
ABSTRACT

REHM, KERI LEIGH. Multiscale Modeling of Plant Growth Combining Enzyme Kinetics
and Whole Plant Dynamics and Experimental Design Applications. (Under the direction of
H. T. Banks.)

While models of photosynthesis and physiological models of crop growth abound, the ques-

tions of how the productivity of photosynthesis drives plant growth and how the environ-

ment (outside of PAR, CO2, and O2 availability [49]) affects these cellular level reactions re-

main largely unexplored. We construct two environment-dependent candidate model of plant

metabolism and growth based on previous work modeling the dark reactions of photosynthesis

[49], light reactions of photosynthesis [28], and whole-plant metabolism [26], along with informa-

tion on carbon metabolism from [4] and [42] and whole-plant response to environmental factors

from [39]. The carbon uptake rate as predicted by the model is used to relate photosynthetic

productivity with plant leaf area as predicted by a logistic growth model.

We use these models with a least-squares optimization algorithm to estimate parameters

that would replicate recorded growth of Arabidopsis thaliana [35] and soybean [39]. The leaf

area predicted by the model agrees with the data and exhibits changes in behavior between

day and night. Moreover, metabolites involved in photosynthetic processes exhibit different

concentrations when exposed to daytime conditions or nighttime conditions. To investigate

potential relationships between parameters in the models and overall model behavior, we use

a C3 cycle model [49] and one of the two constructed models to conduct further parameter

estimation problems and calculation of sensitivity matrices describing how much an equation

changes when a parameter is varied some small amount from a predetermined value.

Additionally, we formulate a Fisher information matrix-based optimal design methodology

for the selection of the best state variables to observe and optimal sampling times for parameter

estimation problems involving complex nonlinear dynamical systems. An iterative algorithm for

implementation of the resulting methodology is proposed. Its use and efficacy is illustrated on

two applied problems of practical interest, a dynamic model of HIV and immune response [1]

and a C3 cycle model [49].
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Chapter 1

Multiscale Modeling of Plant

Growth Combining Enzyme Kinetics

and Whole Plant Dynamics

1.1 Introduction

The development and refinement of dynamical systems models of photosynthesis reflect the

increased understanding of plant metabolism built through numerous in vivo, in vitro, and

even in silico experiments. These models typically address light-dependent reactions that occur

within the thylakoid or light-independent reactions of the Calvin Cycle in the stroma and

cytosol; however, very few models address both sets of reactions - the exception being the work

of A. Laisk in [27] and [26]. The questions of how these reactions drive plant growth and how

the environment (outside of sunlight, CO2, and O2 availability) affects these reactions remain

largely unexplored.

Utilizing the models of Zhu, et. al. [49], Lazar [28], and Laisk, et. al. [26], we construct two

ODE candidate models of photosynthesis in C3 plants such as Arabidopsis thaliana, soybean,

and spinach. One candidate model, labeled the comprehensive model, uses a set of 74 first

order reaction equations developed in [28] to describe the light reactions. The other, labeled the

compact model, utilizes four Michaelis-Menten enzyme kinetic equations to summarize these

reactions. Both models use the C3 cycle model of [49] as well as other mechanism descriptions

from [26]. We relate this cellular-level productivity to environmental conditions such as sunlight,

CO2, and O2 availability and temperature by drawing upon mathematical models developed in

the area of crop modeling [39] and knowledge of how environmental factors affect photosynthesis

[4]. Changes in leaf area are determined using sigmoid-like functions scaled by cellular activity

as calculated by these cellular-level reactions.
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1.1.1 Physiology of photosynthesis

Photosynthesis is a process by which plants convert sunlight, CO2, and H2O into energy that is

usable by the plant and other organisms that may consume the plant. Photosynthesis primarily

occurs in the leaves of a plant. A leaf is composed of several layers of cells, as pictured in Figure

1.1. The cuticle, the outermost layer of a leaf is not cellular - it is a waxy protective layer. The

exterior layer of cells, the epidermis, controls the transaction of water, air, and other substances

into the leaf but does not contribute much to photosynthetic productivity. The body of the leaf,

known as the mesophyll, contains the cells that perform photosynthesis.

Figure 1.1: Depiction of a cross-section of a leaf [48].

A leaf cell is composed of many organelles that perform specific tasks within a cell. The

names and general locations of these organelles are pictured in Figure 1.2. Photosynthesis occurs

in the chloroplasts and cellular cytosol (also known as cytoplasm), and additional energy-

producing reactions occur in the mitochondria. The chloroplast, represented in Figure 1.3,

further contains substructures that support photosynthesis and other cellular functions. The

light reactions of photosynthesis occur primarily in the thylakoid, which is a reaction center,

and the cholorplast stroma, a liquid-filled space between the thylakoid (and other structures)

and the chloroplast’s membrane. The light-independent reactions, which are also known as the

C3 cycle or Calvin cycle, occur in the stroma and in the cytoplasm outside the chloroplast.
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When light strikes a leaf, it excites electrons contained in the thylakoid’s interior known

as the lumen. Once excited, the electron moves along an electron transport chain in which it

slowly releases energy to power processes that occur along the thylakoid membrane. In Pho-

tosystem I, the movement of these electrons causes NADP+ to gain a negative charge and

attract a H+ atom to become NADPH. Names of NADP+, NADPH, and other metabolites

involved in photosynthesis may be found in Section A.1 of the appendix. NADPH is used as a

hydrogen supplier to help reduce CO2 in the light-independent reactions. In Photosystem II,

electron movement instead creates a charge that moves H+ and supplies energy to the enzyme

ATP synthase. When activated, ATP synthase catalyzes the combination of ADP and available

phosphate, Pi, into ATP. The bond between ADP and the newly added phosphate stores a

large amount of energy, which is used to fuel many other reactions in the cell.

Figure 1.2: Depiction of a plant cell with organelles labeled [46].

While the reactions of the C3 cycle don’t require light as a direct input, the rate of these

reactions is dependent upon the concentration of the products from the light reactions. The

core reactions of the C3 cycle occur in the chloroplast stroma and utilize the ATP and NADPH

generated in the light reactions to create more stable energy storage metabolites in the form of

sugars and starches. Glucose-based starch is generated inside the chloroplast and transported to

3



Figure 1.3: Depiction of a chloroplast with subsystems labeled [41].

other areas of the plant to fuel reactions and growth. Sucrose is generated in the cytoplasm and

is primarily used to fuel processes in other areas of the same cell. Photorespiration, a process

that competes for the same resources that are used in the C3 cycle, dissipates the energy in

ATP and NADPH, and due to its high activity and impact on plant productivity, must also be

considered when modeling the productivity of the C3 cycle. The reactions involved in the C3

cycle, sucrose production, and photorespiration are listed in [4] and [49].

1.1.2 Models of photosynthesis

The earliest steady-state models of C3 photosynthesis focus on key reactions involved in ATP,

starch, and sugar generation and assume that most reactions exhibit Michaelis-Menten [29] type

dynamics (the primary exception being reactions catalyzed by RuBisCO). Farquhar, et. al. [20]

relate a leaf’s CO2 assimilation rate to radiance and temperature. Based on previous knowl-

edge gathered through experiments on chloroplasts harvested from spinach, eucalyptus, and

barley, the model calculates the rates of RuBP, ADP, ATP, NADP+, NADPH, and PGA pro-

duction and consumption based on electron transport that is fueled by radiance and controlled

by temperature and atmospheric CO2 and O2. The model is tested at different atmospheric

concentrations of CO2 and O2 while varying the temperature and level of light absorbed by

the chloroplasts. While this model relates energy output to energy input with few equations, it

does not utilize the full system of reactions that are known to occur in C3 photosynthesis [4].
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The C3 cycle model for the synthesis of sucrose and starch proposed by Laisk, et. al. [25]

is foundational to many current models. While much more comprehensive than [20], it makes

assumptions that the NADPH:NADP+ ratio, UTP:UDP ratio, and total Pi remain constant

and it removes the light-dependent reactions found in Laisk’s earlier work [27]. This model uses

20 ODE’s and 6 concentration balance equations to represent the dynamics of 23 state variables,

including metabolite concentrations in the stroma and cytosol. Parameters are adjusted so that

the metabolite concentrations achieve a steady state indicative of that seen in experimentally

obtained data, and then the model’s performance is tested by varying atmospheric CO2 and O2

levels as well as maximum activity of ATP synthase. This model, while approaching the level of

complexity needed to model the Calvin cycle at the subcellular level, removes the environmental

factors of temperature (by assuming a constant temperature of 25◦ C) and radiance.

Pettersson and Ryde-Pettersson [31] propose a competing model for the C3 cycle at equi-

librium. Using Michaelis-Menten type dynamics for all reaction velocities, the model uses 16

ODES, 2 concentration balance equations, and 11 reaction equilibrium equations to describe the

concentrations of 19 metabolites. This model is used to examine the effect of Pi concentration

on other metabolites’ concentrations. Like that of [25], this model shows great improvement in

modeling photosynthetic production, but the lack of environmental factors, assumptions made

to enforce a steady state, and C3 reactions ignored by the model render it insufficient for in

silico experiments with varying environmental conditions.

Poolman, et. al [32] extend the model of [31] to include responses to the environmental

factors of Pi and light. Additionally, many of the steady-state assumptions are removed. The

assumptions used in this model are very similar to those of [25]: the NADPH and NADP+

concentrations are fixed, and level of light is reflected by varying the maximum activity of ATP

synthase instead of modeling the photosystems. The model is used to examine CO2 assimila-

tion and starch production rates when the concentrations of RuBisCO, SBPase, Pi, and triose

phosphate translocator are varied.

The work by Zhu, de Sturler, and Long in [49] extends [25], [31], and [32] to reflect recent

advances in understanding of plant metabolism. In [49], the reactions for fructose and sucrose

synthesis in the Calvin Cycle as well as those of photorespiration (not to be confused with cellu-

lar respiration) are quantified in terms of Michaelis-Menten enzyme kinetic equations (or similar

mechanisms for reactions known to not fulfill Michaelis-Menten assumptions) and is one of the

most comprehensive C3 models available, containing 31 state variables and 158 parameters.

The greatest weaknesses of this model are the conservation equations used to enforce constant

levels of phosphates, NADPH+NADP+, and ATP+ADP in the system. Parameters are found

either in existing literature or estimated using a genetic algorithm, and then the model is solved

at varying levels of atmospheric CO2 and O2 to observe predicted carbon uptake rates.

In [47], von Caemmerer, Farquhar, and Berry explain a slightly modified version of the
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model from [20] and extend it to the leaf level, where light intensity has a more pronounced

and nonlinear effect. In this later work, this model is expanded to better explain the effects

of temperature change on the reaction rate equations and apply the model to canopy-level

systems, but does not include any more metabolites. While this model may be an acceptable

approximation of carbon fixation for plants in which the Calvin Cycle is not understood, models

similar in scale to [49] may be preferable for species whose Michaelis-Menten constants are

available through previous research or may be estimated.

Similar to the efforts in C3 cycle modeling, a number of models have also been developed

to describe the light reactions of photosynthesis. These reactions also influence the CO2 uptake

rate and O2 production [22] and produce ATP and NADPH necessary for fueling the C3 cycle.

Many of these models focus on chlorophyll fluorescence for the first second of exposure to light.

Like CO2 uptake in the C3 cycle, chlorophyll fluorescence is a strong indicator of productivity

of the photosystems. During this small time frame, not all mechanisms of photosynthesis have

been activated; this simpler system composed of only the activated components is easier to

model [22]. These models are then used to qualitatively compare long-term photosynthetic

performance (with the expectation that higher initial output implies higher long-term output).

The current generation of the foundational model by Laisk ([27], [25]) is described and used

by Laisk in [26]. This model, while simpler than [49] in its description of the C3 cycle, includes

simple mechanisms to describe the photosystems, ATP generated by photophosphorylation, and

the synthesis of some organic and amino acids. Parameters are experimentally determined using

intact leaves or taken from previous versions of the model, and then the model is used to explore

the effects of varying light and CO2 on the CO2 uptake rate. Like [49], this model also relies

on conservation equations to maintain constant concentrations of phosphates, ADP+ATP, and

PSI and PSII reaction centers. While this model’s quantitative description of the photosystems

is appealing and approximates long-term fluorescence yields, its simpler implementation of the

C3 cycle may disagree with [49] in predicted metabolite concentrations.

In [22], Govindjee discusses the nearly 60 years of research that has been informative in his

efforts to model Chlorophyll (Chl) a fluorescence. While he discusses many topics in his review,

he expounds most upon the observed phases of fluorescence and their relation to experimen-

tally observed photochemical processes. He lists the several phases of fluorescence activity as

determined by local maxima and minima in fluorescence data and explains his proposed names

and definitions of those phases (in an attempt to standardize the multiple naming schemes in

existence at the time of the paper’s creation). Then, using experimental findings from a number

of papers, he consolidates the knowledge of energy transfer between different reaction centers

and the time scales on which these reactions occur after light is introduced. The timing of these

transfers is then compared to the fluorescence phases to link which electron transfers increase or

decrease chlorophyll fluorescence. Many contemporary researchers now follow the fluorescence
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phase naming scheme of [22].

Zhu and Govindjee [50] construct an ODE model of PSII, cyt b6/f, and the OEC containing

20 state variables. The reactions included in the model are assumed to be bidirectional and are

mathematically described using first-order kinetics. While the model shows correlations between

the saturation of state variables and different fluorescence phases, the predicted fluorescence did

not correspond well to observed fluorescence in both the start time of the fluorscense phase or

the level of fluorescense. This lack of fit may be attributed to parameters taken from literature

and not estimated using numerical optimization.

In [28], Lazar presents a model of PSI, PSII, cyt b6/f, FNR, and the OEC. While the electron

transfers that occur in the photosystems are catalyzed by enzymes like the C3 cycle, they

are written using a compartmental model and modeled using bi-directional first-order kinetic

expressions. The model contains approximately 40 states and 20 parameters. Some parameters

are found in the literature, while others are estimated using least squares minimization. Lazar

then uses the model to investigate the rate of photosynthesis at different light levels. The

timing of fluorescences phases as predicted by the model agrees well with observed fluorescence;

however, the levels of fluorescence were often overestimated by the model.

Rubin and Riznichenko [36] formulate a model of PSI, PSII, and cyt b6/f using a master

equation approach. The parameters used in the model are primarily from literature, however,

some are manually estimated. While the model produces a qualitatively acceptable curve, the

level of fluorescence predicted differed. The authors then propose a scheme based on Brownian

motion to model the movement of chemicals within reaction centers. Simulations are run to show

a model trajectory of a plastoquinone molecule; however, these results are not then related back

to fluorescence levels.

Energy production in plant cells is not limited to photosynthesis - it also occurs in the

mitochondria through cellular respiration. In a recent review of current photosynthesis research,

Amthor [4] calculates the number of photons needed to generate ATP. He considers percent of

useful radiation absorbed by plants, ATP generated in the C3 (and if applicable, C4) cycle,

and cellular respiration. He also estimates the amount of ATP used in starch building, mineral

uptake, and protein synthesis. Amthor documents and balances the chemical reaction equations

for the C3 cycle, C4 modification, glycolysis, and the TCA cycle. While the equations are not

coded nor written as enzyme kinetics equations, they are easily converted should any additional

mechanisms be needed to accurately model plant metabolism, and Michaelis-Menten constants

may be found in other sources or estimated.
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1.1.3 Physiological crop modeling

The field of physiological crop modeling approaches the question of predicting plant productivity

at a more tangible level: standard approaches in crop modeling relate crop yields or biomass

production to a plethora of environmental factors such as water, sunlight, soil nutrients, and crop

management practices. The relatively simple Aquacrop model [43] utilizes basic mathematics

and patterns observed in plant growth to mainly relate plant growth to water consumption using

the formula B = WP ×
∑
Tr, where B is biomass, WP is water productivity of the crop, and

Tr is crop transpiration. As this model does not include factors that relate to carbon fixation

efficiency, it would be difficult to integrate this model with cellular-level kinetics models, but

it includes simple formulations about important ideas such as growth based on humidity and

sunlight and the existence of canopy cover from neighboring plants, which inhibits growth.

The decision support system for agrotechnology transfer (DSSAT) [23] utilizes a modular

algorithm and includes many more factors in plant growth and has been tested on about 16

crops in its history from 1988 to 2003. It utilizes the CROPGRO algorithm, which was originally

developed for soybean and peanut growth but has been successfully extended to wheat. The

DSSAT program and its modular components are sold, so the source code or mathematics of

its current algorithm are not publicly available.

J. Jones, a developer of the DSSAT, however, has a history of investigating and mathemati-

cally describing relationships between environmental factors and plant growth since the 1970’s.

In [33], the leaf area and biomass production of young individuals of several species of plants are

examined in three different temperature regimes. The first four weeks of growth of these species

in each temperature regime was modeled using exponential curves with an acceptable fit. The

authors concluded that the plants of the same species in different temperature conditions grew

at different rates. Additionally, they observe that leaf area expansion and biomass production

are directly related.

Plant growth at later periods of the seedling and vegetative stages, however, does not fol-

low an exponential pattern. At around the same time as [33], T. Sinclair was also developing

a mathematical model that relates the basic environmental factors of temperature, available

water, nitrogen, and light levels to leaf area, biomass, and emergence of seeds. This model,

appearing in [40] in an application to modeling soybean growth, makes use of a system of

simple mathematical equations to describe daily changes in plant size and weight for multiple

individuals of one species.

The mechanisms affecting leaf area change in soybean in [40] are expanded in [39], where

the authors model how temperature and water availability affect leaf growth and senescence

at an individual plant level using logistic functions to model net gained and net lost leaf area.

The model results may be interpreted as plant area change over time. The model uses a beta
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function to relate to daily temperature to plant growth efficiency, allowing it to be used to

predict how plants will grow in different temperature regions. Like [40], this model also focuses

on daily changes in plants; however, its formulation is very close to that of a system of ordinary

differential equations. The model is fit to three sets of soybean leaf area data, each covering the

120 days of plant development after emergence from the soil, with relatively successful results.

1.1.4 Dynamical systems modeling and experimental design

The application of a model to approximate trends seen in data raises many methodological

questions. Seber and Wild [44] provide an overview of the mathematical and statistical tools

commonly used and refined by current research. While basic topics of different types of models

(such as linear ODEs, sigmoid and nonlinear functions, and even stochastic models) and param-

eter estimation techniques are covered, multiple aspects of analyzing and improving and model’s

performance are also addressed. Additionally, [44] shows theoretical background to confirm the

reliability of these techniques, offers some explanations of the standard numerical algorithms

used to solve the parameter estimation problem, and discusses some of the common difficulties

encountered in parameter estimation.

Banks and Tran [17] provide a primer on the basics of modeling and parameter estimation.

While it does not address the same breadth of mathematical and statistical modeling topics as

[44], it is a very useful introduction to the concept and implementation of the iterative modeling

process to often-encountered situations in the physical and biological sciences. Banks and Tran

[17] contains several detailed examples of deriving a system of equations based on physical laws,

performing an experiment that exemplifies the physical behavior, and analyzing how well the

model describes the experimental data using different mathematical and statistical tools. The

examples include heat conduction through a metal rod, sound wave propagation in an enclosed

space, and size-structured population dynamics.

Inverse problem methodologies are discussed in [11] and earlier in [13] in the context of

dynamical system or mathematical model parameter estimation when a sufficient number of

observations of one or more states (variables) are available. The choice of method depends on

assumptions the modeler makes on the form of the error between the model and the observations

(the statistical model). The most prevalent source of error is observation error, which is made

when collecting data. (One can also consider model error, which originates from the differences

between the model and the underlying process that the model describes. But this is often quite

difficult to quantify.) Measurement error is most readily discussed in the context of statistical

models. The three techniques commonly addressed are maximum likelihood estimators (MLE),

used when the properties of the error distribution are known; ordinary least squares (OLS), for

error with constant variance across observations; and generalized least squares (GLS), used when
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the variance of the data can be expressed as a nonconstant function. Uncertainty quantification

is also described for optimization problems of this type, namely in the form of observation error

covariances, standard errors, residual plots, and sensitivity matrices. Techniques to approximate

the variance of the error are also included in these discussions.

Experimental design using the Fisher Information Matrix (FIM), which is based on sensitiv-

ity matrices, is described in [12] for the case of scalar data. Sensitivity matrices are composed

of functions that relate the change in a variable to the change in the parameter. The first order

quantifications of these relations are called traditional sensitivity functions and are useful in

suggesting when a variable should be sampled to get the most information for estimating a par-

ticular parameter, especially when the first order sensitivity functions are used in conjunction

with the so-called second order sensitivity functions. This work also examines the usefulness

of generalized sensitivity functions [45], which are calculated using the FIM, that are known

to describe how information about the parameters is distributed across time for each variable.

Both types of sensitivity functions are then used in [12] in numerical simulations to determine

the optimal final time for an experiment of a process described by a logistic curve.

In [16], the authors develop an experimental design theory using the FIM to identify optimal

sampling times for experiments on physical processes (modeled by an ODE system) in which

scalar or vector data will be taken. The experimental design technique developed is applied in

numerical simulations to the logistic curve, a simple ODE model describing glucose regulation

and a harmonic oscillator example.

The use of mathematical models to better understand photosynthesis is featured in [6]

and [14]. Both works focus on applying the C3 cycle model of [49] to help determine a sam-

pling regimen when performing an experiment, a topic of interest in the mathematical field of

experimental design. Multiple methods of selecting the optimal metabolites to measure in a

cellular-level experimental setting are discussed and evaluated in [6]. One method, which is an

ad-hoc statistical method, determines which variables directly influence an output of interest

at any one particular time. A model using a subset of variables is determined via multivariate

linear regression, and the efficacy of the model is then measured using the Akaike Information

Criterion. The variables that appear in the best models at the most time points are identified

as the most important to measure. Such a method does not utilize the information on the

underlying time-varying processes given by the dynamical system model. The second method,

which utilizes the dynamics of the ODE model to determine what metabolites are most related

to parameters via a measure of parameter variability known as the Fisher Information Matrix,

is expanded upon and used [14] to include both metabolite and sampling time selection. Ex-

tension of the second method first suggested in [6], based optimal design ideas, is the subject

of our experimental design algorithm development.

We use the C3 cycle model of [49] and light reaction model of [28], along with information
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from [4], [26], and [39], and environmental data, to construct an environment-dependent model

of metabolism in plants including the light and dark reactions of photosynthesis. The carbon

uptake rate A as predicted by the model is used to relate photosynthetic productivity with

plant leaf area as predicted by a logistic growth model. The model is fit to leaf area data

of Arabidopsis thaliana [35] and soybean [39] in separate numerical experiments to judge the

model’s ability to describe growth patterns in C3 species whose growth behavior and enzyme

kinetics have been largely quantified. While our current efforts compare the modeled leaf area

to leaf area data, our hope is to be able to use the experimental design methodologies of [6]

and [14] with this proposed model in order to better design greenhouse and field studies of crop

performance based on mathematical predictions of overall plant performance under different

environmental conditions.

1.2 Proposed models

While many existing models either describe the macro-scale productivity of a plant via leaf area,

biomass, or yield predictions or the micro-scale productivity of photosynthesis and CO2 uptake

rates, very few – if any – relate cellular productivity to gains in biomass using a mathematical

framework. The goal of our proposed model, which utilizes existing work by [26], [28], [39], and

[49], is to accurately represent metabolic processes, in particular C3 photosynthesis, in leaf tissue

so that it may be used to predict photosynthetic productivity under varying environmental

conditions and reaction rates and relate this productivity to change in plant size. In order to

distinguish between changes in productivity due to the environment and those due to genetic

regulation and variability, the model must also include mechanisms that reflect how external

factors such as sunlight, temperature, and water availability affect photosynthetic rates and

plant development in addition to the Michaelis-Menten [29] mechanics that describe cellular

processes that fuel plant growth. Our initial conceptual model framework is pictured in Figure

1.4.

1.2.1 Comprehensive model

Our initial efforts focused on only modeling the individual-level dynamics of leaf area (Figure

1.4, right column). Different formulations of sigmoid functions, including the logistic equation

and the Gompertz equation, were tested for their ability to fit leaf area data from [35] and [39]

in a least-squares minimization parameter estimation problem. Based on the resulting fits, we

propose that a dual-logistic function with temperature influence be used to describe leaf area

growth and senescence:
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dL

dt
(t; ~θ, ~E(t)) =

(
dG

dτ

A(t; ~θ, ~E(t))

Aopt
− dS

dτ

)(
dτ

dT

dT

dt

)
, L0 = G(0) + S(0)

dG

dτ
(t; ~θ, ~E(t)) = rGG(τ) (1−G(τ)/kG) , G0 = G(0) (1.1)

dS

dτ
(t; ~θ, ~E(t)) = rSS(τ) (1− S(τ)/kS) , S0 = S(0)

dτ

dT
(t; ~θ, ~E(t)) =


2(T (t)−Tmin)α(Topt−Tmin)α−(T (t)−Tmin)2α

(Topt−Tmin)2α
, Tmin ≤ T (t) ≤ Tmax

0, T (t) < Tmin or T (t) > Tmax,
(1.2)

where L((t; ~θ, ~E(t)) is the total leaf area of the plant, ~E(t) is a vector of environmental forcing

functions, G(t; ~θ, ~E(t)) is the expanding leaf area, S(t; ~θ, ~E(t)) is the senescing plant leaf area,

and A(t; ~θ, ~E(t)) is the CO2 uptake rate based on the enzyme kinetics reactions (held constant

at A(t; ~θ, ~E(t))/Aopt = 1 in the exploratory phase of model development). Explanations of the

parameters are available in Section A.2 in the appendix. The model includes a mechanism

τ(T (t)) as described by (1.2), taken from [39], that describes the influence of temperature on

growth and senescence rates; however, when this model was fit to the LAI data found in [39] of

two different plantings of the same type of spinach, the growth and senescence parameters of the

models best describing these data sets changed by 10 – 30%. This indicates that temperature is

not the only factor that introduces variability into plant growth rates – factors such as genetic

variability and other environmental conditions may also affect a plant’s development.

When environmental information is not considered (or held constant for the duration of the

in silico experiment), the metabolite concentrations predicted by the model quickly stabilize.

The CO2 uptake rate quickly (within minutes) achieves a steady state that is not influenced

by temperature or captured radiance (see [49] and [6] for solutions of the C3 model). Thus

the CO2 uptake mechanism effectively scales the growth curve of (1.1) by a constant when

environmental conditions are not varied. Based on the models of [39], [40], and [49] - as well as

basic knowledge about photosynthesis as described earlier in this chapter and information from

[4] - we include in our model the external factors of light intensity, temperature (in degrees

Celsius), atmospheric CO2 and O2 concentrations, and relative H2O availability (Figure 1.4,

left column). These factors are denoted as ~E(t) = [r(t) T (t) [CO2] [O2] w(t)] and shown

in the left column of 1.4.

Similar to [26] and [49], gas solubility equations are used to calculate the concentration of

CO2 and O2 in the plant based on atmospheric composition. Using Henry’s law for gas solubility,

the concentration [G] in mol L−1 of a gas G (in this case, CO2 or O2) in an aqueous solution
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Figure 1.4: Schematic of how multiple existing models are combined for a comprehensive quan-
tification of photosynthesis and then related to environmental factors and biomass change.

(the interior of leaf cell) may be described by

[G] =
P (elev)MG

KHPC(298.15, G)exp
[
−CG

(
1

T (t)+273.15 −
1

298.15

)] , (1.3)

where P (elev) is the pressure in atmospheric units (atm), MG is the mole fraction of gas in

the gaseous mixture, KHPC and CG are constants, and T (t) is the temperature in degrees

Celsius at time t. Assuming the atmosphere is an ideal gas, MCO2 = 0.00039 (390 parts per

million) and MO2 = 0.20946. The values of the other constants are KHPC(298.15,CO2) = 29.41,

KHPC(298.15,O2) = 769.23, CCO2 = 2400, and CO2 = 1700. We assume that the plant is grown

in an environment with sufficient nutrient availability, soil drainage, and pest control so that

these factors would not impact plant development.

Reconstructing the model of the light reactions [28] to include environmental factors is

straightforward. The parameters kL1 and kL2, which describe the rates of light-induced reac-

tions, were changed to kL1r(t) and kL2r(t), where r(t) is the radiance at time t scaled such

that r(t) = 1 corresponds to 3000 µ mol m−2 s−1 of photosynthetically active radiation (PAR)

and r(t) = 0 corresponds to 0 µ mol m−2 s−1 PAR, so that dynamic sunlight levels may be

used to vary the rate of the light reactions. If knowledge about light intensity under the canopy

is known but not recorded by above-canopy PAR measurements - or if the PAR sensors are

affected by plant growth, we may also include knowledge about plant density by reducing or
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increasing r(t) when the data is interpolated to form a function.

The reaction implemented to reflect the transition from S4 to S0 in the OEC is scaled by

w(t), which is relative water availability ( w(t) < 1 if there is a water shortage and w(t) = 1

if there is sufficient or abundant H2O). As the influence of temperature on the light reactions

is not very well understood, the τ(T ) individual-level mechanism is assumed to be sufficient in

scaling plant response rates; however, the study of Hill activity in [30] may serve as a useful

reference for future changes to the model in this area.

As the intent of [49] was to study the effect of different atmospheric concentrations of CO2

and O2 on carbon uptake rate, modifying the C3 cycle and photorespiration models to include

environmental conditions is also straightforward. Changes in CO2 and O2 concentration due to

environmental conditions are calculated by (1.3). H2O availability affects reactions involving

fructose-bisphosphatase (EC 3.1.3.11) and phosphoglycolate phosphatase (EC 3.1.3.18), and so

the velocities of these reactions are scaled by water availability w(t). The influence of tem-

perature on the Calvin cycle is also not very well understood, and so we assume the τ(T )

individual-level mechanism and the changes in gas solubility at different temperatures are suf-

ficient mechanisms to describe plant response to temperature during a typical growing season.

Equations from the models of [26], [28], and [49] are used to calculate the CO2 uptake rate

A(t; ~θ, ~E(t)), which is a commonly used measure of photosynthetic productivity. While many of

the proposed models in the literature suggest mechanisms that are appropriate for the systems

they reflect and describe portions of plant behavior, we choose to build our cellular level enzyme

kinetics model using the C3 model of [49] and the light reactions model of [28] because they

include the most mechanisms. The models are linked using the photophosphorylation model

of [26] to convert ADP to ATP and the production of NADPH from NADP+ by ferredoxin-

NADP+-oxidoreductase (which was intentionally neglected in the model of [28] for simplicity).

By combining these models we remove the conservation equations for ADP, ATP, NADP+, and

NADPH in [49].

The models of PSI, PSII, cyt b6/f, FNR, and the OEC from [28] remain mostly unchanged.

The equations of [28] are listed in Sections B.2 and B.3 of the appendix, and parameters as

taken from [28] and tuned to enable the model solution to remain physically feasible are listed

in Section A.2 in the appendix. Instead of using a four-stage model (using stages S0 - S3) of

the OEC, we add stage S4 to expand it to a five-stage model that includes the splitting of H2O

to introduce more electrons and protons (H+) into the chloroplast. The concentration of H+ is

quantified in this model because it is required for the components of the model from [26]. This

requires altering some components of the light reaction model from [28], wherein a plentiful

supply of H+ is assumed. Finally, the generation of NADPH from NADP+ during the oxidation

of FNR is added, and the reaction equation is changed to scale with NADP+ concentration so

that the reaction will slow as NAPD+ is consumed.
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The photophosphorylation mechanism of [26], transport of H+ across the thylakoid mem-

brane due to the oxidation and reduction of plastoquinone, and changes in NADP+, NADPH,

and H+ in the stroma due to FNR are used to connect the light reactions inside the thylakoid

lumen to the dark reactions that occur in the chloroplast stroma. Photophosphorylation is

modeled as

v11(t; ~θ, ~E(t)) =
V11

(
x11y18 + x8

kE0(x88/x89)kHA

)
kM11,1kM11,2

(
1 + x11

kM11,1
+ y18

kM11,2
+ x8

kM11,3
+ x11y18

kM0,1kM0,2

) , (1.4)

where variables are defined in Section A.1 and parameters are defined in Section A.2 in the

appendix.

All reaction equations formulated in [49] are used to model fructose and sucrose synthesis

as well as photorespiration except for the reaction that approximates photophosphorylation

(reaction 16 in [49]), which is replaced by (1.4). Additionally, we continue to use the balance

equations of pentose phosphates, hexose phosphates, and inorganic phosphates to reduce the

number of states for which we must calculate via differential equations. Like [49], the current

model also holds the concentration of combined UDP and UTP constant because UTP is gen-

erated in the reactions of cellular respiration (which are not included in our model). Variables,

parameters, and equations from [49] used in the current model may be found in Sections A.1,

A.2, B.1, and B.3 in the appendix.

1.2.2 Compact light reaction model

As the dynamics of the light reactions are difficult to measure, the fine details included in the

model of [28] would be difficult to confirm using data. Additionally, because of its complexity,

the model of [28] adds a significant amount of time to the calculation of one forward solution to

the model as compared to solving the C3 model of [49] alone. Therefore, replacing this model

with a simpler mathematical description of the light reactions (as depicted in Figure 1.5, center

column) to reduce computational time would not negatively impact our ability to use available

metabolite data in parameter estimation problems.

Based on numerical experimentation with the comprehensive model, we alter the conceptual

model (Figure 1.4) and temperature response functions used in this model. The temperature re-

sponse function τ(T (t)) used to describe temperature’s response to both growth and senescence

in the comprehensive model is changed to τG(T (t)), that is, a temperature response function

for growth only. A separate function for describing the dependence of senescence on tempera-

ture, τG(T (t)), is introduced. This senescence temperature response function is also from [39].

The set of equations describing change in leaf area and temperature response for this alternate

compact model is
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dL

dt
=

dG

dt

A(t; ~θ, ~E(t)

Aopt
− dS

dt
, L0 = L(0)

dG

dt
= rGG(τG(T (t))) (1−G(τG(T (t)))/kG)

(
dτG
dT

dT

dt

)
, G0 = G(0)

dS

dt
= rSS(τS(T (t))) (1− S(τS(T (t)))/kS)

(
dτS
dT

dT

dt

)
, S0 = S(0) (1.5)

dτG
dT

dT

dt
=


2(T (t)−Tmin)α(Topt−Tmin)α−(T (t)−Tmin)2α

(Topt−Tmin)2α
, Tmin ≤ T ≤ Tmax

0, T < Tmin or T > Tmax

dτS
dT

dT

dt
=

{
0, T (t) ≤ Tmin
(T − Tmin)/Topt, T (t) > Tmin.

(1.6)

Figure 1.5: Schematic of how existing models of the Calvin Cycle and photophosphorylation
are combined with a new, simple model of the light reactions and then related to environmental
factors and biomass change.

The first-order reaction equations for the light reactions formulated in [28] and used in

the comprehensive model are entirely replaced with four Michaelis-Menten chemical kinetic

equations describing this set of chemical summary equations describing reactions numbered

1.10.3.9, 1.10.9.1, 1.97.1.12, and 1.18.1.2 in the MetaCyc Encyclopedia of Metabolic Pathways

16



[42]:

2H2O + 2PQ → O2 + 2PQH2 (1.7)

PQH2 + 2PC+ + 2H+
S ↔ 2PC + PQ + 4H+

L (1.8)

PC + Fd → PC+ + Fd− (1.9)

Fd− + H+
S +NADP ↔ 2Fd + NADPH (1.10)

These summary equations correspond to the OEC and PS II (1.7), PC and cyt b6f (1.8),

PS1 (1.9), and FNR and Fd (1.10). Reversibility of (1.8) and (1.10) were confirmed by informa-

tion stored in BRENDA [37], an enzyme database. The corresponding Michaelis-Menten type

equations are

v37(x, t, ~θ, ~E(t)) =
V37 · PQ · r(t) · w(t)

km37 + PQ
(1.11)

v38(x, t, ~θ, ~E(t)) =

V38k
−1
m381k

−1
m382

PQH · PC+ − PC·PQ

ke38

(
H+
S

H+
L

)2


1 + PQH2

km381
+ PC+

km382
+ PC

km383
+ PQ

km384
+ PQH·PC+

km381km382
+ PC·PQ

km383km384

(1.12)

v39(x, t, ~θ, ~E(t)) =
V39 · PC · Fd · r(t)

(km391 + PC)(km392 + Fd)
(1.13)

v40(x, t, ~θ, ~E(t)) =
V40k

−1
m401k

−1
m402(Fd− ·NADP− Fd ·NADPH/ke40)

1 + Fd−

km401
+ NADP

km402 + Fd
km403

+ NADPH
km404

+ Fd−·NADP
km401km402

+ Fd·NADPH
km403km404

,(1.14)

where V37, V38, V39, and V40 are the reaction maximum velocities, ke38 and ke40 are equilibrium

constants (ke38 is modulated with a proton gradient-type mechanism much like the mathemat-

ical description of ATP synthase [26]), and all km’s are Michaelis Menten constants.

All other model components remain unchanged between the two models. The compact

model, descriptions of all state variables and parameters, values of parameters and initial values

of state variables (values at time t = 0), equations from [49], and equations from [28] are

included in Appendices B.4, A.1, A.2, B.1, and B.2, respectively. Parameter estimation for these

two models and sensitivity analysis on select parameters in these models using the methods

described in Chapter 2 are performed in Chapter 3.
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Chapter 2

Experimental Design for Vector

Output Systems

2.1 Introduction

In many scientific fields where mathematical modeling is utilized, mathematical models grow

increasingly complex, containing possibly more state variables and parameters, over time as

the underlying governing processes of a system are better understood and refinements in mech-

anisms are considered. Additionally, as technology invents and improves devices to measure

physical and biological phenomena, new data become available to inform mathematical model-

ing efforts. The world is approaching an era in which the vast amounts of information available to

researchers may be overwhelming or even counterproductive to efforts. We explore a framework

based on the Fisher Information Matrix (FIM) for a system of ordinary differential equations

(ODEs) to determine when an experimenter should take samples and what variables to measure

when collecting information on a physical or biological process that is modeled by a dynamical

system.

Building on the modeling and experimental design theory described in Chapter 1 and efforts

in [6], we formulate a previously unexplored optimal design problem to determine not only

the optimal sampling variables out of a finite set of possible sampling variables but also the

optimal sampling time distribution given a fixed final time. We compare the SE-optimal design

introduced in [12] and [16] with the well-known methods of D-optimal and E-optimal design on

a six-compartment HIV model [2] and a thirty-one dimensional model of the Calvin Cycle [49].

Such models where there may be a wide range of variables to possibly observe are not only ideal

on which to test our proposed methodology, but also are widely encountered in applications.
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2.2 Mathematical Background

2.2.1 Mathematical and statistical models

We explore our experimental design questions using a mathematical model

d~x

dt
(t) = ~g(t, ~x(t; ~θ), ~q), t ∈ [t0, tf ] (2.1)

~x(t0; ~θ) = ~x0

where ~x(t; ~θ) is the vector of state variables of the system generated using a parameter vector
~θ = (~x0; ~q) ∈ Rp, p = m + r, that contains m initial values and r system parameters listed in

~q, ~g is a mapping R1+m+r → Rm, t0 ≥ 0 is the initial time, and tf < ∞ is the final time. We

define an observation process
~f(t; ~θ) = C~x(t; ~θ), (2.2)

where C is an observation operator that maps Rm → RN , where N is the number of variables

observed at a single sampling time. If we were able to observe all states, each measured by a

different sampling technique, then N = m and C = Im×m; however, this is most often not the

case because of the impossibility of or the expense in measuring all state variables. In other

cases (such as the HIV example below) we may be able to directly observe only combinations

of the states.

In order to discuss the amount of uncertainty in parameter estimates, we formulate a sta-

tistical model [11] of the form

~Y (t) = ~f(t; ~θ0) + ~E(t), t ∈ [t0, tf ], (2.3)

where ~θ0 is the hypothesized true values of the unknown parameters and ~E is a vector random

process that represents observation error for the measured variables. We make the standard

assumptions:

E(~E(t)) = ~0, t ∈ [t0, tf ],

Var(~E(t)) = V0(t) = diag(σ0,1(t)2, σ0,2(t)2, . . . , σ0,N (t)2), t ∈ [t0, tf ],

Cov(Ei(t)Ei(s)) = σ0,i(t)
2δ(t− s), s, t ∈ [t0, tf ],

Cov(Ei(t)Ej(s)) = 0, i 6= j, s, t ∈ [t0, tf ],

where δ(0) = 1 and δ(t) = 0 for t 6= 0. Realizations of the statistical model (2.3) are written
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~y(t) = ~f(t; ~θ0) + ~ε(t), t ∈ [t0, tf ].

When collecting experimental data, it is often difficult to take continuous measurements of

the observed variables. Instead, we assume that we have n observations at times tj , j = 1, . . . , n,

t0 ≤ t1 < t2 < . . . < tn ≤ tf . We then write the observation process (2.2) as

~f(tj ; ~θ) = C~x(tj ; ~θ), j = 1, 2, . . . , n, (2.4)

the discrete statistical model as

~Yj = ~f(tj ; ~θ0) + ~E(tj), j = 1, 2, . . . , n, (2.5)

and a realization of the discrete statistical model as

~yj = ~f(tj ; ~θ0) + ~ε(tj), j = 1, 2, . . . , n.

If we were given ~θ0, we could solve (2.1) for ~x(t; ~θ0), a process known as solving the forward

problem. Alternatively, if we had a set of data ~yj , j = 1, 2, . . . , n, we could estimate ~θ0 in a

process known as solving the inverse problem. We will use this mathematical and statistical

framework to develop a methodology to identify sampling variables that provide the most

information pertinent to estimating a given set of parameters and the most informative times

at which the samples should be taken.

2.2.2 Formulation of the Optimal Design Problem

Several methods exist to solve the inverse problem. A major factor [11] in determining which

method to use is additional assumptions made about ~E(t). It is common practice to make the

assumption that realizations of ~E(t) at particular time points are independent and identically

distributed (i.i.d.). If, additionally, the distributions describing the behavior of the components

of ~E(t) are known, then maximum likelihood methods may be used to find an estimate of ~θ0. On

the other hand, if the distributions for ~E(t) are not known but the variance V0(t) (also unknown)

is assumed to vary over time, weighted least squares methods are often used. We propose an

optimal design problem formulation using a generalized weighted least squares criterion.

Let P1([t0, tf ]) denote the set of all bounded distributions on the interval [t0, tf ]. We consider

the generalized weighted least squares cost functional for systems with vector output

JWLS(~y, ~θ) =

∫ tf

t0

[~y(t)− ~f(t; ~θ)]TV −1
0 (t)[~y(t)− ~f(t; ~θ)]dP1(t), (2.6)
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where P1(t) ∈ P1([t0, tf ]) is a general measure on the interval [t0, tf ]. For a given continuous

data set ~y(t), we search for a parameter θ̂ that minimizes JWLS(~y, ~θ).

We next consider the case of observations collected at discrete times. If we choose a set of

n time points τ = {tj}, j = 1, 2, . . . , n, where t0 ≤ t1 < t2 < . . . < tn ≤ tf and take

P (t) = Pτ =

n∑
j=1

δtj , (2.7)

where δa represents the Dirac delta distribution with atom at a, then the weighted least squares

criterion (2.6) for a finite number of observations becomes

JnWLS(~y, ~θ) =

n∑
j=1

[~y(tj)− ~f(tj ; ~θ)]
TV −1

0 (tj)[~y(tj)− ~f(tj ; ~θ)].

To select a useful distribution of time points and set of observation variables, we introduce

the N by p sensitivity matrices
[
∂ ~f(t;~θ)

∂~θ

]
and the m by p sensitivity matrices

[
∂~x(t;~θ)

∂~θ

]
that are

determined using the differential operator in row vector form (∂θ1 , ∂θ2 , . . . , ∂θp) represented by

∇~θ and the observation operator defined in (2.2),

∇~θ ~f(t, ~θ) =
∂ ~f(t; ~θ)

∂~θ

= C
∂~x(t; ~θ)

∂~θ

= C



∂x1(t;~θ)
∂θ1

∂x1(t;~θ)
∂θ2

. . . ∂x1(t;~θ)
∂θp

∂x2(t;~θ)
∂θ1

∂x2(t;~θ)
∂θ2

. . . ∂x2(t;~θ)
∂θp

...
...

. . .
...

∂xm(t;~θ)
∂θ1

∂xm(t;~θ)
∂θ2

. . . ∂xm(t;~θ)
∂θp


= C∇~θ~x(t; ~θ). (2.8)

Using the sensitivity matrix ∇~θf(t, ~θ0), we may formulate the Generalized Fisher Informa-

tion Matrix (GFIM). Consider the set C ⊂ Rm of admissible observation maps and let P2(C)
represent the set of all bounded distributions P2(c) on C. Then the GFIM may be written

F(P1, P2, ~θ0) ≡
∫ tf

t0

∫
C

1

σ2(t, c)
∇~θ

T ~f(t; ~θ0)∇~θ ~f(t; ~θ0)dP2(c)dP1(t) (2.9)

=

∫ tf

t0

∫
C

1

σ2(t, c)
∇~θ

T
(
c~x(t; ~θ0)

)
∇~θ
(
c~x(t; ~θ0)

)
dP2(c)dP1(t). (2.10)
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Taking N different sampling maps in C represented by the m-dimensional row vectors ck,

k = 1, 2, . . . , N , we construct the discrete distribution on C

PC =
N∑
k=1

δck , (2.11)

where δa represents the Dirac delta distribution with atom at a. Using PC in (2.10), we obtain

the GFIM for multiple discrete observation methods taken continuously over [t0, tf ],

F(P1, PC , ~θ0) =

∫ tf

t0

N∑
k=1

1

σ2(t, ck)
∇~θ

T
(
ck~x(t; ~θ0)

)
∇~θ
(
ck~x(t; ~θ0)

)
dP1(t)

=

∫ tf

t0

N∑
k=1

1

σ2(t, ck)
∇~θ

T~x(t; ~θ0)ck
Tck∇~θ~x(t; ~θ0)dP1(t)

=

∫ tf

t0

N∑
k=1

∇~θ
T~x(t; ~θ0)ck

T 1

σ2(t, ck)
ck∇~θ~x(t; ~θ0)dP1(t)

=

∫ tf

t0

∇~θ
T~x(t; ~θ0)

N∑
k=1

(
ck

T 1

σ2(t, ck)
ck

)
∇~θ~x(t; ~θ0)dP1(t)

=

∫ tf

t0

∇~θ
T~x(t; ~θ0)

(
CTV −1

0 (t)C
)
∇~θ~x(t; ~θ0)dP1(t), (2.12)

where C = (c1, c2, . . . , cN )T ∈ RN×m is the observation operator in (2.2) and (2.4) and V0(t) ∈
RN×N is the covariance matrix as described in (2.3). Applying the distribution Pτ as described

in (2.7) to the GFIM (2.12) for discrete observation operators measured continuously yields the

discrete p× p Fisher Information Matrix (FIM) for discrete observation operators measured at

discrete times

F (τ, C, ~θ0) = F (Pτ , PC , ~θ0) =
n∑
j=1

∇~θ
T~x(tj ; ~θ0)CTV −1

0 (tj)C∇~θ~x(tj ; ~θ0). (2.13)

This describes the amount of information about the p parameters of interest that is captured

by the observed quantities described by the sampling maps ck, k = 1, 2, . . . , N , listed in C,

when they are measured at the time points in τ .

The questions of determining the best (in some sense) C and τ are important questions in

the optimal design of an experiment. Recall that the set of time points τ has an associated

distribution P1(τ) = Pτ ∈ P1([t0, tf ]), where P1([t0, tf ]) is the set of all bounded distributions

on [t0, tf ]. Similarly, the set of sampling maps {ck} has an associated bounded distribution

PC ∈ P2(C). Define the space of bounded distributions P([t0, tf ] × C) = P1([t0, tf ]) × P2(C)
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with elements P = (Pτ , PC) ∈ P. Without loss of generality, assume that C ⊂ Rm is closed and

bounded, and assume that there exists a functional J : Rp×p → R+ of the GFIM (2.10). Then

the optimal design problem associated with J is selecting a distribution P̂ ∈ P such that

J
(
F(P̂ , ~θ0)

)
= min

P∈P
J
(
F(P, ~θ0)

)
, (2.14)

where J depends continuously on the elements of F(P, ~θ0).

The Prohorov metric [34], which is a metric designed for use in the weak star topology,

provides a basis for a general theoretical framework for the existence of P̂ and approximation

in P([t0, tf ]×C) (a general theoretical framework is developed in [8, 12]). The application of the

Prohorov metric to optimal design problems formulated as (2.14) is explained more fully in [12]:

briefly, define the Prohorov metric ρ on the space P([t0, tf ]×C), and consider the metric space

(P([t0, tf ]×C), ρ). Since [t0, tf ]×C is compact, (P([t0, tf ]×C), ρ) is also compact. Additionally,

by the properties of the Prohorov metric, (P([t0, tf ]×C), ρ) is complete and separable. Therefore

an optimal distribution P̂ exists and may be approximated by a discrete distribution.

The formulation of the cost functional (2.14) may take many forms. We focus on the use

of traditional optimal design methods, D-optimal, E-optimal, or SE-optimal design criteria, to

determine the form of J . Each of these design criteria are functions of the inverse of the FIM

(assumed hereafter to be invertible) defined in (2.13).

In D-optimal design, the cost functional is written

JD(F ) = det
(
F (τ, C, ~θ0)−1

)
=

1

det
(
F (τ, C, ~θ0)

) .
By minimizing JD, we minimize the volume of the confidence interval ellipsoid describing

the uncertainty in our parameter estimates. Since F is symmetric and positive semi-definite,

JD(F ) ≥ 0. Additionally, since F is assumed invertible, JD(F ) 6= 0, therefore, JD : Rp×p → R+.

In E-optimal design, the cost functional is JE is the largest eigenvalue of
(
F (τ, C, ~θ0)

)−1
,

or equivalently

JE(F ) = max
1

eig
(
F (τ, C, ~θ0)

) .
To obtain a smaller standard error, we must reduce the length of the principal axis of the

confidence interval ellipsoid. Since an eigenvalue λ solves det(F − λI) = 0, an eigenvalue of

λ = 0 would mean det(F ) = 0, or that F is not invertible. Since F is positive definite, all

eigenvalues are therefore positive. Thus JE : Rp×p → R+.

In SE-optimal design, JSE is a sum of the elements on the diagonal of
(
F (τ, C, ~θ0)

)−1
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weighted by the respective parameter values [12, 16], written

JSE(F ) =

p∑
i=1

(
F (τ, C, ~θ0))

)−1

i,i

θ2
0,i

.

Thus in SE-optimal design, the goal is to minimize the sum of squared errors of the parameters

normalized by the true parameter values. As the diagonal elements of F−1 are all positive and

all parameters are assumed non-zero in ~θ ∈ Rp, JSE : Rp×p → R+.

In [16], it is shown that the D-, E-, and SE-optimal design criteria select different time

grids and yield different standard errors. We expect that these design cost functionals will also

choose different observation variables (maps) in order to minimize different dimensions of the

confidence interval ellipsoid.

2.3 Standard Errors

In order to compare the ability of different optimal design criteria to minimize uncertainty in

parameter estimation, we compute the standard errors associated with these parameters. We

begin by selecting an ODE system, a nominal set of parameters ~θ that we would estimate, the

start and end times of the experiment t0 and tf , the number of sampling times n, and the number

of observation maps we wish to use N . After an optimal τ and C are determined according to

one of the three previously described optimal design methods, we compute the standard errors

for the parameters in ~θ. There are multiple techniques [16] available to compute standard errors;

here we choose to use asymptotic theory due to its ease of implementation.

2.3.1 Asymptotic Theory for Standard Errors

If we assume that the covariance matrix V0(t) is constant over time (V0(t) ≡ V0 = Var(~E(tj)) =

diag(σ2
0,1, σ

2
0,2, . . . , σ

2
0,N )), then we may use an ordinary least squares (OLS) framework to esti-

mate standard errors. Once an optimal τ = {tj}nj=1, t0 ≤ t1 < t2 < . . . < tn ≤ tf , and C are

determined, we obtain data from an experiment or simulate data {yj} as a realization of the

random process {Yj} described in (2.5), and then we estimate the parameters in ~θ by solving

the inverse problem using the OLS criterion [11]. The discrete OLS estimator is defined as

~θOLS = arg min
~θ∈Θ

n∑
j=1

[
~Yj − ~f(tj ; ~θ)

]T
V −1

0

[
~Yj − ~f(tj ; ~θ)

]
, (2.15)

where Θ is the set of all possible values of ~θ, such that each element of the difference vector

~Yj − ~f(tj ; ~θ) is weighted using the variance of its corresponding sampling maps. One realization
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of this problem using data ~yj , j = 1, 2, . . . , n, is written

θ̂OLS = arg min
~θ∈Θ

n∑
j=1

[
~yj − ~f(tj ; ~θ)

]T
V −1

0

[
~yj − ~f(tj ; ~θ)

]
. (2.16)

However, calculating θ̂OLS still requires the unknown V0. If the number of parameters p of

a system is sufficiently small and number of observations n large so that p < n, then we may

calculate the bias adjusted estimate of the variances

V0 ≈ V̂ = diag

 1

n− p

n∑
j=1

[
~yj − ~f(tj ; ~θ)

] [
~yj − ~f(tj ; ~θ)

]T , (2.17)

and find the estimate of ~θ0 using

~θ0 ≈ θ̂OLS = arg min
~θ∈Θ

n∑
j=1

[
~yj − ~f(tj ; ~θ)

]T
V̂ −1

[
~yj − ~f(tj ; ~θ)

]
. (2.18)

Therefore, finding θ̂OLS when V0 is unknown requires solving the coupled system of equations

(2.17) and (2.18).

We may utilize the asymptotic properties of the OLS minimizer (2.15) to learn about the

behavior of the model (2.1) and (2.3). As the number of samples n→∞, ~θOLS has the following

properties [11, 19, 44]
~θOLS ∼ N (~θ0,Σ

n
0 ) ≈ N (θ̂OLS, Σ̂

n),

where

Σn
0 ≈

 n∑
j=1

χTj (~θ0)V −1
0 χj(~θ0)

−1

(2.19)

is the p× p covariance matrix, and χj(~θ) = χnj (~θ) = ∇~θ ~f(tj ; ~θ0) is the N × p matrix

χj(~θ) = χnj (~θ) =


∂f1(tj ;~θ)
∂θ1

∂f1(tj ;~θ)
∂θ2

. . .
∂f1(tj ;~θ)
∂θp

...
...

...
∂fN (tj ;~θ)

∂θ1

∂fN (tj ;~θ)
∂θ2

. . .
∂fN (tj ;~θ)

∂θp

 . (2.20)

The approximation Σ̂n to the covariance matrix Σn
0 is

Σn
0 ≈ Σ̂n =

 n∑
j=1

χTj (θ̂OLS)V̂ −1χj(θ̂OLS)

−1

. (2.21)
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We may use Σ̂n to approximate the standard errors of each parameter in θ̂OLS. For the kth

element of θ̂OLS, written θ̂OLS,k, the asymptotic standard error is

ASE(~θ0,k) =
√

Σ̂n
0,kk ≈ ASE(θ̂OLS,k) =

√
Σ̂n
kk,

where Σ̂n
0,kk is the element in the kth row and kth column of Σn

0 , and Σ̂n
kk is the corresponding

element in Σ̂n. Additionally, since the FIM is defined to be the inverse of the covariance matrix,

we may approximate the FIM using (2.21) by F (τ, C, ~θ0) ≈ F (τ̂ , Ĉ, θ̂OLS) = (Σ̂n)−1.

2.3.2 Clarification for plant growth model

In performing the parameter estimation problem on the candidate plant growth models, only

some parameters – namely, those in (1.1) – must be estimated. Most parameters in the model

have been determined experimentally or previously estimated using a variety of methods. Addi-

tionally, the models utilize five environmental forcing functions. The mathematical model would

then be written

d~x

dt
(t) = ~g(t, ~x(t, ~E(t); ~θ), ~θ), t ∈ [t0, tf ] (2.22)

~x(t0, ~E(t0); ~θ) = ~x0,

where ~x(t, ~E(t); ~θ) is the vector of m state variables of the system generated using environmental

forcing functions ~E(t), parameter vector ~θ ∈ Rp, p = m∗ + r, that contains m∗ ≤ m initial

values from ~x0 and r system parameters that we will estimate listed in ~q, ~g() is a mapping

R6+m∗+r → Rm, t0 ≥ 0 is the initial time, and tf <∞ is the final time. The statistical model,

observation operator, and WLS cost functional are similar to (2.3) and (2.5), (2.2) and (2.4),

and (2.6), respectively, and the process of solving the parameter estimation and experimental

design problems are identical.

2.4 Numerical algorithm and optimization constraints

We use MATLAB to solve the system of ODEs and conservation equations and perform param-

eter estimation. Due to the rapid changes in metabolite concentrations observed when radiance

changes, the ODEs are solved using ODE15s [38], a variable-order ODE solver in MATLAB for

systems of stiff differential equations. Initially, manual tuning of parameters that were estimated

(that is, not experimentally determined) in [26], [28], and [49] was performed in order for the

daytime steady state of the enzyme kinetics reactions to be physically acceptable (all metabo-

lite concentrations non-negative). Further identification of these parameters is difficult due to

the shortage of available metabolite concentration data in the literature. Preliminary values of
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parameters and initial conditions added by the individual-level equations were estimated dur-

ing the exploratory phase of model development for each data set using the MATLAB routine

fminsearch while A(t) and the environmental conditions in ~E(t) were set to constants that

would reflect daytime in a greenhouse setting.

To estimate parameters, we use the MATLAB routines fminsearch or, when physical con-

straints on parameters are known, fmincon [18], which searches a specified region of a space

for a point that minimizes a given cost functional (in this case (2.15)) to find the OLS min-

imizer of (2.18) The fmincon routine enables us to enforce lower and upper bounds on the

parameter and solution spaces, experiment with multiple numerical stepping methods to find

a local minimum, and parallelize the exploration of the parameter space via the MATLAB

routine MultiStart. For this problem we use the interior-point algorithm, which solves a series

of minimization problems that approximate the original problem such that the solution of each

step in the series approaches the solution to the original problem. The boundary condition on

this parameter set is ~θ ≥ ~0 so that all initial conditions and reaction constants maintain re-

alistic values and the logistic equations G(t; ~θ, ~E(t)) and S(t; ~θ, ~E(t)) remaining nondecreasing

functions. We additionally implement the condition that ~x(t; ~θ, ~E) ≥ 0 for all t ≥ 0 so that the

model solution remains relevant to the physical phenomena it describes.

Because the only data used in these simulations is leaf area, corresponding to L(t), we may

neglect the calculation of (2.17) and set V0 = 1 to simplify and speed the determination of the

optimal parameter vector θ̂. Following the determination of θ̂, we calculate Σ̂n and the standard

errors to inform our confidence in how well θ̂ approximates the unknown parameters ~θ0.

In most optimal design problems, there is not a continuum of measurement possibilities

that may be used; rather, there are N∗ < ∞ possible observation maps c. Denote this set

as CN∗ ⊂ Rm. While we may still use the Prohorov metric-based framework to guarantee

existence and convergence of (2.14), we have a stronger result first proposed in [6] that is useful

in numerical implementation. Because CN∗ is finite, all probability distributions made from the

elements of CN∗ have the form P2({ck}) = PC =
∑N

k=1 δck for a fixed N . Moreover, the set of

all distributions that use N sampling methods PN2 (CN∗) is also finite. For a fixed distribution

of time points Pτ , we may compute using (2.13) the set of all possible FIM F (Pτ , PC , ~θ) that

could be formulated from c ∈ CN∗ . By the properties of matrix multiplication and addition,

this set is also finite. Then the functional (2.14) applied to all F in the set produces a finite

set contained in R+. Because this set is finite, it is well-ordered by the relation ≤ and therefore

has a minimal element. Thus for any distribution of time points Pτ , we may find at least one

solution P̂C ∈ PN2 (CN∗). Moreover, P̂C may be determined by a search over all matrices C =

(c1, c2, . . . , cN )T formed by N elements from CN∗ . Therefore, for a fixed Pτ and N ≤ N∗ < ∞
a global optimal set of N sampling methods may be determined.

Due to the computational demands of performing nonlinear optimization for n time points
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and N observation maps (for a total of n+N dimensions), and to the difference in techniques

between searching for an optimal PC in the finite set CN∗ and searching for an optimal distri-

bution of n sampling times, we instead solve the coupled set of equations

Ĉ = arg min
{C|PC∈PN2 (CN∗ )}

J
(
F (τ̂ , C, ~θ0)

)
(2.23)

τ̂ = arg min
{τ |Pτ∈P1([t0,tf ])}

J
(
F (τ, Ĉ, ~θ0)

)
, (2.24)

where C ∈ RN×m represents a set of N sampling maps and τ = {tj}nj=1, t0 ≤ t1 < t2 < . . . <

tn ≤ tf , is an ordered set of n sampling times. These equations are solved iteratively as

Ĉi = arg min
{C|PC∈PN2 (CN∗ )}

J
(
F (τ̂i−1, C, ~θ0)

)
(2.25)

τ̂i = arg min
{τ |Pτ∈P1([t0,tf ])}

J
(
F (τ, Ĉi, ~θ0)

)
, (2.26)

where J is the D-, E-, or SE-optimal design criterion. We begin by solving for Ĉ1 where τ̂0 is

specified by the user. The system (2.25)-(2.26) is solved until the requirement

|J
(
F (τ̂i, Ĉi, ~θ0)

)
− J

(
F (τ̂i−1, Ĉi−1, ~θ0)

)
| < ε

is met or until Ĉi = Ĉi−1. For each iteration, (2.25) is solved using a global search over all

possible C. Since the sensitivity equations cannot be easily solved for in the models chosen

to illustrate our method, we use a modified version of tssolve.m by A. Attarian [5], which

implements the myAD package developed by M. Fink [21].

Solving (2.26) requires using a nonlinear constrained iterative optimization algorithm. While

MATLAB’s fmincon is a natural choice for such problems, as reported in [16], it does not perform

well in this situation. Instead, we use SolvOpt developed by A. Kuntsevich and F. Kappel [24]

(which utilizes a modified version of Shor’s r-algorithm) to search for an optimal distribution

local to an initial uniformly spaced time point distribution. There exist many types of constraints

that may be placed on this optimization. The four constraints used in [16] are

(C1) Optimize all time points such that t0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ tf . This method optimizes n

time points.

(C2) The initial and final time points are fixed as t1 = t0 and tn = tf . The routine then

optimizes over the remaining n− 2 time points such that tj ≤ tj+1.

(C3) Optimize the time steps νj ≥ 0. Fix t1 = t0 and tn = tf , and the remaining time points

may be found by tj+1 = tj + νj , j = 1, 2, . . . , n− 2. Additionally, tf − t0 ≥
∑n−2

j=1 νj . This
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routine also optimizes over n− 2 variables.

(C4) Optimize the time steps νj ≥ 0. Fix t1 = t0. The remaining time points may be found by

tj+1 = tj + νj , j = 1, 2, . . . , n − 1 such that tf − t0 =
∑n−1

j=1 νj . This method optimizes

over n− 1 variables.

We select for our use two constraints, (C2) and (C3), to reduce the complexity of the problem

of time point distribution selection. Once either of the convergence requirements are met and

Ĉ and τ̂ are determined, we compute standard errors using the asymptotic theory described in

the next section.
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Chapter 3

Numerical Results

We illustrate the potential of the mathematical concepts explained in Chapter 2 using a variety

of models. Parameter estimation is performed using the C3 cycle model of [49] on simulated

data generated using parameter values found in [49] and using the comprehensive and compact

models described in Chapter 1 on an Arabidopsis thaliana leaf area data set from [35] and a

soybean leaf area data set from [39]. Sensitivities for the maximum velocity parameters (listed

in Appendix A.2) over one day of the compact model solution with parameters that best fit

the Arabidopsis thaliana leaf area data [35] are calculated in order to explore the relationship

between the model and some parameters. In order to show proof of concept, the experimental

design framework is applied to a HIV model [1] and the C3 cycle model [49].

3.1 Parameter estimation

3.1.1 C3 Model of [49]

We test the feasibility of predicting a small number of parameters in the Zhu Calvin Cycle

model [49]. Since we do not have a set of data, we use the simulated solution to this model,

with parameter vector θ0 with values as described in [49], to calculate eleven data points of all 38

metabolites at times tj = j−1
10 5000, j = 1, 2, . . . , 11, so that Tf = 5000 seconds. To perform the

inverse problem, we add or subtract 25% of the true value of the parameters we will estimate and

then use unconstrained nonlinear optimization via a simplex search to minimize the unweighted

least squares error between the predicted solution and the true solution that uses θ0.
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We perform the inverse problem for the parameter subsets

θ0a = [KM11,Km521,KI523,KC,Km1221,Km1241],

θ0b = [KM11,KM12,KM13,KE4,KM131,KE22,Km511,Km521,

KI523,KC,Km1221,Km1241, V 58],

θ0c = [RuBP0, SBP0,KM11,KM12,KM13,KI13,KE4,KM9,KM131,KI135,KE22,

Km511,Km514,Km521,KI523,KC,Km1221,Km1241, V 9, V 58, V 111],

record the parameter estimates θ̂±a , θ̂±b , and θ̂±c , respectively, for the initial parameter guesses

at 1 ± .25 times the parameter subset true values, and plot the CO2 uptake rates for the true

solution and the solution generated by the parameter estimate. We also record the least squares

error and the runtime for the inverse problem.

Estimating six parameters provided mixed results when only 25% away from the true value.

Starting at 25% below θ0, the minimization routine was able to estimate KM11, KI523, and KC

very well; however, starting at 25% above θ0 lead to an estimate θ̂+
a that is not near θ0 (Table

3.1). This is reflected in the poor approximation of the carbon uptake rate pictured in Figure

3.1. The variability in results may be due to the capabilities of fminsearch or undetected

interactions between parameters. For example, when estimating Km521, perhaps KI521 should

also be estimated. When estimating the top 13, all parameters could be estimated reasonably

well with the exception of KM12, which was far from its true value in both θ̂−b and θ̂+
b , KM521,

KC, and KM1221. The CO2 uptake rates of the models generated by θ̂−b and θ̂+
b , however, appear

to be very close to that of the model generated by θ0 (Figure 3.2). Adding parameter constraints

would aid in producing biologically correct parameter estimates. Estimating 21 parameters (the

top 13 plus 8 more parameters used in describing reactions that involve RuBP and SBP, which

are seen to be related to Rubisco in [49]) was surprisingly effective, with only 6 values in θ̂−c and

2 in θ̂+
c being far from their true values (Table 3.1). The performance of the model generated

by θ̂+
c is also impressive (Figure 3.3). Since some of these poorly estimated parameters are also

problematic in the 13-parameter case, we may want to refocus our efforts on other parameters

or perform more refined sensitivity analysis.

It appears that if the runtime of the parameter estimation problem is a concern, it would be

best to estimate no more than 10 parameters; however, the results are sometimes far from the

true parameters. Having correct parameter estimates in this context is especially important,

as different reaction rates would paint a different picture of how the plant is performing. It is

possible to estimate a large number of parameters (over 20) if reasonable initial guesses can be

provided. Additionally, the number of parameters that could be estimated - and the quality of

those estimates - could be improved if constraints were imposed.
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Table 3.1: θ0 and parameter estimates for top 13 parameters

Name θ0 value θ̂−a θ̂+
a θ̂−b θ̂+

b θ̂−c θ̂+
c

KM11 0.0115 0.0115 0.0108 0.009 0.0139 0.0081 0.0140

KM12 0.222 - - 0.1447 0.4354 0.1275 0.377

KM13 0.02 - - 0.198 0.0298 0.0170 0.0276

KE4 0.05 - - 0.0502 0.05 0.049 0.0502

KM131 0.05 - - 0.0492 0.0499 0.0354 0.0561

KE22 0.058 - - 0.0593 0.0577 0.0547 0.0581

KM511 0.02 - - 0.0194 0.02 0.0203 0.0201

KM521 0.0025 0.0201 0.0097 5.5e-4 0.0022 4e-5 0.0031

KI523 7e-5 7.1e-5 2.2e-5 2.7e-5 6.2e-5 1e-6 8.5e-5

KC 0.0115 0.0114 0.0425 0.0114 0.0116 0.0062 0.0021

KM1221 0.15 0.0813 0.0023 0.1247 0.2096 0.1007 0.1894

KM1241 0.15 0.0894 0.0236 0.1276 0.2027 0.1064 0.1848

V58 0.0168 - - 0.0098 0.0168 0.0192 0.0174

Runtime(sec) 282.09 362.80 854.20 640.53 1940.63 2115.75

LSQ Error 0.1429 88.98 0.9895 0.02649 0.1700 0.04131
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Figure 3.1: CO2 uptake rates for θ0(blue dots) and estimates θ̂−a (left, red dash) and θ̂+
a (right,

red dash).
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Figure 3.2: CO2 uptake rates for θ0(blue dots) and estimates θ̂−b (left, red dash) and θ̂+
b (right,

red dash).
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Figure 3.3: CO2 uptake rates for θ0(blue dots) and estimates θ̂−c (left, red dash) and θ̂+
c (right,

red dash).
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3.1.2 Modeling plant growth using the proposed models

While the inverse problem experiments performed on the C3 cycle model [49] exhibit the po-

tential of the parameter estimation method described in Chapter 2, all the parameters in the

C3 cycle model [49] are known via experimentation or estimation and listed in [49]. Next we

exhibit the ability of this method to identify parameters that enable the comprehensive model,

which contains (1.1) and the equations of sections B.1, B.2, and B.3, and the compact model,

which is constructed using (1.5), (1.11)–(1.14), and the equations of sections B.1 and B.4, to

best approximate a data set. Radiance r(t) is estimated using a smoothed square wave such

that r(t) = 0.5 between 9:00 and 15:00 and r(t) = 0 between 21:00 and 3:00. Water availability

is set to w(t) = 1.

Modeling Arabidopsis thaliana growth

The first data set used to test the performance of the model is of Arabidopsis thaliana, taken from

[35]. The data set contains 14 time points over 22 days of growth in a greenhouse, capturing the

vegetative phase and beginning of the reproductive phase of the species’ growth. Temperature

in the greenhouse of [35] is approximated by T (t) = 2.5 sin(2πt/86400) + 17.5, where t is time

in seconds.

Using parameter estimates near the values found in [49] and [28] for all parameters held

constant, we determine the value of ~θ that allows the comprehensive and the compact models

to best fit the data as described by the OLS minimizer (2.15). Parameter estimates are given

in Table 3.2, and leaf area and carbon uptake predictions are pictured in Figures 3.4 and 3.5,

respectively. While G0, rG, and rS of the two models are on the same order of magnitude, S0,

kG, and kS differ greatly. These differences in parameter values are reflected in the shape of

the model leaf area curves seen in Figure 3.4. Some of the differences may also be related to

the changes in carbon uptake rates seen in Figure 3.5 due to the changed model mechanisms

describing photosynthesis.

Leaf area and carbon uptake also show differences in productivity between day and night

(Figures 3.4 and 3.5). While leaf area and carbon increase during the day (when sunlight is

present), they exhibit no increase during the night. The daytime carbon uptake rate predicted

by the comprehensive model is approximately 300 µ mol m2s−1, about one order of magnitude

away from the estimate of approximately 30 µ mol m2s−1 from [49], and the daytime carbon

uptake rate predicted by the compact model is near 500 µ mol m2s−1. While it would be

expected for a plant to exhibit a decrease in overall carbon absorbed during periods of low

light such as night, this model does not illustrate that behavior because it does not include

the reactions of cellular respiration. Thus it is reasonable that the model does not exhibit any

change in total carbon uptake during the night.
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Table 3.2: Estimated ~θ values for the models fitting A. thaliana data [35].

Parameter Comprehensive Compact

G0 1.88e-4 4.09e-4
S0 9.29e-4 3.7e-12
rG 6.6e-4 9.86e-4
kG 21.39 1.26e4
rS 2.7e-4 3.29e-4
kS 0.78 8.46e-3

Vc62 18.24 -

The concentrations of PC+, RuBP, T3P, PGA, T3Pc, ATP, and ADP predicted by each

model are shown in Figures 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 respectively. All metabolites

shown exhibit two concentrations, one concentration during the day and second concentration

during the night when the light reactions are occurring at a lower rate. While the concentrations

predicted by the two models differ by an order of magnitude - and often less - they do not exactly

agree.

The metabolites that are predicted to have a higher concentration during the day by the

comprehensive model (PC+, RuBP, T3P, PGA, T3Pc, and ADP) also are predicted to have

higher daytime concentrations by the compact model, while those predicted to have a higher

concentration at night by the comprehensive model (ATP) also are predicted to have a higher

concentration at night by the compact model. The daytime concentrations of T3P (Figure 3.8)

and T3Pc (Figure 3.10) are predicted by the compact model to be an order of magnitude higher

than the comprehensive model.

At night, both models exhibit similar concentrations for RuBP, T3P, PGA, T3Pc, ADP,

and ATP, metabolites that are heavily influenced by the dark reactions, but the concentration

of PC+ predicted by the compact model remains above 1 mmol l−1, but the prediction by

the comprehensive model approaches 0 mmol l−1 (Figure 3.6). These differences indicate that

replacing the light reaction model of [28] with a simpler model does impact the behavior of

other model compartments, especially during the day. At night, the differences between the two

models as exhibited by metabolite concentrations are less pronounced.
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Figure 3.4: Left: Leaf area for A. thaliana as predicted by the comprehensive model (dashed
line) and seen in [35](open circles). Right: Leaf area for A. thaliana as predicted by the compact
model (dashed line) and seen in [35](open circles). Error bars not available for data.
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Figure 3.5: Left: Carbon uptake as predicted by the comprehensive model (dashed) and by
the constant rate of 28 µmol m−2s−1 (solid) as predicted by [49]. Right: Carbon uptake as
predicted by the compact model (dashed).
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Figure 3.6: PC+ concentration in A. thaliana as predicted by the comprehensive model (left)
and compact model(right) when grown under conditions described in [35].
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Figure 3.7: RuBP concentration in A. thaliana as predicted by the comprehensive model (left)
and compact model(right) when grown under conditions described in [35].
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Figure 3.8: T3P concentration in A. thaliana as predicted by the comprehensive model (left)
and compact model(right) when grown under conditions described in [35].
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Figure 3.9: PGA concentration in A. thaliana as predicted by the comprehensive model (left)
and compact model(right) when grown under conditions described in [35].
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Figure 3.10: Cytosolic T3P concentration in A. thaliana as predicted by the comprehensive
model (left) and compact model(right) when grown under conditions described in [35].
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Figure 3.11: ATP concentration in A. thaliana as predicted by the comprehensive model (left)
and compact model(right) when grown under conditions described in [35].
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Figure 3.12: ADP concentration in A. thaliana as predicted by the comprehensive model (left)
and compact model(right) when grown under conditions described in [35].
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Table 3.3: Estimated ~θ values for models fitting Mead, NE, 2004 soybean data [39]

Parameter Comprehensive Compact

G0 0.0296 0.4101
S0 0.0061 0.0211
rG 7.08e-5 1.15e-4
kG 4.2014 2.82e3
rS 5.1e-5 5.1747e-5
kS 6.3624 110.76

Vc62 15.0203 -

Modeling soybean growth

The second data set used to evaluate the model is soybean leaf area data taken from the

Mead, NE, 2004 sample in [39]. Functions describing the temperature during soybean growth

were constructed using interpolation via the interp1 of weather data (including the high, low,

and average temperature) collected from stations near the locations listed in [39]. Cubic spline

interpolation is used with the comprehensive model, while linear spline interpolation is used

with the compact model to reduce computation times with little impact on the calculated least

squares error of the model.

Using parameter estimates near the values found in [49] and [28] for all parameters held

constant, we determine the value of ~θ that allows the models to best fit the data as described

by the OLS minimizer (2.15). Parameter estimates are given in Table 3.3, and leaf area for the

duration of the experiment and carbon uptake predictions for the first 20 days of the experiment

are pictured in Figures 3.13 and 3.14, respectively. The values of S0, rG, and rS vary by less

than an order of magnitude between the two models, but G0, kG, and kS vary greatly. These

differences in parameter values are reflected in the leaf area predicted by each model, shown with

the leaf area data from [39], in Figure 3.13. While the comprehensive model more accurately

describes leaf area during the early vegetative phases of soybean growth, the compact model

better reflects the reproductive and senescent phases of the soybean plant’s development. Some

of the differences seen in predicted leaf area may also be related to the changes in carbon uptake

rates seen in Figure 3.14 due to the changed model mechanisms describing photosynthesis.

While not apparent Figure 3.13, soybean leaf area and carbon uptake also show differences in

productivity between day and night similar to the trends seen in A. thaliana leaf area (Figure

3.4). Carbon absorbed by the plant increases during the day (when sunlight is present) but

exhibits no increase during the night (Figure 3.14). The daytime carbon uptake rate predicted

by the comprehensive model is approximately 300 µ mol m2s−1, about one order of magnitude
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away from the estimate of approximately 30 µ mol m2s−1 from [49], and the daytime carbon

uptake rate predicted by the compact model is near 500 µ mol m2s−1. Again, the model does

not exhibit any change in total carbon uptake during the night due to the lack of mechanisms

describing cellular respiration.
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Figure 3.13: Left: Leaf area for soybean as predicted by the comprehensive model (dashed
line) grown under conditions described in [39] and measured at Gretna, NE. (open circles with
error bars). Right: Leaf area for soybean as predicted by the compact model (dashed line)grown
under conditions described in [39] and measured at Gretna, NE (open circles with error bars).

The concentrations of PC+, RuBP, T3P, PGA, T3Pc, ATP, and ADP predicted by each

model for the first 20 days of growth are shown in Figures 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, and

3.21 respectively. All metabolites shown exhibit concentrations that gravitate toward two levels,

one during the day and a second during the night when the light reactions are occurring at a

lower rate. The concentrations fluctuate, likely due to the environment’s effect on how much O2

and CO2 the leaf absorbs as well as the dependence of ATP and NADPH production on available

light. These fluctuations are most visible in the plot for RUBP concentration as predicted by

the comprehensive model and the PGA, T3P, ADP, and ATP concentrations predicted by the

compact model. While the concentrations predicted by the two models differ by an order of

magnitude - and often less - they do not exactly agree.

The metabolites that are predicted to have a higher concentration during the day by the

comprehensive model (PC+, RuBP, T3P, PGA, T3Pc, and ADP) also are predicted to have
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Figure 3.14: Left: First 20 days of carbon uptake as predicted by the comprehensive model
(dashed) and by the constant rate of 28 µmol m−2s−1 (solid) as predicted by [49]. Right:
First 20 days of carbon uptake as predicted by the compact model (dashed) when grown under
conditions described in [39] and measured at Gretna, NE.

higher daytime concentrations by the compact model, while those predicted to have a higher

concentration at night by the comprehensive model (ATP) also are predicted to have a higher

concentration at night by the compact model. The daytime concentrations of T3P (Figure 3.17)

and T3Pc (Figure 3.19) are predicted by the compact model to be an order of magnitude higher

than the comprehensive model.

At night, both models exhibit similar concentrations for RuBP, T3P, PGA, T3Pc, ADP,

and ATP, metabolites that are heavily influenced by the dark reactions, but the concentration

of PC+ predicted by the compact model remains above 1 mmol l−1 whereas the prediction

by the comprehensive model approaches 0 mmol l−1 (Figure 3.15). These differences indicate

that replacing the light reaction model of [28] with a simpler model does impact the behavior

of other model compartments, especially during the day. At night, the differences between the

two models as exhibited by metabolite concentrations are less pronounced. The patterns seen

in the soybean metabolites are similar to those seen in the A. thaliana metabolites because the

parameters describing the enzyme-catalyzed reaction mechanics remain unchanged between the

models used for the two species.

In order to determine the possible accuracy of our models to existing research, we compare

the concentrations of RuBP, T3P, T3Pc, and PGA during the day predicted by the models to

the concentrations predicted by the model in [49] when assuming a high capacity for cytosolic

FBPase, and we compare the daytime concentrations of PC+ predicted by the models and
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Figure 3.15: First 20 days of PC+ concentration in soybean as predicted by the comprehensive
model (left) and compact model(right) when grown under conditions described in [39] and
measured at Gretna, NE.

∑
P+

700 predicted by the comprehensive model to the relative concentrations predicted by [28].

The concentrations of metabolites involved in the C3 cycle predicted by the model fit to

the A. thaliana data [35] or the soybean data [39] are not near those predicted by [49] but are

typically within an order of magnitude. Except for the concentration of RuBP, the metabolite

concentrations predicted by the compact model are closer to the concentrations predicted by the

model in [49]. The ratio of the concentrations are not similar. The model of [49] predicts that of

the four listed metabolites involved in the C3 cycle, T3Pc has the highest concentration, folled

by PGA, T3P, and finally RuBP. The proposed comprehensive and compact models predict

that RuBP will have the highest concentration, followed by T3Pc, and finally T3P and PGA.

Because the Michaelis-Menten parameters remained unchanged between the models for each

set of data, it is expected that the resulting solutions of the model to fit to the data sets of

[35] and [39] would be similar - that is, to create different metabolite concentrations in the

model, we must determine parameters that better describe the enzyme kinetics occurring in

each species. These metabolite concentrations are listed in Table 3.4 and pictured in Figures

3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 for A. thaliana and Figures 3.15, 3.16, 3.17, 3.18, 3.19,

3.20, and 3.21 for soybean. The differences seen in metabolite concentrations predicted by [28]

and [49] from the proposed models may be related to the incorporation of additional metabolic

processes into the model or the effects of environmental factors: [49] shows that changes in

atmospheric composition have a large impact on metabolite concentrations. Additionally, the

numerical experiments in [28], reach only the P phase of chlorophyll α fluorescence and do not
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Figure 3.16: First 20 days of RuBP concentration in soybean as predicted by the comprehensive
model (left) and compact model(right) when grown under conditions described in [39] and
measured at Gretna, NE.

Table 3.4: Predicted daytime metabolite concentrations

Metabolite Literature [28], [49] Comprehensive Model Compact Model

RuBP 1.8 3.2 6.3
T3P 3.3 0.25 0.36

PGA 6 0.05 0.4
T3Pc 9.5 0.7 5.7
PC+ 0.15 2.9 1.72∑
P+

700 ≈ 0 0.82 -

investigate long-term dynamics.

Both the comprehensive and the compact models may be used in a least-squares mini-

mization parameter estimation framework to approximate leaf area data. Both models exhibit

changes in behavior between daytime and nighttime conditions through metabolite concentra-

tions, leaf area rate of change, and carbon uptake rate. While the comprehensive model appears

to better approximate leaf area during the vegetative phases of plant growth (Figures 3.4 and

3.13), there is little indication in the model formulations as to why this phenomenon may occur.
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Figure 3.17: T3P concentration in soybean as predicted by the comprehensive model (left) and
compact model(right) when grown under conditions described in [39] and measured at Gretna,
NE.
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Figure 3.18: PGA concentration in soybean as predicted by the comprehensive model (left)
and compact model(right) when grown under conditions described in [39] and measured at
Gretna, NE.
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Figure 3.19: First 20 days of Cytosolic T3P concentration in soybean as predicted by the
comprehensive model (left) and compact model(right) when grown under conditions described
in [39] and measured at Gretna, NE.
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Figure 3.20: First 20 days of ATP concentration in soybean as predicted by the comprehensive
model (left) and compact model(right) when grown under conditions described in [39] and
measured at Gretna, NE.
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Figure 3.21: First 20 days of ADP concentration in soybean as predicted by the comprehensive
model (left) and compact model(right) when grown under conditions described in [39] and
measured at Gretna, NE.
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3.2 Sensitivity analysis of C3 model

To better understand the influence of parameters and initial conditions on the reactions utilized

in the proposed models, we perform sensitivity analysis as described in Chapter 2 on the com-

pact model with respect to the maximum velocity terms, growth and senescence parameters,

and initial conditions for the first 2000 minutes (approximately 1.4 days) of growth using the

parameters estimated to best describe Arabidopsis thaliana growth in the experimental setting

used in [35]. Temperature is again modeled using a sinusoid curve, and radiance is at its maxi-

mum between t = 0 and t = 180 minutes as well as t = 1260 and t = 1620 minutes and at its

minimum of 0 between t = 540 and t = 900 minutes as well as after t = 1980 minutes. Initial

sensitivity analysis on the C3 cycle model [49] is performed in [6] to identify parameters that

may potentially be best candidates to estimate in an inverse problem; here we examine which

model equations (and hence potentially observable state variables) are changed when parameter

values are varied.

The state variables primarily associated with the light reactions, PQ, PQH2, PC, PC+, Fd,

and Fd−, are sensitive to changes in many maximum velocity terms and approximately half of

the initial conditions, but not to the growth and senescence parameters. This indicates that the

concentrations of these metabolites are affected by the properties of reactions that are not light

dependent. All six state variables exhibit similar sensitivities to parameters. The sensitivity of

PQ with respect to several parameters are pictured in Figure 3.22. Many of the sensitivity plots

exhibit extreme changes in slope at t = 280, t = 875, t = 1100, and t = 1720. The periods of

change centered around t = 280, t = 1100, and t = 1720 correspond to changes between day

and night, which is when the dynamical system is showing the most change. After t = 0 the

sensitivity of PQ to PQ0 and Fd−0 appear to follow the same trends, indicating that the effects

of PQ0 and Fd−0 on PQ are similar as time progresses.

The state variables primarily associated with the C3 cycle are also sensitive to changes in

many maximum velocity terms and approximately one quarter of the initial conditions, but not

to the growth and senescence parameters. Representative of the sensitivities are the sensitivity

of RuBP to parameters and initial conditions, of which a selection is shown in Figure 3.23.

While the metabolites used in the C3 cycle are often impacted by changes to the properties

of the reactions described by the parameters (in this case the maximum velocity terms), they

are not sensitive to the initial concentrations of most other metabolites – even their own initial

concentrations – once the model progresses past t = 1. Many of the sensitivity plots exhibit

extreme changes in slope at t = 280, t = 1100, and t = 1720, and with lower frequency, t = 875.

The periods of change centered around t = 280, t = 1100, and t = 1720 correspond to changes

between day and night, an indication that as radiation intensity and temperature change, a

parameter’s effect on model compartments may also change.
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Carbon uptake
∫
A(t, ~E(t); ~θ)dt is sensitive to many parameters directly utilized in the

C3 cycle and light-dependent reaction equations. A small sample of the sensitivity plots are

pictured in Figure 3.24. Like other state variables related to the light-dependent reactions and

the C3 cycle, the greatest changes in curvature of the sensitivity plots occur at approximately

t = 280, t = 1100, and t = 1720. While the sensitivity of carbon uptake varies over time for

some parameters, its sensitivity to others, such as RuBP0 and A0, remains constant after a short

period of time. The influence of parameters on the value of
∫
A(t, ~E(t); ~θ)dt is thus unchanged

for the duration of the model solution after the first few minutes of the model solution are

calculated.

The growth and senescence equations G(t, ~E(t); ~θ) and S(t, ~E(t); ~θ), respectively, are not

affected by changes to most parameters or initial conditions. As seen in prior sensitivity analysis

performed on logistic equations [12] and in the calculated sensitivities pictured in Figure 3.25,

the sensitivity of these two equations to their initial condition decreases over time while their

sensitivity to their growth rates rG and rS increase over time. These equations are not observed

to be very sensitive to kG and kS , however, 2000 minutes is too short of a time frame for these

two equations to approach their carrying capacity.

As the culmination of activity in the light-dependent reactions, C3 cycle, and whole-plant

growth and senescence, leaf area L(t, ~E(t); ~θ) is sensitive to many maximum velocity terms, the

growth and senescence parameters, and initial conditions of several other equations. A small

sample of the sensitivity plots are pictured in Figure 3.26. As leaf area is directly related to

the carbon uptake rate A(t, ~E(t); ~θ), it is expected that L(t, ~E(t); ~θ) and
∫
A(t, ~E(t); ~θ)dt are

sensitive to the many of the same parameters. The sensitivity curves pictured in Figure 3.24

are very similar in shape to those in Figure 3.26 that depict each state variables’ dependence

on the same parameter.

The relationships between the state variables of the compact model and parameters includ-

ing the maximum velocity terms, growth and senescence parameters, and initial conditions are

much more varied than those seen in the C3 cycle model [49] when sensitivity analysis was

performed in [6]. This may be due in part to the light-dependent reaction equations causing

previously unrelated metabolites to interact with each other or to the use of environmental fac-

tors to modulate reaction velocities. Exploring which state variables are sensitive to particular

parameters is important when interpreting and understanding why particular observable state

variables are selected in a Fisher information matrix-based experimental design scheme.
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Figure 3.22: Left: Sensitivity of PQ to the maximum velocity parameters V3, V38,and V52 (top
to bottom). Right: Sensitivity of PQ to the initial conditions SERc0, PQ0, and Fd−0 .
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Figure 3.23: Left: Sensitivity of RuBP to the maximum velocity parameters V1, V38,and V52

(top to bottom). Right: Sensitivity of PQ to the initial conditions RuBP0, SERc0, and PQ0.
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Figure 3.24: Left: Sensitivity of
∫
A(t)dt to the maximum velocity parameters V1, V39,and V52

(top to bottom). Right: Sensitivity of
∫
A(t)dt to the initial conditions RuBP0, SERc0, and

A0.
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Figure 3.25: Left: Sensitivity of G(t, ~E(t); ~θ) to rG, kG, and G0 (top to bottom). Right:
Sensitivity of S(t, ~E(t); ~θ) to rS , kS , and S0 (top to bottom).
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Figure 3.26: Left: Sensitivity of leaf area L(t, ~E(t); ~θ) to the parameters V3, V52,and rg (top
to bottom). Right: Sensitivity of A(t) to the initial conditions RuBP0, SERc0, and L0.
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3.3 Experimental design

Since using either the comprehensive plant growth model or compact plant growth model to

perform the experimental design procedure described in Chapter 2 for even 20 days of plant

growth would require months of computations on current personal computer machines, we

demonstrate the ability of the experimental design techniques on two simpler examples: an

HIV model [1] used to model basic immune response over an extended period of time and a C3

cycle model [49] describing short term reaction rates. Code accuracy for time point selection

was validated by replicating the results found in [16]. After determining optimal observables,

we illustrate how an optimized set of observation time points affects calculated asymptotic

standard errors for parameters of interest.

3.3.1 HIV model

We examine the performance of both the time point and observable operator selection algo-

rithms on the log-scaled version of the HIV model developed in [1]. While the analytic solution

of this system cannot easily be found, this model has been studied, improved, and successfully

fit to and indeed validated with several sets of longitudinal data using parameter estimation

techniques [2, 3]. Additionally, the sampling or observation operators used to collect data in

a clinical setting as well as the relative usefulness of these sampling techniques are known [2].

The model includes uninfected and infected CD4+ T-cells, called type 1 target cells (T1 and T ∗1 ,

respectively), uninfected and infected macrophages (subsequently determined to more likely be

resting or inactive CD4+ T-cells), called type 2 target cells (T2 and T ∗2 ), infectious free virus

VI , and immune response E produced by cytotoxic T-lymphocytes CD8+. The HIV model with

treatment function u(t) is given by

Ṫ1 = λ1 − d1T1 − (1− ε1u(t))k1VIT1

Ṫ2 = λ2 − d2T2 − (1− fε1u(t))k2VIT2

Ṫ ∗1 = (1− ε1u(t))k1VIT1 − δT ∗1 −m1ET
∗
1

Ṫ ∗2 = (1− fε1u(t))k2VIT2 − δT ∗2 −m2ET
∗
2 (3.1)

V̇ = NT δ(T
∗
1 + T ∗2 )− [c+ (1− ε2u(t))103k1T1 + (1− fε1u(t))103k2T2]VI

Ė = λE + bE
T ∗1 + T ∗2

T ∗1 + T ∗2 +Kb
E − dE

T ∗1 + T ∗2
T ∗1 + T ∗2 +Kd

E − δEE.

The log-scaled HIV model, which is used to alleviate difficulties due to the large differences
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in scales of the variables and the parameters, is

ẋ1 =
10−x1

ln(10)

(
λ1 − d110x1 − (1− ε1u(t))k110x1+x5

)
ẋ2 =

10−x2

ln(10)

(
λ2 − d210x2 − (1− fε1u(t))k210x5+x2

)
ẋ3 =

10−x3

ln(10)

(
(1− ε1u(t))k110x5+x1 − δ10x3 −m110x6+x3

)
ẋ4 =

10−x4

ln(10)

(
(1− fε1u(t))k210x5+x2 − δ10x4 −m210x6+x4

)
(3.2)

ẋ5 =
10−x5

ln(10)

(
(1− ε2u(t))103NT δ(10x3 + 10x4)− c10x5

−(1− ε1u(t))ρ1103k110x1+x5 − (1− fε1u(t))ρ2103k210x2+x5
)

ẋ6 =
10−x6

ln(10)

(
λE +

bE(10x3 + 10x4)

10x3 + 10x4 +Kb
10x6 − dE(10x3 + 10x4)

10x3 + 10x4 +Kd
10x6 − δE10x6

)
, (3.3)

where T1 = 10x1 , T2 = 10x2 , T ∗1 = 10x3 , T ∗2 = 10x4 , VI = 10x5 , and E = 10x6 .

In [2] this model’s parameters are estimated for each of 45 different patients who were in

a treatment program for HIV at Massachusetts General Hospital (MGH). These individuals

experienced interrupted treatment schedules, in which the patient did not take any medication

for viral load control. Seven of these patients adhered to a structured treatment interruption

schedule planned by the clinician. We use the parameters estimated to fit the data of one of

these patients, Patient 4 in [2], as our “true” parameters ~θ0 for this model. This patient was

chosen because the patient continued treatment for an extended period of time (1919 days) and

the corresponding data set contains 158 measurements of viral load and 107 measurements of

CD4 cell count (T1 +T ∗1 ) that exhibit a response to interruption in treatment, and the estimated

parameters yield a model exhibiting trends similar to that in the data.

Sensitivity analysis performed in [1] and parameter subset selection carried out in [9] identi-

fied subsets of the 20 parameters and six initial conditions that would likely be reliably estimated

when solving the corresponding inverse problems. Based on their results, we treat the subset of

parameters ~θ = (λ1, d1, ε1, k1, ε2, NT , c, bE , x
0
1, x

0
2, x

0
5) as unknown and fix all other parameters.

The values for the fixed parameters and ~θ0 are computed in [2] and given in Table 3.5. It is im-

portant to choose parameters to which the model is sensitive; a poor choice for the components

of ~θ will negatively affect sensitivity matrices and may lead to a near-singular FIM. Based on

currently available measurement methods, we allow the possible types of observations including

(1) infectious virus x5, (2) immune response x6, (3) total activated CD4 cells x1 + x3, and (4)

type 2 (resting or unactivated) target cells x2 +x4, each with an assumed error variance of 10%

of the initial variable values given by ~x0 = (3.0799, 1.2443, 1.7899,−0.2150, 5.9984,−0.7251)T.
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Table 3.5: Values of parameters in the HIV model (3.1).

parameter value unit parameter value unit

λ1 4.633 cells
µml-blood·day

λ2 0.1001 cells
µml-blood·day

d1 0.004533 1

day
d2 0.02211 1

day

k1 1.976e-6 ml
virions·day

k2 5.529e-4 ml
virions·day

ε1 100.6017 - ε2 100.5403 -

m1 0.02439 µml
cells·day

m2 0.013099 µml
cells·day

δ 0.1865 1

day
c 19.36 1

day

f 100.53915 - NT 19.04 virions
cell

λE 0.009909 cells
µml-blood·day

δE 0.0703 1

day

bE 0.09785 1

day
dE 0.1021 1

day

Kb 0.3909 cells
µml-blood

Kd .8379 cells
µml-blood

3.3.2 HIV observable selection results, times fixed

To simulate the experience of a clinician gathering data as a patient regularly returns for

scheduled testing, we fix the sampling times and choose the optimal observables. We consider

choices of N = 1, 2, 3 sampling operators out of the four possible observables, all N of which

will be measured at n = 51, 101, 201, 401 evenly spaced times over 2000 days, corresponding

to measurements every 40, 20, 10, and 5 days, respectively. The N optimal sampling maps are

determined for each of the three optimal design criteria, and the asymptotic standard errors

(ASE) are calculated after carrying out the corresponding inverse problem calcualtions.

Tables 3.6, 3.7, and 3.8 display the optimal observation operators determined by the D-, E-,

and SE-optimal design cost functions, respectively, as well as the lowest and highest ASE. In

all three optimal design criteria, there was a distinct best choice of observables (listed in Tables

3.6, 3.7, and 3.8) for each pair of n and N . When only N = 1 observable could be measured,

each design criterion consistently picked the same observable for all n; similarly, at N = 2, both

the D-optimal and SE-optimal design criteria were consistent in their selection over all n, and

E-optimal only differed at n = 401. Even at N = 3, each optimal design method specified at

least two of the same observables at all n.

The observables that were rated best changed between criteria, affirming the fact that each

optimal design methods minimizes different aspects of the standard error ellipsoid. At N = 1
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observable, D-optimal selects the CD4 cell count while E-optimal and SE-optimal choose the

infectious virus count. As a result, the min(ASE) calculated for a parameter estimation problem

using the D-optimal observables is approximately 1/3 lower than the min(ASE) of E- and SE-

optimal for all tested time point distributions. Similarly, the max(ASE) calculated for E- and

SE-optimal designed parameter estimation problems is approximately 1/3 lower than that of

D-optimal. Thus at N = 1, based on minimum and maximum asymptotic standard errors, there

is no clear best choice of an optimal design cost function.

At N = 2 allowed observables, both the D- and SE-optimal cost functions are minimized

by an observation operator containing both activated CD4 cells (type 1 target cells) and type

2 target cells. The E-optimal cost function still favors infectious virus count in addition to type

2 target cells (at n = 51, 101, 201) or type 1 target cells (at n = 401). As a result, max(ASE)

in the E-optimal design parameter estimation problem is 0% – 20% lower than that of D- or

SE-optimal; however, the D- and SE-optimal designs reduce min(ASE) by 20% – 30% of the

min(ASE) of E-optimal. Therefore at N = 2, the E-optimal cost functional would be preferable

if the largest ASE’s were to be reduced, but for the best overall improvement (as measured by

percent reduction from the E-optimal ASE), D- and SE-optimal are recommended.

When selecting N = 3 observables, each of the three design criteria select many of the same

observables. This is to be expected as N∗ = 4 in this simulation. For n = 51, 101, 201, both total

CD4 cell count and immune response E(t) are selected by all design criteria. The D-optimal

criterion also chooses type 2 cell count, so the lack of information on virus count as measured

by x5(t) leads to its high max(ASE), ASE(x0
5). E-optimal (and at larger n, SE-optimal) choose

to measure infectious virus count, reducing ASE(x0
5) and thus reducing the max(ASE) by more

than 50%. While at low n, E-optimal has the lowest min(ASE) and max(ASE), SE-optimal

performs better at high n, so when selecting N = 3 observables, the number of time points n

may affect which optimal design cost function performs best.
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Table 3.6: Number of observables, number of time points, observables selected by D-optimal
cost functional, and the minimum and maximum standard error and associated parameter for
the parameter subset in the HIV model (3.2).

N n Observables min(ASE) max(ASE)

1 51 x1 + x3 ASE(λ1) = 0.18 ASE(λE) = 6.35
1 101 x1 + x3 ASE(λ1) = 0.13 ASE(λE) = 4.40
1 201 x1 + x3 ASE(λ1) = 0.091 ASE(λE) = 3.03
1 401 x1 + x3 ASE(λ1) = 0.065 ASE(λE) = 2.13
2 51 x1 + x3, x2 + x4 ASE(λ1) = 0.095 ASE(x0

5) = 2.31
2 101 x1 + x3, x2 + x4 ASE(λ1) = 0.068 ASE(x0

5) = 1.52
2 201 x1 + x3, x2 + x4 ASE(λ1) = 0.047 ASE(x0

5) = 1.26
2 401 x1 + x3, x2 + x4 ASE(λ1) = 0.033 ASE(x0

5) = 1.13
3 51 x6, x1 + x3, x2 + x4 ASE(λE) = 0.045 ASE(x0

5) = 2.26
3 101 x6, x1 + x3, x2 + x4 ASE(λE) = 0.032 ASE(x0

5) = 1.43
3 201 x6, x1 + x3, x2 + x4 ASE(λE) = 0.022 ASE(x0

5) = 1.23
3 401 x6, x1 + x3, x2 + x4 ASE(λE) = 0.015 ASE(x0

5) = 1.12

Table 3.7: Number of observables, number of time points, observables selected by E-optimal
cost functional, and the minimum and maximum standard error and associated parameter for
the parameter subset in the HIV model (3.2).

N n Observables min(ASE) max(ASE)

1 51 x5 ASE(d1) = 0.27 ASE(λE) = 4.27
1 101 x5 ASE(d1) = 0.19 ASE(λE) = 3.11
1 201 x5 ASE(d1) = 0.13 ASE(λE) = 2.27
1 401 x5 ASE(d1) = 0.094 ASE(λE) = 1.63
2 51 x5, x2 + x4 ASE(d1) = 0.12 ASE(λE) = 2.18
2 101 x5, x2 + x4 ASE(d1) = 0.095 ASE(λE) = 1.52
2 201 x5, x2 + x4 ASE(d1) = 0.065 ASE(λE) = 1.10
2 401 x5, x1 + x3 ASE(λ1) = 0.042 ASE(λE) = 0.86
3 51 x5, x6, x1 + x3 ASE(λE) = 0.045 ASE(x0

5) = 0.77
3 101 x5, x6, x1 + x3 ASE(λE) = 0.032 ASE(x0

5) = 0.73
3 201 x5, x6, x1 + x3 ASE(λE) = 0.022 ASE(x0

5) = 0.69
3 401 x5, x1 + x3, x2 + x4 ASE(λ1) = 0.032 ASE(x0

5) = 0.65
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Table 3.8: Number of observables, number of time points, observables selected by SE-optimal
cost functional, and the minimum and maximum standard error and associated parameter for
the parameter subset in the HIV model (3.2).

N n Observables min(ASE) max(ASE)

1 51 x5 ASE(d1) = 0.27 ASE(λE) = 4.27
1 101 x5 ASE(d1) = 0.19 ASE(λE) = 3.11
1 201 x5 ASE(d1) = 0.13 ASE(λE) = 2.27
1 401 x5 ASE(d1) = 0.094 ASE(λE) = 1.63
2 51 x1 + x3, x2 + x4 ASE(λ1) = 0.095 ASE(x0

5) = 2.31
2 101 x1 + x3, x2 + x4 ASE(λ1) = 0.068 ASE(x0

5) = 1.52
2 201 x1 + x3, x2 + x4 ASE(λ1) = 0.047 ASE(x0

5) = 1.26
2 401 x1 + x3, x2 + x4 ASE(λ1) = 0.033 ASE(x0

5) = 1.13
3 51 x6, x1 + x3, x2 + x4 ASE(λE) = 0.045 ASE(x0

5) = 2.26
3 101 x6, x1 + x3, x2 + x4 ASE(λE) = 0.032 ASE(x0

5) = 1.49
3 201 x5, x6, x1 + x3 ASE(λE) = 0.022 ASE(x0

5) = 0.69
3 401 x5, x6, x1 + x3 ASE(λE) = 0.015 ASE(x0

5) = 0.67
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3.3.3 HIV observables and time point selection results

When taking samples on a uniform time grid, D-, E-, and SE-optimal design criteria all choose

observation operators that yield favorable ASE’s, with some criteria performing best under

certain circumstances. For example, the SE-optimal observables at n = 401, N = 3 yield the

smallest standard errors; however, for all other values of n at N = 3, E-optimal performs best.

At N = 2, E-optimal is a slightly weaker scheme. The examples in [16] also reveal that D-, E-,

and SE-optimal designs are all competitive when only selecting time points for several different

models. Now we wish to investigate the performance of these three criteria when selecting both

an observation operator and a sampling time distribution using the algorithm described by

equations (2.25) and (2.26).

To maintain consistency across trials while slightly simplifying the parameter estimation

problem, we allow the set of six parameters and three initial conditions ~θ = (λ1, d1, k1, NT ,

c, bE , x0
1, x0

2, x0
5) to be treated as unknowns and fix all other parameters. We again allow

the possible observations of (1) infectious virus x5, (2) immune response x6, (3) CD4 cells

x1 + x3, and (4) type 2 target cells x2 + x4, each with an assumed error variance of 5% of

the initial variable values given by ~x0. To reflect the often limited resources of a clinical trial,

we allow N = 2 observation maps to be included in the observation operators C and examine

the distribution of time points if n = 35 or n = 105 samples (consisting of all observables in

the observation operator) which may be taken from t0 = 0 through tf = 1460. We begin all

simulations with uniformly spaced sample times, and use either time grid constraint C2 or C3.

Both constraints assume that samples are taken at t0 and tf , so we in effect are optimizing the

remaining 33 or 103 observation times.

When choosing N = 2 observables and distributing n = 35 time points using constraint

C2, the D-optimal cost function yields the lowest ASE for the parameters (λ1, d1, NT , c, bE ,

x0
1), but the SE-optimals ASE are on the same order of magnitude (Table 3.9). Both the D-

and SE-optimal cost functions selected the same observables, and they both were minimized by

similar distributions of time points (Figure 3.27). The E-optimal design leads in the smallest

ASE for (k1, x
0
2, x

0
5), with an ASE(x0

5) that is half that of D-optimal and SE-optimal. E-optimal,

however, trails D- and SE-optimal in the accuracy of an estimate for bE , with an ASE(bE) that

is larger by one order of magnitude. The large difference in ASE’s for these two parameters

may be related to the observables selected by each design criterion: E-optimal design chooses

x5 (the variable most closely related to x0
5) as an observable when D- and SE-optimal choose x6

(whose right hand side contains bE). All three also chose x2 +x4. The distribution of time points

selected under each optimal design criterion focuses on regions very soon before or after a change

in behavior of the selected observables (Figure 3.27). This may indicate that fewer sampling

points may be needed for parameter estimates of similar accuracy. For the experimental design
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Table 3.9: Approximate asymptotic standard errors calculated by asymptotic theory (2.21)
using optimally spaced n = 35 time points under constraints C2 (left set of 3) and C3 (right set
of 3) and optimally selected N = 2 observables for parameters of interest ~θ of the HIV model
(3.2). Smallest ASE per parameter is highlighted using bold font.

Time C2 Optimal C3 Optimal

Method D E SE D E SE

Observe x6, x5, x6, x6, x5, x6,
x2 + x4 x2 + x4 x2 + x4 x2 + x4 x2 + x4 x2 + x4

ASE(λ1) 0.1077 0.2501 0.1164 0.1048 0.1297 0.1215
ASE(d1) 0.0737 0.1523 0.0972 0.0683 0.0759 0.0817
ASE(k1) 0.0967 0.0851 0.1404 0.1085 0.0920 0.1174
ASE(NT ) 0.2200 0.2722 0.2263 0.2257 0.2784 0.2398
ASE(c) 0.2455 0.2916 0.2505 0.2517 0.3098 0.2650

ASE(bE) 0.0480 0.7788 0.0500 0.0476 0.8182 0.0494
ASE(x0

1) 0.1148 0.1275 0.1366 0.1201 0.1081 0.1292
ASE(x0

2) 0.2657 0.2456 0.2597 0.2635 0.2469 0.2654
ASE(x0

5) 0.9450 0.4798 0.9234 0.9303 0.4629 0.9473

constraints of 35 time point allocated using constraint C2, the D-optimal cost functional is best

for most parameters, but E-optimal is best for some parameters.

The ASE calculated for choosing N = 2 observables and distributing n = 35 time points

using constraint C3 are very similar (Table 3.9), and the selected observables remain unchanged;

however, the optimal distribution of time points under each design criterion (Figure 3.28) is

more uniform than when using constraint C2 (Figure 3.27). For small n with N = 2 observables

under constraint C3, D-optimal design is best for most parameters, but E-optimal is best for

the remaining few. While the choice of a particular time point distribution constraint does not

greatly impact the calculated ASEs for the paramters of interest, the constraint C3 yields a

measurement schedule that may be more feasible for a patient to follow in that it does not call

for as many days of multiple observations.
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Figure 3.27: Solution of the log-scaled HIV model (3.2) plotted using the observables log(10x1+
10x3) (upper left), log(10x2 + 10x4) (upper right), x5 (lower left), and x6 (lower right). Plotted
on top of each curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 35
times under constraint C2.
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Figure 3.28: Solution of the log-scaled HIV model (3.2) plotted using the observables log(10x1+
10x3) (upper left), log(10x2 + 10x4) (upper right), x5 (lower left), and x6 (lower right). Plotted
on top of each curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 35
times under constraint C3.
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Choosing N = 2 observables and distributing n = 105 time points using constraint C2 leads

to a different pattern in which optimal design criterion is best for which parameter. For the more

dense time point distribution, SE-optimal design is a much stronger candidate against D- and

E-optimal (Table 3.10). It yields the lowest ASE’s for (λ1, NT , c, bE), while E-optimal is best for

(k1, x
0
1, x

0
2, x

0
5) and D-optimal is best for (d1, bE). The D- and SE-optimal cost functions again

choose the same observables of x6 and x2 +x4, so their ASE’s for all parameters are similar. In

this scenario, the E-optimal design has the largest percent reduction in ASE from those of D-

and SE-optimal for the parameters x0
1 and x0

5. E-optimal also changed its selected observables to

x1+x3 and x2+x4. The distribution of time points for the D-optimal design criteria appear very

close to uniform (Figure 3.29), and the distributions for E- and SE-optimal are clustered near

local maxima, local minima, and other large changes in behavior of the observables; however,

even slight differences between the distributions of the E- and SE-optimal costs functions are

visible. Consider the graph of infectious virus count in Figure 3.29. There is a cluster of SE-

optimal times between t = 1100 and t = 1250, but no E-optimal times occur during that

interval. Very soon after, between t = 1250 and t = 1400, there is a cluster of E-optimal times

but no SE-optimal times. These clusters may indicate that either these periods in the patient’s

treatment history are key to characterizing the parameters or that fewer time points may be

adequate to obtain sufficiently accurate parameter estimates.

The strength of SE-optimal design for large n does not hold for time grid constraint C3

(Table 3.10). E-optimal design provides the lowest ASE for the parameters (λ1, d1, k1, x
0
1), D-

optimal is best for (NT , c, bE , x
0
2, x

0
5), and the ASE calculated using the SE-optimal designed

experiment is often the largest. The observables selected in this case are the same as the

n = 105, constraint C2 case. The optimal time point distributions determined under all three

design criterion are near uniform (Figure 3.30). Small differences between the distributions may

be observed when the functions have a slope of high magnitude, indicating that the distribu-

tions are not exactly uniform. As the time point optimization routine is started with a uniform

time point distribution, this may indicate that when samples are taken at many times during

an experiment, a uniform distribution is somewhat near optimal for model (3.2) or, more sig-

nificantly, that a uniform distribution is not an appropriate initial distribution to use to obtain

the optimal time point distribution.

Between D- and E-optimal, there is no clear leader for optimal time point and observable

selection in these examples for system (3.2). The SE-optimal criterion is useful in estimating

some parameters under the constraint C2, and in most cases yields standard errors on the

same order of magnitude of the leading optimal design criterion. The optimal design algorithm

successfully identifies observables and a time distribution that optimizes an aspect of the Fisher

Information Matrix as determined by the choice of optimal design cost functional; however, the

time point distributions exhibit tendencies to cluster near times when the slopes of function
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Table 3.10: Approximate asymptotic standard errors calculated by asymptotic theory (2.21)
using optimally spaced n = 105 time points under constraints C2 (left set of 3) and C3 (right
set of 3) and optimally selected N = 2 observables for parameters of interest ~θ of the HIV
model (3.2). Smallest ASE per parameter is highlighted using bold font.

Time C2 Optimal C3 Optimal

Method D E SE D E SE

Observe x6, x1 + x3, x6, x6, x1 + x3, x6,
x2 + x4 x2 + x4 x2 + x4 x2 + x4 x2 + x4 x2 + x4

ASE(λ1) 0.0687 0.0618 0.0607 0.0674 0.0475 0.0729
ASE(d1) 0.0429 0.0541 0.0470 0.0441 0.0395 0.0475
ASE(k1) 0.0658 0.0360 0.0681 0.0629 0.0388 0.0739
ASE(NT ) 0.1599 0.1437 0.1394 0.1192 0.1351 0.1423
ASE(c) 0.1785 0.1591 0.1551 0.1325 0.1500 0.1578

ASE(bE) 0.0281 0.4560 0.0281 0.0266 0.4637 0.0299
ASE(x0

1) 0.0810 0.0451 0.0793 0.0572 0.0490 0.0818
ASE(x0

2) 0.2537 0.2004 0.2296 0.1823 0.2244 0.2330
ASE(x0

5) 0.7042 0.4384 0.6825 0.0528 0.4491 0.6571

solutions are changing. We proceed to examine the algorithm’s performance when presented

with a system that allows many possible observables and does not require as many sampling

times.

67



0 500 1000 1500
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
Optimal time mesh for HIV model with n=105, constraint C2

t (days)

C
D

4 
ce

ll 
co

un
t 

 

 
Model: x

1
+x

3

D−optimal
E−optimal
SE−optimal

0 500 1000 1500
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Optimal time mesh for HIV model with n=105, constraint C2

t (days)
T

2 c
el

l c
ou

nt
 

 
Model: x

2
+x

4

D−optimal
E−optimal
SE−optimal

0 500 1000 1500
−1

0

1

2

3

4

5

6
Optimal time mesh for HIV model with n=105, constraint C2

t (days)

lo
g(

In
fe

ct
io

us
 v

iru
s 

co
un

t)
 

 

 
Model: x

5

D−optimal
E−optimal
SE−optimal

0 500 1000 1500
−0.88

−0.86

−0.84

−0.82

−0.8

−0.78

−0.76

−0.74

−0.72

−0.7
Optimal time mesh for HIV model with n=105, constraint C2

t (days)

lo
g(

Im
m

un
e 

re
sp

on
se

) 

 

 
Model: x

6

D−optimal
E−optimal
SE−optimal

Figure 3.29: Solution of the log-scaled HIV model (3.2) plotted using the observables log(10x1+
10x3) (upper left), log(10x2 + 10x4) (upper right), x5 (lower left), and x6 (lower right). Plotted
on top of each curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 105
times under constraint C2.
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Figure 3.30: Solution of the log-scaled HIV model (3.2) plotted using the observables log(10x1+
10x3) (upper left), log(10x2 + 10x4) (upper right), x5 (lower left), and x6 (lower right). Plotted
on top of each curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 105
times under constraint C3.

69



3.3.4 C3 Cycle model [49]

The second model we use as an example is characteristic of the large differential equation

systems that often appear in industrial problems as well as biological systems. In [49], Zhu et

al., present an ODE model for the Calvin Cycle in fully grown spinach. This model contains 165

parameters and initial conditions, 31 ODEs, and 7 concentration balance laws and involves 38

state variables (metabolite concentrations in different parts of the cell) as well as a calculation

for photosynthetic CO2 uptake rate. The metabolites used in the model are denoted by RuBP,

PGA, DPGA, T3P, FBP, E4P, S7P, ATP, SBP, NADPH, HexP, PenP, NADHc, NADc, ADPc,

ATPc, GLUc, KGc, ADP in photorespiration, ATP in photorespiration, GCEA, GCA, PGCA,

GCAc, GOAc, SERc, GLYc, HPRc, GCEAc, T3Pc, FBPc, HexPc, F26BPc, UDPGc, UTPc,

SUCP, SUCc, and PGAc, and the parameters are mainly initial conditions, maximum reaction

velocities, and Michaelis-Menten constants for reaction substrates, products, activators, and

inhibitors. The ‘c’ following some metabolite names indicates that the model compartment

corresponds to the metabolite concentration in cytosol; compartment names lacking a ‘c’ are

the metabolite in the chloroplast stroma. The full system of equations and parameter values

may be found in the appendices of [49]. While the model has not been validated with data

as completely as the family of HIV models discussed above, it is representative of the models

used to describe plant enzyme kinetics and utilizes well-documented Michaelis-Menten enzyme

kinetic model formulations [7].

In [6], sets of the optimal 3, 5, 10, and 15 metabolites are identified as the most useful to

measure in an experiment in order to estimate a subset of 6 parameters, ~θa = [KM11, KM521,

KI523, KC, KM1221, KM1241]T with true values ~θa0 = [0.0115, 0.0025, 0.00007, 0.0115, 0.15,

0.15]T, and a subset of 18 parameters, ~θc =[RuBP0, SBP0, KM11, KM13, KI13, KE4, KM9,

KM131, KI135, KE22, KM511, KM521, KI523, KC, KM1221, KM1241, V9, V58]T with true values
~θc0 = [2, 0.3, 0.0115, 0.02, 0.075, 0.05, 0.05, 0.05, 0.4, 0.058, 0.02, 0.0025, 0.00007, 0.0115,

0.15, 0.15, 0.3242, 0.0168]T. The simulation was set in the framework of an experiment run for

3000 seconds over which 11 samples are taken at evenly spaced times for the optimization of

estimates for ~θa and 21 samples for estimation of ~θc.

We use a similar set up for our simulations in order to judge the ability of the time and

variable selections to minimize the asymptotic standard errors of both ~θa and ~θc using N = 5

and N = 10 observables and n = 11 time points over the time interval t ∈ [0, 3000]. Each

metabolite is assigned a variance of 5% of its initial value, and to reduce computation time, all

metabolites that do not change in concentration over time (dx/dt = 0) are excluded from the

search algorithm. As it is often possible to measure a particular metabolite’s concentration in

plant tissue, we allow CN∗ to be composed of 28 vectors in R1×40 that are composed of a one in

the element corresponding to the position of the differential equation describing the dynamics
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of the metabolite in the vector of model ODEs and zero elsewhere.

We compare the ASE calculated for n = 11 evenly spaced measurements over the interval

t ∈ [0, 3000] against the optimally spaced n = 11 time points according to constraints C2 and

C3 and plot the D-, E- and SE-optimal time point distributions on the solutions of selected

compartments in the Zhu model of [49]. The four compartments chosen for graphing are carbon

uptake rate A(t) (units µmol m−2s−1), which is a rate calculated from the output of the model

that describes the plant’s efficiency in using the available environmental resources to develop;

adenosine triphosphate (ATP) in chloroplast stroma, which is a well-known metabolite active

in photosynthesis; sucrose, a sugar, in cytosol (SUCc); and Ribulose-1,5-bisphosphate (RuBP),

a metabolite connected to the enzyme RuBisCO, which is essential to carbon fixation.

The simplest scenario we test is the selection of the optimal N = 5 observables (metabo-

lites) and n = 11 time points to use when estimating the six parameters in ~θa. For all three

optimal design methods, the optimal observables determined under the uniform grid were also

determined to be optimal after the time point distribution is optimized under constraints C2

and C3. These observables are listed in the upper portion of Table 3.11. All three optimal design

methods identify the observables PGA, SERc, and F26BPc, indicating that these three metabo-

lites may be central to accurate estimates of the parameters in ~θa; moreover, the E-optimal and

SE-optimal cost functions selected the same set of five observables.

The similarity in results, however, does not continue through the selected time point dis-

tributions. Under constraint C2 (Figure 3.31), the D-optimal distribution is loosely clustered

about the center of the time interval, the E-optimal time points are clustered about t = 250

seconds, and SE-optimal chooses a small cluster of time points around the initial bump and al-

lows a few samples after the function reaches a steady state. Using constraint C3 (Figure 3.32),

all three optimal design criterion chose a majority of their sampling times before t = 600 and

allow only a few sampling times after the system reaches a steady state. The optimization of

time point distributions yields improved asymptotic standard errors from those of the uniform

distribution - sometimes by an order of magnitude or more. For all three time point constraints,

D-optimal yields the smallest ASE’s for the most number of parameters, and SE-optimal yields

the smallest ASE’s for the second most number of parameters. Both optimal design criteria

perform better with the C3 optimal times than the C2 optimal times. Therefore, in this simple

case, using either the D- or SE-optimal design criterion with time point distribution constraint

C3 would yield the best results.

The next scenario is the selection of the optimal N = 10 observables and n = 11 time

points to use when estimating the six parameters in ~θa. For all three optimal design methods,

the optimal observables determined under the uniform grid were also determined to be optimal

after the time point distribution is optimized under constraints C2 and C3. These observables

are listed in the upper portion of Table 3.12. Of the 28 possible observables, 20 were selected by
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Table 3.11: Top: Optimal 5 observables chosen by each optimal design criterion when estimat-
ing the parameters ~θa of the model in [49]. Bottom: Approximate asymptotic standard errors
calculated using asymptotic theory (2.21) for each parameter in ~θa using the optimal 5 observ-
ables with time point constraints of uniform spacing, constraint C2, and constraint C3. Smallest
ASE for each parameter per time point constraint is highlighted in bold font.

Method Observables

D-opt PGA, T3P, GOAc, SERc, F26BPc
E-opt PGA, SERc, T3Pc, FBPc, F26BPc

SE-opt PGA, SERc, T3Pc, FBPc, F26BPc

Time Uniform C2 Optimal C3 Optimal

Method D E SE D E SE D E SE

ASE(KM11) 0.001 0.036 0.036 0.002 0.003 8.7e-4 5.8e-4 0.002 0.002
ASE(KM521) 4.181 4.009 4.009 0.132 0.108 0.681 0.075 0.135 0.053
ASE(KI523) 0.117 0.113 0.113 0.004 0.003 0.019 0.001 0.004 0.002
ASE(KC) 0.001 0.035 0.036 0.001 0.003 0.002 0.001 0.002 0.002

ASE(KM1221) 0.281 1.307 1.307 0.274 0.433 0.580 0.146 0.513 0.514
ASE(KM1241) 0.251 1.176 1.176 0.245 0.387 0.518 0.131 0.458 0.459

at least one optimal design criterion, 8 of of which ( DPGA, T3P, E4P, S7P, ATP, GCA, SERc,

T3Pc) were selected by two criteria and one, GOAc, was selected by all three. The effect of

adding five observables does not have a large effect on the estimated ASE for the six parameters

of interest. The ASE’s listed in Table 3.12 for the N = 10 observable case are on the same order

as those in Table 3.11 for the N = 5 observable case for each time point constraint.

The optimal time point distributions also differ from those selected under the five observable

case. Under constraint C2 (Figure 3.33), the D-optimal distribution is loosely clustered near

the boundaries of the time interval while the E- and SE-optimal time points are scattered

over the whole interval. Using constraint C3 (Figure 3.34), the D-optimal times are spread

throughout the middle half of the time interval, E-optimal over the first half, and SE-optimal

over the second half. While there are no easily discernible patterns between the distributions

chosen under the C2 and C3 constraints, the optimization of time point distributions again yield

improved asymptotic standard errors from those of a uniform time distribution. For all three

time point constraints, D-optimal yields the smallest ASE’s for the most number of parameters,

and SE-optimal yields the smallest ASE’s for the second most number of parameters. Other

than for the parameters it estimates best, SE-optimal is often the worst criterion. The time point

distribution under constraint C2 allows smaller ASE’s for the N = 10 observable variables case.
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Table 3.12: Top: Optimal ten observables chosen by each optimal design criterion when es-
timating the parameters ~θa of the model in [49]. Bottom: Approximate asymptotic standard
errors calculated using asymptotic theory (2.21) for each parameter in ~θa using the optimal 10
observables with time point constraints of uniform spacing, constraint C2, and constraint C3.
Smallest ASE for each parameter per time point constraint is highlighted in bold font.

Method Observables

D-opt RuBP, PGA, T3P, E4P, SBP, GOAc, SERc, GLYc, T3Pc, F26BPc
E-opt DPGA, T3P, S7P, ATP, NADPH, NADHc, GCEA, GCA, GOAc, HexPc
SE-opt DPGA, FBP, E4P, S7P, ATP, HexP, GCA, GOAc, SERc, T3Pc

Time Uniform C2 Optimal C3 Optimal

Method D E SE D E SE D E SE

ASE(KM11) 0.001 0.001 0.001 5.9e-4 0.001 0.001 0.001 0.001 0.001
ASE(KM521) 4.043 3.971 3.971 0.110 0.782 0.059 0.147 0.272 0.059
ASE(KI523) 0.113 0.111 0.111 0.003 0.022 0.002 0.004 0.008 0.002
ASE(KC) 0.001 0.001 0.001 9.1e-4 0.001 0.001 0.001 0.001 0.001

ASE(KM1221) 0.280 0.674 0.674 0.253 0.621 0.581 0.305 0.614 0.696
ASE(KM1241) 0.250 0.603 0.603 0.226 0.555 0.519 0.272 0.548 0.623

Therefore using the D-optimal design criterion with time point distribution constraint C2 would

yield the best results.

The addition of five observables for ~θa does not greatly impact most of the calculated ASE’s.

For the time point constraints C2 and C3, all but one of the minimum ASE’s remain on the

same order of magnitude, and some of the ASE’s increase when N = 10 observables are allowed

from when N = 5 observables are allowed. This may indicate that for a small parameter set

such as ~θa, only a small amount of information is needed to obtain the best possible results;

adding extra information (through additional observables) does not further improve the ASE’s.
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Figure 3.31: Solutions of selected state variables in the Zhu model [49]. Plotted on top of each
curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 11 sampling times
under constraint C2 when sampling the optimal five observables to estimate ~θa (Table 3.11).
Top Left: Carbon uptake rate A(t); Top Right: ATP; Bottom Left: SUCc; Bottom Right:
RuBP.
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Figure 3.32: Solutions of selected state variables in the Zhu model [49]. Plotted on top of each
curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 11 sampling times
under constraint C3 when sampling the optimal five observables to estimate ~θa (Table 3.11).
Top Left: Carbon uptake rate A(t); Top Right: ATP; Bottom Left: SUCc; Bottom Right:
RuBP.
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Figure 3.33: Solutions of selected state variables in the Zhu model [49]. Plotted on top of each
curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 11 sampling times
under constraint C2 when sampling the optimal ten observables to estimate ~θa (Table 3.12).
Top Left: Carbon uptake rate A(t); Top Right: ATP; Bottom Left: SUCc; Bottom Right: RuBP.
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Figure 3.34: Solutions of selected state variables in the Zhu model [49]. Plotted on top of each
curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 11 sampling times
under constraint C3 when sampling the optimal ten observables to estimate ~θa (Table 3.12).
Top Left: Carbon uptake rate A(t); Top Right: ATP; Bottom Left: SUCc; Bottom Right: RuBP.
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Now consider the parameter vector ~θc. We identify the optimal N = 5 observables and the

optimal distribution of n = 11 time points using the D-, E-, and SE-optimal cost functionals.

Three metabolites, RuBP, SBP, and F26BPc, are selected by all three cost functionals, indicat-

ing that these three observables may be important to measure to accurately estimate a large

number of the parameters in ~θc. The inclusion of RuBP0 and SBP0 in ~θc may also heavily influ-

ence the selection of observables. Many of the other metabolites selected by at least one of the

cost functionals, namely, PGA, SERc, and T3Pc, were also selected for ~θa in the experimental

setup of N = 5 observables and n = 11 time points, indicating that they are still relevant to

some of the parameters in ~θc.

Using the uniform time point distribution yields standard errors that are typically two or

three orders of magnitude larger than the parameter value (Table 3.13). For example, the value

of the inhibition constant KI523 is 0.00007 (from Section A.2), but the calculated asymptotic

standard error is 9.295, which is six orders of magnitude larger than the parameter. Constraint

C2 also leads to large standard errors when using the D- and E-optimal cost function. The

E-optimal standard errors, in fact, do not change from those calculated using the uniform time

point distribution, and as shown in Figure 3.35, the E-optimal time distribution under constraint

C2 is uniform. The SE-optimal design criterion performs the best when using constraint C2

and produces much smaller standard errors, though the standard errors are still larger than

the parameter values by orders of magnitude for most parameters. Both D- and SE-optimal

perform favorably under constraint C3: the D-optimal, C3 design produces smaller ASE’s than

the SE-optimal, C2 design, and the SE-optimal, C3 design yields the smallest ASE’s for almost

all parameters. Under the constraint C3 and the SE-optimal cost functional, the calculated

ASE’s are zero to one orders of magnitude larger than the parameter values.

The favorable performance of the SE-optimal design criterion under constraint C2 may be

attributed to its selected time point distribution (Figure 3.35). The SE-optimal distribution

is the only one that places a large number of time points (5 out of 11) before the solution

approaches a steady state at t = 250. The E-optimal design, as mentioned previously, selects

the uniform distribution, and the D-optimal design suggests sampling after the solution has

achieved a steady state. When using constraint C3, the E-optimal design selects a distribution

that maintains the uniform spacing between points in the interior of the time interval (0,3000)

(Figure 3.36), again leading to poor ASE’s. Both the D- and SE-optimal designs place the

majority of the 11 time points in the first 1/3 of the time interval, thus capturing more of the

dynamical system’s behavior before it achieves a steady state. These front-heavy distributions

greatly reduce the estimated ASE’s from those calculated using a uniform time distribution.

The last case tested is designing experiments using each of the three cost functionals to

estimate ~θc when allowed N = 10 observables and n = 11 time points. As in the case of only

allowing five observables for estimation of ~θa, the metabolites RuBP, SBP, and F26BPc are
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Table 3.13: Top: Optimal five observables chosen by each optimal design criterion when es-
timating the parameters ~θc of the model in [49]. Bottom: Approximate asymptotic standard
errors calculated using asymptotic theory (2.21) for each parameter in ~θc using the optimal 5
observables with time point constraints of uniform spacing, constraint C2, and constraint C3.
Smallest ASE for each parameter per time point constraint is highlighted in bold font.

Method Observables

D-opt RuBP, PGA, SBP, SERc, F26BPc
E-opt RuBP, SBP, PenP, SERc, F26BPc
SE-opt RuBP, SBP, GCEAc, T3Pc, F26BPc

Time Uniform C2 Optimal C3 Optimal

Method D E SE D E SE D E SE

ASE(RuBP0) 0.316 0.316 0.316 0.316 0.316 0.224 0.224 0.316 0.222
ASE(SBP0) 0.123 0.123 0.123 0.123 0.123 0.087 0.087 0.123 0.086
ASE(KM11) 10.8 17.1 15.7 12.9 17.1 0.066 0.037 20.6 0.010
ASE(KM13) 69.7 116 88.1 68.5 116.0 1.184 0.108 147.7 0.070
ASE(KI13) 39.7 45.0 71.9 53.5 45.0 4.827 2.939 56.7 0.974
ASE(KE4) 23.3 24.0 15.1 12.9 24.0 0.984 0.178 48.8 0.063

ASE(KM9) 11.4 19.7 8.765 3.566 19.7 1.528 0.321 25.6 0.110
ASE(KM131) 109.6 7.831 153.8 100.1 7.83 1.118 0.368 7.985 0.140
ASE(KI135) 1310 147.8 2470 1140 147.9 13.8 4.491 115.4 1.793
ASE(KE22) 26.2 47.4 27.4 21.9 47.4 0.179 0.094 40.9 0.045

ASE(KM511) 4.40 4.937 0.159 1.710 4.937 0.005 0.163 9.898 0.002
ASE(KM521) 331 402.7 18.6 396.0 402.7 8.415 6.177 377.7 0.120

ASE(KI523) 9.295 11.3 0.523 11.1 11.3 0.236 0.174 10.6 0.003
ASE(KC) 1.095 1.520 4.941 0.957 1.520 0.556 0.079 2.445 0.029

ASE(KM1221) 40.1 61.5 621.2 49.8 61.5 14.2 0.738 84.0 2.069
ASE(KM1241) 36.0 55.3 557.9 44.7 55.3 12.9 0.664 75.5 1.829

ASE(V9) 28.3 48.0 38.8 7.979 48.0 1.120 0.149 71.9 0.137
ASE(V58) 0.588 1.025 0.159 0.831 1.025 0.087 0.012 1.784 7.8e-4
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selected by all three optimal design criteria. Additionally, PenP and SERc are selected by all

three. A total of 15 different metabolites are chosen across the three optimal design criteria, of

which only five are chosen by a single criterion and five selected by two criteria (Table 3.14).

The three optimal design criteria show more agreement on which 10 observables are important

to ~θc than which 10 are important to ~θa (in that case, a total of 20 different metabolites are

chosen). This indicates that the three design criterion agree upon observables that are central

to understanding the behavior of the model but also select observables that help minimize their

associated cost functionals.

Similar to the 5 observable case for ~θc, the ASE’s calculated when using a time point

distribution optimized under the C2 or C3 constraints are smaller than those of the uniform

time point distribution (though the difference is much less pronounced). While the ASE’s from

the D- and SE-optimal criteria are typically smallest under the uniform time point distribution,

the E-optimal designed experiment yields the smallest ASE’s for the most number of parameters

under constraint C2 (Table 3.14). The ASE’s for the D-optimal experiment under constraint C2

are typically larger than those for the D-optimal experiment with a uniform time distribution,

and the SE-optimal ASE’s see only marginal improvements. For parameters when the E-optimal

ASE’s are not as small as those for the D- and SE-optimal designs, the ASE’s are often still

on the same order. These ASE’s are still orders of magnitude larger than the values of some

parameters. The minimum ASE’s under constraint C3 are smaller than those under constraint

C2 (and are notable improvements over those from the uniform time point distribution), but

most are improved by only one order of magnitude or less. The D- and SE-optimal cost functions

yield the smallest standard errors for more parameters under C3 than C2, as well.

The performance improvements seen in the D- and SE-optimal experimental designs from

the C2-optimal time point distributions to the distributions optimal under constraint C3 can

be easily explained. Under constraint C2, neither criterion produced clusters of time points

(Figure 3.37). The distributions generated by both criteria are more similar to the uniform

distribution that was used as the initial seed for the time point distribution optimization than

to the highly clustered distributions seen for other selections of n and N (such as the one shown

in Figure 3.36). The D-optimal distribution only contains one time point before t = 500, as

well, thus ignoring the early dynamics of the system. The E-optimal time point distribution

contains clusters at the very beginning (t < 200) and very end (t > 2900) of the time interval

as well as a loose cluster between t = 1500 and t = 2000.

All three optimal design criteria produce non-uniform distributions under constraint C3

(Figure 3.38). The time point distributions determined using the E- and SE-optimal cost func-

tions place a majority of their time points before t = 1000, capturing the dynamics early in

the system solution. The D-optimal distribution also concentrates its sampling times before

t = 1000, but does not as tightly cluster the time points. All three cost functionals under time
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point constraint C3 produce smaller ASE’s than those calculated with a uniform time point

distribution (Table 3.14). The distributions generated under both constraints C2 and C3 indi-

cate that heavily weighting time periods when the system is changing its pattern of behavior

(such as transitioning from oscillations to a steady state) produce smaller standard errors than

uniform or near-uniform distributions.

Our computations using the Zhu model of [49] for the Calvin cycle indicate that both the

selection of observables and the distribution of sampling times across the experiment affect the

estimated asymptotic standard errors – sometimes by several orders of magnitude. While the

ASE’s calculated for all exercises were often larger than the parameter values, this may be

related to the model’s tendency to quickly reach a steady state.

Overall, the optimal design cost functions performed best under time point constraint C3,

followed by C2 and finally the uniform distribution. While in some examples a particular cost

functional would do particularly well (such as D-optimal in the ~θa, 10 observable case and SE-

optimal in the ~θc, 5 observable case), it is hard to determine apriori – or even using the results

of a uniform time distribution – which cost functional will perform best for a particular set of

parameters and observables. The reduction in ASE’s gained from adding additional observables

is also difficult to predict. Adding five observables to better estimate ~θa did not result in

noticeably smaller estimated asymptotic standard errors as calculated by asymptotic theory.

The improvement may be better quantified using a different method to calculate asymptotic

standard errors such as Monte Carlo simulations or bootstrapping, techniques that may possibly

be implemented as future work.
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Table 3.14: Top: Optimal ten observables chosen by each optimal design criterion when es-
timating the parameters ~θc of the model in [49]. Bottom: Approximate asymptotic standard
errors calculated using asymptotic theory (2.21) for each parameter in ~θc using the optimal 10
observables with time point constraints of uniform spacing, constraint C2, and constraint C3.
Smallest ASE for each parameter per time point constraint is highlighted in bold font.

Method Observables

D-opt RuBP, T3P, SBP, PenP, GCEA, GOAc, SERc, GLYc, T3Pc, F26BPc
E-opt RuBP, PGA, T3P, E4P, S7P, SBP, PenP, GCEA, SERc, F26BPc
SE-opt RuBP, PGA, SBP, PenP, GOAc, SERc, T3Pc, FBPc, HexPc, F26BPc

Time Uniform C2 Optimal C3 Optimal

Method D E SE D E SE D E SE

ASE(RuBP0) 0.316 0.316 0.316 0.224 0.315 0.224 0.224 0.313 0.313
ASE(SBP0) 0.123 0.123 0.123 0.087 0.122 0.087 0.087 0.122 0.122
ASE(KM11) 0.375 0.864 0.641 0.526 0.025 0.625 0.091 0.014 0.012
ASE(KM13) 2.064 4.639 3.972 2.931 0.058 3.911 0.500 0.069 0.062
ASE(KI13) 2.161 2.668 9.785 3.241 1.696 9.444 0.876 1.202 1.116
ASE(KE4) 0.011 0.014 1.509 0.177 0.012 1.407 0.008 0.011 0.036

ASE(KM9) 0.249 0.253 1.576 0.540 0.176 1.555 0.173 0.141 0.126
ASE(KM131) 2.686 2.299 3.028 4.294 0.125 2.981 0.218 0.094 0.260
ASE(KI135) 39.0 33.4 46.4 62.4 1.795 45.7 3.154 1.332 3.683
ASE(KE22) 0.054 0.093 2.284 1.151 0.034 2.132 0.014 0.014 0.050

ASE(KM511) 0.020 1.626 0.004 0.427 0.074 0.004 0.005 0.018 0.002
ASE(KM521) 8.695 17.6 4.397 133.9 1.382 4.739 2.686 0.507 0.168

ASE(KI523) 0.244 0.494 0.123 3.757 0.036 0.133 0.075 0.014 0.005
ASE(KC) 0.051 0.063 0.263 0.077 0.040 0.254 0.022 0.029 0.030

ASE(KM1221) 0.305 2.041 0.336 0.323 0.730 0.349 0.288 0.578 0.258
ASE(KM1241) 0.273 1.827 0.295 0.289 0.654 0.307 0.258 0.517 0.231

ASE(V9) 0.240 0.247 2.458 0.496 0.169 2.210 0.164 0.139 0.141
ASE(V58) 0.024 0.151 0.003 0.510 0.008 0.003 0.005 0.001 6.9e-4
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Figure 3.35: Solutions of selected state variables in the Zhu model [49]. Plotted on top of each
curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 11 sampling times
under constraint C2 when sampling the optimal five observables to estimate ~θc (Table 3.13).
Top Left: Carbon uptake rate A(t); Top Right: ATP; Bottom Left: SUCc; Bottom Right:
RuBP.
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Figure 3.36: Solutions of selected state variables in the Zhu model [49]. Plotted on top of each
curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 11 times under
constraint C3 when sampling the optimal five observables to estimate ~θc (Table 3.13). Top
Left: Carbon uptake rate A(t); Top Right: ATP; Bottom Left: SUCc; Bottom Right: RuBP.
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Figure 3.37: Solutions of selected state variables in the Zhu model [49]. Plotted on top of each
curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 11 sampling times
under constraint C2 when sampling the optimal ten observables to estimate ~θc (Table 3.14).
Top Left: Carbon uptake rate A(t); Top Right: ATP; Bottom Left: SUCc; Bottom Right:
RuBP.
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Figure 3.38: Solutions of selected state variables in the Zhu model [49]. Plotted on top of each
curve are the D-optimal (circle), E-optimal (square), and SE-optimal (x) n = 11 times under
constraint C3 when sampling the optimal ten observables to estimate ~θc (Table 3.14). Top
Left: Carbon uptake rate A(t); Top Right: ATP; Bottom Left: SUCc; Bottom Right: RuBP.
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Chapter 4

Conclusion and Future Work

In this research project, we improve the ability to use in silico experimentation to inform

in-field experiments by constructing multiscale models of plant growth and by developing an

experimental design algorithm that determines which measurable state variables should be

observed and when they should be observed. We explore the potential of these models to describe

observed plant growth, examine how compartments of the model are affected by parameters,

and show the potential of the experimental design algorithm using two simpler models.

4.1 Multiscale models

Drawing from the modeling and investigative work of [4], [26], [28], [42], [39], and [49], we con-

struct two candidate dynamical systems models that relate environmental conditions, cellular

level metabolic processes, and whole plant growth and senescence dynamics. The comprehensive

model is listed in Appendix B.3, and the compact model is listed in Appendix B.4. Descriptions

of all state variables and parameters, values of parameters and initial values of state variables

(values at time t = 0), equations from [49], and equations from [28] are included in Appendices

A.1, A.2, B.1, and B.2, respectively.

The current models improve upon past carbon metabolism modeling efforts by mathemati-

cally describing the reactions of PSI, PSII, FNR, OEC, the C3 cycle, and the most prominent

links between the metabolic processes of the light reactions and C3 cycle. This cellular level is

linked to whole plant productivity through the use of logistic functions and to the environment

via forcing functions that represent the temperature, radiance, water availability, and atmo-

spheric availability of CO2 and O2. The comprehensive model uses the C3 cycle model of [49]

and the light reaction model of [28] to describe the majority of the metabolic processes while

the compact model replaces the light reaction model with four equations based on the primary

chemical reactions of photosynthesis as described in [42].
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4.2 Parameter estimation and sensitivity analysis

The ability of these models to describe leaf area over time as observed in Arabidopsis thaliana

[35] and soybean [39] are tested using a least squares optimization algorithm to identify unknown

parameters such as growth and senescence rates. Both candidate models successfully describe

overall trends in plant leaf area data (Figures 3.4 and 3.13) when a least-squares algorithm is

used to estimate some of the model parameters. Further improvements to each model’s fit may

be possible if the initial points used in the minimization algorithm are changed.

The candidate models also exhibit changes in metabolite concentrations and carbon uptake

rates, reflecting the changes in plant growth behavior between day and night. The two models

exhibit metabolite concentrations that not only differ from each other but also metabolite

concentrations reported in [28] and [49], all of which are not verified with data. The runtime of

one forward solution of the compact model is less than 50% of the runtime of the comprehensive

model with little increase in the minimal least-squares cost when fitting a set of data, indicating

that of the two models, the compact model is more useful for computations.

Extending the efforts of [6] to understand which compartments of the C3 cycle model [49]

are affected by particular parameters, we use automatic differentiation [21] to calculate the

sensitivity equations of the compact model with respect to the maximum velocity terms, growth

and senescence parameters, and initial conditions. The state variables of the compact model are

sensitive to many parameters that are not used in the expression of that variable’s rate of change

(such as other variables’ initial conditions), indicating that the addition of the light reactions

and environmental factors has caused new relationships between variables and parameters to

become apparent. The calculation of these sensitivity equations, however, is very time intensive,

making even the compact model a poor candidate for use in a Fisher information matrix-based

experimental design problem.

4.3 Experimental design

Expanding the efforts reported in [16] on time point distribution selection using the D-, E-, and

SE-optimal design criteria, we introduce a new methodology and algorithm for selecting both

optimal observables and an optimal time point distribution. While the D- and E-optimal cost

functions are well established in the literature, the SE-optimal design method is relatively new

but competitive. We compare the abilities of these three design criteria to reduce the estimated

asymptotic standard errors of selected subsets of parameters for two ordinary differential equa-

tion models representative of ODE systems used in industrial applications: the log-scaled HIV

model (3.2) and the model of [49] for the Calvin cycle. These examples suggest the strengths

of each design method in selecting appropriate observable variables and sampling times.
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Collecting patient data for the treatment of HIV is limited by the types and expenses of

assays available. In efforts with experimental data [2], parameter estimation for the HIV model

(3.2) has only been performed with one or two observed quantities. Our tests for determining

the optimal sets of 1, 2, and 3 observables when data is collected at uniformly distributed times

show that the SE-optimal design criterion performs very similarly to the D-optimal criterion;

moreover, a small number of observables may be compensated for by allowing more sampling

times. While only measuring one observable may not quite be adequate for accurate parameter

estimates, taking either 201 or 401 measurements of two observables yielded similar standard

errors when compared to an experiment in which three observables are sampled 51-101 times.

For the HIV model, we compared the performance of all three design criteria under time

point distribution constraints C2 and C3. When determining the optimal distribution of 35 time

points, D-optimal yields the smallest ASE’s for the most parameters, followed by E-optimal,

for both time point constraints. When determining the optimal distribution of 105 time points,

however, D-, E-, and SE-optimal each yield the smallest ASE’s for some of the parameters under

C2, and both D- and E-optimal are strong performers under constraint C3. The SE-optimal

standard errors, while not the lowest, are on the same order of magnitude as those of D- and

E-optimal. Therefore for our selected parameter values, D- and E-optimal more reliably yield

the smallest standard errors.

The Zhu model of [49] is representative of experimental environments where a great number

of state variables may possibly be measured but the costs of measurements limit the number of

observed variables that may be sampled. We compared the estimated asymptotic standard errors

calculated using the observables and time point distributions determined with the D-,E-, and

SE-optimal design methods. For the small parameter subset ~θa, a small number of observables

is sufficient to obtain as small ASE’s as possible - adding more observables does not improve the

ASE’s generated for any of the design methods. Optimizing the time point distribution under

either constraint C2 or C3 improves the ASE’s by up to two orders of magnitude. At both 5

and 10 observables, the D-optimal design provides the smallest ASE’s for the most parameters,

followed by SE-optimal. The E-optimal standard errors, however, are often on the same order

of magnitude, indicating that it is still competitive.

When testing the treatment of the larger parameter subset ~θc of the Zhu model by each of

the three design methods, we found that while an excellent selection of observables and time

points may still yield small standard errors (as with the SE-optimal design method with 5

observables under constraint C3), adding more information through more observables reduces

the calculated ASE’s in the uniform time distribution. At 5 observables, the SE-optimal cost

function performs the best and E-optimal time distribution optimization fails to venture far from

the uniform grid initially used; at 10 observables, E-optimal performs best under constraint C2

and all three design criteria perform the best for different parameters under constraint C3. Thus
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for the Zhu model, it is difficult to predict which optimal design criterion will perform best in

a particular case.

While the performance of each optimal design criteria is highly dependent upon the ODE

system, parameter subset, number of observables allowed, number of time points allowed, and

even constraints imposed on the time point distribution selection, the examples performed us-

ing the HIV model (3.2) and the Zhu model [49] demonstrate that the D-, E-, and SE-optimal

design methods are all competitive and useful. Moreover, in the Zhu model examples, selection

of optimal time points can reduce the estimated asymptotic standard errors of parameters by

several orders of magnitude, thus providing data that is more useful in a parameter estimation

problem without taking more samples or measuring more observables. Thus the new methodol-

ogy developed and illustrated here can be an important tool in designing experimental protocols

for obtaining data to be used in estimating parameters in complex dynamic models.

4.4 Concluding remarks

The calculation of sensitivity equations for 1.4 days of the compact model enables us to solve

some simple optimal design problems for a C3 plant grown in greenhouse conditions similar to

those described in [35]. Particularly, we may use the sensitivity equations to determine which

metabolites should be measured - and when in a 24 hour period the measurements should

be taken - in order to get the most information about maximum velocity parameters and, if

unknown, initial metabolite concentrations assuming that the parameters used in the model

are near the true values that describe the reactions occurring in plant tissue. Further model

simplification would be necessary to solve an optimal design problem over the lifetime of a

plant.

While it is assumed in the model that the locations of photosynthesis are fixed sizes, cells

are not static structures. Cell compartments are known to change size based on water and gas

availability. This, in turn, may impact the concentration of metabolites in that portion of the

cell. Further investigation into the sizes of particular cellular spaces such as the lumen, the

cytosolic space, and even the resource-storing vacuole will enable us to better describe how

plant productivity changes when cells are different sizes or when cell compartments change in

size due to environmental effects, genetic variation, or plant development.

The multiscale plant growth models listed in sections B.3 and B.4 of the appendix apply

only to plant species that utilize the C3 cycle to fix carbon in cells. The models will be used

to formulate a similarly structured model for C4 plants such as maize. The C4 cycle is a light-

independent carbon fixing process that is similar to - but requires more reactions than - the

C3 cycle. We will search for models of the C4 cycle to implement in our current mathematical

framework as well as consult [4], [37], and [42] to determine how this alternative carbon fixing
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mechanism impacts light reactions and overall productivity of the plant. The ability of this

multiscale C4 plant growth model to approximate trends seen in crop leaf area or biomass data

when optimal parameters are determined will be tested, with the intention of using this model

in an experimental design framework to improve and streamline sampling in a greenhouse or

field experimental setting.
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Appendix A

State variables and parameters

A.1 State variables, descriptions, and initial values

Symbol Eqn, M1 Eqn, M2 IC Location Description

RuBP x1 x1 2 Stroma Ribulose 1,5-biphosphate

PGA x2 x2 2.4 Stroma 3-Phosphoglycerate

DPGA x3 x3 0.0011 Stroma 1,3-biphosphoglycerate

T3P x4 x4 0.5 Stroma Triose phosphates (DHAP and GAP)

DHAP y10 y10 - Stroma Dihydroxyacetone-phosphate

GAP y11 y11 - Stroma Glyceraldehyde 3-phosphate

FBP x5 x5 0.67 Stroma Fructose 1,6-bisphosphate

E4P x6 x6 0.05 Stroma Erythrose 4-phosphate

S7P x7 x7 2 Stroma Sedoheptulose 7-phosphate

ATP x8 x8 0.8019 Stroma Adenosine triphosphate

SBP x9 x9 0.3 Stroma Sedoheptulose 1,7-bisphosphate

NADPH x10 x10 0.0485 Stroma Reduced NADP

ADP x11 x11 0.82 Stroma Adenosine diphosphate

NADP x12 x12 0.1752 Stroma NAD phosphate

HexP x13 x13 2.2 Stroma Hexose phosphates F6P, G6P, G1P

F6P y12 y12 - Stroma Fructose 6-phosphate

G6P y13 y13 - Stroma Glucose 6-phosphate

G1P y14 y14 - Stroma Glucose 1-phosphate

PenP x14 x14 0.2742 Stroma Pentose phosphates Ri5P, Ru5P, Xu5P

Ru5P y15 y15 - Stroma Ribulose 5-phosphate

Ri5P y16 y16 - Stroma Ribose 5-phosphate

Xu5P y17 y17 - Stroma Xylulose 5-phosphate

NADHc x16 x16 0.3244 Cytosol Reduced NAD

NADc x17 x17 0.1149 Cytosol Nicotinamide adenine dinucleotide

ADPc x18 x18 0.0122 Cytosol Adenosine diphosphate

ATPc x19 x19 0.0412 Cytosol Adenosine triphosphate

GLUc x20 x20 18.724 Cytosol Glutamate

KGc x21 - 0.4824 Cytosol α-Ketoglutarate

GCEA x23 x23 0.1812 Stroma Glycerate

GCA x24 x24 0.36 Stroma Glycollate
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PGCA x25 x25 0.0029 Stroma Phosphoglycollate

GCAc x26 x26 0.36 Cytosol Glycollate

GOAc x27 x27 0.028 Cytosol Glyoxylate

SERc x28 x28 7.5 Cytosol Serine

GLYc x29 x29 1.8 Cytosol Glycine

HPRc x30 x30 0.0035 Cytosol Hydroxypyruvate

GCEAc x31 x31 0.1812 Cytosol Glycerate

T3Pc x32 x32 2.3 Cytosol Triose phosphates

GAPc y4 y4 - Stroma Glyceraldehyde 3-phosphate

DHAPc y5 y5 - Stroma Dihydroxyacetone-phosphate

FBPc x33 x33 2 Cytosol Fructose 1,6-bisphosphate

HexPc x34 x34 5.8 Cytosol Hexose phosphates

G6Pc y1 y1 - Stroma Glucose 6-phosphate

F6Pc y2 y2 - Stroma Fructose 6-phosphate

G1Pc y3 y3 - Stroma Glucose 1-phosphate

F26BPc x35 x35 7.8e-6 Cytosol Fructose 2,6-bisphosphate

UDPGc x36 x36 0.57 Cytosol Uridine diphosphate glucose

UTPc x37 x37 0.75 Cytosol Uridine-5’-triphosphate

SUCPc x38 x38 0 Cytosol Sucrose phosphate

SUCc x39 x39 0 Cytosol Sucrose

PGAc x40 x40 0 Cytosol 3-Phosphoglycerate∫
A x41 x49 0 Stroma Total carbon uptake

L−(HC)−F x42 - 0.0014 Thylakoid membrane State of cyt b6/f

L−(HC)−F− x43 - 0.0012 Thylakoid membrane State of cyt b6/f

L−(HC)F x44 - 1.8270 Thylakoid membrane State of cyt b6/f

L−(HC)F− x45 - 1.0747 Thylakoid membrane State of cyt b6/f

L−(HC)2−F x46 - 0.0022 Thylakoid membrane State of cyt b6/f

L−(HC)2−F− x47 - 0.9687 Thylakoid membrane State of cyt b6/f

L(HC)−F x48 - 0.9642 Thylakoid membrane State of cyt b6/f

L(HC)−F− x49 - 0.0562 Thylakoid membrane State of cyt b6/f

L(HC)F x50 - 1.5769 Thylakoid membrane State of cyt b6/f

L(HC)F− x51 - 3.03e-4 Thylakoid membrane State of cyt b6/f

L(HC)2−F x52 - 7.13e-4 Thylakoid membrane State of cyt b6/f

L(HC)2−F− x53 - 1.0949 Thylakoid membrane State of cyt b6/f

Fd x54 x47 3.5152 Stroma Ferredoxin without electron

Fd− x55 x48 4.39e-4 Stroma Ferredoxin with electron

FNRa x56 - 1.2955 Stroma Active FNR

FNRa− x57 - 0.9657 Stroma Active singly reduced FNR

FNRa2− x58 - 0.9864 Stroma Active doubly reduced FNR

FNRi x59 - 4.2331 Stroma Inactive FNR

P+
680Q−

AN x60 - 1.2623 Thylakoid membrane State in PSII

P+
680Q−

AQB x61 - 1.8548 Thylakoid membrane State in PSII

P+
680Q−

AQ−
B x62 - 0.0048 Thylakoid membrane State in PSII

P+
680Q−

AQ2−
B x63 - 1.1239 Thylakoid membrane State in PSII

P+
680QAQB x64 - 0.8241 Thylakoid membrane State in PSII

P+
680QAQ−

B x65 - 0.0014 Thylakoid membrane State in PSII

P+
680QAQ2−

B x66 - 1.5088 Thylakoid membrane State in PSII

P680Q−
AN x67 - 3.97e-4 Thylakoid membrane State in PSII

P680Q−
AQB x68 - 0.0117 Thylakoid membrane State in PSII

P680Q−
AQ−

B x69 - 0.0016 Thylakoid membrane State in PSII

P680Q−
AQ2−

B x70 - 0.8327 Thylakoid membrane State in PSII
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P680QAN x71 - 0.0113 Thylakoid membrane State in PSII

P680QAQB x72 - 0.6713 Thylakoid membrane State in PSII

P680QAQ−
B x73 - 1.1355 Thylakoid membrane State in PSII

P680QAQ2−
B x74 - 4.43e-4 Thylakoid membrane State in PSII

P+
700Fb x75 - 0.0018 Thylakoid membrane State in PSI

P+
700Fb− x76 - 0.0020 Thylakoid membrane State in PSI

P700Fb x77 - 0.8950 Thylakoid membrane State in PSI

P700Fb− x78 - 5.05e-4 Thylakoid membrane State in PSI

PC x79 x44 3.4037 Lumen Plastocyanin

PC+ x80 x43 1.85e-4 Lumen Oxidized PC

PQ x81 x41 2.8938 Thylakoid membrane Oxidized plastoquinone

PQH2 x82 x42 2.5 Thylakoid membrane Reduced and protonated PQ

S0 x83 - 0.4721 Lumen OEC stage 0

S1 x84 - 0.6668 Lumen OEC stage 1

S2 x85 - 0.0022 Lumen OEC stage 2

S3 x86 - 0.8924 Lumen OEC stage 3

S4 x87 - 0.9062 Lumen OEC stage 4

HIFL x88 x45 1.0911 Lumen Free H+

HIFS x89 x46 4.8302 Stroma Free H+

G x90 x50 G0 Exterior Growing leaf area

S x91 x51 S0 Exterior Senescing leaf area

L x92 x52 G0 + S0 Exterior Total leaf area

UDPc y6 y6 - Cytosol Uridine diphosphiate

PiTc y7 y7 - Cytosol Total phosphate

Pic y8 y8 - Cytosol Available inorganic phosphate

PPic y9 y9 - Cytosol Pyrophosphate

Pi y18 y18 - Stroma Available inorganic phosphate
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A.2 Parameters and values as labeled in [49] and [28]

kA: Activation constant, kM : Michalis Menten constant, kI : Inhibition constant, kE : Equilibrium
constant, V :maximum velocity. C3: C3 cycle, LR: Light reactions, Suc: Sucrose synthesis, PR:
Photorespiration.

Symbol Value Enzyme Description

kM1,1 0.0115 4.1.1.39 C3, PR: CO2

kM1,2 0.222 4.1.1.39 C3, PR: O2

kM1,3 0.2 4.1.1.39 C3, PR: RuBP

kI1,1 0.84 4.1.1.39 C3: PGA

kI1,2 0.04 4.1.1.39 C3: FBP

kI1,3 0.075 4.1.1.39 C3: SBP

kI1,4 0.9 4.1.1.39 C3: Pi

kI1,5 0.07 4.1.1.39 C3: NADPH

kM2,1 0.24 2.7.2.3 C3: PGA

kM2,2 0.39 2.7.2.3 C3: ATP

kM2,3 0.23 2.7.2.3 C3: ADP

kM3,1 0.004 1.2.1.13 C3: DPGA

kM3,2 0.1 1.2.1.13 C3: NADPH

kM4,1 2.5 5.3.1.1 C3: DHAP

kM4,2 0.68 5.3.1.1 C3: GAP

kE4 0.05 5.3.1.1 C3

kM5,1 0.3 4.1.2.13 C3: GAP

kM5,2 0.4 4.1.2.13 C3: DHAP

kM5,3 0.02 4.1.2.13 C3: FBP

kE5 7.1 4.1.2.13 C3

kM6,1 0.033 3.1.3.11 C3: FBP

kI6,1 0.7 3.1.3.11 C3: F6P

kI6,2 12 3.1.3.11 C3: Pi

kE6 6.66e5 3.1.3.11 C3

kM7,1 0.1 2.2.1.1 C3: Xu5P

kM7,2 0.1 2.2.1.1 C3: E4P

kM7,3 0.1 2.2.1.1 C3: F6P

kM7,4 0.1 2.2.1.1 C3: GAP

kE7 10 2.2.1.1 C3

kM8,1 0.4 4.1.2.13 C3: SBP

kM8,2 0.2 4.1.2.13 C3: DHAP

kM8,3 1.017 4.1.2.13 C3: E4P

kE8 1.017 4.1.2.13 C3

kM9 0.05 3.1.3.37 C3: SBP

kI9 12 3.1.3.37 C3: Pi

kE9 6.66e5 3.1.3.37 C3

kM10,1 1.5 2.2.1.1 C3: Ri5P

kM10,2 0.1 2.2.1.1 C3: Xu5P

kM10,3 0.072 2.2.1.1 C3: GAP

kM10,4 0.46 2.2.1.1 C3: S7P

kE10 1.1765 2.2.1.1 C3

kHPR 4 3.6.3.14 LR: H+/ATP requirement

kM11,1 0.01447 3.6.3.14 LR: ADP

kM11,2 0.3 3.6.3.14 LR: Pi

kM11,3 0.3 3.6.3.14 LR: ATP
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kE11 6846 3.6.3.14 LR

kE12 0.67 5.1.3.1 C3 12

kM13,1 0.05 2.7.1.19 C3: Ru5P

kM13,2 0.059 2.7.1.19 C3: ATP

kI13,1 2 2.7.1.19 C3: PGA

kI13,2 0.7 2.7.1.19 C3: RuBP

kI13,3 4 2.7.1.19 C3: Pi

kI13,4 2.5 2.7.1.19 C3: ADP

kI13,5 0.4 2.7.1.19 C3: ADP

kE13 6.846e3 2.7.1.19 C3

kM16,1 0.014 3.6.3.14 C3: ADP

kM16,2 0.3 3.6.3.14 C3: Pi

kM16,3 0.3 3.6.3.14 C3: ATP

kE16 5.734 3.6.3.14 C3

kE21 2.3 5.3.1.9 C3

kE22 0.058 5.4.2.2 C3 22

kM23,1 0.08 multi-enzyme C3: G1P

kM23,2 0.08 multi-enzyme C3: ATP

kA23,1 0.1 multi-enzyme C3: PGA

kA23,2 0.02 multi-enzyme C3: F6P

kA23,3 0.02 multi-enzyme C3: FBP

kI23 10 multi-enzyme C3: ADP

kM31,1 0.077 Phosphate translocator C3: DHAP

kM31,2 0.63 Phosphate translocator C3 31, Pi

kM31,3 0.74 Phosphate translocator C3 31, external phosphate

kM32 0.25 Phosphate translocator C3 32, PGA

kM33 0.075 Phosphate translocator C3 33, GAP

kM36,1 1 1.6.6.1 C3: NADc est

kM36,2 1 1.6.6.1 C3: NADPH est

kE36 4.175 1.6.6.1 C3 est

kE38 1.38 1.10.9.1 C3 est

kM38,1 0.009 1.10.9.1 LR: PQH2

kM38,2 3.38 1.10.9.1 LR: PC+, est

kM38,3 1.4 1.10.9.1 LR: PC, est

kM38,4 0.009 1.10.9.1 LR: PQ

kE40 1 1.18.1.2 LR est

kM40,1 0.0026 1.18.1.2 LR: Fd-, Brenda 658208

kM40,2 0.00722 1.18.1.2 LR: NADP+, Brenda 285519

kM40,3 0.0026 1.18.1.2 LR: Fd, Brenda 658208

kM40,4 0.035 1.18.1.2 LR: NADPH, Brenda 658208

kM41,1 0.01447 ATPc generation [49] Suc

kM41,2 0.3 ATPc generation [49] Suc

kM51,1 0.02 4.1.2.13 Suc: FBPc

kM51,2 0.3 4.1.2.13 Suc: GAPc

kM51,3 0.4 4.1.2.13 Suc: DHAPc

kM51,4 0.014 4.1.2.13 Suc: SBPc

kE51 12 4.1.2.13 Suc

kM52 0.0025 3.1.3.11 Suc: FBPc

kI52,1 0.7 3.1.3.11 Suc: F6Pc

kI52,2 12 3.1.3.11 Suc: Pic

kI52,3 7e-5 3.1.3.11 Suc: F26BPc
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kE52 6663 3.1.3.11 Suc

kM55,1 0.14 2.7.7.9 Suc: G1Pc

kM55,2 0.1 2.7.7.9 Suc: UTPc

kM55,3 0.11 2.7.7.9 Suc: PPic

kM55,4 0.12 2.7.7.9 Suc: UDPGc

kE55 0.31 2.7.7.9 Suc

kM56,1 0.8 2.4.1.14 Suc: FBPc

kM56,2 2.4 2.4.1.14 Suc: UDPGc

kI56,1 0.7 2.4.1.14 Suc: UDPc

kI56,2 0.8 2.4.1.14 Suc: FPBc

kI56,3 0.4 2.4.1.14 Suc: SUCPc

kI56,4 11 2.4.1.14 Suc: Pic

kI56,5 50 2.4.1.14 Suc: SUCc

kE56 10 2.4.1.14 Suc

kM57 0.35 3.1.3.24 Suc: SUCPc

kI57 80 3.1.3.24 Suc: SUCc

kE57 780 3.1.3.24 Suc

kM58 0.032 3.1.3.46 Suc: F26BPc

kI58,1 0.1 3.1.3.46 Suc: F6Pc

kI58,2 0.5 3.1.3.46 Suc: PPic

kM59,1 0.5 2.7.1.105 Suc: ATPc

kM59,2 0.021 2.7.1.105 Suc: F26BPc

kM59,3 0.5 2.7.1.105 Suc: F6Pc

kI59,1 0.16 2.7.1.105 Suc: ADPc

kI59,2 0.7 2.7.1.105 Suc: DHAPc

kE59 590 2.7.1.105 Suc

kM60,1 0.042 2.7.4.6 Suc: ADPc

kM60,2 1.66 2.7.4.6 Suc: ATPc

kM60,3 0.28 2.7.4.6 Suc: UDPc

kM60−4 16 2.7.4.6 Suc: UTPc

kE60 16 2.7.4.6 Suc

kM62,1 5 Sucrose sink Suc: SUCc

kM112 0.026 3.1.3.18 PR: PGCA

kI112,1 2.55 3.1.3.18 PR: Pi

kI112,2 94 3.1.3.18 PR: GCA

kM113,1 0.21 2.7.1.31 PR: ATP

kM113,2 0.25 2.7.1.31 PR: GCEA

kI113 0.36 2.7.1.31 PR: PGA

kE113 300 2.7.1.31 PR

kM121 0.1 1.1.3.15 PR: GCAc

kM122,1 0.15 2.6.1.45 PR:, GOAc

kM122,2 2.7 2.6.1.45 PR: SERc

kI122 33 2.6.1.45 PR: GLYc

kE122 0.24 2.6.1.45 PR

kM123 0.09 1.1.1.29 PR: HPRc

kI123 12 1.1.1.29 PR: HPRc

kE123 2.5e5 1.1.1.29 PR

kM124,1 0.15 2.6.1.4 PR: GOAc

kM124,2 1.7 2.6.1.4 PR: GLUc

kI124 2 2.6.1.4 PR:, GLYc

kE124 607 2.6.1.4 PR
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kM131,1 6 Multi-enzyme [4] PR: GLYc

kI131,1 4 Multi-enzyme [4] PR: SERc

kI131,2 0.015 Multi-enzyme [4] PR:, NADHc

kM131,2 0.075 Multi-enzyme [4] PR: NADc

kM101,1 0.39 GCA/GCEA transport [49] PR 101a, GCEA

kI101,1 0.28 GCA/GCEA transport [49] PR 101a, GCA

kM101,2 0.2 GCA/GCEA transport [49] PR 101b, GCA

kI101,2 0.22 GCA/GCEA transport [49] PR 101b, GCEA

V1 2.9139 4.1.1.39 C3

V2 30.1408 2.7.2.3 C3

V3 4.0395 1.2.1.13 C3

V5 1.2189 4.1.2.13 C3

V6 0.7263 3.1.3.11 C3

V7 3.1222 2.2.1.1 C3

V8 1.2189 4.1.2.13 C3

V9 0.3242 3.1.3.37 C3

V10 3.1221 2.2.1.1 C3

V11 0.8696 3.6.3.14 C3

V12 0 5.1.3.1 C3

V13 10.8348 2.7.1.19 C3

V16 5 3.6.3.14 C3

V21 0 5.3.1.9 C3

V22 0 5.4.2.2 C3

V23 0.2668 multi-enzyme C3

V31 1.2433 Phosphate translocator C3

V32 1.2433 Phosphate translocator C3

V33 1.2433 Phosphate translocator C3

V36 .05 1.6.6.1 C3

V37 .005 1.10.3.9 LR

V38 50 1.10.9.1 LR

V39 1 1.97.1.12 LR

V40 50 1.18.1.2 LR

V41 .25 ATPc generation [49] Suc

V51 0.1074 4.1.2.13 Suc

V52 0.0640 3.1.3.11 Suc

V55 0.1154 2.7.7.9 Suc

V56 0.0555 2.4.1.14 Suc

V57 0.5550 3.1.3.24 Suc

V58 0.0168 3.1.3.46 Suc

V59 0.1009 2.7.1.105 Suc

V60 6.1 2.7.4.6 Suc

V62 2 Sucrose sink Suc

V111 0.6993 4.1.1.39 PR

V112 52.4199 3.1.3.18 PR

V113 5.7158 2.7.1.31 PR

V121 1.4561 1.1.3.15 PR

V122 3.3062 2.6.1.45 PR

V123 10.0098 1.1.1.29 PR

V124 2.7458 2.6.1.4 PR

V131 2.4947 Multi-enzyme [4] PR 131

V101,1 5 GCA/GCEA transporter [49] PR 101a
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V101,2 6 GCA/GCEA transporter [49] PR 101b

k(HC)L 345.67 1.10.9.1 LR: HC → L

kL(HC) 18.3811 1.10.9.1 LR: L → HC

kbct 1.0498 1.10.9.1 LR: Fd → Fd−

kfct 1.0952 1.10.9.1 LR: Fd− → Fd

kbF 7.5421 1.10.9.1 LR: PC → PC+

kfF 280.646 1.10.9.1 LR: PC+ → PC

kbLF 10.7049 1.10.3.9 LR: PQ → PQH2

kfLF 1849.71 1.10.3.9 LR: PQH2 → PQ

kf
(HC)

171.138 1.10.3.9 LR: PQ → PQH2

kb
(HC)

20.6669 1.10.3.9 LR: PQH2 → PQ

kb2ct 95.9296 1.10.9.1 LR: Fd → Fd−

kf2ct 18.9606 1.10.0.1 LR: Fd− → Fd

kfx 129.276 1.97.1.12 LR: Fd → Fd−

kbx 7.7645 1.97.1.12 LR: Fd− → Fd

kfFd 2.2609 1.18.1.2 LR: Fd− → Fd

kbFd 11.673 1.18.1.2 LR: Fd → Fd−

ka 32.0263 1.18.1.2 LR: FNRi → FNRa

kfFNR 64.3104 1.18.1.2 LR: FNRa2− → FNRa

kOEC0,1 1.289e6 OEC LR: S0 → S1

kOEC1,2 13366 OEC LR: S1 → S2

kOEC2,3 24876 OEC LR: S2 → S3

kOEC3,4 6360 OEC LR: S3 → S4

kL2 1.283e5 1.10.3.9 LR: P680, QA charge separation

kAB1 57883 1.10.3.9 LR: Q−
A → QB

kBA1 989.369 1.10.3.9 LR: Q−
B → QA

kfB 16.758 1.10.3.9 LR: PQ → PQH2

kbB 796.658 1.10.3.9 LR: PQH2 → PQ

kAB2 5469.1 1.10.3.9 LR: Q−
A → Q−

B

kBA2 6.1552 1.10.3.9 LR: Q2−
B → QA

kfR 193.648 1.97.1.12 LR: PC → PC+

kbR 16.4036 1.97.1.12 LR: PC+ → PC

kL1 113.144 1.97.1.12 LR: P700, FB charge separation

kOEC4,0 113.122 OEC LR: S4 → S0

kbFNR 220 1.18.1.2 LR: FNRa → FNRa2−

VAPS 12 ATPc sink Suc

PT 15 Total phosphate in stroma

UTc 1.5 Total UDP and UTP in cytosol

PTc 15 Total phosphate in cytosol

Pres 1 Atmospheric pressure in ATM

CO2 0.00036 Environment: atmospheric CO2

O2 0.20946 Environment: atmospheric O2

Tmin 4 Minimum T required for plant development (◦C)

Topt 26 Optimum T for plant development (◦C)

Tmax 40 Maximum T allowed for plant development (◦C)

rG/Aopt Growth rate

kG Carrying capacity for growth

rS Rate of senescence

kS Carrying capacity for senescence
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Appendix B

Model equations

B.1 C3 cycle reaction equations

v1(t; ~θ) =
V1x1 min (1, x1/Et)

x1 + kM1,3

(
1 + x2

kI1,1
+ x5

kI1,2
+ x9

kI1,3
+ y18

kI1,4
+ x10

kI1,5

) CO2

CO2 + kM1,1

(
1 + O2

kM1,2

)
v2(t; ~θ) =

V2x2x8 − x3x11/kE2

(x2 + kM2,1)
(
x8 + kM2,2

(
1 + x11

kM2,3

))
v3(t; ~θ) =

V3x3x10
(x3 + kM3,1) (x10 + kM3,2)

v4(t; ~θ) =
V5

(
y11y10 − x5

kE5

)
(kM5,1kM5,2)

(
1 + y11

kM5,1
+ y10

kM5,2
+ x5

kM5,3
+ y11y10

kM5,1kM5,2

)
v5(t; ~θ) =

V6

(
x5 − y12

y18
kE6

)
x5 + kM6,1

(
1 + y12

kI6,1
+ y18

kI6,2

)
v6(t; ~θ) =

V7

(
y12y11 − y17x6

kE7

)
(
y12 + kM7,3

(
1 + y17

kM7,1
+ x6

kM7,2

))
(y11 + kM7,4)

v7(t; ~θ) =
V8

(
y10x6 − x9

kE8

)
(x6 + kM8,3) (y10 + kM8,2)

v8(t; ~θ) =
V9

(
x9 − y18x7

kE9

)
x9 + kM9

(
1 + y18

kI9

)
v9(t; ~θ) =

V10

(
y11x7 − y16y17

kE10

)
(
y11 + kM10,3

(
1 + y17

kM10,2
+ y16

kM10,1

))
(x7 + kM10−4)

v10(t; ~θ) =
V13

(
x8y15 − x11x1

kE13

)
(
x8
(
1 + x11

kI13,4

)
+ kM13,2

(
1 + x11

kI13,5

))(
y15 + kM13,1

(
1 + x2

kI13,1
+ x1

kI13,2
+ y18

kI13,3

))
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v11(t; ~θ) =

V11x11y18 +
x8

kE11(HIFL
HIFS )

kHPR

kM11,1kM11,2

(
1 + x11

kM11,1
+ y18

kM11,2
+ x8

kM11,3
+ x11y18

kM11,1kM11,2

)
v12(t; ~θ) =

V23y14x8
x2
3

(y14 + kM23,1)
((

1 + x11
kI23

)
(x8 + kM23,2) +

kM23,2y18
kA23,1x2+kA23,2y12+kA23,3x5

)
v13(t; ~θ) =

V31y10
x2
3(

1 +
(
1 +

kM31,3

y8

)(
y18

kM31,2
+ x2

kM32
+ y11

kM33
+ y10

kM31,1

))
kM31,1

v14(t; ~θ) =
V32

x22
3(

1 +
(
1 +

kM31,3

y8

)(
y18

kM31,2
+ x2

kM32
+ y11

kM33
+ y10

kM31,1

))
kM32

v15(t; ~θ) =
V33y11

x2
3(

1 +
(
1 +

kM31,3

y8

)(
y18

kM31,2
+ x2

kM32
+ y11

kM33
+ y10

kM31,1

))
kM33

v16(t; ~θ) =
V51

(
y4y5 − x33

kE51

)
kM51,2kM51,3

(
1 + y4

kM51,2
+ y5

kM51,2
+ x33

kM51,1
+ y4y5

kM51,2kM51,3

)
v17(t; ~θ) =

V52

(
x33 − y2y8

kE52

)
kM52

(
1 + x35

kI52,3

)(
1 + x33

kM52

(
1+

x35
kI52,3

) + y8
kI52,2

+ y2
kI52,1

+ y8y2
kI52,1kI52,2

)

v18(t; ~θ) =
V55

(
x37y3 − x36y9

kE55

)
kM55,1kM55,2

(
1 + x37

kM55,1
+ y3

kM55,2
+ x36

kM55,3
+ y9

kM55,4
+ x37y3

kM55,1kM55,2
+ x36y9

kM55,3kM55,4

)
v19(t; ~θ) =

V56

(
y2x36 − x38y6

kE56

)
(
y2 + kM56,1

(
1 + x33

kM56,2

))(
x36 + kM56,2

(
1 + y6

kM56,1

)(
1 + x38

kI56,3

)(
1 + y8

kI56,4

)(
1 + x39

kI56,5

))
v20(t; ~θ) =

V57

(
x38 − x39y8

kE57

)
x38 + kM57

(
1 + x39

kI57

)
v21(t; ~θ) =

V58x35

kM58

(
1 + x35

kM58

)(
1 + y8

kI58,2

)(
1 + y2

kI58,1

)
v22(t; ~θ) =

V59

(
x19y2 − x18x35

kE59

)
(
y2 + kM59,3

(
1 + x35

kM59,2

)(
1 + y5

kI59,2

))(
x19 + kM59,1

(
1 + x18

kI59,1

))
v23(t; ~θ) =

V60

(
x19y6 − x18x37

kE60

)
kM60,2kM60,3

(
1 + x19

kM60,2
+ y6

kM60,3
+ x19y6

kM60,2kM60,3
+ x18

kM60,1
+ x37

kM60−4
+ x18x37

kM60,1kM60−4

)
v24(t; ~θ) =

V62x39x19
x39 + x19 + kM62,1
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v25(t; ~θ) =
V111x1 min (1, x1/Et)

x1 + kM1,3

(
1 + x2

kI1,1
+ x5

kI1,2
+ x9

kI1,3
+ y18

kI1,4
+ x10

kI1,5

) O2

O2 + kM1,2

(
1 + CO2

kM1,1

)
v26(t; ~θ) =

V112x25

x25 + kM112

(
1 + x24

kI112,2

)(
1 + y18

kI112,1

)
v27(t; ~θ) =

V113

(
x8x23 − x11x2

kE113

)
(
x8 + kM113,1

(
1 + x2

kI113

))
(x23 + kM113,2)

v28(t; ~θ) =
V121x26

x26 + kM121

v29(t; ~θ) =
V122

(
x27x28 − x30x29

kE122

)
(x27 + kM122,1)

(
x28 + kM122,2

(
1 + x29

kI122

))
v30(t; ~θ) =

V123

(
x30x16 − x23x17

kE123

)
x30 + kM123

(
1 + x30

kI123

)
v31(t; ~θ) =

V124

(
x27x20 − x21x29

kE124

)
(x27 + kM124,1)

(
x20 + kM124,2

(
1 + x29

kI124

))
v32(t; ~θ) =

V101,1x31

x31 + kM101,1

(
1 + x26

kI101,1

) − V101,1x23

x23 + kM101,1

(
1 + x24

kI101,1

)
v33(t; ~θ) =

V101,2x24

x24 + kM101,2

(
1 + x23

kI101,2

) − V101,2x26

x26 + kM101,2

(
1 + x31

kI101,2

)
v34(t; ~θ) =

x40
2 (x40 + 1)

v35(t; ~θ) =
V131x29

x29 + kM131,1

(
1 + x28

kI131,1

)
v36(t; ~θ) =

V36x17x10 − x16x12/4

(x17 + kM36,1)(x10 + kM36,2)

v37(t; ~θ) =
V37 · PQ · r(t) · w(t)

kM37 + PQ

v38(t; ~θ) =

V38k
−1
M38,1k

−1
M38,2

PQH · PC+ − PC·PQ

kE38

(
H

+
S

H
+
L

)2


1 + PQH2

kM38,1
+ PC+

kM38,2
+ PC

kM38,3
+ PQ

kM38,4
+ PQH·PC+

kM38,1kM38,2
+ PC·PQ

kM38,3kM38,4

v39(t; ~θ) =
V39 · PC · Fd · r(t)

(kM39,1 + PC)(kM39,2 + Fd)

v40(t; ~θ) =
V40k

−1
M40,1k

−1
M40,2(Fd

− ·NADP− Fd ·NADPH/kE40)

1 + Fd−
kM40,1

+ NADP
kM40,2

+ Fd
kM40,3

+ NADPH
kM40,4

+ Fd−·NADP
kM40,1kM40,2

+ Fd·NADPH
kM40,3kM40,4

v41(t; ~θ) =
V41x18y8

(x18 + kM41,1)(y8 + kM41,2)
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y1(t; ~θ) =
x34

1 + kE22 + 1/kE21

y2(t; ~θ) =
x34

1 + kE21 + kE21kE22

y3(t; ~θ) =
kE22x34

1 + kE22 + 1/kE21

y4(t; ~θ) =
x32

1 + kE4

y5(t; ~θ) =
kE4x32
1 + kE4

y6(t; ~θ) = UTc− x36 − x37

y7(t; ~θ) = PTc− 2(x33 + x35)− x40 − x32 − x34 − x37 − x38 − x19

y8(t; ~θ) = k2E61 − 4kE61(PTc− 2(x33 + x35)− x40 − x32 − x34 − x37 − x38 − x19
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B.2 First-order light reaction equations from [28]

p1(t; ~θ) = k(HC)Lx42 − kL(HC)x52

p2(t; ~θ) = k(HC)Lx43 − kL(HC)x53

p3(t; ~θ) = k(HC)Lx44 − kL(HC)x48

p4(t; ~θ) = k(HC)Lx45 − kL(HC)x49

p5(t; ~θ) = kbctx42x54 − kfctx44x55

p6(t; ~θ) = kbctx46x54 − kfctx42x55

p7(t; ~θ) = kbctx43x54 − kfctx45x55

p8(t; ~θ) = kbctx47x54 − kfctx43x55

p9(t; ~θ) = kbctx52x54 − kfctx48x55

p10(t; ~θ) = kbctx49x54 − kfctx51x55

p11(t; ~θ) = kbctx53x54 − kfctx49x55

p12(t; ~θ) = kfxx78x54 − kbxx77x55

p13(t; ~θ) = kfxx76x54 − kbxx75x55

p14(t; ~θ) = kfFdx57x54 − kbFdx56x55

p15(t; ~θ) = kfFdx58x54 − kbFdx57x55

p16(t; ~θ) = kax59

p17(t; ~θ) = kfFNRx58x12 − kbFNRx56x10

p18(t; ~θ) = kb2ctx48x54 − kf2ct x50x55

p19(t; ~θ) = kbFx42x79 − kfFx43x80

p20(t; ~θ) = kbFx44x79 − kfFx45x80

p21(t; ~θ) = kbFx46x79 − kfFx47x80

p22(t; ~θ) = kbFx48x79 − kfFx49x80

p23(t; ~θ) = kbFx50x79 − kfFx51x80

p24(t; ~θ) = kbFx52x79 − kfFx53x80

p25(t; ~θ) = kbLFx43x81 − kfLFx48x82

p26(t; ~θ) = kbLFx45x81 − kfLFx50x82

p27(t; ~θ) = kbLFx47x81 − kfLFx52x82

p28(t; ~θ) = kf(HC)x46x81 − kb(HC)x44x82

p29(t; ~θ) = kf(HC)x47x81 − kb(HC)x45x82

p30(t; ~θ) = kf(HC)x52x81 − kb(HC)x50x82

p31(t; ~θ) = kf(HC)x53x81 − kb(HC)x51x82

p32(t; ~θ) = k01x60x83

p33(t; ~θ) = k01x61x83

p34(t; ~θ) = k01x62x83

p35(t; ~θ) = k01x63x83

p36(t; ~θ) = k01x64x83

p37(t; ~θ) = k01x65x83

p38(t; ~θ) = k01x66x83

p39(t; ~θ) = k12x60x84

p40(t; ~θ) = k12x61x84

p41(t; ~θ) = k12x62x84

p42(t; ~θ) = k12x63x84

p43(t; ~θ) = k12x64x84

p44(t; ~θ) = k12x65x84

p45(t; ~θ) = k12x66x84

p46(t; ~θ) = k23x60x85

p47(t; ~θ) = k23x61x85

p48(t; ~θ) = k23x62x85

p49(t; ~θ) = k23x63x85

p50(t; ~θ) = k23x64x85

p51(t; ~θ) = k23x65x85

p52(t; ~θ) = k23x66x85

p53(t; ~θ) = k34x60x85

p54(t; ~θ) = k34x61x86

p55(t; ~θ) = k34x62x86

p56(t; ~θ) = k34x63x86

p57(t; ~θ) = k34x64x86

p58(t; ~θ) = k34x65x86

p59(t; ~θ) = k34x66x86

p60(t; ~θ) = k40x87w(t)
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p61(t; ~θ) = kL1r(t)x77

p62(t; ~θ) = kL2r(t)x72

p63(t; ~θ) = kL2r(t)x73

p64(t; ~θ) = kL2r(t)x74

p65(t; ~θ) = kAB1x61 − kBA1x65

p66(t; ~θ) = kAB1x68 − kBA1x73

p67(t; ~θ) = kAB2x62 − kBA2x66

p68(t; ~θ) = kAB2x69 − kBA2x74

p69(t; ~θ) = kfBx63x81 − kbBx61x82

p70(t; ~θ) = kfBx70x81 − kbBx68x82

p71(t; ~θ) = kfBx66x81 − kbBx64x82

p72(t; ~θ) = kfBx74x81 − kbBx72x82

p73(t; ~θ) = kfRx75x79 − kbRx77x80

p74(t; ~θ) = kfRx76x79 − kbRx78x80
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B.3 Comprehensive model state variable differential equations

ẋ1 = v10 − v1 − v25

ẋ2 = 2v1 − v2 − v14 + v27 + v25

ẋ3 = v2 − v3

ẋ4 = v3 − 2v4 − v6 − v7 − v9 − v13 − v15

ẋ5 = v4 − v5

ẋ6 = v6 − v7

ẋ7 = v8 − v9

ẋ8 = v11 − v2 − v12 − v10 − v27

ẋ9 = v7 − v8

ẋ10 = −v3 + p17

ẋ11 = v2 + v10 − v11 + v12 + v27

ẋ12 = v3 − p17

ẋ13 = v5 − v6 − v12

ẋ14 = v6 + 2v9 − v10

ẋ15 = 0

ẋ16 = v30 − v35 + v36

ẋ17 = −v30 + v35 − v36

ẋ18 = v22 + v23 + VAPSv24

ẋ19 = −v22 − v23 − VAPSv24

ẋ20 = 0

ẋ21 = 0

ẋ22 = 0

ẋ23 = v32 − v27

ẋ24 = v26 − v33

ẋ25 = v25 − v26

ẋ26 = v33 − v28

ẋ27 = v28 − v29 − v31

ẋ28 = v35 − v29

ẋ29 = v29 + v31 − 2v35

ẋ30 = v29 − v30

ẋ31 = v30 − v32

ẋ32 = v13 − 2v16 + v15

ẋ33 = v16 − v17

ẋ34 = v17 − v18 − v22 + v21 − v19

ẋ35 = v22 − v21

ẋ36 = v18 − v19

ẋ37 = v23 − v18

ẋ38 = v19 − v20

ẋ39 = v20 − v24

ẋ40 = −v34 + v14

ẋ41 = v1 − v35

ẋ42 = −p1 − p5 + p6 − p19

ẋ43 = −p25 − p2 − p7 + p8 + p19

ẋ44 = −p3 + p5 + p28 − p20

ẋ45 = −p26 − p4 + p7 + p29 + p20

ẋ46 = −p6 − p28 − p21

ẋ47 = −p27 − p8 − p29 + p21

ẋ48 = p25 + p3 − p18 + p9 − p22

ẋ49 = p4 − p10 + p11 + p22

ẋ50 = p26 + p18 + p30 − p23

ẋ51 = p10 + p31 + p23

ẋ52 = p27 + p1 − p9 − p30 − p24

ẋ53 = p2 − p11 − p31 + p24

ẋ54 = −p18 − p5 − p10 − p7 − p9 − p6 − p11

−p8 − p12 − p13 − p14 − p15

ẋ55 = p18 + p5 + p10 + p7 + p9 + p6 + p11

+p8 + p12 + p13 + p14 + p15

ẋ56 = p16 + p14 + p17

ẋ57 = −p14 + p15

ẋ58 = −p15 − p17

ẋ59 = −p16
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ẋ60 = −p39 − (p32 + p46 + p53)

ẋ61 = p62 − (p33 + p40 + p47 + p54)− p65 + p69

ẋ62 = p63 − (p34 + p41 + p48 + p55)− p67

ẋ63 = p64 − (p35 + p42 + p49 + p56)− p69

ẋ64 = −(p36 + p43 + p50 + p57) + p71

ẋ65 = −(p37 + p44 + p51 + p58) + p65

ẋ66 = −(p38 + p45 + p52 + p59)− p71 + p67

ẋ67 = p32 + p46 + p53

ẋ68 = (p33 + p40 + p47 + p54)− p66 + p70

ẋ69 = (p34 + p41 + p48 + p55)− p68

ẋ70 = (p35 + p42 + p49 + p56)− p70

ẋ71 = p39

ẋ72 = −p62 + (p36 + p43 + p50 + p57) + p72

ẋ73 = −p63 + (p37 + p44 + p51 + p58) + p66

ẋ74 = −p64 + (p38 + p45 + p52 + p59) + p68 − p72

ẋ75 = p13 − p73

ẋ76 = p61 − p13 − p74

ẋ77 = −p61 + p12 + p73

ẋ78 = −p12 + p74

ẋ79 = −p23 − p20 − p22 − p19 − p24 − p21 − p73 − p74

ẋ80 = p23 + p20 + p22 + p19 + p24 + p21 + p73 + p74

ẋ81 = −p71 − p72 − p69 − p70 − p26 − p25 − p27

−p30 − p28 − p31 − p29

ẋ82 = p71 + p72 + p69 + p70 + p26 + p25 + p27

+p30 + p28 + p31 + p29

ẋ83 = −p36 − p32 − p33 − p37 − p34 − p38 − p35 + p60

ẋ84 = p36 − p43 + p32 − p40 + p33 − p39 + p37

−p44 + p34 − p41 + p38 − p45 + p35 − p42

ẋ85 = p43 − p50 + p40 − p47 + p39 + p44 − p51

−p46 + p41 − p48 − p53 + p45 − p52 + p42 − p49

ẋ86 = p50 − p57 + p47 − p54 + p51 − p58 + p46

+p48 − p55 + p52 − p59 + p49 − p56

ẋ87 = p56 + p53 + p57 + p54 + p58 + p55 + p59 − p60

ẋ88 = 0.001 (16p60 − kHPRv40)

ẋ89 = 0.001 (kHPRv40 − 4p17 − v3)

ẋ90 = rG/Aoptx90 (1− x90/kG)

ẋ91 = rSx91 (1− x91/kG)

ẋ92 = ẋ90ẋ41 − ẋ91
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B.4 Compact model state variable differential equations

ẋ1 = v10 − v1 − v25

ẋ2 = 2v1 − v2 − v14 + v27 + v25

ẋ3 = v2 − v3

ẋ4 = v3 − 2v4 − v6 − v7 − v9 − v13 − v15

ẋ5 = v4 − v5

ẋ6 = v6 − v7

ẋ7 = v8 − v9

ẋ8 = v11 − v2 − v12 − v10 − v27

ẋ9 = v7 − v8

ẋ10 = v40 − v3 − v36

ẋ11 = v2 + v10 − v11 + v12 + v27

ẋ12 = v3 + v36 − v40

ẋ13 = v5 − v6 − v12

ẋ14 = v6 + 2v9 − v10

ẋ15 = 0

ẋ16 = v30 − v35 + v36

ẋ17 = −v30 + v35 − v36

ẋ18 = v22 + v23 − v41

ẋ19 = −v22 − v23 + v41

ẋ20 = 0

ẋ21 = 0

ẋ22 = 0

ẋ23 = v32 − v27

ẋ24 = v26 − v33

ẋ25 = v25 − v26

ẋ26 = v33 − v28

ẋ27 = v28 − v29 − v31

ẋ28 = v35 − v29

ẋ29 = v29 + v31 − 2v35

ẋ30 = v29 − v30

ẋ31 = v30 − v32

ẋ32 = v13 − 2v16 + v15

ẋ33 = v16 − v17

ẋ34 = v17 − v18 − v22 + v21 − v19

ẋ35 = v22 − v21

ẋ36 = v18 − v19

ẋ37 = v23 − v18

ẋ38 = v19 − v20

ẋ39 = v20 − v24

ẋ40 = −v34 + v14

ẋ41 = −2v37 + v38

ẋ42 = 2v37 − v38

ẋ43 = −2v38 + v39

ẋ44 = 2v38 − v39

ẋ45 = 0.01(6v38− .75kHPRv11)

ẋ46 = 0.01(−3v38 − v40 + kHPRv11 − v3)

ẋ47 = −v39 + 2v40

ẋ48 = v39 − 2v40

ẋ49 = 0.001(v1 − v35)

ẋ50 = rG/Aoptx50 (1− x50/kG)

ẋ51 = rSx51 (1− x51/kS)

ẋ52 = ẋ50ẋ49 − ẋ51
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