
ABSTRACT

MCMAHAN JR., JERRY A. Control Applications for Smart Systems Exhibiting Hysteretic
Nonlinearities. (Under the direction of Ralph Smith.)

Smart materials offer unique transduction capabilities, making them attractive for use in

actuators for a wide range of existing and emerging applications. Meeting high performance

objectives which fully utilize these capabilities requires control designs which account for the

rate-dependent hysteresis and creep inherent to the materials. Using the Homogenized Energy

Model (HEM) to quantify this behavior, this dissertation examines the problem of developing

and implementing tracking control algorithms that prescribe the output trajectory of a ferro-

electric actuator. We summarize the HEM and describe its numerical approximation. Inverse

compensation is a standard technique for systems with inputs preceded by hystere- sis oper-

ators such as Preisach or Prandtl-Ishlinskii models. By compensating for the hysteresis using

such an algorithm, design is simplified by permitting the use of linear or simplified nonlin- ear

controllers. We develop an inversion algorithm for the compensation of the HEM, providing

compensation not only for the effects of hysteresis, but also for input rate-dependence and

creep. The computational cost of the algorithm is bounded in terms of the computational cost

of computing the HEM forward in time. Simulation results demonstrate the effectiveness of

the algorithm for several variations of the HEM. While the inverse compensation algorithm

attenuates the effects of hysteresis and other nonlinear behaviors in the system, it does not

eliminate them, nor does it account for modeling error. To accommodate these non-ideal terms

in the inverse-compensated system, a sliding mode controller is designed. Sliding mode controls

specify discontinuous control laws which are capable of tracking a reference trajectory in the

presence of bounded model uncertainties like the inversion error and modeling error. Simulation

results verify the expected behavior of the resulting closed loop system. Experimental results of

a related controller for a shape memory alloy system which uses a novel method of determining

the controller parameters are also presented. The sliding mode controller achieves robust track-

ing in the sense that good tracking per- formance is achieved even in the presence of model

uncertainties as long as bounds on the uncertainties are known and high input activity due

to the discontinuous control law can be tolerated. Adaptive control takes a different approach

to dealing with uncertainty in a system. An adaptive control law assumes that a system is

adequately modeled but is uncertain due to model parameters which are imperfectly identified

or slowly-varying. By extending the state of the model to include estimates of these model pa-

rameters, an adaptation law is developed which can adjust the estimates online and yield good

tracking results. We improve upon a pre- viously developed adaptive control algorithm for sys-

tems with unknown hysteresis by adding terms to the adaptation law to accelerate convergence.



The improved convergence is verified by simulation results. The field of uncertainty quantifi-

cation has experienced rapid growth, providing many tech- niques for efficiently propagating

parametric uncertainty through a dynamic model. Until re- cently, these techniques have largely

been limited to analyzing or predicting the effects of uncertainties on model outputs. Recent

research has investigated the combination of efficient methods for uncertainty propagation using

generalized polynomial chaos (GPC) expansions with control parameterization methods. This

results in a nonlinear program which determines optimal controls that minimize some choice

of statistical norm, such as average output error or output error variance. We apply such an

approach to the tracking control of a ferroelec- tric actuator. This implementation framework

provides a first step towards using quantitative knowledge of system uncertainty to improve the

control of hysteretic smart systems, with the simulation results suggesting research directions

which may improve the usefulness of such an approach.
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Chapter 1

Introduction

Ferroelectric, ferromagnetic, and ferroelastic materials offer unique actuator, sensor, and struc-

tural capabilities for present and emerging applications. As detailed in [38] and [40], the ferro-

electric material lead zirconate titanate (PZT) is presently employed or is being considered for

nanopositioning stages, high speed valves for fuel injection, ultrasonic transducers, macro-fiber

composites for shape modification and flow control, piezomotors for camera autofocusing mech-

anisms, and drive components for nano-air vehicles. In addition to actuation capabilities, PZT

and polyvinylidene fluoride (PVDF) also provide force, pressure and distance sensing capa-

bilities. One of the many advantages of ferroelectric materials is their broadband transduction

capabilities, with applications routinely dictating kHz to MHz rates. Magnetostrictive materials

such as Terfenol-D and Galfenol are being employed or investigated for applications including

high speed milling [39] and sonar transduction. Whereas these materials provide large force and

broadband transduction capabilities, the coils required for field generation can prove prohibitive

for aerospace and aeronautic applications. Shape memory alloys (SMA) are biocompatible and

provide the capability of recovering significant strains upon heating. Present applications in-

clude vibration control [31], robotic catheters [7, 19], jet engine chevrons [16, 17], robotic hands

[26], and underwater vehicles [13]. Because SMA are actuated by thermal inputs, they exhibit

relatively slow response times with rates typically on the order of 1-100 Hz.

Despite these advantageous, the domain structures that provide all three classes of ma-

terials with unique transduction capabilities also imbue them with rate-dependent hysteresis,

creep and constitutive nonlinearities at most drive levels. Figure 1.1 illustrates this structure for

ferroelectric materials, showing the three metastable orientations the dipoles which comprising

such materials. As shown in the figure, each orientation has an associated polarization vector

P meaning the polarization due to the dipole depends on its orientation. The orientation of

the dipole is determined by the Gibbs energy in the local dipole system. Figure 1.2 illustrates

the one-dimensional Gibbs energy plotted against the the polarization, with the applied electric
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P
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Figure 1.1: The three orientations for dipoles in ferroelectric materials.

field shown above each energy landscape. There are two local minima in the Gibbs energy plot

when the applied electric field is equal to 0, each of which corresponds to a different dipole

orientation. The plots show the system initially taking on the orientation corresponding to

the left-most minimum and retaining this state as the input field increases. Once the energy

landscape is modified by increasing the input field above a critical value, the minimum cor-

responding to the present orientation of the dipole system disappears and a switch occurs to

the orientation corresponding to the remaining minimum. This new orientation is retained even

after the input field is decreased back to 0. The result is a hysterestic relationship between

the output polarization and the input electric field. Analogous physical relationships hold for

ferromagnetic and ferroelastic materials. This hysteretic and nonlinear behavior must be ac-

commodated in model-based control designs to achieve the materials’ full design and control

potential.

Real-time, model-based control applications are constrained by the need for computational

efficiency that scales proportionally with the operating rates of interest for the systems. This has

been a factor in the popularity of phenomenological models for hysteresis such as the Preisach

model and the Prandtl-Ishlinskii (PI) model (which is a special case of the Preisach model).

These models quantify hysteresis using a weighted sum of hysterons which can be efficiently

computed, making them suitable for real-time applications. However, their lack of physical

basis can complicate model calibration and requires additional modeling terms to account for

important nonlinear effects other than hysteresis, such as rate-dependence and creep.

The Homogenized Energy Model (HEM), which was originally proposed in [38] and ex-

tended in [37] to incorporate 90◦ strain effects, offers an alternative to such phenomenological

models without sacrificing computational efficiency. The HEM provides a unified framework for

characterizing creep, rate-dependent hysteresis, and constitutive nonlinearities in ferroelectric,
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Figure 1.2: Gibbs energy landscapes changing in response to an applied electric field. As the
local minimum in the energy the system currently resides in disappears, a switch to the other
orientation is forced. This new orientation is retained even after returning the applied electric
field to 0.

ferromagnetic, and shape memory alloy materials. It is a multiscale, micromechanical approach

that quantifies metastable domain, or lattice-level, behavior by combining energy principles

with the theory of thermally activated processes. The resulting lattice-level relations are ex-

tended to the macroscale by assuming that properties such as interaction and coercive fields are

manifestations of underlying densities. As detailed in [19], the physical basis for the framework

can be exploited to construct data driven parameter estimation techniques and highly efficient

implementation algorithms.

In this dissertation, we focus on designing model-based control algorithms using the HEM

for actuators constructed from ferroelectric materials.

1.1 Contributions of the Dissertation

The general objective of the control systems developed in this dissertation is to track a pre-

scribed reference trajectory in real-time using the Homogenized Energy Model (HEM) to quan-

tify the nonlinear behavior of the ferroelectric materials in the system. Since applications in-

volving ferroelectric materials can require input rates in the MHz range, we emphasize the

computational efficiency of the algorithms involved. The contributions of the dissertation by

chapter can be organized as follows.

� Computational Contributions to the HEM: Chapter 2 summarizes the HEM for
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ferroelectric materials and introduces two computational improvments, one which greatly

improves the computational speed when the inputs are slowly varying and another which

reduces the memory requirements for using the lookup-table based computational method

described in [5]. The latter is particularly crucial for the feasibility of the algorithms

described in Chapter 6. In addition, a partially exact solution to a special case of the HEM

is derived and used as a benchmark to verify the numerical techniques for computing the

HEM.

� Efficient Inverse Compensation of the HEM: Inverse compensation of hysteresis

operators, initiated in [45], permits the use of control algorithms for linear or simplified

nonlinear systems in hysteretic actuator systems. In Chapter 3 an inverse compensation

algorithm based on the bisection method is developed for the HEM. Not only does this

algorithm greatly attenuate the hysteresis, rate-dependence, and creep due to the material,

it also provides an easy-to-compute bound on the computational cost of the model in terms

of the computational cost of the forward model (i.e., of computing the HEM forward in

time).

� Sliding Mode Control of Actuator Systems Modeled With The HEM: Chapter 4

describes a sliding mode control algorithm for a ferroelectric algorithm compensated by

the inversion algorithm of Chapter 3. Simulation results verify that the sliding mode

controller is robust to inversion errors. Furthermore, a feasibility test is developed to

provide a necessary condition which must be satisfied by sinusoidal output trajectories.

This test is given in terms of a bound involving model parameters and the amplitude,

frequency, and offest of the sinusoidal output. Experimental results for a related shape-

memory alloy system are presented, validating the real-world applicability of the approach.

� Composite Adaptive Control of Unknown Hysteresis: Chapter 5 improves upon

the adaptive control described in [11], which estimates the material hysteresis parameters

online to improve tracking performance when these parameters are imperfectly identi-

fied or slowly time-varying. The improvements add a term to the adaptation law which

both increases the speed of adaptation and improves the likelihood of convergence of the

hysteresis parameter estimates to the true values. Furthermore, the implementation of

the algorithm in terms of an efficient parameterization of the hysteresis parameters is

described, resulting in improved computational efficiency.

� Optimal Control with Parameter Uncertainty: Chapter 6 describes the develop-

ment and simulation of a control law which tracks a reference trajectory in systems with

uncertain parameters. The control is optimal with respect to certain statistical costs of

the error trajectory. This algorithm uses a general polynomical chaos [48] expansion of the

4



probability distributions characterizing the uncertain parameters to formulate a nonlin-

ear programming problem which can be efficiently computed offline using standard codes.

This provides a first step towards incorporating information obtained via the techniques

of uncertainty quantification to the development of controls in hysteretic smart systems.

Chapter 7 summarizes the results of the dissertation and suggests directions for future work.
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Chapter 2

Homogenized Energy Model For

Ferroelectric Materials

The homogenized energy model (HEM) for ferroelectric materials is the basis for most of the

work in this dissertation. The role of the model is to quantify the nonlinear and hysteretic

response of the ferroelectric material to the physical system input. Although some portions

of the dissertation will discuss shape memory alloys as well, the HEM for those materials is

analogous to the ferroelectric model. As such, we focus this chapter on summarizing the HEM

for ferroelectric materials and will provide relevant details on the HEM for other materials when

necessary.

The purpose of this chapter is not to provide a detailed physical derivation of the constituent

equations for the various versions of the HEM (such a derivation can be found in [38] for the

180◦ model and [40] for the 90◦ model). The aim here is to summarize the different versions

of the HEM used in subsequent chapters in a way that highlights the common mathematical

structure in these versions and compartmentalizes their differences. After presenting the model,

methods of numerically implementing it are discussed.

2.1 Homogenized Energy Model

There are several variants of the homogenized energy model (HEM) corresponding to different

physical assumptions, but each variant has a similar overall structure. One way to express this

general structure is as an input-output system of the form

Ẋ = A(u)X +B(u) (2.1)

Y = C(u)X +D(u). (2.2)
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Here X is the internal state of the model, u is the model input, Y is the model output, A,C

are u-dependent linear operators acting on the state X, and B,D are vector-valued functions

dependent on u. As the specific examples of the model will show, X is generally an infinite-

dimensional vector distributed over variables that parameterize the local hysteretic nonlinear-

ities in the material. A and B are transition rates which depend on those same variables in

such a way that the resulting dynamic equation expresses these nonlinearities. The operator C

averages the state X against a material-dependent distribution to find the overall output as the

aggregate of local output contributions. Note the system is linear in the state X but generally

nonlinear in the input u.

2.1.1 Polarization Assuming 180◦ Dipole Switching

The first variant of the homogenized energy model [38] quantifies the output polarization along

a single axis in a ferroelectric material due to an input electric field. For this version of the

HEM, the polarization dynamics are considered as a result of the switching dynamics of the

electric dipoles which make up the material. It is assumed that these dipoles assume one of two

semistable orientations, which are oriented positively and negatively with respect to each other.

We say that this model considers only 180◦ switching, since the only two possible orientations

of the dipoles differ by an angle of 180◦.

Ferroelectric materials are made up of regions called grains. It is within a grain that a

dipole assumes either a positive or negative orientation relative to all other dipoles in the same

grain. Regions within the grain made up of dipoles aligned in one direction are called domains.

For single-crystal materials, it is sufficient to consider the entire material as one grain. For

polycrystalline materials, there are several grains. Note that the orientation of dipoles as either

positive or negative refers to the orientation relative to other dipoles in the same grain. A dipole

oriented positively in one grain does not in general have a well-defined orientation with respect

to a dipole in another grain. Each grain has some characteristic contribution to the polarization

of the material which is what motivates the approach of averaging these contributions to find

the total polarization in the material.

Each dipole orientation within a grain has a characteristic value of polarization associated

to it. This motivates the definition of the state variable x+. This variable takes values in [0, 1]

and represents fraction of dipoles within the grain that are positively oriented. We also define

the state variable x− corresponding to the fraction of negatively oriented dipoles. The state

dynamics are described by the evolution equation

ẋ+ = −p+(E)x+ + p−(E)x−
ẋ− = p+(E)x+ − p−(E)x−

(2.3)
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where p+ is the rate at which positively-oriented dipoles transition to negatively-oriented dipoles

and p− is defined similarly. These transition rates depend on the input electric field E. We

will define several possible functions for p+ and p− that can all be qualitatively described as

non-negative functions which switch from a high value to a low value (or vice-versa) at some

particular value of E which depends on a parameter that we will denote Fc and call the critical

field value.

Since the 180◦ model assumes only positive or negative orientations for the dipoles, these

state variables satisfy x+ +x− = 1. This can be used to reduce the order of (2.3) by substituting

x− = 1− x+ and rearranging terms to obtain

ẋ+ = −
[
p+(E) + p−(E)

]
x+ + p−(E). (2.4)

Each grain in the material has a particular value of Fc. To quantify the switching dynamics

for the entire material, the state x+ is distributed along the continuous variable Fc. In addition,

local effects in the material which augment the electric field are quantified by distributing

the state along the continuous variable EI , which we call the interaction field. The evolution

equation for the distributed state can be written explicitly as

ẋ+(t, EI , Fc) =−
[
p+(E(t) + EI , Fc) + p−(E(t) + EI , Fc)

]
x+(t, EI , Fc)

+ p−(E(t) + EI , Fc). (2.5)

The dot notation here still denotes differentiation with respect to the time variable t. Note that

EI is added to E in the transition rates which explicitly describes the effect of this variable.

How Fc affects the transition rates depends on which transition rate definition is used.

The polarization is found from the dipole fraction state from the equation

P (t, EI , Fc) =
E(t)

η
− PR + 2PRx+(t, EI , Fc) (2.6)

where η is the inverse susceptibility of the material and PR is the remanence polarization (i.e.,

the polarization resulting when in each grain the dipoles are divided equally between positive

and negative orientations). This equation is derived from physical arguments which involve

the minimization of a Gibbs energy functional and the assumption that the polarization for

positively-oriented dipoles is equal in magnitude but opposite in sign to that of negatively-

oriented dipoles (see [38]).

To find the total polarization in the material, the distributed polarization is averaged against

a material-dependent product distribution νI(EI)νc(Fc). The distributions νI(EI) and νc(Fc)

weight the various values of EI and Fc according to the relative contribution of local regions in
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the material whose dynamics corresponding to those values. The resulting polarization is

P (t) =
E(t)

η
− PR + 2PR

∫ ∞
0

∫ ∞
−∞

x+(t, EI , Fc)νI(EI)νc(Fc) dEI dFc. (2.7)

In terms of the general input-output system given for describing all variants of the HEM,

the state X is equal to the infinite-dimensional vector x+(EI , Fc), the input u is the electric

field E, and the output Y is the polarization P . The terms A,B,C and D are defined by

[A(u)X](EI , Fc) = −
[
p+(u+ EI , Fc) + p−(u+ EI , Fc)

]
X(EI , Fc),

[B(u)](EI , Fc) = p−(u+ EI , Fc),

C(u)X = 2PR

∫ ∞
0

∫ ∞
−∞

X(EI , Fc)νI(EI)νc(Fc) dEI dFc,

D(u) =
u

η
− PR.

180◦ HEM Thermally Activated Processes Transition Rates

The transition rates p+, p− in the evolution equation (2.5) can be defined in several ways

depending on what assumptions are reasonable for the experimental design in which the model

is to be applied. The first definition is derived from the theory of thermally activated processes

as described in [40]. Here the likelihood of a transition from a positive orientation to a negative

orientation (and vice-versa) is found as the minimizer of the internal, kinetic, entropic, and

electrostatic energies in the dipoles using statistical arguments. This likelihood is approximated

as a continuous function and multiplied by the frequency at which the dipoles attempt to switch

orientation (1/τ) to obtain the transition rates

p+(Ee, Fc) =
γ1

erfcx (γ2(−Ee − Fc))
, p−(Ee, Fc) =

γ1

erfcx (γ2(Ee − Fc))
, (2.8)

where Ee = E + EI is the effective electric field and

γ1 =
1

βτ

√
2

π
, γ2 =

1

βη

√
2, β =

√
kT

ηV
. (2.9)

Here τ is the relaxation time of the material, η is the inverse susceptibility, and β is conveniently

treated as a single parameter although it can be expressed as a product of the temperature T ,

Boltzmann’s constant k, the reference volume V , and η (descriptions of these parameters are

provided in [38]). For this definition of the transition rates, Fc represents the value of the electric

field at which a dipole switches from a negative orientation to a positive orientation (and −Fc
for a switch from positive to negative). Note we are using the notation Fc to highlight the
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analogous role of the parameter across the variations of the model. In [38] and other sources,

the parameter is denoted Ec and called the coercive field.

180◦ HEM Activation Energy Transition Rates

While the above definition of the transition rates has the advantage of having a direct phys-

ical motivation, extension of these ideas to more involved models (e.g., those quantifying 90◦

switching or polarization in more than one dimension) is difficult. This motivates an alternative

definition of the transition rates based on the activation energies ∆G, which are the differences

between stable and unstable equlitbria in the thermodynamic energy for the dipoles. These

activation energies are defined in terms of the thermodynamic driving force

F−(Ee) = 2EePR (2.10)

F+(Ee) = −2EePR. (2.11)

The transition rates are defined as

p−(Ee, Fc) =


1
τ , F−(Ee) > Fc

1
τ exp

[
−γ Fc4

(
1− F−(Ee)

Fc

)2
]
, |F−(Ee)| ≤ Fc

1
τ exp(−γFc), F−(Ee) < −Fc

(2.12)

p+(Ee, Fc) =


1
τ , F+(Ee) > Fc

1
τ exp

[
−γ Fc4

(
1− F+(Ee)

Fc

)2
]
, |F+(Ee)| ≤ Fc

1
τ exp(−γFc), F+(Ee) < −Fc

(2.13)

where γ = V
kT . To obtain insight into the nature of these functions, it is helpful to write these

transition rates in terms of unnormalized Gaussian functions g(x; a, b, c) = a exp(− (x−b)2
2c2

),

where b is the center of g (analogous to the mean in the normalized case) and c parameterizes

the width of g (analogous to the standard deviation in the normalized case). By reorganizing

the terms, we can write

p−(Ee, Fc) = g (sat (F−(Ee), Fc) ; a, b, c) , p+(Ee, Fc) = g (sat (F+(Ee), Fc) ; a, b, c) , (2.14)

where

a =
1

τ
, b = Fc, c =

√
2Fc
γ

(2.15)
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and the saturation function is defined as sat(x, L) = min(max(−L, x), L). This shows the tran-

sition rates can be interpreted as function a which saturates to a maximum value 1
τ and a

minimum value 1
τ exp(−γFc) outside some interval, with a Gaussian function connecting those

two values within the interval. The standard deviation parameter, c, shows that larger values

of Fc result in a less steep transition from the maximum saturation value to the minimum

saturation value. We also see that since p+(Ee, Fc) = p−(−Ee, Fc), as a function of Ee, p+(Ee)

is just a reflection of p− across the y−axis.

180◦ HEM Transition Rates Neglecting Thermal Effects

Both definitions of the transition rates presented thus far assume thermal effects must be

taken into account in the evolution of the dipole fraction state. For experimental designs where

thermal effects can be neglected, the transition rates can be interpreted as a sharp transition

between a regime where transitions are not occurring and a regime where transitions occur at

the maximum rate. The functions for this definition are

p− =


1
τ , Ee > Fc

0, |Ee| ≤ Fc
0, Ee < −Fc,

p+ =


0, Ee > Fc

0, |Ee| ≤ Fc
1
τ , Ee < −Fc.

(2.16)

As shown in [38], this can be considered as a limiting case of the definition derived from the

theory of thermally activated processes as the temperature T goes to 0. Similar arguments can

be made for the definition based on the activation energy since γ →∞ as T → 0, which results

in the minimum value 1
τ exp(−γFc) → 0 and the standard deviation parameter c → 0. Unlike

the previous cases, the transition rates as a function of Ee are discontinuous.

180◦ HEM Evolution Rule For Slowly-Varying Inputs Neglecting Thermal Effects

Finally, in regimes where thermal effects are negligible and the input rate is slow compared

with the transition rate 1
τ (i.e., the frequency content of the input signal contains only sinusoids

with periods much greater than τ), it is possible to approximate the evolution of the dipole

phase fractions without a differential equation. In this case, it is assumed any change in the

input results in the dipole fraction state immediately attaining equilibrium for the evolution

equation using the transition rates which assume no thermal effects. Solving ẋ+(EI , Fc) =

0 = − [p+(E + EI , Fc) + p−(E + EI , Fc)]x+(EI , Fc) + p−(E + EI , Fc) to find the equilibiria
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e(E,EI , Fc), we find

e(E,EI , Fc) =


1, E + EI > Fc

[0, 1], |E + EI | ≤ Fc
0, E + EI < −Fc.

(2.17)

This means outside of the range |E + EI | ≤ Fc there is a unique equilibrium value of either 1

or 0. Within the range |E + EI | ≤ Fc, ẋ+ = 0 is always true so every attainable value of x+

(i.e., any value in the closed interval [0, 1]) is an equilibrium and the state will not change. This

allows the following evolution rule to be defined over any time interval [t1, t2] over which the

input is monotonic.

x+(t2, EI , Fc) =


1, E(t2) + EI > Fc

x+(t1, EI , Fc), |E(t2) + EI | ≤ Fc
0, E(t2) + EI < −Fc

. (2.18)

2.1.2 Polarization And Strain Assuming 90◦ Dipole Switching

The other variant of the homogenized energy model for ferroelectric materials we will consider,

introduced in [40], quantifies the output polarization and strain along a single axis due to the

input electric field and stress. Unlike the 180◦ polarization-only version of the HEM, the po-

larization and strain 90◦ version assumes dipole switching occurs between three orientations,

oriented positively, negatively, and 90◦ with respect to each other. Accurately modeling the ma-

terial strain necessitates this approach, as 90◦ switching effects on the strain are more significant

than that of 180◦ switching.

We once again define state variables to represent the fraction of dipoles in each orientation,

only now we must add the variable x90 for the fraction of dipoles in the 90◦ orientation. The

evolution equation for this state is

ẋ− = −
[
p−+(E, σ) + p−90(E, σ)

]
x− + p90−(E, σ)x90 + p+−(E, σ)x+ (2.19)

ẋ90 = p−90(E, σ)x− −
[
p90+(E, σ) + p90−(E, σ)

]
x90 + p+90(E, σ)x+ (2.20)

ẋ+ = p−+(E, σ)x− + p90−(E, σ)x90 +
[
p+−(E, σ) + p+90(E, σ)

]
x+, (2.21)

where pαβ for α, β either +,−, or 90 is the transition rate from the orientation α to the

orientation β. Note the transition rates now depend on both the input electric field E and

the input stress on the material σ. Practical ferroelectric actuators are typically operated in a

regime which allows only 90◦ switching so we will generally assume that p−+ = p+− = 0. Using
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this assumption along with the conservation law x− + x90 + x+ = 1 the evolution equation can

be reduced to

ẋ− = −
[
p−90(E, σ) + p90−(E, σ)

]
x− − p90−(E, σ)x+ + p90−(E, σ)

ẋ+ = −p90+(E, σ)x− −
[
p90+(E, σ) + p+90(E, σ)

]
x+ + p90+(E, σ).

(2.22)

Distributing the state along the interaction field EI and the critical field value Fc, this becomes

ẋ−(t, EI , Fc) = −
[
p−90

(
σ(t), E(t) + EI , Fc

)
+ p90−

(
σ(t), E(t) + EI , Fc

)]
x−(t, EI , Fc)

−p90−
(
σ(t), E(t) + EI , Fc

)
x+(t, EI , Fc) + p90−

(
σ(t), E(t) + EI , Fc

)
ẋ+(t, EI , Fc) = −

[
p90+

(
σ(t), E(t) + EI , Fc

)
+ p+90

(
σ(t), E(t) + EI , Fc

)]
x+(t, EI , Fc)

−p90+

(
σ(t), E(t) + EI , Fc

)
x−(t, EI , Fc) + p90+

(
σ(t), E(t) + EI , Fc

)
.

(2.23)

The polarization and strain are found from the dipole fraction states via physical arguments

similar to the 180◦ case. The equations for the distributed polarization P and distributed strain

ε are

P (t, EI , Fc) = χσE(t) +
[
dσ(t) + PR

][
x+(t, EI , Fc)− x−(t, EI , Fc)

]
(2.24)

ε(t, EI , Fc) = sEσ(t) + ε90
R + dE(t)

[
x+(t, EI , Fc)− x−(t, EI , Fc)

]
+ε∆

R

[
x+(t, EI , Fc) + x−(t, EI , Fc)

]
,

(2.25)

where χσ is the ferroelectric susceptibility at constant stress, sE is the elastic compliance at

constant electric field, ε90
R is the remanence strain for the 90◦ oriented dipoles, ε∆

R = ε+
R − ε90

R

is the difference between the remanence strain for the positively-oriented dipoles (i.e., ε+
R) and

ε90
R , PR is the remanence polarization, and d is the piezoelectric constant. Note that this form of

the model is derived from the equations given in [40] which assign values dα, P
α
R , ε

α
R for each of

the dipole orientations α = +,−, 90 by using the physical assumptions d = d+ = −d−, d90 = 0

for the piezoelectric constant, ε+
R = ε−R for the remanence strain, and PR = P+

R = −P−R , P 90
R = 0

for the remanence polarization.

As with the 180◦ case, the total polarization and total strain in the material are found

by averaging the distributed quantities against the material dependent product distribution
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ν(EI , Fc) = νI(EI)νc(Fc). The equations for this are

P (t) = χσE(t) +
[
dσ(t) + PR

] ∫ ∞
0

∫ ∞
−∞

[
x+(t, EI , Fc)− x−(t, EI , Fc)

]
ν(EI , Fc)dEI dFc

(2.26)

ε(t) = sEσ(t) + ε90
R + dE(t)

∫∞
0

∫∞
−∞

[
x+(t, EI , Fc)− x−(t, EI , Fc)

]
ν(EI , Fc)dEI dFc

+ε∆
R

∫∞
0

∫∞
−∞

[
x+(t, EI , Fc) + x−(t, EI , Fc)

]
ν(EI , Fc)dEI dFc.

(2.27)

In terms of the general input-output system given for describing all variants of the HEM, the

state X is equal to the infinite-dimensional vector X(EI , Fc) =
[
x−(EI , Fc) x+(EI , Fc)

]T
. The

input u is the vector whose components are the input field and input stress, u =
[
u1 u2

]T
=[

E σ
]T

. The output Y is the vector whose components are the polarization and strain, Y =[
P ε

]T
. The terms A,B,C and D are defined as follows:

[A(u)X](EI , Fc) = −
[
p−90

(
u,EI , Fc

)
+ p90−

(
u,EI , Fc

)
p90−

(
u,EI , Fc

)
p90+

(
u,EI , Fc

)
p+90

(
u,EI , Fc

)
+ p90+

(
u,EI , Fc

)]X(EI , Fc)

[B(u)](EI , Fc) =

[
p90−

(
u,EI , Fc

)
p90+

(
u,EI , Fc

)]

C(u)X =

[
−du2 − PR du2 + PR

−du1 + ε∆
R du1 + ε∆

R

]∫ ∞
0

∫ ∞
−∞

X(EI , Fc)ν(EI , Fc) dEI dFc

D(u) =

[
χσ 0

0 sE

]
u+

[
0

ε90
R

]
,

The transition rates above are written pαβ
(
u,EI , Fc

)
= pαβ

(
u2, u1 + EI , Fc

)
for brevity.

Remark: As noted before, the 90◦ model has both an electric field input E(t) and a stress

input σ(t). All of our applications, however, will assume a constant pre-stress σ(t) = σ0. This

effectively reduces the stress input to a model parameter and allows for the treatment of the

model as a single-input system (i.e., u(t) = E(t)). Except for the definition of the transition

rates below, the remainder of the dissertation will always assume this when discussing the 90◦

model.
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90◦ HEM Activation Energy Transition Rates

For the 90◦ case, transition rates derived via the theory of thermally activated processes are not

as efficient due to the need to compute the minima of higher-dimensional energy functionals.

The activation energy formulation, however, generalizes without much complication. Here we

summarize the formulation in [40], taking advantage of physical assumptions on the parameters

to simplify some of the formulas. The thermodynamic driving forces in the 90◦ case are

F+90(Ee, σ) = −(dσ + PR)Ee − ε∆
Rσ, F90+(Ee, σ) = −F+90(Ee, σ), (2.28)

F−90(Ee, σ) = (dσ + PR)Ee − ε∆
Rσ, F90−(Ee, σ) = −F−90(Ee, σ), (2.29)

where Ee = E+EI is the effective input field and the subscript 90+ corresponds to transitions

from the 90◦ orientation to the positive orientation (and similar for the rest). Thus the thermo-

dynamic driving force is a bilinear function of the effective field and the input stress. We have

not specified the thermodynamic driving force for 180◦ dipole switching, since we will always

assume that only 90◦ dipole switching takes place.

The transition rates are defined as

pαβ(Ee, Fc) =


1
τ , Fαβ(Ee) > Fc

1
τ exp

[
−γ Fc4

(
1− Fαβ(Ee)

Fc

)2
]
, |Fαβ(Ee)| ≤ Fc

1
τ exp(−γFc), Fαβ(Ee) < −Fc

(2.30)

for each of the subscripts α, β assigned one of +,−, 90 and γ as in the 180◦ case. Like the 180◦

case, it is possible to write the rates in the form

pαβ(Ee, Fc) = g

(
sat (Fαβ(Ee), Fc) ;

1

τ
, Fc,

√
2Fc
γ

)
, (2.31)

where sat(x, L) = min(max(−L, x), L) and g(x; a, b, c) = a exp(− (x−b)2
2c2

) is an unnormalized

Gaussian function.

90◦ HEM Transition Rates Neglecting Thermal Effects

In cases where the thermal energy in the system can be neglected, the transition rates for the

90◦ case can be defined using the activation energy transition rates and considering the limiting
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case where γ → 0. The result is

pαβ(Ee, Fc) =


1
τ , Fαβ(Ee) > Fc

0, |Fαβ(Ee)| ≤ Fc
0, Fαβ(Ee) < −Fc

(2.32)

for each of the subscripts α, β assigned one of +,−, 90.

We remark that it is also possible to define an evolution rule for slowly-varying inputs

neglecting thermal effects similar to the one for the 180◦ case. Since this formulation will not

be used, we omit it.

Dipole Fraction Densities

The densities, νI and νc, which weight the distributed dipole fraction state can be represented in

multiple ways. In this work, we approximate the densities as a weighted sum of normal densities

(corresponding to νI) and lognormal densities (corresponding to νc). Specifically, we set

νI(EI) = c1

Kα∑
j=1

αjϕj (EI) , ϕj (EI) =
1

σjI
√

2π
e−E

2
I /2(σ

j
I)

2

νc(Fc) = c2

Kβ∑
k=1

βkφk (Fc) , φk (Fc) =
1

σkcFc
√

2π
e−[ln(Fc)−µc]2/2(σkc )

2

(2.33)

where the normalizing constants

c1 =

Kα∑
j=1

αj

−1

, c2 =

Kβ∑
k=1

βk

−1

(2.34)

ensure the representations integrate to unity. This reduces the representation of the densities

to the parameter set σjI , αj , σ
k
c , µc, βk, with 1 ≤ j ≤ Kα and 1 ≤ k ≤ Kβ.

2.1.3 Summary of the Homogenized Energy Model Components

Table 2.1 provides a summary of the elements of the homogenized energy model for the 180◦

and 90◦ cases. Note that although we indicate that χσ does not belong to the 180◦ model and

η does not belong to the 90◦ model, these parameters are actually inverses of each other and

so represent the same quantity. We also note it is more accurate for the 90◦ model to include

separate relaxation times τ90 and τ180 for 90◦ and 180◦ switching. Since we will always assume

90◦ switching only, we disregard this.
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Table 2.1: Summary of the Ferroelectric Homogenized Energy Model.

Symbol Description 180◦ Model 90◦ Model

E input electric field X X
σ input stress X
P ouput polarization X X
ε output strain X
x+ positive dipole fraction X X
x− negative dipole fraction X X
x90 90◦ dipole fraction X
νI interaction field distribution X X
νc coercive field distribution X X
τ relaxation time X X
η inverse susceptibility X
χσ susceptibility at constant stress X
sE elastic compliance at constant electric field X
d piezoelectric constant X
PR remanence polarization X X
ε∆
R difference in positive and 90◦ remanence strain X
ε90
R 90◦ remanence strain X
V reference volume X X
T ambient temperature X X

2.2 Numerical Implementation

An overview of the numerical evaluation of the homogenized energy model at a particular time

t = ti+1 is as follows.

1. A quadrature rule is chosen for numerically approximating the integrals in the definition

of the operator C(u)X. This determines a set of points (EjI , F
k
c ), where 1 ≤ j ≤ NI , 1 ≤

k ≤ Nc, on which the infinite-dimensional state X(t, EI , Fc) is evaluated.

2. Using the initial state Xi
j,k = X(ti, EjI , F

k
c ), the control input at time ti+1, ui+1, and the

evolution equation Ẋ = A(u)X + B(u), an ODE solver is used to numerically evaluate

the state at time t = ti+1, Xi+1
j,k .

3. Using the state at time t = ti+1, Xi+1
j,k , the previously-mentioned quadrature rule is

used to numerically evaluate the integrals in the definition of the operator C(u)X. From

this result along with the the control input at time ti+1, ui+1, and the output operator

Y = C(u)X +D(u), the output at time t = ti+1, Y i+1 is determined.
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We will often refer to this as a forward evaluation of the model, as we are solving for the next

output point forward in time. The above steps show the numerical evaluation of the model

consists of two distinct steps. We call these the numerical evolution step (i.e., computation of

Xi+1
j,k ) and the numerical integration step (i.e., computation of Y i+1 from Xi+1

j,k ). We discuss

strategies specific to each of these steps below.

2.2.1 Numerical Evolution

We will assume the quadrature rule has already been chosen and the associated quadrature

points (EjI , F
k
c ) are known. The task of the ODE solver at each time step ti+1 is to evaluate

Xi+1
j,k for each 1 ≤ j ≤ NI and 1 ≤ k ≤ Nc. In general, we will use an implicit Euler scheme to

evolve the state variable. This scheme approximates the state Xi+1
j,k using the relation

X(ti+1, EjI , F
k
c ) = X(ti, EjI , F

k
c ) + ∆tẊ(ti+1, EjI , F

k
c )

⇒ Xi+1
j,k = Xi

j,k + ∆tAj,k(u
i+1)Xi+1

j,k + ∆tBj,k(u
i+1) (2.35)

where ∆t = ti+1 − ti is the time step and Aj,k(u
i+1) refers to the operator A evaluated at

(EjI , F
k
c ) so that it becomes a function of ui+1, the input at time ti+1 (similar for Bj,k(u

i+1)).

This equation can be solved to obtain

⇒ Xi+1
j,k =

[
I −Aj,k(ui+1)∆t

]−1
[Xi

j,k + ∆tBj,k(u
i+1)] (2.36)

which computes Xi+1
j,k as a function of ui+1 and the initial state Xi

j,k. Here I denotes the identity.

For the 180◦ model, I, Aj,k(u
i+1), Bj,k(u

i+1) ∈ R are real scalars so that computing (2.36) re-

quires NINc floating-point operations (flops). For the 90◦ model, I, Aj,k(u
i+1) ∈ R2×2 are matri-

ces and Bj,k(u
i+1) ∈ R2×1 is a vector so that computing (2.36) requires 4NINc flops. These val-

ues for the computational cost ignores the work involved in computing Aj,k(u
i+1),∆tBj,k(u

i+1)

and the inverse
[
I −Aj,k(ui+1)∆t

]−1
, which is justified by the lookup-table methods described

below.

A Memory-Efficient Look-up Table Algorithm

Computation of (2.36) requires the evaluation of Aj,k(u) and Bj,k(u) as functions of u, as

well as the inverse [I −Aj,k(u)∆t]−1. Straight-forward evaluation of Aj,k(u) and Bj,k(u) using

standard mathematical libraries can be a significant computational bottleneck as these functions

require at least NINc (for 180◦) or 4NINc (for 90◦) evaluations of the transition rate functions.

Depending on which transition rates are used, these functions require arithmetic comparison,

exponentiation, and/or evaluation of the scaled complementary error function erfcx, so this can

lead to significant slow-down. The approach detailed in [5] exploits the state-linearity of the
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Entry A

Entry B

Naive Storage

Entry B

Entry A

Efficient Storage

0

u1

Fc

EI

u1 +∆u

Figure 2.1: Illustration of efficient look-up table storage. Naive storage keeps samples the size of
the entire integration grid for each look-up table entry. Efficient storage eliminates redundancy
by keeping only parts of the sample which differ from adjacent look-up table entries.

evolution equation by using look-up tables to compute these functions. With this approach, the

input is restricted to some range (e.g., 0 ≤ u ≤ umax) and discretized into K equally spaced

values

u1 = 0, u2 = ∆u, . . . , uK−1 = (K − 2)∆u, uK = (K − 1)∆u,

where ∆u is the spacing between input points. We call the set of discrete input points the

quantized input set. Now a table of values for [I −Aj,k(u)∆t]−1 and ∆tBj,k(u) is computed

offline for each ul in the quantized input set and stored as a table indexed by l. To evaluate

these functions for an input, u, the value of ul in the quantized input set which is closest

to u is found and the corresponding table values are read in. This reduces the computation of

[I −Aj,k(u)∆t]−1 and ∆tBj,k(u) to a memory-access, so that the NINc or 4NINc flops involved

in computing (2.36) are essentially the only costs on most computing platforms.

One concern with this approach is that the lookup tables for a naive implementation

can consume excessive amounts of memory. To see this, consider that for an input value ul,

[I −Aj,k(u)∆t]−1 and ∆tBj,k(u) each have NINc real values in the 180◦ case so that storing

each of these values for all K members of the quantized input set results in 2KNINc total

values.

A computational strategy which addresses this problem is to arrange the look-up tables to

exploit the structure of the dipole fraction evolution equation. Recall that all transition rates
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are dependent on Ee = EI + u and Fc. Since the components of A(u) and B(u) are sums and

difference of the transition rates, we can write A(Ee, Fc) = A(EI + u, Fc) and B(Ee, Fc) =

B(EI + u, Fc) to emphasize the resulting dependence of A and B on Ee. Taking Ee = EI as a

reference frame, this indicates the input u translates A(EI +u, Fc) and B(EI +u, Fc) along the

Ee axis. If the quadrature points EjI are equally spaced, say Ej+1
I = EjI + ∆u, then

A(EjI + u+ ∆u, F kc ) = A(Ej+1
I + u, F kc ), B(EjI + u+ ∆u, F kc ) = B(Ej+1

I + u, F kc ).

If the input quantization width is equal to ∆u, this implies Aj,k(ul+1) = Aj+1,k(ul) for 1 ≤
j ≤ NI − 1 and 1 ≤ k ≤ Nc. So if the complete table for values of Aj,k(ul) is available, the

table for ul+1 only needs to add the values for ANI ,k(ul+1). In other words, once a single table

of NINc values is computed for the lowest value u0 in the quantized input set, each increment

of the input requires only an additional Nc values, rather than the NINc of the naive method.

See Figure 2.1 for an illustration. For the 180◦ model using double-precision floating-point, this

requires 16(NI +K − 1)Nc bytes and for the 90◦ model 48(NI +K − 1)Nc. This is a reduction

from cubic growth to quadratic growth in terms of the model resolution parameters.

The approach described above does not allow the input resolution to exceed that of the

quadrature grid for the EI variable. That is, ∆u = ul+1 − ul must be positive integer mul-

tiple of ∆EI = Ej+1
I − EjI . To allow for the input resolution to be finer than that of the EI

grid, we assume L∆u = ∆EI for some positive integer L. Then for increments in the input

of size L∆u, we have the same relation as above. This means we can construct a table for

u1, uL+1, u2L+1, . . . , u(J−1)L+1 which has the same storage requirements as above with K re-

placed by J , giving us 16(NI + J − 1)Nc bytes or 48(NI + J − 1)Nc bytes depending on the

model (J is the number of input points in the quantized input set starting from u1 which are

spaced apart by ∆EI). We can compute a similar table starting from u2, another starting from

u3, and so on up to uL, meaning there are L such tables. Thus the total memory requirements

for the two model types are 16(NI + J − 1)NcL and 48(NI + J − 1)NcL bytes. This is again

cubic growth, but it should be noted that JL plays the same role as K in the earlier formulas

in that it is inversely proportional with the resolution of the input.

Table 2.2 compares the memory usage and input resolution for each of the lookup table

algorithms. The memory usage is shown for both the 180◦ and 90◦ models and the input

resolution is given for some typical parameters for PZT. The first row refers to the naive look-

up table implementation and the following rows refer to the algorithms discussed above. The

table shows an order of magnitude improvement in memory efficiency when using the first

algorithm described compared to the naive implementation with only a slight cost in input

resolution. The last row shows that by using the last algorithm described, the input resolution

cost can be eliminated (and in fact improved upon) while still significantly reducing the memory
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Table 2.2: Comparison Of Memory Requirements For Different Look-up Table Structures.

Algorithm NI Nc K J L Resolution 180◦ 90◦

O(NINcK) 40 40 100 - - 40 kV/M 2.44 MB 7.32 MB
O
(
(NI +K − 1)Nc

)
40 40 100 - - 50 kV/M 86.9 kB 261 kB

O
(
(NI + J − 1)NcL

)
40 40 - 100 4 12.5 kV/M 348 kB 1.081 MB

requirements.

Remark: The approach described above assumes a quadrature rule employing a uniform grid

on the EI axis. A similar approach can be applied for quadrature rules employing non-uniform

grids, but may result in non-uniform approximation errors.

Look-up Table Indexing

There are several ways to index the look-up tables as described above. We describe one such

scheme here to provide a concrete example here for the purpose of illustration. Suppose NI =

2, Nc = 3, J = 2, L = 3,K = JL = 6 and consider the 180◦ case where the values to be

tabulated are scalars. Let cj,kl =
[
I −A(j∆EI + l∆u, F kc )∆t

]−1
. Note that the first variable is

the effective field Ee (i.e., Ee = j∆EI + l∆u used in the transition rates which make up A) and

by definition, L∆u = ∆EI . These coefficients can be arranged in the grid:

c1,1
1 c1,1

2 c1,1
3

c1,2
1 c1,2

2 c1,2
3

c1,3
1 c1,3

2 c1,3
3

c2,1
1 c2,1

2 c2,1
3

c2,2
1 c2,2

2 c2,2
3

c2,3
1 c2,3

2 c2,3
3

c3,1
1 c3,1

2 c3,1
3

c3,2
1 c3,2

2 c3,2
3

c3,3
1 c3,3

2 c3,3
3


.

Note that the horizontal lines divide increments in Ee of size ∆EI (i.e., increments of the j

index) and the columns divide increments in Ee of size ∆u (i.e., increments of the l index). Also

note the number of coefficients is 27, which agrees with the formula for the number of entries

required, (NI + J − 1)NcL. To determine the coefficients corresponding to the evaluation of an

21



admissible input u1 ≤ u ≤ uK , use rounding to compute the following indices.

i = round

(
u− u1

∆u

)
+ 1, l = i mod L, j =

i− l
J

+ 1,

where round is the function which rounds a real number to the nearest integer and i mod L

is the modulo operation where i = nL + (i mod L) for some integer n. This results in the

assignment

[I −A1,1(u)∆t]−1 = cj,1l , [I −A1,2(u)∆t]−1 = cj,2l , [I −A1,3(u)∆t]−1 = cj,3l ,

[I −A2,1(u)∆t]−1 = cj+1,1
l , [I −A2,2(u)∆t]−1 = cj+1,2

l , [I −A2,3(u)∆t]−1 = cj+1,3
l .

Notice that this assignment always finds the first element cj,1l and reads in the next five entries

directly below this element in the grid. This pattern allows for the tables to be arranged in

a performance-friendly way in memory (i.e., a column-wise arrangement in memory allows

sequential access).

This grid can be generalized for other any choice of NI , Nc, J , and L. The number of columns

equals L, the number of rows equals JNc, and the indices increment according to the pattern

established in the example.

2.2.2 Numerical Integration

Numerical evaluation of the operator Y = C(u)X +D(u) requires numerical approximation of

the integrals
∫∞

0

∫∞
−∞X(t, EI , Fc)νI(EI)νc(Fc) dEI dFc which appear in the C(u) term. For the

180◦ case,X(t, EI , Fc) is a scalar value at each (EI , Fc) corresponding to x+(t, EI , Fc) whereas in

the 90◦ case, each (EI , Fc) has two scalar components, corresponding to the phase fractions for

x+(t, EI , Fc) and x−(t, EI , Fc). Numerical approximations of the integrals are computed using

Gaussian quadrature on each component. We will briefly summarize the Gaussian quadrature

applied to the homogenized energy model assuming a scalar X(t, EI , Fc) as with the 180◦ model.

The only difference for the 90◦ model is that the quadrature must be performed on x−(t, EI , Fc)

as well.

Gaussian quadrature approximates an integral using the formula
∫ b
a f(z) dz ≈∑N

j=1wjf(zj),

where wj are called the quadrature weights and zj are called the quadrature grid points. A par-

ticular quadrature rule is defined by associating a set of quadrature weights with a quadrature

grid (i.e., a set of quadrature grid points). There are numerous known quadrature rules derived

by finding weights such that the approximation results in zero error for f in the span of some

some basis of polynomials.

To apply a quadrature rule to approximate
∫∞

0

∫∞
−∞X(t, EI , Fc)νI(EI)νc(Fc) dEI dFc, we

must choose a finite limits of integration for EI and Fc which approximate the integral to a
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desired accuracy. Since we are using a weighted sum of normal densities to approximate νI(EI)

and a weighted sum of lognormal densities to approximate νc(Fc), it is convenient to use the

the standard deviation parameters σjI and σkc as a guide for choosing an appropriate range RI

for EI and Rc for Fc. This yields the approximation∫ ∞
0

∫ ∞
−∞

X(t, EI , Fc)νI(EI)νc(Fc) dEI dFc ≈
∫ Rc

0

∫ RI

−RI
X(t, EI , Fc)νI(EI)νc(Fc) dEI dFc.

(2.37)

Now assume a NI -point quadrature rule with weights wj and grid points EjI has been chosen

for integration along EI as well as a Nc-point quadrature rule with weights vk and grid points

F kc for integration along Fc. Following the approach in [38], we set Xi
j,k = X(ti, EjI , F

k
c ) and

represent the sampled dipole phase fraction with the matrix

X =


Xi

1,1 · · · Xi
1,Nc

...
...

Xi
NI ,1

· · · Xi
NI ,Nc

 . (2.38)

The quadrature weights are combined with the sampled densities νjI = νI(E
j
I ), ν

k
c = νc(F

k
c ) into

vectors

W T =
[
w1ν

1
I · · · wNIν

NI
I

]
, V T =

[
v1ν

1
c · · · vNcν

Nc
c

]
.

Using this representation, the integral can be approximated as∫ ∞
0

∫ ∞
−∞

X(ti, EI , Fc)νI(EI)νc(Fc) dEI dFc ≈W TXV. (2.39)

Note that direct implementation of the quadrature using the representation W TXV requires

NINc + NI , assuming XV is evaluated first and the result is multiplied by W T . A slight

computational improvement can be made by representing the dipole phase fraction as the

vector

XT
vec =

[
Xi

1,1 · · · Xi
1,Nc

Xi
2,1 · · · Xi

2,Nc
· · · Xi

NI ,Nc

]
(2.40)

and combining all the quadrature weights and distribution samples into the single vector

UT =
[
w1v1ν

1
I ν

1
c · · · w1vNcν

1
I ν

Nc
c w2v1ν

2
I ν

1
c · · · w2vNcν

2
I ν

Nc
c · · · wNIvNcν

NI
I νNcc

]
.

(2.41)
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Then W TXV = UTXvec, but direct implementation of UTXvec requires only NINc flops.

2.2.3 Fast Evolution Rule Computation For Slowly-Varying Inputs

In [38] an algorithm for computing the time evolution rule when thermal effects are neglected

and the inputs are slowly-varying with respect to the relaxation time was described. This al-

gorithm computes the evolution rule using arithmetic operations which avoid the comparisons

suggested by the multiple cases in the evolution rule (2.18). This results in a significant com-

putational improvement on most computing architectures, due to the improved use of cache

resulting from eliminating numerous comparisons in code. However, the algorithm still requires

calculations on each grid point X(EjI , F
k
c ) for 1 ≤ j ≤ NI and 1 ≤ k ≤ Nc, so that the compu-

tational complexity is still O(NINc). We now present an algorithm which requires only O(NI)

computations, resulting in an even greater performance increase than the previous algorithm.

The basis for this algorithm is the observation that (2.18) implies that for physically relevant

values of the dipole fraction state, at each Fc and time t, there exists some value E′I such that

X(t, EI , Fc) = 0 for all EI < E′I and X(t, EI , Fc) = 1 for all EI ≥ E′I . This motivates us to

define the function f [u](t, Fc) = E′I(t, Fc), where we are using operator notation to indicate

that f is dependent on the input function u. This means

X(t, EI , Fc) =

1 EI ≥ f [u](t, Fc)

0 EI < f [u](t, Fc)
(2.42)

which allows the macroscopic polarization in the 180◦ case to be written

P [u](t) =
u(t)

η
− PR + 2PR

∫ ∞
0

∫ ∞
−∞

x+(t, EI , Fc)νI(EI)νc(Fc) dEI dFc

=
u(t)

η
− PR + 2PR

∫ ∞
0

(∫ ∞
f [u](t,Fc)

νI(EI) dEI

)
νc(Fc) dFc

=
u(t)

η
− PR + 2PR

∫ ∞
0

G[u](t, Fc)νc(Fc) dFc, (2.43)

where G[u](t, Fc) =
∫∞
f [u](t,Fc)

νI(EI) dEI . For simplicity, we assume that νI(EI) = 2
πe
−t2 , so that

G[u](t, Fc) = erfc(f [u](t, Fc)), the complementary error function (when νI is a weighted sum of

lognormal functions, G becomes a weighted sum of erfc functions with scaled arguments). Notice

that we can compute erfc(f [u](t, Fc)) for any given value of f [u](t, Fc) so that this function can

be computed offline using look-up tables or library functions. This leaves us with the task of

computing f [u](t, Fc).

Suppose f [u](t1, Fc) and X(t1, EI , Fc) are known, the monotonic change in the input from
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t = t1 to t2 is denoted ∆u = u2 − u1 where ui = E(ti), and we wish to compute f [u](t2, Fc).

Define the line,

l[u](Fc) = f [u](t1, 0)−∆u+ sign(∆u)Fc. (2.44)

So l will be a line of slope 1 if ∆u is positive or of slope −1 if ∆u is negative which passes

through f [u](t1, 0)−∆u at Fc = 0. The rule for updating f [u](Fc, t
2) is

f [u](t2, Fc) =

l[u](Fc), sign(l[u](Fc)− f [u](t1, Fc)) 6= sign(∆u)

f [u](t1, Fc), sign(l[u](Fc)− f [u](t1, Fc)) = sign(∆u)
. (2.45)

So f can be updated using nothing more than operations for checking the sign which can be

done very efficiently on any microprocessor.

Once f [u](t2, Fc) is computed, erfc(f [u](t2, Fc)) can be computed for each value of Fc. Look-

up tables or other methods can be used to efficiently compute erfc so that the bulk of the com-

putational cost comes from computing the integral
∫∞

0 erfc(f [u](t, Fc))νc(Fc) dFc. This provides

a number of advantages.

1. Rather than updating and integrating the entire dipole fraction state X over the (EI , Fc)

grid, we need only update f over the Fc grid, reducing the online computational costs

from O(NINc) to O(Nc).

2. Since the computation of the integral defining the macroscopic polarization along the EI

can be computed offline, a much finer quadrature grid for EI is feasible which allows for

improved accuracy. This also allows online integration along Fc to be much more accurate

for a given computational cost.

3. Finite-dimensional approximation of the state now requires O(Nc) values to be stored

rather than O(NINc) which potentially reduces memory requirements.

A comparison of the computational time of the presented algorithm (labeled O(Nc)) with

the algorithm from [38] (labeled O(NINc)) is shown in Table 2.3 for various choices of NI and

Nc. For the O(Nc) algorithm, integration along the EI grid was computed offline using NI

quadrature points. The code was run in Octave on a 1.6GHz laptop, with the time in the loop

measured using the ”tic” and ”toc” commands. The table verifies the O(Nc) performance of the

presented algorithm and shows a dramatic performance advantage over the O(NINc) algorithm

for finer quadrature grids.
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Table 2.3: Comparison of the O(NINc) and O(Nc) algorithms for slow inputs.

NI Nc O(NINc) Time (s) O(Nc) Time (s)

80 80 0.808 0.461

160 80 1.508 0.462
240 80 2.493 0.481
320 80 3.951 0.472
8000 80 11.08 0.476

80 160 1.924 0.532
80 240 2.349 0.604
80 320 3.971 0.720
80 8000 10.98 1.164

8000 8000 153.8 1.127

2.2.4 Numerical Benchmark

We derive a benchmark solution to the homogenized energy model which can be used to verify

the accuracy of the applied numerical methods. The complicated nature of the model requires

us to make a number of assumptions to put an exact solution with reach.

1. We will consider the 180◦ model using the transition rates which neglect thermal effects.

2. We assume the input is a continuous piecewise-linear periodic function with amplitude a

and period 2T .

3. We will limit ourselves to finding an exact periodic solution of the differential equation

for X(t, EI , Fc) in response to this class of periodic inputs rather than computing the

integral
∫∞

0

∫∞
−∞X(t, EI , Fc)νI(EI)νc(Fc) dEI dFc.

The use of the 180◦ model is simply for convenience, as it is possible to derive a similar bench-

mark for the 90◦ model. The transition rates which neglect thermal effects are the only transition

rates which are discontinuous as a function of the input and so we would expect this case to

exhibit the largest error.

Let k = 2a
T . Then the piecewise-linear input is

u(t) =


−a+ kt 0 ≤ t ≤ T
3a− kt T ≤ t ≤ 2T

u(t) = u(t− 2nT ) 2nT ≤ t ≤ 2(n+ 1)T

(2.46)
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where n is a positive integer. For a fixed (EI , Fc) the evolution equation for the dipole fraction

with input u(t) is

d

dt
X(t, EI , Fc) =


− 1
τX(t, EI , Fc) + 1

τ EI + u(t) > Fc

0 |EI + u(t)| ≤ Fc
− 1
τX(t, EI , Fc) EI + u(t) < −Fc

. (2.47)

The only possible behaviors of the state are asymptotically increasing to 1 when u(t) > Fc−EI ,
asymptotically decreasing to 0 when u(t) < −Fc −EI , and remaining static when −Fc −EI ≤
u(t) ≤ Fc − EI . For the class of inputs chosen, this results in the following possibilities in the

time interval [0, 2T ] depending on a,EI , Fc.

1. When Fc − a < EI < −Fc + a, X(t, EI , Fc) changes from decreasing to static at t = t1,

from static to increasing at t = t2, from increasing to static at t = t3, and from static to

decreasing at t = t4.

2. When a + Fc ≥ EI ≥ a − Fc, and EI ≥ Fc − a, X(t, EI , Fc) switches back and forth

between static and increasing.

3. When EI > a+ Fc, X(t, EI , Fc) is always increasing.

4. When −a+ Fc ≥ EI ≥ −a− Fc, and EI ≤ −Fc + a, X(t, EI , Fc) switches back and forth

between static and decreasing.

5. When EI < −a− Fc, X(t, EI , Fc) is always decreasing.

6. For all other cases (i.e., when Fc − a > EI > −Fc + a), X(t, EI , Fc) is always static.

Since we are looking for periodic X(t, EI , Fc), cases 2 and 3 imply X(t, EI , Fc) = 1, cases 4 and

5 imply X(t, EI , Fc) = 0, and case 6 implies X(t, EI , Fc) = X(0, EI , Fc) (i.e., it always equals

the iniitial condition). This leaves case 1 as the only case needed to calculate the dynamic

behavior of the state under the given assumptions.

First, we solve for t1, t2, t3 and t4. Since u(t) is increasing on [0, T ], the switch from decreasing

to static occurs when u(t1)+EI = −Fc, i.e. kt1−a+EI = −Fc ⇒ t1 = a−EI−Fc
k . Similarly for the

time where X changes from static to increasing t2 set kt2−a+EI = Fc and find t2 = a−EI+Fc
k .

In a similar fashion, we can show t3 = 3a+EI−Fc
k and t4 = 3a+EI+Fc

k . Let t0D = 2a−EI−Fck be the

total time spent in the decreasing-to-zero state and t1D = 2a+EI−Fc
k the total time spent in the
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increasing-to-one state. This allows us to write the function for the state

X(t, EI , Fc) =



x1 exp

(
− t
τ
− t0D

2τ

)
0 ≤ t < t1

x0 t1 ≤ t < t2

(x0 − 1) exp

(
−(t− t2)

τ

)
+ 1 t2 ≤ t < t3

x1 t3 ≤ t < t4

x1 exp

(
−(t− t4)

τ

)
t4 ≤ t ≤ T

(2.48)

where x1 = x1(EI , Fc) is the constant value of the state after it switches from increasing to

static and x0 = x0(EI , Fc) is similar for the switch from decreasing to static. Using the fact that

t1 =
t0D
2 we can use the formula for the state given above at t = t3 to write x0 = x1 exp(− t0D

τ )

and substitute this to obtain an expression that can be solved for x1.

x1 =

[
x1 exp

(
− t

0
D

τ

)
− 1

]
exp

(
− t

1
D

τ

)
+ 1

⇒x1

[
exp

(
− t

0
D

τ

)
− exp

(
t1D
τ

)]
= 1− exp

(
t1D
τ

)

⇒x1 =
1− exp

(
t1D
τ

)
exp

(
− t0D

τ

)
− exp

(
t1D
τ

) ,
where we’ve used the fact that t3− t2 = t1D. We can use this equation along with the expression

for the state at t = t1 to solve for x0 obtaining

x0 =
1 + exp

(
t1D
τ

)
1− exp

(
t0D+t1D
τ

) .
We now have a complete description for the state driven by the class of continuous periodic

piecewise-linear inputs assumed. We now use this to compare the performance of two types of

numerical ODE solvers.

We use a periodic input with amplitude a = 10 for periods 2T = 1, 0.1, 0.01 and simulate 3

full cycles. For convenience, we simulate X(t, EI , Fc) for a fixed Fc = 5. We set the range of EI

to be −5 to 5, since for the chosen value of Fc this is the only range for which the dipole fraction

for our particular benchmark solution changes. The EI grid is sampled with NI = 201 points

and an interaction field distribution of νI(EI) = 1√
2π

exp
(−E2

I
2

)
is used. The quadrature rule

we use to approximate the integral along the EI axis is the trapezoid rule. We set the relaxtion
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Figure 2.2: Time domain comparison of exact solution, implicit Euler solution, and BDF2
solution for 10Hz input with time-step h = 1× 10−4.

time to τ = 0.05.

For each period, we simulate with the time steps h = 2T
10 ,

2T
100 ,

2T
1000 . We compare the implicit

Euler scheme described above with a two-step backwards difference formula (denoted BDF2).

Thus we are using the numerical schemes to approximate the state X(t, EI , 5), then using the

trapezoid rule to compute
∫∞
−∞X(t, EI , 5) dEI in each case. Figure 2.2 shows a time-domain

plot of the results of each method compared with the exact solution for the 10Hz input and time

step h = 1× 10−4. The plot shows good agreement with the exact solution for both methods.

Figure 2.3 gives a more complete picture of the accuracy of the the numerical methods.

Here the relative error in the numerical solutions with respect to the exact solution is plotted

for various input frequencies and time-grids. The grid refinement shows convergence in each

case. As would be expected, the BDF2 converges faster than the implicit Euler method due

to its higher order. However, the relative error for implicit Euler is typically good enough for

problems of interest as model errors are typically much larger than the numerical errors shown.

Figure 2.4 provides a picture of the numerical accuracy from a different perspective. Here

the relative error in the implicit Euler method is plotted for the same time-step with three

different input-frequencies. We see similar levels of error but with less variation as the frequency

increases (i.e., the maximum errors are smaller and the minimum errors are larger than at other

frequencies). This is partly due to the time-scale of the evolution equation being solved which

is controled by the parameter τ . The behavior of the evolution equation is very similar to a

first-order filter with τ the time-constant. As the period of the input decreases to below τ , the

response of the system becomes significantly smaller. As shown in Figure 2.5, the system shows

29



10
-7

10
-5

10
-3

10
-1

10
1

0 0.005 0.01 0.015 0.02 0.025 0.03

Time

10
-7

10
-5

10
-3

10
-1

10
1

0 0.05 0.1 0.15 0.2 0.25 0.3

10
-7

10
-5

10
-3

10
-1

10
1

0 0.5 1 1.5 2 2.5 3

Relative Error, BDF2

10
-7

10
-5

10
-3

10
-1

10
1

0 0.005 0.01 0.015 0.02 0.025 0.03

1
0
0

H
z
 I
n
p
u
t

Time

10
-7

10
-5

10
-3

10
-1

10
1

0 0.05 0.1 0.15 0.2 0.25 0.3

1
0
H

z
 I
n
p
u
t

10
-7

10
-5

10
-3

10
-1

10
1

0 0.5 1 1.5 2 2.5 3

1
H

z
 I
n
p
u
t

Relative Error, Euler
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Figure 2.4: Relative error with a fixed time-step for (a) 1Hz, (b) 10Hz, and (c) 100Hz inputs.
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Figure 2.5: Hysteresis plot of the exact solution for (a) 1Hz, (b) 10Hz, and (c) 100Hz inputs.

less hysteresis as the input frequency increases. The smaller variations in the output result in

smaller variations in the numerical error.
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Chapter 3

A Bisection Method Based Inverse

Compensation Algorithm

Inverse compensation of hysteresis, based on employing an approximate inverse filter in the

manner illustrated in Figure 3.1, was initiated for hysteretic actuators and sensors in [45]. This

approach has the advantages that it permits linear control design and it accommodates un-

known disturbances in the hysteretic device dynamics. There are two primary disadvantages

to the approach: the inverse filter must be accurately and robustly initialized, and inverse

models that incorporate creep, rate-dependent hysteresis, and constitutive nonlinearities must

be implemented in real-time. Various initialization and adaptive techniques have been investi-

gated to address the first issues whereas comprehensive and efficient model formulations and

implementation algorithms have been proposed to address the second issue. We summarize

Preisach, Prandtl-Ishlinskii, and homogenized energy model (HEM) formulations, focusing on

the properties relating to the inversion of those models.

The Preisach framework was originally developed for magnetic materials but it has subse-

quently been extended to PZT and SMA for certain operating regimes. The classical Preisach

formulation, which is equivalent to ensuring deletion and congruency, applies only to rate-

Kr u

Disturbance

Linear
Control Inverse

Filter
Nonlinear

Plant

y

Figure 3.1: Linear or nonlinear control design employing an inverse filter.
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independent hysteresis and this property of the framework is partially responsible for the clas-

sical, but somewhat limited definition of hysteresis as a rate-independent phenomenon. Whereas

extended Preisach formulations have been developed to accommodate certain rate-dependent

phenomena, the required extensions compound the difficulty associated with real-time imple-

mentation. Inverse filters based on the Preisach model have been experimentally implemented,

but a significant challenge concerns the real-time implementation of inverse Preisach models,

especially for operating conditions that exhibit creep and rate-dependent hysterons. The phe-

nomenological nature of Preisach models also complicates model calibration and necessitates

algorithms based on first-order reversal curves (FORCs).

The Prandtl-Ishlinskii (PI) framework has received significant recent attention within the

context of control design since the inverse of the classical PI operator is itself a PI operator

with recursive algorithms to specify inverse coefficients in terms of forward coefficients. Like the

classical Preisach model, of which it is a special case, the classical PI model is rate-independent.

However, extensions to the classical theory [25] have provided a creep component whose inverse

is also a PI operator when implemented in discrete time. This algorithm has been experimentally

implemented for MFC operating in hysteretic regimes [34, 35] and for PZT-based actuators in

certain regimes, the use of the extended PI hysteresis creep inverse operator provides an efficient

alternative for control design. More recent extensions to the PI model have been developed to

accomodate rate-dependent hysteresis through the use of time-dependent thresholds [2] and

extended to accommodate more complex hysteresis nonlinearities [4]. These extensions have

also been shown to have an analytic inverse assuming the distance between the time-dependent

thresholds used in the model does not decrease in time, or for cases where the rate of change

of the input rate is not too large [24].

The PI framework also has certain limitations. Because it is phenomenological in nature,

it shares the Preisach disadvantage that model calibration involves a large number of non-

physical parameters. Whereas extensions to the theory have been developed to accommodate

rate-dependent hysteresis, the extensions have been shown to remain analytically invertible

only under certain restrictions (although experimental results in [3] have demonstrated these

restrictions need not always be an issue ). Finally, the PI framework has presently been applied

only to PZT and hence it does not provide a unified framework for characterizing and inverting

hysteresis and constitutive materials in the broad class of ferroic materials.

Unlike the Prandtl-Ishlinskii (PI) modeling framework, which admits analytic inverse hys-

teresis and creep representations, the HEM framework requires iterative algorithms to construct

the inverse relations. However, the physical nature of the model and forward algorithms per-

mits the establishment of criteria that guarantee the convergence of inverse algorithms within

a pre-specified number of iterations. When combined with highly efficient forward algorithms,

this provides efficient inverse algorithms with guaranteed robustness and convergence. This is
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in the spirit of widely accepted algorithms used to construct inverse function relations such as

the continued fractions techniques used in the MATLAB command atan to provide arctangent

approximations

In this chapter, we present efficient and robust inversion algorithms described in [28] to invert

the homogenized energy model (HEM) to compensate for creep, rate-dependent hysteresis, and

constitutive nonlinearities. The generality of the HEM is exploited as the inversion algorithms

are developed not only for the ferroelectric material models discussed in Chapter 2 but to

shape-memory alloys as well. Similar algorithms can be constructed for magnetic materials.

This chapter is organized as follows. In Section 3.1, we briefly describe the general framework

of the homogenized energy model, its forward computation and the general inversion algorithm.

The specific application of the forward and inverse algorithms to ferroelectric materials and

SMA are presented in Section 3.2 and 3.4, respectively. Additionally, the inverse algorithm

performance is discussed for both materials.

3.1 Homogenized Energy Model

The homogenized energy model (HEM) for ferroelectric materials was discussed in Chapter 2.

In this section, we summarize the general framework of the HEM which extends to ferroelastic

materials (e.g., shape memory alloys). The general algorithms for the forward computation of

the model and inversion algorithm are also presented.

As detailed in [38] and [42], the HEM framework quantifies rate-dependent hysteresis, and

constitutive nonlinearities in two steps: (i) characterization of kernel relations e using lattice-

level energy relations in combination with the theory of thermally activated processes, and

(ii) development of macroscopic constitutive relations based on the tenet that certain material

parameters are realizations of underlying densities.

The general computational framework of the HEM was discussed at the beginning of Chap-

ter 2. The input-output system which describes the abstract structure of all variants of the

HEM (i.e., ferroelectric, ferromagnetic, ferroelastic, etc.) was given by (2.1) and (2.2) which are

reproduced here for convenience:

Ẋ = A(u)X +B(u) (3.1)

Y = C(u)X +D(u). (3.2)

This general framework quantifies the rate-dependent hysteresis, creep, and constitutive nonlin-

earities in ferroelectric (e.g., PZT), ferromagnetic (e.g., iron, steel, Terfenol-D), and ferroelastic

(e.g., SMA) materials. As detailed in Chapter 2, for ferroelectric materials the state X rep-

resents the fraction of dipoles in each of the possible orientations (positive, negative, or 90◦ )
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distributed over parameters (EI , Fc) which characterize the hysteretic nonlinearities exhibited

by the material. The output Y is the polarization and strain in the material and the input

u is the electric field and stress applied to the material. The evolution of the state in time is

expressed by (3.1) with the operators A and B consisting of transition rates whose switching

properties depend on the distributed parameters. The rates can be calculated using a number of

techniques (see [1, 23, 29, 38]). The output is derived from this distributed state from (3.2) as an

average of the distributed behavior with C containing an averaging operator and D containing

any state-independent terms appearing in the output.

The model quantifying the behavior of shape-memory alloys is analogous. Whereas the state

X for ferroelectrics consists of components x+(EI , Fc), x−(EI , Fc), x90(EI , Fc) which are frac-

tions of positive, negative, and 90◦ orientations of dipoles distributed over the EI , Fc parameters,

the state for shape memory alloys consists of the components xM+(σI , σR), xM−(σI , σR), xA(σI , σR)

which are the fractions of the material in the positive martensite, negative martensite, and

austenite phases distributed over the interaction stress σI and relative stress σR parameters.

The output Y is the strain in the shape-memory alloy and the input u is the applied tempera-

ture and stress. The operator C plays a similar role of averaging the state on the parameters it

is distributed over. As with the HEM for ferroelectric materials, the relations quantifying the

behavior of shape-memory alloys are derived by minimizing thermodynamic energy functionals

establishing a strong physical basis for the model.

The hysteresis and constitutive nonlinearities inherent to all classes of materials modeled

by the HEM are due to the metastability of the phases in the materials (i.e., the switching

between positive martensite, negative martensite, and austenite phases in shape-memory alloys

and between positive, negative, and 90◦ dipole orientations in ferroelectrics). A summary of the

physical properties associated with the elements of the abstract formulation of the HEM for

various classes of smart materials is listed in Table 3.1

Table 3.1: Physical components of the HEM for different materials.

Quantity Ferroelectric Ferromagnetic Shape Memory Alloys

Y polarization, strain magnetization strain
u electric field, stress magnetic field stress, temperature

X components 0◦, 180◦, 90o 0o, 180o M+, M−, A
Distributed
parameters

EI , Fc HI , Hc σI , σR
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3.1.1 Forward Algorithm

As detailed in Section 2.2, numerical implementation of the HEM involves numerically approx-

imating the solution to 3.1 (the numerical evolution step) and the solution to 3.2 (called the

numerical integration step). We call the algorithm for numerically approximating these equa-

tions the ”forward algorithm” since it takes the current model state and computes the state at

some point forward in time. It was shown in Section 2.2.1 that by applying an implicit Euler

scheme the state at time ti+1 can be approximated by

Xi+1
j,k =

[
I −Aj,k(ui+1)∆t

]−1
[Xi

j,k + ∆tBj,k(u
i+1)] (3.3)

where the superscript i is a temporal index, ∆t = ti+1 − ti is the difference between the time

nodes, and the j, k indices correspond to the quadrature grid used to sample the distributed

parameters (i.e., the indices correspond to the sampled EjI , F
k
c for the ferroelectric materials

and σjI , σ
k
R for shape-memory alloys).

The integration step involves the use of a quadrature rule which determines the quadrature

grid. This quadrature rule is used to approximate the integral contained in the operator C in

3.2 as discussed in Section 2.2.2. As shown in 2.39, evaluation of the quadrature rule can be

represented as the product

X ≈W TXV, (3.4)

where X indicates the average value of X (i.e., the integral being approximated), X is a matrix

of state values over the quadrature grid and W,V are vectors which combine the quadrature

weights determined by the chosen quadrature rule and the values of the distributions νI , νc (or

νI , νR for shape memory alloys) evaluated on the quadrature grid. Then the output (3.2) can

be approximated as

Y = C(u)X +D(u) ≈ g(u)X +D(u) (3.5)

where g(u) is some function of u.

Section 2.2.1 covers the use of look-up tables to improve the computational efficiency of the

forward algorithm. This involves the discretization of the input over some finite set of values to

allow the computationally intensive terms in (3.3) to be computed offline and stored in memory.

By rounding the input to the nearest discrete input value used in the offline computation, the

corresponding value can be referenced and used to quickly compute (3.3). This approximation

makes the forward algorithm suitable for real-time implementation.
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3.1.2 Inverse Algorithm

The inverse algorithm for the HEM solves the problem of determining an input u such that

Y (t) = Yd(t) for some desired output function Yd(t). In terms of the general input-output system

describing the HEM, this can be considered a tracking problem. The inverse terminology comes

from considering the system as an operator mapping the output trajectory Y [u](t) to a given

input trajectory u(t). The inverse can be considered as a mapping Y −1 which acts as right-

inverse to this operator so that Y [Y −1[Yd]] = Yd. We note that although some variations of the

HEM have multiple inputs or outputs (e.g., the 90◦ HEM for ferroelectric materials has strain

and polarization as outputs and electric field and polarization as inputs), the inverse algorithm

developed in this chapter finds a single input corresponding to a single desired output. Any

additional inputs are considered known or constant.

In practice, the inversion operator is only approximated by the inversion algorithm. This

reduces the problem to the solution of a nonlinear equation at each time step. In particular, if

the state Xi is known at time ti, the inverse problem is to find ui+1 so that Xi+1 determined

from (3.3) produces a corresponding X
i+1

that satisfies Y i+1 = g(ui+1)X
i+1

+D(ui+1) = Y i+1
d

for some given desired output value Y i+1
d . The use of look-up tables in the forward algorithm

motivates the reduction of this problem to a finite search of the discrete input values used to

compute the look-up tables to minimize the error between the resulting output and the desired

output. This search can be efficiently arranged by exploiting the monotonic relationship between

the input ui+1 and the output Y i+1. For example, in PZT, polarization monotonically increases

with respect to the electric field. In SMA, strain monotonically decreases with temperature.

This allows the use of binary search on the set of discretized input values.

To avoid confusion, we note that non-monotone behavior in ferroic materials is sometimes

observed with respect to certain inputs which vary in time, but the response to a range of

possible inputs at a fixed time is always monotonic with respect to those inputs. To illustrate,

consider the polarization response P as a function of time t and input field E so that P = P (E, t)

as shown in Figure 3.2(b). If the input field is specified over a particular time interval, then

E = E(t) on that interval and the resulting polarization is P = P (E(t), t). For certain inputs,

relaxation mechanisms can cause P (E(t), t) to be non-monotone with respect to E(t) as shown

in Figure 3.2(a). However, at any fixed time t = T , the function P (E, T ) can be considered a

function of the input E only with T as a parameter, so that P = P (E;T ). In this case, P (E;T )

is always monotonic with respect to the input E as shown in Figure 3.2(c).

Figure 3.3 is a flowchart of the general binary search algorithm used to invert the HEM

and Figure 3.4 illustrates the use of the binary search to find the value in a given input set

whose image under an increasing function is closest to some desired value. The main idea

of the approach is to restrict the range of possible inputs to some interval and compute the
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Figure 3.2: (a) Non-monotone curve of polarization versus a time varying input. (b) 3-
dimensional illustration of the polarization curves over the E and t axes. (c) Monotone curve
of polarization at a fixed time t = T versus the possible inputs E.

output corresponding to the middle value of the current input interval. If the error in this

output exceeds some threshold, monotonicity allows either the upper half or lower half of the

input range to be eliminated. This is repeated until either the error threshold is satisfied or a

maximum number of iterations is reached. Since the binary search decreases the interval [a b]

by half at each iteration, the worst case performance is O (logNl) times that of the forward

model, where 2N + 1 is the number of discrete input points used to compute the look-up tables

used in the forward algorithm. The sections below will provide explcit algorithms to implement

the inverse algorithm for specific types of materials.

Although a detailed analysis of parameters affecting the inversion error is beyond the scope of

this chapter, two main properties affecting the error are worth noting. The first isNl, the number

of points in the discretization of the input interval which the inversion algorithm searches over.

Increasing the number of points will generally decrease the inversion error, as long as the input

to the inversion algorithm is a feasible value for the system output and the current time step.

This leads to the second property which is the size of the time step in the time discretization

used to evaluate the evolution equation for the phase fractions. The reason this matters is

that the rate of change for the phase fractions is bounded, as is the magnitude of the input.

This implies that as the time step is reduced in size, the range of possible system outputs is

also reduced, so some care must be taken when choosing inputs to the inversion algorithm. In

practice, this means that either the time step must be large enough that any of the possible

outputs are reachable, or for smaller time steps, care must be taken to ensure the rate of change

of the signal input to the inversion algorithm is within the range which is feasible for the system.

An approach similar to that described in Section 4.3.2 could provide a quantitative method for
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guiding the selection of the time step size and the input range.

3.2 180◦ Polarization Model For Ferroelectric Materials

It is detailed in [38], [40], and [42] that 180◦ switching in ferroelectric materials primarily

produces changes in polarization whereas 90◦ switching yields large strain outputs. In this sec-

tion, we summarize the 180◦ polarization model and associated forward and inverse algorithms.

These algorithms are appropriate if solely considering polarization or if polarization and strains

are combined in the phenomenological manner detailed in [38]. This framework is simpler, and

hence motivates the more comprehensive models and algorithms in Section 3.3 that incorporate

strains due to 90◦ switching.

3.2.1 Model Overview

We summarize here the relevant equations from Chapter 2 used in this section.

The evolution equation for the dipole fractions in the 180◦ case

ẋ+ = − (p+ + p−)x+ + p−, (3.6)

was described in Section 2.1.1. The transition rates used in the simulations below are those

derived from the theory of thermally activated processes described in Section 2.1.1 which are

p+(Ee, Fc) =
γ1

erfcx (γ2(−Ee − Fc))
, p−(Ee, Fc) =

γ1

erfcx (γ2(Ee − Fc))
. (3.7)

Note that the inversion algorithm does not depend on the specific choice of transition rate. The

polarization in the material

P (t) =
E(t)

η
− PR + 2PR

∫ ∞
0

∫ ∞
−∞

x+(t, EI , Fc)νI(EI)νc(Fc) dEI dFc, (3.8)

was also described in Section 2.1.1.

3.2.2 Forward Algorithm

There are two distinct steps involved in the calculation of the polarization P resulting from an

input field E:

1. Update the positive dipole fraction, x+, over a two variable grid (i.e., evaluate the evolu-

tion equation (3.6)).
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Figure 3.3: Flowchart giving an overview of the binary search inversion algorithm for a single
desired output value.
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desired

desired desired

quantized input set

desired

iteration 1 iteration 2

iteration 4iteration 3

current interval

current guess

current interval

current guess

current interval

current guess

current interval

current guess

Figure 3.4: Graphs illustrating iterations of the binary search. The bottom intervals on each
graph depict the finite set of input search values. The smaller interval at each iteration illustrates
the reduced search space.
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Fc xk+(E
j
I , F

i
c)

EI

Ek+1

Fc xk+1
+ (Ej

I , F
i
c)

EI

time = tk time = tk+1

Figure 3.5: Input-output relations for the update dipole 180 function. Dots on the graph
represent samples of the dipole fraction x+.

2. Use the values of x+ computed in the first step to numerically evaluate an integral equation

which gives P (i.e., approximate the integral (3.8)).

The first step evaluates the expression

xk+1
+

(
EjI , F

i
c

)
= update dipole 180

(
Ek+1, xi+

(
EjI , F

i
c

))
= C1

(
Ek+1, EjI , F

i
c

)
xi+

(
EjI , F

i
c

)
+ C2

(
Ek+1, EjI , F

i
c

)
. (3.9)

Here we use the superscripts k and k+ 1 as temporal indices and the superscripts j, i as indices

for the grid points of the interaction and coercive fields EI and Fc. Hence xk+1
+ (EjI , F

i
c) is the

positive dipole fraction at time tk+1 and grid points EjI , F
i
c . Moreover C1, C2 are functions

derived from numerically solving the evolution equation (3.6) for x+ using an implicit Euler

method. Figure 3.5 gives a graphical illustration of the inputs and outputs involved in this step.

We will use the function name update dipole 180 to refer to this expression in our description

of the inverse algorithm.

The expressions for C1 and C2 involve erfcx functions which need to be evaluated at several

grid points, (EjI , F
i
c), to adequately sample xk+1

+ and accurately approximate the integral in the

second step. For this reason, the calculation of C1 and C2 is the major bottleneck in computing

the polarization. The efficiency gains in [21] come from providing a computational strategy to

speed this calculation up.

Since C1 and C2, evaluated at (EjI , F
i
c), depend only on the input field value Ek+1 but

not explicitly on time, C1 and C2 can be computed offline for some finite set of input values,

Ê ∈ QE , which we call the quantized input set (see Figure 3.7). When evaluating Eq. (3.9), the

input Ek+1 is rounded to the nearest value in QE and the corresponding values for C1 and C2

are referenced from memory. This method can be orders of magnitude faster than computing

C1 and C2 in realtime with library functions, but achieves similar levels of accuracy. Rounding
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I , F

i
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Ei+1

Figure 3.6: Input-output relations for the evaluate polar function. Dots on the left graph
represent samples of the dipole fraction x+. Polarization is shown on the right.

the input limits the range of values the output can attain at any particular time, which is a key

property the inversion algorithm takes advantage of.

The second step in computing the polarization is to evaluate

P k+1
(
Ek+1, xk+1

+

)
= evaluate polar

(
Ek+1, xk+1

+

)
=
Ek+1

η
− PR + 2PR

∑
j,i

W jV ixk+1
+

(
EjI , F

i
c

)
(3.10)

to approximate (3.8). As in (3.4), W j , V i are a combination of quadrature weights and the sam-

pled distributions for the interaction and coercive fields. Figure 3.6 gives a graphical illustration

of the inputs and outputs involved in this step. We will use the function name evaluate polar

to refer to this expression in our description of the inverse algorithm.

3.2.3 Inverse Algorithm

In the inverse algorithm, we will assume that the function update dipole 180 is implemented

by the algorithm from [5] so that the input E is rounded to a finite set. This means that for

a fixed xk+, update dipole 180(E, xk+) attains only a finite number of values over all possible

values of E. We call the set of values the input E is rounded to the quantized input set (denoted

QE) and assume that QE has M values. We assume these values are equally spaced over the

interval [Emin, Emax], with Emin = −Emax and ∆E = (Emax − Emin)/(M − 1) denoting the

spacing between adjacent values in QE . Figure (3.7) illustrates the terms.

For convenience, we employ a mild abuse of notation in the algorithm pseudocode in Al-

gorithm 1. The definition of update dipole 180 in (3.9) maps x+ evaluated at a single point

(EjI , F
i
c) and a given time, to the value of x+ at that same point (EjI , F

i
c) and some fixed time

step into the future. In the pseudocode, we write update dipole 180(E, x+), where x+ is
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Quantized Input Set

Emax

QE

∆E

Emin

Figure 3.7: Illustration of the quantized input set, QE .

evaluated at several grid points. Here we mean that update dipole 180 is evaluated at each

of these grid points, rather than a single scalar point.

One important assumption in the algorithm is that the initial state of the dipole fraction,

xinit+ , is known. When using the algorithm in practice, this will generally require some sort of

initialization of the material. A common method is to drive the input field to the material to

saturation, so that the remanence value of the polarization, PR, results when no input field is

applied. This corresponds to xinit+ being initialized to x+(EjI , F
i
c) = 1 over all indices i, j for the

grid points.

Remarks for Algorithm 1:

2. Ecur is the current estimate for the input field which corresponds to the desired polariza-

tion P kdes at the kth time step. Line 3 initializes Ecur to the center of the range of input

values which are possible after rounding occurs in update dipole 180. The polarization

is increasing with respect to E for a fixed xk+, so when sign(error) < 0, Ecur is below the

true value, which means the Ecur and all values below it can be ruled out (and similarly

for sign(error) > 0). Line 9 moves Ecur to the center of the input values which can not

ruled out. Line 10 adjusts dE so that if the loop continues, then line 9 again move Ecur

to the center of the range of input values which can not yet be ruled out. The factor of

2 in line 10 comes from the fact that by nature of Ecur always lying in the center of the

range of possible input values, ruling out all the values above or all the values below Ecur

cuts the range of possible input values in half.

3. In line 5 and line 11, notice that update dipole 180 always uses xprev+ as input and

that for a fixed k, xprev+ is fixed until line 16, after the correct Ek has been found. This

is because for a fixed k, each subsequent call to update dipole 180 is evaluating a new

guess for Ek, and until that guess is verified by checking the loop conditions, xcur+ is a

guess as well. Once the correct Ek is found then xcur+ will be correct and the assignment
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input : xinit+ - initial dipole fraction state
P kdes - desired polarization at time tk

∆E - quantization width of input search range

output: xcur+ - final dipole fraction state
Ek - electric field corresponding to P kdes

xprev+ ← xinit+ ;1

for k ← 1 to Nk do2

Ecur ← Emin + (Emax − Emin)/2 ; // See Remark 23

dE ← (Emax − Emin)/4;4

xcur+ ← update dipole 180(Ecur, xprev+ ) ; // See Remark 35

P cur ← evaluate polar(Ecur, xcur+ );6

error ← η(P kdes − P cur) ; // See Remarks 4 and 57

while |error| ≥ ∆E/2 and dE ≥ ∆E/4 do8

Ecur ← Ecur + sign(error)dE ; // See Remark 29

dE ← dE/2 ;10

xcur+ ← update dipole 180(Ecur, xprev+ ) ;11

P cur ← evaluate polar(Ecur, xcur+ );12

error ← η(P kdes − P cur);13

end14

Ek ← Ecur + error ;15

xprev+ ← xcur+ ;16

end17

Algorithm 1: 180◦ Polarization Model Inverse.
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in line 16 saves this value for use in the next time step, k + 1.

4. The η in line 7 is the inverse susceptibility in (3.10). To understand why this expression

is used for the error, consider that there is some Ekdes corresponding to P kdes, so that

xdes+ = update dipole 180(Ekdes, x
prev
+ ) and P kdes = evaluate polar(Ekdes, x

des
+ ). Using

(3.10), we find

η(P kdes − P cur) = η

 Ekdes
η
− PR + 2PR

∑
j,i

W jV ixdes+

(
EjI , F

i
c

)

− Ecur

η
+ PR − 2PR

∑
j,i

W jV ixcur+

(
EjI , F

i
c

)
= Ekdes − Ecur + 2ηPR

∑
j,i

W jV i
(
xdes+

(
EjI , F

i
c

)
− xcur+

(
EjI , F

i
c

))
.

(3.11)

The function update dipole 180 rounds the input, Ecur, to a set of values which are

equally spaced by a distance ∆E . The way Ecur is initialized in line 3 and updated

in line 9 ensures that if the number of points, M , in the quantized input set is of the

form M = 2n + 1 for some integer n, then Ecur will round exactly to Ecur. This means

that if |δ| < ∆E/2, then Ek = Ecur + δ will round to Ecur when input to update -

dipole 180 and so the resulting xk+ = update dipole 180(Ek, xprev+ ) will be the same

as xcur+ . So if |error| = |η(P kdes − P cur)| < ∆E/2 and we let Ek = Ecur + error and

P k = evaluate polar(Ek, xcur+ ), then by substituting into (3.11), we find

η(P kdes − P k) = Ekdes − Ek + 2ηPR
∑
j,i

W jV i
(
xdes+

(
EjI , F

i
c

)
− xk+

(
EjI , F

i
c

))
= Ekdes − Ecur − error + 2ηPR

∑
j,i

W jV i
(
xdes+

(
EjI , F

i
c

)
− xk+

(
EjI , F

i
c

))
= −error + Ekdes − Ecur + 2ηPR

∑
j,i

W jV i
(
xdes+

(
EjI , F

i
c

)
− xk+

(
EjI , F

i
c

))
= 0.

This explains the choice of expression for quantifying the error term and the addition of

this term to P cur in line 15, since P k is the value of polarization that would be obtained

by using Ek as input. It also explains the first criterion for continuing the while-loop in

line 8 (i.e., |error| ≥ ∆E/2), as once this condition is no longer met, the inversion error

can be reduced to zero.
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5. The second condition for continuing the while-loop in line 8, i.e., dE ≥ ∆E/4, prevents

the loop from continuing once the correct value for Ek has been narrowed down to lying

in an interval between two adjacent points in the quantized input grid. However, the first

condition on the while-loop, |error| ≥ ∆E/2 along with the fact that Ecur only takes on

values in the quantized input grid ensures that if Ek did really lie between two adjacent

values, the loop would have already terminated. Therefore the second condition applies

only when the desired polarization corresponds to some input, E, which is either greater

than Emax, the largest quantized input value, or less than Emin, the smallest quantized

input value.

3.2.4 Inverse Algorithm Performance

In Figure 3.8, we illustrate the accuracy of the inverse polarization algorithm for two sample

input field profiles: one that produces biased minor loops and one that produces minor loops

with creep. The simulations use a quantized input set of size M = 28 + 1 = 257. The error plots

confirm the highly accurate inversion of the forward model except for minor rounding errors.

Figure 3.9 illustrates hysteresis loops of the forward model and the inverse algorithm for the

same inputs. The correct operation of the inverse algorithm is verified for a number of minor

loops in the top plot and with rate-dependent behavior creep evident in the behavior in the

bottom plots.

We note that although these plots show that there is practically no inversion error, the

error is relative to the algorithm for computing the forward model which quantizes the input.

The error involved when applying the inverse algorithm to a real material (e.g., in a control

application) will be no worse than the error involved with modeling the material’s behavior by

the forward model using quantized inputs. Good estimates of the inversion error in practice,

can thus be obtained from estimates of the forward modeling error.

The 180◦ polarization model inverse algorithm works by dividing the range of possible inputs

into a finite set of equally spaced values and using the binary search algorithm to find the input

field value which results in a polarization value that is closest to the desired polarization.

The only computationally significant operation involved when computing the inverse algorithm

is the repeated calls to the forward algorithm. Due to this, it is convenient to express the

computational cost of the inverse algorithm as a factor of the computational cost of the forward

algorithm.

In Algorithm 1, the forward algorithm is computed in the initialization in line 5 and for

each iteration of the while-loop in line 11. If we assume the quantized input set has M = 2n+ 1

values, in the worst-case the while-loop runs n − 1 times. This means that in the worst case,

the forward algorithm will be called n times (one for each iteration of the loop and once during
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Figure 3.8: Comparison between the reference polarization and actual polarization (left), in-
verse model electric field (middle), and absolute error between the reference and inverse models
(right) for an input that produces biased minor loops (a)-(c) and an input that produces minor
loops with creep (d)-(f).

initialization). Hence the computational effort involved in computing the inverse algorithm will

be no worse than O(ln(M−1)), where M is the size of the quantized input set. To illustrate this

performance, Table 3.2 compiles the average number of forward calls at each point in time, as

well as the ratio of the running time of the inverse algorithm to the running time of the forward

algorithm for several choices of M . The input field values are the same as those in Figure 3.8.

Both the average number of calls to the forward algorithm as well as the ratio of inverse time

and forward time grow logarithmically with the number of points in the quantized input set.

Note that the average number of forward calls will vary depending on the desired polarization

values supplied to the inverse algorithm, so these values should not be considered representative

of the average number of forward calls in general, except for the logarithmic trend. Also note

that the inverse time to forward time ratio is a little higher than would ideally be expected (i.e.,

higher than the average number of forward calls at each time) due to programming overhead,

so these values could be improved with different implementations.

48



−2 −1 0 1 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Electric Field (MV/m)

P
o

la
ri
z
a

ti
o

n
 (

C
/m

2
)

(a)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−2

−1

0

1

2

E
le

c
tr

ic
 F

ie
ld

 (
M

V
/m

)

Polarization (C/m
2
)

(b)

−2 −1 0 1 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Electric Field (MV/m)

P
o
la

ri
z
a
ti
o
n
 (

C
/m

2
)

(c)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

E
le

c
tr

ic
 F

ie
ld

 (
M

V
/m

)

Polarization (C/m
2
)

(d)

Figure 3.9: Hysteresis loop plots for the 180◦ polarization model comparing the forward algo-
rithm (left) and the inverse algorithm (right) for the input field profiles showing minor loop
behavior (a)-(b) and showing creep and rate-dependent behavior (c)-(d).

3.3 90◦ Strain Model For Ferroelectric Materials

It is shown in [38], and [42] that 90◦ dipole switching is primarily responsible for the strains

generated in PZT in response to field inputs. Furthermore, ferroelastic 90◦ switching also results

from applied stresses. We summarize in Section 3.3.1 the relevant equations from Chapter 2

for the homogenized energy model for this regime and present associated forward and inverse

implementation algorithms in Sections 3.3.2 and 3.3.3.
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Table 3.2: 180◦ inverse algorithm performance for various choices of M .

M = 2n + 1 Average Forward Calls (Inverse Time) / (Forward Time)

129 = 27 + 1 5.0287 7.8025
257 = 28 + 1 5.9904 8.7481
513 = 29 + 1 6.9589 10.010

1025 = 210 + 1 7.9206 11.336

3.3.1 Model Overview

The evolution equation for the dipole fractions in the 90◦ case

ẋ−(t, EI , Fc) = −
[
p−90

(
σ(t), E(t) + EI , Fc

)
+ p90−

(
σ(t), E(t) + EI , Fc

)]
x−(t, EI , Fc)

−p90−
(
σ(t), E(t) + EI , Fc

)
x+(t, EI , Fc) + p90−

(
σ(t), E(t) + EI , Fc

)
ẋ+(t, EI , Fc) = −

[
p90+

(
σ(t), E(t) + EI , Fc

)
+ p+90

(
σ(t), E(t) + EI , Fc

)]
x+(t, EI , Fc)

−p90+

(
σ(t), E(t) + EI , Fc

)
x−(t, EI , Fc) + p90+

(
σ(t), E(t) + EI , Fc

)
.

(3.12)

was described in Section 2.1.2. As with the 180◦ case, the inversion algorithm does not depend

on the specific choice of transition rate, so we only specify that the transition rates used in the

simulations below are those which incorporate the activation energy described in Section 2.1.2.

The polarization and strain in the material

P (t) = χσE(t) +
[
dσ(t) + PR

] ∫ ∞
0

∫ ∞
−∞

[
x+(t, EI , Fc)− x−(t, EI , Fc)

]
ν(EI , Fc)dEI dFc

(3.13)

ε(t) = sEσ(t) + ε90
R + dE(t)

∫∞
0

∫∞
−∞

[
x+(t, EI , Fc)− x−(t, EI , Fc)

]
ν(EI , Fc)dEI dFc

+ε∆
R

∫∞
0

∫∞
−∞

[
x+(t, EI , Fc) + x−(t, EI , Fc)

]
ν(EI , Fc)dEI dFc.

(3.14)

was also described in Section 2.1.2.

Our description of the inverse algorithm for the strain will not involve the polarization, and

will assume the input stress is fixed.
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3.3.2 Forward Algorithm

The two steps for computing the strain ε resulting from the input electric field E using the 90◦

model are nearly the same as for computing polarization in the 180◦ model.

1. Update the positive dipole fraction x+ and the negative dipole fraction x− over a two

variable grid.

2. Use the values of x+ and x− computed in the first step to numerically evaluate an integral

equation which gives ε.

The major difference in the first step is that both x+ and x− need to be updated. To

highlight the similarity to the 180◦ case, we can write the formula for updating the dipole

fractions as

Xk+1
(
EjI , F

i
c

)
=
[
xk+1

+

(
EjI , F

i
c

)
xk+1
−

(
EjI , F

i
c

)]T
= update dipole 90

(
Ek+1, Xk

(
EjI , F

i
c

))
= C1

(
Ek+1, EjI , F

i
c

)
Xk
(
EjI , F

i
c

)
+ C2

(
Ek+1, EjI , F

i
c

)
, (3.15)

where C1 ∈ R2×2, and Xk+1(EjI , E
i
c), C2 ∈ R2×1. This formula results from applying an implicit

Euler scheme to the evolution equation (3.12). As in the 180◦ case, k and k + 1 are temporal

indices and j, i are grid point indices for the interaction and coercive fields. Figure 3.10 illustrates

the inputs and outputs involved in this step. We will use the function name update dipole 90

to refer to this expression in our description of the inverse algorithm. Comparing with (3.9),

the only difference with the update formula is that it now involves matrices and vectors rather

than scalars. The lookup techniques from [21] for efficiently calculating C1 and C2 are just as

applicable here.

The second step is also similar to the 180◦ case, in that there are summation terms involving

the values of the dipole fraction over several grid points:

εk+1(Ek+1, xk+1
+ , xk+1

− ) = evaluate strain
(
Ek+1, xk+1

+ , xk+1
−
)

= sEσ +
(
Ek+1d− + ε−R

)∑
j,i

W jV ixk+1
−

(
EjI , F

i
c

)
+
(
Ek+1d+ + ε+

R

)∑
j,i

W jV ixk+1
+

(
EjI , F

i
c

)
+
(
Ek+1d90 + ε90

R

)∑
j,i

W jV i
(

1− xk+1
+

(
EjI , F

i
c

)
− xk+1

−
(
EjI , F

i
c

))
.

(3.16)

51



update_dipole_90

Ek+1

EI

Fc

EI

Fc

EI

xk+1
+ (Ej

I , F
i
c)

xk+1
− (Ej

I , F
i
c)

Xk(Ej
I , F

i
c) Xk+1(Ej

I , F
i
c)

Fc xk+(E
j
I , F

i
c)

EI

time = tk
time = tk+1

xk−(E
j
I , F

i
c)Fc

Figure 3.10: Input-output relatinons for the update dipole 90 function. Dots on the graph
represent samples of the dipole fractions, x+ and x−.

Here εk+1 is the strain at time tk+1. As in the 180◦ case, W j and V i are a combination of

quadrature weights and other values from the kernel of the integral for the strain in (3.13).

Figure 3.11 illustrates the inputs and outputs involved in this step. We will use the function

name evaluate strain to refer to this expression in our description of the inverse algorithm.

3.3.3 Inverse Algorithm

The 90◦ strain model inverse works in much the same way as the 180◦ polarization model

inverse, although there are a few key differences. Similar to the 180◦ case, even though the

expression for update dipole 90 in (3.15) involves a vector with two real values evaluated at

a particular point on the grid, any references to update dipole 90 in the pseudocode mean

that the expression is evaluated at each grid point. We will also explicitly use x+ and x− as

our inputs and outputs rather than the notational simplification X employed in (3.15).

An important difference from the 180◦ polarization case is that the input minimum, Emin,

is restricted to non-negative values (for convenience, we will take Emin = 0). For details on this,

see Remark 6.

As with the 180◦ case, it is assumed that the initial state of the dipole fraction, xinit+ , is

known. Analogous remarks on initializing the material given in the 180◦ model inverse section

apply here. Algorithm 2 lists the pseudocode for the inversion of the 90◦ model.

Remarks for Algorithm 2:

6. The binary search algorithm requires that the data being searched be sorted. When a
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input : xinit+ , xinit− - initial dipole fraction states
εkdes - desired strain at time tk

∆E - quantization width of input search range

output: xcur+ , xcur− - final dipole fraction states
Ek - electric field values corresponding to εkdes

xprev+ ← xinit+ ;1

xprev− ← xinit− ;2

for k ← 1 to Nk do3

Ecur ← Emin + (Emax − Emin)/2 ; // See Remark 64

dE ← (Emax − Emin)/4;5

[xcur+ , xcur− ]← update dipole 90(Ecur, xprev+ , xprev− );6

εcur ← evaluate strain(Ecur, xcur+ , xcur− );7

error ← εkdes − εcur ; // See Remark 78

while |error| ≥ errtol and dE ≥ ∆E/4 ; // See Remark 79

do10

Ecur ← Ecur + sign(error)dE;11

dE ← dE/2;12

xcur+ ← update dipole 90(Ecur, xprev+ , xprev− );13

εcur ← evaluate strain(Ecur, xcur+ , xcur− );14

error ← εkdes − εcur ;15

end16

Ek ← Ecur ;17

xprev+ ← xcur+ ;18

xprev− ← xcur− ;19

end20

Algorithm 2: 90◦ Strain Model Inverse
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Figure 3.11: Input-output relations for the evaluate strain function. Dots on the left graph
represent samples of the dipole fractions x+ and x−. Strain is shown on the right.

function is monotone, sampling the function at points that are arranged in increasing

order automatically results in a sorted set of data. To take advantage of this, we limit

the input range to a set of points over which the function is monotone. For a fixed point

in time, the relationship of strain to the input electric field is not monotonic, unlike the

relationship of polarization to the electric field. However, if the input field is restricted

to be non-negative, the relationship between input and strain is monotone. Hence in line

4, we require Emin = 0. It should be emphasized that the reason this is required for this

case but not in the 180◦ model case is not because we are using the 90 degree model, but

because we are using strain as the output (in particular, the 90◦ model with polarization

as the ouput would not require this).

7. Note that we have an error tolerance term, errtol, rather than an explicit expression for

when the error is small enough. The reason for this is that the polarization model has a

linear term where the input field is not rounded. As discussed in Remark 5 with Algorithm

1, this term provides a simple metric for the error. Since such a metric does not exist for

the strain, we settle for using an error tolerance provided by the user in line 9. This also

leads to a different metric for the error term in lines 8 and 15. Also, since there is no

term in the output which depends on unrounded values of the input, the strain at a fixed

point in time can only take on a finite number of values. This means the binary search

is sufficient to invert the strain to within the precision of the model and there is no need

for a correction term when assigning the final value of Ek in line 17.
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Figure 3.12: Comparison between the reference strain and actual strain (left), inverse model
electric field (middle), and absolute error between the reference and inverse models (right) for
the input field profiles (a)-(c) and (d)-(f).

3.3.4 Inverse Algorithm Performance

Figure 3.12 demonstrates the accuracy of the inverse algorithm for two input field profiles. The

simulation in these plots uses a quantized input set of size M = 28 + 1 = 257. As with the 180◦

model, the plots verify that the inverse algorithm inverts the forward algorithm to a high level

of accuracy even in the presence of rate-dependent behavior and creep effects. Figure 3.13 show

the hysteresis loops for the forward and inverse models.

The same remarks regarding the computational performance from the 180◦ inverse algorithm

apply here. One note on the implementation used in our simulation is that the errtol term from

Algorithm 2 was set to 0. This setting results in the inverse algorithm always running in the

worst-case time, which is log2(M − 1) = n, where M = 2n + 1 is the size of the quantized input

set. Relaxing this tolerance when exact accuracy is not needed will generally result in better

computational performance.
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Figure 3.13: Hysteresis loop plots for the 90◦ strain model comparing the forward algorithm
(left) and the inverse algorithm (right) for the input field profiles showing minor loop behavior
(a)-(b) and showing creep and rate-dependent behavior (c)-(d).

3.4 Shape Memory Alloys

A number of SMA applications involve uniaxial stress and strain profiles. In this case, hys-

teresis is due to metastable behavior associated with austenite (A), martensite plus (M+),

and martensite minus (M−) variants. Here we summarize the HEM for this uniaxial geometry

and present forward and inverse algorithms for SMA subjected to constant stress. Whereas

many actuators are used in variable-stress systems (attached to a spring or flexible beam), the

approach here can easily be extended to more complex systems.
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3.4.1 Uniaxial Shape Memory Alloy Model

As detailed in [10], the evolution of the phase fractions at the mesoscopic level is quantified by

the differential equations

ẋM+(t) = −p+A(σ(t), T (t); ξ)xM+(t) + pA+(σ(t), T (t); ξ)xA(t)

ẋM−(t) = −p−A(σ(t), T (t); ξ)xM−(t) + pA−(σ(t), T (t); ξ)xA(t)
(3.17)

and the conservation relation

1 = xA(t) + xM+(t) + xM−(t). (3.18)

The phase transition rates pαβ (α, β = M+,M−, A) are based on the Gibbs energy and depend

on the stress, temperature, and material parameters. The local strain is given by the constitutive

relationship

ε(σ(t), T (t)) = xA(t)
σ(t)

EA
+ xM+(t)

(
σ(t)

EM
+ εT

)
+ xM−(t)

(
σ(t)

EM
− εT

)
.

For the homogenized energy model of SMA, the interaction stress σI and relative stress σR

are assumed to be manifestations of underlying densities νI(σI) and νR(σR). The densities

νI(σI) =
1

C2

Kβ∑
k=1

βkψk (σI) C2 =

Kβ∑
k=1

βk

νR(σR) = νR(σR) =
1

C1

Mα∑
m=1

Kα∑
k=1

αk,mφk,m (σR) C1 =

Mα∑
m=1

Kα∑
k=1

αk,m

(3.19)

are assumed to be linear combinations of normal and log-normal densities, respectively, where

the kernels in (3.19) are

ψk (σI) =
1

bk
√

2π
exp

(
−σ2

I/2b
2
k

)
φk,m (σR) =

1

ckσR
√

2π
exp

(
−[ln (σR)− µRm ]2/2c2

k

)
.

Finally, the macroscopic strain is given by

ε(t) =

∫ ∞
0

∫ ∞
−∞

νR(σR)ν(σI)ε (σ(t) + σI , T (t);σR) dσIdσR. (3.20)
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3.4.2 Forward Algorithm

Discretization of the phase fraction ODEs (3.17) using an implicit Euler scheme yields

ak+1
11 xk+1

M+ + ak+1
12 xk+1

M− = xkM+ + ak13 + 1

ak+1
21 xk+1

M+ + ak+1
22 xk+1

M− = xkM− + ak23 + 1,
(3.21)

where
ak+1

11 = 1 + ∆t (p+A + pA+) ak+1
21 = pA−∆t

ak+1
12 = pA+∆t ak+1

22 = 1 + ∆t (p−A + pA−)

ak+1
13 = pA+∆t ak+1

23 = pA−∆t.

(3.22)

Note that in Equation (3.22), the transition rates depend on σk, T k, σI , σR, and material

parameters ξ. Solving (3.22) for the phase fraction at time step k + 1 yields

xk+1
M+ = ck+1

11 xkM+ + ck+1
12 xkM− + ck+1

13

xk+1
M− = ck+1

21 xkM+ + ck+1
22 xkM− + ck+1

23 ,

where

ck+1
11 =

ak+1
22
det ck+1

12 = −ak+1
12
det ck+1

13 = 1
det

(
ak+1

22 ak+1
13 − ak+1

12 ak+1
23

)
ck+1

21 = −ak+1
21
det ck+1

22 =
ak+1
11
det ck+1

23 = 1
det

(
ak+1

11 ak+1
23 − ak+1

13 ak+1
21

)
det = ak+1

11 ak+1
22 − ak+1

12 ak+1
21 .

(3.23)

The integral (3.20) can be approximated using numerous algorithms. For example, four-

point composite Gaussian quadrature yields

ε(t) =

Ni∑
i=1

Nj∑
j=1

νR
(
σiR
)
νI

(
σjI

)
ε
(
σ(t) + σjI , T (t);σiR

)
viwj , (3.24)

where σiR and σjI are the quadrature points and vi and wj are the quadrature weights. Converting

to matrix form yields

ε(t) = V TΓW,
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where
V T = [v1νR(σ1

R), · · · , vNiνR(σNiR )]

W T = [w1νI(σ
1
I ), · · · , wNjνI(σ

Nj
I )]

Γ = XA
σ(t)
EA

+XM+

(
σ(t)
EM

+ εT

)
+XM−

(
σ(t)
EM
− εT

)
.

The Ni ×Nj matrices XA, XM+, and XM− evaluate the phase fractions at

[Xα(t, σ(t), T (t))]ij = xα

(
t, σ(t) + σjI , T (t);σiR

)
α = A,M+,M−,

where xα are the solutions to (3.21) and (3.18).

To speed up computation of the SMA model, we pre-compute and store the transition rates,

which yields 4-D arrays Pαβ. The arrays Pαβ are evaluated at the quadrature points σiR and

σjI and discretized values of the input stress σ` and temperature T m, where σmin ≤ σ` ≤ σmax

and Tmin ≤ T m ≤ Tmax. For example, this yields the array

[P`m+A]ij = p+A

(
σ` + σjI , T m;σiR

)
.

During implementation, the indices ` and m in the arrays corresponding to the stress and

temperature closest to the input stress σk and temperature T k are found. The Ni by Nj matrices

of the transition rates are then accessed and used to calculate matrices of the implicit Euler

coefficients Ck+1
11 , · · · , Ck+1

23 . Matrices of the phase fractions are then updated in one step using

Xk+1
M+ = Ck+1

11 .×Xk
M+ + Ck+1

13 .×Xk
M− + Ck+1

13

Xk+1
M− = Ck+1

21 .×Xk
M+ + Ck+1

23 .×Xk
M− + Ck+1

23

Xk+1
A = I−Xk+1

M+ −Xk+1
M− ,

(3.25)

where point-wise multiplication (.×) and summation are used. A description of the forward

algorithm hem sma
(
Xk
α, T

k, σk,∆t, V,W,Pαβ, σ`, T m, ξ
)

that updates the phase fractions and

strain for one time step is provided in Algorithm 3.

3.4.3 Inverse Algorithm

As previously noted, a binary search is used to find the field value that produces the desired

material behavior. Here, we are considering SMA actuators under constant stress; therefore, the

binary search finds the temperature value T̂ that produces the desired strain ε̂. Given an initial

interval [T a T b], the strain at the midpoint Tm is calculated. Since an increase in temperature

decreases the actuator strain (as the phase converts to austenite), the interval is restricted to

temperature values less than Tm if the midpoint produces a strain εm less than the reference
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strain ε̂, and the new interval is [T a Tm]. Alternatively, if the midpoint produces a strain

greater than the reference strain, then the new interval is [Tm T b]. This process is continued

until the value in array T m is found that minimizes the error. An overview of the algorithm is

provided in Table 4.

input : Xk
α - current phase fractions (matrices) α = M+,M−, A

T k - current temperature
σk - current stress
∆t - time step
V - density values and weights for σR (vector)
W - density values and weights for σI (vector)
Pαβ - 4-D arrays of pre-computed transition rates
σ` - discretized stress evaluations for the 4-D arrays (vector)
T m - discretized temperature evaluations for the 4-D arrays (vector)
ξ - model parameters

output: εk+1 - strain
Xk+1
α updated phase fractions

` = round
(

σk−σmin
σmax−σmin) length(σ`)

)
;1

m = round
(

Tk−Tmin
Tmax−Tmin) length(T m)

)
;2

P+A = P`m+A, PA+ = P`mA+, P−A = P`m−A, PA− = P`mA−;3

Ak+1
11 = 1 + ∆t (P+A + PA+) , Ak+1

12 = PA+∆t, Ak+1
13 = PA+∆t ;4

Ak+1
21 = PA−∆t, Ak+1

22 = 1 + ∆t (P−A + PA−) ∆t, Ak+1
23 = PA−∆t ;5

det = Ak+1
11 .×Ak+1

22 −Ak+1
12 .×Ak+1

21 ;6

Ck+1
11 = Ak+1

22 ./det, Ck+1
12 = −Ak+1

12 ./det, Ck+1
13 =7 (

Ak+1
22 .×Ak+1

13 −Ak+1
12 .×Ak+1

23

)
./det;

Ck+1
21 = −Ak+1

21 ./det, Ck+1
12 = Ak+1

11 ./det, Ck+1
23 =8 (

Ak+1
11 .×Ak+1

23 −Ak+1
13 .×Ak+1

21

)
./det;

Xk+1
M+ = Ck+1

11 .×Xk
M+ + Ck+1

12 .×Xk
M− + Ck+1

13 ;9

Xk+1
M− = Ck+1

21 .×Xk
M+ + Ck+1

22 .×Xk
M− + Ck+1

23 ;10

Xk+1
A = I−Xk+1

M+ −Xk+1
M− ;11

T k+1 = dk+1
1 T k + dk+1

2 ;12

εk+1 = V T [Xk+1
A

σk

EA
+Xk+1

M+

(
σk

EM
+ εT

)
+Xk+1

M−

(
σk

EM
− εT

)
]W ;13

Algorithm 3: Homogenized energy model for shape memory alloy actuators: hem -
sma

(
Xk
α, T

k, σk,∆t, V,W,Pαβ, σ`, T m, ξ
)
.
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input : Xk
α - current phase fractions

ε̂k+1 - reference strain
σ - stress
∆t - time step

output: T̂ k+1 - temperature corresponding to ε̂
Xk+1
α - new phase fractions

a = 1;1

b = length(T m);2

m = round
(
a+b

2

)
;3

[εk+1
a , Xk+1

αa ] = hem sma
(
Xk
α, T

a, σ,∆t, V,W,Pαβ, σ`, T m, ξ
)
;4

[εk+1
b , Xk+1

αb
] = hem sma

(
Xk
α, T

b, σ,∆t, V,W,Pαβ, σ`, T m, ξ
)
;5

[εk+1
m , Xk+1

αm ] = hem sma
(
Xk
α, T

m, σ,∆t, V,W,Pαβ, σ`, T m, ξ
)
;6

while b− a > 1 do7

if εk+1
m < ε̂ then8

b = m;9

Xk+1
αb

= Xk+1
αm ;10

εk+1
b = εk+1

m ;11

m = round
(
a+b

2

)
;12

[εk+1
m , Xk+1

αm ] = hem sma
(
Xk
α, T

m, σ,∆t, V,W,Pαβ, σ`, T m, ξ
)
;13

else14

a = m;15

Xk+1
αa = Xk+1

αm ;16

εk+1
a = εk+1

m ;17

m = round
(
a+b

2

)
;18

[εk+1
m , Xk+1

αm ] = hem sma
(
Xk
α, T

m, σ,∆t, V,W,Pαβ, σ`, T m, ξ
)
;19

end20

end21

if |εk+1
a − ε̂| < |εk+1

b − ε̂| then22

T̂ k+1 = T a;23

Xk+1
α = Xk+1

αa ;24

else25

T̂ k+1 = T b;26

Xk+1
α = Xk+1

αb
;27

end28

Algorithm 4: Inverse homogenized energy model for shape memory alloys: ahem -
sma

(
Xk
α, ε̂

k+1, σ,∆t
)
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3.4.4 Inverse Algorithm Performance

The inverse algorithm is tested on a numerous input strain profiles for a SMA actuator under

various constant stresses. The resulting temperature is then applied to the forward model in

order to compare the strain error, as shown in Figure 3.1(b). In practice, it is likely that a heat

transfer model will be incorporated and a controller will be used to drive the actual temperature

to the reference temperature. The model parameters are taken from [10]. For the look-up arrays

Pαβ, we discretized the temperature using 200 values. Relatively few discretized stress values

are used since only constant-stress cases are being tested.

The results of a reference strain that follows the major loop are shown in Figure 3.14. Three

different stresses are used: 100 MPa, 200 MPa, and 400 MPa. As shown in the results, the inverse

model accurately determines the reference temperature that produces the desired strain. The

greatest error occurs for the 400 MPa case (Figure 3.14(i)), and is due to the fact that 400

MPa does not produce 6% strain, even at room temperature (293 K). The resulting forward

model and inverse model are shown in Figure 3.15 for all stress levels. The inverse model is

also accurate for minor loops, as shown in Figure 3.16. A reference strain that includes minor

loops is used for the same input stresses (100 MPa, 200 MPa, and 300 MPa). A comparison

between the forward and inverse models is shown in Figure 3.17.

In [10], it was shown that the homogenized energy model is capable of accurately modeling

shape memory alloys. Here, we have demonstrated the accuracy of the inverse model. Further-

more, with 200 discretized input temperatures in the look-up array, the binary search requires

at worst 11 forward model evaluations (28 = 256 plus 3 initial forward model evaluations).

Future work will demonstrate the efficacy of the inverse model using physical SMA systems.

3.5 Conclusion

Control systems employing actuators constructed with ferroic materials must be designed to

compensate for the hysteresis inherent in these materials in order to fully realize the systems’

potential. Compensation of hysteresis via approximate inverse filters is a popular approach,

as this often results in a well-understood linear system. To satisfy the requirements for use in

practical, real-time control applications, algorithms for approximate inverse filters must bal-

ance the often-conflicting criteria of computational efficiency, inversion accuracy, and ease of

implementation. The inversion algorithm described in this paper strikes a reasonable balance,

offering a simple-to-implement algorithm and an easily-understood trade-off between inversion

accuracy and computational speed which is suitable for many real-time applications. In Section

3.1, the homogenized energy model for modeling hysteresis in ferroic materials was described in

general terms, along with the general inversion algorithm based on a binary search of possible
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Figure 3.14: Comparison between the reference strain and actual strain (left), inverse model
temperature (middle), and absolute error between the reference and inverse models (right) for
a constant stress level of (a)-(c) 100 MPa, (d)-(f) 200 MPa, and (g)-(i) 400 MPa.

input values to the model. In Sections 3.2, 3.3, and 3.4, the general approach was applied to

specific examples for modeling and inverting polarization in ferroelectric materials, strain in fer-

roelectric materials, and strain in shape memory alloys to illustrate the details of the inversion

method and demonstrate its effectiveness.

The computational effort of computing the inverse algorithm is proportional to the com-

putational effort of computing the forward homogenized energy model, with the constant of
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Figure 3.15: Comparison between the forward algorithm (left) and inverse algorithm (right)
for (a)-(b) 100 MPa, (c)-(d) 200 MPa, and (e)-(f) 400 MPa.

proportionality small for reasonable levels of accuracy. As a result, the computational speed for

the inverse is bounded by that of the forward model. The achievable speed is anticipated to

be appropriate for a range of real-time closed loop control systems. For instance, the authors

have tested the algorithm combined with a sliding mode controller to control an SMA actuator

at rates near 0.1 Hz in [8]. In these experiments, the implementation of the algorithm was
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Figure 3.16: Inner loop comparison between the reference strain and actual strain (left), inverse
model temperature (middle), and absolute error between the reference and inverse models
(right) for a constant stress level of (a)-(c) 100 MPa, (d)-(f) 200 MPa, and (g)-(i) 400 MPa.

not optimized and coding rates limited the implementation speed. Since the forward model is

highly parallelizable and efficient to compute, more optimized implementations will likely allow

the inverse algorithm to be used in high-rate applications. Furthermore, although the inverse

algorithm was applied to the homogenized energy model, the general approach is applicable

to any hysteresis model which satisfies the monotonicity requirements underlying the binary

search algorithm.
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Figure 3.17: Inner loop comparison between the forward algorithm (left) and inverse algorithm
(right) for (a)-(b) 100 MPa, (c)-(d) 200 MPa, and (e)-(f) 400 MPa.

We note that whereas this analysis focused on ferroelectric and shape memory materials,

similar inversion algorithms can be developed for ferromagnetic materials quantified by the

homogenized energy model. This is an advantage of the unified nature of the framework for

quantifying rate-dependent hysteresis and creep in the broad class of ferroic materials.
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Chapter 4

Inverse Compensated Sliding Mode

Control

4.1 Introduction

A common approach for the tracking control of ferroelectric materials is to apply inverse com-

pensation methods to approximately cancel the hysteretic nonlinearities, resulting in an ap-

proximately linear system [24, 41, 45]. Methods based on sliding mode control are frequently

employed [6, 27, 43, 51, 52] (and not necessarily disjoint from inverse compensation methods),

as they provide a means of accommodating the inevitable uncertainties that arise in modeling

hysteresis.

In this chapter, we employ a control strategy incorporating both inverse compensation and

sliding mode control. The methods are based on the version of the homogenized energy model

for ferroelectric materials incorporating 90◦ dipole switching. Our approach is similar to that of

[15] which focuses on tracking control using shape memory alloys, although we use a physically-

derived hysteresis model and do not require an observer design for the measurement of our

system state. Whereas there are similarities with the approach presented in [22], that proposed

here differs in three ways: it is based on a significantly more comprehensive material model, the

inverse algorithm thus differs, and our design is based on classical sliding model control.

4.2 Model Development

We will use the homogenized energy model (HEM) to quantify the relationship between the

strain of a piezoelectric actuator and an input electric field. The hysteresis inversion algorithm

from Chapter 3 will then be applied to linearize the resulting composite system. This provides

the basis for our control design in the next section.
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4.2.1 Material Model

We employ the 90◦ version of the HEM described in Chapter 2 which has the formula

εmat(t) = sEσ(t) + ε90
R + dE(t)

∫ ∞
0

∫ ∞
−∞

[
x+(t, EI , Fc)− x−(t, EI , Fc)

]
ν(EI , Fc)dEI dFc

+ ε∆
R

∫ ∞
0

∫ ∞
−∞

[
x+(t, EI , Fc) + x−(t, EI , Fc)

]
ν(EI , Fc)dEI dFc (4.1)

for the strain. We have added the subscript mat to emphasize that εmat is the strain due to

the material computed with the HEM. We will frequently use the operator notation εmat[E]

to denote the dependence of the material strain on the input electric field E. The input stress

σ = σ0 to the model is assumed constant and treated as a parameter. We will use the activation-

energy-based transition rates from page 15 which incorporate thermal effects. We repeat them

here for easy reference:

pαβ(Ee, Fc) =


1
τ , Fαβ(Ee) > Fc

1
τ exp

[
−γ Fc4

(
1− Fαβ(Ee)

Fc

)2
]
, |Fαβ(Ee)| ≤ Fc

1
τ exp(−γFc), Fαβ(Ee) < −Fc.

(4.2)

Recall that Ee = EI +E is the effective input field made up of the input E and the interaction

field EI due to local electricl effects, that α and β are each one of +,−, 90, and that we are

assuming only 90◦ transitions.

4.2.2 Lumped Parameter Actuator Model

A lumped parameter model of strain in a PZT actuator is derived in [39] by treating the

actuator as a massless damped spring system and balancing forces. The input stress applied

to the material is assumed constant, making the dynamics dependent on a single scalar input

variable. The resulting model is

ẏ = −A+ sELk

sELc
y +

A

sELc
(εmat[E]) ,

= ay + bεmat[E], (4.3)

where y is the actuator output strain, a = −(A + sELk)/(sELc), b = A/(sELc) are physical

constants depending on the material and the geometry of the actuator, and εmat[E](t) is the

strain in the actuator material in response to time-varying input field E. The validity of this

model relies on assumption that the prestress satisfies −σ0 >> Lyk/A + Lyc/A (note σ0 ≤ 0

so −σ0 ≥ 0).
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4.2.3 Inverse Compensated Linear Model

The model in (4.3) is nearly linear in the state with nonlinear coupling of the input, E. By treat-

ing εmat as the input to the system, techniques from linear control become applicable, as long

as we have a method of determining a value of E that produces a desired εmat. This motivates

the use of approximate hysteresis inversion methods developed in Chapter 3. Representing the

hysteresis inversion operator for our system as ε−1
mat, we can linearize the system to obtain the

equation

ẏ = ay + bεmat[ε
−1
mat[u]]

= ay + bu+ be, (4.4)

where e = bεmat[ε
−1
mat[u]]− bu is the inversion error. This simplifies our control design, as long

as we can accommodate the error term be.

4.3 Sliding Mode Control

Sliding mode control is a technique that can achieve a control objective in the presence of

uncertainties in the system provided some bounds on the uncertainty are known. To accomplish

this, a surface is defined on a system space which is typically a space of tracking errors in the

system state with respect to some reference trajectory. The surface is defined so that trajectories

which lie on it have certain desired properties. For example, in the space of tracking errors, the

surface may be defined so that the system trajectory asymptotically approaches the reference

trajectory. The control law is designed to force the trajectories in the system space to approach

the surface and slide along it, so that the controlled system achieves the control objective.

Since every point in the system spaces lies on one side of the surface or the other, a control

structure that steers the system toward the surface is defined for each side. A state-feedback is

used to determine which side of the surface the system trajectory is currently on and switch to

the corresponding control structure. The process by which the control parameters are designed

allows some uncertainty in the system to be accounted for while still enforcing convergence of

the system trajectory to the surface.

We apply a sliding mode control to the system (4.4) with the objective of tracking a refer-

ence trajectory, following the procedure in [36]. The inversion error, e, is treated as the system

uncertainty which the control law will compensate for. In this work, we will only be simulat-

ing the system, so the source of uncertainty will be the error in the inversion algorithm and

numerical errors due to finite accuracy in the simulation. For an experimental setup, modeling

errors in the system would be incorporated as well, replacing some portion of the numerical

uncertainty due to simulation.
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4.3.1 Sliding Mode Control Design

The first step is to define the sliding mode surface that accomplishes our control objective when

the system trajectory lies on it. For our purposes, we choose

s (ỹ1, ỹ2) = λỹ1(t) + ỹ2(t), (4.5)

ỹ2 = y − yd, (4.6)

ỹ1 =

∫ t

0
ỹ2(τ) dτ, (4.7)

where s is the sliding surface, λ > 0 is a design parameter, and yd is the desired or reference

trajectory for the strain. Note that dỹ1
dt = ỹ2. When s = 0, the error dynamics satisfy dỹ1

dt = −λỹ1

so that the tracking error will asymptotically approach zero. The choice of λ affects how quickly

the error converges to zero once the trajectory reaches the surface.

To ensure that the sliding surface is eventually reached, the control is designed to satisfy

the Lyapunov-like condition

d

dt

(
s2

2

)
≤ −η|s| (4.8)

where η > 0 is a design parameter that determines the rate of convergence to the sliding surface.

Evaluating this expression for our system yields

d

dt

s2

2
= sṡ = s (λỹ2 + ay2 + bu+ be− ẏd) . (4.9)

The first step in the control design is to solve for the control that ensures s = 0 when there

is no uncertainty in the system (i.e., when e = 0). This ensures that trajectories lying on the

surface stay on the surface when the system is perfectly characterized. For our system, such a

control is

ueq =
ẏd − ay2 − λỹ2

b
. (4.10)

The next step is to add a term the control to ensure that (4.8) is satisfied even when

uncertainties are present. We set

u = ueq −
Ksign(s)

b
(4.11)
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and find an appropriateK. Replacing u in (4.9) with this expression, the condition (4.8) becomes

d

dt

s2

2
= s (λỹ2 + ay2 + bueq −Ksign(s) + be− ẏd)

= s (be−Ksign(s)) ≤ −η|s|

where the last step follows since b is always a positive parameter. To satisfy this, K must be

chosen so that K ≥ η − be, s < 0

K ≥ η + be, s > 0
(4.12)

for any possible value of the system error e. If a bound on the system error is known so that

|be| ≤ emax, this is satisfied by choosing K = η + emax. Replacing K by this expression, the

control law becomes

u =
ẏd − ay2 − λỹ2

b
− (emax + η)

b
sign(s). (4.13)

This is the value that is input to the hysteresis inversion algorithm to obtain the electric field

value which is input to the system.

Inspection of the above steps may raise the question of what prevents the control from ac-

commodating an unlimited amount of uncertainty. The answer lies in the discontinuous switch-

ing that occurs due to the sign(s) term. Larger uncertainty results in larger discontinuities when

the sign of s changes, which leads to more rapid changes in the system state. This results in

the need for faster switching as the uncertainty rises. In physical systems, limitations in the

input bandwidth place constraints on the magnitude of the uncertainty which can be tolerated.

Detailed analysis of the trade-offs involved are available in [36] and [47].

4.3.2 Feasible Reference Trajectories

No matter how advanced or robust a control method is, poor results will be achieved if the

control attempts to track a reference trajectory that is impossible for the system to produce.

This being the case, is useful to be able to rule out such impossible trajectories in terms of

properties of trajectory and the system parameters. As a step towards this, we assume the

reference trajectory is sinusoidal of the form

yd(t) = A sin(ωt) +K (4.14)
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where A is the constant amplitude, ω is the radian frequency, and K is a constant offset

from zero. We will proceed by assuming the controlled system is in a stable limit cycle where

y(t) = yd(t), meaning the desired trajectory is perfectly tracked. From this, we determine a

desired output for εmat[E](t) and then estimate necessary properties of the material parameters

and the control so that this output is possible (but not necessarily guaranteed to be feasible).

When y(t) = yd(t), equation (4.3) for the actuator system satisfies

ẏd(t) = ayd(t) + bεmat[E](t)

ωA cos(ωt) = aA sin(ωt) + aK + bεmat[E](t)

⇒ εmat[E](t) =
A(ω cos(ωt)− a sin(ωt))− aK

b

= r sin(ωt+ φ)− aK

b
(4.15)

where the last step follows from the trigonometric addition identity with r = A
√
ω2+a2

b and

φ = tan−1(ωa ).

The next step is to determine conditions on the parameters and the control which permit this

output to be achieved. The nonlinear relationship between the output εmat[E](t) and the input

E(t) complicates the analysis from this point. A reasonable approach is to apply the inversion

algorithm to the desired response for εmat[E](t), to see if the resulting errors are large. In fact,

by repeating the above steps, this approach would work well for any desired trajectory with

a known derivative, not just sinusoidal inputs. This approach does, however, rely on iterative

simulations, and may not provide much insight or guidance on narrowing down the range of

possible trajectories for a system with a given parameter set.

While a perfect characterization of the relationship between system parameters and param-

eters of feasible sinusoidal trajectories is beyond the scope of this dissertation, there are some

simple approximations that can be made to eliminate certain possibilities. For instance, we can

easily determine a maximum value for εmat[E](t), which allows us to eliminate the range of

sinusoidal trajectories that exceed this value. We will assume

1. Emax is the maximum value for the input E;

2. Emax is large enough to saturate the material (i.e., to switch all dipoles to the positive

orientation);

3. ∆Emax is the maximum rate of change of the input. It is generally reasonable to assume

such a bound is known or can be found for a physical control system. For a system with

a sampled control with sample period h, a worst case example would be Emax/h.;

4. ε∆
R ≥ 0.
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We rewrite the expression for the material strain as

εmat(E) = sEσ0 + ε90
R + dEL(x+ − x−) + ε∆

RL(x+ + x−)

where we use L(x+) as shorthand for the linear operation of integrating x+ against the distri-

bution function (i.e., L(x+) =
∫ ∫

x+νIνc dEI dFc)) and we have omitted the dependence of x+

and x− on E,EI and Fc for notational clarity. We can obtain a conservative bound on εmat by

noting that each grid point of x+ and x− is between 0 and 1, the sum of x+, x−, and x90 is

always 1 at each grid point, and L(x+) is the weighted average of the value of the grid points.

This implies the maximum value of L(x+ − x−) is 1 and the maximum value of L(x+ + x−) is

1. Combined with the assumption that Emax is the maximum value of the input, we obtain

εmaxmat = sEσ0 + ε90
R + dEmax + ε∆

R (4.16)

as an upper bound for εmat. In fact, if Emax is large enough to saturate the material (i.e., switch

all dipoles to be positively oriented), then the upper bound εmaxmat is achievable and thus is a

maximum. This implies that the parameters for a feasible sinusoidal trajectory must satisfy

A
√
ω2 + a2

b
− aK

b
≤ sEσ0 + ε90

R + dEmax + ε∆
R . (4.17)

Note the balance implied between the desired output frequency ω and the amplitude A. By

adjusting A,ω, and K, it should be possible to find a combination which satisfies this inequality

for a given set of system and material parameters. While a lower bound for the εmat can be

easily determined through a similar strategy, it is generally not as straightforward to find an

achievable lower bound as the it is difficult to tell which dipole configurations are actually

achievable by x+ and x−.

Another bound on the set of sinusoidal parameters can be determined by considering the

rate of change of yd(t) and εmat[E](t) with respect to time. For yd(t), this is easily determined

by taking the derivative

ẏd(t) = rω cos(ωt+ φ). (4.18)

For εmat[E](t), the situation is again complicated by the computationally intricate nature of the

relationship between the input and output. Despite this, it is possible to make approximations

which can reduce the set of parameter choices to some extent. Notice in equation (4.16) that

the only parameters which depend on time are E, x+, and x−. Our approach is to determine a
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bound on the rate of change of εmat[E](t), i.e., on

d

dt
εmat[E](t) = d

(
ĖL(x+ − x−) + EL(ẋ+ − ẋ−)

)
+ ε∆

RL(ẋ+ + ẋ−), (4.19)

where the dots indicate the derivative with respect to time. The appeal of this strategy is that

εmat[E](t) depends on the average of the grid points for x+ and and x−, so we can greatly

simplify the problem by finding a bound which applies to all of the grid points. This bound

then applies to the average, as well, since the average of any set cannot exceed the largest value

in the set.

To find a bound for L(ẋ+ − ẋ−) and L(ẋ+ + ẋ−), we substitute the expressions from the

dipole fraction evolution equation (2.22) into ẋ+ − ẋ− and ẋ+ + ẋ− to obtain

ẋ+ − ẋ− = −(p90+ + p+90 − p90−)x+

− (p90− + p−90 − p90+)x− + p90+ − p90− (4.20)

ẋ+ + ẋ− = −(p90+ + p+90 + p90−)x+

− (p90− + p−90 + p90+)x− + p90+ + p90−. (4.21)

From the definition of the transition rates, we see that pαβ ≤ 1/τ for any α, β so that we can

obtain the conservative estimates

−3

τ
≤ L(ẋ+ − ẋ−) ≤ 2

τ

−3

τ
≤ L(ẋ+ + ẋ−) ≤ 2

τ
(4.22)

for L(ẋ+ − ẋ−) and L(ẋ+ + ẋ−) Finally, we assume the minimum value for E to be 0 (since

our inversion algorithm only searches for non-negative values of E). Taking these assumptions

together and using the fact that |ẏd(t)| = rω for some t we obtain the feasibility bound for the

sinusoidal parameters

rω =
A
√
ω2 + a2

b
ω ≤ d∆Emax +

2

τ

(
dEmax + ε∆

R

)
. (4.23)

It is worth noting that the sinusoidal parameter K does not appear in this bound, which makes

this useful when combined with (4.17). This utility is limited, however, by the fact that this

is a crude bound. Indeed, it is clear this bound is not achievable, if for no other reason than

the fact that an input satisfying E = Emax and d
dtE = ∆Emax would violate the requirement

that E ≤ Emax. In general, that means this bound is a necessary requirement for a feasible
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trajectory, but not a sufficient one.

4.4 Simulation

We perform numerical simulations to verify the expected behavior of the controlled system. We

used an implicit Euler scheme to solve the ODE (4.4) with the control law (4.13) applied. We

summarize the details of the implementation.

4.4.1 Simulation Setup

The parameters for the system were taken from [39], which were obtained by a fit to experimental

data from a PZT actuator. The reference trajectory chosen for the output strain was a 10

Hz sinusoid with a peak-to-peak amplitude of 0.02% at an offset of 0.03%. This ensures the

operation of the system in a hysteretic regime. The feasibility bounds for the parameters used

in the system are

εmaxmat = 1.0125× 10−3

d∆Emax +
2

τ

(
dEmax + ε∆

R

)
= 7.8834× 10−1.

The left-hand values corresponding to the desired trajectory we’ve chosen for each of these cases

is

A
√
ω2 + a2

b
− aK

b
= −1.0120× 10−4

A
√
ω2 + a2

b
ω = 1.2717× 10−2.

These values satisfy the inequalities from the previous section, which means the desired trajec-

tory is feasible. The system was simulated at 5000 equally spaced points over a time interval of

about 0.5 seconds, which corresponds to a time step size of 0.1 ms.

A few implementation choices are worth noting as they have some impact on how well the

results relate to practical implementation and on the uncertainty the control must accommo-

date.

1. The control input was updated every 10 time steps rather than every time step. As a

practical system often has limits on how often the input can change, this allows for the

robustness of the control with respect to these delays to be examined.

2. Since the control algorithm involves an approximate inversion of the hysteresis and this

algorithm involves tracking the evolution of the phase fractions, the slower frequency of
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updating the control also exercises the robustness of the inversion algorithm. The higher

errors in the estimation of the phase fraction leads to increased inversion error which the

control must accommodate.

3. The input electric field was quantized to a set of 257 equally spaced values on the range

-2MV/m to 2MV/m. While this is inherent to the hysteresis inversion algorithm used,

this also corresponds to many practical systems where an input due to a control law will

often be implemented digitally (albeit usually with some sort of post-filtering).

Two cases were simulated to test the performance of the control for different levels of system

uncertainty.

1. The same parameters were used for the forward hysteresis model and the hysteresis in-

version algorithm.

2. In the hysteresis inversion algorithm, 5% error was introduced to the parameter values

µc, σc, and σI , which characterize the distributions for the model.

In the first case, sources of model uncertainty primarily come from quantization of the input

in the inversion algorithm and the finite time update of the control input. The second case

contains the same uncertainty effects as the first case, in addition to the effects of errors in

estimating the material-dependent distribution parameters.

The control parameters were chosen through iterative simulation. For both test cases, λ = 10

and η = 0.001 were used. The uncertainty bound was different for each case, with emax =

0.56184 used for the first case and emax = 1.6855 used for the second. Note that emax is b times

the maximum of the inversion error, e, from (4.4). For the parameters used in the system, this

corresponds to a maximum inversion error magnitude (i.e., maximum value for |e|) of 5× 10−6

for the first case and 1.5×10−5 for the second. As seen in Figure 4.3, these bounds are satisfied.

The values for emax were chosen by simulating the system with some low guess for the value,

calculating the bound on the resulting inversion error, and rerunning the simulation until the

error did not exceed the new estimate. The initial conditions for the system were chosen to

match the initial conditions for the reference trajectory so that the sliding surface could be

reached in finite time (see the discussion in [36]).

4.4.2 Simulation Implementation

To numerically evaluate the system (4.4), we used an implicit Euler scheme. For each time-step,

this yields the implicit equation

yk+1 = yk + h
(
ayk+1 + bεmat(E

k+1)
)

(4.24)
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where h is the time step and the k superscript implies the variable is evaluated at time t =

t0 + kh. To solve this equation, a fixed point iteration on the system written in terms of yk+1.

That is, (4.24) was solved for yk+1 to obtain

yk+1 =
yk + hbεmat(E

k+1)

1− ha . (4.25)

Note that this is still an implicit equation, since Ek+1 is the output of the hysteresis inversion

algorithm with the control law (4.13) at time tk+1. The control law at this time is dependent

on yk+1 (among other variables) which means Ek+1 is as well. A fixed point iteration is used

to solve this equation, using the previous state at yk as the initial iterate.

4.4.3 Simulation Results

Figure 4.1 shows the results of the simulation for both test cases, comparing the outputs with

the reference trajectories and showing the relative error. Both cases show reasonable tracking

accuracy, with the second case showing a reduction in performance as expected due to its

greater uncertainty. Figure 4.2 shows the input-output plots of the two test cases, confirming

the system is operating in a hysteretic regime.

Figure 4.3 illustrates the error in the hysteresis inversion algorithm for each case. Again,

uncertainty on the error is higher in the second case, but each case remains under the bound

corresponding to the value chosen for emax. In the second test case, where there is additional

parameter error in the inversion algorithm, the error slowly rises with time. This suggests further

analysis on the effects of parameter errors on the inversion error may be worthwhile, to ensure

the proper bounds on emax are chosen.

Figure 4.4 shows the input electric field determined by the control algorithm for each case.

There is not a significant amount of control chatter for these cases, although there is more

for the second case than the first due to its greater uncertainty. A major reason for this is

due to our simulation setup, where there is relatively little in the way of unmodeled dynamics,

measurement error, etc., so it is significantly easier to get a tight bound on the uncertainty than

in an experimental setup.

Figure 4.5 shows the value of equation for the sliding surface with the state trajectory as

input. We see in both cases, the values are close to zero, with a higher deviation in the second

case, as expected.
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Figure 4.1: Output strain compared with reference strain with (a) no parametric error and (b)
5% parametric error. Relative output error with (c) no parametric error and (d) 5% parametric
error.
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Figure 4.2: Hysteresis plots of output strain versus input for (a) test case 1 and (b) test case
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Figure 4.3: Inversion error for (a) test case 1 (b) test case 2. Note the percentage here is in
terms of absolute error in the strain rather than relative error.
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Figure 4.4: Input electric field for (a) test case 1 (b) test case 2.
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Figure 4.5: Sliding mode surface function evaluated for (a) test case 1 (b) test case 2.
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4.5 Related Experimental Results

In this section, we reproduce the experimental results from [8] in which a sliding mode control

algorithm is applied to the tracking control of a shape memory alloy bending actuator in which

the nonlinear hysteretic behavior in the system due to the material is quantified using the

homogenized energy model. Although the actuator model and material model differ from the

ferroelectric actuator model used in this chapter, the differences are minor enough that the

results are relevant to assessing the real-world applicability of the methods of this chapter. The

approach of [8] also uses a novel method of obtaining the bounds on the system uncertainty

which are applicable to the system at hand.

4.5.1 System Uncertainty Bounds Using Bayesian Parameter Estimation

We give a brief overview of the rigorous, data-driven approach to bounding the system uncer-

tainty which is used in the sliding mode controller applied to obtain the experimental results

in this section. Details are found in [8].

The shape memory alloy system uses a temperature observer to estimate the temperature

which drives the bending motion of the actuator. The dynamics of the temperature observer

for the inverse-compensated linear system are described by

Ṫo(t) = −h (To(t)− T∞) +H (ẋM+,o + ẋM−,o) (4.26)

+ γu2(t) + L (θ(t)− θo(t))

where L, To(T ), θo(t), and xα,o are the observer gain, observer temperature, bending angle,

and phase fractions for the shape memory alloy, respectively, u is the input current, and h,H,

and γ are physical system parameters. The output variable for this system is bending angle

of the actuator. The approach to bounding the system uncertainty used by the sliding mode

controller involves treating the parameters h,H and γ as random variables and estimating their

densities using Bayesian inference. Markov chain Monte Carlo (MCMC) methods are used in

the computation of these densities. Detailed infomration on the Bayesian parameter estimation

methods can be found in [9]. The densities determined for the experimental system are shown

in Figure 4.6.

To use this information to determine a bound on the system uncertainty, the system pa-
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(a) (b) (c)

Figure 4.6: Estimated densities for the uncertain system parameters (a) γ, (b) h, and (c) H.

rameters are rewritten as

h = h̄+ ∆h

H = H̄ + ∆H

γ = γ̄ + ∆γ

where h̄, H̄, γ̄ are the mean values and ∆h,∆H,∆γ are the estimated uncertainties determined

by finding the 95% confidence intervals as illustrated in Figure 4.6. Rewriting (4.26) as

Ṫo(t) =− h̄T̃o(t) + H̄F (t) + Lθ̃(t) + γ̄u2(t) (4.27)

−∆hT̃o(t) + ∆HF (t) + ∆γu2(t)

where

T̃o(t) = To(t)− T∞
F (t) = ẋM+,o + ẋM−,o

θ̃(t) = θ(t)− θo(t)

groups the certain or known portion of the system dynamics onto the first line in (4.27) and

the uncertain portion of the system dynamics onto the second line in (4.27). A sliding mode

controller is derived using the same approach described in this chapter. The uncertain terms in

(4.27) can be bounded analytically. This bound is novel in that the parameters it will depend on,

∆h,∆H and ∆γ are determined computationally from experimental data, rather than typical

approaches such as engineering intuition or visual inspection of the output. Furthermore, a

measure of the quality of this bound is given by the confidence value chosen (95% in this case).
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Figure 4.7: Comparison of SMC and PI-only controllers with reference bending angle trajec-
tories of (a) 0.1 Hz sine wave (b) 0.2 Hz sine wave (c) 0.1 Hz square wave.

This provides one of the first applications of techniques from uncertainty quantification to the

design of robust controllers.

4.5.2 Experimental Results

The sliding mode controller and a PI-only controller [15] were implemented in the experimental

setup for three reference trajectories:

1. 0.1 Hz sine wave

2. 0.2 Hz sine wave

3. 0.1 Hz square wave.

Figure 4.7 shows the bending angle resulting from the sliding mode controller as well as the

results from the PI-only controller for each of the reference trajectories. Figure 4.8 shows the

absolute tracking error of these same results.

The two controllers perform similarly, but the sliding mode controller has less overshoot at

non-smooth points on the reference trajectory. For example, the SMC does not overshoot as

much as the PI controller when the reference changes from 50 to 10 degrees at 10 and 20 seconds

in Figure 4.7(c). While the performance of both controllers drops when the frequency of the

sine wave trajectory is raised from 0.1 Hz to 0.2 Hz, the sliding mode controller performance

deteriorates less. These results suggest the sliding mode controller is advantageous when tracking

higher bandwidth signals and requires less tuning for varying operating points. It is worth

noting that the implementation for the sliding mode controller was not heavily optimized for

the system, resulting in a control update rate which was about four times slower than that of
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Figure 4.8: Absolute tracking error in the bending angle for the SMC and PI-only controllers
with reference trajectories (a) 0.1 Hz sine wave (b) 0.2 Hz sine wave (c) 0.1 Hz square wave.

the PI controller. In other words, the output sample rate of the digital approximation to the

control was about four times slower. Since the accuracy of a digital control improves as the

sample rate increases, this suggests an optimized implementation of the sliding mode controller

would result in an even larger improvement. These results suggest the sliding mode controller

developed in this chapter is capable of achieving good performance in practical systems.

4.6 Conclusions

The simulation results suggest that combining an approximate hysteresis inversion algorithm

based on the homogenized energy model with a sliding mode control to compensate for the

resulting uncertainty is a feasible approach to the tracking problem for ferroelectric actuators.

The related experimental results provide further validation of the method, while offering a

rigorous approach to bounding the system uncertainty required by the controller. One potential

direction for improvement is to extend the classical sliding mode control law used to methods

for reducing input chatter, such as higher order sliding mode control. Replacing the lumped

parameter system model with a distributed parameter system is another possibility which may

lead to improvements in the control algorithm.
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Chapter 5

A Composite Adaptive Control

Design For Systems With Unknown

Hysteresis

5.1 Introduction

In this chapter, we approach the tracking control problem for ferroelectric actuators by designing

an adaptive controller and addressing the implementation issues which arise when putting the

design to use. Our design choices are driven by several goals. A key goal is for the control

methods we develop to be feasible for real-time implementation. This concern eliminates the

possibility of using highly detailed material or system models and drives us to use models which

strike a balance between modeling accuracy and computational effort. We also want to ensure

that our control methods achieve the desired effect on the system behavior without resorting

to linearization of the hysteretic behavior by limiting the drive level of the input. This makes

out method useful in applications where such constraints are impractical. For implementation

purposes, since our concern will mostly be to test the behavior of the control as a proof-of-

concept, we will allow for reasonable simplifying approximations to be made when this eases

development issues.

5.2 Model Development

Our system model consists of an actuator model preceded by the homogenized energy model

to model the effects of the material. To ensure our methods are suitable for real-time imple-

mentation, we use a lumped parameter actuator model for developing our adaptive control.

This simplifies the control design and implementation and provides a good first step towards
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extending the techniques to a more accurate distributed parameter system model.

5.2.1 Material Model

For this work, we employ the homogenized energy model for polarization incorporating 180◦

dipole switching. As discussed in Chapter 2, the equation for the polarization is given by

P [u](t) =
u(t)

η
− PR + 2PR

∫ ∞
0

∫ ∞
−∞

x+[u](t, EI , Fc)νI(EI)νc(Fc) dEI dFc. (5.1)

Here we are denoting the electric field input by u(t) and using operator notation for P [u] and

x+[u] to emphasize the dependence on the input. In the numerical simulations below, we use

the evolution rule for slowly-varying inputs and transition rates neglecting thermal effects on

page 11 for simplicity. Note that the control algorithm developed below does not rely on the

choice of transition rate.

5.2.2 Lumped Parameter Actuator Model

The actuator model we are concerned with controlling is a generic lumped parameter system

preceded by the homogenized energy model developed in [38]. For example, this could model

the dynamics of a nanopositioning stage. The ODE system expressing these dynamics is

ẏ1 = y2

ẏ2 = a2y2 + a1y1 +
b

η
u− bPR + PB[u] (5.2)

where y1 is the displacement of the stage, y2 is the derivative of the displacement, u is the input

electric field, a1, a2, and b are constant physical parameters, and PB is the integral term of the

polarization incorporating the b and PR terms, i.e.,

PB[u] =

∫ ∞
0

∫ ∞
−∞

pb(EI , Fc)x+[u](EI , Fc) dEI dFc. (5.3)

Here pb(EI , Fc) = PRbνI(EI)νc(Fc) is the distribution parameter. The system can be interpreted

as a spring model with a hysteretic forcing term.

5.3 Adaptive Control

Adaptive control is a strategy in which estimates to the system parameters are adjusted online

in response to system signals and used to compute a control input to achieve the desired effect

on the system output. Using this scheme, the resulting control inputcan achieve the intended
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effect on the system behavior, even in the presence of parameter uncertainty. A well known type

of adaptive control is model reference adaptive control (MRAC) in which a reference model is

prescribed that specifies the ideal response of the system to an input. The difference between the

ideal response and the actual system response is measured and that difference is used to improve

the estimates to the system parameters. These estimated parameters are used to compute the

control, which generally achieves the desired system behavior when the parameters are known

exactly. As the estimated parameters approach the true values of the parameters, the system

behavior approaches the desired result.

Our goal is to specify a desired trajectory, yd, for the system displacement, y1, and design an

adaptive control algorithm which forces y1 to track yd. While it is possible to adapt the param-

eters a1, a2, b, and η, we will focus on adapting pb, since this is the only parameter that affects

the nonlinear behavior in the system and since it is the most uncertain of the parameters. The

first control algorithm we present, subsequently referred to as the non-composite control, was

originally specified for a class of nonlinear systems where the hysteresis was modeled with the

Prandtl-Ishlinskii operator in [44] and later adapted for use with the homogenized energy model

in [11]. This control works similarly to an MRAC design, by using known parameters, unknown

parameter estimates and measured state values to approximately cancel out unwanted dynam-

ics and leave the desired dynamics in place, while using the appropriate system information to

update the parameter estimates.

Like MRAC, the non-composite control only guarantees that the tracking error between

the actual system output trajectory and the desired trajectory converges to zero at some rate,

while ensuring that the error in the parameter estimate is bounded. Improving the convergence

rate of the tracking requires tracking gains to be increased in the control, which may cause

undesirable oscillatory behavior in the system. To improve upon these issues, we present a

composite control as described in [36]. This control algorithm uses the same control law as the

non-composite algorithm, but modifies the adaptation law both to provide faster convergence

of the tracking errors than in the non-composite case, and to improve the estimates of the

parameter values.

5.3.1 Non-composite Adaptive Control

The control law used for both the non-composite and composite algorithms is

u(t) =
η

b
vr(t) (5.4)
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where

vr = ÿd − a1y1 − a2y2 − c2z2 − z1 + α̇1 + bPR − P̂B[u]

= k1 − P̂B[u] (5.5)

and

z1 = y1 − yd
z2 = y2 − ẏd − α1

α1 = −c1z1

P̂B[u] =

∫ ∞
0

∫ ∞
−∞

p̂b(t, EI , Fc)x+[u](EI , Fc) dEI dFc. (5.6)

Here z1 and z2 can be considered tracking errors, p̂b is the estimate for the pb parameter

and c1 and c2 are positive tracking gains which adjust the rate at which the system response

approaches the desired trajectory. By substituting (5.4) into (5.2), we see that the closed loop

system is approximately linearized using the estimate for p̂b, setting the dynamics to ÿ2 =

ÿd− c2z2− z1 + α̇1. Assuming the nonlinear term cancellation error, PB[u]− P̂B[u] is small, the

result is a second order filter which drives the tracking errors, z1 and z2, to 0.

The adaptation law for the estimated distribution parameter, p̂b, is

∂

∂t
p̂b(t, EI , Fc) = γx+[u] (EI , Fc) z2(t) (5.7)

where γ is a positive adaptation gain that adjusts the rate of adaptation. The justification for

this choice of adaptation law comes from considering the Lyapunov function

L(t) =
1

2

(
z2

1 + z2
2

)
+

1

2γ

∫ ∞
0

∫ ∞
−∞

p̃2
b(t, EI , Fc) dEI dFc (5.8)

for the closed loop system, where p̃b = pb − p̂b is the parameter estimation error. Taking the

derivative of L, we get

L̇(t) = −c1z
2
1 − c2z

2
2 + z2

∫ ∞
0

∫ ∞
−∞

p̃b(t, EI , Fc)x+[u] (EI , Fc) dEI dFc

− 1

γ

∫ ∞
0

∫ ∞
−∞

p̃b(t, EI , Fc)
∂

∂t
p̂b(t, EI , Fc) dEI dFc

= −c1z
2
1 − c2z

2
2 ≤ 0. (5.9)

Thus the choice of adaptation law brings about the cancellation in the L̇ required to make
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L̇ negative definite with respect to the tracking errors, z1 and z2. This property implies the

tracking errors converge to 0. As previously mentioned, the parameter estimation error, p̃b, is

merely bounded, so there is no guarantee that p̂b converges to pb.

5.3.2 Composite Adaptive Control

Composite control is a type of adaptive control which attempts to improve the tracking conver-

gence rate by using multiple types of error measurements to drive the updates to the parameter

estimates. For example, the adaptation law for the non-composite control above includes the

z2 term, which is an aggregate measurement of the tracking error in the system. Intuitively, z2

should become small as the parameter estimates become more accurate, so that as the tracking

error becomes smaller, the estimate to the parameters are changed less. However, the relation-

ship of the tracking error to the parameter estimation error depends on the trajectory being

tracked, which means the algorithm may stop updating p̂b before the parameter estimate has

converged to the true value. We may also wish to increase the rate of adaptation to provide

faster convergence. When only using the tracking error, the only option is to increase the adap-

tation gain, which can lead to oscillation. To improve upon this, we use our system model to

derive a function which predicts the system output using the estimated parameters as linear

inputs. We can use the resulting output prediction error, which is the difference of predicted

output using the system parameters and the actual measured system output, as another source

of error to drive the adaptation of p̂b. The control law, (5.4), used in the non-composite control

algorithm is also used for the composite control, so only the adaptation law is different.

Since we will later use a finite-dimensional representation of pb, we will consider pb to be a

finite-dimensional vector to simplify the derivation of the output prediction function (or signal

function), which we label V . The system output we are interested in is y = y2. Since we want an

estimate of y in terms of the parameter estimate p̂b, we first take the derivative of y to obtain

ẏ = ẏ2 = a2y2 + a1y1 +
b

η
u− bPR + PB[u]

= k + w[u]pb (5.10)

where w[u] is the linear function (depending on u) such that w[u]pb = PB[u] and k represents

the other terms which do not depend on pb. Since ẏ is not available for measurement, we apply

a stable, first-order filter to eliminate the derivative and obtain y = K + V [u]pb, where K and

V are the filtered versions of k and w. This yields a linear function for computing the output

given the parameter pb, so we can predict the output using the parameter estimate p̂b using
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ŷ = K + V [u]p̂b and formulate the output prediction error, e, as

e = ŷ − y = V [u]p̂b − (y −K). (5.11)

Now that we have an expression for the output prediction error, we need a rule which uses

this error to update the parameter estimate. While there are several online parameter estimation

rules to choose from, we will use the standard online gradient estimator for simplicity. The

adaptation law given by this estimator is derived by updating the parameters in the direction

of the negative gradient of e2 with respect to pb. This points the update of pb in the direction

which provides the greatest decrease in e2. The resulting adaptation law is

∂

∂t
p̂b(t, EI , Fc) = −G ∂

∂pb
e2 = −GV [u]e, (5.12)

where G is a positive adaptation gain. The composite adaptation law is obtained by adding

this adaptation law to (5.7) to obtain

∂

∂t
p̂b(t, EI , Fc) = (γx+[u] (EI , Ec) z2(t)−GV [u]e) . (5.13)

One way to see why this change improves the tracking performance is to recompute the

derivative of the Lyapunov function, L, given in (5.8), with the new adaptation law for pb. The

resulting derivative is

L̇(t) = −c1z
2
1 − c2z

2
2 −

G

γ
ỹ2, (5.14)

where ỹ is the output prediction error. This implies that the output prediction error ỹ will be

driven to zero, as well as the tracking errors, z1 and z2, which may reduce the number of situ-

ations for which the tracking error converges to 0 without the parameter estimates converging

to the true values. Likewise, the additional negative term in the derivative indicates a faster

decrease in the Lyapunov function as long as the output prediction error is non-zero, which

suggests the parameter estimates and the tracking errors should converge more quickly.

5.4 Simulation Results

5.4.1 Implementation

A numerical example was computed to verify the expected behavior for the previously detailed

control algorithms. Several measures were taken to simplify the implementation. Although

these simplifications introduced some inefficiencies, potential crudeness in results, and limited
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applicability to real-world scenarios, the output was sufficient to verify the expected behavior.

The system was integrated using an explicit Euler method. While this limits the results to

first-order accuracy and necessitates small step-sizes, the simplicity of the method eases the

problem of computing the dipole fraction state.

While the choice of integration method did simplify implementation, the lower accuracy

constrained some of the other design choices for the chosen example. In particular, the choice

of desired trajectory was limited to a signal which operated much more slowly than real-world

applications would typically dictate. The desired trajectory did, however, serve to demonstrate

the algorithm’s success at tracking the given output while operating at a hysteretic drive level,

which was sufficient to suggest the algorithm would work as intended with more realistic desired

signals (recall from the discussion of Figure 2.5 that faster signals typically imply less hysteresis).

Referring to (5.2), the system parameters chosen for the simulation were a1 = −8, 1/1.5, a2 =

−1.8/1.5, b = 1,, η = 1.031× 107, and PR = 1.

Referring to (5.6), the desired trajectory was yd(t) = 0.05 sin(0.1t). The tracking gains, c1

and c2, were both set to 1.

For the non-composite control, the adaptation gain, value γ = 0.1 was used in (5.7). For

the composite control, the adaptation gains in (5.13) were γ = 0.05 and G = 0.05 and the

first-order filter used to obtain the output prediction function in terms of the Laplace variable

s, was 1/(s+ 0.1).

The true value of pb was assumed to be have the representation detailed below in (5.15),

with the parameters σI = 1.222 × 105, σc = 0.4789, and µc = 7.581 × 105. The values for the

coefficient weights were α1 = α2 = β1 = β2 = 0.1 and α3 = β3 = 1. The initial estimate p̂b was

chosen to have the same values of σI , σc, and µc, and the coefficient weights estimating αi and

βj were each set 50% larger than the true values given above.

The system was integrated from t = 0 to t = 192π at 12,000 evenly spaced points on the

interval, and was assumed to be initially at rest.

The following subsections below address two more implementation issues which needed to

be considered when developing the simulation, which were the efficient representation of pb as

a finite-dimensional vector and the solution of the implicit equation (5.4) which defines the

control law.

Representation of pb

Simulation of the system using the previous control algorithms requires a suitable finite-dimensional

representation for the infinite-dimensional distribution parameter pb(EI , Fc). We employ the

representations discussed on page 16 to represent pb(EI , Fc) = νI(EI)νc(Ec) where νI is a

weighted sum of normal distributions with varied σI and νc is a weighted sum of lognormal
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distributions with varied σc. The formulas for the distributions are

νI(EI) =

Kα∑
i=1

αiφi(EI), νc(Fc) =

Kβ∑
j=1

βjψj(Fc),

φi(EI) =
1

σiI
√

2π
e−E

2
I /2(σiI)2 , ψj(Fc) =

1

σjcFc
√

2π
e−[ln(Fc−µc)/2(σjc)]2 ,

σiI ∈
{

1

4
σI ,

1

2
σI , σI

}
, σjc ∈

{
1

4
σc,

1

2
σc, σc

}
.

(5.15)

Here Kα and Kβ are the number of parameters for νI and νc, respectively (Kα = Kβ = 3

in our case), and αi and βj are non-negative parameters which can be adjusted to achieve a

better fit for the distribution (note that in this formulation, the actuator model parameter b is

incorporated in these coefficients).

The parameters σI , σc, and µc are chosen offline. The physical basis of the homogenized

energy model allows these parameters to be estimated with a reasonable level of accuracy from

measured properties of the polarization. The resulting representation can achieve a good fit to

the true distribution by varying the αi and βj parameters. To provide a linear parameterization

of the output in terms of pb, the parameters are re-indexed from the two indices i, j for the

separate parameters αi, βj to the single indexed parameters ξk. More explicitly, we equate

pb(EI , Fc) =

(
Kα∑
i=1

αiφI(EI)

)Kβ∑
j=1

βjψj(Fc)

 =

KβKα∑
k=1

ξkΦk(EI , Fc), (5.16)

where Φk(EI , Fc) = φi(EI)ψj(Fc) and ξk = αiβj , with the index k iterating over each possible

combination of i and j (e.g., k = i + Kβ(j − 1) for i, j = 1, 2, 3). The resulting expression for

the polarization is

bP [u](t) =
b

η
u(t) +

Kβ ·Kα∑
k=1

ξkWk[u] (5.17)

where

Wk[u] =

∫ ∞
0

∫ ∞
−∞

Φk(EI , Fc)x+[u](EI , Fc) dEI dFc. (5.18)

This form of the polarization operator is suitable for numerical evaluation using quadrature

rules for the integrals.
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Implicit Equation for the Control Law

An issue with using (5.4) to determine the control is that the given equation is implicit, since the

right hand side of the equation contains a function which depends on u. To use this equation,

we must find a satisfactory way of solving this equation for a given time step.

For the simulation results, we use an alternative inverse compensation approach to what

was discussed in Chapter 3. Here a nonlinear equation solver is used to to compute u, using the

solution to

u(tn) =
η

b
(k1(tn)− P̂B[u(tn−1)]) (5.19)

as the initial guess, where tn is the current time step and tn−1 is the previous.This yields

accurate results without the need to reduce the time step to a very small value, although the

solution for each u(tn) takes longer. Care must be taken, however, since the standard nonlinear

equation solvers provided with numerical computation codes are based on Newton methods,

which rely on the smoothness of the equation to be solved and the invertibility of its Jacobian.

Since P̂B[u] has limited smoothness and since the derivative of (k1η)/b − P̂B[u] − u is near

zero at some points of the hysteresis curve, the tolerance for the solver must be kept low. This

limits the accuracy of this method, although the results show it is sufficient for the goals of ther

simulation.

5.4.2 Results

Fig. 5.1 shows the simulated displacement, y1, of the system for both the non-composite and

composite control algorithms plotted against the desired trajectory, yd. The results are as

expected, with y1 converging to yd in each case, but the composite controller converging much

faster. One minor detail to note is that trajectory for the composite control appears to be

slightly above the desired trajectory compared with the non-composite control. This is likely

due to the filtering used to compute the output prediction function and so it may be possible

to correct by increasing the filter’s cutoff frequency.

Fig. 5.2 shows the absolute tracking error for each state variable, y1 and y2, and both

control algorithms. The plots provide another perspective to compare the convergence of each

the trajectories for each algorithm and again show the faster convergence of the composite

algorithm.

Fig. 5.3 plots the l2 norm of the parameter estimation error for both control algorithms.

As expected, we see that the error for the composite algorithm decreases much faster than

the non-composite algorithm. Note that both algorithms seem to eventually converge to the

same non-zero level of error in parameters rather than driving the estimation error all the
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way to zero. One possible explanation for this is that inaccuracies arising from the simple

implementation methods could be limiting the achievable accuracy. Another explanation is

that the desired trajectory may not be stimulating the terms used in the adaptation law update

enough to provide the information the system requires to improve the parameter estimates. If

this latter possibility is true, then it indicates that while the composite control algorithm does

provide faster convergence, it may not help as much as hoped in broadening the class of desired

trajectories for which the parameter estimates converge to the true values. One final possibility

is the parameterization of the distribution used in the simulation may not be highly sensitive

to small values of αi, βj .

Fig. 5.4 plots the unbiased polarization output versus the input electric field for both control

algorithms. The plots verify that the control algorithms are working as expected even while

driving the system at levels where hysteresis effects are present. The plots also show irregularities

at some point due to errors in the solution to the implicit equation defining the control. We

would expect these irregularities to vanish and smoother plots to result if a more accurate

solution to the equation was obtained.

5.5 Conclusion

The simulation results verify the control algorithms accomplish most of what they are intended

to achieve for a simple case. The state variables in each case converge to the desired trajec-

tory with the composite algorithm yielding faster convergence without needing to increase the

adaptation gain. The only property that could not be verified was the potentially more ac-

curate parameter estimation of the composite control. While the parameters and techniques

used in the simulation were simplified, the results provide confidence that a more sophisticated

implementation will demonstrate the desired behavior as well.

Extensions to the control algorithms and their associated theory may be considered. A

major improvement would be to extend to control methods for use with a distributed parameter

system model rather than the less accurate lumped parameter model currently used. Deriving

guidelines for choosing the tracking gains and adaptation gains based on properties of the

desired trajectory would also extend the utility of the techniques. Finally, it would be useful to

find some criteria for convergence of the parameter estimates to the true values.
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Figure 5.1: Simulated output of y1 for the non-composite (top) and composite (bottom) control
algorithms plotted against the desired trajectory (dashed).
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Figure 5.2: Absolute difference in tracking error for y1 (top) and y2 (bottom) for the non-
composite (solid) and composite (dashed) control algorithms.
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(right) control algorithms.
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Chapter 6

Optimal Controller Design For

Actuator Systems With Parameter

Uncertainty

One facet of research in the field of uncertainty quantification focuses on methods for prop-

agating uncertainty through a model with uncertain parameters. For instance, Monte Carlo

methods can approximate statistical properties of a system from a number of random samples

of a system output, with the error being inversely proportional to the square root of the num-

ber of samples [12, 30]. This is both a disadvantage, in that convergence is somewhat slow, and

a unique advantage in that this is one of the few techniques where the error convergence is

independent of the number of uncertain parameters. Monte Carlo methods were used in [20] to

determine the probability distributions of parameters for a model of a beam-type actuator em-

ploying macro-fiber composites. The recently-developed generalized polynomial chaos methods

are another approach, which use basis sets of orthogonal polynomials to represent the prob-

ability distributions of independent random variables in the system[50]. This representation

decouples the random variables of the system from the time and space variables, and permits

the use of computational methods familiar in the approximation of differential equations such

as Galerkin projection [14, 48], and collocation [32, 33, 49].

Recently, control algorithms have been developed that combine the computationally efficient

GPC methods of uncertainty propagation with control parameterization techniques to compute

control inputs for systems of ODE’s [18] and PDE’s [46] which are optimal with respect to

statistical costs. In this chapter, we apply a similar approach to the control of a ferroelectric

actuator system. We discuss implementation issues and simulate the system with the resulting

control law.
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6.1 Mathematical Preliminaries

In this section we review some of the probabilistic terminology used to describe the random

actuator system model.

A probability space is a triple (Ω,F , P ), where

1. Ω is a collection of sets called the sample space.

2. F is the σ-algebra generated by Ω.

3. P : F → [0, 1] is a measure defined on F called the probability measure of the proba-

bility space.

Intuitively, Ω can be thought of as the set of possible events, F is a mathematical structure

used to identify all subsets of Ω for which there are no technical issues assigning a probability

to (i.e, are measurable), and P is a function which assigns probabilities to any measurable set

of events.

A random variable Z is a function Z : Ω→ R that satisfies

{ω ∈ Ω |Z(ω) ≤ x} ∈ F for all x ∈ R. (6.1)

The purpose of a random variable is to assign numerical values to the events ω ∈ Ω with the

condition (6.1) ensuring that suitable subsets (called Borel sets) of these numerical values are

measurable. This is a technical condition that means that any “reasonable” set of numerical

values determined by Z has a probability determined by P .

The distribution function FZ of the random variable Z is the collection of probabilities

FZ(z) = P (Z ≤ z) = P ({ω |Z(ω) ≤ z}). (6.2)

In other words, FZ(z) is the probability that Z is less than z.

We will only need to consider continuous random variables, which are random variables

with distribution functions satisfying limε→0 FZ(z + ε) = FZ(z) for all z. That is, continuous

random variables have continuous distribution functions.

The density of a continuous random variable Z is the non-negative function fZ : R→ [0,∞)

satisfying

FZ(z) =

∫ z

−∞
fZ(s) ds, for all z ∈ R (6.3)

and ∫ ∞
−∞

fZ(z) dz = 1. (6.4)
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The density can be thought of as a measure of the “probability” that Z takes on some particular

value, with fZ(a) > fZ(b) meaning a is a more likely value than b.

The expectation (also called mean, or average) of a random variable Z is

µZ = E(Z) =

∫ ∞
−∞

zfZ(z) dz. (6.5)

This suggests another interpretation of the density, as the weight in a weighted average of the

random variable.

The variance of Z is

σ2
Z = var(Z) = E

(
(Z − µZ)2

)
=

∫ ∞
−∞

(z − µZ)2 fZ(z) dz (6.6)

where σZ is called the standard deviation. These values are a measure of how widely dis-

tributed a random variable is about its mean which in some sense determines how “random”

the variable is. For instance, a random variable with a variance of 0 is always equal to its mean

and so is deterministic.

A random vector Z : Ω→ Rn is a vector-valued function with random variables for com-

ponents. In other words, Z(ω) = (Z1(ω), . . . , Zn(ω)) where Zi are random variables. Random

vectors also have distribution functions

FZ(z) = P (Z ≤ z) = P (Z1 ≤ z1, . . . , Zn ≤ zn) (6.7)

where z ∈ Rn. The value FZ(z) is the probability that all of the inequalities in the component-

wise comparison are simultaneously satisfied. Random vectors can also have densities, defined

as non-negative fZ : R→ [0,∞)n satisfying

FZ(z1, . . . , zn) =

∫ z1

−∞
· · ·
∫ zn

−∞
fZ(s1, . . . , sn) ds1 · · · dsn (6.8)

and ∫ ∞
−∞
· · ·
∫ ∞
−∞

fZ(z1, . . . , zn) dz1 · · · dzn = 1. (6.9)

This density is called the joint density of the random variables Z1, . . . , Zn.

The random variables which make up the components of a random vector are said to be

independent if the joint density can be written

fZ(z1, . . . , zn) = fZ1(z1) · · · fZn(zn). (6.10)

In other words, the joint density of the random variables Z1, . . . , Zn is the product of the
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densities for each Zi. This means the probability of a particular random variable Zi is unrelated

to the probability of any other Zj .

6.2 Actuator Model

We use the same lumped parameter actuator model that was used in Chapter 4. That is, we

consider

ẏe(t) = ay(t) + bεmat[E](t) (6.11)

where y is the strain in the actuator, a, b are physical parameters depending on the geometry

and material of the actuator, and εmat[E] is the material strain resulting from the input electric

field E which is computed using the 90◦ homogenized energy model for ferroelectric materials.

6.3 Control of the Deterministic Actuator System

This section describes a method used for determining a control input (E in (6.11)) which

results in the actuator strain (y in (6.11)) tracking a reference trajectory for the deterministic

actuator model. This method is based on a form of control parameterization, a technique that

derives an optimization problem suitable for numerical solution by representing the control

input trajectory with a discrete set of parameters. These parameters are used to compute the

control input trajectory which, in turn, is used to compute the actuator strain trajectory. An

appropriate cost functional is used to measure the tracking error (i.e., the difference between

the actuator strain and the reference trajectory). The optimization problem is to find the set

of control parameters that minimizes the cost functional subject to the constraints imposed by

the model and possibly other physical considerations (e.g., bounds on the input).

A general scheme for obtaining a parameterization of the control input is based on repre-

senting the input trajectory in some function space. We will assume E ∈ L2(R) and use the

representation

E(t) =
∞∑
i=1

Eixi(t) (6.12)

where {xi(t) ∈ L2(R)} is a suitable set of basis functions and Ei ∈ R are the coefficients which

uniquely determine E(t). To facilitate computation, only Ei for i = 1, . . . , n are allowed to

be nonzero. The result is a finite set of parameters, E1, . . . , En, that determines the possible

control inputs. This parameter set can be represented as a vector in Rn:

E =
(
E1 . . . En

)T
. (6.13)
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This vector will be referred to as the control parameter vector.

Corresponding to each choice of values for the control parameter vector, there is an actu-

ator strain trajectory which can be computed in two steps. The first step is to evaluate the

homogenized energy model for the material strain εmat(E(t)). The second step uses εmat(E(t))

to evaluate the actuator model (6.11) obtaining the actuator strain trajectory y(t). In practice,

these steps are realized using numerical differential equation solvers. For the purpose of setting

up the optimization problem, we will simply use operator notation to denote y[E](t) as the

actuator strain trajectory which results from the particular choice for E without concern for

methods of numerical evaluation.

The remaining task is to determine a cost functional that, when minimized, results in the

actuator strain trajectory tracking the reference trajectory. A reasonable choice is to limit this

trajectory to a finite time interval, [0, T ], and use the L2(0, T ) norm to measure the distance

between the reference trajectory and the actual trajectory:

J(E) =
∥∥y[E]− yD(t)

∥∥
2

=

√∫ T

0
(y[E](s)− yD(s))2 ds. (6.14)

Here J(E) denotes the functional that assigns a cost to each choice of input parameter vector

and yD(t) is the reference trajectory. A control input resulting in an actuator strain which

tracks the reference trajectory is determined by solving the optimzation problem

min
E
J(E) =

∥∥y[E]− yD(t)
∥∥

2
. (6.15)

Constraints may be added to the problem as dictated by the physical system (e.g., bounds on

E will typically be necessary in a real system where there are limits on the input field possible).

Remark: The cost functional described above is weighted solely by the distance of the

actuator strain trajectory from the reference trajectory. It is possible to add weights to other

performance criteria (such as control energy usage) through straightforward modifications of

the cost functional. We will limit our attention solely to the problem of tracking.

6.4 Control of the Uncertain Actuator System

The tracking problem in the deterministic actuator system was framed as an optimization

problem in which values for an input parameter vector were found that minimized a cost

functional that measured the distance between the actuator output and the reference. The

utility of this method lies in the parameterization of the input control, which approximates the

infinite-dimensional input trajectory in a finite-dimensional space providing a discretization of

the problem along the time axis. With this parameterization, standard techniques for solving
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the differential equations which define the system model and the homogenized energy model

can be used along with standard techniques for solving the optimization problem to obtain

practical approximations to the desired control input.

An unavoidable issue when modeling the actuator as a deterministic system is that no

practical system can ever be perfectly identified. Measurement and modeling errors contribute

uncertainty to the system which results in the computed results differing from those of the

physical system. One way to quantify this uncertainty is to extend the deterministic system to

a random system. In a random system of differential equations, some of the system parameters

(such as a or b in (6.11) or the various material parameters which determine εmat) are treated as

random variables rather than constant values. The resulting system yields a random trajectory

depending not only on time but on the event in the sample space. The probability measure in

the system probability space enables the calculation of statistical properties of the output, such

as the average value of the trajectory, standard deviation, and so on. This allows for a more

complete description of the behavior in the physical system (e.g., the standard deviation can

be used to not only determine bounds on the possible values for the output trajectory, but to

also determine the likelihood that these bounds will be satisfied).

6.4.1 Random Actuator System Model

Before defining the random actuator system with an arbitrary number of random parameters,

it is helpful to define a specific example with a small number of random parameters from which

the more general case will easily follow. Consider a and b in (6.11) to be random with all other

parameters deterministic. The random parameters are denoted by the random variables a(ω)

and b(ω). The random vector Z(ω) = (a(ω), b(ω)) has these random parameters as its compo-

nents and denotes the random input to the random system (i.e., the source of all randomness

in the system). These random variables a(ω) and b(ω) are assumed to be independent, so that

the joint distribution function of a and b (or equivalently, the distribution function of Z) can

be written as a product of distribution functions for a and b. In other words,

P (Z ≤ z) = P (a ≤ z2, b ≤ z1) = P (a ≤ z1)P (b ≤ z2). (6.16)

The independence assumption is important for some of the numerical methods used for evalu-

ating the random model. With these definitions, the random system for the actuator is

d

dt
y(t,Z(ω)) = a(ω)y(t) + b(ω)εmat[E](t). (6.17)

For the random system, the output strain trajectory now depends not only on time t but also on

Z. While the discussion to this point has focused on the case when there are only two random
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parameters, adding additional random parameters is straightforward. Additional parameters are

added as components to Z. For instance, treat the relaxation time τ as a random parameter.

Then Z = (a, b, τ). In the resulting system, εmat also depends on the random input Z:

d

dt
y(t,Z(ω)) = a(ω)y(t) + b(ω)εmat[E](t,Z(ω)). (6.18)

Additional material parameters or initial conditions for the evolution equation may be consid-

ered random and added as components to Z and (6.18) will remain valid.

6.4.2 Stochastic Optimization Problem

As a result of extending the deterministic model to a random one, there is no longer a single

deterministic trajectory to use for determining the difference from a reference trajectory. In-

stead, there are an infinite number of possible trajectories weighted by the probability of the

realization of parameter values resulting in that trajectory. The consequence of this is that

the cost functional used to measure the distance of the deterministic output strain from the

reference trajectory must be reformulated in statistical terms. There are multiple ways to do

this, but we will focus on two important cases:

1. Minimizing the expected (or average) tracking error.

2. Minimizing a combination of the variance in the tracking error and the expected tracking

error.

The control is represented just as in the deterministic case (6.13) by a control parameter vector

E. These parameters map to a control as in (6.12) which, when applied to the system (6.18),

results in the random output trajectory y[E](t,Z). For a given reference trajectory, yD(t), the

random output error is given by

ỹ[E](t,Z) = y[E](t,Z)− yD(t). (6.19)

Note that the deterministic reference trajectory can be written yD(t) = yD(t,Z) so the above

subtraction is well-defined. We then write

ỹavg[E](t) =

∫
Rn
ỹ[E](t,Z)fZ(Z) dZ

=

∫ ∞
−∞

. . .

∫ ∞
−∞

ỹ[E](t, z1, . . . , zn)fZ(z1, . . . , zn) dz1 · · · dzn

=

∫ ∞
−∞

. . .

∫ ∞
−∞

ỹ[E](t, z1, . . . , zn)fZ1(z1) · · · fZn(zn) dz1 · · · dzn, (6.20)
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for the average error trajectory, where fZ is the joint density function associated with the

random vector Z. In the final line, we have used the assumption that the components of the

random vector are independent to write fZ as a product density. Similarly, the tracking error

variance trajectory is given by

ỹvar[E](t) =

∫
Rn

(ỹ[E](t,Z)− ỹavg[E](t,Z))2 fZ(Z) dZ. (6.21)

Note that the definition of the error variance trajectory uses the average error trajectory and

that the variance is independent of the choice of yD. This means the error variance trajectory is

the same as the output variance in the model. Both the average and variance error trajectories

make use of the standard definitions for average (expectation) and variance of a random variable

at each time t. These statistical trajectories each have the same dimension as the deterministic

system output trajectories. This allows us to once again use the L2(0, T ) norm as a scalar

measure of the error over the time interval [0, T ], giving

Javg(E) = ‖ỹavg[E]‖2 =

√∫ T

0
(ỹavg[E](s))2 ds (6.22)

Jvar(E) = c1 ‖ỹavg[E]‖2 + c2 ‖ỹvar[E]‖2 = c1 ‖ỹavg[E]‖2 + c2

√∫ T

0
(ỹvar[E](s))2 ds (6.23)

for the average and variance, respectively. The optimization problems we are interested in are

min
E
Javg(E) = ‖ỹavg[E]‖2 (6.24)

min
E
Jvar(E) = c1 ‖ỹavg[E]‖2 + c2 ‖ỹvar[E]‖2 , (6.25)

where c1, c2 ≥ 0 are design parameters which weight the relative importance of the tracking or

the variance. Thus these minimization problems result in a scheme which allow us to find a set

of parameters for the input E that result in either the average tracking error or a combination

of the average tracking error and error variance to be minimized.

6.5 Numerical Implementation

Techniques and codes for solving the deterministic optimization problem (6.15) are well-understood

and widely available. Noting that the stochastic optimization problems, (6.24) and (6.25), differ

from the deterministic case only by the use of ỹavg or ỹvar rather than ỹ = y − yD, it is clear

that those same techniques and codes can be applied given an efficient way to compute ỹavg and

ỹvar. We will pursue an approach for computing these statistical quantities using generalized
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polynomial chaos (GPC) expansions.

6.5.1 Generalized Polynomial Chaos

The generalized polynomial chaos (GPC) functions are a basis set of orthogonal polynomials

used to represent the probability distribution of a random variable [48]. The orthogonality of

the polynomials is defined by the inner product which is weighted by the density of the random

variable the basis set corresponds to. That is, the polynomial chaos basis functions for a random

variable Z with density FZ are the orthogonal polynomials Φi satisfying

E (Φi(Z)Φj(Z)) =

∫ ∞
−∞

Φi(z)Φj(z)fZ(z)d z = γjδij (6.26)

where γj = E(Φ2
j (Z)) is a normalization constant and δij is the Kronecker delta function. There

are a number of known classes of basis polynomials corresponding to distribution types. For

example, Gaussian distributions are represented by Hermite polynomials and uniform distri-

butions are represented by Legendre polynomials. Since we will approximate the distributions

of uncertain parameters as Gaussians distributions, we will restrict our attention to Hermite

polynomials, Hi(Z). For the standard Gaussian distribution (i.e., with mean 0 and standard

deviation 1), the first two unnormalized Hermite polynomials are H0(Z) = 1 and H1(Z) = Z.

The remaining polynomials in the basis are determined by the recurrence

Hn+1(Z) = ZHn(Z)− nHn−1, (6.27)

for integers n ≥ 2. The orthogonality of the polynomial basis is key to its use for approximating

functions which depend on the random variable Z. In particular, suppose f is a function of

the random variable Z in an appropriate function space and the GPC basis is {Φi}. Then the

N th-degree GPC projection of f is defined as

PNf =

N∑
i=0

f̂iΦi(Z), (6.28)

where f̂i = 1
γi
E(f(Z)Φi(Z)) are the Fourier coefficients of the orthogonal basis. For convenience

we will assume the basis is normalized so that γi = 1. This allows for a finite-dimensional

approximation of the random dimensions of f . Moreover, supposing that f is a function of the

random variable Z and of time, the Fourier coefficients become functions of time, i.e. f̂i = f̂i(t).

In other words, the GPC expansion decouples the time variable t and the random variable

Z. In particular, the strain in the random actuator system y(t, Z) can be approximated as
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y(t, Z) ≈∑N
i=0 ŷi(t)Φi(Z). This approximation can be substituted into (6.18) to obtain

d

dt

N∑
i=0

ŷi(t)Φi(Z) =
N∑
i=0

dŷi(t)

dt
Φ̂i(Z). (6.29)

Linear independence of the Φi(Z) implies the yi(t) satisfy a differential equation which can be

solved indpendently for i = 0, . . . , N . This is similar to the function-space approximations used

in finite-element methods for numerically solving partial differential equations.

It is straight-forward to formulate the GPC expansion for multiple random variables. Such

a formulation generally requires independence of the parameters which are considered random.

There is also a point of diminishing returns for using GPC methods for multiple parameters

as the computational cost rapidly increases with the number of random parameters making

alternative techniques (such as Monte Carlo methods) more practical. We will limit our work

to simulating a system with one random parameter at a time, so we will not discuss the details

of GPC expansions involving more than one parameter.

What remains is to choose an approach to compute the statistical measures of interest (i.e.,

the expectation and the variance) from the finite-dimensional. One of the more convenient ap-

proaches, from an implementation point-of-view, is to use a collocation method. This approach

approximates the solution using fixed sample points of the random variable Z at which the dif-

ferential equation is solved. For instance if Z = τ is considered a random parameter, then the

sample points might be τ = 0.02, 0.04, 0.6, 0.08. The differential equation would be solved for

independent systems at each of these values of τ . The results are used to compute the Fourier

coefficients of the GPC projection of y(t, Z). In our case, since we will approximate our random

parameters as normally distributed, we will use a 4-point Gauss-Hermite quadrature rule to

determine our collocation method. This rule provides four points xi along with weights wi such

that ∫ ∞
−∞

f(x)
1√
2π

exp(−x2/2) dx ≈
4∑
i=1

wif(xi), (6.30)

with this approximation being exact when f(x) is a polynomial of degree 7 or less. Since we

are approximating our random parameters as Gaussian random variables, we can represent a

variable Y with standard deviation σ and mean µ as Y (Z) = µ + σZ where Z is a normally

distributed variable with mean 0 and standard deviation 1. In general, in terms of the Hermite

GPC basis with three terms, we have Y (Z) = a0H0(Z) + a1H1(Z) + a2H2(Z). We can easily
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find the mean and the variance of Y using Gauss-Hermite quadrature from

µ = E(Y (Z)) = E(Y (Z)H0(Z))) =
4∑
i=1

Y (xi)wi = a0 (6.31)

σ2 = E((Y (Z)− µ)2) = E((Y (Z)− a0H0(Z))2) ≈ a1 + a2 (6.32)

≈
4∑
i=1

H1(xi)Y (xi)wi +
4∑
i=1

H2(xi)Y (xi)wi. (6.33)

This allows us to easily approximate the average and variance from the four samples of the

output Y (xi). When applied to our random system, this means we can solve the deterministic

actuator system for the four different parameter values correpsonding to the four xi and compute

Javg[E] and Jvar[E] for use with a nonlinear optimization code.

6.6 Simulation

The method was tested for a number of examples. The nonlinear program was solved using

the fmincon constrained minimization code and the input electric field was approximated as

a piecewise constant trajectory with 100 points. Note that the memory efficient look-up table

methods described in Section 2.2.1 were particularly important here for two reasons. One is that

when treating parameters which appear in the evolution equation of the HEM, this requires

a separate look-up table for each parameter value, which compounds the memory concerns of

the model. What’s more, since fmincon is a gradient based method, it performs better when

the input is more regular, which requires finer discretization levels. Without applying the more

efficient methods of storing the look-up tables, the granularity in the input may be too coarse

and cause problems numerically for the solver.

The simulation is focused on three material parameters - the relaxation time τ , the piezo-

electric constant d, and the difference between the remanence strain for 180◦ and 90◦ dipole

orientations, ε∆
R . The parameters for the actuator model and the material are the same as those

used in the simulations in Chapter 4 and all dipoles are initially oriented positively (i.e., x+ = 1

and x− = x90 = 0). Physically reasonable values for the means and variances were estimated

from the results in [20]. The reference output was set to a sinusoid with peak-to-peak amplitude

0.5MV/m and an offset of 0.5MV/m. A set of simulations was run minimizing Javg and Jvar

with c1 = 1, c2 = 10. The results are shown in Figure 6.1 with the 2σ confidence intervals plot-

ted. Note that each case uses the same deterministic initial conditions which are not included

in the plots due to the short time-constant of the actuator model.

The results show no perceptible difference when minimizing the two costs. Adjusting the

ratio of c1 and c2 shows no change in the result until a certain critical value is reached, at which
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point the output variance is made very small but the average tracking error becomes very large.

It appears the local minimum for the average tracking error occurs in a neighborhood where

the variance is relatively constant and vice-versa. Thus the hybrid cost may be of limited use,

at least for this particular problem setup. The relative error in the average output is shown in

Figure 6.2.

The differences in the 2σ confidence intervals for different choices of random input can be

understood by examining the physical roles of the parameters. For instance, there is initially

little variance evident when τ is the random parameter, because the dipoles are all set to 1 and

τ only scales the transition rates. The variance begins to increase after the dipoles have had

time to start switching, as smaller values of τ will switch faster and change the corresponding

output. On the other hand, both the d and ε∆
R parameters appear in the output equation for

εmat[E](t), scaling the averages of the dipole fractions, so they have a more immediate effect on

the output variance. Note that the variance appears immediately large in these cases because

of the large values of a in the actuator model with respect to the time scale.

Figure 6.3 shows the optimal control which minimizes the average tracking error for each

case. The figure shows that treating different parameters as random does not significantly

change the input obtained. This shows the costs chosen to be minimized are not sensitive to

these parameters. This suggests that minimizing the norm of the error trajectory constrains

the input in a way that is fairly independent of these parameter choices, at least for the desired

trajectories chosen. Less restrictive objective functions, such as the norm of the average error

or variation at a single point, may be required to generate results which vary for different

parameter choices.

6.7 Concluding Remarks

This chapter described a nonlinear programming problem for ferroelectric actuators with para-

metric uncertainty which minimizes the statistical cost of the tracking error in the output for a

specified trajectory. To decouple the random dimensions of the system from the time dimension,

a generalized polynomial chaos expansion was used to represent the probablity distribution of

the uncertain parameters. A numerical scheme exploiting this decoupling was described that

allows for the statistical cost to be computed from deterministic computations and for standard

nonlinear optimization codes to be employed. The algorithm was simulated for a sinusoidal

trajectory, for three different choices of uncertain parameter in the model. The results showed

good tracking performance was achieved, but that there was little sensitivity to the choice of

uncertain parameter. Despite this lack of sensitivity, the developed algorithm provides an initial

step in applying knowledge of the system uncertainty to the development of optimal controls

in hysteretic systems. Further research on different choices of desired trajectory or statistical
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objective function may reveal applications which demonstrate higher sensitivity to the chosen

parameter variations.
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Figure 6.1: Optimal tracking of a sinusoid for the random actuator model. The solid lines
are the average trajectories and the dashed lines bound the ±2σ confidence intervals. The
left column minimizes the average error and the right column minimizes a combination of the
average error and the variance. The top row has τ random, the middle has ε∆

R , and d in the
bottom.

110



1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

S
tr

a
in

 (
%

)

Relative Error, tau Random

(a)

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

S
tr

a
in

 (
%

)

Relative Error, eps Random

(b)

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

S
tr

a
in

 (
%

)

Relative Error, d Random

(c)

Figure 6.2: Relative error in the average output for random parameters (a) τ , (b) ε∆
R , (c) d.
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Chapter 7

Conclusions and Future Work

7.1 Summary

This dissertation focused on the development and implementation of control algorithms for fer-

roelectric actuators exhibiting rate-dependent hysteresis and other nonlinear behaviors modeled

by the Homogenized Energy Model (HEM). Emphasis was placed on control laws feasible for

real-time implementation, which placed a high priority on computational efficiency. While most

of the work considered actuators constructed from ferroelectric materials for concreteness, the

techniques developed apply to other materials exhibiting analogous hysteretic and nonlinear

behavior as well, such as ferromagnetic and ferroelastic materials. The generality of the HEM

in modeling system behavior deriving from different underlying physics is a key aspect of the

applicability of the developed techniques beyond just ferroelectric materials.

Chapter 2 described the general computational framework of the HEM and summarized the

components of that framework for ferroelectric materials. The variations in those components

for different assumptions on the system were compartmentalized to highlight the resulting

modeling differences. The numerical evaluation of the model was also discussed and a number

of improvements to the numerical implementation were presented. A benchmark partially exact

solution for a special case of the model was described and used to verify the numerical methods

used in the model.

Chapter 3 presented an efficient algorithm for inverting the HEM which permits linear

control techniques to be applied to the compensated model. Since this algorithm was based on

the bisection method for solving nonlinear equations, it provides a bound on the computational

effort of the inverse as a proportion of the computational cost of evaluating the HEM forward

in time. Furthermore, the design of the method fits with the look-up table based methods for

approximating the model forward in time in such a way that the inversion is optimal with

respect to the accuracy of that approximation. Simulation results showed the algorithm was
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capable of compensating for rate-dependent hysteresis as well as creep behavior.

Chapter 4 applied a sliding mode control algorithm to track a reference trajectory. This

algorithm employed the inverse compensation algorithm of Chapter 3, with the sliding mode

control compensating for the resulting inversion error. Simulation results verified the expected

behavior of the control. The chapter also described some bounds given in terms of physical

parameters and the frequency, amplitude, and offset of a given sinusoidal trajectory which must

be satisfied in order for that trajectory to be a feasible output of the system. The experimental

results of a related controller for a shape memory alloy system were presented to illustrate the

real-world applicability of the approach.

Chapter 5 described an adaptive control algorithm for systems with unknown hysteresis.

The algorithm built upon a previous control design by adding terms to the adaptation law

that improve the convergence properties of both the system output as well as the parameter

estimates. Additionally, an implementation of the algorithm using an efficient representation

of the hysteresis parameters was detailed. It was also noted in the chapter that the prior work

the algorithm is based on describes the control implicitly, so that inverse compensation can be

used to improve the results.

Finally, Chapter 6 discusses the implementation of an optimal control for ferroelectric actua-

tor systems with parameter uncertainty. By treating certain material parameters as random vari-

ables, the actuator model becomes random and thus the output trajectory is a time-dependent

random variable. A numerical approach using generalized polynomial chaos expansions to rep-

resent the distributions of the random parameters was used to describe a nonlinear program to

optimize the output trajectory with respect to statistical costs. This representation allows stan-

dard nonlinear optimization codes to be used to compute the optimal control offline. The results

showed good tracking was achieved, but that there was little variation in the computed input

for different choices of uncertain parameter, suggesting the system was not sensitive to these

parameter values for the minimized statistical costs. This offers an initial step towards incor-

porating quantitative knowledge of the uncertainty to the development of statistically optimal

controls for hysteretic smart systems.

7.2 Future Work

Although the inversion algorithm in Chapter 3 is efficient enough to have a computational

cost which is within an order of magnitude of the computational cost of computing the model

forward in time, further improvements could be made by restricting the input range which is

searched over using information on the change in the desired output. An alternative approach

which may also lead to a more efficient inversion algorithm would be to use the interpretion of

the HEM as a control system (recall (2.1) (2.2)) and treat the inversion problem as a tracking
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control problem. The sliding mode controller of Chapter 4 could be extended to use the more

recent higher order sliding mode algorithms, to reduce chattering in the input. Since the results

of Chapter 6 showed little sensitivity to the parameters considered uncertain, it would be

interesting to see if the statistical costs could be adjusted to increase sensitivity for some

useful application. For instance, tracking error could be replaced with error in the final position

and/or control effort could be added to the cost. A more formal sensitivity analysis of the

model may be required to reveal objective functions or operating regimes which are more

responsive to variations in the parameters. It may also be interesting to optimize the system

for multiple uncertain parameters by either ascertaining the independence of parameters and

using a generalized polynomial chaos expansion for each of these parameters, or by adapting

the approach to use Monte Carlo methods. Finally, all of the control algorithms described could

be simulated using distributed parameter systems. Aside from the fact that simulation on these

more realistic models provides a better idea of how the algorithms perform on a physical system,

the additional structure of these models may suggest changes to the algorithms which improve

tracking accuracy.
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