)

= rc

(
(r − rmβ2) + (1 +mαβ) (α + β)

−m((α + β)) −((r − rmβ2) + (1 +mαβ))

)
= rtβhr
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Last, note that all entries of hr are in the base field k, and only the coefficient c is

potentially in the algebraic closure k.

By Lemma 4.1.4, the matrix hr conjugates tα to rtβ when α 6= ±β. Recall that for a

matrix h =

(
x y

my x

)
∈ Hk, the equation htα = rtβh forces the relations in Equations

4.10 and 4.10. We could have instead added these equations together to determine

x = y

(
1 +mα + r(1 +mβ)

1 + α− r(1 + β)

)
. (4.17)

Equation 4.17 then creates the matrix h1 ∈ H

h1 = c

(
1 +mα + r(1 +mβ) 1 + α− r(1 + β)

m(1 + α− r(1 + β)) 1 +mα + r(1 +mβ)

)
, (4.18)

c =
1

[(1 +mα + r(1 +mβ))2 −m(1 + α− r(1 + β))2]1/2

The matrix h1 in Equation 4.18 has the drawback that it is undefined when r =

−(1 +mα)/(1 +mβ) and r = −(1 + α)/(1 + β), which is possible.

Moreover, Equation 4.18 is a multiple of Equation 4.16. Setting

1 +mα + r(1 +mβ)

1 + r
=

1 + α− r(1 + β)

α− rβ
, (4.19)

we find that Equation 4.19 is true exactly when r2(1−mβ2) = 1−mα2. Thus, matrices

hr and h1 in Equation 4.18 multiples of each other, only hr is undefined when r = −1

and h1 is undefined when r = −(1+mα)/(1+mβ) and r = −(1+α)/(1+β). We already

know h− works as a conjugating matrix for when r = −1, and hence α = −β, thus we

choose to work with hr instead of h1.

The matrix h1 is defined over r = −1, and hence α = −β. Thus, when α = γ and

β = −γ, h1 produces the matrix h−.

We characterize when the Type 3 tori are Hk-conjugate for k = Q in the next section

and k = Fp and k = Qp in the next two chapters of this thesis.
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4.2 The Hk-conjugacy Classes of Type 3 Tori when

k = Q

Recall that Type 3 tori have form

t3 =

{(
x xγ

−mxγ −x

) ∣∣∣∣x ∈ k, γ ∈ k fixed

}

=

〈(
1 γ

−mγ −1

) ∣∣∣∣ γ ∈ k fixed

〉
.

Notice that the generator depends on the value of γ ∈ Q. Therefore, for fixed m, we

have an infinite number of generators, and and infinite number of tori. Moreover, the

Q∗/(Q∗)2 is infinite, giving us the theorem below.

Theorem 4.2.1. Let k = Q and fix a value of m. Then there is an infinite number of

Hk-conjugacy classes of maximal θ-split k-anisotropic tori of Type 3.

Proof. Take two distinct values α, β ∈ Γ(Q,m), and note that Γ(Q,m) is infinite. Without

loss of generality, assume α 6= −β. Consider the generators tα and tβ they create. In order

for tα to be Hk-conjugate to tβ, the value (1+ r)2−m(α− rβ)2, from the coefficient of hr

in Equation 4.16, would have to be a square, that is, (1 + r)2−m(α− rβ)2 ≡ 1. Over Q,

there is an infinite number of square classes, hence, over all possible α and all possible

β, there is an infinite number of equivalences of (1 + r)2−m(α− rβ)2. Thus, there is an

infinite number of Hk-conjugacy classes.
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Chapter 5

Type 3 Tori in sl(2, k) when k = Fp

We study maximal θ-split k-tori that do not split over the base field k. As we saw in

Chapter 3, there are three different forms that maximal θ-split k-tori can take, and two

of those forms sometimes do not split over k. In this chapter, we classify tori of the third

form and characterize their Hk-orbits over the finite fields for p 6= 2. As we saw in Chapter

3, k-tori with additive-inverse γ-values will play a major role in this characterization.

5.1 Examples of Type 3 Tori

As we saw earlier, tori of Type 3 are sometimes split over the field, thus we first construct

some examples. Recall that Type 3 tori have form

t3 =

{
x

(
1 γ

−mγ −1

) ∣∣∣∣x ∈ k, γ ∈ k fixed

}
and their eigenvalues depend on ±(1−mγ2)1/2. We consider maximal θ-split k-tori that

are not split over the field, thus we need to determine when 1 −mγ2 is not a square in

the base field Fp. That is, given a fixed value of m, we need to determine what values of

γ ∈ Fp make 1−mγ2 nonsquare.

Example 5.1.1. Let m ≡ Np. When p = 5, the set of squares is F2
p = {0, 1, 4}, thus we

can take Np = 2. This makes 1−2F2
p = 1 + 3F2

p = {1, 3, 4}. Comparing these, we see that
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F2
p ∩ (1 − 2F2

p) = {1, 4}, and therefore 1 − 2γ2 will be a nonsquare for values of γ such

that 1 − 2γ2 = 3. This happens exactly when γ = 2 or γ = 3, that is, Γ(Fp,Np) = {2, 3}.
Note that Type 3 tori have form

t3 =

{
x

(
1 γ

−2γ 4

) ∣∣∣∣x ∈ k, γ ∈ k fixed

}

when p = 5 and m ≡ Np. Therefore, t2 =

(
1 2

1 4

)
and t3 =

(
1 3

4 4

)
will each generate

maximal θ-split k-tori not split over Fp when p = 5 and m ≡ Np. �

Example 5.1.2. Let m ≡ Np. When p = 7, the set of squares is F2
p = {0, 1, 2, 4},

hence Np ≡ 3. Thus, 1 − NpF2
p = 1 − 3F2

p = {1, 2, 3, 5}. Comparing these, we see that

F2
p∩ (1 +F2

p) = {1, 2}, and therefore 1− 3γ2 will be a nonsquare for values of γ such that

1− 3γ2 yields 3 or 5. Note that 1− 3γ2 = 3 when γ equals 2 or 5 and 1− 3γ2 = 5 when γ

equals 1 or 6. This shows us that Γ(Fp,Np) = {1, 2, 5, 6}. Note that Type 3 tori have form

t3 =

{
x

(
1 γ

−2γ 6

) ∣∣∣∣x ∈ k, γ ∈ k fixed

}

when p = 7 and m ≡ Np. Therefore t1 =

(
1 1

4 6

)
, t2 =

(
1 2

1 6

)
, t5 =

(
1 5

6 6

)
, and

t6 =

(
1 6

3 6

)
will each generate tori not split over Fp when p = 7 and m ≡ Np. �

5.2 The Hk-conjugacy Classes of Type 3 Tori

In this chapter, we study maximal θ-split k-anisotropic tori in sl(2,Fp). The condition

1−mγ2 6≡ 1 is equivalent to the condition 1−mγ2 ≡ Np when k = Fp. This provides us

with the following result about the number of Hk-conjugacy classes of maximal θ-split

k-anisotropic tori.

Proposition 5.2.1. Let k = Fp. Then there is either exactly 1 or 2 Hk-conjugacy classes

of maximal θ-split k-anisotropic tori of Type 3.

Proof. If all the tori are Hk-conjugate, then there is 1 Hk-conjugacy class.

52



Now assume at least two tori are not Hk-conjugate. Let tα and tβ be the generators

of tα and tβ, respectively. Assume tα is not Hk-conjugate to tβ. By Lemma 4.1.4, tα maps

to tβ via

hr1 =
1

[(1 + r)2 −m(α− rβ)2]1/2

(
1 + r α− rβ

m(α− rβ) 1 + r

)
,

where hr1 ∈ H\Hk. Thus, the value (1 + r)2 −m(α− rβ)2 is a nonsquare in k.

Now consider an arbitrary γ ∈ Γ(Fp,m) such that γ 6= ±α,±β. By Lemma 4.1.4, tγ

maps to tα via

hr2 =
1

[(1 + r)2 −m(γ − rα)2]1/2

(
1 + r γ − rα

m(γ − rα) 1 + r

)
,

where hr2 ∈ H. If tγ is Hk-conjugate to tα, then there are 2 Hk-conjugacy classes. Now

assume tγ is not Hk conjugate to tα. Thus, hr2 ∈ H\Hk. This implies that the value

(1 + r)2 −m(γ − rα)2 is a nonsquare in k.

The matrix hr1hr2 sends tγ to tβ. Moreover, the value [(1+r)2−m(α−rβ)2][(1+r)2−
m(γ − rα)2] ≡ N2

p is a square in k, thus hr1hr2 ∈ Hk. Hence, if tγ is not Hk-conjugate to

tα, then tγ is Hk-conjugate to tβ. Therefore, there are at most 2 Hk-conjugacy classes of

maximal θ-split k-anisotropic tori of Type 3 in sl(2,Fp).

Lemma 4.1.1 shows that for every γ ∈ Γ(k,m), −γ ∈ Γ(k,m) as well. Whether or not

these pairs of γ-values conjugate to each other is a defining characteristic of the Hk-

conjugacy classes of maximal θ-split k-anisotropic tori in sl(2, k) over k = Fp.

Theorem 5.2.1. Let γ ∈ Γ(Fp,m) be a value that makes the maximal θ-split k-tori of Type

3 k-anisotropic. Then torus generated with γ is Hk-conjugate to the torus generated with

−γ if and only if

1. we have p ≡ 1 mod 4 and m ≡ Np, or

2. we have p ≡ 3 mod 4 and m ≡ 1.

Proof. By Theorem 4.1.1, the tori tγ and t−γ will be Hk-conjugate when −m ≡ 1−mγ2.
When k = Fp and the k-tori are not k-split, this means that 1 −mγ2 ≡ Np. Thus, the

k-tori will be Hk-conjugate when −m ≡ Np. This is only possible when p ≡ 1 mod 4 and

m ≡ Np or when p ≡ 3 mod 4 and m ≡ 1. Therefore, the tγ and t−γ maximal θ-split
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k-anisotropic tori are not Hk-conjugate when p ≡ 1 and m ≡ 1 or when p ≡ 3 and

m ≡ Np.

Theorem 5.2.1 is significant because it shows that sometimes at least two separate

Hk-conjugacy classes exist, and this happens exactly when p ≡ 1 and m ≡ 1 or when

p ≡ 3 and m ≡ Np. Recall from Section 1.3.5 that in Riemannian symmetric spaces all

maximal θ-split tori are k-split and Hk-conjugate, and again we see that this result does

not translate to symmetric k-varieties.

Lemma 5.2.1. Let k = Fp, and let p ≡ 1 mod 4 and m ≡ Np or p ≡ 3 mod 4 and

m ≡ 1. Then tα is Hk-conjugate to tβ if and only if tα is Hk-conjugate to t−β.

Proof. Let tα, tβ, and t−β be the generators of tα, tβ, and t−β, respectively. Assume tα is

Hk-conjugate to tβ, say h1 ∈ Hk such that h1 · tα = tβ. By Theorem 5.2.1, h2 · tβ = t−β for

some h2 ∈ Hk. Thus, h2h1 conjugates tα to t−β, and h2h1 ∈ Hk. The argument reveres.

For all odd p under 50, we have computed the Hk-conjugacy classes of the maximal

θ-split k-anisotropic tori of Type 3, and in every case we found that there is exactly one

Hk-conjugacy class. For example computations, see Section A.1.

Proposition 5.2.2. Let k = Fp and p < 50 an odd prime, and let p ≡ 1 mod 4 and

m ≡ Np or p ≡ 3 mod 4 and m ≡ 1. Then there is exactly 1 Hk-conjugacy class of

maximal θ-split k-anisotropic tori.

Proof. By Proposition 5.2.1, there is either 1 Hk-conjugacy class or 2 Hk-conjugacy classes

of maximal θ-split k-anisotropic tori. In Section A.1, we computed the Hk-conjugacy

classes, and found exactly 1 for every odd prime p < 50.

This result we generalize in the following conjecture.

Conjecture 5.2.1. Let k = Fp, and let p ≡ 1 mod 4 and m ≡ Np or p ≡ 3 mod 4 and

m ≡ 1. Then there is exactly 1 Hk-conjugacy class of maximal θ-split k-anisotropic tori.

The following corollary shows how the generator tα is Hk-conjugate to the generator

t−β given that tα is Hk-conjugate to the generator tβ.

Corollary 5.2.1. Let α, β ∈ Γ(Fp,m) be values that makes the maximal θ-split tori of Type

3 k-anisotropic. Let p ≡ 1 mod 4 and m ≡ Np, or let p ≡ 3 mod 4 and m ≡ 1. Let tα and

tβ be generators of tori tα and tβ, respectively. If tα conjugates to rtβ, then tα conjugates

to −rt−β.
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Proof. By assumption, there exists h1 ∈ Hk such that h1 · tα = rtβ. By Theorem 5.2.1,

there exists h2 ∈ Hk such that h2 · tβ = −t−β. Thus, h2h1 ∈ Hk maps tα to −rt−β.

When p ≡ 1 mod 4 and m ≡ Np or p ≡ 3 mod 4 and m ≡ 1, the tα conjugates to

both tβ and t−β. By Theorem 5.2.1, we know that a similar result is not possible when

p ≡ 1 mod 4 and m ≡ 1 or p ≡ 3 mod 4 and m ≡ Np. Theorem 5.2.2 below shows how

this distinction divides the mappings of the maximal θ-split k-anisotropic tori.

Theorem 5.2.2. Let k = Fp, and let p ≡ 1 mod 4 and m ≡ 1 or p ≡ 3 mod 4 and

m ≡ Np. Suppose α, β ∈ Γ(Fp,m) such that α 6= ±β. Then tα is Hk-conjugate to t−β if and

only if tα and tβ are not Hk-conjugate.

Proof. By Theorem 2.2.2, we can take an element of H that conjugates tβ to −t−β. By

the discussion in the proof of Theorem 4.1.1, this element must be

h− = ±[−m(1−mβ2)]−1/2

(
mβ 1

m mβ

)
,

from Equation 4.8, with γ = β. By Theorem 5.2.1, the value of −m(1 − mβ2) is a

nonsquare in k. Thus, h− is in H and not Hk.

Let tα, tβ, and t−β be the generators of tα, tβ, and t−β, respectively. By Lemma 4.1.4,

we know

hr =
1

[(1 + r)2 −m(α− rβ)2]1/2

(
1 + r α− rβ

m(α− rβ) 1 + r

)
(5.1)

from Equation 4.16, satisfies hr · tα = rtβ.

Combining these mappings, we see that hrh− ∈ H conjugates tα to −rtβ.

Now assume tα is not Hk-conjugate to tβ. This implies that hr 6∈ Hk. As we know

from Lemma 4.1.4, the matrix entries of hr are in the base field, and only the coefficient

[(1 + r)2 −m(α − rβ)2]1/2 is potentially not in the base field. Therefore, assuming tα is

not Hk-conjugate to tβ is equivalent to assuming (1 + r)2−m(α− rβ)2 is a nonsquare in

the base field. Now consider hrh−. We know −m(1−mβ2) ≡ Np by Theorem 5.2.1. By

assumption, (1 + r)2 −m(α− rβ)2 ≡ Np. Thus,

−m(1−mβ2)[(1 + r)2 −m(α− rβ)2] ≡ N2
p ≡ 1.

Hence, we can take the square root of −m(1−mβ2)[(1 + r)2−m(α− rβ)2] over the base
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field k. Therefore, the matrix hrh− ∈ Hk, and tα is Hk-conjugate to t−β. The argument

reverses.

Theorem 5.2.2 is significant to this thesis because of the following corollary, which

shows how the maximal θ-split k-anisotropic tori split into separate Hk-conjugacy classes.

Corollary 5.2.2. Let k = Fp, and let p ≡ 1 mod 4 and m ≡ 1 or p ≡ 3 mod 4 and

m ≡ Np. Then there are exactly 2 Hk-conjugacy classes of maximal θ-split k-anisotropic

tori of Type 3.

Proof. Let β ∈ Γ(Fp,m) and tβ be the generator of the toral subalgebra tβ, and similarly let

t−β be the generator of the toral subalgebra t−β. By Theorem 5.2.1, when p ≡ 1 mod 4

and m ≡ 1 or p ≡ 3 mod 4 and m ≡ Np, tβ and t−β are not Hk-conjugate. This means

that there are at least two Hk-conjugacy classes of tori. By Theorem 5.2.2, for every

other α ∈ Γ(Fp,m), tα is Hk-conjugate to either tβ and t−β. Therefore, there are exactly 2

Hk-conjugacy classes when p ≡ 1 mod 4 and m ≡ 1 or p ≡ 3 mod 4 and m ≡ Np.

What remains is to determine the hk ∈ Hk that conjugates tα to rtβ, for arbitrary

α, β ∈ Γ(Fp,m) when tα and tβ are Hk-conjugate. The following theorem and conjecture

help provide formulae for such an element.

Theorem 5.2.3. Suppose p is an odd prime under 50. Let α, β ∈ Γ(Fp,m) such that

α 6= ±β. Let tα and tβ be the generators of the maximal θ-split k-anisotropic tori of Type

3. Assume tα and tβ are Hk-conjugate. Then hr is in Hk, where

hr =
1

[(1 + r)2 −m(α− rβ)2]1/2

(
1 + r α− rβ

m(α− rβ) 1 + r

)
(5.2)

Proof. In Lemma 4.1.4, we showed the hr ∈ H conjugates tα to rtβ when α 6= ±β. The

value of (1 + r)2 −m(α − rβ)2 was computed for every p < 50, and indeed (1 + r)2 −
m(α − rβ)2 is a square in F∗p. Thus, [(1 + r)2 − m(α − rβ)2]1/2 is in the base field Fp.
Hence, hr ∈ Hk. For an example of these computations, see Section A.2.

Conjecture 5.2.2. Let α, β ∈ Γ(Fp,m) such that α 6= ±β. Let tα and tβ be the generators

of the maximal θ-split k-anisotropic tori of Type 3. Assume tα and tβ are Hk-conjugate.

Then hr ∈ Hk.
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5.3 The p ≡ 1, m ≡ Np Case

This case is characterized by the fact that −m ≡ Np, as is the p ≡ 3 mod 4 and m ≡ 1

case, and for this reason, the two cases behave very similarly. Recall from Lemma 4.1.1

that if γ ∈ Γ(Fp,m), then −γ ∈ Γ(Fp,m). Moreover, by Theorem 5.2.1, when p ≡ 1 and

m ≡ Np, we get that tori with γ and −γ are Hk-conjugate. We will see that this provides

the critical link necessary to have just one Hk-conjugacy class of these maximal θ-split

k-anisotropic tori. Below is an example to demonstrate how Theorems 4.1.1 and 5.2.1

works.

Example 5.3.1. Let p = 5 and m ≡ Np, and specifically take m = 2. Then the set of

γ-values that make the tori not k-split is Γ(Fp,Np) = {2, 3}. Taking γ = 2, we get the torus〈(
1 2

1 4

)〉
=

{(
1 2

1 4

)
,

(
2 4

2 3

)
,

(
3 1

3 2

)
,

(
4 3

4 1

)
,

(
0 0

0 0

)}
.

Taking γ = 3, we get the torus〈(
1 3

4 4

)〉
=

{(
1 3

4 4

)
,

(
2 1

3 3

)
,

(
3 4

2 2

)
,

(
4 2

1 1

)
,

(
0 0

0 0

)}
.

We can see from the tori that transpose generators create tori with transpose elements.

Theorem 4.1.1 provides the formula to create the hk ∈ Hk that conjugates from an

element in one torus to its transpose in the other torus. In this example, we can take(
2 3

2 · 3 2

)
∈ Hk and

(
3 2

2 · 2 3

)
∈ Hk to conjugate the generator

(
1 2

1 4

)
to the fourth

multiple of the generator

(
1 3

4 4

)
:

(
2 3

1 2

)(
1 2

1 4

)(
2 3

1 2

)−1
=

(
2 3

1 2

)(
1 2

1 4

)(
2 2

4 2

)
=

(
4 2

1 1

)
= 4

(
1 3

4 4

)
,

(
3 2

4 3

)(
1 2

1 4

)(
3 2

4 3

)−1
=

(
3 2

4 3

)(
1 2

1 4

)(
3 3

1 3

)
=

(
4 2

1 1

)
= 4

(
1 3

4 4

)
.
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Thus, when p = 5 and m ≡ Np, the only two maximal θ-split k-anisotropic tori of Type

3 over Fp are indeed Hk-conjugate, creating one conjugacy class. �

This example is important because it shows that tori whose γ-values are additive

inverses in Fp are Hk-conjugate. Moreover, they conjugate to the p− 1 multiple of each

other. This is because p ≡ 1 mod 4 and m ≡ Np, thus Theorem 5.2.1 applies. Formula

4.8 becomes

hk = ±[Np(1−Npγ
2)]−1/2

(
Npγ 1

Np Npγ

)
. (5.3)

Now we have a formula for determining hk ∈ Hk that sends the torus with γ to the torus

with −γ. Below is an example of how this works.

Example 5.3.2. Let p = 13 and m ≡ Np ≡ 2. In order for the tori to not be split over

Fp, we need 1− 2γ2 6∈ F2
p, and further calculation shows that Γ(Fp,Np) = {2, 4, 6, 7, 9, 11}

when p = 13.

Take γ = 4, for example. Using the formula above, we should be able to construct

two elements of Hk to conjugate t4 =

(
1 4

5 12

)
to the twelfth multiple of t9 =

(
1 9

8 12

)
.

Following the formula, we see that Np(1 − Npγ
2) = 2(2 · 42 − 1) ≡ 10 mod 13. Then

[Np(1 − Npγ
2)]−1/2 = 10−1/2 = ±2 = 2, 11. Thus our formula yields two hk ∈ Hk.

Therefore, we can construct h2 and h11 ∈ Hk as follows:

h2 = 2

(
2 · 4 1

2 2 · 4

)
=

(
3 2

4 3

)

h11 = 11

(
2 · 4 1

2 2 · 4

)
=

(
10 11

9 10

)
We see that both det(h2) = 1 and det(h11) = 1, confirming that h2, h11 ∈ Hk. Moreover,

each conjugates t4 to 12t9, as shown below.
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h2t4h
−1
2 =

(
3 2

4 3

)(
1 4

5 12

)(
3 2

4 3

)−1

=

(
3 2

4 3

)(
1 4

5 12

)(
3 11

9 3

)

=

(
12 4

5 1

)
= 12t9

h11t4h
−1
11 =

(
10 11

9 10

)(
1 4

5 12

)(
10 11

0 10

)−1

=

(
10 11

9 10

)(
1 4

5 12

)(
10 2

4 10

)

=

(
12 4

5 1

)
= 12t9

We can turn to Table 5.3 to verify that Formula 5.3 would create the necessary hk ∈ Hk

to send tγ to t−γ for any given value of γ when p = 13 and m ≡ Np. �

These examples show that distinct maximal θ-split k-anisotropic tori exist and at

least some of these tori are Hk-conjugate. In Example 5.3.1, Γ(Fp,Np) = {2, 3}. In Fp when

p = 5, 2 and 3 are additive inverses, and because m ≡ Np, the tori they create are Hk-

conjugate. Thus, Example 5.3.1 is an example in which all maximal θ-split k-anisotropic

tori are Hk-conjugate, and there is only one conjugacy class.

Example 5.3.3. Consider p = 13 and m ≡ Np ≡ 2. In this case, we find that Γ(Fp,Np) =

{2, 4, 6, 7, 9, 11}. We know by Theorem 5.2.1 that we can conjugate t2 to t11, t4 to t9,

and t6 to t7. We wish to determine if all of these tori are Hk-conjugate. Note that when

p = 13 and m = 2, the fixed point group has form
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Table 5.1: The Hk-conjugation of t2 to all tori in Fp when p = 13 and m ≡ Np

Mapping Conjugating hk

t2 7→ 11t4

(
4 12
11 4

)
,

(
9 1
2 9

)
t2 7→ 8t6

(
3 2
4 2

)
,

(
10 11
9 10

)
t2 7→ 5t7

(
5 5
10 5

)
,

(
8 8
3 9

)
t2 7→ 2t9

(
5 8
3 5

)
,

(
8 5
10 8

)
t2 7→ 12t11

(
4 1
2 4

)
,

(
9 12
11 9

)

Hk =

{(
x y

2y x

) ∣∣∣∣x2 − 2y2 = 1, x, y ∈ Fp

}

In fact, we can conjugate all of these generators to each other. As stated in Table 5.3,

we can find an hk that sends t2 to all other generators, as shown in Table 5.1 below.

Therefore, all maximal θ-split k-anisotropic tori of Type 3 over Fp when p = 13 and

m ≡ Np are Hk-conjugate, creating one conjugacy class. �

5.4 The p ≡ 3, m ≡ 1 Case

As we will see, this case behaves very similarly to the p ≡ 1 mod 4 and m ≡ Np case.

First, to gain some intuition, we consider a similar example.

Example 5.4.1. Let p = 11 and m ≡ 1. Then Γ(Fp,1) = {2, 4, 7, 9}. Taking γ = 2, we get

the torus〈(
1 2

9 10

)〉
=

{(
1 2

9 10

)
,

(
2 4

7 9

)
,

(
3 6

5 8

)
,

(
4 8

3 7

)
,

(
5 10

1 6

)
,(

6 1

10 5

)
,

(
7 3

8 4

)
,

(
8 5

6 3

)
,

(
9 7

4 2

)
,

(
10 9

2 1

)
,

(
0 0

0 0

)}
.

60



Taking γ = 9, we get the torus〈(
1 9

2 10

)〉
=

{(
1 9

2 10

)
,

(
2 7

4 9

)
,

(
3 5

6 8

)
,

(
4 3

8 7

)
,

(
5 1

10 6

)
,(

6 10

1 5

)
,

(
7 8

3 4

)
,

(
8 6

5 3

)
,

(
9 4

7 2

)
,

(
10 2

9 1

)
,

(
0 0

0 0

)}
.

We can see from the tori that transpose generators create tori with transpose elements.

What remains to be seen is how we conjugate from an element in one torus to its transpose

in the other torus. In this example, we can take

(
4 2

1 · 2 4

)
∈ Hk and

(
7 9

1 · 9 7

)
∈ Hk

to conjugate the generator

(
1 2

9 10

)
to the tenth multiple of the generator

(
1 9

2 10

)
:

(
4 2

2 4

)(
1 2

9 10

)(
4 2

2 4

)−1
=

(
4 2

2 4

)(
1 2

9 10

)(
4 9

9 4

)

=

(
4 2

2 4

)(
0 6

5 0

)

=

(
10 2

9 1

)

= 10

(
1 9

2 10

)
,

(
7 9

9 7

)(
1 2

9 10

)(
7 9

9 7

)−1
=

(
7 9

9 7

)(
1 2

9 10

)(
7 2

2 7

)

=

(
7 9

9 7

)(
0 5

6 0

)

=

(
10 2

9 1

)

= 10

(
1 9

2 10

)
.
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Thus, when p = 7 and m ≡ 1, these two tori are conjugate. �

This another example of how tori whose γ-values are additive inverses in Fp are Hk-

conjugate. Moreover, they conjugate to the p− 1 multiple of each other. This is because

p ≡ 1 mod 4 and m ≡ Np, thus Theorem 5.2.1 applies. Formula 4.8 becomes

hk = ±(γ2 − 1)−1/2

(
γ 1

1 γ

)
, (5.4)

Again we can see that distinct maximal θ-split k-anisotropic tori exist and at least

some of these tori are Hk-conjugate.

Example 5.4.2. Let p = 11, m ≡ 1, and Γ(F11,1) = {2, 4, 7, 9} as before. We know the

tori generated with 2 and 9 as their γ-values will be Hk-conjugate and, similarly, the tori

generated with 4 and 7 as their γ-values will be Hk-conjugate. Thus, we have at most

two Hk-conjugacy classes.

Let t2 =

(
1 2

9 10

)
and t4 =

(
1 4

7 10

)
. The elements

(
2 6

1 · 6 2

)
and

(
9 5

1 · 5 9

)
are

in Hk and both conjugate t2 to 3t4. Therefore, in k = Fp when p = 11 and m ≡ 1, all

maximal θ-split k-anisotropic tori of Type 3 are Hk-conjugate. �

5.5 The p ≡ 1, m ≡ 1 Case

When p ≡ 1 mod 4 and m ≡ Np, we know that tori with additive inverses as their γ-

values are Hk-conjugate, as stated in Theorem 5.2.1. The proof of this relied on −m ≡ Np.

When p ≡ 1 and m ≡ 1, we get that −m = −1 ≡ 1 in k∗/(k∗)2, thus −m is now a square.

Moreover, Theorem 4.1.1 shows that this does not happen when p ≡ 1 and m ≡ 1. Below

is an example to show that maximal θ-split k-anisotropic tori with additive inverse γ-

values are not Hk-conjugate.

Example 5.5.1. Take p = 5 and m ≡ 1. Calculation shows that F2
p = {0, 1, 4}. In order

for the tori to be k-anisotropic, we need 1− γ2 6∈ F2
p. Thus, the set of γ-values such that

the tori will not be split over Fp is Γ(Fp,1) = {2, 3} when p = 5 and m ≡ 1. In this case

that p = 5 and m ≡ 1, Type 3 tori have form

t3 =

{
x

(
1 γ

−γ 4

) ∣∣∣∣x ∈ k, γ ∈ k fixed

}
.
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We have two values for γ, thus we have two tori.

〈t2〉 =

〈(
1 2

3 4

)〉
=

{(
1 2

3 4

)
,

(
2 4

1 3

)
,

(
3 1

4 2

)
,

(
4 3

2 1

)
,

(
0 0

0 0

)}

〈t3〉 =

〈(
1 3

2 4

)〉
=

{(
1 3

2 4

)
,

(
2 1

4 3

)
,

(
3 4

1 2

)
,

(
4 2

3 1

)
,

(
0 0

0 0

)}
What we want to determine is whether or not these two tori are Hk-conjugate.

As it turns out, there is no hk ∈ Hk that conjugates t1 to a multiple of t4. When p = 5

and m ≡ 1,

Hk =

{(
x y

y x

) ∣∣∣∣x2 − y2 = 1, x, y ∈ k

}

=

{(
1 0

0 1

)
,

(
0 2

2 0

)
,

(
0 3

3 0

)
,

(
4 0

0 4

)}

None of these hk ∈ Hk conjugates t2 to any multiple of t3. In fact, every hk ∈ Hk

conjugates t2 to itself. Therefore, these tori are not Hk-conjugate, and there are two

distinct Hk-conjugacy classes of maximal θ-split k-anisotropic tori of Type 3 over Fp
when p = 5 and m ≡ 1. �

Example 5.5.2. Take p = 13 and m ≡ 1. Then Γ(Fp,1) = {3, 4, 5, 9, 10}. As shown in

Table 5.9, there are 2 Hk-conjugacy classes, {t3, t4, t8} and {t5, t9, t10}. �

Below is an example of how Theorem 5.2.2 works to predict the matrix that sends tα

to rt−β when tα is not Hk-conjugate to tβ.

Example 5.5.3. Let p = 13 and m ≡ 1. Consider α = 3, β = 9, and −β = 4. We know

from Example 5.5.2 above that t3 is Hk-conjugate to t4 and not t4.

Using Equation 4.3, we find that r = ±2. Using Equation 4.16, we find that t3

conjugates to t9 by the following matrices in H:
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h2 =
1

51/2

(
3 11

11 3

)
,

h11 =
1

21/2

(
12 8

8 12

)

Note that neither of these matrices are in Hk because 2 and 5 are not squares in Fp when

p = 13. Thus, t3 is not Hk-conjugate to t9. Using Equation 4.8, we find that t9 conjugates

to t4 by the following matrices in H:

h− = ± 1

21/2

(
9 1

1 9

)
.

Note that neither of these matrices are in Hk. Theorem 5.2.2 shows us that t3 will

conjugates to t4, under h1hr. Composing these matrices, we get

h−h2 = ± 1

101/2

(
9 1

1 9

)(
3 11

11 3

)
= ±

(
2 4

4 2

)
(5.5)

h−h11 = ± 1

41/2

(
9 1

1 9

)(
12 8

8 12

)
= ±

(
6 3

3 6

)
(5.6)

Notice that both of these matrices are in Hk, thus t3 is Hk-conjugate to t4. We confirm

with Table 5.9 that r = ±2, h−h2, and h−h11 are indeed the correct values for sending

t3 to t4. �

5.6 The p ≡ 3, m ≡ Np Case

As Theorems 5.2.1 and 5.2.2 suggest, the p ≡ 3 and m ≡ Np case behaves very similarly to

the p ≡ 1 and m ≡ 1 case. Specifically, maximal θ-split k-anisotropic tori with additive-

inverse γ-values are not Hk-conjugate, forcing 2 distinct Hk-conjugacy classes.

Example 5.6.1. Take p = 7 and m ≡ Np ≡ 3. Calculation shows Γ(Fp,Np) = {1, 2, 5, 6}
when p = 7 and m ≡ 3. In this case , Type 3 tori have form
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t3 =

{
x

(
1 γ

−3γ 6

) ∣∣∣∣x ∈ k, γ ∈ k fixed

}
,

and because |Γ(Fp,Np)| = 4, there are four such tori. What we want to determine is whether

or not these tori are Hk-conjugate.

We find that there are 2 Hk-conjugacy classes, {t1, t5} and {t2, t6}. The fixed point

group is

Hk =

{(
x y

y x

) ∣∣∣∣x2 − 3y2 = 1, x, y ∈ k

}

=

{(
1 0

0 1

)
,

(
2 1

4 2

)
,

(
2 6

3 2

)
,

(
5 1

4 5

)
,

(
5 6

3 5

)
,

(
6 0

0 6

)
,

(
0 3

5 0

)
,

(
0 4

2 0

)}
.

We can see from Table 5.12 that the second and fifth elements in the above list conjugate

t1 to 2t5. The third and fourth elements in the above list conjugate t1 to 5t5. Thus, the

tori t1 and t5 are Hk-conjugate.

Similarly, the third and fourth elements in the above list conjugate t2 to 3t6 and the

second and fifth elements in the above list conjugate t2 to 4t6. Thus, the tori t2 and t6

are Hk-conjugate.

None of these hk ∈ Hk conjugates t1 to any multiple of t2. Therefore, there are two

distinct Hk-conjugacy classes of maximal θ-split k-anisotropic tori of Type 3 over Fp
when p = 7 and m ≡ Np. �

Example 5.6.2. Take p = 11 and m ≡ Np. Then Γ(Fp,Np) = {1, 4, 5, 6, 7, 10}. As shown

in Table 5.13, there are 2 Hk-conjugacy classes, {t1, t4, t5} and {t6, t7, t10}. �

Below is an example of how Theorem 5.2.2 works to predict the matrix that sends tα

to rt−β when tα is not Hk-conjugate to tβ.

Example 5.6.3. Let p = 13 and m ≡ 1. Consider α = 5, β = 10, and −β = 1. We know

from Example 5.6.2 above that t5 is Hk-conjugate to t1 and not t10.

Using Equation 4.3, we find that r = ±4. Using Equation 4.16, we find that t5

conjugates to t10 by the following matrices in H:
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h4 =
1

61/2

(
5 9

7 5

)
,

h7 =
1

71/2

(
8 1

2 8

)

Note that neither of these matrices are in Hk because 6 and 7 are not squares in Fp
when p = 11. Thus, t5 is not Hk-conjugate to t10. Using Equation 4.8, we find that t10

conjugates to t1 by the following matrices in H:

h− = ± 1

21/2

(
9 1

2 9

)
.

Note that neither of these matrices are in Hk because 2 is not a square in Fp when

p = 11. Theorem 5.2.2 shows us that t5 will conjugates to t1, under h1hr. Composing

these matrices, we get

h−h4 = ± 1

11/2

(
9 1

2 9

)(
5 9

7 5

)
= ±

(
8 9

7 8

)
(5.7)

h−h7 = ± 1

31/2

(
9 1

2 9

)(
8 1

2 8

)
= ±

(
5 1

2 5

)
(5.8)

Notice that both of these matrices are in Hk, thus t5 is Hk-conjugate to t1. We confirm

with Table 5.13 that r = ±4, h−h4, and h−h7 are indeed the correct values for sending

t5 to t1. �

5.7 Example Hk-conjugation Tables

The generator tα can be conjugated to the rth multiple of the generator tβ by some

hk ∈ Hk. To create the necessary hk, recall that every hk =

(
x y

my x

)
, and plug in

corresponding m value and x and y values from the pairs (x, y) given in the table.
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5.7.1 Example Hk-The Hk-conjugation Classes when p ≡ 1 and

m ≡ Np

When p = 5, we find that Np = 2, thus m ≡ Np = 2. In this case, we determine that

Γ(Fp,m) = {2, 3}. Table 5.2 shows that there is one θ-split, not k-split torus in sl(2,Fp)
for p = 5.

When p = 13, we find that Np = 2, thus m ≡ Np = 2. In this case, we determine that

Γ(Fp,m) = {2, 4, 6, 7, 9, 11}. Table 5.3 shows that there is one θ-split, not k-split torus in

sl(2,Fp) for p = 13.

When p = 17, we find that Np = 3, thus m ≡ Np = 3. In this case, we determine that

Γ(Fp,m) = {2, 5, 6, 7, 10, 11, 12, 15}. Table 5.4 shows that there is one θ-split, not k-split

torus in sl(2,Fp) for p = 17.
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Table 5.2: The Hk-conjugation Classes when p = 5 and m ≡ Np

p = 5 β = 2 β = 3
α = 2 r 4 (x, y) (2, 3), (3, 2)
α = 3 r 4 (x, y) (2, 2), (3, 3)

Table 5.3: The Hk-conjugation Classes when p = 13 and m ≡ Np

p = 13 β = 2 β = 4
α = 2 r 11 (x, y) (4, 12), (9, 1)
α = 4 r 6 (x, y) (4, 1), (9, 12)
α = 6 r 5 (x, y) (3, 11), (10, 2) r 9 (x, y) (3, 2), (10, 11)
α = 7 r 8 (x, y) (5, 8), (8, 5) r 10 (x, y) (4, 1), (9, 12)
α = 9 r 7 (x, y) (5, 5), (8, 8) r 12 (x, y) (3, 11), (10, 2)
α = 11 r 12 (x, y) (4, 12), (9, 1) r 2 (x, y) (5, 5), (8, 8)

β = 6 β = 7
α = 2 r 8 (x, y) (3, 2), (10, 11) r 5 (x, y) (5, 5), (8, 8)
α = 4 r 9 (x, y) (3, 11), (10, 2) r 4 (x, y) (4, 12), (9, 1)
α = 6 r 12 (x, y) (5, 8), (8, 5)
α = 7 r 12 (x, y) (5, 8), (8, 5)
α = 9 r 4 (x, y) (4, 1), (9, 12) r 9 (x, y) (3, 2), (10, 11)
α = 11 r 5 (x, y) (5, 8), (8, 5) r 8 (x, y) (3, 11), (10, 2)

β = 9 β = 11
α = 2 r 2 (x, y) (5, 8), (8, 5) r 12 (x, y) (4, 1), (9, 12)
α = 4 r 12 (x, y) (3, 2), (10, 11) r 7 (x, y) (5, 8), (8, 5)
α = 6 r 10 (x, y) (4, 12), (9, 1) r 8 (x, y) (5, 5), (8, 8)
α = 7 r 3 (x, y) (3, 11), (10, 2) r 5 (x, y) (3, 2), (10, 11)
α = 9 r 6 (x, y) (4, 12), (9, 1)
α = 11 r 11 (x, y) (4, 1), (9, 12)
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Table 5.4: The Hk-conjugation Classes when p = 17 and m ≡ Np

p = 17 β = 2 β = 5
α = 2 r 13 (x, y) (8, 15), (9, 2)
α = 5 r 4 (x, y) (8, 2), (9, 15)
α = 6 r 6 (x, y) (8, 15), (9, 2) r 10 (x, y) (8, 2), (9, 15)
α = 7 r 2 (x, y) (5, 5), (12, 12) r 9 (x, y) (7, 4), (10, 13)
α = 10 r 15 (x, y) (7, 4), (10, 13) r 8 (x, y) (2, 16), (15, 1)
α = 11 r 11 (x, y) (2, 1), (15, 16) r 7 (x, y) (7, 13), (10, 4)
α = 12 r 13 (x, y) (5, 12), (12, 5) r 16 (x, y) (2, 1), (15, 16)
α = 15 r 16 (x, y) (7, 13), (10, 4) r 4 (x, y) (5, 12), (12, 5)

β = 6 β = 7
α = 2 r 3 (x, y) (8, 2), (9, 15) r 9 (x, y) (5, 12), (12, 5)
α = 5 r 12 (x, y) (8, 5), (9, 2) r 2 (x, y) (7, 13), (10, 4)
α = 6 r 3 (x, y) (2, 1), (15, 16)
α = 7 r 6 (x, y) (2, 16), (15, 1)
α = 10 r 11 (x, y) (5, 5), (12, 12) r 16 (x, y) (8, 15), (9, 2)
α = 11 r 16 (x, y) (5, 12), (12, 5) r 14 (x, y) (5, 5), (12, 12)
α = 12 r 5 (x, y) (7, 13), (10, 4) r 15 (x, y) (2, 16), (15, 11)
α = 15 r 14 (x, y) (2, 1), (15, 16) r 8 (x, y) (7, 4), (10, 13)

β = 10 β = 11
α = 2 r 8 (x, y) (7, 13), (10, 4) r 14 (x, y) (2, 16), (15, 11)
α = 5 r 15 (x, y) (2, 1), (15, 16) r 5 (x, y) (7, 4), (10, 13)
α = 6 r 14 (x, y) (5, 12), (12, 5) r 16 (x, y) (5, 5), (12, 12)
α = 7 r 16 (x, y) (8, 2), (9, 15) r 11 (x, y) (5, 12), (12, 5)
α = 10 r 6 (x, y) (2, 1), (15, 16)
α = 11 r 3 (x, y) (2, 16), (15, 11)
α = 12 r 2 (x, y) (7, 4), (10, 13) r 12 (x, y) (8, 2), (9, 15)
α = 15 r 9 (x, y) (5, 5), (12, 12) r 3 (x, y) (8, 15), (9, 2)

β = 12 β = 15
α = 2 r 4 (x, y) (5, 5), (12, 12) r 16 (x, y) (7, 4), (10, 13)
α = 5 r 16 (x, y) (2, 16), (15, 1) r 13 (x, y) (5, 5), (12, 12)
α = 6 r 7 (x, y) (7, 4), (10, 13) r 11 (x, y) (2, 16), (15, 1)
α = 7 r 8 (x, y) (2, 1), (15, 16) r 15 (x, y) (7, 13), (10, 4)
α = 10 r 9 (x, y) (7, 13), (10, 4) r 2 (x, y) (5, 12), (12, 5)
α = 11 r 10 (x, y) (8, 15), (9, 2) r 6 (x, y) (8, 2), (9, 15)
α = 12 r 4 (x, y) (8, 15), (9, 2)
α = 15 r 13 (x, y) (8, 2), (9, 15)
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5.7.2 Example Hk-The Hk-conjugation Classes when p ≡ 3 and

m ≡ 1

When p = 3 and m ≡ 1, all θ-split tori are k-split, thus there are no cases for us to

consider.

When p = 7 and m ≡ 1, we find that Γ(Fp,m) = {3, 4}. Table 5.5 shows that there is

one θ-split, k-anisotropic tori in sl(2,Fp) for p = 7.

When p = 11 and m ≡ 1, we find that Γ(Fp,m) = {2, 4, 7, 9}. Table 5.6 shows that

there is one θ-split, k-anisotropic tori in sl(2,Fp) for p = 11.

When p = 19 and m ≡ 1, we find that Γ(Fp,m) = {5, 6, 8, 9, 10, 11, 13, 14}. Table 5.7

shows that there is one θ-split, k-anisotropic tori in sl(2,Fp) for p = 19.
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Table 5.5: The Hk-conjugation Classes when p = 7 and m ≡ 1

p = 7 β = 3 β = 4
α = 3 r 6 (x, y) (3, 1), (4, 6)
α = 4 r 6 (x, y) (3, 6), (4, 1)

Table 5.6: The Hk-conjugation Classes when p = 11 and m ≡ 1

p = 11 β = 2 β = 4
α = 2 r 3 (x, y) (2, 6), (9, 5)
α = 4 r 4 (x, y) (2, 5), (9, 6)
α = 7 r 7 (x, y) (4, 2), (7, 9) r 10 (x, y) (2, 5), (9, 6)
α = 9 r 10 (x, y) (4, 9), (7, 2) r 8 (x, y) (4, 2), (7, 9)

β = 7 β = 9
α = 2 r 8 (x, y) (4, 9), (7, 2) r 10 (x, y) (4, 2), (7, 9)
α = 4 r 10 (x, y) (2, 6), (9, 5) r 7 (x, y) (4, 9), (7, 2)
α = 7 r 4 (x, y) (2, 6), (9, 5)
α = 9 r 3 (x, y) (2, 5), (9, 6)
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Table 5.7: The Hk-conjugation Classes when p = 19 and m ≡ 1

p = 19 β = 5 β = 6
α = 5 r 7 (x, y) (6, 15), (13, 4)
α = 6 r 11 (x, y) (6, 4), (13, 15)
α = 8 r 9 (x, y) (5, 10), (14, 9) r 6 (x, y) (9, 2), (10, 17)
α = 9 r 15 (x, y) (8, 5), (11, 14) r 10 (x, y) (9, 17), (10, 2)
α = 10 r 4 (x, y) (5, 9), (14, 10) r 9 (x, y) (6, 4), (13, 15)
α = 11 r 10 (x, y) (6, 15), (13, 4) r 13 (x, y) (5, 10), (14, 9)
α = 13 r 8 (x, y) (8, 14), (11, 5) r 18 (x, y) (8, 5), (11, 14)
α = 14 r 18 (x, y) (9, 2), (10, 17) r 12 (x, y) (8, 14), (11, 5)

β = 8 β = 9
α = 5 r 17 (x, y) (5, 9), (14, 10) r 14 (x, y) (8, 14), (11, 5)
α = 6 r 16 (x, y) (9, 17), (10, 2) r 2 (x, y) (9, 2), (10, 17)
α = 8 r 12 (x, y) (9, 17), (10, 2)
α = 9 r 8 (x, y) (9, 2), (10, 17)
α = 10 r 11 (x, y) (8, 5), (11, 14) r 18 (x, y) (5, 10), (14, 9)
α = 11 r 18 (x, y) (6, 4), (13, 15) r 7 (x, y) (8, 5), (11, 14)
α = 13 r 3 (x, y) (5, 10), (14, 9) r 17 (x, y) (6, 4), (13, 15)
α = 14 r 2 (x, y) (6, 15), (13, 4) r 5 (x, y) (5, 9), (14, 10)

β = 10 β = 11
α = 5 r 5 (x, y) (5, 10), (14, 9) r 2 (x, y) (6, 4), (13, 15)
α = 6 r 17 (x, y) (6, 15), (13, 4) r 3 (x, y) (5, 9), (14, 10)
α = 8 r 7 (x, y) (8, 14), (11, 5) r 18 (x, y) (6, 15), (13, 4)
α = 9 r 18 (x, y) (5, 9), (14, 10) r 11 (x, y) (8, 14), (11, 5)
α = 10 r 8 (x, y) (9, 17), (10, 2)
α = 11 r 12 (x, y) (9, 2), (10, 17)
α = 13 r 2 (x, y) (9, 17), (10, 2) r 16 (x, y) (9, 2), (10, 17)
α = 14 r 14 (x, y) (8, 5), (11, 14) r 17 (x, y) (5, 10), (14, 9)

β = 13 β = 14
α = 5 r 12 (x, y) (8, 5), (11, 14) r 18 (x, y) (9, 17), (10, 2)
α = 6 r 18 (x, y) (8, 14), (11, 5) r 8 (x, y) (8, 5), (11, 14)
α = 8 r 13 (x, y) (5, 9), (14, 10) r 10 (x, y) (6, 4), (13, 15)
α = 9 r 9 (x, y) (6, 15), (13, 4) r 4 (x, y) (5, 10), (14, 9)
α = 10 r 10 (x, y) (9, 2), (10, 17) r 15 (x, y) (8, 14), (11, 5)
α = 11 r 6 (x, y) (9, 17), (10, 2) r 9 (x, y) (5, 9), (14, 10)
α = 13 r 11 (x, y) (6, 15), (13, 4)
α = 14 r 14 (x, y) (6, 4), (13, 15)
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5.7.3 Example Hk-The Hk-conjugation Classes when p ≡ 1 and

m ≡ 1

When p = 5 and m ≡ 1, we find that Γ(Fp,m) = {2, 3}. Table 5.8 shows that there are two

θ-split, k-anisotropic tori in sl(2,Fp) for p = 5 when m ≡ 1. These tori are not conjugate,

creating two different conjugacy classes, one with just the torus generated with γ = 2

and one with just the torus generated with γ = 3.

When p = 13 and m ≡ 1, we find that Γ(Fp,m) = {3, 4, 5, 8, 9, 10}. Table 5.9 shows that

there are two θ-split, k-anisotropic tori in sl(2,Fp) for p = 13 when m ≡ 1. These tori

are not conjugate, creating two different conjugacy classes. One conjugacy class consists

of tori generated with γ-values 3, 4, and 8. The other conjugacy class consists of tori

generated with γ-values 5, 9, and 10.

When p = 17 and m ≡ 1, we find that Γ(Fp,m) = {2, 5, 7, 8, 9, 10, 12, 15}. Table 5.10

shows that there are two θ-split, k-anisotropic tori in sl(2,Fp) for p = 17 when m ≡ 1.

These tori are not conjugate, creating two different conjugacy classes. One conjugacy

class consists of tori generated with γ-values 2, 9, 10, and 12. The other conjugacy class

consists of tori generated with γ-values 5, 7, 8, and 15.

Table 5.8: The Hk-conjugation Classes when p = 5 and m ≡ 1

p = 5 β = 2
α = 2

p = 5 β = 3
α = 3
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Table 5.9: The Hk-conjugation Classes when p = 13 and m ≡ 1

p = 13 β = 3 β = 4 β = 8

α = 3 r
2

(x, y)
(6, 3), (7, 10)

r
3

(x, y)
(2, 9), (11, 4)

11 (2, 4), (11, 9) 10 (6, 10), (7, 3)

α = 4 r
6

(x, y)
(2, 9), (11, 4)

r
5

(x, y)
(6, 3), (7, 10)

9 (6, 10), (7, 3) 5 (2, 4), (11, 9)

α = 8 r
4

(x, y)
(6, 3), (7, 10)

r
5

(x, y)
(2, 9), (11, 4)

1 (2, 4), (11, 9) 8 (6, 10), (7, 3)

p = 13 β = 5 β = 9 β = 10

α = 5 r
5

(x, y)
(2, 4), (11, 9)

r
4

(x, y)
(6, 10), (7, 3)

8 (6, 3), (7, 10) 9 (2, 9), (11, 4)

α = 9 r
5

(x, y)
(6, 10), (7, 3)

r
6

(x, y)
(2, 4), (11, 9)

8 (2, 9), (11, 4) 7 (6, 3), (7, 10)

α = 10 r
3

(x, y)
(2, 4), (11, 9)

r
2

(x, y)
(6, 10), (7, 3)

10 (6, 3), (7, 10) 11 (2, 9), (11, 4)
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Table 5.10: The Hk-conjugation Classes when p = 17 and m ≡ 1

p = 17 β = 2 β = 9

α = 2 r
8

(x, y)
(3, 5), (14, 12)

9 (3, 12), (14, 5)

α = 9 r
2

(x, y)
(3, 5), (14, 12)

15 (3, 12), (14, 5)

α = 10 r
4

(x, y)
(6, 16), (11, 1)

r
2

(x, y)
(6, 1), (11, 16)

14 (4, 10), (13, 7) 15 (4, 7), (13, 10)

α = 12 r
5

(x, y)
(4, 7), (13, 10)

r
6

(x, y)
(4, 10), (13, 7)

12 (6, 1), (11, 16) 11 (6, 16), (11, 1)
β = 10 β = 12

α = 2 r
4

(x, y)
(4, 7), (13, 10)

r
7

(x, y)
(4, 10), (13, 7)

13 (6, 1), (11, 16) 10 (6, 16), (11, 1)

α = 9 r
8

(x, y)
(4, 10), (13, 7)

r
3

(x, y)
(4, 7), (13, 10)

9 (6, 16), (11, 1) 14 (6, 1), (11, 16)

α = 10 r
6

(x, y)
(3, 5), (14, 12)

11 (3, 12), (14, 5)

α = 12 r
3

(x, y)
(3, 12), (14, 5)

14 (3, 5), (14, 12)

p = 17 β = 5 β = 7

α = 5 r
3

(x, y)
(3, 5), (14, 12)

14 (3, 12), (14, 5)

α = 7 r
6

(x, y)
(3, 12), (14, 5)

11 (3, 5), (14, 12)

α = 8 r
3

(x, y)
(4, 10), (13, 7)

r
8

(x, y)
(4, 7), (13, 10)

14 (6, 16), (11, 1) 9 (6, 1), (11, 16)

α = 15 r
7

(x, y)
(4, 7), (13, 10)

r
4

(x, y)
(4, 10), (13, 7)

10 (6, 1), (11, 16) 13 (6, 16), (11, 1)
β = 8 β = 15

α = 5 r
6

(x, y)
(4, 7), (13, 10)

r
5

(x, y)
(4, 10), (13, 7)

11 (6, 1), (11, 16) 12 (6, 16), (11, 1)

α = 7 r
2

(x, y)
(6, 16), (11, 1)

r
4

(x, y)
(6, 1), (11, 16)

15 (6, 16), (11, 1) 13 (4, 7), (13, 10)

α = 8 r
2

(x, y)
(3, 12), (14, 5)

15 (3, 5), (14, 12)

α = 15 r
8

(x, y)
(3, 12), (14, 5)

9 (3, 5), (14, 12)
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5.7.4 Example Hk-The Hk-conjugation Classes when p ≡ 3 and

m ≡ Np

When p = 3, we find that Np = 2, thus m ≡ Np = 2. In this case, we determine

that Γ(Fp,m) = {1, 2}. Table 5.11 shows that there are two θ-split, k-anisotropic tori in

sl(2,Fp) for p = 3 when m ≡ Np. These tori are not conjugate, creating two different

conjugacy classes, one with just the torus generated with γ = 1 and one with just the

torus generated with γ = 2.

When p = 7, we find that Np = 3, thus m ≡ Np = 3. In this case, we determine

that Γ(Fp,m) = {1, 2, 5, 6}. Table 5.12 shows that there are two θ-split, k-anisotropic tori

in sl(2,Fp) for p = 7 when m ≡ Np. These tori are not conjugate, creating two different

conjugacy classes. One conjugacy class consists of tori generated with γ-values 1 and 5.

The other conjugacy class consists of tori generated with γ-values 2 and 6.

When p = 11, we find that Np = 2, thus m ≡ Np = 2. In this case, we determine that

Γ(Fp,m) = {1, 4, 5, 6, 7, 10}. Table 5.13 shows that there are two θ-split, k-anisotropic tori

in sl(2,Fp) for p = 11 when m ≡ Np. These tori are not conjugate, creating two different

conjugacy classes. One conjugacy class consists of tori generated with γ-values 1, 4, and

5. The other conjugacy class consists of tori generated with γ-values 6, 7, and 10.
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Table 5.11: The Hk-conjugation Classes when p = 3 and m ≡ Np

p = 3 β = 1
α = 1

p = 3 β = 2
α = 2

Table 5.12: The Hk-conjugation Classes when p = 7 and m ≡ Np

p = 7 β = 1 β = 5

α = 1 r
2

(x, y)
(2, 1), (5, 6)

5 (2, 6), (5, 1)

α = 5 r
3

(x, y)
(2, 1), (5, 6)

4 (2, 6), (5, 1)

p = 7 β = 2 β = 6

α = 2 r
3

(x, y)
(2, 6), (5, 1)

4 (2, 1), (5, 6)

α = 6 r
2

(x, y)
(2, 6), (5, 1)

5 (2, 1), (5, 6)
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Table 5.13: The Hk-conjugation Classes when p = 11 and m ≡ Np

p = 11 β = 1 β = 4 β = 5

α = 1 r
4

(x, y)
(3, 2), (8, 9)

r
3

(x, y)
(5, 10), (6, 1)

7 (5, 1), (6, 10) 8 (3, 9), (8, 2)

α = 4 r
3

(x, y)
(3, 9), (8, 2)

r
2

(x, y)
(5, 1), (6, 10)

8 (5, 10), (6, 1) 9 (3, 2), (8, 9)

α = 5 r
4

(x, y)
(5, 1), (6, 10)

r
5

(x, y)
(3, 9), (8, 2)

7 (3, 2), (8, 9) 6 (5, 10), (6, 1)

p = 11 β = 6 β = 7 β = 10

α = 6 r
5

(x, y)
(3, 2), (8, 9)

r
4

(x, y)
(5, 10), (6, 1)

6 (5, 1), (6, 10) 7 (3, 9), (8, 2)

α = 7 r
2

(x, y)
(5, 10), (6, 1)

r
3

(x, y)
(3, 2), (8, 9)

9 (3, 9), (8, 2) 8 (5, 1), (6, 10)

α = 10 r
3

(x, y)
(5, 1), (6, 10)

r
4

(x, y)
(3, 9), (8, 2)

8 (3, 2), (8, 9) 7 (5, 10), (6, 1)
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Chapter 6

Type 3 Tori in sl(2, k) when k = Qp, p 6= 2

In this chapter, we classify tori of the third form and characterize their Hk-orbits over the

p-adic fields for p 6= 2. As we saw in Chapter 3, k-tori with additive-inverse γ-values will

play a major role in this characterization. Some of the methods introduced in Chapter 5

can generalize.

6.1 The Hk-conjugation Classes when p 6= 2

Suppose we take distinct γ-values α and β. Hence consider distinct tori tα and tβ with

generators tα and tβ, respectively. Then we want to find some hk ∈ Hk that conjugates

the generator tα to the r multiple of the generator tβ, where m is a representative of the

a square class in k∗/(k∗)2. Recall that when k = Qp and p 6= 2, the set of square classes

is Q∗p/(Q∗p)2 = {1, Np, p, pNp}. By assumption, the tori and their generators are not split

over Qp. Thus, we consider γ ∈ Γ(Qp,m) such that 1−mγ2 ≡ Np, p, pNp.

We know from the discussion in Lemma 4.1.3 that r = −1 or r = ±
[

1−mα2

1−mβ2

]1/2
when tα and tβ are Hk-conjugate.

Theorem 6.1.1. Let γ ∈ Γ(Qp,m) be a value that makes the maximal θ-split k-tori of

Type 3 k-anisotropic. Then torus generated with γ is Hk-conjugate to the torus generated

with −γ if and only if
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1. when m ≡ 1,

(a) we have p ≡ 3 mod 4, and 1−mγ2 ≡ Np, or

2. when m ≡ Np,

(a) we have p ≡ 1 mod 4, and m ≡ Np, or

3. when m ≡ p,

(a) we have p ≡ 1 mod 4, and 1−mγ2 ≡ p, or

(b) we have p ≡ 3 mod 4, and 1−mγ2 ≡ pNp, or

4. when m ≡ pNp,

(a) we have p ≡ 1 mod 4, and 1−mγ2 ≡ pNp, or

(b) we have p ≡ 3 mod 4, and 1−mγ2 ≡ p.

Proof. By Theorem 4.1.1, the tori tγ and t−γ areHk-conjugate when−m ≡ 1−mγ2. Recall

from Corollary 2.5.2 that −1 ≡ 1 when p ≡ 1 mod 4 and −1 ≡ Np when p ≡ 3 mod 4.

If m ≡ 1, then −m ≡ −1. When p ≡ 1 mod 4, −1 ≡ 1. Thus, tγ and t−γ will be

Hk-conjugate when 1 −mγ2 ≡ 1, making tγ and t−γ k-split and not of consideration in

this theorem. When p ≡ 3 mod 4, −1 ≡ Np. Thus, tγ and t−γ will be Hk-conjugate only

when 1−mγ2 ≡ Np.

If m ≡ Np, then −m ≡ −Np. When p ≡ 1 mod 4, −Np ≡ Np. Thus, tγ and t−γ

will be Hk-conjugate only when 1 −mγ2 ≡ Np. When p ≡ 3 mod 4, −Np ≡ 1. Thus, tγ

and t−γ will be Hk-conjugate when 1 −mγ2 ≡ 1, making tγ and t−γ k-split and not of

consideration in this theorem.

If m ≡ p, then −m ≡ −p. When p ≡ 1 mod 4, −p ≡ p. Thus, tγ and t−γ will be

Hk-conjugate only when 1−mγ2 ≡ p. When p ≡ 3 mod 4, −p ≡ pNp. Thus, tγ and t−γ

will be Hk-conjugate only when 1−mγ2 ≡ pNp.

If m ≡ pNp, then −m ≡ −pNp. When p ≡ 1 mod 4, −pNp ≡ pNp. Thus, tγ and t−γ

will be Hk-conjugate only when 1 −mγ2 ≡ pNp. When p ≡ 3 mod 4, −pNp ≡ p. Thus,

tγ and t−γ will be Hk-conjugate only when 1−mγ2 ≡ p.

Like Theorem 5.2.1 over Fp, Theorem 6.1.1 is significant because it shows that at least

two Hk-conjugacy classes occur in many situations.
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Lemma 6.1.1. Let k = Qp, and the combination of m, p, and 1−mγ2 be one of those

outlined in Theorem 6.1.1. Then tα is Hk-conjugate to tβ if and only if tα is Hk-conjugate

to t−β.

Proof. Let tα, tβ, and t−β be the generators of tα, tβ, and t−β, respectively. Assume tα is

Hk-conjugate to tβ, say h1 ∈ Hk such that h1 · tα = tβ. By Theorem 5.2.1, h2 · tβ = t−β for

some h2 ∈ Hk. Thus, h2h1 conjugates tα to t−β, and h2h1 ∈ Hk. The argument reveres.

For any γ ∈ Γ(Qp,m), the value 1 − mγ2 can be equivalent to Np, p, or pNp. Thus,

maximal θ-split k-anisotropic tori of Type 3 can have eigenvalues that depend on the

square roots of Np, p, or pNp. Moreover, these maximal θ-split k-anisotropic tori of Type

3 can not be Hk-conjugate unless their 1 − mγ2 values are equivalent. For this reason,

we adopt the following notation.

Notation. Let ΓNp , Γp, and ΓpNp be the subsets of Γ(Qp,m) containing exactly the γ ∈
Γ(Qp,m) such that 1 − mγ2 ≡ Np, p, and pNp, respectively. We use the notation Γm to

denote either ΓNp , Γp, or ΓpNp , aribtrarily.

This notation is useful in the application of Lemma 6.1.1 below.

Corollary 6.1.1. Let k = Qp for p 6= 2. Consider Γm ⊂ Γ(Qp,m), the set of all γ ∈ Γ(Qp,m)

of equivalent 1−mγ2. Then there are at most 4 Hk-conjugacy classes of maximal θ-split

k-anisotropic Type 3 tori with γ ∈ Γm.

Proof. Let α, β, γ, δ, ε ∈ Γm. Assume tα, tβ, tγ, and tδ are not Hk-conjugate, thus there

are at least 4 Hk-conjugation classes.

We know from Lemma 4.1.4 that tα is H-conjugate to tβ by a matrix h1 of the form

1

[(1 + r)2 −m(α− rβ)2]1/2

(
1 + r α− rβ

m(α− rβ) 1 + r

)
. (6.1)

Assume that tα and tβ are not Hk-conjugate, that is, assume the value

(1 + r)2 −m(α− rβ)2 (6.2)

is not equivalent to 1 and hence not a square. Suppose further that (1+r)2−m(α−rβ)2 ≡
Np. Thus, tα and tβ are in separate Hk-conjugation classes.
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Similarly, consider the matrices of the form in Formula 6.1 that send tα to tγ and tδ and

label them matrices h2 and h3, respectively. Further assume that (1+r)2−m(α−rγ)2 ≡ p

and (1 + r)2 −m(α− rδ)2 ≡ Np. Thus, tα is not Hk-conjugate to tγ or tδ.

Now consider the matrix h4 ∈ H, like Formula 6.1, that sends tε to tα. The value

(1 + r)2 −m(ε − rα)2 will be equivalent to either 1, Np, p, or pNp. Thus, tε will be Hk-

conjugate to tα, tβ, tγ, or tδ, respectively. Therefore, there are at most 4 Hk-conjugation

classes of tori with γ-values in Γm.

Below, we give a count of the maximum number of Hk-conjugacy classes of all θ-split

k-anisotropic tori.

Proposition 6.1.1. Let k = Qp for p 6= 2. Then there at most 12 Hk-conjugation classes

of tori of Type 3.

Proof. Tori of Type 3 are k-anisotropic when their γ-values are in Γm. There are 3

values of m that make these tori k-anisotropic. By Corollary 6.1.1, there are most 4

Hk-conjugation classes for each value of m. Therefore, there are most 12 Hk-conjugation

classes of of Type 3 tori in Qp when p 6= 2.

Note that Proposition 6.1.1 implies that there is a finite number of Hk-conjugation

classes of tori of Type 3 over Qp when p 6= 2.
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Chapter 7

The Hk-conjugacy Classes of θ-split k-tori

In this chapter, give a total count, or in some cases, minimum number, of Hk-conjugacy

classes of maximal θ-split k-tori in sl(2, k) for k = Q,Fp,Qp. In [Beu08], Beun gives a

count of the maximal (θ, k)-split tori. In Chapter 3, we give a count of the maximal

θ-split k-anisotropic Type 2 tori as well as Type 3 when k = Q. In Chapters 5 and 6, we

give a count of the maximal θ-split k-anisotropic tori of Type 3. The following theorems

summarize all of these results.

7.1 The Hk-conjugacy Classes of θ-split k-tori when

k = Q

Theorem 7.1.1. Let k = Q and consider sl(2,Q). Then there is an infinite number

Hk-conjugacy classes of maximal θ-split k-tori.

Proof. In Theorem 2.6.3, Beun shows that there is an infinite number of Hk-conjugacy

classes of maximal (θ, k)-split tori. In Theorem 3.2.1, we show that there is only one

class of maximal θ-split k-anisotropic Type 2. In Theorem 4.2.1, we show that there is an

infinite number of Hk-conjugacy classes of maximal θ-split k-anisotropic Type 3. Thus,

in total, there is an infinite number of Hk-conjugacy classes of maximal θ-split tori in

sl(2,Q).
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7.2 The Hk-conjugacy Classes of θ-split k-tori when

k = Fp
Corollary 5.2.2 gives us an exact count of the Hk-conjugacy classes of θ-split k-anisotropic

tori when p ≡ 1 mod 4 and m ≡ 1 or p ≡ 3 mod 4 and m ≡ Np. Combined with Beun’s

results in [Beu08], we can now give an exact count of the total number of Hk-conjugacy

classes of maximal θ-split k-tori over sl(2,Fp) when p ≡ 1 mod 4 and m ≡ 1 or when

p ≡ 3 mod 4 and m ≡ Np.

Theorem 7.2.1. Let k = Fp and consider sl(2,Fp). Then there are 4 Hk-conjugacy

classes of maximal θ-split k-tori when p ≡ 1 mod 4 and m ≡ 1 or when p ≡ 3 mod 4 and

m ≡ Np.

Proof. Theorem 3.2.2 shows that there are no Hk-conjugacy classes of θ-split k-anisotropic

tori of Type 2 in sl(2,Fp). Corollary 5.2.2 shows that there are 2 Hk-conjugacy classes

of θ-split k-anisotropic tori of Type 3 in sl(2,Fp). By Lemma 3.1.2, these are distinct

tori. Theorem 2.6.2 shows that there are 2 Hk-conjugacy classes of (θ, k)-split k-tori

in sl(2,Fp). Tori with eigenvalues in the base field can not be Hk-conjugate to tori with

eigenvalues not in the base field. Therefore, there are 4 classes of θ-split k-tori in sl(2,Fp).

There are two possibilities for the number of Hk-conjugacy classes of maximal θ-split

k-anisotropic tori when p ≡ 1 mod 4 and m ≡ Np or p ≡ 3 mod 4 and m ≡ 1. Proposition

5.2.1 shows that there is either 1 or 2 Hk-conjugacy classes. Combined with Beun’s results

in [Beu08], we have the following theorem that provides a lower bound and upper bound

on the number of Hk-conjugacy classes of maximal θ-split k-tori in sl(2,Fp).

Theorem 7.2.2. Let k = Fp and consider sl(2,Fp). Then the number of Hk-conjugacy

classes of maximal θ-split tori when p ≡ 1 mod 4 and m ≡ Np or when p ≡ 3 mod 4 and

m ≡ 1 is either 3 or 4.

Proof. By Proposition 5.2.1, there is either 1 Hk-conjugacy class or 2 Hk-conjugacy

classes of θ-split k-anisotropic tori of Type 3. Proposition 5.2.2 shows that there is 1

Hk-conjugacy classes of maximal θ-split k-anisotropic tori in sl(2,Fp) of Type 3. By

Lemma 3.1.2, these are distinct tori. Theorem 2.6.2 shows that there is 1 Hk-conjugacy

class of maximal (θ, k)-split k-tori in sl(2,Fp). Tori with eigenvalues in the base field can
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not be Hk-conjugate to tori with eigenvalues not in the base field. Therefore, there are 3

or 4 Hk-conjugacy classes of θ-split k-tori in sl(2,Fp).

By Proposition 5.2.2, there is exactly 1 class when p < 50 is an odd prime. Conjecture

5.2.1 generalizes this result. Combined with Beun’s results in [Beu08], we have the follow-

ing conjecture and theorem about the exact number of Hk-conjugacy classes of maximal

θ-split k-tori over sl(2,Fp) for when p ≡ 1 mod 4 and m ≡ Np or when p ≡ 3 mod 4 and

m ≡ 1.

Conjecture 7.2.1. Let k = Fp and consider sl(2,Fp). Then there are 3 Hk-conjugacy

classes of maximal θ-split tori when p ≡ 1 mod 4 and m ≡ Np or when p ≡ 3 mod 4 and

m ≡ 1.

Corollary 7.2.1. Let k = Fp where p < 50 is an odd prime, and consider sl(2,Fp). Then

there are 3 Hk-conjugacy classes of maximal θ-split tori when p ≡ 1 mod 4 and m ≡ Np

or when p ≡ 3 mod 4 and m ≡ 1.

Proof. Proposition 5.2.2 shows that there is 1 Hk-conjugacy classes of maximal θ-split

k-anisotropic tori in sl(2,Fp) of Type 3. Theorem 7.2.2 then implies that there is exactly

3 Hk-conjugacy classes of θ-split k-tori in sl(2,Fp).

7.3 The Hk-conjugacy Classes of θ-split k-tori when

k = Qp, p 6= 2

Proposition 7.3.1. Let k = Qp for p 6= 2. Then the following is a maximum number of

Hk-conjugacy classes of maximal θ-split k-tori in sl(2,Qp).

1. There are at most 16 Hk-conjugacy classes of of maximal θ-split k-tori when p ≡
1 mod 4 and m ≡ 1.

2. There are at most 17 Hk-conjugacy classes of of maximal θ-split k-tori when p ≡
3 mod 4 and m ≡ 1.

3. There are at most 16 Hk-conjugacy classes of of maximal θ-split k-tori of when

p ≡ 1 mod 4 and m ≡ Np.

4. There are at most 14 Hk-conjugacy classes of of maximal θ-split k-tori of when

p ≡ 3 mod 4 and m ≡ Np.
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5. There are at most 16 Hk-conjugacy classes of of maximal θ-split k-tori of when

m ≡ p,Np, regardless of p.

Proof. First, consider the case when p ≡ 1 mod 4 and m ≡ 1. Theorem 2.6.3 shows

that there are 4 Hk-conjugacy classes of maximal (θ, k)-split tori. Theorem 3.2.3 shows

that there are no Hk-conjugacy classes of maximal θ-split k-anisotropic tori of Type 2.

Proposition 6.1.1 shows that there are at most 12 Hk-conjugacy classes of maximal θ-split

k-anisotropic tori of Type 3. Therefore, there are at most 16 classes of maximal θ-split

k-tori in sl(2,Qp).

Consider the case when p ≡ 3 mod 4 and m ≡ 1. Theorem 2.6.3 shows that there are

2 Hk-conjugacy classes of maximal (θ, k)-split tori. Theorem 3.2.3 shows that there are

3 Hk-conjugacy classes of maximal θ-split k-anisotropic tori of Type 2. Proposition 6.1.1

shows that there are at most 12 Hk-conjugacy classes of maximal θ-split k-anisotropic

tori of Type 3. Therefore, there are at most 17 Hk-conjugacy classes of maximal θ-split

k-tori in sl(2,Qp).

Consider the case when p ≡ 1 mod 4 and m ≡ Np. Theorem 2.6.3 shows that there

is 1 Hk-conjugacy class of maximal (θ, k)-split tori. Theorem 3.2.3 shows that there are

3 Hk-conjugacy classes of maximal θ-split k-anisotropic tori of Type 2. Proposition 6.1.1

shows that there are at least 5 Hk-conjugacy classes of maximal θ-split k-anisotropic tori

of Type 3. Therefore, there are at most 16 Hk-conjugacy classes of maximal θ-split k-tori

in sl(2,Qp).

Consider the case when p ≡ 3 mod 4 and m ≡ Np. Theorem 2.6.3 shows that there

are 2 Hk-conjugacy class of maximal (θ, k)-split tori. Theorem 3.2.3 shows that there are

no Hk-conjugacy classes of maximal θ-split k-anisotropic tori of Type 2. Proposition 6.1.1

shows that there are at most 12 Hk-conjugacy classes of maximal θ-split k-anisotropic

tori of Type 3. Therefore, there are at most 14 Hk-conjugacy classes of maximal θ-split

k-tori in sl(2,Qp).

The cases when m ≡ p,Np, regardless of p, behave the same as the p ≡ 1 mod 4

and m ≡ Np, for a total of at most 16 Hk-conjugacy classes of maximal θ-split k-tori in

sl(2,Qp).
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Appendix A

Example Computations

Many of the computations over Fp were done in Maple™. We include two examples of

code, the first of which shows the computation of Hk-conjugacy classes, the second shows

the computation of the conjugating matrices hk ∈ Hk.

In each example, note that the only user input required is the values of p and m.

A list of squares in Fp is output line (3), and from this we can determine Np as well.

One of the main results of both examples is the computations of all possible tα to rtβ

conjugations.

Throughout this thesis, we use the notation tα to denote the Type 3 total subalgebra

generator with γ-value α that gets mapped to the rth multiple of the Type 3 total

subalgebra generator with γ-value β. For simplicity, in this code, α is represented by a

and β is represented by b. Note that in output line (4), EigensList is not a list of actual

eigenvalues, but a list of values who square roots would be the eigenvalues of the matrix

tα, should they exist. In line (5), we determine which γ-values lead to eigenvalues in the

base field and which γ-values lead to nonsplit generators.

In line (10), we define the expressions necessary for the tα → rtβ computations. The

functions reln1 and reln2 are used for computing the matrix entries, and the function

reln3 defines the determinant of the matrix hk, which is simply called h in this code, as

in line (8). Then, in line (11), we create several loops to check the resulting relations

from the equation hktαh
−1
k = rtβ. The loops store data when a conjugation over the base

field Fp exists, and this data is stored in the list solutions. Each datum returned has the
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form [a, b, r, x, y], where a is the α-value, b is the β-value, r is the multiple of tβ to which

tα is sent, and x and y define the entries of the matrix hk.

A.1 Computing the Hk-conjugacy Classes

The following shows example code for the Hk-conjugacy class computations in sl(2, k)

for k = Fp when p = 23 and m ≡ Np ≡ 5.

After computing all Hk-conjugations in (11), we select the first γ-value listed in

Gammas and find every other γ-value whose torus conjugates to tγ. These values are

stored in Class1 in line (12). Any γ-values whose tori do not conjugate to tγ are stored

in NotClass1. The process then repeats in line (13), where the first γ-value in NotClass1

is selected and we find every other γ-value whose torus conjugates to tγ. These values

are stored in Class2.

In the event that there is only one Hk-conjugacy class, the set NotClass1 is empty,

making the loop in line (13) inoperable. When this loop is executed, the output will be

“Error, invalid subscript selector” because NotClass1Set is empty.

Last, in line (14) we check that every γ-value was sorted into either Class1 or Class2.

We tested all primes under 50, and Neither1or2 was always returned empty, meaning that

there are at most two Hk-conjugacy classes.
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> > 

> > 

(4)(4)

(2)(2)

(3)(3)

> > 

> > 

(1)(1)

> > 

> > 

with LinearAlgebra Modular :
 with ListTools :

p d 23;
 m d 5;

p := 23
m := 5

# Define the field
 
Fp d :
for i from 0 to pK 1 do
    Fp d op Fp , i
 od:
 Fp;

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

#Find the squares in the field
 
SqsListShort d :
 SqsSet d :
 for i from 0 to pK 1 do
    SqsSetd op SqsSet , i2mod p :    
 od:
 SqsListAll d convert SqsSet, list :
SqsListShort d MakeUnique SqsListAll ;

SqsListShort := 0, 1, 4, 9, 16, 2, 13, 3, 18, 12, 8, 6

#Find all the 1-ma2 values, those that will split & those that won 't
 
EigensList d :
 templist d :
for i from 0 to pK 1 do
    templist d op templist , 1Km$i2mod p :
 od:
 EigensList d MakeUnique templist :
 EigensList; 

1, 19, 4, 2, 13, 14, 5, 9, 3, 10, 7, 17
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> > 

> > 

(6)(6)

> > 

(5)(5)

> > 

(7)(7)

(8)(8)

#Sort the 1-ma2 values into splits & nonsplits
 
SplitsSet d :
 SplitsList d : 
NonSplitsSet d :
 NonSplitsList d : 

EigensSet d convert EigensList, set :
 SqsSetShort d convert SqsListShort, set :
 SplitsSet dintersect EigensSet, SqsSetShort ;
 NonSplitsSets d EigensSet minus SplitsSet;
 SplitsList d convert SplitsSet, list ;
 NonSplitsList d convert NonSplitsSets, list ;

SplitsSet := 1, 2, 3, 4, 9, 13
NonSplitsSets := 5, 7, 10, 14, 17, 19

SplitsList := 1, 2, 3, 4, 9, 13
NonSplitsList := 5, 7, 10, 14, 17, 19

#Find the elements that lead to nonsplits
 
 Gammas d :
 for i from 0 to pK 1 do
    if member 1Km$i2mod p, NonSplitsList = 'true ' then Gammas d op Gammas , i  fi:
 od;
 Gammas;

1, 5, 6, 9, 10, 11, 12, 13, 14, 17, 18, 22

# Define the matrices and resulting correspoding conjugation relations

 unassign 'a ' ;
t d Matrix 1, a , K1$ m$a,K1 ;

t :=
1 a

K5 a K1

unassign 'x ','y ' ;
h d Matrix x, y ,  m$y, x ;
hinv d Matrix x,Ky , K1$m$y, x ; 

h :=
x y

5 y x
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> > 

> > 

(5)(5)

> > 

(9)(9)

(10)(10)

(8)(8)

> > 

(11)(11)

hinv :=
x Ky

K5 y x

simplify h. t.hinv ;

x2 K 10 y a xC 5 y2 K2 x yC a x2 C 5 a y2

10 x yK 25 a y2 K 5 a x2 K5 y2 C 10 y a xK x2

reln1 d a, x, y /x2 K 2$m$a$x$yC m$y2;
reln2 d a, x, y /a$ x2 K 2$x$yC m$a$y2;
reln3 d x, y /x2 K m$y2;

reln1 := a, x, y /x2 K 2 m a x yCm y2

reln2 := a, x, y /a x2 K 2 x yCm a y2

reln3 := x, y /x2 Km y2

#Find the conjugation classes

 unassign 'x ','y ','a ','r ' ;
 solutions d : 
 for i from 1 to nops Gammas  do
for b from 1 to nops Gammas  do 
for r from 1 to p do
for x from 0 to pK 1 do
     for y from 0 to p K1 do
 
       a d Gammas i :
       if a s Gammas b  then
       if reln1 a, x, y mod p = r and reln2 a, x, y mod p = Gammas b $r mod p  and reln3 x,

y mod p = 1  then solutions d op solutions , a, Gammas b , r, x, y   fi;
       fi;
     
 od;
 od;
 od;
 od;
 od;
 solutions;
 #Each datum returned has form a, b, r, x, y .

1, 11, 4, 4, 7 , 1, 11, 4, 19, 16 , 1, 11, 19, 10, 11 , 1, 11, 19, 13, 12 , 1, 13, 11, 10, 12 ,
1, 13, 11, 13, 11 , 1, 13, 12, 4, 16 , 1, 13, 12, 19, 7 , 1, 14, 8, 9, 4 , 1, 14, 8, 14, 19 ,
1, 14, 15, 9, 19 , 1, 14, 15, 14, 4 , 1, 17, 6, 11, 22 , 1, 17, 6, 12, 1 , 1, 17, 17, 8, 10 ,
1, 17, 17, 15, 13 , 1, 18, 7, 8, 13 , 1, 18, 7, 15, 10 , 1, 18, 16, 11, 1 , 1, 18, 16, 12,
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(5)(5)

> > 

(8)(8)

(11)(11)

22 , 5, 6, 9, 11, 22 , 5, 6, 9, 12, 1 , 5, 6, 14, 8, 10 , 5, 6, 14, 15, 13 , 5, 9, 11, 4, 7 ,
5, 9, 11, 19, 16 , 5, 9, 12, 10, 11 , 5, 9, 12, 13, 12 , 5, 10, 5, 4, 16 , 5, 10, 5, 19, 7 ,
5, 10, 18, 10, 12 , 5, 10, 18, 13, 11 , 5, 12, 6, 9, 19 , 5, 12, 6, 14, 4 , 5, 12, 17, 9, 4 ,
5, 12, 17, 14, 19 , 5, 22, 10, 8, 13 , 5, 22, 10, 15, 10 , 5, 22, 13, 11, 1 , 5, 22, 13, 12,

22 , 6, 5, 5, 8, 13 , 6, 5, 5, 15, 10 , 6, 5, 18, 11, 1 , 6, 5, 18, 12, 22 , 6, 9, 9, 4, 16 ,
6, 9, 9, 19, 7 , 6, 9, 14, 10, 12 , 6, 9, 14, 13, 11 , 6, 10, 2, 9, 4 , 6, 10, 2, 14, 19 , 6,

10, 21, 9, 19 , 6, 10, 21, 14, 4 , 6, 12, 7, 4, 7 , 6, 12, 7, 19, 16 , 6, 12, 16, 10, 11 , 6,
12, 16, 13, 12 , 6, 22, 4, 11, 22 , 6, 22, 4, 12, 1 , 6, 22, 19, 8, 10 , 6, 22, 19, 15, 13 ,

9, 5, 2, 10, 12 , 9, 5, 2, 13, 11 , 9, 5, 21, 4, 16 , 9, 5, 21, 19, 7 , 9, 6, 5, 10, 11 , 9,
6, 5, 13, 12 , 9, 6, 18, 4, 7 , 9, 6, 18, 19, 16 , 9, 10, 10, 11, 1 , 9, 10, 10, 12, 22 , 9,
10, 13, 8, 13 , 9, 10, 13, 15, 10 , 9, 12, 11, 8, 10 , 9, 12, 11, 15, 13 , 9, 12, 12, 11,
22 , 9, 12, 12, 12, 1 , 9, 22, 3, 9, 4 , 9, 22, 3, 14, 19 , 9, 22, 20, 9, 19 , 9, 22, 20, 14,
4 , 10, 5, 9, 10, 11 , 10, 5, 9, 13, 12 , 10, 5, 14, 4, 7 , 10, 5, 14, 19, 16 , 10, 6, 11, 9,
4 , 10, 6, 11, 14, 19 , 10, 6, 12, 9, 19 , 10, 6, 12, 14, 4 , 10, 9, 7, 11, 22 , 10, 9, 7,
12, 1 , 10, 9, 16, 8, 10 , 10, 9, 16, 15, 13 , 10, 12, 8, 8, 13 , 10, 12, 8, 15, 10 , 10,
12, 15, 11, 1 , 10, 12, 15, 12, 22 , 10, 22, 2, 4, 16 , 10, 22, 2, 19, 7 , 10, 22, 21, 10,
12 , 10, 22, 21, 13, 11 , 11, 1, 6, 4, 16 , 11, 1, 6, 19, 7 , 11, 1, 17, 10, 12 , 11, 1, 17,
13, 11 , 11, 13, 3, 8, 13 , 11, 13, 3, 15, 10 , 11, 13, 20, 11, 1 , 11, 13, 20, 12, 22 ,

11, 14, 2, 11, 22 , 11, 14, 2, 12, 1 , 11, 14, 21, 8, 10 , 11, 14, 21, 15, 13 , 11, 17, 10,
4, 7 , 11, 17, 10, 19, 16 , 11, 17, 13, 10, 11 , 11, 17, 13, 13, 12 , 11, 18, 4, 9, 19 ,

11, 18, 4, 14, 4 , 11, 18, 19, 9, 4 , 11, 18, 19, 14, 19 , 12, 5, 4, 9, 4 , 12, 5, 4, 14,
19 , 12, 5, 19, 9, 19 , 12, 5, 19, 14, 4 , 12, 6, 10, 4, 16 , 12, 6, 10, 19, 7 , 12, 6, 13,
10, 12 , 12, 6, 13, 13, 11 , 12, 9, 2, 11, 1 , 12, 9, 2, 12, 22 , 12, 9, 21, 8, 13 , 12, 9,
21, 15, 10 , 12, 10, 3, 8, 10 , 12, 10, 3, 15, 13 , 12, 10, 20, 11, 22 , 12, 10, 20, 12, 1 ,

12, 22, 6, 4, 7 , 12, 22, 6, 19, 16 , 12, 22, 17, 10, 11 , 12, 22, 17, 13, 12 , 13, 1, 2, 4,
7 , 13, 1, 2, 19, 16 , 13, 1, 21, 10, 11 , 13, 1, 21, 13, 12 , 13, 11, 8, 8, 10 , 13, 11, 8,
15, 13 , 13, 11, 15, 11, 22 , 13, 11, 15, 12, 1 , 13, 14, 7, 11, 1 , 13, 14, 7, 12, 22 ,

13, 14, 16, 8, 13 , 13, 14, 16, 15, 10 , 13, 17, 11, 9, 19 , 13, 17, 11, 14, 4 , 13, 17,
12, 9, 4 , 13, 17, 12, 14, 19 , 13, 18, 9, 10, 12 , 13, 18, 9, 13, 11 , 13, 18, 14, 4, 16 ,

13, 18, 14, 19, 7 , 14, 1, 3, 9, 19 , 14, 1, 3, 14, 4 , 14, 1, 20, 9, 4 , 14, 1, 20, 14, 19 ,
14, 11, 11, 8, 13 , 14, 11, 11, 15, 10 , 14, 11, 12, 11, 1 , 14, 11, 12, 12, 22 , 14, 13,

10, 11, 22 , 14, 13, 10, 12, 1 , 14, 13, 13, 8, 10 , 14, 13, 13, 15, 13 , 14, 17, 5, 10,
12 , 14, 17, 5, 13, 11 , 14, 17, 18, 4, 16 , 14, 17, 18, 19, 7 , 14, 18, 2, 10, 11 , 14,
18, 2, 13, 12 , 14, 18, 21, 4, 7 , 14, 18, 21, 19, 16 , 17, 1, 4, 11, 1 , 17, 1, 4, 12, 22 ,

17, 1, 19, 8, 13 , 17, 1, 19, 15, 10 , 17, 11, 7, 4, 16 , 17, 11, 7, 19, 7 , 17, 11, 16, 10,
12 , 17, 11, 16, 13, 11 , 17, 13, 2, 9, 19 , 17, 13, 2, 14, 4 , 17, 13, 21, 9, 4 , 17, 13,
21, 14, 19 , 17, 14, 9, 4, 7 , 17, 14, 9, 19, 16 , 17, 14, 14, 10, 11 , 17, 14, 14, 13, 12 ,

17, 18, 5, 8, 10 , 17, 18, 5, 15, 13 , 17, 18, 18, 11, 22 , 17, 18, 18, 12, 1 , 18, 1, 10,
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(12)(12)

(13)(13)

(5)(5)

> > 

> > 

(8)(8)

> > 

(11)(11)

8, 10 , 18, 1, 10, 15, 13 , 18, 1, 13, 11, 22 , 18, 1, 13, 12, 1 , 18, 11, 6, 9, 4 , 18, 11,
6, 14, 19 , 18, 11, 17, 9, 19 , 18, 11, 17, 14, 4 , 18, 13, 5, 4, 7 , 18, 13, 5, 19, 16 ,

18, 13, 18, 10, 11 , 18, 13, 18, 13, 12 , 18, 14, 11, 4, 16 , 18, 14, 11, 19, 7 , 18, 14,
12, 10, 12 , 18, 14, 12, 13, 11 , 18, 17, 9, 11, 1 , 18, 17, 9, 12, 22 , 18, 17, 14, 8, 13 ,

18, 17, 14, 15, 10 , 22, 5, 7, 8, 10 , 22, 5, 7, 15, 13 , 22, 5, 16, 11, 22 , 22, 5, 16, 12,
1 , 22, 6, 6, 11, 1 , 22, 6, 6, 12, 22 , 22, 6, 17, 8, 13 , 22, 6, 17, 15, 10 , 22, 9, 8, 9,
19 , 22, 9, 8, 14, 4 , 22, 9, 15, 9, 4 , 22, 9, 15, 14, 19 , 22, 10, 11, 10, 11 , 22, 10,
11, 13, 12 , 22, 10, 12, 4, 7 , 22, 10, 12, 19, 16 , 22, 12, 4, 4, 16 , 22, 12, 4, 19, 7 ,

22, 12, 19, 10, 12 , 22, 12, 19, 13, 11

#Find all tori that conjugate to the first torus.
 
Class1 d Gammas 1 :
NotClass1Set d :
GammasSet d op Gammas :
 
 HkConjugate d'false ':
 for j from 1 to nops solutions  do

 if Gammas 1 = solutions j 2
    then HkConjugate d'true ':
    else HkConjugate d'false ':
 fi:
 
 if HkConjugate ='true '
    then Class1 d op Class1 , solutions j 1 :
    else NotClass1Set d op NotClass1Set , solutions j 1 :
 fi:
 
  od;
 Class1 d MakeUnique Class1 ;
 NotClass1Set d GammasSet minus op Class1 ;

Class1 := 1, 11, 13, 14, 17, 18
NotClass1Set := 5, 6, 9, 10, 12, 22

#Find all tori that conjugate to the first torus in NotClass1Set.
 
NotClass1 d convert NotClass1Set, list :
Class2 d NotClass1 1 :
 
 HkConjugate d'false ':
 for j from 1 to nops solutions  do
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> > 

> > 

> > 

(8)(8)

> > 

(14)(14)

(13)(13)

(5)(5)

(11)(11)

 if NotClass1 1 = solutions j 2
    then HkConjugate d'true ':
    else HkConjugate d'false ':
 fi:
 
 if HkConjugate ='true '
    then Class2 d op Class2 , solutions j 1 :
 fi:
 
  od;
 Class2 d MakeUnique Class2 ;
 
 

Class2 := 5, 6, 9, 10, 12, 22

 

#Check that everything fell into the first class or the second.
 
 Neither1or2 d GammasSet minus convert Class1, set  minus convert Class2, set ;

Neither1or2 :=
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A.2 Computing the Conjugating Matrices in Hk

The following shows example code for the hk ∈ Hk computations in sl(2, k) for k = Fp
when p = 13 and m ≡ Np ≡ 2.

The matrix hr conjugates the generator tα to the generator rtβ when α 6= −β. As

discussed Section 4.1, h1 in Equation 4.18 also conjugates tα to rtβ, and is an almost

equivalent, though less applicable, formula. The following computations use both formu-

las. We first compute h1, and when the computations return h1 = 0, we compute hr,

which is named h2 in the code. We check these formulas against the data found in line

(11), which is stored in the list solutions. Lines (15) and (16) create the expressions

necessary for the x and y entries of both h1 and h2.

In line (17), we filter out the cases when α = −β, because we know from Theorem

4.1.1 the form of the conjugating matrix hk. Then, in lines (18) - (21), we create a series

of nested loops using the a, b, and r data from solutions to test if the entries of h1 and

h2 created are 0 and if the determinants of h1 and h2 are indeed squares. When the h1

entries are zero, the data is sent through the h2 tests. The created x and y entries for h1

and h2 are then checked against the known x and y data from solutions. If they match,

the data is stored under h1works or h2works ; if they do not match, the data is stored

under h1doesntwork or h2doesntwork. As is shown in the example, the lists h1doesntwork

or h2doesntwork remain empty.

Last, in line (22), the results are checked by showing that every datum from solutions

did indeed get stored in list for a zero case, and nonsquare determinant case, an hi that

works, or an hi that does not work.
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> > 

(4)(4)

> > 

> > 

(3)(3)

> > 

> > 

(1)(1)

(2)(2)

> > 

with LinearAlgebra Modular :
 with ListTools :

p d 13;
m d 2;

p := 13
m := 2

# Define the field
 
Fp d :
for i from 0 to pK 1 do
    Fp d op Fp , i
 od:
 Fp;

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

#Find the squares in the field
 
SqsListShort d :
 SqsSet d :
 for i from 0 to pK 1 do
    SqsSetd op SqsSet , i2mod p :    
 od:
 SqsListAll d convert SqsSet, list :
SqsListShort d MakeUnique SqsListAll ;

SqsListShort := 0, 1, 4, 9, 3, 12, 10

#Find all the 1-ma2 values, those that will split & those that won 't
 
EigensList d :
 templist d :
for i from 0 to pK 1 do
    templist d op templist , 1Km$i2mod p :
 od:
 EigensList d MakeUnique templist :
 EigensList; 

1, 12, 6, 9, 8, 3, 7
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> > 

> > 

(5)(5)

(7)(7)

> > 

(6)(6)

(8)(8)

> > #Sort the 1-ma2 values into splits & nonsplits
 
SplitsSet d :
 SplitsList d : 
NonSplitsSet d :
 NonSplitsList d : 

EigensSet d convert EigensList, set :
 SqsSetShort d convert SqsListShort, set :
 SplitsSet dintersect EigensSet, SqsSetShort ;
 NonSplitsSets d EigensSet minus SplitsSet;
 SplitsList d convert SplitsSet, list ;
 NonSplitsList d convert NonSplitsSets, list ;

SplitsSet := 1, 3, 9, 12
NonSplitsSets := 6, 7, 8
SplitsList := 1, 3, 9, 12
NonSplitsList := 6, 7, 8

#Find the elements that lead to nonsplits
 
 Gammas d :
 for i from 0 to pK 1 do
    if member 1Km$i2mod p, NonSplitsList = 'true ' then Gammas d op Gammas , i  fi:
 od;
 Gammas;

2, 4, 6, 7, 9, 11

# Define the matrices and resulting correspoding conjugation relations

 unassign 'a ' ;
t d Matrix 1, a , K1$ m$a,K1 ;

t :=
1 a

K2 a K1

unassign 'x ','y ' ;
h d Matrix x, y ,  m$y, x ;
hinv d Matrix x,Ky , K1$m$y, x ; 

h :=
x y

2 y x
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(5)(5)

> > 

(11)(11)

(10)(10)

(8)(8)

> > 

> > 

(9)(9)

> > 

hinv :=
x Ky

K2 y x

simplify h. t.hinv ;

x2 K 4 y a xC 2 y2 K2 x yC a x2 C 2 a y2

4 x yK 4 a y2 K 2 a x2 K2 y2 C 4 y a xK x2

reln1 d a, x, y /x2 K 2$m$a$x$yC m$y2;
reln2 d a, x, y /a$ x2 K 2$x$yC m$a$y2;
reln3 d x, y /x2 K m$y2;

reln1 := a, x, y /x2 K 2 m a x yCm y2

reln2 := a, x, y /a x2 K 2 x yCm a y2

reln3 := x, y /x2 Km y2

#Find the conjugation classes

unassign 'x ','y ','a ','r ' ;
solutions d : 
for i from 1 to nops Gammas  do
for b from 1 to nops Gammas  do 
for r from 1 to p do
for x from 0 to pK 1 do
     for y from 0 to p K1 do
 
       a d Gammas i :
       if a s Gammas b  then
       if reln1 a, x, y mod p = r and reln2 a, x, y mod p = Gammas b $r mod p  and reln3 x,

y mod p = 1  then solutions d op solutions , a, Gammas b , r, x, y   fi;
       fi;
     
 od;
 od;
 od;
 od;
 od;
 solutions;
 #Each datum returned has form a, b, r, x, y .

2, 4, 11, 4, 12 , 2, 4, 11, 9, 1 , 2, 6, 8, 3, 2 , 2, 6, 8, 10, 11 , 2, 7, 5, 5, 5 , 2, 7, 5, 8, 8 ,
2, 9, 2, 5, 8 , 2, 9, 2, 8, 5 , 2, 11, 12, 4, 1 , 2, 11, 12, 9, 12 , 4, 2, 6, 4, 1 , 4, 2, 6, 9,

12 , 4, 6, 9, 3, 11 , 4, 6, 9, 10, 2 , 4, 7, 4, 4, 12 , 4, 7, 4, 9, 1 , 4, 9, 12, 3, 2 , 4, 9,
12, 10, 11 , 4, 11, 7, 5, 8 , 4, 11, 7, 8, 5 , 6, 2, 5, 3, 11 , 6, 2, 5, 10, 2 , 6, 4, 3, 3, 2 ,
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(14)(14)

(13)(13)

(5)(5)

> > 

> > 

(11)(11)

(8)(8)

(12)(12)

> > 

> > 

6, 4, 3, 10, 11 , 6, 7, 12, 5, 8 , 6, 7, 12, 8, 5 , 6, 9, 10, 4, 12 , 6, 9, 10, 9, 1 , 6, 11,
8, 5, 5 , 6, 11, 8, 8, 8 , 7, 2, 8, 5, 8 , 7, 2, 8, 8, 5 , 7, 4, 10, 4, 1 , 7, 4, 10, 9, 12 , 7,
6, 12, 5, 5 , 7, 6, 12, 8, 8 , 7, 9, 3, 3, 11 , 7, 9, 3, 10, 2 , 7, 11, 5, 3, 2 , 7, 11, 5, 10,
11 , 9, 2, 7, 5, 5 , 9, 2, 7, 8, 8 , 9, 4, 12, 3, 11 , 9, 4, 12, 10, 2 , 9, 6, 4, 4, 1 , 9, 6, 4,
9, 12 , 9, 7, 9, 3, 2 , 9, 7, 9, 10, 11 , 9, 11, 6, 4, 12 , 9, 11, 6, 9, 1 , 11, 2, 12, 4, 12 ,

11, 2, 12, 9, 1 , 11, 4, 2, 5, 5 , 11, 4, 2, 8, 8 , 11, 6, 5, 5, 8 , 11, 6, 5, 8, 5 , 11, 7, 8,
3, 11 , 11, 7, 8, 10, 2 , 11, 9, 11, 4, 1 , 11, 9, 11, 9, 12

# To check h1 and h2, we need to define modular inverses, square roots, and inverse square roots
 inverse d :
 
 for i from 1 to pK 1 do
 for j from 1 to pK 1 do
 
 if i$j mod p = 1 then inverse d op inverse , j  fi;
 
 od;
 od;
 inverse;

1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12

SqRoots d :
 
 for i from 2 to nops SqsListShort  do
 
 TempSqs d SqsListShort i :

 for j from 1 to pK 1 do
  
 if j$j mod p = SqsListShort i  then TempSqs d op TempSqs , j  fi:
 
 od:
 
 SqRoots d op SqRoots , TempSqs :
 TempSqs d :

 od:
 SqRoots;
 #Each datum returned has form [square, low root, high root]. 

1, 1, 12 , 4, 2, 11 , 9, 3, 10 , 3, 4, 9 , 12, 5, 8 , 10, 6, 7

InvSqRoots d :
 
 for i from 1 to nops SqRoots  do
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(17)(17)

(14)(14)

> > 

(15)(15)

(16)(16)

(5)(5)

> > 

> > 

(11)(11)

(8)(8)

> > 

> > 

   InvSqRoots d op InvSqRoots , SqRoots i 1 , inverse SqRoots i 2 ,
inverse SqRoots i 3

 od:
 InvSqRoots;

1, 1, 12 , 4, 7, 6 , 9, 9, 4 , 3, 10, 3 , 12, 8, 5 , 10, 11, 2

#Create the h1 and h2 x and y entries and determinants

 unassign 'a ','b ','x ','y ','r ' :

 h1x d a, b, r /1Cm$aC r$ 1Cm$b  ;
 h1y d a, b, r /1C aK r$ 1C b ;
 h1det d a, b, r / 1Cm$aC r$ 1Cm$b 2 Km$ 1C aK r$ 1C b 2;

h1x := a, b, r /1Cm aC r 1Cm b
h1y := a, b, r /1C aK r 1C b

h1det := a, b, r / 1Cm aC r 1Cm b 2 Km 1C aK r 1C b 2

h2x d r /1C r;
 h2y d a, b, r /aK r$b;
 h2det d a, b, r / 1C r 2 Km$ aK r$b 2;

h2x := r/1C r
h2y := a, b, r /aK b r

h2det := a, b, r / 1C r 2 Km aK b r 2

#Before checking h1 and h2, weed out the cases when additive inverse gammas are conjugate.  
Send the non additive inverse cases to SolutionsToCheck1Part1.

 AddInverses d :
 SolutionsToCheck1Part1 d :
 for i from 1 to nops solutions  do
 
    a d solutions i 1 ;
    b d solutions i 2 ;
 
   if aC b  mod p = 0 then AddInverses d op AddInverses , solutions i  
   else SolutionsToCheck1Part1 d op SolutionsToCheck1Part1 , solutions i
 
   fi:

od:
 AddInverses;
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(17)(17)

(14)(14)

> > 

> > 

(5)(5)

> > 

(11)(11)

(8)(8)

(18)(18)

> > 

 SolutionsToCheck1Part1;

2, 11, 12, 4, 1 , 2, 11, 12, 9, 12 , 4, 9, 12, 3, 2 , 4, 9, 12, 10, 11 , 6, 7, 12, 5, 8 , 6, 7,
12, 8, 5 , 7, 6, 12, 5, 5 , 7, 6, 12, 8, 8 , 9, 4, 12, 3, 11 , 9, 4, 12, 10, 2 , 11, 2, 12, 4,
12 , 11, 2, 12, 9, 1

2, 4, 11, 4, 12 , 2, 4, 11, 9, 1 , 2, 6, 8, 3, 2 , 2, 6, 8, 10, 11 , 2, 7, 5, 5, 5 , 2, 7, 5, 8, 8 ,
2, 9, 2, 5, 8 , 2, 9, 2, 8, 5 , 4, 2, 6, 4, 1 , 4, 2, 6, 9, 12 , 4, 6, 9, 3, 11 , 4, 6, 9, 10, 2 ,
4, 7, 4, 4, 12 , 4, 7, 4, 9, 1 , 4, 11, 7, 5, 8 , 4, 11, 7, 8, 5 , 6, 2, 5, 3, 11 , 6, 2, 5, 10,

2 , 6, 4, 3, 3, 2 , 6, 4, 3, 10, 11 , 6, 9, 10, 4, 12 , 6, 9, 10, 9, 1 , 6, 11, 8, 5, 5 , 6, 11,
8, 8, 8 , 7, 2, 8, 5, 8 , 7, 2, 8, 8, 5 , 7, 4, 10, 4, 1 , 7, 4, 10, 9, 12 , 7, 9, 3, 3, 11 , 7,
9, 3, 10, 2 , 7, 11, 5, 3, 2 , 7, 11, 5, 10, 11 , 9, 2, 7, 5, 5 , 9, 2, 7, 8, 8 , 9, 6, 4, 4, 1 ,

9, 6, 4, 9, 12 , 9, 7, 9, 3, 2 , 9, 7, 9, 10, 11 , 9, 11, 6, 4, 12 , 9, 11, 6, 9, 1 , 11, 4, 2,
5, 5 , 11, 4, 2, 8, 8 , 11, 6, 5, 5, 8 , 11, 6, 5, 8, 5 , 11, 7, 8, 3, 11 , 11, 7, 8, 10, 2 ,

11, 9, 11, 4, 1 , 11, 9, 11, 9, 12

#Check the calculations for h1 that do not create the zero matrix and the h1 determinant is a 
square, send these solutions to SolutionsToCheck1Part2.  Send the zero cases to 
SolutionsToCheck2Part1.

 
 h1doesntwork d :
 SolutionsToCheck1Part2 d :
 SolutionsToCheck2Part1 d :
 
 for i from 1 to nops SolutionsToCheck1Part1  do
 
    a d SolutionsToCheck1Part1 i 1 ;
    b d SolutionsToCheck1Part1 i 2 ;
    r d SolutionsToCheck1Part1 i 3 ;
 
   if h1x a, b, r mod p = 0 and h1y a, b, r mod p = 0 
      then SolutionsToCheck2Part1 d op SolutionsToCheck2Part1 ,

SolutionsToCheck1Part1 i
   
  elif member h1det a, b, r mod p, SqsListShort ='false '
      then h1doesntwork d op h1doesntwork , SolutionsToCheck1Part1 i
 
  else SolutionsToCheck1Part2 d op SolutionsToCheck1Part2 , SolutionsToCheck1Part1 i

   fi:
 od:
 h1doesntwork;
 SolutionsToCheck1Part2;
 SolutionsToCheck2Part1;

105



(17)(17)

(14)(14)

> > 

> > 

> > 

(5)(5)

> > 

(11)(11)

(19)(19)

(8)(8)

(18)(18)

> > 

2, 6, 8, 3, 2 , 2, 6, 8, 10, 11 , 2, 7, 5, 5, 5 , 2, 7, 5, 8, 8 , 2, 9, 2, 5, 8 , 2, 9, 2, 8, 5 , 4,
6, 9, 3, 11 , 4, 6, 9, 10, 2 , 4, 7, 4, 4, 12 , 4, 7, 4, 9, 1 , 4, 11, 7, 5, 8 , 4, 11, 7, 8, 5 ,

6, 2, 5, 3, 11 , 6, 2, 5, 10, 2 , 6, 4, 3, 3, 2 , 6, 4, 3, 10, 11 , 6, 9, 10, 4, 12 , 6, 9, 10,
9, 1 , 6, 11, 8, 5, 5 , 6, 11, 8, 8, 8 , 7, 2, 8, 5, 8 , 7, 2, 8, 8, 5 , 7, 4, 10, 4, 1 , 7, 4,
10, 9, 12 , 7, 9, 3, 3, 11 , 7, 9, 3, 10, 2 , 9, 2, 7, 5, 5 , 9, 2, 7, 8, 8 , 9, 6, 4, 4, 1 , 9,
6, 4, 9, 12 , 9, 7, 9, 3, 2 , 9, 7, 9, 10, 11 , 9, 11, 6, 4, 12 , 9, 11, 6, 9, 1 , 11, 4, 2, 5,
5 , 11, 4, 2, 8, 8 , 11, 6, 5, 5, 8 , 11, 6, 5, 8, 5 , 11, 9, 11, 4, 1 , 11, 9, 11, 9, 12

2, 4, 11, 4, 12 , 2, 4, 11, 9, 1 , 4, 2, 6, 4, 1 , 4, 2, 6, 9, 12 , 7, 11, 5, 3, 2 , 7, 11, 5, 10,
11 , 11, 7, 8, 3, 11 , 11, 7, 8, 10, 2

#Check that the calculations for h1 actually work.

  h1works d :
 
  for i from 1 to nops SolutionsToCheck1Part2  do
 
    a d SolutionsToCheck1Part2 i 1 ;
    b d SolutionsToCheck1Part2 i 2 ;
    r d SolutionsToCheck1Part2 i 3 ;
    x d SolutionsToCheck1Part2 i 4 ;
    y d SolutionsToCheck1Part2 i 5 ; 
    SolutionWorks d'false ';

  for j from 1 to nops InvSqRoots  do
 
    if InvSqRoots j 1 = h1det a, b, r mod p
      and InvSqRoots j 2 $h1x a, b, r mod p = x and InvSqRoots j 2 $h1y a, b, r mod p = y
      then SolutionWorks d'true '
 
      elif InvSqRoots j 1 = h1det a, b, r mod p
      and InvSqRoots j 3 $h1x a, b, r mod p = x and InvSqRoots j 3 $h1y a, b, r mod p = y
      then SolutionWorks d'true '

   fi:
 od:
 
 if SolutionWorks ='true '
      then h1works d op h1works , SolutionsToCheck1Part2 i
      else h1doesntwork d op h1doesntwork , SolutionsToCheck1Part2 i
 fi;

 od:
 h1works;
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> > 

(17)(17)

(14)(14)

> > 

> > 

> > 

(5)(5)

> > 

(20)(20)

(11)(11)

(19)(19)

(8)(8)

(18)(18)

> > 

 h1doesntwork;

2, 6, 8, 3, 2 , 2, 6, 8, 10, 11 , 2, 7, 5, 5, 5 , 2, 7, 5, 8, 8 , 2, 9, 2, 5, 8 , 2, 9, 2, 8, 5 , 4,
6, 9, 3, 11 , 4, 6, 9, 10, 2 , 4, 7, 4, 4, 12 , 4, 7, 4, 9, 1 , 4, 11, 7, 5, 8 , 4, 11, 7, 8, 5 ,

6, 2, 5, 3, 11 , 6, 2, 5, 10, 2 , 6, 4, 3, 3, 2 , 6, 4, 3, 10, 11 , 6, 9, 10, 4, 12 , 6, 9, 10,
9, 1 , 6, 11, 8, 5, 5 , 6, 11, 8, 8, 8 , 7, 2, 8, 5, 8 , 7, 2, 8, 8, 5 , 7, 4, 10, 4, 1 , 7, 4,
10, 9, 12 , 7, 9, 3, 3, 11 , 7, 9, 3, 10, 2 , 9, 2, 7, 5, 5 , 9, 2, 7, 8, 8 , 9, 6, 4, 4, 1 , 9,
6, 4, 9, 12 , 9, 7, 9, 3, 2 , 9, 7, 9, 10, 11 , 9, 11, 6, 4, 12 , 9, 11, 6, 9, 1 , 11, 4, 2, 5,
5 , 11, 4, 2, 8, 8 , 11, 6, 5, 5, 8 , 11, 6, 5, 8, 5 , 11, 9, 11, 4, 1 , 11, 9, 11, 9, 12

#Check that the h2 calculations do not create zero, the determinant is a square, and send to 
SolutionsToCheck2Part2.

 
 h2zeros d :
 h2doesntwork d :
 SolutionsToCheck2Part2 d :
 
 for i from 1 to nops SolutionsToCheck2Part1  do
 
    a d SolutionsToCheck2Part1 i 1 ;
    b d SolutionsToCheck2Part1 i 2 ;
    r d SolutionsToCheck2Part1 i 3 ;
 
   if h2x a, b, r mod p = 0 and h2y a, b, r mod p = 0 
      then h2zeros d op h2zeros , SolutionsToCheck2Part1 i
   
  elif member h2det a, b, r mod p, SqsListShort ='false '
      then h2doesntwork d op h2doesntwork , SolutionsToCheck2Part1 i
 
  else SolutionsToCheck2Part2 d op SolutionsToCheck2Part2 , SolutionsToCheck2Part1 i

   fi:
 od:
 h2zeros;
 h2doesntwork;
 SolutionsToCheck2Part2;

2, 4, 11, 4, 12 , 2, 4, 11, 9, 1 , 4, 2, 6, 4, 1 , 4, 2, 6, 9, 12 , 7, 11, 5, 3, 2 , 7, 11, 5, 10,
11 , 11, 7, 8, 3, 11 , 11, 7, 8, 10, 2
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(17)(17)

(14)(14)

> > 

> > 

> > 

> > 

> > 

(5)(5)

> > 

(11)(11)

(22)(22)

(19)(19)

(8)(8)

> > 

(18)(18)

> > 

(21)(21)

#Check that the calculations for h2 actually work.

  h2works d :
 
  for i from 1 to nops SolutionsToCheck2Part2  do
 
    a d SolutionsToCheck2Part2 i 1 ;
    b d SolutionsToCheck2Part2 i 2 ;
    r d SolutionsToCheck2Part2 i 3 ;
    x d SolutionsToCheck2Part2 i 4 ;
    y d SolutionsToCheck2Part2 i 5 ; 
    SolutionWorks d'false ';

  for j from 1 to nops InvSqRoots  do
 
    if InvSqRoots j 1 = h2det a, b, r mod p
      and InvSqRoots j 2 $h2x r mod p = x and InvSqRoots j 2 $h2y a, b, r mod p = y
      then SolutionWorks d'true '
 
      elif InvSqRoots j 1 = h2det a, b, r mod p
      and InvSqRoots j 3 $h2x r mod p = x and InvSqRoots j 3 $h2y a, b, r mod p = y
      then SolutionWorks d'true '

   fi:
 od:
 
 if SolutionWorks ='true '
      then h2works d op h2works , SolutionsToCheck2Part2 i
      else h2doesntwork d op h2doesntwork , SolutionsToCheck2Part2 i
 fi;

 od:
 h2works;
 h2doesntwork;
2, 4, 11, 4, 12 , 2, 4, 11, 9, 1 , 4, 2, 6, 4, 1 , 4, 2, 6, 9, 12 , 7, 11, 5, 3, 2 , 7, 11, 5, 10,

11 , 11, 7, 8, 3, 11 , 11, 7, 8, 10, 2

#Double check that every solution made it through the pipeline somehow.
 
 solutionsSet d convert solutions, set :
 AddInversesSet d convert AddInverses, set :
 h1worksSet d convert h1works, set :
 h1doesntworkSet d convert h1doesntwork, set :
 h2zerosSet d convert h2zeros, set :
 h2worksSet d convert h2works, set :
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(17)(17)

(14)(14)

(11)(11)

> > 

(22)(22)

> > 

> > 

(19)(19)

(8)(8)

> > 

> > 

> > 

(5)(5)

(18)(18)

> > 

> > 

 h2doesntworkSet d convert h2doesntwork, set :
 
 solutionsSet minus AddInversesSet minus h1worksSet minus h1doesntworkSet 

minus h2zerosSet minus h2worksSet minus h2doesntworkSet;
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