
ABSTRACT

COSTOLANSKI, ANNE STEFANIE. Numerical Simulation of Resonant Tunneling Devices
Described by the Wigner-Poisson Equations. (Under the direction of Carl T. Kelley.)

Double barrier resonant tunneling diodes (RTDs) have been studied in detail for over 30

years due to the interesting physical characteristics they display as well as their potential to

be used in high-speed electronic devices. One of the main models that properly takes quantum

tunneling effects into account in simulating RTD behavior is the Wigner-Poisson formulation.

While several previous versions of the Wigner-Poisson model have been implemented, this

dissertation describes a more efficient parallel version that scales well, produces solutions with

a higher degree of numerical accuracy, and decreases simulation run times significantly.

The new model is written in C++ to more easily incorporate Sandia National Laboratories’

Trilinos software, which provides flexible parallel data structures and numerous highly efficient

solvers. Other numerical methods used to improve upon previous results include the use of non-

uniform grids, higher order numerical methods, and the inclusion of analytic solutions where

possible.

Current-voltage (I-V) curves for the steady-state version of the Wigner equation were com-

pared to previous results to ensure the accuracy of the model and to measure performance

improvement. Various convergence properties of the I-V curves and the Wigner function were

analyzed, and a new study of time-dependent Wigner simulations was performed using fine

grids to analyze the existence of current oscillations. Improvements to the Wigner model were

evaluated using strong and weak scaling studies on both the steady state and time dependent

versions of the model.
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Chapter 1

Introduction to Resonant Tunneling

Diodes

1.1 Background

Over the past few decades, electronic devices have become smaller, and the functional demands

placed on them greater. The need for efficient micro and nanoscale components to power these

devices is immediate, and a variety of research on simulating these ultra-small devices has been

undertaken. One such nanoscale device that has the potential to be used as a power source for

devices on the micro and nanoscales is the resonant tunneling diode (RTD).

1.2 Resonant Tunneling Diodes

Resonant tunneling diodes (RTDs) are nanoscale semiconductor devices which were first pro-

posed by Tsu and Esaki in 1973 [3]. They predicted a phenomenon known as negative differential

resistance (NDR), in which the current through a tunneling barrier reaches a local maximum

when the injected carriers achieve certain resonant energies. In 1974, Chang et al. fabricated the

first RTD device that demonstrated evidence of negative differential resistance [4]. A decade

1



later, in 1983, Sollner et al. improved upon previously achieved results [5], and research on

RTDs increased.

Numerous studies have been performed using a standard two barrier RTD, and thus the gen-

eral features of the current-voltage (I-V) curves generated by these RTDs have been well known

for some time. Two of the key features that make them stand out from other semi-conductor de-

vices are their high speed operation and their ability to produce negative differential resistance

[6].

Because tunneling is a very fast phenomenon, the RTD is among the fastest devices ever

made. It can be shown by theoretical analysis that the time taken to switch from its current

peak to valley, or visa versa, can be less than 1 ps. It has been demonstrated that as a mixer

it can detect radiation up to 2.5 THz, and as an oscillator it can generate 700 GHz signals,

with maximum operational oscillation frequency projected to be over 1 THz [7]. Their practical

demonstration as a THz regime power source [8] motivated a great deal of research during the

last two decades by a variety of authors [9, 10, 11, 12, 13, 14, 15, 16, 17].

Due to the multiple current peaks produced by an RTD, they can be used to build ef-

ficient devices that can perform more complex functions with a single device. The RTD has

recently been explored for use as a replacement to conventional devices, such as analog-to-digital

converters [18, 19], multi-valued memories [20], and flip-flops [21]. The RTD also serves as a

building block for other three-terminal devices, such as the resonant-tunneling bipolar transis-

tor and the resonant-tunneling hot-electron transistor, and has been incorporated in structures

to study hot-electron spectroscopy [7]. The most significant problem RTDs face is that they

are two-terminal devices, and thus good isolation between the input and output is difficult

to achieve [6]. When RTDs are integrated with other three-terminal devices, isolation can be

achieved, but speed is reduced. In order to eliminate this flaw in three-terminal devices, optical

signals would have to be used to control the device, and thus far no device with this capability

has yet been designed [6].
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1.3 Applications

In addition to being useful for predicting RTD behavior and studying the instability processes

within RTDs, this model has immediate relevance to other types of high frequency devices, such

as RTD relaxation oscillators [22, 23, 24]. This same basic technique is already being developed

for application to the study of spin-dependent transport in magnetic semiconductor systems

[25, 26]. Furthermore, since RTDs are now used prolifically throughout nearly all electronic

application areas, this simulation tool will be useful towards the study of: RTD-enhanced sensor

devices [27]; RTD-based integrated data-processing logic circuits [28]; and Hybrid-RTD optical

telecommunications technology [29].

1.4 Physical Description

Resonant tunneling diodes are generally composed of two different semiconductor materials, one

with a large energy band gap and one with a smaller energy band gap, that are incorporated

into the device so that resonant tunneling is achieved. Most RTDs that have been studied have

a two-barrier structure that is composed in the following fashion:

• At each end of the device, a large region of a narrow energy band gap material which is

infused with dopants

• Next to the dopant regions, a thin layer of the same narrow energy band gap material

which is not doped (aka spacer regions)

• In the interior of the device, thin layers (aka barriers) of a larger energy band gap material,

separated from each other by thin layers of the undoped narrow energy band gap material

(the regions between barriers are called wells)

See figure 1.1 for an example layout for a two barrier RTD.
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Figure 1.1: Sample material parameters and device structure for a two barrier resonant tun-
neling diode.

In order to facilitate current flow, the doped regions on either end of the device are generally

large in size in comparison to the barrier, spacer, and well regions. In a typical RTD, the

quantum well thickness might be around 50Å, and the barrier layers can range from 15 to 50Å

[7, 30]. The spacer regions, which are generally small and on the scale of the size of the barriers,

ensure that dopants do not diffuse to the barrier layers. Bias is then applied across the device

to induce current flow.

1.5 Negative Differential Resistance

The physics behind the behavior of a double barrier RTD is similar to that for a standard

quantum well, where quantized energy states exist inside the area of the quantum well, but

energies in the emitter and collector regions have a more continuous profile (as long as the

energy is above the conduction band minimum). As an external voltage V is applied across

the device, the effect is to lower the energy requirement to electron flow. Thus the right hand
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side (collector region) of the energy band diagram shifts downward to indicate the reduction in

minimum required energy. This is shown in figure 1.5, which depicts the energy band diagrams

at four different voltage levels [6].

EF

EE

Figure 1.2: Energy band profiles of a double barrier resonant tunneling diode at different bias
states: figure (a) is at zero bias, (b) threshold bias, (c) resonance, and (d) off-resonance. ELF and
ERF represent the Fermi energies at the left and right (emitter and collector) ends of the device,
and ELC and ERC represent the bottom of the conduction band in the left and right regions.
From [6].

When no voltage is applied across the device, the energy band diagram looks like that

shown in figure 1.5(a), with the first bound energy state in the quantum well area (labeled E0

in the figures) above the conduction and Fermi energies. Since an electron must have an energy

equivalent to E0 in order to move into the quantum region and most energies are below that
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level (between ELC and ELF in the diagram), there is minimal current flow.

However, once voltage is applied to the device, the first bound energy state in the quantum

well is decreased due to the decrease in the minimum conduction band energy on the right

(collector) side of the device, which allows current to begin to flow. Figure 1.5(b) depicts the

energy band diagram when the bound state energy lines up with the Fermi energy on the emitter

side of the device, which indicates the threshold of when current begins to flow more easily.

Figure 1.5(c) shows the energy band diagram at resonance, which is when the maximum current

is allowed to flow because the bound state energy E0 is mid-way between the conduction band

edge ELC and the Fermi level on the emitter side ELF . However, if too much voltage is applied

across the device and the bound state energy no longer falls between the conduction band edge

and the Fermi level, electron flow is impeded and the current drops dramatically. This is the

case in figure 1.5(d).

The rapid drop in current which results from the transition from the energy state of figure (c)

to that for figure (d) is called negative differential resistance. The current-voltage relationship

is depicted in figure 1.3 [30].

1.6 Fabrication

Because RTDs are built of thin semiconductor layers with widths on the order of angstroms

(Å), fabricating these devices is more difficult than standard macroscopic devices. In addition,

because the principles of quantum mechanics dominate the physics at the nanoscale, measuring

certain device characteristics is difficult and can change the resulting output. Thus, modeling

these devices helps to more accurately predict device performance.

However, due to the complexity of the equations that describe electron interaction at the

nanoscale, simulation models use approximations to predict the behavior of the device, as well

as idealized material parameters in their calculations. Thus, when fabricating devices, high-
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r (b)
JP -A

Figure 1.3: Example of negative differential resistance. Point (a) in the figure indicates a
position near the beginning of electron flow; point (b) is at resonance; and point (c) shows
a position in the area of negative differential resistance. JP and VP indicate the current and
voltage, respectively, at maximum current flow (resonance); and JV indicates the minimum
current flow. From [30].

purity elemental sources should be used, or a large percentage of impurities may result in the

material that can alter device performance enough to render the model useless.

Therefore, the parameters used in the model must reflect the use of materials that can

closely replicate the device’s predicted performance. For molecular sources that are group III

semiconductors, Gallium (Ga) is one of the main materials used in fabricating RTDs due to the

availability of 99.999999% (8N) pure Ga. Other materials, such as Indium (In) can also be used,

although the available purity level is somewhat less at 99.99999% (7N). For the complimentary

group V source, 7N arsenic (As) and 7N antimony (Sb) are available, although Sb can condense

under certain conditions, which complicates crystal growth [31]. Due to its predominance in

RTD fabrication, GaAs is the assumed semiconductor material used in this work.

Another potential fabrication problem lies with the doping levels of the contact regions. n-

type doping can be achieved using extremely high-purity silicon; p-type doping is more difficult

due to the lack of high-purity materials [31]. Thus most RTDs (including those modeled in this

7



work) have n-type doping in their structure.
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Chapter 2

Modeling of Resonant Tunneling

Diodes

2.1 Approaches to modeling an RTD

Since the behavior of an RTD is governed by quantum mechanics rather than classical physics,

the standard drift-diffusion model [32] cannot be applied in calculating the current in the device.

Several different methods have been proposed for modeling an RTD, which involve solving either

the Schrödinger or Wigner equation at the quantum level, or adding quantum correction terms

to classical macroscopic models. Several of the latter type have been proposed: the Density-

Gradient (DG) model [33, 34], which uses the drift-diffusion model corrected with the Bohm

potential; the Schrödinger-Poisson Drift-Diffusion model (SPDD) [35, 36], which takes into

account the discrete spectrum of energy states for the electrons inside the expression of the

density; and an entropic Quantum Drift Diffusion Model (eQDD), which was derived from a

moment closure approach and extended to the context of quantum mechanics [37].

However, the standard approach that incorporates quantum effects throughout the deriva-

tion is the Wigner-Poisson model. The Wigner equation was first used by Frensley to model a
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resonant tunneling diode in 1987 [8]. Since then, others have improved on the model by incor-

porating the Poisson equation and solving the system of equations self-consistently [38], and

this model has been the foundation of much recent work [14, 12, 11, 15, 16, 17, 39, 13, 40, 2,

41, 42, 10, 43].

The Wigner function can be derived from the equation of motion of the nonequilibrium

Green’s function, as shown by Buot and Jensen [9]. To begin the derivation of Wigner’s equation,

we will start by introducing basic quantum mechanical principles that are necessary for the

derivation.

2.2 Basic Quantum Mechanics

Assume a particle is in position x(t) where t represents time. Quantum mechanics has five

postulates (from [44, 45, 46]) that describe the behavior of the particle:

1. The state of a physical system is represented by a wavefunction ψ(x(t)) belonging to a

complex Hilbert spaceH. The wavefunction ψ and its first derivative are finite, continuous,

and single valued.

2. Every observable physical quantity A is represented by a linear Hermitian operator A

acting in H. The operators in coordinate representation are:

• Position X =⇒ x

• Momentum P =⇒ −i~ ∂
∂x

• Energy E =⇒ i~ ∂
∂t

where h is Planck’s constant and ~ = h
2π .

3. Let {a1, a2, ... an} be the eigenvalues of the operator A corresponding to the eigenfunctions

{ψ1, ψ2, ... ψn}. Then measurement of a physical quantity A will result in a real eigenvalue
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ai corresponding to the operator A. The expected value of the operator A when the system

is in state ψ is:

〈A〉 =

∫ ∞
−∞

ψ∗Aψdx (2.1)

where ψ is a linear combination of the eigenfunctions of A, and ψ∗ represents the complex

conjugate of the wavefunction ψ.

4. When the physical quantity A is measured, the probability dP(α) of finding a result

between α and α+ dα

dP(α) = |ψ(α)|2dα (2.2)

and the wave function is normalized to 1 such that

∫ ∞
−∞
|ψ(x)|2dx = 1. (2.3)

5. Time evolution of the system is governed by the Schrödinger equation:

i~
dψ

dt
= Hψ (2.4)

with

H = − ~2

2m∗
d2

dx2
+ U(x) (2.5)

where m∗ is the effective electron mass, h = Planck’s constant, ~ = h
2π , and U(x) is the

potential energy function.

The above are postulates for a single electron system, and are the foundation of quantum

mechanical theory. However, to model a system involving a large number of particles (such as

for a nanoscale device), changes must be made to the equations in order to capture the full

dynamics of the system. Thus we will use the density matrix formulation, which describes the

statistical state of a quantum system and uses the solutions to equation 2.4 as a basis to describe
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the state of the system.

2.3 Density Matrix Formulation

Let ψ(x) be an ensemble of wavefunctions ψj(x) that are solutions to the one particle Schrödinger

equation. Given a quantum mechanical system in thermal equilibrium, the density matrix ρ can

be expressed as [6]:

ρ(x, x′, t) =
∑
k

ψk(x)ψ∗k(x
′)f(k) (2.6)

where x, x′ are two positions in coordinate space and f(k) is the Fermi-Dirac distribution

function, which gives the probability that an electron will be in a given state. We are interested

in how the system evolves over time, so the time derivative of the density operator is

∂ρ(x, x′, t)

∂t
=

∂

∂t

{∑
k

ψk(x)ψ∗k(x
′)f(k)

}
(2.7)

=
∑
k

f(k)
∂

∂t

{
ψk(x)ψ∗k(x

′)
}

(2.8)

since we are at thermal equilibrium (i.e., no time dependence for the Fermi-Dirac function).

Using equations (2.4) and (2.5), we have
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∂

∂t

{
ψk(x)ψ∗k(x

′)
}

=
∂ψk(x)

∂t
ψ∗k(x

′) + ψk(x)
∂ψ∗k(x

′)

∂t
(2.9)

=
1

i~
Hψk(x)ψ∗k(x

′) + ψk(x)
1

−i~
Hψ∗k(x

′) (2.10)

=
1

i~

{[
−~2

2m∗
∂2ψk(x)

∂x2
+ U(x)ψk(x)

]
ψ∗k(x

′) +

−ψk(x)

[
−~2

2m∗
∂2ψ∗k(x

′)

∂x′2
+ U(x′)ψ∗k(x

′)

]}
(2.11)

=
i~

2m∗

[
∂2ψk(x)

∂x2
ψ∗k(x

′)− ψk(x)
∂2ψ∗k(x

′)

∂x′2

]
+

+
i

~
[
U(x′)− U(x)

]
ψk(x)ψ∗k(x

′) (2.12)

=

{
i~

2m∗

[
∂2

∂x2
− ∂2

∂x′2

]
+
i

~
[
U(x′)− U(x)

]}
ψk(x)ψ∗k(x

′) (2.13)

so that

∂ρ(x, x′, t)

∂t
=

{
i~

2m∗

[
∂2

∂x2
− ∂2

∂x′2

]
+
i

~
[
U(x′)− U(x)

]}
ρ(x, x′, t) (2.14)

2.4 The Wigner Distribution Function

The Wigner distribution function f represents the distribution of electrons in the device, and

can be obtained from the density matrix [8] by a change of coordinates from (x, x′) to (y, z)

with

y =
1

2
(x+ x′) and z = x− x′ (2.15)

=⇒ x = y +
1

2
z and x′ = y − 1

2
z (2.16)

where y represents the classical position variable, and the classical momentum variable is the

Fourier transform of z. So

f(y, k, t) =

∫ ∞
−∞

e−ikzρ(y +
1

2
z, y − 1

2
z, t)dz (2.17)
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To determine the time evolution of the Wigner function, we have

∂f(y, k, t)

∂t
=

∂

∂t

{∫ ∞
−∞

e−ikzρ(y +
1

2
z, y − 1

2
z, t)dz

}
(2.18)

=

∫ ∞
−∞

e−ikz
∂ρ(y + 1

2z, y −
1
2z, t)

∂t
dz (2.19)

To complete the change of coordinates for equation (2.14), we use

∂

∂x
=

∂y

∂x

∂

∂y
+
∂z

∂x

∂

∂z
=

1

2

∂

∂y
+

∂

∂z
(2.20)

∂

∂x′
=

∂y

∂x′
∂

∂y
+
∂z

∂x′
∂

∂z
=

1

2

∂

∂y
− ∂

∂z
(2.21)

to rewrite the spatial derivatives:

∂2

∂x2
− ∂2

∂x′2
=

(
∂

∂x
− ∂

∂x′

)(
∂

∂x
+

∂

∂x′

)
=

(
2
∂

∂y

)(
∂

∂z

)
= 2

∂2

∂y∂z
. (2.22)

Thus equation (2.19) becomes

∂f(y, k, t)

∂t
=

∫ ∞
−∞

e−ikz
{

i~
2m∗

[
2
∂2

∂y∂z

]
+
i

~

[
U(y − 1

2
z)− U(y +

1

2
z)

]}
(2.23)

× ρ(y +
1

2
z, y − 1

2
z, t)dz (2.24)

= F1(y, z, t) + F2(y, z, t) (2.25)

where

F1(y, z, t) =
i~
m∗

∫ ∞
−∞

e−ikz
∂2ρ(y + 1

2z, y −
1
2z, t)

∂y∂z
dz (2.26)

F2(y, z, t) =
i

~

∫ ∞
−∞

e−ikz
[
U(y − 1

2
z)− U(y +

1

2
z)

]
ρ(y +

1

2
z, y − 1

2
z, t)dz. (2.27)
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First, consider the F1 term:

F1(y, z, t) =
i~
m∗

∂

∂y

{∫ ∞
−∞

e−ikz
∂ρ(y + 1

2z, y −
1
2z, t)

∂z
dz

}
(2.28)

and

e−ikz
∂ρ(y + 1

2z, y −
1
2z, t)

∂z
=

∂

∂z

{
e−ikzρ(y +

1

2
z, y − 1

2
z, t)

}
+ ike−ikzρ(y +

1

2
z, y − 1

2
z, t)

(2.29)

so

F1(y, z, t) =
i~
m∗

∂

∂y

{∫ ∞
−∞

∂

∂z

[
e−ikzρ(y +

1

2
z, y − 1

2
z, t)

]
dz + (2.30)

+

∫ ∞
−∞

ike−ikzρ(y +
1

2
z, y − 1

2
z, t)dz

}
(2.31)

=
i~
m∗

∂

∂y

{∫ ∞
−∞

∂

∂z

[
e−ikzρ(y +

1

2
z, y − 1

2
z, t)

]
dz + ikf(y, k, t)

}
(2.32)

by equation (2.17). Then

∫ ∞
−∞

∂

∂z

[
e−ikzρ(y +

1

2
z, y − 1

2
z, t)

]
dz = lim

z→∞
e−ikzρ(y +

1

2
z, y − 1

2
z, t) (2.33)

− lim
z→−∞

e−ikzρ(y +
1

2
z, y − 1

2
z, t) (2.34)

Since

lim
x→±∞

ψ(x)→ 0, lim
z→±∞

e−ikzρ(y +
1

2
z, y − 1

2
z, t) = 0 (2.35)

=⇒
∫ ∞
−∞

∂

∂z

[
e−ikzρ(y +

1

2
z, y − 1

2
z, t)

]
dz = 0 (2.36)

and thus

F1(y, z, t) = − ~k
m∗

∂f(y, k, t)

∂y
(2.37)
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Next, consider the F2 term. The inverse Fourier transform of equation (2.17) is

ρ(y +
1

2
z, y − 1

2
z, t) =

1

2π

∫ ∞
−∞

eikzf(y, k, t)dk (2.38)

so

F2(y, z, t) =
i

~

∫ ∞
−∞

e−ikz
[
U(y − 1

2
z)− U(y +

1

2
z)

]
1

2π

∫ ∞
−∞

eik
′zf(y, k′, t)dk′dz (2.39)

=
i

h

∫ ∞
−∞

f(y, k′, t)dk′
∫ ∞
−∞

e−i(k−k
′)z

[
U(y − 1

2
z)− U(y +

1

2
z)

]
dz (2.40)

Notice that for the integral over z, we can break it into two integrals, one for (−∞, 0) and the

other for [0,∞). For the first integral, we can change the limits of integration to

∫ 0

−∞
e−i(k−k

′)z

[
U(y − 1

2
z)− U(y +

1

2
z)

]
dz =

∫ ∞
0

ei(k−k
′)z

[
U(y +

1

2
z)− U(y − 1

2
z)

]
dz

(2.41)

so then for the full integral, we have

∫ ∞
−∞

e−i(k−k
′)z

[
U(y − 1

2
z)− U(y +

1

2
z)

]
dz (2.42)

=

∫ ∞
0

[
ei(k−k

′)z − e−i(k−k′)z
] [
U(y +

1

2
z)− U(y − 1

2
z)

]
dz (2.43)

=

∫ ∞
0

2i sin
[(
k − k′

)
z
] [
U(y +

1

2
z)− U(y − 1

2
z)

]
dz (2.44)

Therefore

F2(y, k, t) =
i

h

∫ ∞
−∞

f(y, k′, t)dk′
∫ ∞

0
2i sin(z(k − k′))

[
U(y +

1

2
z)− U(y − 1

2
z)

]
dz (2.45)

= −2

h

∫ ∞
−∞

f(y, k′, t)dk′
∫ ∞

0
sin(z(k − k′))

[
U(y +

1

2
z)− U(y − 1

2
z)

]
dz (2.46)

= −4

h

∫ ∞
−∞

f(y, k′, t)dk′
∫ ∞

0
sin(2z(k − k′)) [U(y + z)− U(y − z)] dz (2.47)
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So the completed derivation of the Wigner distribution function is

∂f(y, k, t)

∂t
= − ~k

m∗
∂f(y, k, t)

∂y
− 4

h

∫ ∞
−∞

f(y, k′, t)dk′
∫ ∞

0
sin(2z(k−k′)) [U(y − z)− U(y + z)] dz.

(2.48)

However, interactions between electrons in the device are not taken into account as part

of the derivation, so an additional term needs to be incorporated into the Wigner equation to

properly account for these interactions. This can be done using the relaxation time approxima-

tion, so that a time derivative term ∂f
∂t |coll is included on the right hand side specifically for

collision processes.

2.5 The Wigner-Poisson Equations

Thus, the Wigner equation is written as

∂f(y, k, t)

∂t
= K(f) + P (f) + S(f) (2.49)

where K(f) represents the effects due to kinetic energy on the distribution function f , P (f) rep-

resents the potential energy contribution to the system, and S(f) the electron-phonon collision

effects. The kinetic energy term is given by

K(f) = − hk

2πm∗
∂f

∂y
. (2.50)

where h is Planck’s constant and m∗ is the electron effective mass. The potential energy term

is defined as

P (f) = −4

h

∫ ∞
−∞

f(y, k′, t)T (y, k − k′)dk′ (2.51)

with

T (y, k − k′) =

∫ Lc
2

0
[U(y + z)− U(y − z)] sin(2z(k − k′))dz (2.52)
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where U(y) is the potential energy function and Lc is the correlation length of the integral.

The correlation length represents the maximum distance that one electron can feel the effects

of another electron, and satisfies Lc ≤ L. U(y) can be written as

U(y) = ∆c(y) + up(y) (2.53)

where ∆c(y) represents the energy band function defined by the barriers and wells within

the device and up(y) represents the electrostatic potential found by the solution to Poisson’s

equation,

d2up(y)

dy2
=
q2

ε
[Nd(y)− n(y)] . (2.54)

Here q is the charge on a electron, ε is the dielectric permittivity, and Nd(y) is the concentration

of ionized dopants. The electron density function, n(y), is defined as

n(y) =
1

2π

∫ ∞
−∞

f(y, k)dk. (2.55)

The boundary conditions for Poisson’s equation are

up(0) = V0, up(L) = VL (2.56)

where V0 is the initial voltage at the left side of the device, and VL is the amount of bias applied

across the device. Traditionally V0 = 0 and VL = −V with V ≥ 0.

The third term in the Wigner equation, the scattering term S(f), accounts for electron

collision interactions in the device. Detailed scattering treatments create a heavy computational

burden [47], so the lowest-order relaxation-time approximation is used in the model [11]. Thus

the scattering term is defined as:

S(f) =
1

τ

[ ∫∞
−∞ f(y, k, t)dk∫∞
−∞ f0(y, k, t)dk

· f0(y, k)− f(y, k, t)

]
(2.57)
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where τ is the relaxation time of an electron in the device. f0(y, k) is the equilibrium Wigner

distribution function, which is the solution to equation (2.49) with S(f) = 0 and no change in

the bias voltage applied across the device; i.e., VL = V0.

Since the device to be modeled is of finite length, boundary conditions are imposed on

the Wigner function. The boundary conditions represent the distribution of electrons emitted

into the device from the reservoirs to which the device is attached [8]. Electrons can enter

either from the left (at y = 0) with positive momentum, or from the right (at y = L) with

negative momentum. The reservoirs are assumed to be at thermal equilibrium, so the electron

distribution function is characterized by the thermal equilibrium distribution function of each

reservoir [8]. Thus the boundary condition at y = 0 and k > 0 is:

f(0, k) =
4πm∗kBT

h2
ln

{
1 + exp

[
− 1

kBT

(
h2k2

8π2m∗ − µ0

)]}
(2.58)

and for y = L and k < 0:

f(L, k) =
4πm∗kBT

h2
ln

{
1 + exp

[
− 1

kBT

(
h2k2

8π2m∗ − µL
)]}

(2.59)

where kB is Boltzmann’s constant, T is the temperature, and µ0 and µL are the chemical

potential of the reservoirs at the corresponding ends of the device.

Finally, the current density in the device can be written as

j(x, t) =
h

2πm∗

∫ ∞
−∞

kf(x, k, t)dk. (2.60)

2.6 Previous work with Wigner-Poisson

Previous work with the Wigner-Poisson model has been completed by a variety of authors[9,

8, 10, 11, 12, 13, 14, 15, 16, 17, 43]. However, with the exception of one version [43], the

previous implementations have been limited by either (1) a coarse rendering of the domain
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space by the chosen discretization in an effort to keep computation time to a minimum, which

in turn decreases the accuracy of the solution, or (2) a fine grid discretization that places

many grid points in the boundary regions where there is a negligible impact on the solution,

which vastly increases computation time. These codes were written in FORTRAN, and the

software utilized discretizations that did not allow much variety in the types of devices that

were modeled, so modifications to the code were difficult. Upgrades to the FORTRAN versions

included incorporating the LOCA [48] software from Sandia National Labs so that parallel

computation could be used to decrease run times. However, while the upgrade allowed the use

of finer meshes to refine the accuracy of the solution, it did not increase the ability to model

longer and more complex device configurations.

In addition, while there has been some work on improving the numerical methods used to

implement the Wigner function approach [49, 10], most of the previously published work has

been focused on improving the formulation of the model [9] as well as studying the current

oscillations present in the region of negative differential resistance [50, 11, 12]. Thus, most

of the previous work has not made significant changes to the discretization of the equations,

for which the numerical approximations had low order accuracy and some minor inaccurate

computations.

Therefore, a more efficient quantum-mechanical electron transport code was developed in

MATLAB [43] to simulate these devices. The MATLAB code required only one processor to

duplicate the run times of the FORTRAN-LOCA version with 20 processors for short device

lengths, due to the implementation of a nonuniform grid that significantly decreased computa-

tion time. In addition, the fourth order numerical methods were incorporated to produce more

numerically accurate solutions. However, despite the advances made by the MATLAB code,

simulating longer devices increased MATLAB run times significantly, and MATLAB’s parallel

computation toolbox is not well developed so parallel computation using MATLAB was not an

option.
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The work of this dissertation takes the MATLAB code a step further in creating an effi-

cient Wigner-Poisson model to produce numerically accurate results with reasonable run times.

Parallel computation must be incorporated into any efficient Wigner-Poisson model in order to

broaden the abilities of the code to model longer and more complex devices. Thus, a new version

of the Wigner-Poisson model, written in C++ and incorporating the highly efficient Trilinos

software [51], has been developed to include parallel computation along with the improvements

that were incorporated in the MATLAB version. This new version will be described in detail

in future chapters.
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Chapter 3

Mathematical Theory

3.1 Stability Theory for Ordinary Differential Equations

To determine the long term behavior of an RTD, we analyze the steady state solutions to the

Wigner equation

∂f(x, k, t)

∂t
= K(f) + P (f) + S(f) = W (f) (3.1)

and determine their stability. To begin, we find vector(s) f∗ for which W (f∗) = 0; the f∗ are

called equilibrium points. In a neighborhood of an equilibrium point f∗, Taylor’s Theorem can

be used to linearize equation 3.1 and provide a good first order approximation to the behavior

of the nonlinear system [52]:

∂f

∂t
≈ ∂W (f∗)

∂f
f (3.2)

From linear stability theory, we know that the eigenvalues of the Jacobian at an equilibrium

point f∗ of equation 3.2 determine whether a solution nearby f∗ will stay close to f∗ as time

evolves or diverge away from f∗. The criteria for stability is given in the following theorems:

Theorem 3.1. An equilibrium point f∗ of equation 3.2 is asymptotically stable if and only if

all of the eigenvalues of ∂W (f∗)
∂f have negative real parts. [53]
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Theorem 3.2. If one eigenvalue of ∂W (f∗)
∂f has a positive real part, then the equilibrium point

f∗ is unstable. [53]

3.2 Bifurcation Theory

Since Poisson’s equation involves the boundary condition up(x = L) = −V where V is varied

from 0 to Vmax, we are solving a differential equation that looks more like

∂f

∂t
= W (f, λ) (3.3)

where λ is the voltage parameter. To better describe the possible dynamics of the system as

the parameter changes, let’s look at several examples.

3.2.1 Turning point bifurcation

The one-dimensional differential equation (from [1])

ẋ = c+ x2 (3.4)

has two equilibrium points when c < 0 (x+ = +
√
|c| which is unstable, and x− = −

√
|c| which

is stable); at c = 0, one equilibrium point; and none when c > 0. Thus, c = 0 is a bifurcation

value:

Definition 3.1. A bifurcation value is a specific value of a parameter for which the number of

equilibrium points or the stability of the equilibrium points changes [54].

A graphical representation for equation 3.4 is shown in figure 3.1, which is known as a

saddle-node or turning point bifurcation [1, 52].
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Figure 3.1: Bifurcation diagram for the turning point bifurcation in equation (3.4). From
[1]. The set of stable equilibrium points is shown with a solid line, and the set of unstable
equilibrium points as a dashed line.

3.2.2 Hopf bifurcations

Another type of bifurcation can be generated from the solutions to (from [1])

ẋ1 = x2 + F(λ, r2)x1 (3.5)

ẋ2 = −x1 + F(λ, r2)x2

where r2 = x2
1 + x2

2 and F(0, 0) = 0 so the origin is an equilibrium point [1]. The system can

be rewritten in polar coordinates as

ṙ = F(λ, r2)r (3.6)

θ̇ = 1

For several specific forms of F , periodic orbits can arise for certain values of λ and satisfy the

criteria for a Hopf bifurcation:

Theorem 3.3. Poincaré-Andronov-Hopf Theorem

Let x0 be an equilibrium point of equation 3.3 for all sufficiently small λ, and let α(λ)±iβ(λ)

denote a complex conjugate pair of eigenvalues of the Jacobian matrix ∂F (x,λ)
∂x which cross the
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imaginary axis with nonzero speed (i.e., ∂α
∂λ 6= 0). Then in a neighborhood U of x0 and any

λ0 > 0 there exists λ̄ with |λ̄| < λ0 such that equation 3.3 has a nontrivial periodic orbit in U

[1].

Let’s look at two types of Hopf bifurcations, which are important in explaining the creation

of periodic behavior: supercritical and subcritical Hopf bifurcations. For a supercritical Hopf

bifurcation, a nontrivial stable periodic orbit is created at the bifurcation point, and there is a

smooth transition from the equilibrium point to the periodic orbit [54]. If we set F(λ, r2) = λ−r2

in equation 3.5, a supercritical bifurcation is present at λ = 0. See figure 3.2 for the bifurcation

diagram [1].

{@
- - - - - -  I

Figure 3.2: Supercritical Hopf bifurcation for equation 3.5 with F(λ, r2) = λ− r2. For λ ≤ 0,
the equilibrium point r = 0 is asymptotically stable, but it becomes unstable for λ > 0 with
the creation of an asymptotically stable periodic orbit. From [1].

A Hopf bifurcation is subcritical when a nontrivial unstable periodic orbit is created at the

bifurcation point. If we set F(λ, r2) = −(r2−c2)+c2+λ with c > 0 in equation 3.5, a subcritical

bifurcation is present at λ = 0. See figure 3.3 for the bifurcation diagram [1].
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Figure 3.3: Subcritical Hopf bifurcation for equation 3.5 with F(λ, r2) = −(r2 − c2) + c2 + λ
and c > 0. For λ < 0, the equilibrium point r = 0 is asymptotically stable. At λ = 0, an
unstable nontrivial periodic orbit emerges, and for −c2 < λ < 0, the unstable periodic orbit
coexists with an asymptotically stable periodic orbit of larger amplitude. At λ = −c2, the two
periodic orbits merge and disappear. For λ > 0, the large amplitude periodic orbit continues to
be asymptotically stable, and the equilibrium point r = 0 becomes unstable. From [1].

3.2.3 Hysteresis

Subcritical Hopf bifurcations can produce a phenomenon called hysteresis, which depends on

the coexistence of two attractors at the same parameter value [54, 55]. This can be seen in

figure 3.3 for the region −c2 < λ < 0, since the equilibrium point r = 0 and the large amplitude

periodic orbit are both asymptotically stable. To describe hysteresis in more detail, let’s look

at the one-dimensional equation (from [1])

ẋ = c+ x− x3 (3.7)

Let c∗ = 2
3
√

3
. For c ≤ −c∗ and c ≥ +c∗, there is one stable equilibrium point, but for

−c∗ < c < +c∗, there are three, with two (those with greater magnitude) stable and one

unstable. The bifurcation diagram is shown in figure 3.4 on the left, with −c∗ a turning point

in the second quadrant and +c∗ a turning point in the fourth quadrant.
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Figure 3.4: The figure on the left is the bifurcation diagram for equation (3.7) showing the
steady state solutions as a function of c; the right side figure is the corresponding hysteresis
loop. From [1].

To analyze how solutions to equation 3.7 behave, start by choosing c < −c∗ and a starting

value x0. After a long time, the system will be close to the equilibrium point on the stable

solution branch corresponding to c, and as the value of c is increased up to c = +c∗, the system

will stay close to the lower stable solution branch until c = +c∗. However, once c > +c∗, the

system will seek the stable equilibrium states on the top solution branch, and will jump up to

and stay close to the upper solution branch as c increases.

However, when x is started near an equilibrium state with c > +c∗, the system will stay close

to the upper stable solution branch as c is decreased as long as c > −c∗. However, once c < −c∗,

the system will immediately move down to the lower stable solution branch. This is behavior

is called a hysteresis loop [1] and is depicted in the left picture of figure 3.4. Hysteresis-like

behavior has been observed in numerical simulations for the current-voltage curves for standard

two-barrier RTDs [56, 57, 12, 14], and hysteresis loops have been seen experimentally for RTDs

as well [6].
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3.3 Numerical Methods

Since the Wigner-Poisson equations are too complex to be solved analytically, numerical meth-

ods are used to approximate the solution. The domain is discretized and numerical approxi-

mations are used to replace the derivative and integral terms, which are described in detail in

chapter 4. Thus, the Wigner and Poisson equations can be written as a system of equations

based on function values at each discretized grid point and solved via computer simulations,

with the accuracy of the approximate solution determined by the particular formulas used.

Once the system of equations is determined, additional numerical techniques are used to

ensure the solution is not only numerically accurate but also yields a physically realistic solution

within an acceptable amount of run time.

3.3.1 Newton’s Method

To solve a nonlinear equation W (x) = 0, Newton’s method can be used to find a root x∗

[58, 59, 60] (provided one exists) by solving the iterative equation

xi+1 = xi −W ′(xi)−1W (xi) (3.8)

where W ′(xi) is the Jacobian of W at xi. However, the initial iterate x0 must be close enough

to the final solution x∗ in order to assure convergence of the set {xi} to x∗ [59, 60]. When

Newton’s method converges, it has a quadratic convergence rate [60], which is defined by

Definition 3.2. Let {xi} ∈ RN and x∗ ∈ RN . Then xi → x∗ q-quadratically if xi → x∗ and

there exists a C > 0 such that

||xi+1 − x∗|| ≤ C||xi − x∗||2 (3.9)

The requirements for convergence of Newton’s method are stated in theorem 3.4 (from [60]):

28



Theorem 3.4. Let W : Ω→ RN , where Ω ∈ RN . Assume

1. W (x) = 0 has a solution x∗

2. W ′ : Ω→ RN×N is Lipschitz continuous, and

3. W ′(x∗) is nonsingular.

Then there is δ > 0 such that if ||x∗ − x0|| < δ, the Newton iteration defined by equation 3.8

converges q-quadratically to x∗.

For the Wigner equation, the Jacobian is dense, which makes computing W ′(xi)
−1 compu-

tationally burdensome, especially as the grids are refined and the size of the solution vector

increases. Thus, we use an inexact Newton method [61, 60, 59] to compute the xi+1, which

redefines the equation to be solved as

||W ′(xi)si +W (xi)|| ≤ ηi||W (xi)|| (3.10)

where ηi is a forcing term that controls the size of the relative residual, and s is the step,

which can be computed using an iterative linear solver. Convergence rates for inexact Newton

methods are not as fast as Newton’s Method, and are linear at worst and superlinear at best

[60], as defined below:

Definition 3.3. Let {xi} ∈ RN and x∗ ∈ RN . Then

1. xi → x∗ q-linearly if there exists C ∈ (0, 1) such that

||xi+1 − x∗|| ≤ C||xi − x∗|| (3.11)

for i large.

2. xi → x∗ q-superlinearly if

lim
n→∞

||xi+1 − x∗||
||xi − x∗||

→ 0 (3.12)
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The convergence requirements for inexact-Newton methods require the same assumptions as

for Newton’s Method, but require constraints on the forcing terms ηi (from [60]):

Theorem 3.5. Let W : Ω→ RN , where Ω ∈ RN . Assume

1. W (x) = 0 has a solution x∗

2. W ′ : Ω→ RN×N is Lipschitz continuous, and

3. W ′(x∗) is nonsingular.

Then there exist δ > 0 and η̄ such that if ||x∗ − x0|| < δ and {ηi} ∈ [0, η̄], then the set {xi}

with xi+1 = xi + si where si satisfies the inexact Newton equation 3.10 converges q-linearly to

x∗, and q-superlinearly if ηi → 0.

3.3.2 GMRES

The GMRES (Generalized Minimum Residual) method [62], a Krylov subspace method, is

chosen as the linear solver for the inexact Newton method. Krylov subspace methods solve the

linear equation Ax = b by minimizing the error at each iteration i over the subspace Ki, defined

as

Ki = span(r0, Ar0, . . . , A
i−1r0) (3.13)

where r0 denotes the residual r0 = b−Ax0 [60, 59]. GMRES chooses the xi so that the Euclidean

norm of the residual, ||b−Ax||2, is minimized at each step i for xi ∈ x0 +Ki. Krylov methods

do not require the use of an iteration matrix [60], which decreases memory requirements and

allows for finer grids to be used in RTD simulation runs.

One of the important properties of GMRES is that it will find the exact solution x∗ and

terminate in at most N iterations, where N is the size of the solution space[60, 58]. However, if

N is excessively large, storage of the Krylov subspace can become burdensome, so an alternative
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method named GMRES(m) is based on restarting the GMRES computations after m steps,

with the initial vector for the restart being the last computed vector, xm [60, 58].

3.3.3 Preconditioning

Convergence of the solution can be accelerated by preconditioning the equation, which involves

introducing a new matrix M whose inverse approximates that of the matrix A and allows M−1A

to be relatively well-conditioned [63]. There are two types of preconditioning: left precondition-

ing and right preconditioning, where left preconditioning applies the matrix M−1 to the left

side of the standard linear equation Ax = b and solves

M−1Ax = M−1b. (3.14)

The termination criteria for GMRES changes since we are now minimizing

||M−1b−M−1Ax||2 (3.15)

over x ∈ x0 +Ki [60, 2]. The C++ Wigner-Poisson implementation applies left preconditioning.

Right preconditioning solves

AM−1y = b with y = Mx (3.16)

which leaves the termination criteria for GMRES the same as with the original system [60, 2].

3.3.4 Continuation

To compute the RTD current-voltage curve, an initial current is computed at v = 0, and then the

voltage is increased up to a terminal value via a continuation method [64, 65, 48]. Continuation
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methods solve a nonlinear equation of the form

W (x, v) = 0 (3.17)

where x is an N -dimensional vector and v is the parameter to be changed along a solution

path. Two main types of continuation methods are natural continuation and pseudo arclength

continuation [65, 48]. Natural continuation methods find a steady state solution x0 to equation

3.17 at an initial value of the parameter v0, and then increment the parameter v successively

and resolve equation 3.17 until either (1) the final parameter value vfinal is reached, or (2) a

steady state solution cannot be found for the next value of the parameter (i.e., xi exists for

vi, but a solution cannot be found at vi + vmin, where vmin is the smallest desired parameter

increment) [48].

For natural continuation, the initial iterate x0
i+1 used in solving equation 3.17 at a parameter

value vi+1 can be chosen in numerous ways. The simplest way is to choose x0
i+1 = xfinali at vi

[48, 65], but other predictor methods [65] may be used to make approximations of the trajectory

of the solution path. One such method is a tangent predictor, which incorporates the solution

to

W ′(xi, vi)
∂x

∂v
= −∂W

∂v
(3.18)

where ∂W
∂v is computed using a forward difference formula

∂W

∂v
=
W (xi, vi + δ)−W (xi, vi)

δ
(3.19)

so that the initial iterate at vi+1 becomes x0
i+1 = xfinali + (vi+1 − vi)∂x∂v [48].
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3.3.5 Pseudo arclength continuation

However, when there are turning points in a solution path (such as those described in section

3.2.3), using a natural continuation method will fail close to a turning point because the Jacobian

becomes singular [65, 48]. Previous work with the Wigner-Poisson formulation [12, 11, 14,

2, 43] has demonstrated hysteresis-like behavior in the IV curve, and thus pseudo arclength

continuation must be used to choose the voltage steps and solve the Wigner equation.

Pseudo arclength continuation augments the system of equations by including an arclength

parameter equation, which prevents the Jacobian from becoming singular in the area of a

turning point [65]. Thus the parameter that determines the continuation increments becomes

the arclength step s rather than the voltage parameter v. The new system becomes

W̄ (x(s), v(s)) = 0 (3.20)

µ(x(s), v(s), s) = 0

where µ(x(s), v(s), s) is the arclength equation, defined by

µ(x(s), v(s), s) = (x− xi)
∂xi
∂s

+ (v − vi)
∂vi
∂s
−∆s = 0. (3.21)

Equation 3.21 represents the equation of the plane that is perpendicular to the tangent line

through (xi, vi) at a distance ∆s from (xi, vi), and will intersection the solution path provided

∆s is reasonably sized and the curvature of the path is not too severe [65]. So in place of

equation 3.8 used by Newton’s method, the new iterative equation is

 ∂W̄
∂x

∂W̄
∂v(

∂x
∂s

)T ∂v
∂s


 ∆x

∆v

 = −

 W̄

µ

 . (3.22)

Note that natural continuation only required the initial iterate x0
i+1 to be chosen, whereas
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pseudo arclength requires an initial guess for both x0
i+1 and v0

i+1, which are chosen based on

the value of the parameter step s [65, 48].

To find an initial guess for x0
i+1 and v0

i+1, the bordering algorithm [65, 48] solves two interim

equations

W ′(x, v) · a = −W (x, v) (3.23)

W ′(x, v) · b = −∂W (x, v)

∂v
(3.24)

to yield the updated initial values

∆v = −
(
µ+

∂x

∂s
· a
)
/

(
∂v

∂s
+
∂x

∂s
· b
)

(3.25)

vi+1 = vi + ∆v (3.26)

xi+1 = xi + a+ ∆v · b (3.27)

Once these have been chosen, equations 3.20 are resolved until (1) the final parameter value

vfinal is reached or surpassed (in which case, a final solve at vfinal is computed), or (2) a steady

state solution cannot be found for (xi+1, vi+1) using the smallest arclength step smin allowed

[48].
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Chapter 4

Discretization of the Wigner-Poisson

formulation

To numerically solve the Wigner-Poisson model, the domain is discretized and finite difference

methods are applied to the Wigner and Poisson equations, as has been done in previous work

[9, 12, 11, 15, 16, 17, 39, 13, 40, 2, 43].

4.1 Domain discretization

First, the momentum domain is truncated from (−∞,∞) to (−Kmax,Kmax) with Kmax chosen

such that for |k| > Kmax, f(x, k, t) ≈ 0 for all x, t. Earlier work tied the value of Kmax to

how the spatial domain was discretized [40, 8]; however, later work has used Kmax = 0.25 Å−1

as a best approximation [2, 43]. Unless otherwise stated, for the simulations discussed in this

dissertation, the fixed value of Kmax = 0.25 will be used. The spatial and momentum domains

are then discretized into either a uniform or nonuniform mesh, with Nx denoting the number

of grid points used to compute a uniform spatial mesh and Nk the number of grid points for a

uniform momentum mesh.
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To determine how to discretize the domain, we look at a sample Wigner distribution function

(see figure 4.1). Note that for a large number of grid points in the domain, especially for

|k| ≥ 0.15Å−1, the Wigner function f ≈ 0. Since we are interested in how f behaves away from

f ≈ 0, a large percentage of the calculations (that involve grid points in this range) used to

compute the solution to the Wigner equation provides no meaningful information.
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Figure 4.1: Zero bias Wigner distribution for a 550 Å device.

Therefore, while uniform grids have been used in a variety of previous work [12, 11, 15,

16, 17, 39, 13, 40, 2], implementing appropriately chosen nonuniform grids has been shown to

reduce simulation run times [43]. Thus for this work, the domain is broken into several regions

symmetric about the k = 0 line, and nonuniform grids are implemented in both the spatial and

momentum dimensions. To ensure the nonuniform grid does not compromise the quality of the

simulation results, the grid points are concentrated near the zero momentum axis where there

is more variability in the Wigner function, and the density of the grid points is reduced from
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one region to the next as one moves further from the k = 0 line.

In the interior region around the zero momentum axis, the grid points are chosen to avoid

using k = 0 where there would be a singularity. This forces Nk to be even based on the

quadrature rules used to discretize the integrals in the Wigner equation. In this innermost

region, the mesh spacing is that for a uniform mesh; i.e., ∆k = 2Kmax
Nk . For each successive

region, the grid points are thinned out in the momentum domain by doubling the size of the

momentum mesh width, so that ∆k(exterior region) = 2×∆k(interior region).

For the spatial grid, we use the endpoints as grid points, which allows the number of mesh

points to be odd based on quadrature rules. The spatial mesh in the innermost region around

k = 0 is defined as ∆x = L
Nx−1 (i.e., equivalent to a uniform grid), and the grid points in

successive regions away from the k = 0 line are again thinned out by powers of 2, so that

∆x(exterior region) = 2×∆x(interior region).

The type of mesh used is illustrated in Figure 4.2.

4.2 Discretization of the Equations

To discretize the Wigner and Poisson equations, we use a variety of finite difference meth-

ods. Note that for the methods described, ∆x and ∆k represent the sizes of the spatial and

momentum meshes respectively, and they may have different values in different regions of the

non-uniform grid, as described in the previous section.

The kinetic term, K(f), is approximated using an upwinding scheme due to the one-sided

nature of the boundary conditions for the Wigner function. The fourth order upwinding ap-

proximation for the first derivative [43] is:

K(fij) ≈

 − hkj
2πm∗

(
25fij −48fi−1,j +36fi−2,j −16fi−3,j +3fi−4,j

12∆x

)
, kj > 0

− hkj
2πm∗

(
−25fij +48fi+1,j −36fi+2,j +16fi+3,j −3fi+4,j

12∆x

)
, kj < 0.

(4.1)
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Figure 4.2: Example of nonuniform grid.
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where ∆x depends on the size of the spatial mesh at each value of k. However, close to the

boundaries at x = 0 and x = L, decreasing order upwinding approximations are used due to

the lack of available grid points. We believe this approximation to be acceptable since there is

very little variation in the Wigner solution near the boundaries. The lower order schemes near

the boundaries are, for k < 0:

K(fNx−3,j) = − hkj
2πm∗

(
2fNx,j − 9fNx−1,j + 18fNx−2,j − 11fNx−3,j

6∆x

)
(4.2)

K(fNx−2,j) = − hkj
2πm∗

(
−fNx,j + 4fNx−1,j − 3fNx−2,j

2∆x

)
(4.3)

K(fNx−1,j) = − hkj
2πm∗

(
fNx,j − fNx−1,j

∆x

)
(4.4)

and for k > 0:

K(f2,j) = − hkj
2πm∗

(
f2,j − f1,j

∆x

)
(4.5)

K(f3,j) = − hkj
2πm∗

(
3f3,j − 4f2,j + f1,j

2∆x

)
(4.6)

K(f4,j) = − hkj
2πm∗

(
11f4,j − 18f3,j + 9f2,j − 2f1,j

6∆x

)
(4.7)

The potential P (f) term is discretized using Newton-Cotes quadrature rules [63, 64, 58]:

P (fij) ≈ −
4

h

Nk∑
j′=1

fij′T (xi, kj − kj′)wj′ (4.8)

where the wj′ are the weights associated with the quadrature rule in each region. In the interior
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region about k = 0, the composite midpoint rule is used, where

wj′ =

 ∆k for j′ = 2, 3, ..., mr − 1,

∆k
2 for j′ = 1, mr

(4.9)

where ∆k represents the smallest momentum mesh size (equivalent to a uniform grid), mr is the

number of grid points in the mesh region, and mr is even. Away from the k = 0 line, however,

the grid points in the region(s) can be chosen so that a fourth order composite Simpson’s rule

can be implemented:

wj′ =


4∆k

3 for j′ = 2, 4, ..., mr − 1,

2∆k
3 for j′ = 3, 5, ..., mr − 2,

∆k
3 for j′ = 1, mr

(4.10)

where ∆k represents the size of the momentum mesh in each region, mr is again the number

of grid points in the region, and in this case, mr is odd.

To compute T (xi, kj − kj′), the integral can be split into two pieces and the solutions to

each piece summed together:

T a(xi, kj − kj′) =

∫ Lc
2

0
[∆c(xi + y)−∆c(xi − y)] sin(2xi(kj − kj′))dy (4.11)

and

T b(xi, kj − kj′) =

∫ Lc
2

0
[up(x+ y)− up(x− y)] sin(2x(kj − kj′))dy (4.12)

Since the energy band function ∆c(x) = 0 for a large portion of the x domain, the integral in

equation (4.11) can be computed analytically, which decreases computation time and increases

the accuracy of the solution. For equation (4.12), the T b(xi, kj − kj′) term is computed by

dividing the integral into two pieces, one from 0 to xNc (where Nc is the closest odd numbered

grid point just below Lc using a uniform grid) and another from xNc to Lc. Composite Simpson’s

rule can be used to compute the integral from [0, xNc ], but computation of the integral from
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[xNc , Lc] is more complicated since Lc may not correspond to a grid point. Thus, modifications

are made to the weights between Nc − 1 and Nc + 2 using fourth order Taylor expansions to

compute the integral from xNc to Lc. So equation (4.12) is approximated as

T b(xi, kj − kj′) ≈
Nc+1∑
i′=1

[up(xi + xi′)− up(xi − xi′)] sin(2xi′(kj − kj′))wi′ (4.13)

where the wi′ are the modified composite Simpson’s rule weights

wi′ =



∆x
3 for i′ = 1

4∆x
3 for i′ = 2, 4, ..., Nc − 2

2∆x
3 for i′ = 3, 5, ..., Nc − 3

2∆x
3 +W1 for i′ =Nc − 1

4∆x
3 +W2 for i′ = Nc

∆x
3 +W3 for i′ =Nc + 1

W4 for i′ =Nc + 2.

(4.14)

with ∆x equal to that for a uniform grid, and Wl, l = 1, 2, 3, 4 the additional fourth order

weighting terms for the approximation to the integral over [xNc , Lc].

The scattering term S(f) can be discretized using composite Simpson’s rule as

S(fij) ≈
1

τ

 f0(xi, kj)∑Nk
j′=1 f0(xi, kj′)wj′

Nk∑
j′=1

fij′wj′ − fij

 (4.15)

where the wj′ are the standard weights listed in equations (4.9) and (4.10) for the P (f) term.
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To solve Poisson’s equation (equation 2.54), we split it into two pieces,

∂2uap(x, t)

∂x2
=

q2

ε
Nd(x) (4.16)

and

∂2ubp(x, t)

∂x2
= −q

2

ε
n(x, t), (4.17)

solve equation (4.16) analytically and equation (4.17) using a finite difference approximation,

and then sum the two solutions so that

up(x) = uap(x) + ubp(x). (4.18)

This method not only saves computational time but produces a more accurate solution.

To solve equation 4.16 analytically, we note that for the standard two barrier symmetric

device,

Nd(x) =

 Nd : x < xd or x > L− xd

0 : otherwise
(4.19)

where Nd is the doping density on each end of the device, and xd is the length of the doping

region. Setting the boundary conditions for equation 4.16 as

uap(0) = 0 and uap(L) = 0, (4.20)

we can compute this portion of the electrostatic potential up(x) as

uap(x) = Nd×


x2

2 − xdx : x < xd

−x2d
2 : xd ≤ x ≤ L− xd

(L−x)2

2 − xd · (L− x) : L− xd < x

(4.21)
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To solve equation (4.17), a fourth order center difference formula is used:

−ubp(xi−2) + 16ubp(xi−1)− 30ubp(xi) + 16ubp(xi+1)− ubp(xi+2)

12(∆x)2
= −q

2

ε
n(xi) (4.22)

where ∆x is equal to that for a uniform grid and 3 ≤ i ≤ Nx− 2. At the end points, one-sided

fourth order methods are used with ubp(x1) = 0 and ubp(xn) = −V . The electron density n(x) is

approximated using composite Simpson’s rule:

n(xi) ≈
1

2π

Nk∑
j=1

fijwj (4.23)

where the weights are as listed in equations (4.9) and (4.10).

Finally, the current density j(x) can be approximated using composite Simpson’s rule:

j(xi) ≈
h

2πm∗

Nk∑
j=1

kjfijwj (4.24)

where the weights are again the standard Simpson’s rule weights from equations (4.9) and

(4.10).
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Chapter 5

C++ Implementation

5.1 Object Oriented Programming

A programming language serves two related purposes: it provides a vehicle for the

programmer to specify actions to be executed, and it provides a set of concepts for

the programmer to use when thinking about what can be done. The first purpose

ideally requires a language that is “close to the machine” so that all important

aspects of a machine are handled simply and efficiently in a way that is reasonably

obvious to the programmer. The C language was primarily designed with this in

mind. The second purpose ideally requires a language that is “close to the problem

to be solved” so that the concepts of a solution can be expressed directly and

concisely. The facilities added to C to create C++ were primarily designed with

this in mind.

– Bjarne Stroustrup, The C++ Programming Language [66]

C++ is a highly desirable language in which to program because it combines the efficiency

of the C language with object-oriented programming. Object-oriented programming places its

emphasis on the data in a program, rather than on the calculations/manipulations involved, by
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allowing programmers to define abstract data types that can be manipulated.

It is for these reasons that Trilinos [51], the main software used by the Wigner-Poisson code,

was written in C++: to take advantage of the object-oriented structure that allows abstract

data types to be defined and used efficiently.

5.2 Trilinos

The Trilinos software, developed by Sandia National Laboratories, was designed to solve large

scale complex science and engineering problems. It utilizes established libraries such as the

BLAS and LAPACK as well as more recently developed software that incorporates parallel

architectures, such as PETSc (used by Trilinos’ ML package for multi-level preconditioning);

Metis/ParMetis (used by Zoltan, a dynamic load balancing toolkit); SuperLU (used by Amesos,

the direct sparse solver package); and Aztec (used by AztecOO, the Krylov solver package)

[51, 67].

The first public release, Trilinos 3.1, was in September 2003 with eight basic packages. The

functionalities at that time were a single linear system solver, a non-linear solver, and multigrid

preconditioning [51]. Also included was the major advantage of Trilinos - the parallel data

structures that easily integrate into a user’s code without explicitly using a parallel programming

language. It immediately won two major awards, a 2004 R&D 100 Award, given out annually

by R&D Magazine to recognize the “100 most technologically significant products introduced

in the past year” [68]. It also won one of two HPC Software Challenge Awards as part of the

Technical Program at SC2004. (Per the call for submissions: “This HPC Software Challenge

will honor participants working to improve the productivity of HPC software developers and

the quality of HPC software.”)

Since its initial release, the Trilinos software has been (and continues to be) upgraded and

expanded numerous times, to include additional capabilities as needs dictated. The version of
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Trilinos used in this implementation of the Wigner-Poisson model was Trilinos 10.6.0, which

was released in September 2010 and included 48 packages and 13 major capability areas; the

most recent release is version 11.0.3, released October 25, 2012, and includes 54 packages.

The main reasons for Trilinos’ use in this application are its flexible parallel data structures

and numerous highly efficient solver packages. The nonlinear solver package in Trilinos, NOX,

provides a Jacobian-Free Newton-Krylov method, which saves memory and computation time

by eliminating calculation of the dense Jacobian for the Wigner equation. This is crucial for

the fine meshes and longer device lengths which we hope to simulate in this work.

Another reason Trilinos was chosen is its ability to properly handle the hysteretic effects

present in the Wigner solution [56, 57]. Trilinos’ continuation package, LOCA, provides a pseudo

arclength continuation option which is used to compute the Wigner function around the turning

points in the solution.

5.3 Trilinos packages

The Trilinos packages used by the C++ Wigner-Poisson code are Teuchos, Epetra, Amesos,

AztecOO, NOX and LOCA.

The primary packages incorporated in the Wigner-Poisson model were Teuchos (reference

counted pointers), Epetra (data structures), Amesos (direct solvers for sparse matrices), NOX

(non-linear solvers), and LOCA (continuation methods). AztecOO functionality (linear Krylov

solvers) was also incorporated via NOX.

5.3.1 Teuchos

Teuchos provides a variety of tools to be used by programmers for developing objects within

the Trilinos framework [51]. The main use of Teuchos in the C++ Wigner-Poisson code was

the reference counted pointer (RCP), which is used to create objects and allocate memory.
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RCPs provide automatic memory deallocation when the object associated with an RCP is no

longer active, which makes memory usage more efficient. In addition, both NOX and LOCA

use Teuchos parameter lists to set up non-linear functions for computation.

5.3.2 Epetra

Epetra is the core linear algebra package upon which several other packages are based, including

Amesos, NOX, and LOCA. The Epetra data structures are designed to keep track of how the

elements of a particular object are spread across processors, so that parallel computations can

be performed efficiently using BLAS and LAPACK routines [51]. These structures are also

used by other Trilinos packages to simplify cross-processor communication. Thus, most of the

vector and matrix elements used by the C++ model to compute the various elements of the

Wigner-Poisson equations were defined using Epetra data structures.

5.3.3 Amesos

The goal of the Amesos package is to enable the user to easily interface a code using Epetra

objects with efficient direct solver libraries developed outside Trilinos [69]. Amesos provides a

variety of sparse direct solvers, written for both serial and parallel implementations. In the C++

model, Poisson’s equation was solved in Amesos using a KLU factorization, since the matrix

is sparse and nearly symmetric. In addition, a serial implementation proved more efficient in

decreasing run times due to the relatively smaller problem size.

5.3.4 AztecOO

AztecOO is the Krylov solver package used within NOX to calculate the linear system portion of

the inexact Newton solve. AztecOO provides several Krylov methods, including two conjugate

gradient methods and two GMRES methods [70]. It also provides a matrix-free mechanism that

allows users to bypass computing and storing a Jacobian directly. In this case, finite difference
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methods are used to approximate the Jacobian [71]. To evaluate the Jacobian-vector product

W ′(x)s from equation 3.10, a forward differencing method is used

W ′(x)s =
F (x+ δs)− F (x)

δ
(5.1)

where δ is chosen to appropriately scale the step s [60]. The approximation requires an additional

Wigner function evaluation at (x+ δs) but reduces storage requirements from a matrix of size

N2 to a vector of size N .

5.3.5 NOX

NOX is the non-linear solver package used by the C++ code to solve for the initial Wigner

distribution f0(x, k), and it is used by LOCA to solve the non-linear equation at each voltage

step. NOX uses Newton’s method to solve non-linear equations [71], and provides a variety of

choices in the implementation. Globalization techniques such as line search and trust region

methods are available, as well as exact and inexact Newton methods [71]. In addition, NOX

provides an option to evaluate the Jacobian itself using finite differencing methods, as well as

a matrix-free implementation via AztecOO.

5.3.6 LOCA

The continuation package LOCA is built using the non-linear solver package NOX and provides

both natural and arc length continuation methods, as well as the ability to locate and track

several types of bifurcations [48]. For the Wigner-Poisson model, hysteretic effects are present

in the I-V curve [56, 57], so LOCA uses an arc length continuation method to choose the voltage

values and compute the corresponding Wigner functions.
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5.4 Alglib software

The other software package incorporated into the Wigner-Poisson C++ code was the Alglib

package [72], an open-source numerical analysis library that supports several programming

languages, including C++. The Alglib interpolation routine is incorporated into the C++ model

in order to handle conversions from the non-uniform spatial grid to a uniform spatial grid. It

was chosen due to its ease of implementation and ability to be compiled across multiple Unix

and Linux platforms [72].

5.5 Data structures in C++ code

A variety of data structures were used within the C++ code. In general, standard C++ arrays

were used for a series of elements that were temporary to a particular class; but for arrays of

elements that stored information that was important to computation of the Wigner function

(such as weights, the barrier and doping profiles, the Wigner function itself, etc.), the Epetra

array structure Epetra Vector was used.

Epetra Vectors have a variety of functions that can be applied to them, such as addition,

scalar multiplication, dot products, etc., which have been written to take advantage of BLAS

and LAPACK routines. In addition, parallel communication is handled automatically within

the routines without any user manipulation, which makes the use of Epetra Vectors very

advantageous. Examples in the C++ code of the implementation of Epetra Vectors:

• the parallelized Wigner function

• the serial electrostatic potential vector

• the weights used for both the X-convolution and the K-convolution

• the values of the discretized momentum mesh
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• the current density vector

Epetra Vectors are built on Epetra Maps, which are indexed arrays of elements. They allow

elements in one object that is created with an Epetra Map to be linked with corresponding

elements in another object. For example, numerous Epetra Maps were created, including one

to parallelize the Wigner vector over x and another to parallelize the Wigner vector over k,

since different portions of the Wigner equation require different discretizations. Examples of

Epetra Maps:

• the momentum grid points

• the momentum grid points (parallelized across processors)

• the full Wigner function

• the Wigner function (parallelized across processors over k space)

• the Wigner function (parallelized across processors over x space)

Another data structure that is critical to the successful parallelization of the Wigner function

is the Epetra Import, which uses Epetra Maps to copy corresponding data from one Epetra -

Vector to another. This was critical when applying the preconditioner, since for efficient par-

allel performance, all x values (for a particular k value) must be on the same processor (i.e.,

parallelized over k); however, the calculations immediately preceding application of the precon-

ditioner are discretized over x due to parallel efficiencies. Thus, the Epetra Import structure

allowed the correct element in one discretization to be copied efficiently to the other discretiza-

tion. Examples of Epetra Imports:

• the transfer of elements from the parallelized electron density function to the full electron

density function
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• the transfer of elements from the parallelized Wigner function (over x space) to the

parallelized Wigner function (over k space)

• the transfer of elements from the parallelized interpolated Wigner function (over k space)

to the parallelized interpolated Wigner function (over x space)

To solve the Poisson equation, a matrix class called an Epetra CRSMatrix was used to hold

the sparse matrix. The other matrices involved in computation of the Wigner function were

dense matrices that required a user-defined type due to the parallel nature in which they were

implemented. Thus, a special class was created called a localMatrixBase that is based on the

standard C++ <vector> class, but is more flexible than existing standard C++ data structures

and integrates well with Epetra objects. Examples of this user-defined class are:

• the matrix that holds the values of sin(2xi(kj − kj′)), which is pre-computed at the start

of the C++ model

• the matrix that holds the values of the portion of the X-convolution: T (xi, kj − kj′) =∫ Lc
2

0 [∆c(xi + y) −∆c(xi − y)] sin(2xi(kj − kj′))dy, which is pre-computed at the start of

the C++ model

• the matrix that holds the values of the other half of the X-convolution: T (xi, kj − kj′) =∫ Lc
2

0 [up(x+y)−up(x−y)] sin(2x(kj−kj′))dy, which is computed with each iteration since

up changes as the Wigner function f changes

And finally, numerous Teuchos parameter lists are used by both NOX and LOCA to store

the parameter values to be used (when default values are not adequate). Many Teuchos reference

counted pointers (RCPs) are also used, such as the interfaces that set up the computation of

the non-linear equation, the matrix-free operator and Jacobian types used by NOX, the status

tests to check for convergence, etc.
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5.6 C++ Class Descriptions

To use C++ for the Wigner model, numerous classes were created, each representing a different

piece of the Wigner-Poisson equations. Most classes have a compute function to calculate either

the appropriate action on the Wigner function f or to compute terms that will be used later

in calculating f . Most of the classes also have a print function that prints out the resulting

vector or matrix from the compute function.

5.6.1 Data and Structure Setup

The first classes that are implemented are those that set up the barrier and doping struc-

tures, and one to compute the discretization (and parallelization) of the momentum and spatial

meshes. The Barrier class adds additional flexibility to the structure of the devices modeled,

as does the Doping class. Previous versions of the Wigner-Poisson code allowed at most three

barrier regions [40] and three doping regions (two on either end of the device that were doped

at the same level, and a middle region that was virtually undoped), and forced the energy band

profile to be piecewise constant. The upgrades to the device structure are:

• There can be an unlimited number of barrier regions (to improve on the three barrier

structures from [40])

• The energy band profile at each barrier can be either constant, linear (having either a

negative or positive slop), or quadratic (based on improvements requested [73]).

• There can be an unlimited number of doped regions, with each having different doping

levels.

The Barrier class creates the barrier profile that is used in the solution of the potential

term P (f). The compute function calculates the relative energy band profile, ∆c(x), at each

spatial grid point, which is then used in equation (4.13). The Doping class creates the doping
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profile that is used in the solution to Poisson’s equation. The compute function calculates the

doping profile Nd(x) at each spatial grid point, which is used in the right hand side of Poisson’s

equation, equation 4.22.

The VectorComp class computes the non-uniform k grid, the corresponding non-uniform x

grid, and the quadrature weights for both the integral over x and the integral over k. There

are multiple functions within the class: Xregions calculates the maximum number of x regions

based on the number of (uniform) x grid points; compute Nk calculates new number of (non-

uniform) k grid points; compute xkpts calculates the new non-uniform grid; compute kvec

calculates the values of the k grid points and the associated weights; and computeXweights

calculates the values of the weights for the spatial integral (based on a uniform x grid).

5.6.2 Pre-computed Terms

The next set of classes calculate terms that do not depend on the Wigner function f , and thus

can be computed and stored for use by other classes. The compute function of the BCMethod

computes the vector of boundary condition values that is used to set up the initial guess for the

Wigner distribution function when V = 0. This vector is also by the preconditioner class. The

vector of boundary conditions is of length Nk since there is only one unique boundary condition

value per k grid point, so the loadBCs function copies the appropriate boundary condition value

to the initial value vector for the Wigner distribution function.

The SineMatrix class computes the values of sin(2xi(kj−kj′)) for each value of xi and kj−kj′

via the compute function. This is pre-computed, as is the matrix in the TcMethod class that

stores the values for the integral Tc(xi, kj−kj′) =
∫ Lc

2
0 [∆c(xi+y)−∆c(xi−y)] sin(2xi(kj−kj′))dy.

It is calculated via the compute function of the TcMethod class.

A special class, the InterpMethod, is used on rare occasions to interpolate f0 (the initial

Wigner distribution function) from an existing coarse uniform grid. While this is not used for
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short devices (e.g., L = 550Å), we anticipate it will be necessary to model longer device lengths.

5.6.3 Wigner function terms

The next classes created were those to calculate specific portions of the Wigner distribution

function.

The kinetic4Method class computes the action of the kinetic operator on the Wigner vector,

which is done via the compute function. The kinetic5Method class applies the preconditioner to

the sum of the three terms in the Wigner equation (equation 2.49) also via a compute function.

There are numerous pieces that make up the computation for the Wigner Potential term,

and the classes that are involved are:

• FIntMethod

• Poisson1Method

• TpMethod

• potentialMethod

The FIntMethod calculates the integral
∫Kmax

−Kmax
f(x, k)dk. This class is used to compute the

electron density n(x), and the two integrals involved in the Scattering term (one involving the

integral of f , and the other involving the integral of f0, as per equation 2.57).

The poisson1Method class has an operator function to create the sparse matrix associated

with the finite difference approximations in equation (4.22). The associated compute function

solves the linear system Ax = b where A is the sparse matrix and b is the right hand side term

that includes the doping profile Nd(x) and the electron density n(x).

The compute function in the TpMethod class calculates the values of the T (x, k−k′) integral

involving the electrostatic potential up(x), and finally, the potentialMethod class has a compute
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function to add all the components of the T (x, k − k′) integral together and calculate the k

integral via equation (4.8) for a given f .

The final two computational classes are InterpFMethod and CurrentMethod. The InterpFMethod

class uses the Alglib software in the compute function to calculate the interpolated Wigner func-

tion f at every uniform grid x value for a given k value. While all of the compute functions

in the classes mentioned above (starting with kinetic4Method) are executed multiple times to

find the Wigner function for a particular value of the voltage V , the CurrentMethod class is

called only once, when the Wigner function f has converged at a particular value of the bias

voltage.

5.7 Solution Process using Trilinos

To solve the system in Trilinos, two additional classes are created to set up and solve the Wigner

equation as in equation 2.49, the f0Problem and wpProblem classes. Both have a computeF

function that computes each element of the Wigner equation, feeds it into the next piece, and

finally applies the preconditioner to calculate the residual, which will be used by NOX. For the

f0Problem class, the printSolution function outputs the initial Wigner distribution function

f0 once it has converged via NOX; for the wpProblem class, the printSolution function calls

the CurrentMethod class to calculate and output the current. The output files from f0Problem

and wpProblem are f0.dat and iv.dat, respectively.

The next classes that are mandated by NOX are the ProblemInterface classes required as

part of the NOX framework. Thus, the f0ProblemInterface and wpProblemInterface classes

are created to call the computeF functions in each of the corresponding Problem classes. In

addition to their own computeF functions, each ProblemInterface class has a printSolution

function which calls the printSolution function in the corresponding Problem class; and fi-

nally, the wpProblemInterface class has a setParameters function which manages the voltage

55



parameter V that is fed into the wpProblem class. See appendix C for more details.

See figure 5.1 for a flowchart of the process.
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Figure 5.1: Flowchart of the computeF function.

5.8 Parallelizing the Wigner function vector

For a non-uniform mesh in both space and momentum, the number of x grid points correspond-

ing to each value of k (and visa versa) will change depending on the value of k (or x). Figure 5.2
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demonstrates this for Nk = 256, Nx = 257, with each blue dot representing a grid point in the

mesh.
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Figure 5.2: Sample non-uniform mesh using Nk = 256, Nx = 257.

Thus, to properly parallelize the Wigner vector, care must be taken to balance the number

of calculations (i.e., the number of grid points) assigned to each processor. To calculate the

kinetic and potential terms, the Wigner vector is parallelized across values of k, and for the

preconditioner, it is parallelized across x. (Some of the internal portions of the potential term,

such as the integral term over space, are also parallelized across x.) Thus, parallel allocations

are necessary across both dimensions.

To partition f efficiently, first an average number of total grid points per processor is cal-

culated by dividing the total number of grid points by the number of processors. This average

57



is then used to partition the Wigner function over the k and x grids.

To partition the Wigner function over the momentum space, the number of spatial grid

points in the non-uniform mesh for each k value (starting at the first k value) is summed until

the total exceeds the average. Then the number of k grid points (to be assigned to the first

processor) is either rounded up or down depending on how close the total number of grid points

is to the average. The process is then started over with the second processor, until all grid

points have been assigned to each processor. (A similar method is employed to distribute the

Wigner vector over the x grid.) This rounding method, based on the total grid points in the

solution domain (rather than just the number of k or x grid points), ensures that the number

of calculations will be as balanced as possible across processors.

And finally, since different portions of the Wigner equation require different parallelizations

of the Wigner function f , conversions from one parallel form of f to another are required. How-

ever, the speed of cross-processor communication can be quite slow compared to calculation

speeds, so conversions from one grid parallelization to another are minimized when computing

W (f) = 0. In addition, the distributed Wigner vector f over k is used by NOX and LOCA to

compute each successive f iterate, which makes the Wigner-Poisson C++ code more computa-

tionally efficient and scalable than previous versions.
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Chapter 6

Results using the C++ Code

To test the performance of the C++ code, a variety of simulation runs were performed to

test the accuracy, speed, and scalability of the new model. In addition, numerous studies have

been done to investigate the impact of different mesh sizes on the steady state IV curve, the

Wigner distribution function, and time dependent current-time plots. These simulation runs

were performed on a 240 core cluster at the NCSU High Performance Computing lab. The

cluster is composed of 30 dual-processor Intel Xeon E5520 blades, with 4 cores per processor,

a clock speed of 2.27 GHz, QPI speed of 5.86 GT/s, max memory bandwidth of 25.6 GB/s, 8.2

GB of cache, and 144 GB total memory. Infiniband switches are used to connect the blades,

and GNU/Linux version 2.6.18-164.el5 is used along with Intel compilers (version 10.1.022) for

optimum performance. Trilinos version 10.6.0 was incorporated into the C++ code along with

Alglib version 3.6.0.

6.1 Comparison to Previous Models

To ensure the accuracy of the C++ model, the steady state I-V curves for the FORTRAN and

MATLAB models were compared against the C++ model to determine how closely aligned the

C++ results are to the previous versions. The agreement between the three sets of results is
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very close, especially between MATLAB and C++, both of which use fourth order numerical

methods (whereas the FORTRAN version uses second order methods). This can be seen in

figure 6.1.
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Figure 6.1: Comparison of I-V curves using the FORTRAN, MATLAB, and C++ models.

The grid used in the FORTRAN code in figure 6.1 is a uniform grid in both space and mo-

mentum with 2,048 momentum grid points (Nk = 2048) and 513 spatial grid points

(Nx = 513). The C++ and the MATLAB codes use non-uniform meshes that represent the

uniform grid with Nk = 2048 and Nx = 513. In the tables and figures throughout this chapter

and the next, only the uniform grid numbers will be given, but the meshes used for the C++
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Table 6.1: Comparison of run times for the FORTRAN vs. non-uniform C++ models

FORTRAN vs C++

No. of Grid Time (hr:min) % Reduction
Cores Nk Nx FORT C++ Time Grid Pts

20 512 513 17:17 2:52 83.4 90.4

and MATLAB simulations will be those for a corresponding non-uniform mesh.

6.2 Run Time Analysis

Simulation run times for the non-uniform C++ code were compared against those for FOR-

TRAN, MATLAB, and the uniform grid C++ model to ensure that simulation run times were

significantly improved. When compared against the parallel FORTRAN model, run times for

the C++ model decreased significantly for a similar number of cores due to the incorporation

of non-uniform grids (see table 6.1 for an example). The MATLAB code is a highly efficient

serial code, and while run times were lower for the non-uniform MATLAB code (on the order

of ≈ 15 hours) than for the serial non-uniform C++ code (> 50 hours), the ability to in-

crease the number of cores allows the C++ code to return results more quickly by choosing an

appropriate number of cores.

Comparing run times for the uniform and non-uniform C++ code shows that although the

incorporation of a non-uniform spatial grid requires interpolation for the Wigner vector not

required with a uniform grid, the decreased number of computations more than offsets the

addition of the interpolation. The reduction in timings shown in table 6.2 for different mesh

sizes demonstrate these results are not grid-dependent.
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Table 6.2: Comparison of run times for the uniform C++ model vs. the non-uniform C++
model

Uniform vs Non-uniform C++

No. of Grid Time (hr:min) % Reduction
Cores Nk Nx Unif NonU Time Grid Pts

48 512 513 5:39 1:44 69.3 90.4
24 256 257 1:11 0:22 69.0 85.2

6.3 Parallel performance

To check that the C++ Wigner-Poisson model was handling parallelization properly, numerous

simulation runs were performed with identical parameters and differing numbers of cores. Figure

6.2 shows that the number of cores used does not make a difference to the solution curve, and

thus the parallel implementation was handled correctly.

A strong scaling study was also performed to determine how well the parallel C++ code

performs against the serial version. Scaling is measured by computing the speedup of a code

using Amdahl’s Law

speedup =
1

(1− P ) + P
N

(6.1)

where N is the number of cores (assuming 1 core as a base case) and P is the portion of

the program that can be made parallel (equivalently, 1 − P is the portion of the code that is

serial). Strong scalability fixes the problem size and then increases the number of cores, and

compares the run times using Amdahl’s Law. Ideal performance keeps the serial portion (1−P )

minimized and maximizes the speedup. Another measure used in judging parallel performance

is the efficiency of a code, which is a comparison of the run time for 1 core versus run times for

multiple (N) cores:

efficiency =
Run time(1 core)

N × Run time(N cores)
× 100% (6.2)
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Figure 6.2: Comparison of I-V curves using multiple cores for a Nk = 2048, Nx = 1025
discretization of the solution space.

and is related to Amdahl’s Law by

speedup = N × efficiency. (6.3)

The study shown in table 6.3 demonstrates the strong scalability of the C++ code for

simulation runs using a fine mesh of Nx = 513, Nk = 512 on the NCSU cluster with the

number of cores increased from 2 up to 64. Two cores are used as a base case for these scaling

studies to accurately compare the C++ results against the previous parallel FORTRAN results.

The computation time listed for the C++ code is the total time to compute the continuation

run from 0.0V to 0.45V , and does not include initialization time or the computation of the initial
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Wigner distribution f0. The efficiencies calculated from the simulation runs show very good

adherence to Amdahl’s law, with a maximum speedup of just under 30.

Table 6.3: Strong scaling study using a coarse grid of Nk = 512, Nx = 513 and variable
number of cores

No. of Run Time % %
Cores (hr:min) efficiency speedup serial

2 23:45 100.0 2.00
4 12:23 95.9 3.84 4.28
6 8:13 96.3 5.78 1.89
8 6:14 95.3 7.62 1.66

10 5:10 91.9 9.19 2.19
12 4:18 92.1 11.05 1.74
16 3:18 90.0 14.39 1.59
20 2:52 82.8 16.57 2.30
24 2:24 92.5 19.79 1.93
32 2:00 74.2 23.75 2.32
40 1:48 66.0 26.39 2.71
48 1:49 54.5 26.15 2.63
64 1:43 43.2 27.67 4.24

Simulation runs were also performed using a slightly finer grid (Nx = 513, Nk = 2048)

with the results listed in table 6.4. Amdahl’s law is again adhered to, and we find that the

speedup tops out around 55 for the larger problem. However, superlinear speedup is noted

when N ≤ 24 cores, which most likely indicates that the size of the problem exceeds efficient

memory capabilities of the blades, and that larger numbers of cores should be used for very fine

meshes.

64



Table 6.4: Strong scaling study using a fine grid of Nk = 2048, Nx = 513 and variable number
of cores

No. of Run Time % %
Cores (hr:min) efficiency speedup serial

2 135:19 100.0 2.00
4 68:26 98.9 3.95 1.15
6 42:50 105.3 6.32 -2.52
8 33:40 100.5 8.04 -0.16

12 21:12 106.4 12.77 -1.20
16 16:25 103.0 16.49 -0.42
24 11:11 100.8 24.20 -0.08
32 9:03 93.5 29.90 0.47
48 6:38 85.0 40.80 0.77
64 5:55 71.5 45.74 1.29
96 4:59 56.6 54.31 1.63

Table 6.5 shows the parallel performance results for the older FORTRAN code, where the

simulation runs were performed on a Linux cluster at Sandia National Laboratories, and cal-

culated the clock time to take 5 continuation steps from V = 0.2093 to V = 0.2293 [2]. The

times listed were for runs performed by Matthew Lasater for his dissertation work [2]; the %

efficiency, speedup, and the % serial were calculated using the methods cited above.

Comparing the non-uniform C++ scalability for a fine mesh (Nk = 2048,

Nx = 513) against that for the FORTRAN code (which uses the same Nk = 2048, Nx = 513

with a uniform grid), it is clear that the C++ code uses parallelization more efficiently than

the FORTRAN code, due to the lower percentages of serial code (approximately 2% for C++

vs. approximately 4% for FORTRAN) and higher maximum speedup factors (approx. 30 vs.

approximately 55). The reason for the improvement of the C++ code over the FORTRAN code

is due to the preconditioner; in the Fortran code, the preconditioner is applied serially after the

Wigner equation is solved, whereas the C++ code parallelizes the preconditioner calculation,

which improves scalability and decreases run times.
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Table 6.5: Parallel performance results using FORTRAN code, data from [2]

No. of Run Time % %
Cores (hr:min) efficiency speedup serial

2 9,120.61 100.0 2.00
4 4,904.46 93.0 3.72 7.55
8 3,422.43 66.6 5.33 16.70

12 1,925.05 79.0 9.48 5.33
16 1,581.53 72.1 11.53 5.53
24 1,171.00 64.9 15.58 4.92
32 966.06 59.0 18.88 4.63
40 908.92 50.2 20.07 5.23
48 771.91 49.2 23.63 4.48
56 712.25 45.7 25.61 4.39
64 667.62 42.7 27.32 4.33
72 662.24 38.3 27.54 4.61
80 641.39 35.6 28.44 4.65

6.4 Convergence of the IV curve

To determine whether the meshes used to discretize the domain converge to a single solution,

numerous simulation runs using increasingly fine mesh spacing were run. From the simulation

run results, we determined that the size of the spatial mesh did not change the shape of the IV

curve, but the size of the momentum mesh did. As shown in figure 6.3, the IV cures are virtually

indistinguishable for differing spatial meshes (when the momentum mesh is held constant), but

the IV curve changes shape and converges toward a single curve as the momentum mesh is

refined (see figures 6.4 and 6.5.)
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Figure 6.3: The shape of the IV curve does not depend on the spatial mesh, regardless of the
size of the momentum mesh. The figure on the left uses a coarser momentum mesh of Nk = 512,
and the right side figure a very fine momentum mesh of Nk = 2048.
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Figure 6.4: The graphs above shows convergence of the IV curve as the number of momentum
grid points increases.
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Figure 6.5: A close up of the IV curves for the finest momentum meshes, with the spatial mesh
fixed at Nx = 513.

6.5 Wigner function analysis

We also looked at the Wigner function to determine if the mesh sizes had any impact on the

shape of the distribution. The Wigner function has a very symmetric shape at V = 0 (see

figure 6.6), but as soon as voltage is applied, the Wigner function begins to develop “fins” in

the center of the distribution (around k = 0) that increase in height and change shape as the

voltage is increased (and decreased) throughout the continuation process. See figure 6.7 for an

example.
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Figure 6.6: The Wigner distribution function at V = 0.
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Figure 6.7: The Wigner distribution function at V = 0.248.
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To determine whether the size of the meshes changed the shape of the distribution, I cap-

tured distribution data for a variety of mesh sizes at V = 0.248. We determined that the size

of the spatial mesh has no impact on the shape of the Wigner distribution (e.g., the shape or

height of the fins in the Wigner function). See figure 6.8.

Figure 6.8: Comparison of Wigner distributions at V = 0.248 for Nx = 257 vs. Nx = 1025
(using Nk = 2048 for both).

However, the shape of the fins in the Wigner distribution function does change as the size

of the momentum mesh is decreased – the fins merge and increase in height. See figure 6.9.
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Figure 6.9: Comparison of Wigner distributions at V = 0.248 for Nk = 2048 vs. Nk = 8192
(using Nx = 513 for both).
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To determine if the fins were just a numerical artifact of the discretization or if they actually

had real volume, we studied the Wigner function just outside of the discontinuity at the k = 0

line to determine if the Wigner function is converging as the momentum grids are refined. To

do this, we interpolated each grid to the next finer grid and calculated the difference using the

max norm between the actual to interpolated grids for both (a) the full momentum region and

(b) the momentum region excluding a small portion close to the singularity at k = 0. Table 6.6

shows the results.

While the differences between the interpolated and actual grids didn’t decrease that much

for the full momentum space, for the momentum space that excluded a small region around the

discontinuity at k = 0 (|k| < 0.0005), the differences decreased more than quadratically with

each grid refinement after the first. The height and volume of the fins can also be seen when

the interior region around k = 0 (|k| < 0.0005) is eliminated in figures 6.10 and 6.11.

Thus we conclude that the Wigner function is converging as Nk → ∞ to a function with

“fins” that have actual volume, and are not a result solely of the numerical discretizations.

Table 6.6: Convergence results for the Wigner function at V = 0.248

all k’s |k| > 0.0005

Coarse → Fine Difference D(n-1)/D(n) Difference D(n-1)/D(n)

512 → 1024 4.36e-04 4.18e-04
1024 → 2048 4.36e-04 1.00 2.02e-04 2.07
2048 → 4096 3.55e-04 1.23 2.98e-05 6.77
4096 → 8192 1.46e-04 2.44 2.80e-06 10.63
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Figure 6.10: Magnifications of the Wigner distribution: the top figure shows the distribution
function for |k| ≤ 0.1, and the bottom figure shows |k| ≤ 0.01. The interior region |k| < 0.0005
has been excluded in both figures.
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Figure 6.11: Another close up view of the Wigner distribution using Nk = 8192, Nx = 513 at
V = 0.248, with the interior region |k| < 0.0005 excluded.
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6.6 Time dependent Wigner simulations

Previous studies on the Wigner-Poisson formulation found oscillations in the time dependent

solutions for very coarse meshes [2, 11], but failed to find similar oscillations as the grids

were refined. Since the C++ model is more numerically accurate and faster than the previous

models, time dependence was revisited to determine if oscillatory solutions existed under grid

refinement.

Figure 6.12: Time dependence: Oscillations in the current for certain voltage values using an
Nx = 86, Nk = 72 uniform grid and the FORTRAN model. From [2].
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6.6.1 Fixed momentum space results

The original goal was to duplicate the results obtained using the original FORTRAN model

in 2005 [2] (see figure 6.12), which used a coarse grid of Nk = 72 and Nx = 86 and a fixed

momentum space of [−0.25, 0.25]. Originally, I planned to use the time integration package

Rythmos (part of the Trilinos software), but was unable to do so since Rythmos does not have a

matrix-free implicit implementation (matrix-free is needed due to the denseness of the Jacobian,

and an implicit implementation is due to the stiffness of the Wigner-Poisson equations). Thus,

we chose to discretize the time derivative ∂f
∂t using backward difference formulas, which could

be implemented by incorporating Trilinos’ non-linear solver, NOX. Backward Euler was used

to find the first time step, and BDF2 for all others.

It was also necessary to find an appropriately sized time step ∆t that would produce a

convergent solution whenever the mesh sizes were changed, so to choose ∆t efficiently, Von

Neumann analysis was used to determine the stability of the discretized Wigner equation. The

results of this analysis (to be discussed in section 6.7) showed that the time step for both

Backward Euler and BDF2 had to satisfy

∆t ≥ C
∆x

∆k
(6.4)

where C is a constant determined by the discretization of ∂f
∂t , and ∆x and ∆k are the

smallest mesh sizes for the spatial and momentum dimensions respectively. Thus, a momentum

mesh ∆k could be chosen first, and then an appropriately sized ∆t and ∆x determined to

produce a convergent solution.

77



I began the time dependent simulations by using a coarse mesh of Nk = 256 and Nx = 257,

and found oscillations in the current for various voltage values (from V = 0.248 to V = 0.256,

with small amplitude oscillations at V = 0.264 that appear to be damping out extremely

slowly). See figure 6.13. However, when the grid was refined to Nk = 512, Nx = 513, the

range of voltage values where oscillations appeared shrank so that they were only present at

V = 0.264. See figure 6.14.
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Figure 6.13: Coarse grid oscillations for Nk = 256, Nx = 257. Oscillations appear at a
couple voltage values (V = 0.248 and V = 0.256), with small amplitude damping oscillations
at V = 0.264. The time step used was ∆t = 20fs.
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Figure 6.14: Oscillations appear only for one voltage value (V = 0.264) for a slightly finer
grid using Nk = 512, Nx = 513.The time step used was ∆t = 20fs.

As the grids are refined even further, evidence of oscillations disappears. Since oscillations

appeared only around V = 0.264 for the Nk = 512, Nx = 513 grid, I refined the grid again

to Nk = 1024, Nx = 1025 and focused the simulation runs in the voltage range of 0.264 ≤

V ≤ 0.276. However, the only oscillations present damped out after a short period of time. See

figure 6.15. To complete the study, I refined the grid one last time to Nk = 2048, Nx = 1025,

and sampled the full range of voltage values, from 0.248 ≤ V ≤ 0.31, and found no oscillations

at any voltage value, as per figure 6.16. Thus we concluded that the oscillations are present for

certain voltage values for coarse grids, but disappear under grid refinement.
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Figure 6.15: Time dependent simulations were focused around the voltage values 0.264 ≤ V ≤
0.276 with a further grid refinement to Nk = 1024, Nx = 1025, ∆t = 20fs, but no oscillations
were found.
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Figure 6.16: A final grid refinement to Nk = 2048, Nx = 1025 with ∆t = 27.5fs did not
produce oscillations for any sampled voltage value in the full range of 0.248 ≤ V ≤ 0.31

80



6.6.2 Variable momentum space results

It was noticed while reviewing the results of time-dependent simulations that fixing the size

of the momentum domain is inconsistent with the definition of the momentum range given

in the original papers that described the Wigner-Poisson model [9, 8], so we re-examined the

time-dependent problem using the relation

∆k =
π

Nk∆x
(6.5)

which forces the momentum range to be

k ∈ [−π(Nx− 1)

2L
,
π(Nx− 1)

2L
] = [−Lk, Lk] (6.6)

where L is the length of the device and Nx is the total number of grid points used for a uniform

mesh. The goal was again to determine whether oscillations existed under grid refinement.

To determine appropriate time steps, we combined the results of the Von Neumann analysis

(see section 6.7 with the new momentum range equation to determine new conditions on the

mesh sizes. The conditions were:

∆x → 0 =⇒ ∆x =
π

Lk
→ 0 =⇒ Lk →∞ (6.7)

∆k → 0 =⇒ ∆k =
Lk
Nk
→ 0 =⇒ Nk →∞ (6.8)

∆t → 0 =⇒ ∆t ≥ C∆x

∆k
=
Cπ/Lk
Lk/Nk

=
CπNk

L2
k

→ 0 (6.9)

To satisfy all conditions, we choose to increase Nk by a factor of 2, and increase Lk by a

factor of 1.5 so each successive grid would be Nx(fine) = 1.5 ×Nx(coarse) and Nk(fine) =

2×Nk(coarse).
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The results of this investigation were similar to those for the fixed momentum range: for

coarse meshes, we found oscillations for a wide range of voltage values (see figures 6.17 and

6.18), but as the grid was refined, the voltage range at which oscillatory solutions were found

diminished and shifted from previous voltage ranges (see figures 6.19 and 6.20). However, the

corresponding IV curves were not as physically realistic as the ones produced by the fixed

momentum range (see the plots in the lower right hand corner of each figure).
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Figure 6.17: Simulation results for variable momentum range, using coarse grids of
Nx = 257, Nk = 512, kmax = 0.75,∆t = 20fs.
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Figure 6.18: Simulation results for variable momentum range, using coarse grids of
Nx = 385, Nk = 1024, kmax = 1.10,∆t = 20fs.
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Figure 6.19: Simulation results for variable momentum range, using fine grids of
Nx = 577, Nk = 2048, kmax = 1.65,∆t = 20fs.
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Figure 6.20: Simulation results for variable momentum range, using fine grids of
Nx = 865, Nk = 4096, kmax = 2.50,∆t = 20fs

Since the IV curves produced by the variable momentum space did not look physically

realistic, we analyzed numerous grid spacings to determine if we could find a set of meshes for

which the IV curves converged. First I held the spatial grid fixed at Nx = 265 and allowed the

momentum mesh to change, but could not find a set of momentum grid size for which the IV

curve converged (see figure 6.21).

Next I fixed the momentum grid and changed the size of the spatial mesh (which changed

the size of the momentum domain), but I again found that I could not find a set of meshes for

which the IV curve converged (see figure 6.22).
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Figure 6.21: IV curves using Nx = 265, Nk = various with a variable momentum domain.
The Nk = 10000 and Nk = 20000 curves are identical, as are Nk = 6000 and Nk = 12000 (but
different from Nk = 10000); and Nk = 15000 is completely distinct from either of the other
sets of curves.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

0

1

2

3

4

5

6 x 106

C
ur

re
nt

 D
en

si
ty

 (A
/c

m
2 )

Voltage (V)

IV curves for Nk=10000, kmax = (Nx 1) / 2L

 

 

Nx=133
Nx=177
Nx=229
Nx=265
Nx=351
Nx=551
Nx=771

Figure 6.22: IV curves using various values for Nx and Nk = 10000. For Nk ≤ 229, the
curves are similar in shape, but they develop larger loops and veer away from the initial curves
as Nx > 351.
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The only way I was able to find a set of spatial and momentum meshes that produced a

converged IV curve was to fix size of the momentum domain and then decrease the spatial mesh

used to do simulation runs. When I did this, I was able to get the IV curve to converge to a single

solution, which matched previous IV curves using a fixed momentum space of [−0.25, 0.25]. See

figure 6.23 for an example.
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Figure 6.23: The figure on the left fixes Lk at 0.70, and then the size of the spatial mesh
is decreased until convergence is seen. The figure on the right is a comparison between the
converged IV curves for Lk = 0.25 (previous work) and the curve using Nx = 285 and Lk = 0.70
(from the figure on the left).

Since we cannot get physically realistic results using the variable momentum domain, we

concluded that the momentum domain should be fixed to get reasonable results from our

simulation runs.
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6.7 Von Neumann Analysis

Von Neumann analysis is generally used to determine stability criteria for constant coefficient

linear PDEs [74]. Since the Wigner equation is a nonlinear integro-differential equation, we

applied Von Neumann analysis cautiously, hoping to come up with a result that could be used

as a guideline in determining the time step ∆t for our time dependent simulation runs.

The Wigner equation is

∂f(x, k, t)

∂t
= K(f) + P (f) + S(f) (6.10)

where

K(f) = − ~k
m∗

∂f(x, k)

∂x
(6.11)

P (f) = −4

h

∫ ∞
−∞

f(x, k′)dk′
∫ ∞

0
[U(x+ y)− U(x− y)] sin(2y(k − k′))dy (6.12)

and

S(f) =
1

τ

( ∫∞
−∞ f(x, k′)dk′∫∞
−∞ f0(x, k′)dk′

· f0(x, k)− f(x, k)

)
(6.13)

Applying 4th order finite difference approximations, the terms on the right hand side become

K(f(xm, kj , tn)) =
~|km|
m∗

(
25fm,j − 48fm±1,j + 36fm±2,j − 16fm±3,j + 3fm±4,j

12∆x

)
(6.14)

P (f(xm, kj , tn)) = −4

h

Nk∑
j′=1

fm,j′wj′
Nc+1∑
m′=1

[U(xm + xm′)− U(xm − xm′)]× (6.15)

sin(2xm′(kj − kj′))wm′

and

S(f(xm, kj , tn)) =
1

τ

(∑Nk
j′=1 fm,j′wj′∑Nk
j′=1 f

0
m,j′wj′

· f0
m,j − fm,j

)
(6.16)
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where the weight terms are (at worst): wj′ ∼ O(∆k) and wm′ ∼ O((∆x)2) and

f0
m,j = f(xm, kj , t = 0) at V=0.

Von Neumann analysis assumes that we can write the solution f(x, k, t) as

f(x, k, t) = g(ξ, η)ei(ξx+ηk) (6.17)

where g(ξ, η) is an amplification factor, with ξ, η ∈ Z. The discretized version becomes

f(xm, kj , tn) = fnm,j = g(ξ, η)neiξm∆x+iηj∆k (6.18)

6.7.1 Elimination of the scattering term

Substituting the discretized Von Neumann function into the Wigner equation, we can immedi-

ately eliminate the scattering term from the analysis:

S(fnm,j) =
1

τ

(∑Nk
j′=1 f

n
m,j′wj′∑Nk

j′=1 f
0
m,j′wj′

· f0
m,j − fnm,j

)
(6.19)

=
1

τ

(∑Nk
j′=1 g(ξ, η)neiξm∆x+iηj′∆kwj′∑Nk

j′=1 e
iξm∆x+iηj′∆kwj′

· eiξm∆x+iηj∆k − g(ξ, η)neiξm∆x+iηj∆k

)
(6.20)

=
1

τ

(
g(ξ, η)n

∑Nk
j′=1 e

iξm∆x+iηj′∆kwj′∑Nk
j′=1 e

iξm∆x+iηj′∆kwj′
· eiξm∆x+iηj∆k − g(ξ, η)neiξm∆x+iηj∆k

)
(6.21)

=
1

τ

(
g(ξ, η)n · eiξm∆x+iηj∆k − g(ξ, η)neiξm∆x+iηj∆k

)
= 0 (6.22)

So the scattering term has no effect on the stability.
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6.7.2 Elimination of the potential term

By analyzing the effect of the potential term on the stability of the Wigner problem, we can

show it only plays a minor role:

P(fnmj) = −4

h

Nk∑
j′=1

fm,j′wj′
Nc+1∑
m′=1

[U(xm + xm′)− U(xm − xm′)] sin(2xm′(kj − kj′))wm′ (6.23)

∼ −4

h

Nk∑
j′=1

fm,j′ ·O(∆k)
Nc+1∑
m′=1

[U(xm + xm′)− U(xm − xm′)]× (6.24)

sin(2xm′(kj − kj′)) ·O((∆x)2)

Now

−4

h

Nk∑
j′=1

fm,j′ ·O(∆k) ∼ O(1) (6.25)

and
Nc+1∑
m′=1

[U(xm + xm′)− U(xm − xm′)] sin(2xm′(kj − kj′)) ·O((∆x)2) ∼ O(∆x) (6.26)

so

P(fnmj) ∼ O(1) ·O(∆x) = O(∆x) (6.27)

Thus the potential term contributes an effect proportional to the size of the spatial mesh.

The kinetic term, however, is O(1/∆x):

K(f(xm,kj)) =
~|km|
m∗

(
25fm,j − 48fm±1,j + 36fm±2,j − 16fm±3,j + 3fm±4,j

12∆x

)
(6.28)

∼ ~|km|
m∗

·O(
1

∆x
) (6.29)

(6.30)

Compared to the kinetic term, the potential term’s contribution to the stability of the

Wigner equation is minor. Thus, we can drop the potential term from consideration, and focus

only on the kinetic term. So our stability analysis is reduced to that for a constant coefficient
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PDE:

∂f

∂t
=

~|km|
m∗

(
25fm,j − 48fm±1,j + 36fm±2,j − 16fm±3,j + 3fm±4,j

12∆x

)
(6.31)

where ∂f
∂t will be discretized using either the first order Backward Euler method or the second

order BDF2 method.

6.7.3 Von Neumann stability analysis for Backward Euler

Using Backward Euler to approximate the time derivative and applying the discretized Von

Neumann solution, we have

fn+1
m,j − fnm,j

∆t
=

~|km|
m∗

(
25fn+1

m,j − 48fn+1
m±1,j + 36fn+1

m±2,j

12∆x
(6.32)

−16fn+1
m±3,j + 3fn+1

m±4,j

12∆x

)
(gn+1 − gn)eiξm∆x+iηj∆k

∆t
=

~|km|
12m∗∆x

· gn+1eiξm∆x+iηj∆k × (6.33)(
25− 48e±iξ∆x + 36e±2iξ∆x − 16e±3iξ∆x + 3e±4iξ∆x

)
gn+1 − gn =

~|km|∆t
12m∗∆x

· gn+1 × (6.34)(
25− 48e±iξ∆x + 36e±2iξ∆x − 16e±3iξ∆x + 3e±4iξ∆x

)
g − 1 =

~|km|∆t
12m∗∆x

· g (A+Bi) (6.35)

where

A = 25− 48 cos(ξ∆x) + 36 cos(2ξ∆x)− 16 cos(3ξ∆x) + 3 cos(4ξ∆x) (6.36)

B = ∓48 sin(ξ∆x)± 36 sin(2ξ∆x)∓ 16 sin(3ξ∆x)± 3 sin(4ξ∆x) (6.37)
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Then

g

(
1− ~|km|∆t

12m∗∆x
(A+Bi)

)
= 1 =⇒ g =

(
1− ~|km|∆t

12m∗∆x
(A+Bi)

)−1

(6.38)

For stability, we need the amplification factor ||g|| ≤ 1, so

||g|| =

∣∣∣∣∣
∣∣∣∣∣
(

1− ~|km|∆t
12m∗∆x

(A+Bi)

)−1
∣∣∣∣∣
∣∣∣∣∣ ≤ 1 =⇒

∣∣∣∣∣∣∣∣1− ~|km|∆t
12m∗∆x

(A+Bi)

∣∣∣∣∣∣∣∣ ≥ 1 (6.39)

Now

∣∣∣∣∣∣∣∣1− ~|km|∆t
12m∗∆x

(A+Bi)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣1− ~|km|∆t
12m∗∆x

A+ i · ~|km|∆t
12m∗∆x

B

∣∣∣∣∣∣∣∣ ≥ 1 (6.40)(
1− ~|km|∆t

12m∗∆x
A

)2

+

(
~|km|∆t
12m∗∆x

B

)2

= 1− ~|km|∆t
6m∗∆x

A (6.41)

+

(
~|km|∆t
12m∗∆x

)2 (
A2 +B2

)
≥ 1(

~|km|∆t
12m∗∆x

)2 (
A2 +B2

)
≥ ~|km|∆t

6m∗∆x
A (6.42)

~|km|∆t
12m∗∆x

≥ 2A

A2 +B2
(6.43)

∆t ≥ 24m∗A

~(A2 +B2)

∆x

|km|
(6.44)

∆t ≥ 48m∗A

~(A2 +B2)

∆x

∆k
∼ O

(
∆x

∆k

)
(6.45)

Thus, for Backward Euler, we can use the ratio of the spatial mesh over the momentum

mesh as a guideline to choose an appropriate time step to yield a convergent solution.
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6.7.4 Von Neumann stability analysis for BDF-2

Using BDF-2 to approximate the time derivative and applying the discretized Von Neumann

solution, we have

3fn+1
m,j − 4fnm,j + fn−1

m,j

2∆t
=

~|km|
m∗

(
25fn+1

m,j − 48fn+1
m±1,j + 36fn+1

m±2,j

12∆x
(6.46)

−16fn+1
m±3,j + 3fn+1

m±4,j

12∆x

)
(3gn+1 − 4gn + gn−1)eiξm∆x+iηj∆k

2∆t
=

~|km| gn+1

12m∗∆x
eiξm∆x+iηj∆k × (6.47)(

25− 48e±iξ∆x + 36e±2iξ∆x − 16e±3iξ∆x + 3e±4iξ∆x
)

3gn+1 − 4gn + gn−1 =
~|km|∆t gn+1

6m∗∆x
× (6.48)(

25− 48e±iξ∆x + 36e±2iξ∆x − 16e±3iξ∆x + 3e±4iξ∆x
)

3g2 − 4g + 1 =
~|km|∆t g2

6m∗∆x
(A+Bi) (6.49)

0 =

(
3− ~|km|∆t

6m∗∆x
(A+Bi)

)
g2 − 4g + 1 (6.50)

where A,B are defined as in equations 6.36 and 6.37 for Backward Euler. Using the quadratic

equation to solve for g, we have

g =

4±
√

16− 4
(

3− ~|km|∆t
6m∗∆x (A+Bi)

)
2
(

3− ~|km|∆t
6m∗∆x (A+Bi)

) =
2±

√
1 + ~|km|∆t

6m∗∆x (A+Bi)

3− ~|km|∆t
6m∗∆x (A+Bi)

(6.51)

We need ||g|| ≤ 1, so let M = ~|km|∆t
6m∗∆x , and

||g|| =

∣∣∣∣∣∣
∣∣∣∣∣∣2±

√
1 + ~|km|∆t

6m∗∆x (A+Bi)

3− ~|km|∆t
6m∗∆x (A+Bi)

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣2±

√
1 +M (A+Bi)

3−M (A+Bi)

∣∣∣∣∣
∣∣∣∣∣ ≤ 1 (6.52)

=⇒ ||2±
√

1 +MA+MBi|| ≤ ||3−MA−MBi|| (6.53)
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The square root of an imaginary number is again imaginary, so let

p+ qi =
√

1 +MA+MBi (6.54)

where

p =
1√
2

√√
(1 +MA)2 + (MB)2 + 1 +MA (6.55)

q =
sgn(b)√

2

√√
(1 +MA)2 + (MB)2 − 1−MA (6.56)

and

p2 + q2 =
√

(1 +MA)2 + (MB)2. (6.57)

Then

||2± (p+ qi)||2 = (2± p)2 + q2 = 4± 4p+ p2 + q2 (6.58)

≤ ||3−MA−MBi||2 (6.59)

= (3−MA)2 + (MB)2 (6.60)

and

± 4p ≤ (3−MA)2 + (MB)2 − 4− (p2 + q2) (6.61)

16p2 ≤
[
(3−MA)2 + (MB)2 − 4− (p2 + q2)

]2
(6.62)

8
(√

(1 +MA)2 + (MB)2 + 1 +MA
)
≤

[
(3−MA)2 + (MB)2 − 4

]2
+ (p2 + q2)2 (6.63)

−2
[
(3−MA)2 + (MB)2 − 4

]
(p2 + q2)

8(p2 + q2) + 8(1 +MA) ≤
[
(3−MA)2 + (MB)2 − 4

]2
(6.64)

−2
[
(3−MA)2 + (MB)2 − 4

]
(p2 + q2)

+(1 +MA)2 + (MB)2
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8(p2 + q2) + 8(1 +MA) ≤
[
(3−MA)2 + (MB)2 − 4

]2
(6.65)

−2
[
(3−MA)2 + (MB)2

]
(p2 + q2)

+8(p2 + q2) + (1 +MA)2 + (MB)2

2
[
(3−MA)2 + (MB)2

]
(p2 + q2) ≤

[
(3−MA)2 + (MB)2 − 4

]2
(6.66)

+(1 +MA)2 + (MB)2 − 8(1 +MA)

≤
[
(3−MA)2 + (MB)2

]2
(6.67)

−8
[
(3−MA)2 + (MB)2

]
+16 + (−16 + 9− 6MA+ (MA)2 + (MB)2)

≤
[
(3−MA)2 + (MB)2

]2
(6.68)

−8
[
(3−MA)2 + (MB)2

]
+ (3−MA)2 + (MB)2

≤
[
(3−MA)2 + (MB)2

]
× (6.69)[

(3−MA)2 + (MB)2 − 7
]

=⇒ 2(p2 + q2) ≤
[
(3−MA)2 + (MB)2 − 7

]
(6.70)

4
[
(1 +MA)2 + (MB)2

]
≤

[
(3−MA)2 + (MB)2 − 7

]2
(6.71)

0 ≤
[
(3−MA)2 + (MB)2 − 7

]2 − 4
[
(1 +MA)2 + (MB)2

]
(6.72)

≤
[
−6MA+ (MA)2 + (MB)2 + 2

]2
(6.73)

−4[1 + 8MA− 6MA+ (MA)2 + (MB)2]

≤
[
−6MA+ (MA)2 + (MB)2

]2
(6.74)

+4
[
−6MA+ (MA)2 + (MB)2

]
+4− 4[−6MA+ (MA)2 + (MB)2]− 4− 32MA

≤ [−6MA+M2(A2 +B2)]2 − 32MA (6.75)

=⇒ (A2 +B2)2 ·M3 − 12A(A2 +B2) ·M2 + 36A2 ·M − 32A ≥ 0 (6.76)
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To determine for which values of M the above equation holds, we solve the cubic equation

for M to find the roots of the equation. For the general cubic equation F (M) = aM3 + bM2 +

cM + d = 0, the discriminant ∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 determines how many

real roots exist. For equation 6.76,

∆ = 18(A2 +B2)2(−12A[A2 +B2])(36A2)(−32A)− 4(−12A[A2 +B2])3(−32A) (6.77)

+(−12A[A2 +B2])2(36A2)2 − 4(A2 +B2)2(36A2)3 − 27(A2 +B2)4(−32A)2

= −27, 648 A2B2(A2 +B2)3 < 0 ∀ A,B (since A,B 6= 0 at the same time) (6.78)

Since the determinant is negative, there only exists one real root, which is

M∗ =
4A

A2 +B2
+

2A1/3

A2 +B2

[
(
√
A2 +B2 −B)2/3 + (

√
A2 +B2 +B)2/3

]
(6.79)

To determine whether M∗ is a minimum or maximum, we look at the derivative of the cubic

equation at M∗:

F ′(M∗) = 3a(M∗)2 + 2bM∗ + c (6.80)

= 3(A2 +B2)2(M∗)2 − 24A(A2 +B2)M∗ + 36A2 (6.81)

= 3
(

16A2 + 16A4/3
[
(
√
A2 +B2 −B)2/3 + (

√
A2 +B2 +B)2/3

]
(6.82)

+4A2/3
[
(
√
A2 +B2 −B)2/3 + (

√
A2 +B2 +B)2/3

]2
)

−24A
(

4A+ 2A1/3
[
(
√
A2 +B2 −B)2/3 + (

√
A2 +B2 +B)2/3

])
+ 36A2

= −12A2 + 12A2/3
[
(
√
A2 +B2 −B)2/3 + (

√
A2 +B2 +B)2/3

]2
(6.83)
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To show the derivative is positive (and thus that M∗ is a minimum), we need

(
√
A2 +B2 −B)2/3 + (

√
A2 +B2 +B)2/3 ≥ A2/3:

[
(
√
A2 +B2 −B)2/3 + (

√
A2 +B2 +B)2/3

]3
= (

√
A2 +B2 −B)2 (6.84)

+ (
√
A2 +B2 +B)2

+3 (A2 +B2 −B2)2/3 ×[
(
√
A2 +B2 −B)2/3

+ (
√
A2 +B2 +B)2/3

]
= 2A2 + 4B2 + 3A4/3 × (6.85)[

(
√
A2 +B2 −B)2/3

+ (
√
A2 +B2 +B)2/3

]
≥ 2A2 + 4B2 + 3A4/3 × (6.86)[√

A2 +B2 +B
]2/3

≥ 2A2 + 3A4/3 ·A2/3 = 5A2 (6.87)

=⇒ (
√
A2 +B2 −B)2/3 + (

√
A2 +B2 +B)2/3 ≥ 3

√
5A2/3 ≥ A2/3 (6.88)

So

F ′(M∗) = −12A2 + 12A2/3
[
(
√
A2 +B2 −B)2/3 + (

√
A2 +B2 +B)2/3

]2
(6.89)

≥ −12A2 + 12A2/3(
3
√

5A2/3)2 = 12(−1 +
3
√

25)A2 > 0 (6.90)
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And thus (A2 +B2)2 ·M3 − 12A(A2 +B2) ·M2 + 36A2 ·M − 32A ≥ 0 is satisfied when

M ≥M∗, so

M ≥ M∗ (6.91)

=⇒ ~|km|∆t
6m∗∆x

≥ M∗ (6.92)

∆t ≥ 6m∗∆x

~|km|
M∗ ∼ O

(
∆x

|km|

)
∼ O

(
∆x

∆k

)
(6.93)

And we find again that choosing an appropriate time step to yield a convergent solution is

dependent on the ratio of the size of the spatial mesh over the size of the momentum mesh.

6.7.5 Von Neumann stability analysis for Crank-Nicolson

For some of my early time dependent simulation runs, I tried using the Crank-Nicolson method

to calculate the Wigner function for t ≥ t2, but could not get convergent results regardless of the

time step and momentum / spatial meshes used. When we decided to use Von Neumann analysis

to provide a guideline for choosing the time step for BDF2, I applied Von Neumann analysis to

the Crank-Nicolson method and discovered that my experimental results were consistent with

the result of the analysis, which was that Crank-Nicolson will not provide convergent solutions

for the Wigner equation, regardless of the time step used.

Applying the discretized approximations for Crank-Nicolson to the reduced Wigner equation

used for Von Neumann analysis (see equation 6.31):

fn+1
m,j − fnm,j

∆t
=

1

2

[
W (fn+1

m,j ) +W (fnm,j)
]

(6.94)

=
1

2

[
~|km|
m∗

(
25fn+1

m,j − 48fn+1
m±1,j + 36fn+1

m±2,j − 16fn+1
m±3,j + 3fn+1

m±4,j

12∆x

)
+ (6.95)

~|km|
m∗

(
25fnm,j − 48fnm±1,j + 36fnm±2,j − 16fnm±3,j + 3fnm±4,j

12∆x

)]
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Substituting g(ξ, η)neiξm∆x+iηj∆k for fnm,j leads to

(gn+1 − gn)eiξm∆x+iηj∆k

∆t
=

~|km|
24m∗∆x

· (gn+1 + gn)eiξm∆x+iηj∆k × (6.96)(
25− 48e±iξ∆x + 36e±2iξ∆x − 16e±3iξ∆x + 3e±4iξ∆x

)
gn+1 − gn =

~|km|∆t
24m∗∆x

· (gn+1 + gn)× (6.97)(
25− 48e±iξ∆x + 36e±2iξ∆x − 16e±3iξ∆x + 3e±4iξ∆x

)
g − 1 =

~|km|∆t
24m∗∆x

· (g + 1) (A+Bi) (6.98)

where A,B are as defined in equations 6.36 and 6.37 for Backward Euler. Let M = ~|km|
24m∗∆x ;

then M > 0 for all discretized values of km,∆x. So

g − 1 = M · (g + 1)(A+Bi) (6.99)

g −Mg(A+Bi) = 1 +M(A+Bi) (6.100)

=⇒ g =
1 +MA+MBi

1−MA−MBi
(6.101)

We need ||g|| ≤ 1, so

||1 +MA+MBi|| ≤ ||1−MA−MBi|| (6.102)

(1 +MA)2 + (MB)2 ≤ (1−MA)2 + (MB)2 (6.103)

2MA ≤ −2MA (6.104)

=⇒ A ≤ 0 (6.105)

Per Von Neumann analysis, the above inequality must hold true for all values of A. But

A = 25−48 cos(ξ∆x)+36 cos(2ξ∆x)−16 cos(3ξ∆x)+3 cos(4ξ∆x) where ξ is an arbitrary wave
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number, and if ξ = π
∆x , then

A = 25− 48 cosπ + 36 cos 2π − 16 cos 3π + 3 cos 4π = 25 + 48 + 36 + 16 + 3 = 128 > 0.

So the amplification factor g(ξ, η) does not comply with ||g|| ≤ 1 for all values of ξ, η, and

thus Crank-Nicolson is not a convergent method for the Wigner equation.
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Chapter 7

Scalability

7.1 RTD Code Improvements

To improve the performance of the code, I analyzed each piece of the Wigner-Poisson com-

putation to determine how to improve both the scalability and the simulation run times. Im-

provements were made to the computational methods, data storage, and the distributed Wigner

vectors. The result is a simulation model that decreases run times by over 90% and reaches

maximum speedup using half the number of cores as the original code, although some scalability

is sacrificed.

As mentioned in chapter 6, the scaling studies were performed on the NCSU HPC cluster

using a set of 30 dual-processor Intel Xeon blades with Infiniband interconnects. Since we

wanted to maximize the use of the available blades, I ran simulations for the scaling study

using extremely fine grids that would reach maximum speedup at over 100 cores. The base

number of cores was set to 8 (for efficiency and serial percentage computations using Amdahl’s

Law) to match the number of cores per blade, and each simulation run used all 8 cores per

assigned blade.
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7.1.1 Wigner Equation Changes

Initially, the numerical simulation was set up to solve the Wigner equation (equation 2.49) by

calculating each term separately and then applying a preconditioner:

A

[
Kf + P (f) + S1(f)− 1

τ
f

]
= 0 (7.1)

Here A is the preconditioner matrix, which is the inverse of the kinetic matrix; K is the

matrix representing the numerical approximation of the kinetic term; P (f) is the potential

term; and S1(f) = 1
τ

∫
f∫
f0

. However, the Wigner equation can be rewritten to eliminate separate

computation of the kinetic term, by rearranging terms as:

f +

[
K− 1

τ
I

]−1

· [P (f) + S1(f)] = 0 (7.2)

Solving the Wigner equation in this form reduced run times by approximately 30%.

7.1.2 Sparse Matrix Interpolation

Next, the interpolation routine was changed to use a sparse matrix-vector product rather than

an in-line computation at each grid point. The sparse matrix was pre-computed by determining

the interpolation constants needed to produce each unit vector in a grid region and assigning

the constants to the matrix so that the result of the sparse matrix with a non-uniform Wigner

vector is the interpolated Wigner vector.

While these changes improved the scalability of the Wigner code, parallel profiling results

revealed several areas that could significantly decrease run times. However, decreasing run times

of highly parallel portions of the code would increase the serial percentage and lose some of the

scalability improvements. Since the main goal of this work is to decrease simulation run times

to allow finer grids to be used and longer devices to be modeled, we chose to implement these

changes at the possible expense of scalability.
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Table 7.1: Profiling statistics for each portion of the parallel RTD code using a grid of
Nk = 2048, Nx = 513

Avg run time (sec) %
DESCRIPTION (in order of computation) 8 cores 24 cores change

Import distributed non-unif vector to full vector 451.398 682.842 +51.3
Compute interpolation via sparse mat-vec 1,627.618 911.624 -44.0
Integrate (distributed) electron density 12.517 4.492 -64.1
Import distributed electron density to full vector 73.220 73.294 +0.1
Compute Poisson’s equation 36.510 35.779 -2.0
Compute the inner potential integral (over x) 44,957.463 14,979.325 -66.7
Compute the outer potential integral (over k) 16,227.338 5,027.028 -69.0
Add the scattering term 9.350 3.119 -66.6
Flip the distributed (over x) vector to dist over k 1,203.569 1,182.423 -1.8
Apply the preconditioner 26.344 17.240 -34.6
Flip the vector back to distribution over x 17.418 29.684 +70.4
Add the original Wigner function to new solution 2.945 0.777 -73.6

Total for all Wigner computations 64,647.788 22,948.758 -64.5

The brown text signifies cross-processor communication.
The blue text indicates serial code.

7.1.3 BLAS

One of the most significant differences in run times was a change to the Tp matrix computation

to incorporate a highly efficient routine from the BLAS library.

Profiling statistics on the parallel version of the Wigner code were obtained to determine

where the bottlenecks were. Initial results pointed to one routine – the calculation of the Tp

matrix – as the main culprit, since it was responsible for about 70% of total computation

time (see table 7.1). Review of the Tp matrix calculation suggested a rewrite of the multiple

nested loops into a matrix-matrix calculation. To increase the efficiency of the matrix-matrix

computation, a BLAS routine was used.
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The Basic Linear Algebra Subprograms (BLAS) library is a set of routines that provide

highly optimized programs for computing basic vector and matrix operations [75, 76]. BLAS

routines are divided into three levels: level 1 deals with vector-vector operations, level 2 with

matrix-vector operations, and level 3 with matrix-matrix routines. Optimized level 3 BLAS

routines can come close to peak machine speed [75], so reordering loops to use higher level BLAS

routines (particularly BLAS-3 routines) can decrease run times significantly. Thus, the BLAS-3

routine DGEMM, an optimized matrix-matrix multiply routine, was incorporated within the

Trilinos framework, which reduced total run times by 70-80%.

However, since the Tp matrix calculation was almost perfectly parallel and contributed

significantly to overall run times, the incorporation of the optimized routine decreased the

efficiency of the code (as computed via Amdahl’s Law), which in turn decreased the number

of cores needed to achieve maximum speedup. So some scalability was lost, but the significant

decrease in run times justified the change.

7.1.4 Optimization of Interpolation Routine

Once the BLAS-3 routine was implemented, new profiling statistics were gathered to determine

if there were other areas to target for improvement (see table 7.2.) The parallel profiling results

showed that the interpolation routine (sparse matrix-vector multiply) was not performing well;

as an example, see table 7.2, which shows a decrease in run time of only 40% (as cores are

increased by a factor of 5) rather than the expected 80%.

In reviewing the structure of the data objects used in the interpolation routine, I realized

that the distributed Wigner vector over x required significant cross-processor communication,

and a change to a distributed Wigner vector over k should eliminate it. So the interpolation

computation was updated to reflect the more efficient parallelization method, and new profiling

results (shown in table 7.3) reflect a proper decrease in run times for the interpolation routine.
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Table 7.2: Profiling statistics for each portion of the parallel RTD code after the implementa-
tion of the BLAS-3 routine and data layout improvements. Statistics gathered using a grid of
Nk = 2048, Nx = 513

Avg run time (sec) %
DESCRIPTION (in order of computation) 8 cores 24 cores change

Compute interpolation via sparse mat-vec 1,523.346 888.815 -41.7
Integrate (distributed) electron density 8.159 2.863 -64.9
Import distributed electron density to full vector 39.892 63.763 +59.8
Compute Poisson’s equation 35.926 35.630 -0.8
Compute the inner potential integral (over x) 1,477.291 635.471 -57.0
Compute the outer potential integral (over k) 5,170.314 1,353.925 -73.8
Add the scattering term 5.726 2.123 -62.9
Flip the distributed vector to distribution over k 103.935 192.611 +85.3
Apply the preconditioner 22.353 7.565 -66.2
Flip the vector back to distribution over x 19.072 33.472 +75.5
Add the original Wigner function to new solution 3.007 0.853 -71.6

Total for all Wigner computations 8,409.233 3,217.277 -61.7

Table 7.3: Profiling statistics for each portion of the parallel RTD code after the change to the
Interpolation matrix structure and additional data layout improvements. Statistics gathered
using a grid of Nk = 2048, Nx = 513

Avg run time (sec) %
DESCRIPTION (in order of computation) 8 cores 24 cores change

Compute interpolation via sparse mat-vec 176.383 65.498 -62.9
Multiply interpolated vector by weights for k integration 13.560 4.517 -66.8
Flip the distributed (over k) vector to distribution over x 281.763 216.883 -23.0
Integrate (distributed) electron density 2.282 0.725 -68.2
Import distributed electron density to full vector 7.218 33.695 +366.8
Compute Poisson’s equation 33.685 32.507 -3.5
Compute the inner potential integral (over x) 1,397.260 599.199 -57.1
Compute the outer potential integral (over k) 3,160.695 876.767 -72.3
Flip the distributed (over x) vector to distribution over k 85.976 104.374 +21.4
Add the scattering term 4.280 1.676 -60.8
Apply the preconditioner 22.306 7.386 -66.9
Add the original Wigner function to new solution 2.614 0.751 -71.3

Total for all Wigner computations 5,187.054 1,934.689 -62.7

The brown text signifies cross-processor communication.
The blue text indicates serial code.

104



7.1.5 Improvements to Data Layout

While the changes to the solution method for the Wigner equation, the interpolation routine,

and the Tp calculation made the most significant improvements to the run times, a variety of

other changes to the structure of the data objects were also made to improve memory usage

and reduce communication time.

One of these changes was to store Tp and Tc matrix data in a manner which allowed

efficient cache usage. When one element is pulled into cache, nearby elements are also included,

so optimal data layout will store elements in a sequence such that as many as possible will be

used before they are flushed out of cache [75]. Thus the elements of the Tp and Tc matrices

were reordered so that integrals over k would be more efficiently computed.

Similarly, the elements of the distributed Wigner vector over x were reordered to decrease

cache misses when computing integrals over k. Loop unrolling was also incorporated into the

integral computations to improve the use of cache and decrease run times.

Additional changes were made to decrease overall memory usage. This was accomplished by

consolidating memory for data elements that were used in multiple areas of the code; eliminating

data elements if another could be overwritten and used in its place; and passing all vectors and

matrices by reference or pointer.

7.2 Final Scaling Results

As mentioned in chapter 6, measuring parallel performance is done using scaling studies, where

the number of cores used for an application is increased and the results are compared against

a base case. Two different methods are generally used, strong scaling and weak scaling.
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7.2.1 Strong Scaling

One of the most common scaling studies is strong scaling, which fixes the total problem size

and then increases the number of cores used. The previous C++ code achieved decent strong

scalability results but run times were still on the order of hours for a fine grid (see table 6.4). The

new C++ code reduces run times significantly, and cuts in half the number of cores necessary

to achieve maximum speedup while keeping the serial percentage for strong scalability low.

As a comparison, for the fine grid of Nk = 2048, Nx = 513 used in table 6.4, the maximum

speedup (and minimum run time) was achieved using 96 cores (with a run time of 5 hours); for

the same grid, the maximum speedup was at 48 cores (with a run time of 34 minutes). Thus,

finer grids can be used in simulation runs and still produce reasonable run times, which was

not possible using the previous C++ code. One attempt with the old C++ code at using an

ultra fine grid of Nk = 4096, Nx = 4097 and 128 cores took 224 hours to run; a simulation run

using these same parameters with the new C++ code took only 6 hours.

Thus, to maximize the performance of the Wigner code in testing strong scalability, an ultra

fine grid of Nk = 4096, Nx = 2049 was used, with 8 cores as a base (see table 7.4). The results

show a serial percentage around 3.25% at maximum speedup along with significantly improved

run times.

Table 7.4: Strong scaling study using ultra fine grid of Nk = 4096, Nx = 2049.

No. of Run times % %
Cores (hr:min) efficiency Speedup Serial

8 31:22 100.0 8.00
16 14:45 106.3 17.01 -5.95
32 6:47 115.6 36.99 -4.50
64 3:44 105.0 67.21 -0.68

128 2:55 67.2 86.03 3.25
192 3:04 42.6 81.83 5.85
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The serial percentage of the new C++ code could be reduced from 3.25% to possibly as low

as 0.5%, but it would require eliminating all of the memory improvements and the addition of

the BLAS-3 routine which reduced run times significantly. The gains in run time performance

far outweigh the loss to scalability, so the new C++ code exceeds the performance objectives

even though it does not match the scalability goal.

7.2.2 Weak Scaling

Another form of parallel performance monitoring is weak scaling, which fixes the problem size

on each core and increases the number of cores used. Weak scaling efficiency is measured by

Efficiency =
T1

TN
× 100% (7.3)

where T1 and TN are run times for the base case and an increment of the base case respectively.

Ideal weak scaling can be achieved by eliminating (or severely minimizing) cross-processor

communication, and by keeping the number of computations constant on each core. However,

neither of these are realistic with the Wigner model. The issues are:

Cross-processor communication. In order to most efficiently handle the integrals over k and

the differentials with respect to x, we need two different partitionings of the Wigner vector.

This requires cross-processor communication to transpose back and forth between the two

partitionings. In addition, a partitioned x vector is used to store the results of the electron

density calculation, the results of which are then sent to all other processors in order to compute

the Poisson term.

Thus, communication time per core increases (which degrades scaling performance) in a

weak scaling study because each vector transposition (or transfer of electron density data)

requires global communication of elements from one processor to all others. Access latency is

fixed per processor, so communication time will increase in proportion with the total number
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of processors used.

Fixed problem size per core. There are two main issues to keeping the problem size constant

across cores: first, the non-uniform grid does not allow even distribution of elements across cores.

Load balancing of the full non-uniform grid is employed in an attempt to minimize processor

wait time, but equal balancing cannot be achieved; and the more zones are present in the full

non-uniform grid, the more unbalanced the Wigner vector distributions can get.

The second issue is that the calculations in the Wigner equation depend on four pa-

rameters of which the user only directly determines two. The four parameters are: Nx, Nk,

Nk(non−uniform) (the number of k grid points in the thinned out momentum grid; loosely but not

directly proportional to Nk), and the total number of (x, k) grid points in the full non-uniform

mesh (loosely but not directly proportional to Nx×Nk(non−uniform)). Each piece of the Wigner

equation depends on a different combination of these four parameters, so determining a method

for keeping the problem size constant is more difficult. To do this, I looked only at the major

contributors to the run times.

Reviewing the data in table 7.3, there are four calculations that impact run times the most:

1. The interpolated Wigner vector over k – computation time is proportional to Nx,

Nk(non−uniform), and the number of cores

2. The Poisson term – dependent only on Nx

3. The Tp matrix – computation time dependent on Nk, Nx, Nc (proportional to Nx), and

the number of cores, and

4. The potential term – the most significant term, it contributes more to total run time than

the previous three terms combined. Run time is proportional to the number elements of

the non-uniform Wigner vector, as well as to Nk(non−uniform) and the number of cores.
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The last two terms reveal the main problem – these terms require opposite parameter

changes to achieve decent weak scaling. The Tp matrix calculation is proportional to Nx2×Nk,

so fixing Nx and increasing Nk (in proportion to the number of cores) will hold the problem

size constant for this term. However, for the potential term, increasing Nk will increase both

Nk(non−uniform) and the number elements of the non-uniform Wigner vector. To hold the number

of potential term calculations constant, we need to fix Nk (and thus Nk(non−uniform)) and

increaseNx (in proportion to the number of cores). And since the potential calculation consumes

the most run time, we should see our best weak scaling performance from this method.

The accompanying tables (see table 7.5) show a comparison of weak scaling performance

for three scenarios: keeping Nk fixed and increasing Nx; keeping Nx fixed and increasing

Nk(non−uniform); and keeping the number of total grid points for the non-uniform mesh fixed

(equates to increasing both Nx and Nk). As expected, the best results, which are still not

particularly good, are from holding Nk fixed and increasing Nx.

109



Table 7.5: Weak scaling study for various Nk and Nx.

Nk constant, Nx variable

Nk Nx No. of Tot non-u Avg non-unif Run time Weak
Orig Non-U cores grid pts pts/proc (hr:min) effic %

2,048 612 513 8 92,646 11,581 1:43 100.0
2,048 612 1,025 16 184,678 11,542 2:01 85.1
2,048 612 2,049 32 368,742 11,523 2:51 60.2
2,048 612 4,097 64 736,870 11,514 4:21 39.5
2,048 612 8,193 128 1,473,126 11,509 7:45 22.2
2,048 612 12,289 192 2,209,382 11,507 39:09 4.4

Total number of non-uniform grid points (per core) constant

Nk Nx No. of Tot non-u Avg non-unif Run time Weak
Orig Non-U cores grid pts pts/proc (hr:min) effic %

992 310 993 8 100,750 12,594 1:36 100.0
1,456 446 1,457 16 201,738 12,609 2:12 72.7
2,144 642 2,145 32 402,106 12,566 3:11 50.3
3,072 914 3,073 64 801,938 12,530 4:55 32.5
4,432 1,306 4,433 128 1,606,798 12,553 7:21 21.8
5,456 1,606 5,457 192 2,419,978 12,604 10:12 15.7

Nknon−uniform variable, Nx constant

Nk Nx No. of Tot non-u Avg non-unif Run time Weak
Orig Non-U cores grid pts pts/proc (hr:min) effic %

1,102 340 1,025 8 110,676 13,835 1:46 100.0
2,278 680 1,025 16 201,640 12,603 2:19 76.3
4,610 1,360 1,025 32 389,200 12,163 3:36 49.1
9,310 2,720 1,025 64 753,568 11,775 6:59 25.3

18,682 5,440 1,025 128 1,491,008 11,649 17:28 10.1
28,058 8,160 1,025 192 2,226,912 11,599 31:37 5.6
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To further demonstrate our inability to keep the problem size constant, we can review the

profiling results for the individual Wigner terms. When Nk is held constant and Nx increased,

the run time to compute theTp matrix increases while the run time to compute the potential

integral over k stays about the same. However, for the opposite case when Nx is held constant

and Nk(non−uniform) increased, there is a slight elevation in the computation time for the Tp

matrix due to the dependence of the calculation on theNk rather thanNk(non−uniform). However,

the main increase in run time is due to the potential term, which increases significantly due

to its dependence on Nk(non−uniform) as well as the size of the Tp matrix. See tables 7.6 and

7.7, which show profiling results for the elements on core zero for each weak scaling case. (Only

results for core zero are shown because the allocation of elements in the non-uniform grid at

the extreme ends of the grid should involve only the coarsest x grid, and thus make a better

comparison as the total problem size is increased.)

Tables 7.6 and 7.7 also show increases for each of the terms involving communication between

cores. (Note that 16 cores was used as a base for comparison since communication times for

8 cores involve only intra-blade communication and would be artificially lower.) The functions

that transpose one distribution of the Wigner vector to the other (i.e., “flipping” the vector)

increase proportionally with the number of cores, since the communication transfers an element

on one core to another core. However, the function importing the distributed electron density

vector to a full vector increases proportional to the square of the increase in cores because each

element on every core must be communicated to every other core. These proportional increases

are reflected for each of the weak scaling cases.
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Table 7.6: Weak scaling profiling statistics for core number zero.

Nk = 2048, Nx variable

DESCRIPTION (in order of computation) Run time (sec) % change

Nx 1,025 8,193 699.3
Cores 16 128 700.0

Compute interpolation via sparse mat-vec 483.897 605.441 25.1
Multiply vector by weights for k integration 29.888 30.019 0.4
Flip the distributed (over k) vector to dist over x 129.451 1,249.710 865.4
Integrate (distributed) electron density 2.449 2.152 -12.1
Import distributed electron density to full vector 18.228 1,147.100 6,193.1
Compute Poisson’s equation 59.499 435.583 632.1
Compute the inner potential integral (over x) 2,484.470 18,261.400 635.0
Compute the outer potential integral (over k) 2,714.460 2,647.260 -2.5
Flip the distributed (over x) vector to dist over k 338.459 2,373.270 601.2
Add the scattering term 4.332 10.209 135.6
Apply the preconditioner 21.106 20.636 -2.2
Add the original Wigner function to new solution 1.829 1.796 -1.8

Total for all Wigner computations 6,286.720 26,778.100 325.9

Total number of non-uniform grid points (per core) constant

DESCRIPTION (in order of computation) Run time (sec) % change

Nk 1,456 4,432 204.4
Nx 1,457 4,433 204.3
# non-U grid pts/core 12,609 12,553 -0.4
Cores 16 128 700.0

Compute interpolation via sparse mat-vec 552.242 708.836 28.4
Multiply vector by weights for k integration 34.349 35.980 4.7
Flip the distributed (over k) vector to dist over x 156.798 1,289.100 722.1
Integrate (distributed) electron density 2.304 2.845 23.5
Import distributed electron density to full vector 11.611 1,271.340 10,849.4
Compute Poisson’s equation 84.907 241.826 184.8
Compute the inner potential integral (over x) 3,469.530 13,183.200 280.0
Compute the outer potential integral (over k) 2,149.190 7,151.830 232.8
Flip the distributed (over x) vector to dist over k 322.222 1,477.070 358.4
Add the scattering term 5.239 8.335 59.1
Apply the preconditioner 24.651 24.709 0.2
Add the original Wigner function to new solution 2.131 2.309 8.3

Total for all Wigner computations 6,813.880 25,390.900 272.6

The brown text signifies cross-processor communication.
The blue text indicates serial code.
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Table 7.7: Weak scaling profiling statistics for core number zero.

Nknon−uniform variable, Nx = 1025

DESCRIPTION (in order of computation) Run time (sec) % change

Nk 2,278 18,682 720.1
Nk(non−uniform) 680 5,440 700.0

Cores 16 128 700.0

Compute interpolation via sparse mat-vec 533.329 578.745 8.5
Multiply vector by weights for k integration 32.675 29.866 -8.6
Flip the distributed (over k) vector to dist over x 141.778 1,141.530 705.2
Integrate (distributed) electron density 2.775 3.919 41.2
Import distributed electron density to full vector 17.441 1,264.100 7,147.8
Compute Poisson’s equation 59.572 59.158 -0.7
Compute the inner potential integral (over x) 2,748.520 5,946.050 116.3
Compute the outer potential integral (over k) 3,545.870 52,491.400 1,380.4
Flip the distributed (over x) vector to dist over k 262.712 909.555 246.2
Add the scattering term 4.593 4.698 2.3
Apply the preconditioner 23.156 20.996 -9.3
Add the original Wigner function to new solution 2.040 2.160 5.8

Total for all Wigner computations 7,373.100 62,445.700 746.9

The brown text signifies cross-processor communication.
The blue text indicates serial code.

7.2.3 Time Dependence

To complete the analysis on the Wigner-Poisson model, I ran strong scaling studies on the time

dependent version of the Wigner-Poisson code. A very fine grid of Nk = 4096, Nx = 2049

was used to compare the results against those for the steady state problem, with ∆t = 20 fs

and tmax = 40,000 fs. Since it has been shown (see section 6.6.1) that oscillations disappear

under grid refinement, I chose only one value of the voltage (V = 0.248) at which to test strong

scaling, since simulation results will be very similar for any value of the voltage.
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The results from table 7.8 show consistency between the steady state code and the time

dependent version. A similar superlinear speedup to that for the steady state code (when the

no. of cores ≤ 64) is present, although the maximum speedup and serial percentage is improved

over the steady state version. This improvement is a result of the convergence of the Wigner

vector to a single solution after a number of time steps (which is much less than the total

number of time steps to be taken). After convergence, the number of computations requiring

cross-processor communication time decreases, which improves the efficiency and the serial %.

Table 7.8: Time dependent strong scaling studies for the fine grid of Nk = 4096, Nx = 2049.

Voltage = 0.248, ∆t = 20fs

No. of Run times % %
Cores (hr:min) efficiency Speedup Serial

8 9:16 100.0 8.00
16 4:12 110.3 17.65 -9.35
32 1:53 123.0 39.36 -6.24
64 0:55 126.4 80.87 -2.98

128 0:41 84.8 108.49 1.20
192 0:42 55.2 105.90 3.53

For time dependent weak scaling, the mesh sizes and time steps must be chosen appropriately

based on the limitations derived using Von Neumann analysis (see section 6.7), and issues arise

in attempting a weak scaling study due to the time step restrictions. For fixed Nx and increasing

Nk, in order to get convergent solutions as Nk gets large, ∆t must be chosen beyond the range

of what seems physically reasonable. Similarly, for Nk fixed and Nx increasing, the time step

restrictions require a base run using Nk ≈ Nx small and ∆t small.
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Thus the most appropriate time dependent weak scaling study is that which fixes the number

of total grid points for the non-uniform mesh (equates to increasing both Nx and Nk at the

same rate). This allows a fixed time step to be chosen and used throughout the scaling study.

In this case, the time dependent Wigner solution converges after a fixed number of time steps,

so the current computation plays a more significant role in scalability. Each piece of the current

computation scales well because each data object depends only on Nx, Nk, and the number of

cores, and thus the size of the data objects per core can be held fairly constant. However, more

cross-processor communication is needed for the current computation than for the standard

Wigner equation, so weak scalability is not improved over the steady state version. See table

7.9.

Table 7.9: Weak scaling study for the time dependent Wigner code keeping the total number
of non-uniform grid points (per core) constant.

V = 0.248, ∆t = 20 fs

Nk Nx No. of Tot non-u Avg non-unif Run time Weak
Orig Non-U cores grid pts pts/proc (hr:min) effic %

992 310 993 8 100,750 12,594 0:34 100.0
1,456 446 1,457 16 201,738 12,609 0:49 69.4
2,144 642 2,145 32 402,106 12,566 1:14 45.9
3,072 914 3,073 64 801,938 12,530 1:56 29.3
4,432 1,306 4,433 128 1,606,798 12,553 3:02 18.7
5,456 1,606 5,457 192 2,419,978 12,604 3:59 14.2

7.3 Future Work

While the new C++ Wigner-Poisson model is a vast improvement over the previous FORTRAN

and MATLAB versions, there are a few improvements that could be tried to decrease run times
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further. The first is to implement a method used in the MATLAB code – an FFT / inverse

FFT combination (used in conjunction with the convolution theorem) to calculate the Wigner

potential term. However, using an FFT would require uniform spacing between the elements

of the Wigner vector used in the calculation, so changes would be needed to restructure the

existing non-uniform Wigner vectors. Additional changes might be needed to the distribution

of the elements across cores to ensure proper load balancing. And finally, it would eliminate

the highly efficient BLAS-3 call, so the run time improvement may not be as significant as the

traditional switch from an n2 computation to a nlog2n computation.

Another possible change to improve the speed of the code would be to rewrite some of the

distributed Wigner vectors as Epetra MultiVectors to take advantage of more efficient Trilinos

commands. For example, the weight terms for the k integral are currently incorporated into the

Wigner vector via multiplications within nested for loops. This could be replaced by writing

the k weights vector as an Epetra Vector, and then multiplying it by the Wigner vector if

the Wigner vector was an Epetra MultiVector. A similar calculation could be done with the

Scattering term and the application of the
∫
f0 term.

7.3.1 Longer Devices

Due to the significant improvements in the run times for the Wigner code, I have been able to

obtain simulation results using longer device lengths. The standard RTD length used throughout

this work is 550 Å, but figure 7.1 shows results for device lengths of 750 Å and 900 Å as well. A

comparison of the I-V curves for the longer devices against that for the shorter device seems to

indicate that the steady state I-V curve will smooth out as the length of the device increases. As

discussed in [43], this supports the idea that the boundary conditions used for this simulation

model (and previous models) may not be ideal.

In order to test the idea that the I-V curve smooths out as the device is lengthened, the

preconditioner for the Wigner model could be improved to reduce the number of Krylovs per
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Figure 7.1: Steady-state IV curves for three different device lengths. The doping levels and
barriers are held constant in the middle of the device, and the doped regions on each end are
increased in length.
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Newton. For the new Wigner-Poisson model using a standard 550 Å length, the number of

Krylovs per Newton varies between 119 and 318. This increases to between 168 and 575 for

a 750 Å device, and 203 to 841 for 900 Å. The computations associated with the additional

Krylovs/Newton add to overall run times, which increase (for similar grids and numbers of

cores) from approximately 2 hours for a 550 Å device to just under 4 hours for 750 Å and to

over 6 hours for 900 Å. Improving the preconditioner would allow longer devices to be modeled

more easily, and would also decrease run times for the standard 550 Å model.
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Appendix A

COMPILING TRILINOS

A.1 Trilinos and Cmake

The Trilinos software can be downloaded from the Sandia website (go to

http://trilinos.sandia.gov and find the link to the latest version.) Trilinos requires the Cmake

build system, which can be downloaded from the Cmake website

(http://www.cmake.org/cmake/resources/software.html). I installed the binary version (as rec-

ommended for casual users) specified for Linux on the NCSU HPC.

NOTE: At this moment, the latest version of Trilinos (version 10.12.2) does not compile

cleanly on the NCSU HPC; thus, I am running Trilinos version 10.6.0. If compilation issues

on your hardware platform are encountered that cannot be debugged, my suggestion is to try

compiling previous versions of Trilinos until you find one that will compile easily on your hard-

ware. The Trilinos modules that are incorporated in the RTD code are stable and have not been

updated since prior to version 10. Thus, any version 10 Trilinos software should work with the

RTD code, and possibly earlier versions as well.
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A.2 Environmental Variables

For the NCSU HPC, the environmental variables you set will determine which set of hardware

and software will be used. There are three configurations that I used for the simulation runs:

• InfiniBand network (via the gto queue on the NCSU HPC)

• Myrinet network (via the aro queue)

• Standard Ethernet network (via the kelley queue)

For each network, the best compiler to use is the Intel compiler. Gnu compilers can be used,

but Intel compilers will run the RTD code more efficiently. The descriptions below detail how

I set up the environmental variables to run on the NCSU HPC, and assume the use of the

appropriate Intel compiler.

Environmental variables can be set either via (1) your .tcshrc file in your home directory,

(2) a script that is sourced before you run your code, or (3) at the command line prior to

running your code. The listing below describes my setup for each network type.

All three networks require

• setenv LD LIBRARY PATH /usr/local/apps/acml/acml4.3.0/ifort64/lib

LD LIBRARY PATH represents the Intel library that contains the BLAS and LAPACK

libraries, which are required by Trilinos. I added this to my .tcshrc file so it is executed

automatically when I log on.

InfiniBand Network

The InfiniBand network requires that a fair amount of memory be available for applications

(default values are too low). This can be set (also in the .tcshrc file since it does not affect

the other network compilations) using
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• setenv RLMIT MEMLOCK 100000

Intel compilers for each network

Each network requires a different compiler script to be run. Prior to compiling Trilinos or

running the RTD code, execute one of the following scripts:

• InfiniBand network: add intel mvapich

• Myrinet network: add intel64 mx

• Ethernet network: add intel64 hydra

A.3 Configuring Trilinos

Once you have downloaded and untarred the appropriate Trilinos and Cmake packages and

set up the proper environmental variables, create a directory called BUILD in the Trilinos

base source directory (e.g., /home/username/trilinos-10.XX.XX-Source), and then create

an empty file called do-configure within the BUILD directory.

Next, edit the do-configure file and include all appropriate commands necessary to con-

figure Trilinos according to your specifications. The do-configure file will create the Makefile

to generate all the code for Trilinos. Information on how to set up the configure file, and

the options available for the do-configure file, is located in the documentation provided at

http://trilinos.sandia.gov/Trilinos10CMakeQuickstart.txt; see section (C). A sample do-configure

file for the Trilinos implementation used on the NCSU HPC for the RTD code is below.

rm CMakeCache.txt

/(cmake parent directory)/cmake-2.8.8-Linux-i386/bin/cmake -D

CMAKE_INSTALL_PREFIX:PATH=/(trilinos parent dir)/trilinos-10.6.0-Source/BUILD \
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-D BLAS_LIBRARY_DIRS:PATH=/usr/local/apps/acml/acml4.3.0/ifort64/lib \

-D BLAS_LIBRARY_NAMES:STRING="acml;acml_mv" \

-D LAPACK_LIBRARY_DIRS:PATH=/usr/local/apps/acml/acml4.3.0/ifort64/lib \

-D LAPACK_LIBRARY_NAMES:STRING="acml;acml_mv" \

-D TPL_ENABLE_MPI:BOOL=ON \

-D MPI_EXEC_MAX_NUMPROCS:STRING=250 \

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=OFF \

-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=OFF \

-D Trilinos_ENABLE_Teuchos:BOOL=ON \

-D Trilinos_ENABLE_Sacado:BOOL=ON \

-D Trilinos_ENABLE_Epetra:BOOL=ON \

-D Trilinos_ENABLE_EpetraExt:BOOL=ON \

-D Trilinos_ENABLE_Ifpack:BOOL=ON \

-D Trilinos_ENABLE_AztecOO:BOOL=ON \

-D Trilinos_ENABLE_Amesos:BOOL=ON \

-D Trilinos_ENABLE_Anasazi:BOOL=ON \

-D Trilinos_ENABLE_Belos:BOOL=ON \

-D Trilinos_ENABLE_ML:BOOL=ON \

-D Trilinos_ENABLE_NOX:BOOL=ON \

-D Trilinos_ENABLE_Stratimikos:BOOL=ON \

-D Trilinos_ENABLE_Thyra:BOOL=ON \

-D Trilinos_ENABLE_RTOp:BOOL=ON \

-D Trilinos_ENABLE_Rythmos:BOOL=ON \

-D Trilinos_ENABLE_Didasko:BOOL=ON \

-D Trilinos_ENABLE_Piro:BOOL=ON \

-D NOX_ENABLE_TESTS:BOOL=OFF \

-D Didasko_ENABLE_TESTS:BOOL=OFF \

-D Didasko_ENABLE_EXAMPLES:BOOL=OFF \

-D NOX_ENABLE_EXAMPLES:BOOL=OFF \

-D Piro_ENABLE_TESTS:BOOL=OFF \

-D Trilinos_ENABLE_EXAMPLES:BOOL=OFF \

-D Trilinos_ENABLE_TESTS:BOOL=OFF \

-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \

-D Trilinos_VERBOSE_CONFIGURE:BOOL=OFF \

-D CMAKE_BUILD_TYPE:STRING=RELEASE \

../

A breakdown of the do-configure file above:

• The first line finds the Cmake executable, and directs the output to be saved in the BUILD

directory.
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• The next 4 lines are unique to the NCSU HPC: lists the BLAS and LAPACK library files

to be included in the Trilinos build.

• For parallel computing, TPL ENABLE MPI must be set to “ON”. The default number

of processors used when running MPI is 4, so MPI EXEC MAX NUMPROCS must be

set if more than 4 processors will be used.

• Trilinos 10.6.0 has 48 packages, according to the download website. Including all of these

is not necessary, so only certain packages are enabled. To do this:

– Trilinos ENABLE ALL PACKAGES and

Trilinos ENABLE ALL OPTIONAL PACKAGES are set to “OFF”

– Only the necessary packages are enabled by setting

Trilinos ENABLE <Package name> to “ON”

• The tests and examples do not need to be enabled for the RTD Code.

• The verbosity of both the “configure” and the “make” can be set to list either a minimum

(OFF) or maximum (ON) of information.

• CMAKE BUILD TYPE = RELEASE builds an optimized version (optimized flags sent

to compiler), whereas setting the ...TYPE = DEBUG sends default debug flags to the

compiler.

Make the do-configure file executable (chmod +x do-configure) and then run the file. The

configure will set up the Trilinos information needed to “make” Trilinos, such as the compilers

to be used, additional libraries to include, etc. Some of the tests it performs may fail if it does

not find certain files it expects, but this will not always kill the configure. A successful configure

will show
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-- Configuring done

-- Generating done

-- Build files have been written to: /(trilinos parent directory)/

trilinos-10.6.0-Source/BUILD

if the configure completed correctly.

A.4 Make and make install

After the configure file has run and generated the Makefile for Trilinos, run the Makefile by

typing make at the command line. As each package is built, each object file will be listed,

along with a percentage for how much of your Trilinos compile has completed. This is the most

common place for the Trilinos compile to fail. If it does, it will fail immediately after the file that

caused the error, so it is easier to debug. Most likely the issue is with your compiler/software,

and not Trilinos, such as if the make cannot find a particular command from a standard library,

which may be due to the environmental variables that were set.

If the make completes without error, type make install at the command line to install the

files in the proper place. Once this final step has completed, your Trilinos compile is done.

A.5 Compiling the RTD code to run with Trilinos

To build a Makefile for the RTD code to include Trilinos, a number of libraries that correspond

with those listed in the original configure file must be included in the trilinos BUILD directory.

These are included by listing the module name (in lower case) appended to -l and included

as part of the LIB PATH. Also, the RTD code uses the NOX module, which requires additional

inclusions.
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A sample Makefile for the RTD code is listed below. The top 10 lines set up variables

and include necessary Trliinos and BLAS libraries. The remaining lines (starting with make

RTDCode.exe) reflect the non-Trilinos files that are specific to the RTD code.

#!/bin/sh

TOPDIR=/(trilinos parent directory)/trilinos-10.6.0-Source

BLAS=/usr/local/apps/acml/acml4.3.0/ifort64/lib

INC_PATH= -I$(TOPDIR)/packages/nox/src-epetra -I$(TOPDIR)/BUILD/include

LIB_PATH= -L$(TOPDIR)/BUILD/lib -lepetra -lepetraext -lamesos -laztecoo -lnox

-lnoxepetra -lloca -llocaepetra -lml -ltriutils -lteuchos -lanasazi

-lanasaziepetra -lifpack -L$(BLAS) -lacml -lacml_mv -lgfortran

CXX=mpicxx

CXX_FLAGS= -O3

include $(TOPDIR)/BUILD/include/Makefile.export.NOX

all:

make RTDCode.exe

RTDCode.exe: RTDCode.o vector_comp.o sinmat.o BCs.o interp.o interp_ele.o

kinetic5.o kinetic4.o barrier.o doping.o Tc.o current.o Tp.o poisson1.o ap.o

alglibinternal.o alglibmisc.o linalg.o solvers.o optimization.o

specialfunctions.o integration.o interpolation.o RTDHelpers.o

f_integral.o potential.o Problem_f0.o ProblemInterface_f0.o

Problem_wp.o ProblemInterface_wp.o

<tab> $(NOX_CXX_COMPILER) RTDCode.o vector_comp.o sinmat.o BCs.o interp.o

interp_ele.o kinetic5.o kinetic4.o barrier.o doping.o Tc.o

current.o Tp.o poisson1.o ap.o alglibinternal.o alglibmisc.o

linalg.o solvers.o optimization.o specialfunctions.o

integration.o interpolation.o RTDHelpers.o f_integral.o

potential.o Problem_f0.o ProblemInterface_f0.o Problem_wp.o

ProblemInterface_wp.o

$(NOX_CXX_FLAGS) $(LIB_PATH) $(NOX_LIBRARIES)

$(NOX_TPL_LIBRARIES) -o RTDCode.exe

RTDCode.o: RTDCode.cpp vector_comp.hpp sinmat.hpp BCs.hpp interp.hpp

interp_ele.hpp kinetic5.hpp kinetic4.hpp barrier.hpp doping.hpp Tc.hpp

current.hpp Tp.hpp poisson1.hpp ap.h alglibinternal.h alglibmisc.h linalg.h

solvers.h optimization.h specialfunctions.h integration.h interpolation.h
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RTDHelpers.hpp RTDTypes.hpp RTDMatrix.hpp f_integral.hpp potential.hpp

Problem_f0.hpp ProblemInterface_f0.hpp RTDMesh.hpp Problem_wp.hpp

ProblemInterface_wp.hpp

<tab> $(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c RTDCode.cpp $(INC_PATH)

interp.o: interp.cpp interp.hpp RTDMesh.hpp RTDTypes.hpp

<tab> $(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c interp.cpp $(INC_PATH)

interp_ele.o: interp_ele.cpp interp_ele.hpp RTDMesh.hpp

<tab> $(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c interp_ele.cpp $(INC_PATH)

vector_comp.o: vector_comp.cpp vector_comp.hpp RTDMesh.hpp

$(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c vector_comp.cpp $(INC_PATH)

BCs.o: BCs.cpp BCs.hpp RTDTypes.hpp RTDMesh.hpp

$(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c BCs.cpp $(INC_PATH)

.

.

.

.

Problem_f0.o: Problem_f0.cpp Problem_f0.hpp RTDHelpers.hpp poisson1.hpp Tp.hpp

potential.hpp RTDMatrix.hpp RTDMesh.hpp kinetic5.hpp kinetic4.hpp

f_integral.hpp

$(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c Problem_f0.cpp $(INC_PATH)

ProblemInterface_f0.o: ProblemInterface_f0.cpp ProblemInterface_f0.hpp

Problem_f0.hpp RTDMesh.hpp

$(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c ProblemInterface_f0.cpp

$(INC_PATH)

Problem_wp.o: Problem_wp.cpp Problem_wp.hpp RTDHelpers.hpp poisson1.hpp Tp.hpp

potential.hpp RTDMatrix.hpp RTDMesh.hpp kinetic5.hpp kinetic4.hpp current.hpp

f_integral.hpp

$(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c Problem_wp.cpp $(INC_PATH)

ProblemInterface_wp.o: ProblemInterface_wp.cpp ProblemInterface_wp.hpp

Problem_wp.hpp RTDMesh.hpp

$(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c ProblemInterface_wp.cpp

$(INC_PATH)

clean:

rm *.o RTDCode.exe

The first four lines after make RTDCode.exe create the executable version of the RTD code

(RTDCode.exe). To create the executable file, each object file for each class in the C++ code

must be included. To create the object file for each class, the basic lines are
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<Class>.o: <Class>.cpp <Class>.hpp {Other hpp files included in the <Class>

header file}

$(NOX_CXX_COMPILER) $(NOX_CXX_FLAGS) -c <Class>.cpp $(INC_PATH)

A.6 Submitting the RTDCode in the NCSU HPC environment

All jobs on the NCSU HPC should be run via the batch submission process and not via the

command line. To submit a job using the RTD Code to the applicable queue (kelley, aro, or

gto), the batch script must contain certain information specific to each queue.

A basic job submission script looks like:

#! /bin/csh

#BSUB -W <T>

#BSUB -n <N>

#BSUB -q <Q>

#BSUB -R "span[ptile=<P>]"

source <Intel compiler script>

mpiexec_<hardware abbreviation> ./<name of executable file>

#BSUB -o o.\%J

#BSUB -e e.\%J

where

• < T >= the maximum time in minutes the job should run

• < N >= the number of processors to be used

• < Q >= the queue to be used: gto, aro, or kelley

• < P >= the number of processes to allocate to each blade. For the gto queue, this should

be 8; for aro and kelley, 2.

• < Intel compiler script >= the script to be used based on the queue used. They are:

134



– gto: /usr/local/apps/env/intel mvapich.csh

– aro: /usr/local/apps/env/intel64 mx.csh

– kelley: /usr/local/apps/env/intel64 hydra.csh

• < hardware abbreviation >= mvapich for the gto queue; mx for the aro queue; and hydra

for the kelley queue

The last two lines specify the output and error file names – in this case, they are linked to the

job number (%J = job number).

Thus, a sample job submission script looks like:

#! /bin/csh

#BSUB -W 40000

#BSUB -n 16

#BSUB -q gto

#BSUB -R "span[ptile=8]"

source /usr/local/apps/env/intel_mvapich.csh

mpiexec_mvapich ./RTDCode.exe

#BSUB -o o.%J

#BSUB -e e.%J
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Appendix B

DETAILS OF THE C++

DATA-DRIVEN STRUCTS

The five main structs that are implemented in the code are:

• Constants - to hold well known/defined constants. These are populated from within

RTDCODE.cpp, using values on the NIST website, at:

http://physics.nist.gov/cuu/Constants/index.html.

The data values in this struct are:

– q, the charge on an electron

– h, Planck’s constant

– kB, Boltzmann’s constant

– π, the mathematical constant

– ε0, the dielectric permittivity constant

• MatProps - to hold properties of the materials used in the device. These constants are

read in from the file matprops.dat via RTDCODE.cpp. The values in this struct are:
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– m∗, the effective mass of an electron

– µ0, the fermi energy at x = 0

– µL, the fermi energy at x = L

– εd, the dielectric permittivity proportional constant (material dependent)

– ε, the computed dielectric permittivity

– τ , the relaxation time

• DevProps - to hold the device-related properties. Most of these variables are read in from

devprops.dat via the RTDCODE.cpp; however, some are calculated in RTDCODE.cpp (i.e.,

Dx, Nc, Lc, etc.) from the input values:

– T , the temperature of the device

– V0, the bias at x = 0

– VL, the bias at x = L

– Kmax flag, a character that determines whether or not to use a fixed momentum

space (or a variable one)

– Kmax, the value that is used to approximate the truncated upper limit of the dk

integrals

– L, the device length

– Lc, the correlation length

– k type, a character used to determine whether or not to implement a non-uniform

momentum grid

– x type, a character used to determine whether or not to implement a non-uniform

spatial grid

– Nc, the grid point immediately below (in value) the correlation length

– Nx, the number of grid points in the spatial dimension
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– Nk, the number of grid points in the momentum dimension

– Nk original, the number of grid points in the momentum dimension if a uniform grid

were used

– Dx, the grid spacing in the spatial dimension, assuming a uniform grid (i.e., the

smallest mesh size for a non-uniform mesh)

– Dk, the grid spacing in the momentum dimension, assuming a uniform grid (i.e., the

smallest mesh size for a non-uniform mesh)

• Barrier class - to hold the barrier profile information. The constants are input via the

barrier.dat file; the remainder is calculated in the Compute function of the Barrier

class. The elements are:

– Num: the number of barriers in the device

– Startpos: the position (in Angstroms Å) in the device where the barriers begin

– Length (array): the length of each barrier in the device (in Angstroms Å), with the

number of data elements in the array is equal to Num

– Well (array): the size of each well (in Angstroms Å), with the number of data elements

in the array equal to Num-1

– Type (array): the type of each barrier, where barriers can either be constant (‘c’),

linear (‘l’), or quadratic (‘q’). The number of data elements in the array is equal to

Num. Certain assumptions are made about the linear and quadratic barriers:

∗ For linear barriers, the slope can either be positive or negative, based on the

starting (’bot’) and ending (’top’) values.

∗ For quadratic barriers, a symmetric profile is assumed for the barrier, where the

value of the barrier is the same at each end of the barrier (’bot’), and the value

in the middle is the highest/lowest (’top’).
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– Bot (array): the value of the barrier at the left hand side of the barrier. How it is

used depends on the type of barrier:

∗ This is the value used if the barrier is constant.

∗ If the barrier is linear, it is the starting value at the left end of the barrier, and

is used to compute the barrier profile to the end of the barrier.

∗ If the barrier is quadratic, the left and right ends of the barrier are assumed to

be equal to this value, and it is used to compute the rest of the barrier profile.

– Top (array): an additional value used to determine the barrier profile for the linear

and quadratic cases.

∗ For a linear barrier, it is assumed to be the barrier value at the right end of the

barrier. Together with Bot and Length, it is used to compute the barrier profile

for the rest of the barrier.

∗ For a quadratic barrier, it is assumed to be the value in the middle of the barrier

(since the quadratic profile is assumed to be symmetric). It is used together with

Bot and Length to compute the barrier profile for the rest of the barrier.

– Profile (Epetra Vector): computed using the input information, it holds the barrier

value at each grid point along the device

– Barr symm: boolean variable holds whether the barrier is symmetric. If it is true, it

is used to position the starting position of the barriers.

• Doping class - to hold the doping profile information. The constants are input via the

doping.dat file; the remainder is calculated in the Compute function of the Doping class.

The elements are:

– Num: the number of doping regions

– Length (array): the length of each doping region in the device (in Angstroms Å),

with the number of data elements in the array is equal to Num
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– Density (array): the value of the density in each doping region. Note that the density

is assumed to be constant in each region.

– Profile (Epetra Vector): holds the value of the doping density at each grid point

along the device. Computed using the input information.

– Dop symm: boolean variable holds whether the doping regions are symmetric. If

true, it is used to determine the length (and positions) of the region in the middle

of the device, which is generally undoped (or low doped).
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Appendix C

Incorporating Trilinos within the

RTD code

Several commands within the main RTD code are unique to a Trilinos environment. They

include:

1. Setting up the appropriate Epetra objects for parallel programming;

2. Including a command to use Teuchos reference counted pointers;

3. Including appropriate Trilinos header files;

4. Setting up a Problem class and a Problem Interface class for NOX and LOCA; and

5. Including the proper parameter lists and objects for NOX and LOCA.

Most, but not all, of the information given here can be found in the Trilinos tutorial [71] and/or

on the Trilinos webpage for the given packages (http://trilinos.sandia.gov/packages).
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C.1 Parallel Processing

To utilize parallel processing within Trilinos, include the following lines at the top of the code

prior to int main( int argc, char **argv ) statement [71]:

#ifdef HAVE_MPI

#include "mpi.h"

#include "Epetra_MpiComm.h"

#else

#include "Epetra_SerialComm.h"

#endif

These lines will check whether the code is set to run in parallel, and if so, will allocate either

parallel MPI Epetra objects or serial Epetra objects. Also, the following needs to be included

at the very end of the code [71]:

#ifdef HAVE_MPI

MPI_Finalize();

#endif

return(EXIT_SUCCESS);

to properly deallocate any MPI objects created for parallel processing.

C.2 Reference Counted Pointers

To include reference counted pointers from Teuchos (which are used by a variety of packages,

and make memory management easier and more efficient), the line

using Teuchos::RCP;

must be included at the top of the code prior to the int main( int argc, char **argv )

statement.
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C.3 Trilinos header files

In addition to standard header files, Trilinos header files associated with the Trilinos objects

used need to be included. When creating objects for which reference counted pointers will be

used to allocate/deallocate memory, the header file

#include <Teuchos_RCP.hpp>

should be included, as well as the line

using Teuchos::RCP;

just after the include statement [77]. In the RTD code, numerous Epetra objects were used

that required their corresponding Epetra header files. For most computational classes that used

Epetra Vectors (barrier class, kinetic class, etc.) to store the Wigner function or other vectors,

the following statements were included:

#include <Epetra_ConfigDefs.h>

#include <Epetra_Map.h>

#include <Epetra_Comm.h>

#include <Epetra_Vector.h>

Epetra ConfigDefs.h includes the standard files, functions, and definitions used by Epe-

tra objects; Epetra Map.h the various constructors used to distribute vectors/matrices across

processors via the Epetra Map.h class; Epetra Comm.h the various functions associated with

communication across processors; and Epetra Vector.h the constructors and functions associ-

ated with the Epetra Vector.h vector class.

Several of the RTD code classes used additional Trilinos objects, which required their asso-

ciated header file. The PoissonMethod class used the sparse matrix object Epetra CrsMatrix,

so the additional file <Epetra CrsMatrix.h> was included to set up the associated functions

and constructors, and the RTDMesh struct set up Import objects to facilitate distribution and
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accumulation of vector elements across processors, so the file <Epetra Import.h> was included

to define the import and export functions.

Finally, numerous header files are associated with NOX and LOCA that must be included in

order to run those packages. In the Problem class, the following files were included in addition

to the standard Epetra header files:

// Nox definition files

#include "NOX.H"

#include "NOX_Epetra_Interface_Required.H"

#include "NOX_Epetra_Interface_Jacobian.H"

#include "NOX_Epetra_LinearSystem_AztecOO.H"

#include "NOX_Epetra_Group.H"

// Loca definition files

#include "LOCA_Parameter_Vector.H"

and the following were included in the Problem Interface class:

// include all header files that are needed for Loca continuation

#include "Epetra_LinearProblem.h"

#include "AztecOO.h"

#include "LOCA.H"

#include "LOCA_GlobalData.H"

#include "LOCA_Epetra.H"

#include "NOX_Epetra_MatrixFree.H"

in order to set up the various objects and functions required for NOX and LOCA.

C.4 Problem class and Problem Interface class

The Problem Interface class is a mandatory class of NOX and LOCA, and sets up several

functions used in computing the solution to F (x) = 0: for NOX, the main required func-

tion is computeF, which computes y = F (x). There are several other functions that must

be defined in the Problem Interface class (or else a compiler error will result), but need not

be implemented to solve the nonlinear equation. In this case, the code should be written to

throw an error [71]. The mandatory functions are: computeJacobian, computePrecMatrix,
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and computePreconditioner. For LOCA, the same functions must be defined, as well as

the setParameters function [78], which sets the value of the continuation parameter. An ad-

ditional function is created in both the NOX and LOCA Problem Interfaces classes called

printSolution, which prints user-defined information about the converged solution for each

continuation value.

However, to reduce the complexity of the Problem Interface class and allow changes to be

made to F (x) more easily, the actual computations associated with F (x) are defined in a Prob-

lem class [78], and the computeF function in the Problem Interface class calls a function in the

Problem class to do the actual calculation. A similarly setup is involved with the printSolution

function, which calls a function in the Problem class to do the current calculation and output

the result. For the RTD code, a Problem class and a Problem Interface class are defined to solve

for the initial Wigner distribution f0 using K(f) + P (f) = 0, and another Problem class and

Problem Interface class are defined to solve the full Wigner function K(f) + P (f) + S(f) = 0

for various voltages.

C.5 NOX setup

NOX and LOCA both have a variety of options associated with their use. To hold the informa-

tion necessary to each package, a main parameter list is created [71], and the specific methods

and parameters to be used are assigned via nested sublists.

NOX requires an initial guess for the Wigner distribution function [71], which is given as

fx dist below. The portion of code below specific to NOX is included in the main program

once the constructors for the computational classes (e.g., barrier, kinetic, poisson, etc.) have

been set up. Summary explanations for each piece of code are given in italicized text.

A main parameter list, nlParams, is created for NOX, along with its corresponding pointer,
nlParamsPtr:
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// Create the top level parameter list

Teuchos::RCP<Teuchos::ParameterList> nlParamsPtr = Teuchos::rcp(new Teuchos::

ParameterList);

// Set up NOX info

Teuchos::ParameterList& nlParams = *(nlParamsPtr.get());

Sublists to hold the methods to be used and the parameter options related to the nonlinear solver:

// Set the nonlinear solver method

nlParams.set("Nonlinear Solver", "Line Search Based");

// Set the printing parameters in the "Printing" sublist

Teuchos::ParameterList& printParams = nlParams.sublist("Printing");

printParams.set("MyPID", Comm.MyPID());

printParams.set("Output Precision", 8);

printParams.set("Output Processor", 0);

printParams.set("Output Information",

NOX::Utils::OuterIteration +

NOX::Utils::OuterIterationStatusTest +

NOX::Utils::InnerIteration +

NOX::Utils::LinearSolverDetails +

NOX::Utils::Parameters +

NOX::Utils::Details +

NOX::Utils::Warning);

// NOX parameters - Sublist for line search

Teuchos::ParameterList& searchParams = nlParams.sublist("Line Search");

searchParams.set("Method", "Full Step");

// Sublist for direction

Teuchos::ParameterList& dirParams = nlParams.sublist("Direction");

dirParams.set("Method", "Newton");

Teuchos::ParameterList& newtonParams = dirParams.sublist("Newton");

newtonParams.set("Forcing Term Method", "Constant");

// Sublist for linear solver for the Newton method

Teuchos::ParameterList& lsParams = newtonParams.sublist("Linear Solver");

lsParams.set("Aztec Solver", "GMRES");

lsParams.set("Max Iterations",maxGMRES);

lsParams.set("Tolerance", 1e-6);
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lsParams.set("Output Frequency", 25);

lsParams.set("Preconditioner", "None");

Objects created for NOX, including the initial guess fed into NOX as well as those related to
the Jacobian-free method:

// Set up the problem interface

Teuchos::RCP<f0ProblemInterface> interface =

Teuchos::rcp(new f0ProblemInterface(Problem,mesh,Comm) );

Teuchos::RCP<NOX::Epetra::Interface::Required> iReq = interface;

// Create the operator to hold the Matrix-free operator

Teuchos::RCP<Epetra_Operator> A;

Teuchos::RCP<NOX::Epetra::Interface::Jacobian> iJac;

// Need a NOX::Epetra::Vector for constructor

// This becomes the initial guess vector that is used for the nonlinear solves

//AGS Partition parallel

Epetra_Vector fx_dist(*mesh.xkMap_dist);

fx_dist.Import(fx, *mesh.xkImport_rev, Insert);

NOX::Epetra::Vector noxInitGuess(fx_dist, NOX::DeepCopy);

// Matrix Free application (Epetra Operator):

Teuchos::RCP<NOX::Epetra::MatrixFree> MF =

Teuchos::rcp(new NOX::Epetra::MatrixFree(printParams,interface,noxInitGuess));

A = MF;

iJac = MF;

// Build the linear system solver

Teuchos::RCP<NOX::Epetra::LinearSystemAztecOO> linSys =

Teuchos::rcp(new NOX::Epetra::LinearSystemAztecOO(printParams, lsParams,

iReq, iJac, A, noxInitGuess));

// Create the Group - must be NOX group

Teuchos::RCP<NOX::Epetra::Group> grpPtr =

Teuchos::rcp(new NOX::Epetra::Group(printParams, iReq, noxInitGuess,

linSys));
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Set up the convergence criteria and solve the nonlinear system:

// Calculate the first F(x0) as a starting point. This is only needed for

// certain status tests to ensure an initial residual (|r0|) is calculated

grpPtr->computeF();

// Set up the status tests to check for convergence

// Determines the error tolerance for the Newton solves

Teuchos::RCP<NOX::StatusTest::NormF> testNormF =

Teuchos::rcp(new NOX::StatusTest::NormF(1.0e-10));

// Checks for the max number of nonlinear (Newton) iterations to be taken

Teuchos::RCP<NOX::StatusTest::MaxIters> testMaxIters =

Teuchos::rcp(new NOX::StatusTest::MaxIters(maxNewtonIters));

// This combination of tests will be used by NOX to determine whether the step

// converged

Teuchos::RCP<NOX::StatusTest::Combo> combo =

Teuchos::rcp(new NOX::StatusTest::Combo(NOX::StatusTest::Combo::OR,

testNormF, testMaxIters));

// Create the solver

Teuchos::RCP<NOX::Solver::Generic> solver =

NOX::Solver::buildSolver(grpPtr, combo, nlParamsPtr);

// Solve the nonlinear system

NOX::StatusTest::StatusType status = solver->solve();

Output the convergence results and the solution vector:

// Output whether the nonlinear solver converged

if( NOX::StatusTest::Converged == status )

cout << "\n" << "-- NOX solver converged --" << "\n";

else

cout << "\n" << "-- NOX solver did not converge --" << "\n";

// Output the NOX parameter info

if( Comm.MyPID() == 0 ) {

cout << "\n" << "-- Parameter List From Solver --" << "\n";

solver->getList().print(cout);

}

// Get the Epetra_Vector with the final solution from the solver
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const NOX::Epetra::Group & finalGroup =

dynamic_cast<const NOX::Epetra::Group&>(solver->getSolutionGroup());

const Epetra_Vector & finalSolution =

(dynamic_cast<const NOX::Epetra::Vector&>(finalGroup.getX())).

getEpetraVector();

//AGS Partition parallel

Epetra_Vector finalSolution_undist(*mesh.xkMap);

finalSolution_undist.Import(finalSolution, *mesh.xkImport, Insert);

C.6 LOCA setup

In the main program of the RTD code, once NOX has computed the initial Wigner distribution

function via the code above, the continuation code for LOCA can be run. Setting up the

parameter lists and objects for LOCA is similar to those for NOX, and includes a sublist

specifically for NOX options. LOCA requires a continuation parameter [78] (in the sample RTD

code below, the continuation parameter is cparm2, which represents the voltage and is initially

set at V = 0) and an initial vector (finalSolution, which is the converged Wigner distribution

function when V = 0).

ContParamList is the pointer to the top level parameter list for the continuation run, with

locaContParamsList the sublist for all of the step size methods and parameters:

// Create the top level parameter list

Teuchos::RCP<Teuchos::ParameterList> ContParamList =

Teuchos::rcp(new Teuchos::ParameterList);

// Create LOCA sublist

Teuchos::ParameterList& locaContParamsList = ContParamList->sublist("LOCA");

// Create the sublist for continuation and set the stepper parameters

Teuchos::ParameterList& stepperContList=locaContParamsList.sublist("Stepper");

stepperContList.set("Continuation Method", "Arc Length");// Default

stepperContList.set("Continuation Parameter", "cparm2"); // Must set

stepperContList.set("Initial Value", devprops.bias_start); // Must set
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stepperContList.set("Max Value", devprops.bias_end); // Must set

stepperContList.set("Min Value", devprops.bias_start); // Must set

stepperContList.set("Max Steps", maxContSteps); // Should set

stepperContList.set("Max Nonlinear Iterations", maxNewtonIters); // Should set

stepperContList.set("Compute Eigenvalues",false);

stepperContList.set("Goal Arc Length Parameter Contribution",0.5);

stepperContList.set("Max Arc Length Parameter Contribution",0.7);

stepperContList.set("Initial Scale Factor",1.0);

stepperContList.set("Min Scale Factor",1.0e-8);

stepperContList.set("Min Tangent Factor",-1.0);

stepperContList.set("Tangent Factor Exponent",1.0);

stepperContList.set("Bordered Solver Method", "Householder");

// Create predictor sublist

Teuchos::ParameterList& predictorContList =

locaContParamsList.sublist("Predictor");

predictorContList.set("Method", "Secant"); // Default

// Create step size sublist

Teuchos::ParameterList& stepSizeContList =

locaContParamsList.sublist("Step Size");

stepSizeContList.set("Method", "Adaptive"); // Default

stepSizeContList.set("Initial Step Size", 0.01); // Should set

stepSizeContList.set("Min Step Size", 1.0e-5); // Should set

stepSizeContList.set("Max Step Size", 0.02); // Should set

stepSizeContList.set("Aggressiveness", 0.5);

A sublist specifically for NOX is created, along with associated sublists specifying the nonlinear
solver options:

// Set up NOX info

Teuchos::ParameterList& nlContParams = ContParamList->sublist("NOX");

// Set the nonlinear solver method

nlContParams.set("Nonlinear Solver", "Line Search Based");

// Set the printing parameters in the "Printing" sublist

Teuchos::ParameterList& printContParams = nlContParams.sublist("Printing");

printContParams.set("MyPID", Comm.MyPID());

printContParams.set("Output Precision", 5);

printContParams.set("Output Processor", 0);
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printContParams.set("Output Information",

NOX::Utils::OuterIteration +

NOX::Utils::OuterIterationStatusTest +

NOX::Utils::InnerIteration +

NOX::Utils::LinearSolverDetails +

NOX::Utils::Parameters +

NOX::Utils::Details +

NOX::Utils::Warning +

NOX::Utils::StepperIteration +

NOX::Utils::StepperDetails +

NOX::Utils::StepperParameters);

// NOX parameters - Sublist for line search

Teuchos::ParameterList& searchContParams = nlContParams.sublist("Line Search");

searchContParams.set("Method", "Full Step");

// Sublist for direction

Teuchos::ParameterList& dirContParams = nlContParams.sublist("Direction");

dirContParams.set("Method", "Newton");

Teuchos::ParameterList& newtonContParams = dirContParams.sublist("Newton");

newtonContParams.set("Forcing Term Method", "Constant");

// Sublist for linear solver for the Newton method

Teuchos::ParameterList& lsContParams=newtonContParams.sublist("Linear Solver");

lsContParams.set("Aztec Solver", "GMRES");

lsContParams.set("Max Iterations", maxGMRES);

lsContParams.set("Tolerance", 1e-10);

lsContParams.set("Output Frequency", 25);

lsContParams.set("Preconditioner", "None");

Objects created for LOCA, including the continuation parameter, the initial guess fed into NOX,
and those related to the Jacobian-free method:

// set up the continuation parameter vector

LOCA::ParameterVector pcont;

pcont.addParameter("cparm2",cparm2);

// Set up the problem interface

Teuchos::RCP<wpProblemInterface> Cont_interface =

Teuchos::rcp(new wpProblemInterface(&ProblemCont, cparm2, mesh, outtest,

Comm));
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Teuchos::RCP<LOCA::Epetra::Interface::Required> iReq_Cont = Cont_interface;

// Create the operator to hold the Matrix-free operator

Teuchos::RCP<Epetra_Operator> A_Cont;

Teuchos::RCP<NOX::Epetra::Interface::Jacobian> iJac_Cont;

// Need a NOX::Epetra::Vector for constructor

// This becomes the initial guess vector that is used for the nonlinear solves

NOX::Epetra::Vector noxInitGuess_Cont(finalSolution, NOX::DeepCopy);

// Matrix Free application (Epetra Operator):

Teuchos::RCP<NOX::Epetra::MatrixFree> MF_Cont =

Teuchos::rcp(new NOX::Epetra::MatrixFree(printContParams, Cont_interface,

noxInitGuess_Cont));

A_Cont = MF_Cont;

iJac_Cont = MF_Cont;

// Build the linear system solver

Teuchos::RCP<NOX::Epetra::LinearSystemAztecOO> linSys_Cont =

Teuchos::rcp(new NOX::Epetra::LinearSystemAztecOO(printContParams,

lsContParams, iReq_Cont, iJac_Cont, A_Cont, noxInitGuess_Cont));

// Create the Loca (continuation) vector

NOX::Epetra::Vector locaSoln_Cont(noxInitGuess_Cont);

// Create Epetra Factory

Teuchos::RCP<LOCA::Abstract::Factory> epetraFactory_Cont =

Teuchos::rcp(new LOCA::Epetra::Factory);

// Create global data object

Teuchos::RCP<LOCA::GlobalData> globalData_Cont =

LOCA::createGlobalData(ContParamList, epetraFactory_Cont);

// Create the Group - must be LOCA group

Teuchos::RCP<LOCA::Epetra::Group> grpPtr_Cont =

Teuchos::rcp(new LOCA::Epetra::Group(globalData_Cont, printContParams,

iReq_Cont, locaSoln_Cont,

linSys_Cont, pcont));
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Set up the convergence criteria and run the continuation:

// Calculate the first F(x0) as a starting point. This is only needed for

// certain status tests to ensure an initial residual (|r0|) is calculated

grpPtr_Cont->computeF();

// Set up the status tests to check for convergence

// Determines the error tolerance for the Newton solves

Teuchos::RCP<NOX::StatusTest::Generic> testNormF_Cont =

Teuchos::rcp(new NOX::StatusTest::NormF(1.0e-10));

// Sets the max number of nonlinear (Newton) iterations that will be taken.

// If this is not already set, it will default to ’20’

Teuchos::RCP<NOX::StatusTest::MaxIters> testMaxIters_Cont =

Teuchos::rcp(new NOX::StatusTest::

MaxIters(stepperContList.get("Max Nonlinear Iterations", 5)));

// This combination of tests will be used by NOX to determine whether the

// step converged

Teuchos::RCP<NOX::StatusTest::Combo> combo_Cont =

Teuchos::rcp(new NOX::StatusTest::Combo(NOX::StatusTest::Combo::OR,

testNormF_Cont, testMaxIters_Cont));

// Create the stepper

LOCA::Stepper stepper_Cont(globalData_Cont, grpPtr_Cont, combo_Cont,

ContParamList);

LOCA::Abstract::Iterator::IteratorStatus status_Cont = stepper_Cont.run();

Output the convergence results and deallocate memory for LOCA Objects when the continuation
is complete:

// Check if the stepper completed

if (status_Cont == LOCA::Abstract::Iterator::Finished)

globalData_Cont->locaUtils->out() << "\nAll tests passed!" << endl;

else

if (globalData_Cont->locaUtils->isPrintType(NOX::Utils::Error))

globalData_Cont->locaUtils->out() << "\nStepper failed to converge!" << endl;

// Output the stepper parameter list info

if (globalData_Cont->locaUtils->isPrintType(NOX::Utils::StepperParameters))
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{

globalData_Cont->locaUtils->out() << endl << "Final Parameters" << endl

<< "*******************" << endl;

stepper_Cont.getList()->print(globalData_Cont->locaUtils->out());

globalData_Cont->locaUtils->out() << endl;

}

// Make sure all processors are done

Comm.Barrier();

// Deallocate memory

LOCA::destroyGlobalData(globalData_Cont);
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